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In vivo and in vitro models of food allergy
Changes in lifestyle, diet and environmental factors in

westernized countries correspond with the rise in non-

communicable diseases affecting metabolic and im-

mune disorders, such as allergies. Therefore the mech-

anisms by which environmental factors and allergens

are capable of elicitating allergic sensitization need to

be further unraveled. In vitro models using human

epithelial cells, with or without immune cells, are

needed to achieve this purpose. Epithelial cells cover

mucosal surfaces and provide a barrier between the

external and internal environment. In mucosal tissues

such as the respiratory and gastro-intestinal tract,

epithelial cells not only contribute to barrier integrity

but also actively regulate dendritic cell function and

adaptive immune responses and can support tolerance

induction or allergic sensitization. Certain allergens

contain protease activity which may facilitate them

to cross the barrier, others are transported via trans-

cytosis. In addition, certain allergens may provoke

epithelial activation resulting in production of TH2

driving immune mediators. Preserving epithelial

homeostasis is important to suppress allergic sensiti-
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zation. This review describes in vitro models of human

intestinal epithelial cells and co-culture models that are

currently available to determine barrier disruption or

immune activation induced by food allergens. These

can be used for future development of in vitro models to

study the contribution of intestinal epithelial cells in

allergic sensitization and to identify sensitizing proper-

ties of novel proteins.
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Introduction

Changing living conditions in industrialized countries, in-

cluding dietary alterations, increased exposure to environ-

mental pollutants, microbiome alterations and a sedentary

lifestyle, have been linked to the increase in non-communi-

cable diseases including allergies [1–3]. In the western world

depending on the country 5–30% of young people are affect-

ed with asthma and/or rhinitis and 6% of children and 3–4%

of adults with food allergy [4–6]. Allergic sensitization occurs
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for a large range of food allergens such as cow’s milk, hen’s

egg and peanut proteins and/or inhalant allergens like house

dust mite or pollen. Mucosal tissues covering the lung and

gastro-intestinal tract provide a barrier against environmen-

tal antigens, and support immunological tolerance for harm-

less agents while immunity is raised against pathogenic

intruders [7,8]. However in case of allergic sensitization a T

helper cell 2 (TH2) driven IgE mediated immune response is

raised against relatively harmless proteins (allergens). Epithe-

lial cells protect underlying mucosal lymphoid tissues from

excessive exposure to allergenic proteins. They express pat-

tern recognition receptors (e.g. Toll like receptors), glycan

binding receptors (e.g. galectins), cytokine and chemokine

receptors and produce cytokines, chemokines, galectins and

growth factors that drive immune polarization by affecting

dendritic cell (DC) function and the adaptive immune re-

sponse [9,10]. This review describes the current knowledge on

the contribution of intestinal epithelial cells (IEC) to allergic

sensitization with regard to barrier properties and production

of immune mediators and human in vitro models that can be

used and/or further developed to study these processes.

Epithelial barrier and defects related to allergic

sensitization

In the intestine a monolayer of epithelial cells exhibits nu-

merous physical adaptations to separate the mucosal im-

mune system from the external environment. A brush

border on the apical surface of the epithelium produces

digestive enzymes and allows uptake of nutrients, while

intercellular tight junctions between neighboring epithelial

cells prevent paracellular transport of immunogenic macro-

molecules. This physical barrier is reinforced by a glycocalyx

formed by secretion and apical attachment of a heavily

glycosylated mucin-rich layer further protecting the epithe-

lial lining from microbial attachment and pathogen invasion

[11]. In addition, IgA and digestive enzymes prevent the

uptake of antigenic macromolecules into the body. The gut

epithelium is created from a pool of pluripotent stem cells,

which give rise to five types of IEC: absorptive columnar cells

(enterocytes), goblet, endocrine, Paneth, and M (microfold)

cells. Enterocytes form the vast majority and 10–25% of IEC

consist of mucus producing goblet cells [8]. Cohesion and
Table 1. Examples of (food) allergens with proteolytic activity 

activate mediator release in vitro

Allergen source Enzyme Mode of action 

House dust mite [24] Der p 1 Cleavage of tight-junction molecules (o

cysteine protease activity

Kiwifruit [25,26] Act d 1 Cleavage of tight-junction molecules (o

Pineapple [27] Ana c2 Widening intercellular junctions, strong

Papaya [27] Car p 1 Loosening of tight junctions 
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polarity of the epithelial layer are maintained by the apical

tight and adherens junctions, and by the subjacent desmo-

somes [12]. Numerous aeroallergens (house dust mite (Der

p1, Der p9), cockroach, pollen, Penicillium sp., Aspergillus sp.,)

[11,13] and food derived allergens reveal protease activity (see

Table 1). These allergens are involved in the pathogenesis of

allergic diseases through (i) inducing the release of pro-in-

flammatory cytokines via activation of protease-activated

receptors (PARs), which are widely expressed on leukocytes,

endothelium, epithelium, and many airway cells; (ii) the

cleavage of CD23 from activated B cells and CD25 from T

cells to favor the development of TH2-type responses [14,15];

(iii) the degradation of junctional proteins, thus increasing

the permeability of the epithelium in vitro. Also non-proteo-

lytic food allergens can cross the epithelial barrier for exam-

ple via transcytosis (Table 2). Aeroallergens such as house

dust mite allergen Der p2 or Timothy grass allergen Phl p1

[11,13,16–18], have recently been shown to induce airway

epithelial activation resulting in the release of IL-1a, IL-33, IL-

25, TSLP and/or GM-CSF which may contribute to recruit-

ment and activation of DC and innate lymphoid group 2 cells

(ILC2) and consequent TH2 polarization. Similar aspects may

apply for certain food derived allergens such as Peach LTP and

peanut allergens (Table 2). In addition, IL-4 and IL-13 pro-

duced by TH2 cells and/or ILC2, and tryptase secreted by mast

cells, can enhance epithelial permeability via the IL-4/IL-13

receptor or PAR2 receptor respectively [19–22]. Beyond aller-

gens increasing paracellular permeability and crossing the

epithelial barrier via the transcellular route, IgE-allergen

complexes can be transported over IEC via the low affinity

IgE receptor CD23b [23].

Epithelial cells contribute to tolerance induction or

allergic sensitization

The intestinal epithelium is in close contact with dendritic

cells (DC) that sample luminal antigens. M-cells that cover

Peyer’s, caecal and colonic patches, are specialized in the

uptake of particulate antigens and transfer these to DC

in the subepithelial dome that can instruct naı̈ve T-cells

and B-cells [8]. The lamina propria is the effector site of

the intestinal mucosa and contains DC, macrophages, ILC,

T-cells, B-cells, intra epithelial T-cells, eosinophils and mast
known to affect intestinal epithelial barrier integrity and/or

Effect

ccludin, claudin) via Increase in epithelial permeability of intestinal human

biopsy

ccludin) Increase in epithelial permeability of Caco-2 and T84

 mucolytic activity Increase in epithelial permeability of Caco-2

Increase in epithelial permeability of Caco-2
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Table 2. Examples of food allergens with non-proteolytic activity that traffic the intestinal epithelial barrier and/or activate
mediator release in vitro

Allergen source Allergen Mode of action Effect

Peach LTP [28] Pru p3 Lipid raft mediated uptake

and increased epithelial TSLP,

IL-33, IL-25 mRNA

Crosses epithelial barrier and activates Caco-2 epithelial cells

Cow’s milk [29] aLac

bLac

Transcytosis Crosses epithelial barrier of Caco-2

Peanut [30,31] Ara h1/h2 Transcytosis Crosses epithelial barrier of Caco-2

Ara h2 Cellular activation Stimulates a pro-inflammatory response in Caco-2/TC7 cells

Wheat [32] v5-gliadin LTP Transcytosis Crosses epithelial barrier of Caco-2

Egg white [33,34] Gal d1 Transcytosis Crosses epithelial barrier of human breast

Gal d 2 Transcytosis Crosses epithelial barrier of human gastro-intestinal tract

Brazil nuts [35] Ber e 1 Transcytosis Crosses epithelial barrier of Caco-2

Sesame seeds [35] Ses i 1 Transcytosis Crosses epithelial barrier of Caco-2
cells [8]. Intestinal CD103+ DC are crucial in determining the

adaptive immune response to oral antigens, and they traffic

to the mesenteric lymph nodes (MLN) in a CCR7 dependent

manner where they promote tolerance or immunity [36,37].

The CX3CR1hi resident macrophages directly underlie the

epithelium and under homeostatic conditions produce high

amounts of IL-10. They can extend transepithelial dendrites

through the epithelium via the paracellular space to sample

luminal antigen and transfer this to CD103+ DC via connex-

ion 43. Similarly goblet cells transfer antigen via channels to

CD103+ DC [38]. Also CD103+ DC themselves are in close

contact with the epithelium and sample from the lumen. Oral

tolerance is abolished in absence of MLN or CCR7 expressing

DC, while the Peyer’s patches are dispensable. This suggests

that CD103+ migratory DC from the LP are key in oral

tolerance induction [39]. If these cells are instructed to pro-

duce retinoic acid (RA) (high expression of vitamin A con-

verting enzyme aldehyde dehydrogenase) and TGFb and/or

indoleamine 2,3-dioxygenase (IDO) they can induce gut

trophic a4b7+CCR9+FoxP3+regulatory T cells (Treg) that

home back to the lamina propria where they are further

differentiated and expanded by IL-10 producing CX3CR1+

macrophages [8,36,37,40]. Local intestinal factors that gen-

erate these tolerogenic CD103+ DC include the microbiome,

dietary components, leukocytes, stromal cells and neuroen-

docrine mediators as well as IEC derived factors (including

TGFb, TSLP, RA and mucin MUC2) [8,37,40–44] (Fig. 1).

Epithelial cells can instruct TH2 driving OX40L expressing

DC that secrete CCL17 and CCL22 and activate ILC2

[16,45,46]. This was convincingly shown for aero-allergens

like HDM which contains specific allergens (Derp2) and LPS

that activate NFkB signaling in airway epithelial cells. In

response they release IL-1a which via a positive feedback

loop induces IL-33, IL-25, TSLP and endogenous danger
factors such uric acid and airway epithelial cells also can

release DC chemo-attractants CCL2 and CCL20 upon aller-

gen exposure [16,47]. TSLP, IL25, IL33 and uric acid are also

increased in the intestine of mice affected with food allergy,

and in particular IL-33 and uric acid contribute to allergic

sensitization not only for inhalant allergen HDM but also for

food allergen peanut in mice (Fig. 1) [46,48–50].

Human in vitro models of intestinal epithelial cells

The use of in vitro IEC models for transport studies and

allergen uptake focusses on absorptive cells. Because of the

difficulties in culturing isolated primary human IEC and

limited viability, monolayers of human colorectal adenocar-

cinoma cell lines Caco-2, HT-29 and T84 are most often used.

Caco-2 cells are the most popular for use and serve as model

for human intestinal enterocytes. They differentiate sponta-

neously into polarized intestinal cells possessing an apical

brush border and tight junctions between adjacent cells, and

they express hydrolases and typical microvillar transporters

[32]. In the context of food allergy the Caco-2 cell line is the

most often used for allergen uptake [32,35]. However it

remains to be revealed if the permeability data obtained from

the Caco-2 model are predictive for human gastro-intestinal

tract absorption since it is very difficult to measure absorption

of proteins in vivo. HT-29 is another often used human cell

line, and although essentially undifferentiated, HT29 cells in

culture are heterogeneous and contain a small proportion

(i.e. <5%) of mucus-secreting cells and columnar absorptive

cells [51]. HT29-MTX, a stable homogenous subpopulation

obtained from methotrexate treated HT29, exhibit an entire-

ly differentiated goblet cell-like phenotype secreting low

amounts of intestinal type MUC2 mucins [52]. The T84 cell

line has been used as a model of intestinal cells which

produces high molecular weight mucus [53,54]. A very high
www.drugdiscoverytoday.com 31



Drug Discovery Today: Disease Models | In vivo and in vitro models of food allergy Vol. 17–18, 2015

Allergic sensitization Tolerance

TSLP

IL-25 CX3CR1+CCR7–

mesenteric
lymph node

Entrocyte Goblet cell Myofibroblast

RA

CD103+CCR7+CD86+OX40L+
CCL17, CCL22, <IL12

CD103+CCR7+
TGF-β, RA

homing to lamina propria

CD103+CCR7+ CX3CR1+CCR7–
intestinal
lamina propria

IL-33

Uric acid
IL-13
IL-5

IL-10
RA

TGFβ

TGF-β

TGF-β
IL-4

CCR9+ CCR9+

IL-10

TSLP

Drug Discovery Today: Disease Models

Figure 1. Antigen uptake in the intestine and contribution of IEC in tolerance induction or allergic sensitization. Allergen exposed IEC are in close contact

with DC that sample luminal antigens. Allergens can enter the mucosa via the transcellular or paracellular route or be transferred via M-cells (not shown),

goblet cells or sampled by resident macrophages and carried to migratory CD103+ DC, which can also directly sample from the lumen. Allergen loaded

CD103+ DC traffic to the MLN in a CCR7 dependent manner where they instruct tolerance or allergic sensitization. If migratory DC are instructed by IEC

derived factors (including TGFb, TSLP, retinoic acid (RA) and mucin MUC2) to produce RA (via retinaldehyde dehydrogenase (RALDH)) and TGFb they

can generate CCR9+ regulatory T cells (Treg). The CX3CR1hi resident macrophages directly underlie the epithelium and under homeostatic conditions

produce high amounts of IL-10 to expand these gut homing Treg. On the other hand allergens and environmental triggers can induce IL-33, IL-25, TSLP and

uric acid release by IEC which can activate ILC2 and instruct TH2 driving CD86 and OX40L expressing migratory DC that secrete CCL17 and CCL22. In

particular IL-33 and uric acid contribute to allergic sensitization for food allergen in mice (peanut allergy model).
trans-epithelial electrical resistance (TEER) is an indication of

the enterocyte phenotype with well differentiated tight junc-

tions. When grown on microporous filter supports coated

with collagen cultures T84 cells maintain the polarity of

goblet-like cells.

M-cells have a reduced glycocalix, irregular brush border

with reduced microvilli and lack apical digestive enzymes.

They are highly specialized for the phagocytosis and trans-

cytosis of particulate antigens and pathogenic or commensal

microorganisms [55]. An in vitro model system composed of a

monolayer of Caco-2 cultivated with the human B-lympho-

ma cell line Raij has been widely used to study M cells [56].

Although these cells display efficient transcytosis activity, it is

uncertain whether they accurately represent the character-

istics of M-cells in vivo. They highly express CCL20, but lack

expression of mature M-cell marker genes, such as glycopro-

tein 2. A novel potentially physiologically relevant in vitro
32 www.drugdiscoverytoday.com
M-cell-model system was reported in which RANKL (Receptor

Activator of Nuclear Factor-kB Ligand) stimulation induces

M-cell differentiation in gut organoid cultures established

from intestinal crypts or single LGR5+ (Leu-rich repeat-con-

taining G protein-coupled receptor 5-expressing) crypt stem

cells [57]. Besides exhibiting high transcytosis activity, the

range of genes expressed by these organoid cultures closely

resembles those of M-cells in vivo.

The studies on primary murine or human stem cell derived

intestinal epithelium are expanding. Embryonic stem cells

(ESCs) are grown under specific conditions to self-organize

into organoids or ‘mini guts’ [58]. They form three-dimen-

sional structures that incorporate many key features of the in

vivo intestinal epithelium, including a crypt-villus structure

that surrounds a functional central lumen. Intestinal orga-

noids incorporate all of the known cell types found in the

adult intestinal epithelium, and provide a physiologically
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relevant model. Several methods have been used to grow

‘organoids’ from the small intestine [59], but the most suc-

cessful method is a Matrigel-based three-dimensional culture

system that supports the growth of self-renewing, near-native

intestinal epithelia in the absence of stromal niche compo-

nents [60].

The limit of the above in vitro intestinal models is that they

do not recapitulate the mechanically active microenviron-

ment of living intestine (peristaltic motions and intraluminal

fluid flow) and cannot be colonized by microbes over a

prolonged period [61,62]. Although not using primary cells

a human gut-on-a-chip microfluidic device enables Caco-2

cells to be cultured in the presence of physiologically relevant

luminal flow and peristalsis-like mechanical deformations,

which promotes formation of intestinal villi lined by all

epithelial cell types of the small intestine [63]. They could

be co-cultured with a probiotic gut microbe (Lactobacillus

rhamnosus GG) for more than two weeks.

Hence several cell lines can be used to study epithelial

function and gut-on-a-chip and primary epithelial cell cul-

tures using organoids are being developed. Polarized Caco-2

cells are successfully used when studying barrier crossing

properties of allergens via the paracellular or transcellular

route in vitro. Alternatively T84 cells can be used since they

also contain highly functional tight junction structures. In

addition, these cells are sensitive for environmental triggers

such as TH2 driving IL-4 and IL-13 and PAR ligands [21,22].

Beyond studying the barrier crossing capacities of (potential)

allergens, allergen induced epithelial activation may be in-

dicative for its allergenicity. This phenomenon has only

recently been revealed for airway sensitization and similar

mechanisms may underlie food protein sensitization when

occurring in the intestine [16,46,50]. Sensitive epithelial

models enabling to measure this for food proteins are cur-

rently lacking and need to be developed. When developing

these tools one should take into account that IEC are in close

contact with the underlying mucosal cells such as DC (see

Fig. 1) and effector immune cells which also may have impact

on the epithelial interaction with allergens and environmen-

tal factors. Co-culture models combining IEC with mixed

immune cells or DC may provide a better reflection of the

mucosal tissue organization and allow cross talk between

certain cell types in their reaction on allergens either or

not in presence of other environmental factors. 2D and 3D

co-culture models may be used to study these interactions.

Human 2D and 3D co-culture models of (intestinal) epithelial and

immune cells

In a recent study colonic biopsies of healthy adults mounted

in Ussing Chambers kept under high oxygen pressure were

used to determine HDM induced intestinal barrier disruption

and effects on IL-10 and TNF-a levels [24]. Hence it may be

possible to maintain human intestinal biopsies for prolonged
time. However the availability of fresh human intestinal

biopsies for research purposes is limited and requires ethical

approval. Co-culture models allowing cross-talk between

structural cells and immune cells are being developed. Trans-

well 2D co-cultures in which T84 cells were grown on inserts

and exposed to anti-CD2/CD28 activated lamina propria

mononuclear cells (LPMC) in the basolateral compartment

can be used to study the epithelial cell immune cell cross talk

and barrier dysfunction [64]. Based on this model a 2D co-

culture model using HT-29 and more easily accessible periph-

eral blood mononuclear cells (PBMC) instead of LPMC was

developed. In this model the epithelial cells modified the

cytokine secretion of underlying anti-CD3/CD28 activated

PBMC when exposed to TLR ligands [65,66]. Epithelial de-

rived galectin-9 (in HT-29 as well as T84) contributed to Treg

and TH1 polarization of PBMC and epithelial derived super-

natant instructed Treg and TH1 inducing monocyte derived

DC (moDC). Epithelial galectin-9 expression was confirmed

in the murine intestine and increased intestinal and systemic

galectin-9 levels in association with enhanced intestinal Treg

and TH1 markers and suppression of food allergy symptoms,

indicating the translational value of this 2D co-culture model

[67,68]. Although allergens were not studied, in the co-cul-

ture LPS exposed HT-29 released TSLP and CCL22 (MDC) was

increased [65]. Also Caco-2 may be able to produce TH2

polarizing mediators. In a 2D Caco-2/PBMC co-culture Pru

p3 transport and enhanced TSLP, IL-25 and IL-33 mRNA

expression was measured while IL-1b, IL-6, IL-10 and TNFa

mRNA in underlying PBMC was increased [28]. Hence, this

type of model may not only indicate whether a food allergen

induces epithelial activation, it may also determine the con-

sequence of this effect on the underlying immune cells. In

most cases human 2D co-cultures combine epithelial cells

with DC. Caco-2 cells are grown on filters and moDC are

seeded at the basolateral side and inflammatory mediator

release and DC activation and migration is studied [69].

Supernatants of epithelial cells from healthy donors or

Caco-2 enhanced CD103 expression on moDC or CD1c+

DC from human PBMC and instructed CD103+CCR7+ DC

from human MLN to induce Treg [70]. RA, TGFb and TSLP in

the supernatant of Caco-2 cells were responsible for the

induction of these Treg driving tolerogenic moDC [70].

When Caco-2 were cultured with moDC in the basolateral

compartment and apically exposed to bacteria, epithelial

derived TGFb suppressed pro-inflammatory cytokine produc-

tion by the moDC [71]. Caco-2 can also be grown inverted on

the basolateral side of the filter while moDC are added to the

apical compartment (contact model) [72]. In both models

MHCII, CD86 and CD80 expression on moDC was reduced in

the presence of IEC. However, only in the contact model also

TGFb concentrations increased while IL-8 decreased and

moDC were less responsive to LPS maturation [72]. Future

studies are warranted to determine whether this model would
www.drugdiscoverytoday.com 33
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be suitable to study intestinal epithelial cell/DC cross talk

upon allergen exposure. Such an approach is already being

developed using lung epithelial cells. For example, in a 2D

bronchial epithelial cell (16HBe140) (inverted)/moDC con-

tact model the effect of allergen exposure was studied.

CD80 and PD-L1 expression on moDC was increased and

the DC started to produce eotaxin and IL-10, which did not

occur when DC were cultured with the epithelial cell

supernatant. Furthermore, upon exposure to birch, grass

or HDM extracts the DC from the co-culture model had

reduced capacity to enhance autologous T-cell proliferation

and T cell cytokine release [73]. In another 2D airway co-

culture model BEAS-2B cells or primary bronchial epithelial

cells from allergic donors that were cultured inverted on

collagen coated transwell filters were basolaterally exposed

to Der p1 and moDC precursors were added to the apical

compartment. Der p1 increased the epithelial chemokine

release and enhanced moDC migration [47]. Hence, in

analogue to these 2D models studying the crosstalk be-

tween airway epithelial cells and DC upon aeroallergen

exposure, this could be studied for food proteins using

IEC. Beyond 2D also 3D co-cultures are being developed

which include connective tissue cells that produce immune

mediators as well as extracellular matrix components. In a

3D co-culture model T84 cells were grown on inserts on top

of primary human CCD-18Co intestinal myofibroblasts and

exposed to activated LPMC in the basolateral compart-

ment. These studies revealed myofibroblasts to protect

against inflammatory induced barrier disruption [64]. For

lung disease such types of models have been further devel-

oped and combine epithelial cells, DC and fibroblasts. In a

model in which human Calu-3 lung epithelial cells, moDC

and human MRC-5 lung fibroblasts are grown on separate

polyethylene terephthalate (PET) filters, papain induced

barrier disruption was less pronounced when the fibroblasts

were present. DC were found to migrate to the apical

epithelial compartment upon exposure to HDM or LPS

[74]. In an air exposed model in which MRC-5 cells, moDC

and 16HBE bronchial epithelial cells were grown directly

on top of each other on filters containing a collagen

matrix, CCL17 and CCL22 release by DC was silenced,

while CCL18 concentrations were high [75,76]. These 2D

and 3D cultures show that several cell types present in

mucosal tissues functionally interact and may impact on

whether or not an allergen, in absence or presence of

additional environmental triggers, can induce allergic sen-

sitization. Hence, future development of in vitro IEC models

that can identify the potential sensitizing capacity of aller-

gens or novel proteins may not only make use of epithelial

cells alone but also bring them in context with local tissue

cells such as fibroblasts known to affect epithelial function

and/or DC or mixed immune cells to reflect the impact on

the immune response.
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Conclusion

IEC models to study intestinal allergen uptake are widely

used. Novel developments include the more physiological

‘gut-on-a-chip’ and stem cell derived primary organoids or

‘mini guts’ which in the future may be exploited for allergen

testing as well. In addition, epithelial models suitable to

measure TH2 driving mediators such as IL-33, IL-25 and TSLP

and relevant chemokines should be developed taking into

account not only the exposure of the allergens but also

environmental factors (such as inflammatory mediators, bac-

terial components or mycotoxins [77]) that can act as a

secondary trigger to activate the sensitization cascade. Fur-

thermore, taking into account the complexity of the mucosal

tissue, in vitro models to study the sensitizing potency of

allergens should also combine relevant mucosal cell types

since their interaction may affect the functional response of

IEC and therefore be more representative for the in vivo

setting.
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