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1 Chapter 1: Introduction 

This thesis investigates how to improve the management of drained agricultural areas to 

optimize the retention of iron-associated phosphorus. Chapter 1 introduces the motivation 

behind the need for this specific research. More specifically, it covers: What is phosphorus? 

Why can high phosphorus concentrations cause water quality issues? Why is phosphorus 

monitoring and management important in agricultural areas? Why and how can iron be used 

to retain phosphorus? Then, the state of art in phosphorous research is described, followed 

by the scope and objectives of the P-TRAP project, and finally, the thesis objectives and 

outline. 

1.1 Motivation 

Phosphorous (P) is an essential macronutrient for crop growth. Through sorption, desorption, 

precipitation and dissolution processes, and microbially mediated processes, nature makes P 

in the soil available for crops to grow. However, the P availability for crops is limited by the 

low solubility of P-containing phases, and often the P present naturally in the soil is 

insufficient to sustain agricultural production. This has led to P application to the soil in the 

form of fertilizers or animal manure to sustain intensive agriculture. A high food production 

is needed. The world population is growing, in 2022 the world is home to 8 billion people and 

is projected to reach 9.8 billion by 2050 (Roser & Rodés-Guirao, 2022). Therefore, agricultural 

production needs to meet the growing demand if we want to reach the Sustainable 

Development Goals to eradicate extreme poverty and hunger. Intensive agricultural practices 

cause nutrient losses which conflict with other Sustainable Development Goals such as having 

clean water and sustaining life on land and below water. A balance is needed between 

intensifying food production and making a sustainable use of the resources in the planet. 

Therefore, research on nutrient retention measures that support the growth of agriculture in 

a sustainable way are of great importance.  

Although P application is needed to maintain a high agricultural production, the availability 

of P-resources are limited. Nitrogen-based fertilizers can be produced with the Haber-Bosch 

process where nitrogen gas reacts with methane (natural gas) to obtain ammonia. Air consists 

to 80% out of nitrogen gas, therefore the supply for nitrogen-based fertilizers is almost 
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unlimited (ignoring energy limitations). Unlike nitrogen-based fertilizers, the majority of P for 

fertilizers is produced by mining, and fertilizer production is also the main consumer of mined 

P. Economically relevant ores of P are concentrated in just a few countries. According to the 

USGS, 70% of the world’s reserves are sedimentary rock found in Morocco and Western 

Sahara (Jasinski, 2021). It is estimated that globally there is enough P for the next 300 years 

(Dawson & Hilton, 2011). The biggest economic powers have their own P reserves, the USA 

reserves may last for the next 40 years (Jasinski, 2021), and the Chinese for about 35 years (Li 

et al., 2015). Europe does not own P reserves and is dependent on imported P. About 30% of 

the fertilizers imported by the EU in 2021 came from Russia and costed about one billion 

euros (ESPP, 2022). Fertilizers are commodities and the price of grains (wheat, soy, corn, 

barley, etc.) and energy affect their cost as well as conflicts between countries that may 

compromise the amount of raw material available. Figure 1-1 shows the price of fertilizers in 

the last 30 years until March 2022. The price of fertilizers hit the highest prices during the 

2008 economic crisis and the prices have recently risen again with the increase in corn, 

soybean, and wheat prices and the increase in gas and energy prices which are linked to the 

Russian invasion of Ukraine. By the end of September 2022 the price of the DAP (di-

ammonium phosphate) is 947 dollars per ton (Schnitkey et al., 2023). 

Humans have modified the P-cycle by accelerating the weathering and transfer of P into 

oceans (Ruttenberg, 2003). The formation of phosphorites (sedimentary phosphate-

containing rock) at the bottom of lakes and oceans takes place at geological time-scales while 

the extraction of P rock and P use in agriculture happens at a very fast rate.  After P is 

extracted, it is placed in the fields, and a fraction ends up in the rivers through soil erosion, 

leaching, or after wastewater treatment once humans ate the food. It is estimated that of the 

P applied 50% and 15% is lost in soil erosion by water globally and in Europe, respectively 

(Alewell et al., 2020). Once in the water, the P is transported further downstream until it 

finally reaches the oceans. After P reaches the oceans it is “lost” as P recovery from the ocean 

bed is economically not feasible (Desmidt et al., 2015). There are very few P recovery streams, 

mainly in the wastewater treatment; nevertheless, P recovery in waste water treatment 

plants is estimated to be only about 6.5% of the P mined each year (Wilfert et al., 2015). There 

is a need for more rational and balanced management of the P cycle to sustain food 

production and biodiversity in a future with population growth. 
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Figure 1-1 Price of fertilizers in US dollars per ton in the last 30 years until March 2022, 

Ammonia, DAP (di-ammonium phosphate), Potash (potassium based fertilizer), and Urea. 

From (Davids, 2022). 

Apart from the limited availability on the long term, P can also cause harmful effects to 

aquatic and terrestrial ecosystems on the short term. Eutrophication occurs when surface 

waters, such as a sea, lake, or river, accumulates an excess of nutrients, particularly of P and 

nitrogen (N) (Farley, 2012). When nutrients are high, the primary production increases and 

only some phytoplankton groups grow excessively. As a result, biodiversity declines 

(Mahroofa et al., 2022). Eutrophication makes the treatment of fresh water for drinking 

technically more complicated and expensive. Eutrophication causes the appearance of dead 

zones in lakes and oceans, killing fish due to lack of oxygen (Farley, 2012). The export of P and 

N to surface waters increased worldwide during the 20th century (Vilmin et al., 2018). Diffuse 

pollution is the main source of P for the Baltic Sea (50%) and accounts for 46% of the 

anthropogenic sources for the North Sea (Cordell & Neset, 2014). Livestock farming 

contributes to 24% of the P in the rivers in Europe (Leip et al., 2015). In the Netherlands, 60% 

of the P input to regional surface waters is linked to agriculture (Groenenberg et al., 2013), 

Figure 1-2 shows plankton blooms, excessive macrophyte growth, and duck weed covers in 

agricultural ditches and small lakes in the Netherlands. It is important to reduce the diffuse P 

contamination coming from agriculture to improve the quality, biodiversity and ecosystem 

services of water bodies.  
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Preserving biodiversity for future generations is important and governments around the 

world implement directives and plans to preserve water quality. In the US, the Clean Water 

Act regulates the pollution to surface waters.  In Europe, the Water Framework Directive 

(Directive 2000/60/EC, WFD) sets the legislation to reach a good ecological status in the water 

bodies of its member states. For this, each state has to set specific targets, the nutrient 

concentrations are used as supporting elements to determine the ecological status of the 

water bodies together with other criteria such as the hydromorphology and concentration of 

toxic substances like trace elements and pesticides. Preserving water quality is still a 

challenge. It is estimated that only one-third of the water bodies in Europe has a good 

ecological status (Grizzetti et al., 2017). Most water bodies in Europe fail to have a good 

ecological status with North-West Europe being the region with poorer results (Figure 1-3). 

At the same time, North-West Europe is one of the regions with the highest N and P surpluses 

in the soil (Figure 1-4). The nutrient surplus is defined as the sum of all nutrient inputs such 

as fertilizers, manure and biosolids, atmospheric deposition, biological fixation and net 

mineralization minus nutrients removed via crop harvest (and NH3 volatilization in the case 

of N) (Schröder & Neeteson, 2008). P surplus is main driver for excessive nutrient transfer 

into adjacent surface waters. 

 

 
Figure 1-2 Pictures algae blooms, excessive macrophyte growth, and duck weed covers in 

the Netherlands in agricultural ditches and small lakes in the summer of 2021 and 2022.  
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Figure 1-3 Percentage of waterbodies (rivers, lakes, transitional and coastal waters) in 

Europe that fail to reach a good ecological status as established by the Water Framework 

Directive. From (EEA, 2021). 

In North-West Europe, agriculture intensified after the second world war, in the late 

80s’environmental legislation was introduced to prevent eutrophication, and in recent years 

the P surplus of soils is close to zero (Bol et al. 2018; McDonald et al. 2019, Figure 2-1). The 

manure applied historically produced an accumulation of P beyond the crop requirements in 

the soil called legacy P (Sharpley et al., 2013). Manure and compost have a N:P ratio between 

2 and 4 while the crop uptake ratio is between 5 and 9, which results in an accumulation of P 

in the soil (Schoumans et al., 2014). In an ideal world, the P in the soil should be enough to 

sustain crop production but should not cause environmental issues downstream. However, 

when the soils have a high P content, even if no more P is added to the soil, the existing P 

desorbs from the soil particles and leaches downstream (Schoumans et al., 2015, Figure 1-5). 

This is a slow process and the legacy P in the soil can continue leaching for decades after P 
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application stops before reaching levels that are no longer a threat to the environment 

(Melland et al., 2018; Schoumans & Chardon, 2014). Therefore, measures are needed to 

reduce P losses from agricultural areas in the short- to middle-term. 

 

Figure 1-4 The surplus for N (left map) and P (right map). From (EEA, 2022). The nutrient 

surplus is defined as the sum of all nutrient inputs such as fertilizers, manure and biosolids, 

atmospheric deposition, biological fixation and net mineralization minus nutrients 

removed via crop harvest. 

Nutrient inputs to water bodies can be divided into point and non-point (diffuse) sources. 

Point sources concentrate the discharge in a single pipe; examples of point sources are the 

effluent from industrial and municipal wastewater treatment plants. With the incorporation 

of tertiary treatment, such as biological P removal and P precipitation with iron (Fe), 

aluminum (Al), calcium (Ca), or magnesium (Mg), P pollution coming from point sources has 

been significantly reduced. P precipitation is very advanced, and P can be recovered as 

struvite, vivianite, or calcium phosphates (Henze et al., 2011; Wilfert et al., 2015, 2018). The 

most obvious use for the recovered P would be to apply it directly on the agricultural soil. 

Nevertheless, because of concerns regarding toxic substances and organic contaminants, this 

practice is banned in many countries (Donatello & Cheeseman, 2013; Kelessidis & Stasinakis, 



 

Chapter 1-12 

 

2012; Smith, 2009). Non-point (or diffuse) sources of nutrients towards surface water occur 

as precipitation water is transported through the soil and groundwater, through subsurface 

drainage systems or via surface runoff to local streams. Especially these non-point sources 

remain a major challenge to reducing P pollution in rivers and lakes in Europe and other parts 

of the world (Bol et al., 2018; Hart et al., 2004; Withers & Haygarth, 2007).  

 

Figure 1-5 Conceptual representation of gains in crop yield and P losses to surface waters 

(green and red solid lines) when increasing soil P content and the expected P loss or leaching 

at decreasing soil P content (dotted red line) (caused by phytomining or by a decrease in 

the P input). Target zone to optimize crop yield (blue area), target zone to minimize P losses 

(yellow area). Modified from Schoumans et al. (2015) 

P retention measures together with a thoughtful addition of P as fertilizer and manure can 

help reducing the legacy P effect and offer a solution for the short- and middle-term transition 

period. Keeping the nutrients in the agricultural land as much as possible is beneficial for 

farming. There are many measures that can be applied to reduce P losses from agriculture to 

surface waters to reach the WFD targets and allow to continue with agricultural production. 

Examples of measures to reduce P losses are listed in the categories proposed by Schoumans 

et al. (2014):  
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1. Nutrient management: make use of the P already present in the soil, do not add 

fertilizer or manure at hot spots, use fertilizers and manure combined to get 

optimal N:P ratios for crops, phase the nutrient application over the year (do not 

apply manure or fertilizers outside the growing season). 

2. Crop management: have grassland instead of arable crops, use catch crops, 

phytomining (use crops that can take/mine the excess P present in the soil 

(Svanbäck et al., 2015)).  

3. Livestock management: reduce P content in animal feed, treat and transport animal 

manure. 

4. Soil management: no tillage/direct drilling, contour ploughing, add chemical 

compounds to the soil to bind soluble P (examples include chalk or iron oxides).  

5. Water management within agricultural land: add ponding systems and sediment 

traps to capture particulate P, optimize the drainage systems to minimize P losses 

though leaching. 

6. Land use change and landscape management: buffer strips to intercept nutrient 

losses, prevent contact of livestock with surface waters, avoid certain crops in hilly 

areas, afforest or set aside agricultural land. 

7. Surface water management: re-meander rivers, restore flood plains and reconnect 

inundation areas, apply chemicals to bind P in lake sediments, create wetlands in 

riparian areas. 

After the implementation of the Nitrate Directive (91/676/EEC) the livelihood of the farmers 

and their production has been a sensitive issue. From the farmer’s perspective, it is important 

that the P retention measures do not take up large amounts of arable land. Some measures 

such as wetlands and riparian buffers result in extensive use of a part of the arable land, 

making their implementation costly to farmers in areas with high land prices. The effects of 

other measures, involving crop and nutrient management, may only be noticeable in the long 

term.  This thesis focused on water management measures within the agricultural land and 

on adding iron-based filters in drainage systems. This type of measures offers the advantage 

of acting close to the nutrient source instead of effect-oriented measures in the receiving 

lakes or coastal areas where the problem is already visible. Water management measures 

within the agricultural land such as water retention may increase productivity but could also 

change the soil moisture and chemical conditions, reducing P sorption and accelerating P 
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transport (Chardon and Schoumans 2007; Schoumans and Chardon 2014). Furthermore, 

adding chemical compounds to the soil or drainage system may interact with other soil 

processes. Therefore, the design and implementation of effective mitigation measures 

requires detailed insight into chemical and hydrological P transport routes and mechanisms 

in drainage systems. 

Drainage systems in farms are a good place to implement P retention measures as they 

concentrate most of the agricultural drainage. It is estimated that 30 million hectares are 

artificially drained in Europe, both with open ditches and drain pipes (Döll & Siebert, 2005). 

In Nord-West Europe the proportion of the arable land that is artificially drained with open 

ditches or pipes is even higher, it accounts for 66% of the arable land in the UK, 40% in the 

Scandinavian countries, and 87% in the Netherlands (Brown & Van Beinum, 2009). 

Measurements have shown that the outflow of drains in the Netherlands can contribute up 

to 80% of the total P reaching surface waters (Rozemeijer et al., 2010; Rozemeijer & Broers, 

2007). Drain system outlets open the possibility to intercept the P flux from agricultural soils 

at well-defined spots.  

 

Figure 1-6 Fe-rich sediment in the agricultural ditches in the Netherlands 
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The interaction of P with Fe in natural and agricultural areas determine if P is found in 

dissolved or particulate form as well as its bioavailability to be used by microorganisms as 

algae to grow. The formation of fresh Fe precipitates can be an effective sink for dissolved P 

at the interface between drainage pipes and ditches or at the interface between groundwater 

and drainage pipes. When the groundwater flowing through the drainage system is rich in 

dissolved Fe (II), the contact of the water with atmospheric oxygen can result in the formation 

of P-enriched Fe(III) (hydr)oxides (Baken et al., 2016; Van der Grift et al., 2014). These newly 

formed particles settle at the bottom of ditches and streams (Figure 1-6), and the high Fe 

affinity makes the P less bioavailable for algae growth than the dissolved phosphate  (Baken 

et al., 2014).  

When the groundwater in the drainage system does not contain sufficiently high natural 

concentrations of Fe (II), Fe-rich sorbents can be used in drains to retain the dissolved P. For 

example, natural Fe-rich sands have been added to streams to reduce dissolved P 

concentrations (Van Dael et al., 2021; Xia et al., 2021). To scale up P retention measures, low-

cost sorbents based on Fe (III) oxides are needed. It is not hard to find such Fe (III) oxides as 

Fe is an abundant element, the 4th in the earth's crust. Large amounts of Fe (III) oxides can be 

obtained as by-products from drinking water production. In the Netherlands drinking water 

needs to have low Fe values, below 0.05 mg/l and even 0.02 mg/l, while the principal source 

for drinking water is groundwater which usually has high Fe concentrations. During drinking 

water treatment, Fe is usually removed by aeration and sand filtration, transforming 

dissolved Fe (II) into hydrous ferric oxides (Sharma et al., 2002; Van Beek et al., 2020, 2021). 

The resulting products are called iron sludge and iron-coated sand (ICS) which are 

commercialized by AquaMinerals (https://aquaminerals.com/en/). Fe materials have proven 

to be more effective than other sorbent materials using Ca for large-scale measures to 

remove dissolved P (Penn et al., 2017; Penn & Bowen, 2017). 

https://aquaminerals.com/en/
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1.2 Relevant previous research on iron-associated 

phosphorus retention and on nutrient management 

in drained agricultural areas 

Previous studies by Van der Grift et al. (2014, 2016, 2018), Baken et al. (2015, 2016a, 2016b), 

and Smolders et al. (2017) provide a solid base to look into the P-Fe interactions in lowland 

catchments. Fe is a redox-sensitive element, it is found dissolved in anoxic groundwater in its 

reduced form as Fe (II), and forms Fe (III) (hydr)oxides in the presence of oxygen which can 

co-precipitate or adsorb dissolved P. When groundwater exfiltrates to the surface water, 

redox gradients can often be found. Redox gradients are often relevant in the sediment of 

ditches and other surface waters. Once the P-containing Fe (hydr)oxides settle, the P may 

become available again if the conditions are Fe-reducing, for example during periods with 

oxygen depletion in the summer. Moreover, the P availability depends on the P/Fe ratio. A 

large data analysis by Smolders et al. (2017) showed that river sediments with high P/Fe molar 

ratios (>0.4) mobilize P at low dissolved oxygen concentrations while this effect was not 

observed for lower P/Fe molar ratios. To implement measures in agricultural areas to reduce 

downstream eutrophication it is paramount to understand P-Fe interactions and redox 

dynamics. P-Fe interactions are complex. P can be adsorbed to the Fe and Al present in the 

soil. However, adsorption has a limit and the high fertilization of agricultural lands in the 

Netherlands has made soils reach a P saturation degree close to their maximum (Schoumans 

& Chardon, 2014). To think of interventions such as P retention measures in farms it is 

important to take all relevant processes into account. Therefore, scientific studies at the farm 

scale are needed. Nevertheless, many of the available studies are limited to the laboratory or 

plot scale (Van der Salm et al. 2011; Van der Grift et al. 2014), or in large-scale catchement 

(De Klein and Koelmans, 2011; Baken et al. 2015; Van der Salm et al. 2011; Van der Grift et al. 

2014; Van der Grift et al. 2016).  

High-frequency water quality monitoring is a relevant tool to study water quality in small 

catchments as the detailed data obtained can show the processes involved in nutrient 

transport (Rode et al., 2016; Rozemeijer et al., 2010). Continuous measurements are 

especially important for understanding P transport, quantifying P loads, and evaluating the 

effectiveness of measures. Large loads of P can be transported during short peak flow 
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conditions and grab samples can miss concentration peaks causing underestimations of P 

sources. Nevertheless, when sensors and autoanalyzers are used in high-frequency 

monitoring they create the challenge that large volumes of data are retrieved and the post-

processing is often not so straightforward (Zhang et al., 2019). The most time-consuming 

post-processing tasks include the identification of errors and the filling of missing values. 

Moreover, standardization of post-processing high-frequency data is also challenging as 

currently, the final result depends largely on the person who did the data analysis (Jones et 

al., 2021). To observe the bigger picture in nutrient transport and to evaluate trends related 

to rain variability and climate change, more long-term high-quality continuous water quality 

data series are needed.  

Relevant research on P retention measures using iron sludge and ICS has been carried out at 

pilot and full-scale (Chardon et al., 2021; Groenenberg et al., 2013; Lambert et al., 2020; 

Vandermoere et al., 2018). ICS has been placed around tile drains or in edge-of-field filters at 

the outlet of drainage pipes to remove P from agricultural drainage. These ICS filters are 

placed in areas with a high P/Fe ratio in the groundwater and therefore high proportions of P 

in its dissolved form (PO4) and take advantage of the ICS capacity to bind P. These ICS filters 

are likely to be adopted by farmers as the measures are buried and there is no need to take 

up arable land as is the case with buffer areas or wetlands. In some areas, the traditional 

method of constructing tile drains includes placing sea shells around them to improve the 

hydraulic conductivity, replacing the sea shells with ICS implies almost no changes in the 

constructive methods and can reduce the load of P moving downstream. Figure 1-7 shows 

the construction of full-scale experiments that used ICS around drains in the Netherlands.  

Although using ICS in drainage systems to remove P has shown very good results, there are 

still issues to be addressed before they can be scaled to a national or regional level. One of 

the discussions about the use of ICS filters in drainage systems is where to place them, i.e., 

around the drains or after the drains. Each option has its pros and cons. Placing the ICS around 

the drains allows applying larger amounts of ICS and therefore a longer life-span while the 

filters outside the drain are smaller and need to be replaced every 1 or 2 years. In addition, 

the flow velocity around the drain is slower than out of the drain. However, placing the filter 

out of the drain allows more flexibility as the material is not buried and it easier to replace or 

do maintenance, and the contact with the air can make redox conditions less reducing.  
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One major issue is that when the ICS is placed below the groundwater level the oxygen 

availability is limited and the organic matter present in the soil or added as a soil amendment 

may favor anaerobic microbiological reactions, in which nitrate (NO3), manganese (Mn) and 

Fe (hydr)oxides, sulfate (SO4), and/or carbon dioxide (CO2) are used as terminal electron 

acceptors. The dissolution of Fe could eventually release the previously removed P (Schroth 

et al., 2015; Thamdrup, 2000; Young & Ross, 2001) or alter the Fe oxides in the coating. 

Previous research has looked into the effect of reducing conditions in the field (Chardon et 

al., 2021; Groenenberg et al., 2013). But because of difficulties in sampling, the 

transformations in the ICS material are still unknown and the effect on P retention was 

indirectly concluded.  

Another issue that needs to be addressed for the design of effective measures is the P 

retention capacity of the ICS. The ICS grains consist of a sand core covered by a porous Fe 

coating. The outside of the ICS is in contact with the P-containing water, however not all 

adsorption sites are on the outside, many are inside the coating and are only reachable by 

diffusion through the micropores. Slow adsorption kinetics are controlled by intra-particle 

diffusion through the pores inside the iron-coating and are often neglected in studies on the 

adsorption capacity of iron materials (Ajmal et al., 2018; Koopmans et al., 2004; Willett et al., 

1988). The research by Chardon et al. (2012) and Lambert et al. (2020) showed that slow 

kinetic processes were also relevant in ICS. But the slow kinetics could not be parametrized 

with the available data. Therefore, a tool for the design of P retention measures that use ICS 

efficiently considering slow kinetics is still missing.  
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Figure 1-7 Construction of drains covered with ICS 

1.3 The P-TRAP project  

This thesis is part of the P-TRAP project. P-TRAP is a European Horizon 2020 Marie Skłodowska 

Curie Innovative Network. The P-TRAP consortium is composed of 16 international 

institutions and hosts 11 Ph.D. students also called Early-Stage Researchers (ESR). The 

scientific problems that P-TRAP aims to address are two. The first is that the flux of P from 

agricultural areas to surface waters is wasting a resource that is becoming scarce and the 

second is that the excessive load of P to surface waters coming from agricultural areas is the 

main cause of eutrophication. P-TRAP stands for P trapping and involves the use of Fe 

biogeochemical cycles to remove and recycle P in the environment, most specifically it 

involves the application of Fe-containing by-products from drinking water treatment to 

capture P in lakes and drained agricultural areas. The project is divided into three scientific 

work packages. The first package works on closing the cycle of P application in agriculture, 

the second on novel methods for long-term P binding in lake sediments, and the third on 

mechanistic studies on P dynamics during Fe phase transformation. This thesis is related to 

the first work package and aims to develop technologies to retain P leaking from agricultural 
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soils within drained systems. This study is expected to contribute, in collaboration with other 

ESRs, to the development of guidelines and recommendations for retaining and recovering 

Fe-bound P in drainage systems, kinetic models for the transformation of P containing Fe 

phases, and insights on the fate of P during Fe phase transformations. 

1.4 Objectives and outline 

The general objective of this thesis is to contribute to improving the management of drained 

agricultural areas and to optimize the retention of Fe-associated P. The specific objectives are 

to: 

• investigate the Fe coupled P export from a drained agricultural farm,  

• develop strategies for the optimization of monitoring of drainage systems,  

• investigate how redox dynamics influence P retention in drainage systems that use 

measures with iron-by products such as ICS,  

• contribute to a coupled geochemical/hydrological model for predicting long-term 

P adsorption into ICS.  

The specific objectives were addressed by using different methodologies and a combination 

of laboratory experiments, field monitoring, and process- and data-based modeling. The 

transport of P is different when it moves though iron-poor sands in the west or in the iron-

rich sands in the east of the Netherlands and call for different P retention strategies. Figure 

1-8 shows the location of the investigated field sites in the Netherlands. Chapters 2 and 3 

focus on quantifying the P loading at a drained farm with exfiltration of iron-rich sandy soils 

in the east of the Netherlands. In this area the iron present acts as a sink for P. In contrast, 

chapter 4 investigates two fields in the west of the Netherlands, a region characterized by 

soils having high P concentrations and not enough iron to bind the P. In the field investigated 

in chapter 4 pilot filters with ICS around the drains were implemented as a P retention 

measure. Chapters 4 and 5 focus on understanding the redox and kinetic mechanisms of P 

retention onto ICS to improve the design, operation, and maintenance of ICS filters.  

In chapter 2, “Processes controlling the flux of legacy phosphorus to surface waters at the 

farm scale”, high-frequency sensors and auto-analyzers were used to understand the farm 
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scale transport pathways of P and N from the soil to the surface water. With a mass balance, 

it is explained how P transport is linked to the Fe content in the sediment and subsoil. In 

chapter 3, “Value and limitations of Machine Learning in high-frequency nutrient data for 

gap-filling, forecasting, and transport process interpretation”, four years of high-frequency 

monitoring data were used. High-frequency data offers the challenge of dealing with large 

amounts of data, especially for post-processing and dealing with missing values. The 

performance of different Machine Learning techniques for gap-filling was evaluated and it 

was assessed to what extent these data-based models are valid for making predictions.  

In chapter 4, “Phosphorus adsorption on iron-coated sand under reducing conditions”, one 

of the main concerns when applying iron-coated sand filters in the field was investigated. 

Fieldwork monitoring of two pilot ICS filters in the flower growing area of the Netherlands 

was combined with microcosm laboratory experiments to investigate the effect of variable 

redox conditions on P retention by ICS. In chapter 5, the focus is on the “Transport limited 

kinetics of phosphate retention on iron-coated sand and practical implications”. Although ICS 

filters are used in full-scale measures, there were still doubts about the sorption capacity that 

may be achieved and which are the best operation and maintenance practices. A reactive 

transport model was parameterized. This model considers the long-term P retention and 

allows the calculation of the ICS filter’s efficiency under different flow velocities and stop-

flow regimes. 

The research questions of chapters 4 and 5 were discussed together with the engineering 

company Arcadis to be of use for practical applications. For the last 6 months of the project, 

the ESR worked for one day a week at Arcadis, one of beneficiaries of the P-TRAP project, to 

facilitate knowledge transfer. Chapter 6 synthesizes how the main findings of this thesis can 

help the monitoring and diagnosis of diffuse P pollution from agricultural areas and provide 

tools for designing and optimizing Fe-based P-retention measures and includes practical 

examples of full-scale P retention measures with ICS managed by Water Boards Brabantse 

Delta and Delfland.  
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Figure 1-8 Location of the drained farms investigated in chapters 2, 3 and 4 in a map 

containing the major top soil groups of the Netherlands.  
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2.1 Abstract 

Phosphorus (P) leaching from agriculture is a major driver of water eutrophication in 

downstream rivers and lakes. In drained lowland areas with intensive agriculture, a reduction 

in the fertilizer applications may be insufficient to improve the water quality in the short term 

as the P accumulated in the soil during decades of high fertilization may continue leaching for 

many years. A complementary approach to reduce P exports from agriculture is to implement 

edge-of-field mitigation measures at the farm scale. The selection of effective measures 

requires a detailed insight into the chemical and hydrological transport mechanisms. Here, 

we determined the main P sources, processes, and transport routes at the farm scale to 

support the selection of appropriate mitigation measures. We quantified the legacy P, the 

different P pools stored in the upper soil, and related it to the yearly P export downstream. 

To do this, we combined high-resolution monitoring data from the soil, groundwater, surface 

water, and ditch sediments. The legacy P in the topsoil was high, about 2,500 kg/ha. The 

predominant subsurface flow and the subsoils’ P sorption capacity retained the P mobilized 

from the topsoil and explained the relative moderate flux of P to surface waters (0.04 kg/ha 

https://doi.org/10.1088/1748-9326/abcdd4
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during the 2018-2019 drainage season). The dissolved P entering the drainage ditch via 

groundwater discharge was bound to iron-containing particles formed due to the oxidation 

of dissolved ferrous iron. Once leached from the soil to the drainage ditch, resuspension of P-

rich sediment particles during flow peaks were the most important P transport mechanism 

(78%). Therefore, we expect that hydraulic constructions that reduce flow velocities and 

promote sedimentation of P-containing particles could reduce the export of P further 

downstream. 

Keywords: legacy phosphorus, leaching, diffuse sources, mitigation measures, groundwater-

surface water interactions, agriculture, eutrophication 

2.2 Introduction  

Eutrophication of streams and lakes is a global environmental problem; it is triggered by 

nutrient surplus and causes excessive growth of primary producers such as algae and 

macrophytes. The European Water Framework Directive obliges member states to achieve a 

good environmental quality status in streams and lakes. In many inland ecosystems, 

phosphorus (P) is the nutrient limiting growth (Dodds and Smith 2016; Lee 1973). P can 

originate from point sources, such as wastewater treatment plants (WWTP), or diffuse 

sources, such as runoff or leaching from agriculture. Point source pollution has been 

drastically reduced in the last decades with the implementation of P removal in WWTP. 

Although measures have been taken to restrict P fertilizer applications, agricultural soils 

maintain a legacy of accumulated P built up after decades of manure and fertilizer application 

beyond crop requirements. Up to 20 years are needed to confidently detect the water quality 

improvements caused by changes in agricultural practices (Melland et al.2018).   

In Europe and other parts of the world, diffuse P is still the most important P source in rivers 

and lakes (Hart et al. 2004; Withers and Haygarth 2007). In NW Europe, agriculture intensified 

in the decades after the second world war and in recent years P surplus is close to zero (Bol 

et al. 2018; McDonald et al. 2019). The general size and operations of farms in the 

Netherlands are similar to the ones in other NW European countries (Eurostat 2015). The 

average farm size in the Netherlands is 29 ha, agriculture is highly intensive, predominantly 

arable and dairy farming, over flat and artificially drained lands. Around a quarter of the Dutch 
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agricultural land is used in dairy farming, farmers grow grass and maize to feed the cows. 

Figure 2-1 shows the P surplus in the Netherlands from 1970 to 2018 (CBS 2020). The livestock 

production is mainly located in the central, eastern, and southern non‐calcareous sandy soils. 

Historically, most of the manure was applied close to where it was produced (Schoumans 

2015). Some of the P surplus remains in the soil as legacy P and can occur structurally bound 

in minerals, adsorbed to mineral surfaces, or associated with the organic matter present in 

soil particles. Later, the accumulated P can leach out of the soil with infiltrating rainwater. 

Therefore, reducing fertilizer or manure applications might not be enough to reduce 

downstream eutrophication in the short term.  

In lowland areas, drainage occurs largely via subsurface flow (groundwater and tube drains) 

to surface waters (ditches and streams)(Chardon and Schoumans 2007). In Europe, 30 million 

hectares of agricultural land are artificially drained (Döll and Siebert 2005). Figure 2-2 shows 

the share of the arable land that is drained in NW Europe (Brown and Van Beinum 2009), in 

the Netherlands 60% of the agricultural land is artificially drained. Rozemeijer and Broers 

(2007) showed that the outflow of drains can contribute up to 80% of the total groundwater-

born P flux into surface waters. 

 

Figure 2-1 P surplus in the Netherlands from 1970 to 2018. (CBS 2020).  
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Mitigation measures retain P before it is transported downstream and reaches lentic water 

bodies, which are more prone to become eutrophic. The selection of appropriate measures 

is not trivial, some make extensive use of arable land, i.e. wetlands and riparian buffers, 

making their implementation unlikely in areas with high land prices. Other such as water 

retention measures can increase productivity but may also change the soil moisture and 

chemical conditions, reducing P sorption and accelerating P transport (Chardon and 

Schoumans 2007; Schoumans and Chardon 2014). Selecting effective mitigation measures 

requires detailed insight into chemical and hydrological P transport mechanisms.  

In regions with iron-rich groundwater, iron (Fe) is usually reduced and oxidizes as it seeps into 

the drains or surface waters. During this process, phosphate can be absorbed in iron-rich 

colloids or co-precipitate with iron (hydr)oxides, becoming particulate phosphorus (PP) (Van 

der Grift et al. 2014). Fe-bound P can be a significant fraction (38%-95%) of the P in suspended 

solids in ditches and streams (Van der Grift et al. 2018). Fe-bound P is less readily available 

for uptake by algae and less mobile than dissolved phosphate (Baken et al. 2014). However, 

once the PP has settled in the sediment, it can be eroded and remobilized during flow peaks, 

or dissolved under Fe-reducing conditions (Baken et al. 2015; Mellander et al. 2016).  

Studies on P transport in agricultural landscapes are usually limited to either laboratory or 

plot scale (Van der Salm et al. 2011; Van der Grift et al. 2014), or large catchment scale (De 

Klein and Koelmans, 2011; Baken et al. 2015; Van der Grift et al. 2016). To propose effective 

mitigation measures there is a need to assess how the known P transport mechanisms 

aggregate at the farm and small catchment scales, where management interventions are 

most effective (Bol et al. 2018). Therefore, the objectives of this study were (1) to identify the 

main phosphorus sources, processes, and transport routes at a farm-scale to support the 

selection of appropriate P retention measures; and (2) to quantify the farm-scale legacy P 

storage and assess the risk of mobilization and leaching into surface waters.  

The study was performed at a farm chosen because of its size and type of production to be 

representative of drained lowland farms on sandy soils with seasonal manure application in 

the Netherlands and parts of NW Europe. All the farm water discharges via a single ditch 

where we placed a high-frequency monitoring station from April 2018 to April 2019. To 
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quantify the P transport routes from the soil to surface water, a water and nutrient balance 

is presented. Finally, based on these insights, we recommend mitigation measures.   

2.3 Methods 

The research site is located in Huppel, the Netherlands, coordinates 52.00131 N, 6.76112 E, 

one kilometer from the Dutch-German border (Figure 2-2). The farm has cows for dairy 

production and has a size of 24 hectares, of which 16 hectares are grassland and 8 hectares 

are used for crop farming alternating between corn, beets, and potatoes. A map of the farm 

is shown in Figure 2-3. Dairy farming has been practiced on the farm since 1930. It can be 

assumed that the historic agricultural practices on this farm followed the general trend in the 

Netherlands, where manure application had been intensive until 1989 when a new 

agricultural policy on fertilizers was introduced. In recent years, the farmer applies an amount 

of P that will likely be in balance with the crop P uptake, P is added to the soil as manure with 

injection machinery. The manure is applied early in the season; therefore, the P balance will 

be known after the crops are harvested. The P surplus considers the actual mass harvested 

and the P content in the manure for this farm. Thus, the P surplus value fluctuates and some 

years the balance is positive, and some is negative, but always close to zero in recent years. 

According to Dutch regulations, manure can be applied after 1 February on grasslands and 

from 15 February on arable land, until 1 September. Table 2-1 presents the P surplus on the 

farm from 2013 to 2018.  

Table 2-1 P surplus in the farm, as KgP/ha the years before the research, 2013 to 2018 

2013 2014 2015 2016 2017 2018 

2 kg/ha -2 kg/ha -6 kg/ha -2 kg/ha 1 kg/ha 2 kg/ha 

The farm is partly drained with tile drains. The drain tubes are installed at approximately 1 m 

depth and with 10 m horizontal distance between drains. The altitude is between 35 m and 

33.5 m above mean sea level, with a marginal slope directing from east to west. The farm 

drains to a main ditch that runs from east to west parallel to the front road. The land on the 

eastern side of the ditch is not connected to the ditch via tile drains and there has been no 

observations of surface flow into the ditch originating from land at the eastern side. As 

infiltrating water in this area discharges into deeper ground water, it is assumed that the 

investigated farm is the exclusive catchment area for this ditch. The receiving stream is the 
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Groenlose Slinge, which in summer shows excessive plant growth in front of weirs and blue-

green algae blooms in receiving urban canals. The local water authority is considering the 

implementation of P retention measures in the area. 

The farm is located on top of a glacial tunnel valley, which is filled with a fluvioglacial iron-rich 

sand layer between 10 and 20 m deep that lies over a marine clay. The combination of sandy 

soil with the shallow impermeable clay layer makes the system  respond relatively quickly to 

precipitation. More details on the hydrogeology are provided in the supplementary 

information. The non-calcareous sandy soil present in the farm is characterized by having low 

levels of P in groundwater (Schoumans and Chardon 2014).  

A high-frequency monitoring station (Van der Grift et al. 2015) was installed at the 

westernmost point of the main ditch (Figure 2-3). Just upstream of a V-notch weir, water was 

pumped to a flow-through vessel where total phosphorus (TP), total reactive phosphorus 

(TRP), turbidity, and nitrate (NO3
-), were registered every 15 minutes, from 5 April 2018 to 18 

April 2019. The discharge was measured by recording water levels upstream of the calibrated 

V-notch. Table 2-2 shows an overview of the equipment; more details are provided in the 

supplementary information. 

Soil samples were collected from 24 spots at 0-10 cm and 40-50 cm depth; additionally, 4 

points (4, 10, 14, and 19) were analyzed further at 70-80 cm depth. Sediment samples were 

also retrieved from the main ditch and a secondary contributing ditch. The soil and ditch 

sediment samples were taken on 16 April and 15 May 2018, respectively. Soil and sediment 

samples were stored at 4 oC before being analyzed for soluble P (Pw), labile P (PAL), and TP. 

Furthermore, P, Fe, and aluminum (Al) were extracted from soil and sediment samples with 

ammonium oxalate (Schwertmann 1964). The Fe plus Al obtained from this extraction 

represents the soil’s P sorption capacity, and the molar relation between P and Fe plus Al is 

the soil’s phosphate saturation degree (PSD). The PSD quantifies the P leaching potential 

(Schoumans and Chardon 2014). In the sediment, the P/Fe ratio from the oxalate extraction 

quantifies the risk of P mobilization (Smolders et al. 2017; Van Dael et al. 2020). Table 2-3 

contains an overview of the soil extraction methods. 
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Figure 2-2 Location of the farm selected for the study, in Huppel, the Netherlands. At the 

top left there is a map of the region indicating the drained land as a percentage of the total 

agricultural land (Brown and Van Beinum 2009). UK: United Kingdom, DK: Denmark, NL: the 

Netherlands, BE: Belgium, FR: France, DE: Germany. Map created using the Free and Open 

Source QGIS 
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Figure 2-3 Map of the farm: buildings are colored in gray, crops are in beige, grasslands are 

in light green, and forests in dark green. The main ditch runs from East to West, parallel to 

the front road. The map shows the location of the high-frequency monitoring station, and 

the identification number of the soil, sediment, surface water, and groundwater samples. 

A volumetric pump upstream of the weir takes water into a flow-through tank where the 

monitoring station registers measures every 15 minutes. TP: total phosphorus, TRP: total 

reactive phosphorus, NO3-: nitrate. A pressure gauge was installed before the weir for 

discharge estimations. Map created using the Free and Open Source QGIS 

Groundwater samples were taken from six monitoring wells at 1.5-2.5 m depth on 15 May 

2018 and 18 October 2018. Five surface water samples were taken on 16 April 2018. The 

water samples were filtered with a 0.45 µm pore size nylon filter and acidified with 1% HNO3 

on-site and analyzed with ICP-OES. In the period between 20 January to 25 February 2019, 

the Phosphax autoanalyzer was not working and no TP was measured. To close the gap in the 

time series TP was estimated using the correlation with NO3
-. The precipitation and 

evaporation time-series from the Hupsel meteorological station, at 12 km distance, were 

downloaded from the Dutch Royal Meteorological Institute. Additionally, groundwater levels 

at the farm were continuously monitored with a pressure gauge installed in one well. 
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Table 2-2 Overview of the equipment used in the high-frequency station equipment. 

Parameter Equipment* Method Detection range Accuracy** 

Turbidity Solitax sensor Optical (infrared duo scattered light 
photometer) 

0 to 4,000 NTU 1% 

NO3
- Nitratax 

sensor 
Double wavelength spectrophotometric 
UV sensor 

0.1 to 50.0 mg/L 3% 

TRP Phosphax 
Sigma auto-
analyser 

Titration and photometric 
measurement  

 0.01 to 5.00 
mg/L 

2% 

TP Phosphax 
Sigma auto-
analyser 

Digestion with H2SO4, titration and 
photometric measurement (includes 
mixing and heating/cooling step) 

0.01 to 5.00 
mg/L 

2% 

*Hach Lange GmbH, Düsseldorf, Germany. **According to the manufacturer 
 

Table 2-3 Overview of soil extraction methods used. 

Method  Extracting 
solution 

Solution 
pH 

Soil-to-
solution 
ratio 

Extraction 
time 

Method of 
measurement 

Elements 
measured 

Pw Distilled 
H2O 

unbuffered 1:60 1 hour MBM* P 

PAL  ammonium 
lactate-
acetic acid 

3.5 1:20 4 hours MBM* P 

Oxalate oxalic acid 
and 
ammonium 
oxalate 

3 1:50 4 hours ICP-OES** P, Fe, Al 

Total*** Aqua regia <1 3:1 48 hours ICP-OES** P, Fe 

* molybdenum blue method (MBM) (Murphy and Riley 1962)  **inductively coupled plasma 

atomic emission spectroscopy (ICP-OES). *** More details about the extraction methods 

are found on the supplement information 

2.4 Results  

Soil, groundwater, and sediment P content 

The topsoil consisted of a layer of organic material and roots with high TP and high labile and 

soluble P and critical PSD. Followed by a layer of brown-red-orange-color caused by iron 

oxides with no roots and higher P sorption capacity. The underlying sandy layer had a gray-

yellow to red-orange color, with little organic matter, and low TP. Figure 2-4 illustrates how 

the soil composition, presented in Table 2-4, corresponds to visual appearance. More details 
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on extraction results and pictures from all soil samples are found in the supplementary 

information. 

 

Figure 2-4 On-site picture of soil sample number 19 (0-100 cm). The topsoil was rich in 

organic matter followed by a horizon which was brown-red-orange colored due to the 

presence of iron oxides underlain by a gray-yellow to red-orange sand layer 

The average TP content of the soils was 600 mg/kg, this is high considering previously 

reported TP contents for non-calcareous sandy soils in the Netherlands which in the range 

280-500 mg/kg (Koopmans et al. 2006). The average TP concentration in the upper 30 cm of 

the soil on the farm was 60,200 kg or 2,500 kg/ha, which is higher than the average P in 

agricultural soils in The Netherlands, 2,050 kg P/ha (Schoumans and Chardon 2014). The total 

P in the soil accounts for the legacy P plus P in the pre-agricultural soil. The large observed 

differences between the TP results in the topsoil and subsoil suggested that most of the TP in 

the topsoil originated from manure and fertilizer application. 

In the topsoil, the Pw and PAL values were high, on average 12.2 mg/kg ± 5.1 mg/kg and 165.1 

mg/kg ± 68.0 mg/kg respectively. According to the Dutch Fertilization Grassland and Plants 

Committee’s advice for sandy soils Pw values above 9.8 mg/kg and PAL values above 109 

mg/kg are high (Commissie Bemesting Grasland en Voedergewassen 2018). Schoumans and 

Groenendijk (2000) calculated it would take about 30 years for topsoils with Pw of 10 mg/kg 

to reach low values (below 4.4 mg/kg). The Pw results were higher in the arable part of the 
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farm (the northeast side) compared to the grassland part (southwest); PAL and TP show a 

similar spatial distribution (Figure 2-5). Pw, PAL, and TP notably decrease at 40-50 cm (Table 

2-4). Samples 24 and 23 are from both sides of the ditch bank and were not added for the 

averages in Table 2-4 as they are not representative of the farm’s soil. Sample 24 was taken 

from the between the road and the ditch, which is typically where sediment is laid after 

dredging the ditch and may explain the high TP concentrations. 

 

Figure 2-5 Map showing the total phosphorus contents in the topsoil (0-10cm) and its 

distribution over the different sequential extractions at the different sampling locations. 

The size of the pie charts is proportional to the TP value displayed. Map created using the 

Free and Open Source QGIS 

In the topsoil, the PSD was 0.26 (Table 2-4). The higher the PSD value, the higher the P 

saturation in the soil, and the higher the risk of P leaching. The critical PSD value for non-

calcareous sandy soils is 0.25 (Schoumans and Chardon 2014). In the sediment, the P/Fe ratio 

was 0.22; critical values for P release from the sediments during summer anoxia are 0.12 for 

lakes and 0.4 for lowland rivers (Jensen et al. 1992; Smolders et al. 2017).  
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In groundwater the P/Fe molar ratio was calculated for the samples taken on 18 October 2018 

(Table 2-5). Some of the P results bear greater uncertainty as they fell below the limit of 

quantification. Nonetheless, the results show low P concentrations in the groundwater. The 

Fe concentrations were similar to the average surface water concentrations, 0.21 mg/L ± 0.05 

mg/L.  

Table 2-4 Soil and sediment results: number of samples, averages of Pw, PAL, TP, and 

oxalate extractions 

Soil 
samples 

n  Pw mg/kg ± 
SDV mg/kg 
(as % of TP) 

PAL mg/kg ± 
SDV mg/kg 
(as % of TP) 

TP  mg/kg ± 
SDV mg/kg 
(as % of TP) 

Pox 

(mmol/L) 
Feox+Alox 

(mmol/L) 
PSD 

Depth 0-
10 cm 

24 12.2 ± 5.1 (2%) 155.1 ± 68.0 
(26%) 

601 ± 157 
(100%) 

0.14±0.04 0.50±0.16 0.26 ± 0.07 

Depth 40-
50 cm 

24 1.4 ± 3.53 (1%) 29.5 ± 20.9 
(18%) 

165 ± 68.3 
(100%) 

0.03±0.02 0.63±0.38 0.06 ± 0.05 

Depth 70-
80 

4 0.1 ± 0.1 
(0.1%) 

12.2 ± 6.13 
(10%) 

113± 
20.1(100%) 

0.01±0.01 0.30±0.18 0.03 ± 0.02 

Sediment n Pw mg/kg ± 
SDV mg/kg 
(as % of TP) 

PAL mg/kg ± 
SDV mg/kg 
(as % of TP) 

TP mg/kg ± 
SDV mg/kg 

Pox 

(mmol/L) 
Feox 

(mmol/L) 
P/Fe 

Main 
ditch 

2 10.1 ± 0.84 
(4%) 

41.3± 3.2 
(17%) 

307 ± 92 
(100%) 

0.04±0.01 0.17±0.01 0.23 ± 0.01 

Secondary 
ditch 

1 32 (13%) 108.8 (45%) 241 (100%) 0.08  0.36 0.22 

 

Table 2-5 Groundwater results of dissolved Fe and P concentrations and molar P/Fe 

 15 May 2018 18 October 2018 

Groundwater well** Fe(mg/L) Fe (mg/L) P (mg/L) * Molar P/Fe ratio 

GW 1  0.767 0.390 0.034 0.16 

GW 2  0.011 - - - 

GW 3  0.011 0.018 0.017 1.8 

GW 4  0.107 0.139 0.026 0.29 

GW 5  0.302 0.182 0.019 0.19 

GW 6  0.033 0.024 0.019 1.4 
*P limit of quantification was 0.026 mg/L **GW 2 was not sampled on October 18 

Water and solute fluxes 

Water and solute fluxes were measured during a very dry year. The precipitation deficit was 

the highest since the first records in 1957, the accumulated precipitation from April 2018 to 
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April 2019 was 543 mm, while the yearly country average is 800 mm.  The groundwater levels 

varied between 0.42 m and 1.96 m below surface, with an average of 1.42 m ± 0.42 m. The 

ditch dried up when groundwater levels fell below 1.20 m; this occurred between 11 May and 

22 December 2018. The water quality parameters measured with the high-frequency sensors 

showed a distinct behavior depending on the hydrological conditions. To illustrate these 

different behaviors two periods are shown in detail, a 12-day rainy period and a 4-day dry 

period. The full-time series from the monitoring station can be found in the supplementary 

information. 

The rain period between 7 and 18 January 2019 in Figure 2-6 includes hydrological data and 

data from the high-frequency monitoring station. There were seven subsequent events, with 

rain intensities between 1 and 2 mm/hour, the discharge in the ditch varied from 2 L/s to 

about 4 L/s and the groundwater level fluctuated between 1.1 m and 0.7 m below surface. 

Turbidity, TP, and TRP peaks occurred simultaneously with a drop in NO3
- concentration. 

These responses occurred approximately 2 hours after the rain peaks. Discharge peaks 

remobilized P-rich sediment in the ditch as is shown in Figure 2-6 by the simultaneity in the 

discharge, TP, and turbidity peaks and also by the Fe and P content in the sediment (Table 2-

4).   

Figure 2-7 shows the different high-frequency monitored parameters for the selected window 

with no rain events, from 28 March to 1 April 2019. Especially the TP and TRP and turbidity 

showed a diurnal fluctuation. This pattern was also detected through the spring of 2018 and 

2019, starting in March and continuing until the ditch dried up in April. The highest values for 

TP, TRP, and turbidity were always measured between 5:00 pm and 7:00 pm and the lowest 

values around 5:00 am. The groundwater level decreased from 0.88 m up to 0.96 m. The NO3
-
 

concentration fluctuated around 10.5 mg/L for the first days and dropped to 9.5 mg/L. 
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Figure 2-6 Time series of the Precipitation(mm), ditch discharge (L/s), groundwater level 

(meters below ground surface), NO3- (mg/L), TRP (mg/L),TP (mg/L) and turbidity (NTU), 

from 7 January to 18 January 2019 
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Figure 2-7 Time series of the ditch discharge (L/s), groundwater level (meters below ground 

surface), concentrations of NO3
- (mg/L), TRP (mg/L) and TP (mg/L), and turbidity (NTU), 

from 28 March to 1 April 2019. 
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Integrated results 

Figure 2-8 shows the cumulative loads for TP and NO3
- during the relatively short drainage 

season 2018-2019. The total nutrient export for the whole farm over this period was 0.9 kg 

for P and 282 kg for N. The average TRP was 0.021 mg/L. 

 
 

Figure 2-8 Cumulative nutrient exports from the farm from 24 December 2018 to 16 April 

2019. 

2.5 Discussion 

Transport of P to the ditch by groundwater flow  

A conceptual model of the P fluxes and the water balance for the 2018-2019 drainage season 

is shown in Figure 2-9. The model includes the main P sources, manure application, and legacy 

P; the transport processes through the topsoil and subsoil; and finally, the transport and 

accumulation of P in the ditch. The P concentrations in the soil water from the upper layers 

were estimated with the correlation between the PSD and the orthophosphate in equilibrium 

with the soil solution for non-calcareous sand soils found by Schoumans and Groenendijk 

(2000). When the groundwater levels are high, the water transport through the topsoil carries 

higher P concentrations. When the water moves through the subsoil layer, the P is adsorbed 

by the amorphous iron oxides that have available adsorption sites. This also explains the low 

dissolved phosphate present in the groundwater below 150 cm (Table 2-5). The contrast 
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between the TP results in the topsoil and subsoil suggest that most of the TP in the topsoil 

originated from manure and fertilizer application (Table 2-4).  

During the studied drainage period, the water entered the ditch after passing the upper 

organic-rich layer and the underlying sandy layers of the soil. The dominance of this pathway 

can be concluded from the similarity of the composition of groundwater and surface water 

(Table S8); the coupled groundwater level and discharge time-series (Figures 2-6 and 2-7); 

and no visual observations of overland flow during the 2018-2019 drainage season. This 

implies that the groundwater level determines the export of dissolved P, which is higher when 

the infiltrating water does not reach the subsoil with low PSD and unoccupied adsorption 

capacity and directly discharges into the ditch. At the low groundwater level, there is a net 

flux from the topsoil into the subsoil and retention of P which reduces the export of dissolved 

P into the ditch. 

 
Figure 2-9 Water and phosphorus balance for the period from 24 December to 16 April 2019.  

In the model the infiltration to deep groundwater was calculated as the difference between 

the measured precipitation, corrected evapotranspiration, and measured discharge in the 

ditch; we assume no groundwater storage. The evapotranspiration was obtained using an 

average crop factor of 0.6 (0.9 for grass and 0.0 for arable land). The infiltration for the period 
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was 89 mm, 2/3 of the precipitation surplus. The presence of the glacial tunnel makes the 

groundwater flow an important component in the water balance.   

 

Figure 2-10 Picture from the main ditch, fluffy orange-red sediments are visible in the 

bottom 

Transport of P in the ditch by remobilization of sediment 

The ditch sediment had a different composition of P- and Fe-pools compared to that of the 

topsoil (Table 2-4), suggesting the sediment consisted of autogenic particles and is not formed 

by eroded topsoil. The sediment’s P/Fe ratio and high Pw suggest that P is adsorbed in Fe 

(oxy)hydroxide colloids, which are important P carriers (Baken et al. 2016; Van der Grift et al. 

2014; Gu et al. 2020). The soluble P in the sediment was 0.02 mg/L (Table S6) which closely 

matched the TRP baseline in the ditch water (average 0.021 mg/L), and the soluble P in the 

sediment (Table S6), suggesting the P in the sediment is in equilibrium with the P in the 

surface water. This implies that during the drainage season the exported TP load consists of 

0.20 kg in the form of dissolved P and 0.70 kg in the form of PP, the share of PP in the discharge 

was 78% of TP, based on the high frequency monitoring. Nonetheless, the PP fraction of the 

TP may be even higher, as some Fe-bound P particles are smaller than 0.45 µm and may be 

accounted for in the measurements (Van der Grift et al. 2016). TP peaks occurred 

simultaneously with turbidity after rain events (Figure 2-6). The increase in turbidity is most 
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likely caused by the resuspension of sediments which have freshly deposited in between rain 

events (Figure 2-10). For the whole period monitored, 76% of TP was exported in 19% of the 

time when the discharge was above its median, implying that resuspension of PP during high 

flow events is the major pathway of TP export.  

House and Warwick, (1998) already reported the importance of particle transport as P 

carriers during rain events. At a close-by site, Rozemeijer and Van der Velde (2014) recently 

determined that 60% to 90% of the annual P transport was caused by a few rainfall events. 

De Klein and Koelmans (2011) also found that P transport depended greatly on the seasonal 

rainfall in the Netherlands.  

The TP export per hectare observed in this study was not high, 0.04 kg/ha, which can be 

explained by the vacant sorption capacity of the subsoil. Ulén and Jakobsson (2005) reported 

a P export of 0.57 kg/ha/year for a similar catchment in Sweden, a drained agricultural sandy 

soil with a balanced manure application, but the sand’s sorption capacity was low. Gelbrecht 

et al. (2005) reported TP exports between 0.04 and 0.25 kg/ha for sandy catchments with 

subsurface flow in NE Germany, however, the sorption capacity of the sand was not reported. 

The fact that this was a particularly dry year is one of the main uncertainties to this study, we 

cannot determine to what extent P retention by subsoil will be as effective in wetter years 

with higher groundwater levels and even if runoff or soil erosion could occur. Wetter years 

may result in higher discharge and even higher PP transport downstream. Leaving aside these 

uncertainties, our results show that PP retention would reduce P losses downstream.  

Phosphorus retention measures 

P retention measures, such as sediment traps can reduce the P losses in the short term 

(Barber and Quinn 2012). This measure can be implemented alongside water conservation 

strategies, which may increase the farmers’ willingness to implement them, as water 

retention offers benefits for the farm during droughts. The measure should buffer the 

discharge peaks after rain events. This farm has the advantage of having a ditch that catches 

all the water drained from the farm. The most cost-effective measure should consider this 

asset, for example by widening the ditch before the weir. Water retention measures were 

classified as having a very positive impact on PP retention in Swedish sandy lowland areas in 
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the short term (Ulén and Jakobsson 2005). However, not all water retention measures will 

reduce the yearly P load. First, the outlet should minimize flow peaks and sediment 

remobilization. For example, some retention water measures widely used in the area include 

placing inflatable balloons to block culverts. This system only allows open or closed positions 

causing pronounced transport of P-rich sediment when removed. More suitable outlets are 

adjustable weirs or small diameter pipes. Second, the water retention measure should use 

the soil’s sorption capacity maintaining the groundwater level 40-50 cm below the surface. If 

the groundwater level was only 20-30 cm below the surface, much more P would reach the 

ditch as the dissolved P concentrations in the topsoil are higher than in the subsoil due to the 

saturation of the sorption capacity. Finally, maintenance needs to be considered, removing 

periodically the sediment from the ditch bottom.  From a P recycling perspective, the 

sediment had a high Pw, which makes it attractive for reuse. Moreover, if the sediments are 

not removed there is a risk of remobilizing the phosphate present in the sediment once 

anaerobic conditions are reached.  

Diurnal pattern in phosphorus and turbidity in the spring 

Finally, we want to make some remarks on the daily pattern in P concentrations presented in 

Figure 2-7. The timing of the highest and lowest TP values suggests that the fluctuations are 

light sensitive, implying that photosynthesis might exert influence on TP concentrations. At 

the end of March, the solar irradiance goes up at 5 am and reaches zero again around 7 pm. 

The concentration day vs. night differences are significant (p<0.05), yet the concentration 

levels are low compared to the water quality target of 0,15 mg/L. It is relevant that processes 

other than Fe-P dynamics control the P concentration in surface waters during some part of 

the year. One hypothesis is that these fluctuations are caused by organisms that sink during 

nighttime and move to the surface during daytime. This was not the first time these daily TP 

variations are detected. House and Warwick (1998) detected a 30-hour variation in TP in April 

in the River Swale; as levels of dissolved silica also dropped with TP, diatoms were thought to 

explain the TP variations. Later, Bowes et al. (2016) detected daily TP variations in the river 

Thames during the springs of 2009 to 2013; they observed that most TP fluctuations went in 

hand with a Chlorophyll-a increase and phytoplankton growth was associated with the 

phenomenon. In the same study, another daily TP variation event showed no increase in 

Chlorophyll-a but a drop in dissolved silica and diatoms were believed to cause the TP 
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fluctuations. To the best of our knowledge, this daily process has not been thoroughly 

explained yet. The exact processes and the type of microorganisms that play a role are 

unknown. In our study area, the TP concentrations during these events are low and do not 

imply an important P transport year wise.  

2.6 Conclusions 

The present study thoroughly followed P from its application until it left the farm through 

surface water. We investigated the principal P routes in a lowland drained farm on sandy soils, 

and the findings have implications for similar areas with intensive agriculture. The results 

show that the topsoil accumulated high amounts of TP with high soluble P concentrations and 

a critical PSD suggesting a high risk of P leaching. P concentrations in groundwater were low, 

which could be explained by the dominant subsurface flow and the unoccupied sorption 

capacity of the iron-rich subsoil. In the ditch, most of the exported P was associated to PP 

resuspension during discharge peaks.  

Based on the high proportion of PP and the experiences with trapping P-rich suspended 

matter (Ulén and Jakobsson 2005; Barber and Quinn 2012), we expect that PP retention could 

reduce significantly the amount of P leaving the catchment, having a positive impact on 

downstream eutrophication. Sedimentation traps designed to prevent high discharge peaks 

are recommended as a suitable P retention measure. We recommend that this approach is 

used in other areas to identify the main P routes and support the selection of appropriate 

mitigation measures. 

The highlight results of this research are: 

• The P in the topsoil, accounted in total 60,200 kg, or 2,500 kg/ha, although nowadays 

the P input surplus is close to zero, the legacy P is an important component of the P 

leaving the farm.  

• The sorption capacity of the iron-rich subsoil together with a dominant subsurface flow 

retained the P and reduced the P losses to surface waters or deeper groundwaters. 
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• The P export was estimated in total 0.90 kg or 0.04 kg/ha, for the 2018-2019 drainage 

season.   

• PP transport accounted for 78% of the TP transported downstream, for the 2018-2019 

drainage season. Preventing peak flows is important to reduce P-discharge, but also for 

water retention. We recommend building sediment traps, widening the ditch or 

incorporating weirs along the ditch to retain PP.  

• The water retention measures implemented should allow the flow to go through the 

iron-rich sandy soil.   

• In spring TP, TRP, and turbidity showed diurnal fluctuations. This process has been only 

reported a few times before and might be related to light-sensitive processes as 

photosynthesis, however, the phenomenon is not yet thoroughly understood. 
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2.9 Supplementary material to Chapter 2: Processes 

controlling the flux of legacy phosphorus to surface 

waters at the farm scale 

Victoria Barcala1, Joachim Rozemeijer1, Leonard Osté1, Bas Van der Grift2, Laurens Gerner3, 

Thilo Behrends4 

1 Inland Water Systems, Deltares, Utrecht, the Netherlands 

2 KWR Water Research Institute, Nieuwegein, the Netherlands 

3 Water Board Rijn and IJssel, Doetinchem, the Netherlands 

4 Department of Earth Sciences, Faculty of Geosciences, Utrecht University, the Netherlands 

The supplementary material includes extra information on materials and methods, geological 

information of the subsurface, pictures and results of soil samples, and the complete time 

series used. 

Extra information on materials and methods 

The Pw determines P in the soil solution, i.e. dissolved or readily soluble forms of P. It was 

determined by extracting phosphate from the soil with water at 1:60 (w/w) soil-to-liquid ratio 

for 1 hour. The PAL is one of the many methods used to determine the labile P in the soil, it 

is normally used in Dutch grasslands. It was determined by extracting phosphate from the soil 

with a mixture of ammonium lactate and acetic acid at pH 3.75 for 4 hours, with a 1:20 (w/w) 

solid-to-liquid ratio. P was determined with the molybdenum blue method (Murphy and Riley 

1962) for the Pw, and PAL extractions.  

The oxalate extraction method  can be used to determine the P sorption capacity of the soil. 

Fe and Al amorphous hydroxides are domintatin P adsorption in neutral to acidic soils, the 

Pox/(Feox+Alox) molar ratio, also called P saturation degree (PSD), assesses the risk of P 

leaching to groundwater. The pools of Al and Fe extracted are, the water-soluble, 

exchangeable and a fraction of the organically bound Fe and Al. The extraction was done with 
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oxalic acid and ammonium oxalate with a 1:50 solid-to-volume ratio at pH 3 for 4 hours. P, 

Fe, and Al were determined with inductively coupled plasma atomic emission spectroscopy 

(ICP-OES).  

For TP and TFe, the sample was treated with a mix of concentrated HNO3 and HClO4 in a 2:3 

volume ratio and HF. The sample was placed in a Teflon vessel, the closed vessel was left 

overnight on a hot plate at 90oC and then condensated at 140oC for 4 hours, HNO3 was added 

and the closed vessel was left another night at 90oC. P and Fe were determined with ICP-OES.  

Turbidity and NO3
- concentrations in the flow-through tank were continuously measured with 

Solitax and Nitratax sensors (Hach Lange GmbH, Düsseldorf, Germany). The Solitax is an 

optical, color independent turbidity sensor with an infrared duo scattered light photometer, 

the detection range goes from 0 to 4,000 NTU and 1% accuracy. The Nitratax measures the 

NO3 concentrations based on a double wavelength spectrophotometric UV sensor. The 

Nitratax sensor has a detection range of 0.1 to 50.0 mg/L with 3% accuracy.  

TP and TRP concentrations were measured with Phosphax Sigma auto-analyzer (Hach Lange 

GmbH, Düsseldorf, Germany). TRP is an unfiltered phosphorus fraction, it includes organic 

and inorganic acid-labile phosphorus compounds. The auto-analyzer is based on titration and 

photometric measurements. It includes a mixing and heating/cooling step that guarantees all 

measurements are made at the same temperature, the reagents are automatically added, for 

TP sulfuric acid and persulfate are used for digestion, finally the samples are measured at 880 

nm using a LED photometer. The detection range is from 0.01 to 5.00 mg/L for TP and TRP 

with a 2% accuracy.  

The sensors are suitable for fixed locations and were calibrated upon installation. The 

equipment requires relatively little maintenance, recommended every 3 or 6 months. The 

maintenance tasks include changing reagent bottles and checking for error messages on the 

equipment. High-frequency monitoring is especially useful in quantifying nutrient 

transformation and retention mechanisms lotic systems (Rode et al. 2016), and offer many 

advantages in comparison to low-frequency monitoring. The variations in grab samples values 

are greatly influenced by meteorological conditions and do not necessarily describe water 
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quality trends which creates great uncertainty in understanding the nutrient exports 

(Rozemeijer and Van der Velde 2014). 

 

Figure S11 The flow though vessel (open) with, from left to right: Phosphax’s auto analyzer 

intake, and Solitax and Nitratax sensors. The equipment is placed in the hut behind. 
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Subsurface Geology of the location 

Table S6 Cross sections of the glacial valley formation below the farm 

location of cross 
section 

A-A’ Cross-section BRO DGM v2.2 
(https://www.dinoloket.nl/ondergrondmodellen) 

Description 

 

 

The farm is less than 1 km away from the U-shaped 

glacial tunnel valley. The valley is incised into the 

marine clay and it is filled up with glaciofluvial 

sands. The high hydraulic conductivity of the sand 

allows for relatively large proportion of the 

precipitation surplus to flow into deeper 

groundwater. Also, this permeable sand layer 

allows groundwater extractions for irrigation.  

 

  

Along the SW-NE direction, parallel to the road and 

the main ditch the depth of the sandy subsoil is 

constant. 

N 



 

Chapter 2-62 
 

The sand’s hydraulic conductivity is between 5 m/d 

and 10 m/d horizontally and between 5x10-4 m/d 

and 1x10-3 vertically. 

The clay formation below is from the early 

Oligocene (Rupelian). 

 

 

 

The glacial tunnel valley increases its depth 

perpendicular to the road and main ditch (SE-NW). 

The sand layer is about 10 m deep at the back of the 

farm and 20 m deep close to the ditch. The sand 

depositions are aged in the middle Pleistocene - 

Holocene. 

 

N 
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Table S7 On site pictures of all soil samples 

Soil sample 1 Soil sample 2 Soil sample 3 Soil sample 4 

    
Soil sample 5 Soil sample 6 Soil sample 7 Soil sample 8 

    
Soil sample 9 Soil sample 10 Soil sample 11 Soil sample 12 

    
Soil sample 13 Soil sample 14 Soil sample 15 Soil sample 16 

    
Soil sample 17 Soil sample 18 Soil sample 19 Soil sample 20 

    
Soil sample 21 Soil sample 22 Soil sample 23 Soil sample 24 
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Table S8 Topsoil (0-10 cm) extractions results 

Soil 
samples        

0 cm-10 cm 

Pw 
(mg/kg) 

Pw 
(mg/L) 

PAL 
(mg/kg) 

P oxalate 
(mg/kg) 

TP 
(mg/kg) 

Fe oxalate 
(mg/kg) 

Al oxalate 
(mg/kg) 

P/(Fe+Al) 
molar ratio 

1 19.5 0.21 247.6 133.7 952.9 318.6 116.9 0.4 

2 15.3 0.18 242.1 116.8 725.7 201.7 224.3 0.3 

3 18.1 0.17 234.1 138.1 827.4 207.0 314.7 0.3 

4 17.9 0.18 280.3 121.3 722.4 176.8 332.7 0.3 

5 16.7 0.17 148.4 93.4 690.0 299.2 154.6 0.3 

6 9.4 0.09 55.5 78.1 769.8 564.1 167.5 0.2 

7 8.2 0.10 111.2 76.1 487.0 186.1 183.5 0.2 

8 11.8 0.15 202.1 74.6 491.9 136.7 100.9 0.4 

9 14.5 0.15 238.5 100.0 650.0 109.9 266.8 0.3 

10 13.6 0.11 110.8 59.5 448.8 137.4 90.2 0.3 

11 10.3 0.11 172.7 84.6 635.3 208.7 171.3 0.3 

12 9.9 0.10 142.8 78.5 564.1 143.4 230.5 0.2 

13 10.6 0.12 96.7 66.1 420.4 116.0 135.7 0.3 

14 6.9 0.08 92.2 56.4 408.5 154.6 118.0 0.3 

15 6.1 0.06 106.8 69.2 559.6 194.6 300.8 0.2 

16 7.6 0.10 96.7 85.8 631.1 199.8 213.4 0.2 

17 12.3 0.15 103.8 80.1 619.4 169.4 216.6 0.2 

18 24.5 0.26 271.5 118.2 807.1 163.9 270.7 0.3 

19 7.5 0.08 108.2 52.2 380.8 88.6 148.1 0.2 

20 8.9 0.10 135.1 65.6 479.7 147.9 183.4 0.2 

21 15.7 0.17 151.5 76.8 611.1 188.5 182.6 0.2 

22 2.1 0.02 64.7 43.9 340.3 207.4 334.9 0.1 

23 9.0 0.11 74.9 40.4 346.7 334.9 77.3 0.1 

24 6.7 0.06 124.3 225.4 1557.2 4023.4 305.9 0.1 

 

Table S9 Subsoil (40-50 cm) extraction results 

Soil 
Samples 40 
cm - 50 cm 

Pw 
(mg/kg) 

Pw 
(mg/L) 

PAL 
(mg/kg) 

P oxalate 
(mg/kg) 

TP 
(mg/kg) 

Fe oxalate 
(mg/kg) 

Al oxalate 
(mg/kg) 

P/(Fe+AL) 
molar ratio 

1 16.7 0.1694 82.9 40.7 353.6 185.3 66.8 0.2 

2 0.1 0.0009 30.1 15.1 117.8 40.0 238.7 0.1 

3 0.6 0.0070 36.0 32.5 204.1 361.4 336.7 0.1 

4 0.1 0.0009 54.9 23.2 158.1 29.2 294.6 0.1 
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5 5.4 0.0591 62.6 45.6 358.7 225.8 129.2 0.2 

6 0.0 - 9.0 11.6 178.5 244.1 25.8 0.1 

7 0.0 - 9.9 9.5 125.1 562.9 193.2 0.0 

8 1.6 0.0224 20.4 11.3 130.8 205.2 51.1 0.1 

9 1.9 0.0193 71.5 32.6 213.6 70.9 253.3 0.1 

10 0.4 0.0040 29.1 21.6 195.6 337.9 199.5 0.1 

11 0.0 - 7.3 9.5 137.9 732.6 210.8 0.0 

12 0.0 - 19.1 11.8 104.3 18.5 280.1 0.0 

13 1.7 0.0224 43.9 19.4 182.2 82.5 140.6 0.1 

14 1.5 0.0224 25.1 10.0 117.2 128.7 40.4 0.1 

15 0.0 - 9.0 8.1 125.9 178.5 275.8 0.0 

16 0.0 - 20.8 9.4 107.3 18.5 233.4 0.0 

17 0.0 - 22.0 11.6 131.1 205.9 527.6 0.0 

18 0.1 0.0009 21.3 15.2 128.9 199.2 484.2 0.0 

19 0.5 0.0070 37.3 12.9 139.2 39.8 130.0 0.1 

20 0.5 0.0070 14.1 9.0 110.5 45.7 199.1 0.0 

21 0.7 0.0101 9.9 12.3 132.6 1114.8 414.6 0.0 

22 0.1 0.0009 13.7 10.2 189.0 361.2 343.6 0.0 

23 0.1 0.0009 13.6 10.9 210.6 403.7 44.8 0.0 

24 3.1 0.0285 23.3 15.8 205.6 225.0 66.2 0.1 

 

Table S10 Subsoil (70-80 cm) extraction results 

Table S11 Extraction results of sediment samples 

Sediment samples Pw 
(mg/kg) 

Pw 
(mg/L) 

P PAL 
(mg/kg) 

P oxalate 
(mg/kg) 

TP 
(mg/kg) 

Fe oxalate 
(mg/kg) 

P/(Fe+AL) 
Mass 
ratio 

3 - secondary ditch 32.0 0.04 108.8 50.9 241.0 398.7 0.11 

5 (1) - main ditch 11.0 0.02 38.1 21.7 214.6 195.7 0.08 

5 (2) - main ditch 9.3 0.02 44.5 21.6 398.7 179.2 0.09 

Soil Samples 
70 cm-80 cm 

Pw 
(mg/kg) 

Pw 
(mg/L) 

PAL 
(mg/kg) 

P oxalate 
(mg/kg) 

TP 
(mg/kg) 

Fe oxalate 
(mg/kg) 

Al oxalate 
(mg/kg) 

P/(Fe+AL) 
Molar 
ratio 

4 0.0 - 16.2 9.7 93.4 22.8 211.3 0.04 

10 0.0 - 9.0 9.1 146.9 161.7 49.0 0.06 

14 0.3 0.004 19.5 6.6 106.3 103.7 44.5 0.06 

19 0.0 - 4.0 5.1 107.0 215.0 105.4 0.02 
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Table S12 Average of Fe extraction results in the soil and sediment 

Fractions n samples Fe ox mg/kg ± SDV 
mg/kg 

TFe mg/kg ± SDV 
mg/kg 

Feox/TFe 

Soil 0-10 cm 24 361 ± 770 5583 ± 6356 0.06 

Soil 40-50 cm 24 250 ± 251.1 7745 ± 5644 0.03 

Soil 70-80 4 125 ± 71.3 8643 ± 4835 0.01 

Sediment 3 258 ± 100 8062 ± 2184 0.03 

Table S13 Groundwater and surface water cation results 

Samples Date Ca(mg/L) Fe(mg/L) Mg(mg/L) Mn(mg/L) 

Limit of 
quantification 

 (0.015) (0.011) (0.004) (0.001) 

SW 1 16-4-2018 122.835 0.229 8.294 0.196 

SW 2 16-4-2018 104.622 0.166 9.544 0.098 

SW 3 16-4-2018 66.102 0.161 8.16 0.012 

SW 4 16-4-2018 105.813 0.347 8.639 0.11 

SW 5 16-4-2018 104.689 0.205 8.78 0.12 

GW 1 15-5-2018 101.212 0.767 12.099 0.450 

GW 2 15-5-2018 108.873 0.011 15.570 0.563 

GW 3 15-5-2018 66.821 <0.011 13.625 0.104 

GW 4 15-5-2018 26.780 0.107 8.823 0.089 

GW 5 15-5-2018 24.522 0.302 6.417 0.025 

GW 6 15-5-2018 81.005 0.033 9.657 0.222 
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Figure S12 Complete time series of the high-frequency monitoring station from 5 April 

2018 to 18 April 2019 
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3.1 Abstract  

High-frequency monitoring of water quality in catchments brings along the challenge of post-

processing large amounts of data. Moreover, monitoring stations are often remote and 

technical issues resulting in data gaps are common. Machine Learning algorithms can be 

applied to fill these gaps, and to a certain extent, for predictions and interpretation. The 

objectives of this study were (1) to evaluate six different Machine Learning models for gap-

filling in a high-frequency nitrate and total-phosphorus concentration time series, (2) to 

showcase the potential added value (and limitations) of Machine Learning to interpret 

underlying processes, and (3) to study the limits of Machine Learning algorithms for predictions 

outside the training period. We used a four-year high-frequency dataset from a ditch draining 

one intensive dairy farm in the east of The Netherlands. Continuous time series of precipitation, 

evaporation, groundwater levels, discharge, turbidity, and nitrate or total-phosphorous were 

used as predictors for total-phosphorus and nitrate concentrations respectively. Our results 

showed that the Random Forest algorithm had the best performance to fill in data-gaps, with 

https://doi.org/10.21203/rs.3.rs-2201325/v1
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R2 higher than 0.92 and short computation times. The feature importance helped 

understanding the changes in transport processes linked to water conservation measures and 

rain variability. Applying the Machine Learning model outside the training period resulted in a 

low performance, largely due to system changes (manure surplus and water conservation) 

which were not included as predictors. This study offers a valuable and novel example of how 

to use and interpret Machine Learning models for post-processing high-frequency water 

quality data.  

Abbreviations: ANN, artificial neural network; kNN, K-nearest neighbor, M5R, M5-Rules, MAE, 

mean average error; MLR, multivariable linear regression; N, nitrogen; NO3, nitrate; P, 

phosphorous; R2, coefficient of determination; RF, Random Forest; RMSE, root mean square 

error; SMO, sequential minimal optimization; TP, total phosphorous; ZR, zero rules. 

Key words: water management, missing data, data-based models, Random Forest, 

groundwater surface water interactions 

3.2 Introduction 

Intensive agriculture is an important source of nutrients in surface waters (Bol et al., 2018; Van 

der Grift et al., 2016; Van der Salm et al., 2012; Withers et al., 2014). High total phosphorus 

(TP) or high nitrate (NO3) concentrations are two of the parameters that can lead to a poor 

ecological quality status in surface waters. High NO3 and TP concentrations are being pointed 

out as one of the main causes of biodiversity loss (Dise et al., 2011; Porter et al., 2013) and 

algae blooms (Withers & Haygarth, 2007). In many cases, the nutrients lost to surface water do 

not just originate from the freshly applied manure or fertilizer, but from the nutrient legacy 

accumulated in the soil which is transported into surface waters through natural of artificial 

drainage systems (Bieroza et al., 2019; Lucas et al., 2021; Sharpley et al., 2013). Realistic goals 

and appropriate mitigation measures are needed (Schoumans et al., 2014). Therefore, it is 

central for the water authorities to monitor the water quality of surface waters and quantify 

the effect that nutrient sources and system changes have in the transport processes of 

nutrients into larger water systems.  

High-frequency monitoring of water quality data offers a detailed understanding of the 

processes involved in nutrient transport (Rode et al., 2016; Rozemeijer et al., 2010). However, 
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technicians often face the challenge to deal with large data volumes and missing data (Zhang 

et al., 2019). It is often the case that sensors and autoanalyzers have technical problems which 

can result in a significant number of gaps in the data. The post processing of the data, including 

identification of errors and filling missing values can be time consuming and the final result 

depends on the individual who does the post processing (Jones et al., 2021). Furthermore, the 

amount of data collected by high-frequency sensors can easily exceed the amount of data that 

can be treated manually (Dupas et al., 2015; Kirchner & Neal, 2013). Nevertheless, without 

complete data series it is not possible to accurately calculate total annual loads and the value 

of high-frequency monitoring is reduced to the observation of specific events that might not 

be representative of the overall system’s response.  

Machine Learning algorithms build models based on sample (training) data in order to make 

numerical predictions (regression models) or decisions (classification models). Machine 

Learning algorithms, such as Trees, Rules, Support Vector Machines, and Artificial Neural 

Networks, offer an advantage to linear methods when treating non-linear problems such as 

concentration-discharge relationships. Although Machine Learning algorithms are powerful 

tools to post-process high-frequency water quality data, their use is still below their potential 

in many fields of environmental sciences (Liu et al., 2022). The relative low acceptance of 

Machine Learning in some environmental sciences may lie in reluctance to shift from a process-

based approach to a data-based approach and the tradeoff between interpretability, 

performance, and complexity (Liu et al., 2022b; Visser et al., 2022). Gap-filling of continuous 

water quality datasets is a so far unexplored, yet potentially powerful application of Machine 

Learning. Machine Learning algorithms have been successfully applied for gap-filling in medical 

datasets (Shah et al., 2014), eddy-covariance evaporation and CO2 flux data sets (Kang et al., 

2019), soil moisture (Mao et al., 2019) and more recently also for daily streamflow time series 

(Arriagada et al., 2021). Most water quality applications of Machine Learning focus on 

predicting nutrient concentrations from catchment characteristics (e.g. Castrillo & García, 

2020; Chen et al., 2020; Olson & Hawkins, 2012) or from other chemical parameters measured 

in conventional monitoring networks (e.g. Ha et al., 2020; Visser et al., 2022). Nevertheless, 

most of these studies focus on the forecasting performance and do not explore the limitations 

of using predictive data-based models (Tyralis & Papacharalampous, 2019). 
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The objectives of this study were to: (i) to evaluate six different Machine Learning models for 

gap-filling in a high-frequency NO3 and TP concentration time series, (ii) to showcase the 

potential added value and limitations of Machine Learning to interpret underlying nutrient 

transport processes, and (iii) to study the limits of Machine Learning algorithms for making 

predictions outside the training period. As case study, we used four years of high-frequency 

data from a ditch draining one dairy farm in the east of The Netherlands where the nutrient 

transport from the soil to the surface water were previously investigated (Barcala et al., 2020). 

We applied open source and popular data-science software such as WEKA (Frank et al., 2017) 

and R (R Core Team, 2020) for the data post-processing and model implementation. This study 

offers a valuable and novel example of how to use and interpret Machine Learning models for 

post-processing high-frequency water quality data.  

3.3 Materials and Methods 

Field site and time series description 

The data was collected from a dairy farm near Winterswijk, the Netherlands (52.00131 N, 

6.76112 E). The nutrient routes from the soil to the surface water were previously studied by 

Barcala et al. (2020). Manure is applied in the fields for fertilization between March and August. 

After measuring the crop productivity, the annual nutrient surpluses are calculated by the 

farmer. The topsoil is high in organic matter and has a 0.26 phosphorus saturation degree, 

meaning it can no longer retain more P. The water extractable P content (Pw) was on average 

11.2 mg/kg in the topsoil, 1.5 mg/l just below the tillage zone (40-50 cm depth), and 0.1 mg/kg 

at 70-80 cm depth (Barcala et al., 2020). The average P in the topsoil is 2.630 kg/ha and the N 

in the topsoil is 565 kg/ha (Barcala et al., 2020). Below the topsoil, there is a Fe- and Al-rich 

sand layer. The farm is artificially drained by a main ditch that collects the water of the whole 

farm and runs parallel to the road in front of the farm. A secondary ditch runs perpendicular to 

the main ditch into the fields behind the farmyard. The northeast part of the fields has 

subsurface drainpipes draining into the most upstream part of the main ditch. The terrain is 

flat and surface runoff only occasionally contributed to the ditch discharge. Therefore, 

nutrients are transported mainly from the soil to the main ditch via lateral groundwater flow 

and the tile drains. During the summer months, the groundwater level falls below the ditch 

level and the main ditch falls dry. During this study, farmers were particularly affected by the 
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extreme drought of 2018. Water shortage is a stress factor for crop growth and climate change 

is causing greater rainfall variability (Greve et al., 2021; Masson-Delmotte et al., 2021). To 

adapt against droughts, the farmer implemented different water conservation measures to 

control the groundwater level in the field before the start of the last drainage season. An 

adjustable weir was placed in the main ditch in front of the farm, and an adjustable pipe was 

installed in the side ditch behind the farmyard (Figure 3-1).  

 

Figure 3-1 Farm layout (dashed red line) with water conservation measures implemented 

for the 2020-2121 season  

At the end of the main ditch, we installed a v-notch weir and a high-frequency monitoring 

station was operative from 17 February 2018 to 7 June 2021. Every 15 minutes TP (Phosphax 

Sigma autoanalyzer, Hach), NO3 (Nitratax Sensor, Hach), and turbidity (Solitax Sensor, Hach) 

were measured. Also, every 15 minutes, the discharge from the v-notch weir was calculated 

using a pressure gauge upstream from the weir and groundwater levels at the farm were 

monitored with a pressure gauge installed in a groundwater piezometer. As meteorological 

data may contribute to the prediction of the missing values, hourly rainfall and daily 

evapotranspiration data were downloaded from a meteorological station 12 km from the farm 
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that belongs to the Dutch Royal Meteorological Institute Network 

(https://www.knmi.nl/nederland-nu/klimatologie, station 283). The hourly rain, and daily 

evaporation, were linearly interpolated to have one value every 15 minutes using the 

approxfun function in R. All the times were taken to Dutch wintertime (GMT+1). All the time 

series were quality checked, discharge measurements were checked based on manual 

measurements and concentrations measurements were controlled based on laboratory 

measurements taken on routine visits every approximately four weeks. More detailed 

information about the field site characteristics and the high-frequency monitoring station can 

be found in Barcala et al. (2020). 

Using the 2017-2018 values as a reference, the groundwater levels were on average 25 cm 

higher in 2020-2021 when the farmer implemented water retention measures (Table S1). In 

the year 2018 (2017-2018 season), TP correlated with turbidity (0.70) and NO3 correlated 

strongly with discharge and groundwater level (0.91, 0.86) as was already discussed in Barcala 

et al. (2020). However, these correlations became weaker in the following years, especially 

between TP and turbidity (Figure S2). NO3 concentrations showed a similar temporal pattern 

to the groundwater levels but were shortly diluted during rain events (Figure 3-3 and S3). 

Before starting with the selection of the Machine Learning models, we did some basic 

exploration of the available data available in the supplementary material. The N and P 

application to the fields are limited by the national Action Plans for the  EU Nitrate Directive 

(Schroder et al., 2007). The manure applied targets at a 0 kg/ha P surplus. However, the crop 

growth can be limited by the water availability; in years with low rainfall less P was taken up, 

which resulted in a positive surplus. The average yearly N surplus was 142 kg/ha N, which falls 

just below the national average (160 kg/ha). Table 1 gives a quantitative summary of the 

drainage seasons. 

  

https://www.knmi.nl/nederland-nu/klimatologie/uurgegevens
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Table 3-1 Summary of the nutrient surplus, first and last day of drainage, seasonal rainfall, 

evaporation, and discharge.  

  All 
seasons 

2017-
2018 

2018-
2019 

2019-
2020 

2020-
2021 

-    Nutrient surplus    - 

N surplus  (kg/ha) 568 126 209 167 66 

P surplus  (kg/ha) 0 2 4 16 -22 

-    Drainage season characteristics - 

First day 
drainage season 

dd-mm-
yy 

17/02/18 17/02/18 23/12/18 18/10/19 1/12/20 

Last day 
drainage season 

dd-mm-
yy 

7/06/21 8/05/18 16/04/19 20/04/20 7/06/21 

Rain  Total 
(mm) 

1121 105 221 379 416 

Evaporation Total 
(mm) 

380 86 58 94 142 

Rain – Evap. Total 
(mm) 

741 19 163 285 275 

Discharge  Total 
(m3) 

178,768 20,361 31,773 64,727 61,908 

-    Data gaps    - 

Turbidity sensor % 
missing 

5.9% 24.6% 1.8% 4.8% 1.6% 

NO3 sensor % 
missing 

5.6% 25.4% 1.5% 3.4% 1.9% 

TP autoanalyzer % 
missing 

33% 57% 34 % 22% 34% 

Number of 
instances 

N  54912 7776 11040 17952 18144 

 Averages * -  

Turbidity (NTU) 9.40 2.06 14.1 4.89 13.4 

Groundwater 
levels 

(m) -1.28 -0.989 -0.916 -0.858 -0.769 

NO3 (mg/L) 9.52 4.91 9.97 12.7 7.77 

TP (mg/L) 0.050 0.010 0.035 0.045 0.077 

* To use as a reference for the average concentration, the Water Framework Directive target 

for surface waters is 2.3 mg/L for TN and 0.11 mg/L for TP (average summer concentrations). 
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Data analysis 

To calculate and compare accurate annual nutrient loads leaving the catchment we needed to 

fill the missing NO3 and TP values of the high-frequency dataset. Table 3-1 shows the duration 

of each drainage season and the percentage of NO3 and TP missing data. To fill in missing data 

we evaluated six Machine Learning algorithms and compared them to filling in the gaps with 

the mean. The measured data was split and 60% was used for training (calibration) and 40% 

for testing (validation). The data was randomly split three times to improve the statistical 

representation and robustness of the results by using three different seeds. Seeds ensure that 

the results are reproducible, dividing the data in the same way each time. We opted for a wide 

pre-selection of Machine Learning algorithms because one cannot know beforehand which will 

perform best for a specific problem. The performance depends on the available dataset and 

the defined problem, in our case the accuracy in filling missing data in high-frequency nutrient 

concentration time series. The Waikato Environment for Knowledge Analysis (WEKA) was used 

to preprocess the data and for evaluation of all Machine Learning models. WEKA is open 

software widely used for data mining programmed in Java (Frank et al., 2017). If it is not stated 

otherwise, the default parameter settings in WEKA were used. R studio (R Core Team, 2020) 

was used for data visualization and pre- and post-processing of the data. Six algorithms were 

pre-selected following the criteria that they were well documented and accepted, able to 

predict a numeric class (regression), and capable of handling missing data.  

The pre-selected algorithms use different principles in order to build the models. Zero Rules 

(ZR) predicts the mean of the numeric class, it is used as a benchmark to determine if other 

algorithms perform better than filling the missing values with the mean. Multivariate Linear 

Regression (MLR) finds the best fit for a line between multiple independent variables and the 

output is an explicit equation. Sequential minimal optimization regression (SMO) is similar to a 

support vector machine but can solve regression problems. SMO solves analytically the 

smallest possible optimization problem at every step using two Lagrange multipliers that obey 

a linear equality constraint (Platt, 2008). K-nearest neighbor (kNN), also called instance-based 

learner, generates a prediction by first finding k instances in the training dataset which are 

closest to the value that we want to predict (Aha et al., 1991). K was set to 1 and we used the 

Euclidean distance. M5 Rules (M5R) combines rules with trees, it generates list of rules for 

regression problems using the “separate-and-conquer” strategy, in each iteration a tree is built, 
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and the "best" leaf is made into a rule (Leman, 1997). Random Forest (RF) grows an ensemble 

of trees and takes the average of the trees for the regression problem (Breiman, 2001), 100 

trees were grown to maximal depth. Artificial Neural Networks (ANN) are networks of linear 

classifiers (perceptrons), they implement a weighted decision given two hidden layers, we used 

7 nodes or “neurons” in the hidden layer as this was equal to the number of nodes in the input 

layer (Wolpert, 1992). 

To build the TP and NO3 models, we used time series of precipitation, evaporation, 

groundwater levels, discharge, turbidity, and NO3 or TP respectively. Seasonal changes as the 

manure surplus and the implementation of water retention measures are not included as 

predictors. To evaluate and select the best model, we used the coefficient of determination 

(R2), the mean absolute error (MAE), and the root mean square error (RMSE) between the 

measured and the predicted values of the test subset. The models were done for each drainage 

season (2017-2018, 2018-2019, 2019-2020, 2020-2021) and for all the seasons together (2017-

2021). The seasons are defined as the time during the year when there is water discharge in 

the ditch. Separate models were preferred to one single model to evaluate the model response 

to different yearly features that are not considered as predictors, such as year-to-year 

variations in total rainfall, nutrient surpluses, and the implementation of water conservation 

measures in the 2020-2021 drainage season.  

To study the performance of predicting nutrient concentrations we evaluated two scenarios. 

First, the 2018-2019 model was used to predict the 2019-2020 measurements and second, 

2019-2020 model was used to predict the 2020-2021 measurements. Both predictions used 

the input variables (rain, evaporation, groundwater, discharge, turbidity, and NO3 or TP) of the 

season we wanted to predict. The first scenario represents the prediction with no system 

changes and the second represents the prediction with changes (water retention measures). 

This way we evaluate if the model can predict system changes outside the training window. 

Also, both predictions were done with the all seasons (2017-2021) model to assess if the model 

could represent system changes inside the training window. Although the retention measures 

are not incorporated into the model, the groundwater levels measured were and they were 

higher on the last season.  

The feature importance (also called permutation variable importance metrics) allows to weight 

the influence of each input variable in the prediction, improving the interpretability of the 
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results. The feature importance is calculated as the percentual increase in predictive error of 

not including one variable as compared to the out-of-bag rate with all other variables intact 

(Breiman, 2001). The feature importance was used to interpret which variables are most 

relevant for the prediction outcomes. An extra random variable was included in the feature 

importance calculations as a benchmark. If any variable was equally or less important than the 

random variable, then it would not contribute for the prediction. The importance values are 

related to the output magnitude of the predicted variable; therefore, the feature importance 

was normalized to 1 to facilitate the comparison. Without this normalization step, the NO3 

predictors would have a higher feature importance values than those for TP. The 2017-2018 

season is only used for gap filling and not for future predictions or for variable feature 

importance calculations because it is not a full drainage season (it starts in half February). 

Lastly, after filling the missing data with the best performing model, the total loads of NO3 and 

TP were calculated for each season by multiplying the concentrations by the discharge. Total 

loads were also calculated for the predictive models. 

3.4 Results  

Filling in missing data  

The TP autoanalyzer had a larger amount of missing data, grouped in 2 to 4 large gaps per 

season. Besides 2018, the amount values missing from the NO3 sensor were very low and 

concentrated at the beginning of the season. The summary of the R2, RMSE, and MAE for three 

test subsets for the different NO3 and TP season models are shown in Figure 3-2 (values and 

computation times are shown in Tables S2 and S3).  For each drainage season, the Random 

Forest model had the best fit (R2 ~ 0.99 for NO3 and 0.96 for TP) with low computation times 

and was therefore selected to fill in the missing values. Figure 3-3 shows the complete 

measured and modeled time series together with the input variables for the 2019-2020 and 

2020-2021 seasons (seasons 2017-2018 and 2018-2019 are in Figure S3). Random Forest gave 

consistently very good results for each seasons’ model, while other algorithms showed larger 

differences in performance from season to season. Following Random Forest, k-Nearest 

Neighbor and M5 Rules had a good performance for all seasons (R2 ~ 0.84 and 0.81 for TP and 

0.73 and 0.92 for NO3 respectively), yet they had poorer results for TP in the 2019-2020 season 

(R2 ~ 0.59 and 0.65 respectively). M5 Rules gave, for little extra computation time, a very good 
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performance in the all seasons model and has the advantage that the output of the model are 

explicit rules that could be interpreted. However, as the problem was complex, more than 190 

rules were obtained, which makes interpretation very difficult. Artificial Neural Networks came 

in fourth place with a lower performance in the all seasons model (R2 ~ 0.67 for NO3 and 0.50 

for TP). Sequential Minimal Optimization obtained even lower results than Artificial Neural 

Networks (R2 ~ 0.38 NO3 and 0.19 TP) and the longer times needed to build and validate the 

model are a mayor disadvantage. For example, for the all seasons model, the Sequential 

Minimal Optimization model took 46 hours computing time to train and test the NO3 data 

series while Random Forest took only 2 minutes. Multivariable Linear Regression offers the 

benefit of having an explicit equation as output, but the trade-off is a lower performance (R2 ~ 

0.39 for NO3 and 0.21 for TP; MAE > mean). Only in 2018 when NO3 was strongly correlated to 

discharge and groundwater levels the results for the Multivariable Linear Regression were very 

good (R2 ~ 0.89). Nevertheless, the correlation was almost the same as doing a simple one 

variable linear regression with the discharge and this relationship was not maintained through 

the years (Figure S2).  
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Figure 3-2 Performance of the different Machine Learning models in the test set. Average of 

R2, MAE, and RMSE for the 3 seeds used. The standard deviation is shown with the error 

bars. Models: Artificial Neural Networks (ANN), K-Nearest Neighbor (K-NN), M5 Rules 

(M5R), Random Forest (RF), Sequential Minimal Optimization (SMO), Zero Rules (ZR). 



Chapter 3-82  

 

Figure 3-3 Measured and modeled time series for the 2019-2020 and 2020-2021 season. The 

nutrient measured data was plotted thicker to see it behind the model. Gaps in the data are 

indicated with a dashed box. 

2019-2020 2020-2021 

  



Chapter 3-83 

Future predictions 

 

Figure 3-4 Prediction of 2019-2020 measured concentrations using 2018-2019 and 2017-2021 

models. Concentrations timeseries (top), density distribution of values (middle), and box 

plots of the error (measured – modeled) (bottom). 

First, we compared the predictive performance between the 2019-2020 measured data and 

the prediction of the same season using the 2018-2019 and the all seasons’ Random Forest 

models (Figure 3-4). This prediction illustrates the Random Forest performance outside the 

training period without system changes (besides manure surplus). The R2 using the TP 

predictive 2018-2019 model was only 0.41 (MAE 0.02 and RMSE 0.04), fewer and lower TP 

peaks were obtained but the baseline concentrations were reproduced, except for some 

baseline overestimations in March. For NO3 the largest difference in concentrations was from 

the end of November to January, when there is an increase in the measured NO3 values that 

were not predicted by the model, still the R2 was 0.75 (MAE 3.02 and RMSE 4.40), as the model 

performs well outside this window. The NO3 load using 2018-2019 model was 723 kg while the 

measured load was 885 kg. TP exported using 2018-2019 model was 4.1 kg while the measured 
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load was 3.3 kg. On the other hand the 2017-2021 model prediction follows the measured 

values closely, the error is centered in zero and the TP peaks and NO3 increase between 

November and January are well represented.  

 

Figure 3-5 Prediction of 2020-2021 concentrations using 2019-2020 and 2017-2021 model. 

Concentrations timeseries (top), density distribution of values (middle), and box plots of the 

error (measured – modeled) (bottom). 

Second, we compared the predictive performance between the 2020-2021 measurements and 

the prediction of the same season using the 2019-2020 and the all seasons’ Random Forest 

models (Figure 3-5). The predictions represent how suitable is Random Forest to capture 

system changes (water conservation). The performance of the 2019-2020 model TP predictions 

was poor (0.09 R2, 0.034 MAE, and 0.057 RMSE) while the all seasons model performed well 

(0.96 R2, 0.001 MAE, and 0.003 RMSE). In the case of NO3, the R2 of the 2019-2020 model with 

the measured values was 0.44 (4.53 MAE and 5.15 RMSE) while with the all seasons model it 

was 0.99 (0.050 MAE and 0.070 RMSE). The distribution of the error of the all seasons model 

was always around zero and the differences with the measurements were mainly in the 
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outliers. Despite the very good results for gap-filling within the training period, the predictive 

performance of Random Forest outside the training period was poor. The total TP load using 

the 2019-2020 model predictions was 5.57 kg while the measured load was 6.55 kg. On the 

other hand, the 2019-2020 model overestimated the NO3 load at 760 kg, while the measured 

load was 534 kg. During the first three seasons the total nutrient loads increased with the 

increase in rainfall. A change in this trend is observed for the last season after the water 

conservation measures were implemented. Although the predicted loads differ from the 

measured loads for 2020-2021, the change in trend is to some extent captured by the model 

(Figure 3-6). All measured variables had between four and a hundred times the importance of 

the random variable introduced (Figure 3-7). Turbidity had the highest feature importance in 

most models (except the 2018-219 and 2020-2021 NO3 models). 

 

Figure 3-6 Total loads of NO3 and TP per season against the seasonal precipitation. The 

predicted loads for the last seasons with the 2018-2018 and 2019-2020 model are included 

in gray. 
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Figure 3-7 Relative feature importance of the variables in the Random Forest models of the 

2017-2021, 2018-2019, 2019-2020 and 2020-2021 seasons. 

3.5 Discussion 

Using Machine Learning models to fill in missing data 

The first objective of this study was to evaluate six different Machine Learning models for gap-

filling in a high-frequency NO3 and TP concentration time series. Random Forest had the best 

performance for both NO3 and TP with a constantly high R2 (> 0.92) and low MAE and RMSE for 

every randomly selected testing set and application period. The short computing times are 

another advantage for using Random Forest for gap filling. The Random Forest gap-filling model 

could reproduce short-term trends in the time series as the TP peaks after rain events, NO3 

dilution after rain events, and NO3increase with increase in the groundwater levels. The good 

results of the 2017-2021 model show that the Random Forest algorithm can also largely 

incorporate system changes within the training period, such as the introduction of water 

conservation measures and different soil nutrient surpluses. We observed that the NO3 models 

performed systematically slightly better than the TP models. This may be caused by the larger 

proportion of missing values in our TP time series. Kang et al. (2019) and  Zhang & Thorburn 

(2022) also reported a reduction in model performance when the amount of missing data is 
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larger as this reduces the size of the training set. Another reason could be the relatively smooth 

behavior of NO3 concentration dynamics compared to the spikier TP patterns.  

Other comparative studies have also found Random Forest to perform better than Linear 

Regression and other Machine Learning algorithms in problems related to water quality  

(Castrillo & García, 2020; Ha et al., 2020; Shen et al., 2020; Visser et al., 2022). Methods such 

as Artificial Neural Networks that here had a low performance have shown very good results in 

other studies (Astuti et al., 2020; Chen et al., 2020; Daliakopoulos & Ioannis, 2016; Dastorani 

et al., 2010; Kim et al., 2020; Najah et al., 2009, 2013). Nevertheless, in other comparative 

studies they have also underperformed Random Forest (Bedi et al., 2020; Chen et al., 2020; 

Kim et al., 2020; Qiao et al., 2021; Visser et al., 2022). The low performance of Multivariable 

Linear Regression can be explained by the non-linear relationships between hydrological 

variables and concentrations. Multivariable Linear Regression has shown low performance in 

other non-linear problems such as epidemiological studies (Shah et al., 2014). As there is no 

one-fits-all model we recommend the used approach of evaluating different algorithms and 

seasonal performance to select the most robust model.  

Conventional approaches for dealing with missing data included not considering the missing 

data or substituting the missing data with the mean (Tyralis & Papacharalampous, 2017). Not 

including the missing data makes calculations of total annual loads uncertain, especially 

because short, extreme rain events can account for a large portion of the yearly nutrient load 

export (Rozemeijer & Van der Velde, 2014). Substituting the missing data with the mean was 

done as a benchmark (Zero Rules model) and it underperformed all other methods having the 

highest MAE and RMSE. It has been already shown that statistical gap filling methods usually 

underperform Machine Learning methods (Zhang & Thorburn, 2022). Another gap-filling 

method includes stepwise linear regression, this approach has exhibited a good treatment of 

the missing data (Rozemeijer et al. (2010), R2 0.74) but it requires a more a complex and time-

consuming analysis of the time series than Machine Learning models as Random Forest. In our 

previous publication (Barcala et al., 2020), TP was correlated with NO3 for gap-filling in the 

2018-2019 season, this lead to a lower load estimations, 0.96 kg for TP and 282 kg for NO3 

compared with loads obtained with the new method, 1.33 kg for TP and 344 kg for NO3. 

Random Forest, and other Machine Learning algorithms, are underused tools in water quality 

studies. We encourage their application for gap-filling because of the good performance, short 
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calculation times, and the availability of open source packages in R and user-friendly software 

like WEKA. Beside gap-filling, algorithms like Random Forest could also be useful for similar 

applications as real time anomaly detection in sensors and autoanalyzers which could support 

system maintenance, for example by comparing the incoming data with one-step ahead 

predictions to detect anomalies and trigger a warning message. 

Process interpretation  

Our second objective was to show potential added value of Machine Learning to interpret 

underlying nutrient transport processes. In most cases, the high number of trees in Random 

Forest models makes their physical interpretation difficult or impossible (Tyralis & 

Papacharalampous, 2019). The feature importance represents the information gain of 

including each variable in the model and could be indicative for the influence of variables on 

physical processes. As a first observation, all predictor variables in our data set contributed to 

the information gain for all drainage seasons. This was indicated by the higher relative feature 

importance values compared to the random variable introduced (Breiman, 2001; Doshi-Velez 

& Kim, 2017). Besides the feature importance, other approaches for process interpretation 

include to evaluate the variable coefficients obtained by Multivariable Linear Regression for 

process interpretation together with the results of “less transparent” models as Random Forest 

(Visser et al., 2022). However, we would not recommend this approach for case studies as this 

one where results obtained with Multivariate Linear Regression are poor. Instead, a similar 

sensitivity analysis to the variable feature importance can be done for other Machine Learning 

algorithms by training the models without one input variable at a time and evaluating the 

impact on the model’s results. 

For NO3, the feature importance values were quite different between the 2019-2020 and 2020-

2021 seasons. In the 2019-2020 season, turbidity was the most important predictor, although 

groundwater levels, evaporation and discharge also contributed significantly. In the 2020-2021 

season, groundwater levels, evaporation and discharge were the most important variables, but 

turbidity did not rank high. The connection between groundwater levels, discharge and NO3 

losses was described before by  Rozemeijer & Broers (2007) and for this field site by Barcala et 

al. (2020). With higher groundwater levels, a larger relative contribution of shallow NO3-rich 

groundwater flow routes (including tube drain discharge) towards surface water increases the 

NO3 concentrations while rain events dilute the concentrations. The NO3 concentrations 
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reached up to 25 mg/l NO3-N after an increase in the groundwater level in mid-November 2019. 

During the second part of the drainage season, the mineral N residue in the soil was depleted 

and the NO3 concentrations decrease to around 10 mg/L. Turbidity was also high in the second 

part of the season and splitting the trees by turbidity resulted in a positive information gain. In 

this case, the predictive power of turbidity does not seem to have a direct process-based 

explanation.  

For TP, turbidity has the highest relative feature importance values in all models. This relation 

is directly linked to the role of sediment transport in TP concentration dynamics. As described 

by Barcala et al. (2020) and Baken et al. (2015), iron and phosphorus from groundwater form 

iron(hydr)oxides which precipitate at the ditch bottom. During steady hydrological conditions, 

a P-rich sediment layer builds up. This sediment is transported during the next discharge event, 

causing a peak in both turbidity and TP.  The data gaps in 2020-2021 coincided with the highest 

turbidity peaks and although it is likely, it is not possible to asses if there was an 

underestimation of TP peaks during this period. Furthermore, almost no high TP peaks were 

predicted with the 2019-2020 model when compared with the 2020-2021 measured series. 

Shen et al. (2020) observed that high values were underestimated when using Random Forest 

to predict N and P concentrations in streams. The high skewness of the data was offered as 

explanation. Surprisingly, the TP export increased in the last season (2020-2021) despite the 

negative P surplus. The groundwater level increased in importance in the 2020-2021 model. 

The risk of mobilization of phosphate (and heavy metals) with the introduction of water 

conservation has been proposed theoretically before (Rozemeijer & Griffioen, 2004; 

Schoumans & Groenendijk, 2000), but to the best of our knowledge it has not been directly 

measured yet. The topsoil had higher P and lower Al and Fe content, therefore watering the 

topsoil may have increased the risk of P leaching. In a recent data-based model of NO3 leaching 

from agricultural soils across the Netherlands comparable trends were found (Spijker et al., 

2021), the TP concentrations were inversely correlated with NO3 emissions and TP was 

important for the prediction of NO3 concentrations. They hypothesized that the high TP 

concentrations were a proxy for high groundwater levels (which were not included in that 

model), and that areas with high groundwater levels had higher denitrification rates and 

therefore lower NO3 concentrations. In addition, Skidmore et al. (2022) has recently shown that 

extreme rain events increase the TP loads from agriculture. 
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Overall, Machine Learning can support process interpretation but justification of findings by 

other methods is needed, as the feature importance can be related to indirect links. Finally, 

turbidity was the variable that represented the largest information gain. Arriagada et al. (2021) 

and Fox et al. (2017) showed that Random Forest performance increased with the number of 

input variables used. Sensors are cheaper than autoanalyzers, require less maintenance and do 

not use reagents. The sensor data can then be trained to fill in data gaps in more complex 

equipment as TP autoanalyzers. This reason largely justify adding sensors (such as for turbidity, 

conductivity, dissolved oxygen, or temperature) next to autoanalyzers at high-frequency 

monitoring stations. Moreover, if a TP autoanalyzer is removed, the combination of continued 

cheap sensor measurements, low-frequency conventional TP sampling, and the previously 

trained RF model could still produce accurate continuous TP concentration time series for the 

site. 

Using machine models for forecasting 

The third objective of this study was to show the limits of Machine Learning algorithms for 

making predictions outside the training period. As reported by Tyralis & Papacharalampous 

(2019) the most important limitation to data-based models is that they should not be 

generalized to predict new processes or changes in unaccounted variables that were not 

covered by the training data set. Moreover, Kang et al. (2019), observed that interannual 

variations in nutrient loads are caused by year-to-year system changes for example in manure 

application, crop rotation, and cultivated area percentage, which were not fully captured by 

their Random Forest models. One disadvantage of Random Forest is that a small change in the 

data set, caused for example by different manure surpluses, can lead to a large change in the 

structure of the optimal decision tree. This effect can be seen in the changes in the variable 

feature importance between 2018-2019 and 2019-2020 seasons. Therefore, although for each 

season the all seasons model and the model of the season had similar R2, MAE and RMSE, the 

trees of each model were built splitting by different variables. This is one of the reasons why 

although the fitting was good for testing sets contained in the training period it did not show 

such a good predictive performance outside that period.  

Despite both predictive models underperform the gap-filling results, the 2018-2019 model 

does a better job reproducing the 2019-2020 data than the 2020-2019 for the 2020-2021 data. 

Especially the NO3 prediction with the 2019-2020 gives quite fair results. The relatively low N 



Chapter 3-91 

surplus in 2020-2021 may explain the differences in NO3 loads obtained with the predictive 

model. In the last season water retention measures were introduced and the nutrient N and P 

surpluses were lower, both changes were not directly introduced in the model as predictors 

but indirectly through the groundwater levels and the water quality data. Therefore, the 

groundwater level measurements were not enough to explain the system changes outside the 

training window. Nevertheless, the all seasons model performed very well for each of the 

individual seasons, including the 2020-2021 season. Random Forest can cover the system 

changes as long as they occur within the training period. The presented example shows that 

historical trends are no guarantee for future performance and that emerging processes may 

not be accurately predicted by the model. This highlights the need for cautious interpretations 

of Machine Learning model predictions and for keeping the models up to date using longer 

data sets to improve the robustness of the models. 

It is important to notice that the issue regarding the uncertainty of predictions outside the 

training period is not likely to be caused by overfitting. Overfitting occurs when the 

performance of the model is good in the training set but not in the testing set. The training set 

was 60% of the data and it was randomly divided three times. The resulting Random Forest 

models were robust, with good results on all different validation sets and application periods. 

Moreover, we used a high-quality dataset with seven variables and about 18,000 instances in 

the last two seasons. For further studies we recommend evaluating ways to include low-

frequency annual system changes in data-based models and quantifying the impact of the 

amount of missing data for the model performance. 
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3.6 Conclusions 

• Random Forest was the best out of six Machine Learning algorithms to fill in 

missing data, with an R2 higher than 0.92 for all test sets. Random Forest could 

effectively reproduce non-linear processes as concentration-discharge 

relationships and represent system changes that were considered in the training 

set.  

• Machine Learning may support process interpretation, but justification of 

findings by other methods is needed. Accounting for changes in the 

groundwater levels was not enough to accurately predict system changes as the 

water conservation caused changes in the nutrient processes. After water 

conservation, higher groundwater levels resulted in more TP leaving the farm 

despite the negative P surplus and was represented by an increase of the 

relative feature importance of the groundwater level variable. This effect was 

likely related to higher desorption from the topsoil layers. For NO3, the variable 

feature importance values were caused by indirect links and were not directly 

related to processes.  

• The incorporation of subsidiary sensors can pay-off in monitoring stations with 

more sensitive autoanalyzers. Here the turbidity showed the largest information 

gain in predictions.  

• Random Forest predictions outside their training period can be uncertain. 

Keeping the Machine Learning models up to date with newly retrieved data 

increases the reliability of the predictions. 

• Similar to gap-filling, Random Forest can be used for anomaly detection in 

monitoring stations.   
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3.8 Supplementary Material 
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plots of measured vs modeled data with Random Forest for every season. The data series are 

available on https://github.com/victoriabarcala/Huppel . 
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Full high-frequency datasets per season with measured TP and NO3 with data gaps 

 

 

Figure S1 Measured time series with gaps in the data  
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Table S1 Statistical summary of the groundwater, turbidity, NO3, and TP data for all seasons 
  All seasons 2017-2018 2018-2019 2019-2020 2020-2021 

G
ro

u
n

d
w

at
e

r 

le
ve

l (
m

) 

Min* -1.34 -1.18 -1.20 -1.24 -1.34 

1Q -1.18 -1.06 -1.04 -1.04 -0.907 

Median -1.23 -0.994 -0.935 -0.854 -0.754 

Mean -1.28 -0.989 -0.916 -0.858 -0.769 

3Q -0.898 -0.917 -0.838 -0.726 -0.630 

95 perc -0.261 -0.630 -0.417 -0.301 -0.261 

Tu
rb

id
it

y 
(N

TU
) 

Min 0.21 0.93 0.21 0.40 1.04 

1Q 1.51 1.47 1.30 1.04 2.78 

Median 2.59 1.82 2.03 2.19 3.51 

Mean 9.40 2.06 14.1 4.89 13.4 

3Q 4.15 2.29 2.88 4.84 5.50 

95 perc 23.1 7.12 5.26 19.4 52.4 

N
O

3 
 (m

g/
L)

 

Min 0.10 0.601 3.98 3.73 0.10 

1Q 6.81 3.23 8.46 9.73 6.29 

Median 9.32 5.57 9.78 11.1 8.23 

Mean 9.52 4.91 9.97 12.7 7.77 

3Q 11.18 6.49 11.7 15.0 10.1 

95 perc 20.81 3.46 13.63 23.0 11.37 

TP
 (

m
g/

L)
 

Min 0.005 0.005 0.007 0.016 0.023 

1Q 0.030 0.008 0.020 0.029 0.047 

Median 0.040 0.005 0.026 0.036 0.059 

Mean 0.050 0.010 0.035 0.045 0.077 

3Q 0.060 0.010 0.038 0.050 0.084 

95 perc 0.120 0.017 0.077 0.091 0.182 

*Below this level there was no water flow discharge 
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2017-2018 season correlation matrix 2018-2019 season correlation matrix 

 

 

2019-2020 season correlation matrix 2020-2021 season correlation matrix 

  

Figure S2 Matrix with the correlation coefficients of the measured data series in the four 

drainage seasons 
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Table S2 Results of the different NO3 models, showing R2, MAE, RMSE, and computation times 
 

   All seasons (2017-2021) 2017-2018 2018-2019 2019-2020 2020-2021 

N
O

3
 

 
R

an
d

o
m

 

Fo
re

st
* 

R2 0.996/0.995/0.995 0.998/0.998/0.998 0.998/0.998/0.998 0.995/0.994/0.994 0.998/.998/0.998 

MAE 0.112/0.113/0.113 0.027/0.026/0.027 0.043/0.040/0.041 0.134/0.140/0.148 0.046/0.047/0.047 

RMSE 0.311/0.322/0.328 0.039/0.036/0.040 0.086/0.074/0.086 0.375/0.357/0.415 0.077/0.080/0.080 

Time(s) 118/102/100 0.52/0.54/0.48 5.45/6.10/5.66 22/22/22 21/23/22 

K
-N

e
ar

e
st

 

N
e

ig
h

b
o

r 

R2 0.735/0.735/0.721 0.737/0.753/0.712 0.998/0.998/0.998 0.821/0.812/0.812 0.846/0.848/0.846 

MAE 1.21/1.20/1.23 0.638/0.615/0.709 0.018/0.017/0.017 0.900/0.925/0.926 0.567/0.565/0.561 

RMSE 2.71/2.72/2.79 1.14/1.11/1.22 0.049/0.046/0.049 2.37/2.42/2.42 1.20/1.199/1.197 

Time(s) 4151/2458/2161 8.38/7.52/8.33 6.69/6.18/6.81 84/73/97 128/103/93 

M
5

 r
u

le
s 

R2 0.941/0.877/0.968 0.996/0.996/0.996 0.988/0.984/0.984 0.964/0.964/0.924 0.988/0.982/0.980 

MAE 0.454/0.503/0.368 0.071/0.074/0.070 0.158/0.156/0.156 0.471/0.471/0.503 0.179/0.193/0.166 

RMSE 1.13/1.66/0.826 0.109/0.116/0.104 0.270/0.298/0.298 1.02/1.02/1.49 0.328/0.389/0.418 

Time(s) 1494/1361/2143 12.97/14.09/12.03 34/26/30 137/124/119 282/258/287 

M
u

lt
iv

ar
ia

b
l

e
 L

in
e

ar
 

R
e

gr
e

ss
io

n
 R2 0.389/0.386/0.388 0.974/0.843/0.841 0.612/0.621/0.621 0.322/0.329/0.327 0.522/0.518/0.519 

MAE 2.48/2.49/2.48 0.583/0.585/0.590 1.10/1.11/1.10 3.59/3.55/3.57 1.54/1.55/1.55 

RMSE 3.58/3.58/3.58 0.731/0.736/0.740 1.48/1.46/1.46 4.41/4.36/4.38 2.00/2.02/2.02 

Time(s) 0.3/0.5/0.3 0.04/0.03/0.03 0.03/0.03/0.02 0.06/0.07/0.06 0.06/0.06/0.06 

Se
q

u
e

n
ti

a
l 

m
in

im
a

l 

o
p

ti
m

iz
at

io

n
 

R2 0.386/0.379/0.384 0.838/0.848/0.848 0.604/0.615/0.612 0.293/0.300/0.300 0.497/0.497/0.493 

MAE 2.39/2.40/2.40 0.565/0.572/0.572 1.0885/1.0902/1.0843 3.2899/3.2433/3.253 1.4976/1.4976/1.5094 

RMSE 3.6367/3.6376/3.6362 0.768/0.783/0.783 1.49/1.47/1.48 4.78/4.72/4.73 2.06/2.06/2.08 

Time(s) 154983/166755/173023 1320/1479/1728 1834/2020/1880 15876/19126/20921 18976/14022/18456 

Ze
ro

 R
u

le
s R2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 

MAE 3.25/3.24/3.25 1.64/1.65/1.64 1.92/1.94/1.93 4.25/4.24/4.24 2.25/2.27/2.26 

RMSE 4.58/4.57/4.58 1.85/1.86/1.86 2.37/2.38/2.37 5.36/5.33/5.34 2.89/2.92/2.91 

Time(s) 0.2/0.3/0.2 0.01/0.01/0.01 0.01/0.01/0.01 0.01/0.01/0.01 0.01/0.01/0.01 

A
rt

if
ic

ia
l 

N
e

u
ra

l 

N
e

tw
o

rk
s 

R2 0.663/0.667/0.669 0.978/0.980/0.980 0.880/0.882/0.880 0.672/0.664/0.664 0.870/0.863/0.863 

MAE 1.87/2.28/2.28 0.205/0.201/0.201 0.603/0.879/0.603 2.16/2.10/2.10 0.896/0.812/0.812 

RMSE 2.87/2.96/2.96 0.285/0.269/0.269 0.857/1.12/0.857 3.08/3.10/3.10 1.16/1.08/1.08 

Time 
(s) 

97/103/111 10/11/12 16/12/12 37/32/29 42/37/48 
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Table S3 Results of the different TP models, showing R2, MAE, RMSE, and computation times 

   All seasons (2017-2021) 2017-2018 2018-2019 2019-2020 2020-2021 

TP
 

R
an

d
o

m
 

Fo
re

st
* 

R2 0.963/0.958/0.958 0.960/0.975/0.969 0.934/0.934/0.934 0.927/0.917/0.917 0.972/0.967/0.967 

MAE 0.002/0.003/0.003 0.001/0.001/0.001 0.002/0.002/0.002 0.002/0.002/0.002 0.003/0.003/0.003 

RMSE 0.010/0.010/0.010 0.001/0.001/0.001 0.007/0.007/0.007 0.010/0.010/0.010 0.010/0.011/0.011 

Time(s) 134/112/131 3.13/3.04/3.05 11.3/7.4/8.9 23/22/25 21/15/15 

K
-N

e
ar

e
st

 

N
e

ig
h

b
o

r 

R2 0.836/0.817/0.877 0.946/0.966/0.962 0.874/0.941/0.876 0.589/0.532/0.584 0.945/0.958/0.948 

MAE 0.002/0.003/0.002 0.001/0.001/0.001 0.001/0.001/0.001 0.004/0.005/0.004 0.002/0.002/0.002 

RMSE 0.020/0.021/0.017 0.002/0.001/0.001 0.011/0.007/0.010 0.028/0.032/0.027 0.014/0.012/0.014 

Time(s) 1598/1455/1590 1.92/1.90/1.77 11.3/6.5/6.4 56/51/49 31/32/37 

M
5

 r
u

le
s 

R2 0.808/0.815/0.815 0.901/0.858/0.858 0.798/0.798/0.799 0.561/0.701/0.701 0.828/0.880/0.880 

MAE 0.008/0.008/0.008 0.001/0.001/0.001 0.005/0.005/0.005 0.01/0.007/0.007 0.010/0.009/0.009 

RMSE 0.021/0.020/0.020 0.002/0.002/0.002 0.013/0.013/0.012 0.024/0.019/0.019 0.025/0.021/0.021 

Time(s) 1351/1151/1047 22/20/24 62/61/56 125/111/80 171/196/157 

M
u

lt
iv

ar
ia

b
l

e
 L

in
e

ar
 

R
e

gr
e

ss
io

n
 R2 0.211/0.199/0.213 0.548/0.529/0.524 0.523/0.542/0.534 0.212/0.23/0.219 0.158/0.168/0.163 

MAE 0.023/0.023/0.023 0.002/0.002/0.002 0.010/0.010/0.010 0.015/0.015/0.015 0.032/0.033/0.032 

RMSE 0.041/0.042/0.042 0.004/0.005/0.004 0.020/0.019/0.019 0.031/0.031/0.030 0.053/0.055/0.054 

Time(s) 1.6/0.5/0.5 0.01/0.01/0.01 0.05/0.06/0.06 0.06/0.05/0.06 0.06/0.04/0.04 

Se
q

u
e

n
ti

a
l 

m
in

im
a

l 

o
p

ti
m

iz
at

io

n
 r

e
gr

e
ss

io
n

 

R2 0.190/0.180/0.193 0.533/0.514/0.503 0.237/0.246/0.246 0.156/0.170/0.171 0.123/0.120/0.112 

MAE 0.020/0.020/0.020 0.002/0.002/0.002 0.009/0.008/0.008 0.013/0.013/0.012 0.028/0.028/0.028 

RMSE 0.042/0.043/0.043 0.005/0.005/0.004 0.030/0.029/0.030 0.033/0.034/0.032 0.056/0.058/0.059 

Time(s) 60008/55637/51993 191/210/207 1098/1019/1018 7193/7126/4746 3559/5722/6457 

Ze
ro

 R
u

le
s R2 0/0/0 0/0/0 0/0/0 0/0/0 0/0/0 

MAE 0.027/0.028/0.028 0.003/0.003/0.003 0.018/0.017/0.017 0.018/0.018/0.018 0.035/0.036/0.036 

RMSE 0.046/0.047/0.047 0.007/0.007/0.006 0.029/0.027/0.028 0.035/0.036/0.034 0.058/0.060/0.060 

Time(s) 0.8/0.6/1.5 0/0/0 0/0/0 0/0/0 0/0/0 

A
rt

if
ic

ia
l 

N
e

u
ra

l 

N
e

tw
o

rk
s 

R2 0.489/0.534/0.534 0.753/0.516/0.516 0.702/0.699/0.724 0.438/0.524/0.524 0.510/0.557/0.557 

MAE 0.018/0.016/0.016 0.002/0.002/0.002 0.020/0.008/0.010 0.0124/0.0111/0.0111 0.0236/0.022/0.0226 

RMSE 0.034/0.033/0.033 0.003/0.004/0.004 0.024/0.015/0.016 0.029/0.024/0.024 0.044/0.040/0.040 

Time(s) 70/68/75 8/7/9 12/12/12 35/28/30 22/23/26 

* the RF times include computing the variable importance 
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Seasonal loads vs time 

Figure S3 Cumulative NO3 and TP in the 2020-2021 drainage season: measured and 

modeled with Random Forest 

  

                     TP export loads per season              NO3 export loads per season 
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Figure S4 2017-2018 and 2018-2019 datasets with measured and modeled TP and NO3. The 

dash boxes show data gaps. 
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4.1 Abstract 

Mitigation measures are needed to prevent large loads of phosphate originating in agriculture 

from reaching surface waters. Iron-coated sand (ICS) is a residual product from drinking water 

production. ICS has a high phosphate adsorption capacity and can be placed around tile drains 

taking no extra space which increases the farmers’ acceptance. The main concern regarding 

the use of ICS filters below groundwater level is that limited oxygen supply and high organic 

matter concentrations may lead to the reduction and dissolution of iron (hydr)oxides present 

and the release of previously adsorbed phosphate. This study aimed to investigate phosphate 

adsorption on ICS at the onset of iron reduction. First, it was investigated whether 

simultaneous metal reduction and phosphate adsorption were relevant at two field sites in 

the Netherlands that use ICS filters around tile drains. Second, the onset of microbially 

mediated reduction of ICS in drainage water was mimicked in complementary laboratory 

microcosm experiments by varying the intensity of reduction through controlling the oxygen 

availability and the concentration of degradable organic matter. After 3 years, ICS filters in 

the field removed phosphorus under low redox conditions. Over 45 days, the microbial 

https://doi.org/10.1002/jeq2.20432
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reduction of manganese and iron oxides did not lead to phosphate release confirming field 

observations. Electron microscopy and X-ray absorption spectroscopy did not evince 

systematic structural or compositional changes, only under strongly reducing conditions did 

iron sulfides formed in small percentages in the outer layer of the iron coating. Our results 

suggest that detrimental effects only become relevant after long operation periods.  

Keywords: phosphorus, iron-coated sand, microbial redox reactions, drainage systems, 

nutrient retention  

Abbreviations: Ca, calcium; CH4, methane; CO2, carbon dioxide gas; DOC, dissolved organic 

carbon; EXAFS, extended X-ray absorption fine structure; Fe, iron; FeS, iron sulfide; IC, ion 

chromatography; ICP-OES, inductively coupled plasma - optical emission spectrometry; ICS, 

iron-coated sand; Mn, manganese; N2, nitrogen gas; NH4, ammonia; NO3, nitrate; ORP, 

oxidation reduction potential (mV); P, phosphorus; PO4, phosphate; SEM-EDX, scanning 

electron microscope with energy dispersive x-ray spectroscopy; SO4, sulfate; TDP, total 

dissolved phosphorus; XAS, x-ray absorption spectroscopy. 

 

Figure 4-0. Graphical Abstract 
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4.2 Introduction 

Phosphorus (P) is an essential nutrient for plant growth, required to increase the food 

available for the growing world population. However, P run-off and leaching from agriculture 

can trigger algae blooms, eutrophication, and water quality problems (Bol et al., 2018; 

Withers & Haygarth, 2007). Due to the legacy of P in the soil, reducing the fertilizer application 

may be insufficient to reduce the P load to surface waters in the short- to mid-term (Barcala 

et al., 2020; Chardon & Schoumans, 2007; Mellander et al., 2016; Sharpley et al., 2013). To 

achieve a faster decrease in the P levels in surface waters we need mitigation measures that 

reduce the diffuse P inputs from arable fields (Mendes, 2020; Penn et al., 2017; Schoumans 

et al., 2014). These mitigation measures should be cost-efficient and make no or little use of 

valuable arable land to be readily accepted by farmers. Iron-coated sand (ICS) is a phosphate 

(PO4) adsorbing material, which is readily available as a by-product of drinking water 

production (Chardon et al., 2012; Sharma et al., 2002; Van Beek et al., 2020) and can be placed 

around tile drains or in edge-of-field filters to remove PO4 taking no extra space (Chardon et 

al., 2021; Groenenberg et al., 2013; Lambert et al., 2020; Vandermoere et al., 2018). The iron 

(Fe) in the ICS coating is formed around sand particles at the top of rapid sand filters when 

they remove the suspended Fe (hydr)oxides that are formed upon the aeration of anoxic Fe 

(II)-containing groundwater or after the addition of Fe salts to remove organic matter. ICS 

combines favorable adsorption properties with a high hydraulic conductivity. These 

properties together with its abundant availability at a low cost make ICS a suitable material 

for large-scale PO4 removing filters (Chardon et al., 2012; Vandermoere et al., 2018).   

The major concern about the use of ICS filters below groundwater level is that the reductive 

dissolution or the reductive transformation of Fe (hydr)oxides over time may eventually lead 

to the release of previously retained PO4. When drains are below the groundwater level, the 

oxygen supply is limited. The absence of oxygen and the presence of dissolved organic matter 

can enable anaerobic dissimilation, in which microorganisms use nitrate (NO3), manganese 

(Mn) and Fe (hydr)oxides, sulfate (SO4), and/or CO2 as terminal electron acceptors. The redox 

sensitivity of Fe has been identified as the primary reason for the mobilization of PO4 in 

natural environments under suboxic or anoxic conditions (Schroth et al., 2015; Thamdrup, 

2000; Young & Ross, 2001). In addition, previously adsorbed or co-precipitated PO4 may be 

released when amorphous Fe (III)-(hydr)oxides continue to polymerize or transform into 
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more crystalline forms such as goethite, possibly catalyzed by dissolved Fe (II) (Kraal et al., 

2019; Pedersen et al., 2005; Senn et al., 2017). On the other hand, at the onset of Fe 

reduction, PO4 release may be compensated by re-adsorption onto Fe (hydr)oxides that have 

not been reduced yet or by uptake into transformation products such as vivianite or mixed-

valence Fe (II/III) oxides (Baken et al., 2016; Borch & Fendorf, 2008; Heiberg et al., 2012; Szilas 

et al., 1998; Van der Grift et al., 2016). 

Groenenberg et al. (2013) and Chardon et al. (2021) performed a long-term experiment on 

the PO4 removing efficiency of ICS enveloped tile drains in a flower-bulb field in the 

Netherlands. The flower-bulb area is characterized by intensive agriculture, calcareous sandy 

soils with low P binding capacity, and P- and Fe (II)-rich seepage (Griffioen, 1994). In Chardon 

et al. (2021), after 26 months, higher Fe levels were found in the effluent of the ICS enveloped 

drains than in reference drains which indicated that microbial metal reduction was occurring. 

During the first 26 months of operation, Mn concentrations were high in the effluent of ICS 

enveloped drains. Mn (hydr)oxides are energetically more favorable as electron acceptors 

than Fe (III)-(hydr)oxides. Mn (hydr)oxides reduction may occur by microbial respiration of 

Mn (IV) or by abiotic reduction of Mn (IV) by Fe (II) (Postma & Appelo, 2000). The Fe (II) may 

be produced by microbial respiration in the filter or be already present in the groundwater. 

Mn composed about 0.4 % of the dry weight in most ICS (Groenenberg et al., 2013; Sharma 

et al., 2002). Despite ongoing Fe reduction and dissolution of Fe (III)-(hydr)oxides, the ICS 

enveloped tile drains still removed on average 93% of the dissolved P after 54 months of 

operation. These results suggested that (i) the rates of Fe reduction in the ICS filter depended 

on the rates of organic matter oxidation and the availability of electron acceptors and (ii) the 

onset of Fe reduction did not necessarily cause the release of PO4 or loss of PO4 removal 

efficiency. 

The objective of this study was to expand earlier field observations with new field sites and 

well-controlled laboratory tests to better constrain the effect of emerging reducing 

conditions on the performance of ICS in filter systems used to reduce the PO4 export from 

agricultural areas.  For this, we (i) investigated two sites in the flower-bulb growing area of 

the Netherlands where ICS-enveloped drains have been installed since 2018 for PO4 removal 

to assess whether simultaneous metal reduction and PO4 adsorption occurred and (ii) 

performed microcosm experiments to mimic the onset of microbially-mediated reduction of 
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ICS in drainage water by varying the intensity of reduction though controlling the oxygen 

availability and the concentration of degradable organic matter. The findings of this research 

provide a better understanding of the behavior of ICS under reducing conditions. This is 

relevant for the implementation of ICS filters previous research mainly focused on the 

adsorption capacity of the ICS and not on its stability under reducing conditions.   

4.3 Materials and Methods 

Field sites 

Two sites in the flower-bulb growing region of the Netherlands were investigated. The region 

has poor sandy soils and the farmers add a mix of compost and straw as fertilizer which are 

sources of PO4 and organic matter, these conditions combined result in a high risk for P 

leaching. In the two investigated sites ICS enveloped drains were constructed in 2018 to 

reduce the PO4 loads to surface waters. ICS was placed around the drains following the 

previous experience by Groenenberg et al. (2013) and a pilot study by Buijert et al. (2015) 

where the ICS around drains performed better than other two end-of-pipe filters. After the 

construction of the systems used in this study successful end-of-pipe filters were reported by 

Lambert et al. (2020) and Vandermoere et al. (2018). If there is space and enough hydraulic 

head available in the ditch, end-of-pipe filters offer the advantage of being easier to replace 

with new material and the redox conditions may be less extreme. Field A is located in 

Noordwijkerhout (52o15’52’’N; 4o30’25’’W) and Field B in Vogelenzang (52o19’44’’N; 

4o34’52’’ W). The total area drained in Field A is 7 ha and in Field B 12 ha. In both fields, about 

0.015 m3 of ICS were added per linear meter of drain (~ 26.5 kg ICS/m) without mechanical 

packing. The drains were constructed every 10 m, placed 90 cm below surface, and the 

groundwater level is kept at around 60 cm. The drains are connected to a main drain that 

discharges into a pumping station with a floater-activated pump that maintains the 

groundwater level constant by discharging into a ditch. The average annual rainfall between 

2019 and 2021 was about 860 mm (Royal Netherlands Meteorological Institute, 2022). The 

drains remove excess infiltrating rainwater and upwelling groundwater. The estimated 

groundwater seepage in field A is between 0.10 and 1.0 mm/day and in field B it is between 

0.10 and 0.25 mm/day (Janssen et al., 2020). In the summer, evapotranspiration is higher 

than precipitation and there is no need to continuously pump water out of the field, instead, 
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the drains are used for irrigation, the level in the ditch is elevated and oxic water infiltrates 

from the ditch into the field. Unlike the field studied by Groenenberg et al. (2013) and 

Chardon et al. (2021) where water flowed freely to the ditch, fields A and B use pumps to 

keep the groundwater levels constant. A video of the construction of the ICS enveloped drains 

is included in the supplement.  

To investigate the relationship between redox conditions and P retention at the field scale, 

fields A and B were sampled 4 times, from June 2019 to October 2020. Each time, a 

piezometer standpipe with a perforated bottom covered with a cloth filter was used to take 

one groundwater sample in the middle of the field 60 to 100 cm below ground level. A second 

sample was taken from the outflow of the main drain. Samples were not taken during summer 

since water was not flowing out of the drains. The samples were filtered (0.45 μm) and total 

dissolved phosphorus (TDP), Fe, Mn, NO3, and ammonium (NH4) were measured. The 

oxidation-reduction potential (ORP) and pH were measured on-site with a sensor (GMH3511, 

Geisinger) in a flow-through system. Dissolved organic carbon (DOC) was measured with the 

combustion catalytic oxidation method (TOC-V, Shimadzu). Shallow groundwater can be 

redox stratified and not be representative of the composition of drainage water entering the 

drains. Therefore, in August 2021 a gas vapor probe (GVP, Kit w/ DeWALT D25600K Hammer 

Drill, AMS) was used to make a depth-concentration profile in the groundwater below the 

drains. A GVP has a metal tip with a filter and extensions that are drilled in the soil to take 

water samples at precise depths. Samples were taken about every 30 cm from 100 cm to 380 

cm depth and filtered (0.45 μm) into a pre-acidified tube on-site to measure TDP, Fe, and Mn.  

Laboratory experiment 

Starting materials 

The groundwater used for microcosms experiments was collected from a third field, located 

in Noordwijkerhout (52o15’38’’; 4o28’46’’). This field is 1000 m apart from field A and has 

similar soil and flower production characteristics but does not have ICS filters around the 

drains. The groundwater composition, before starting the experiment and after being stored 

for one week in the dark at 4 oC under oxic conditions, was: 19.5 mg/L of DOC, 0 mg/L acetate, 

8.3 mg-P/L TDP, 10.6 mg-N/L NH4, 0.9 mg-N/L NO3, 3.4 mg-S/L SO4, 65.2 mg/L Ca, 0.09 mg/L 
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Mn, and 0.03 mg/L Fe. We used the same analytical methods as for the other groundwater 

samples. 

The ICS used for the microcosms and the field filters is a by-product of groundwater iron 

removal by aeration during drinking water production. Both ICS were obtained from 

AquaMinerals BV (https://aquaminerals.com/en/), a company that develops sustainable 

chains for by-products of the water treatment process. Because the material from the batch 

used in the construction of the ICS enveloped drains was no longer available, the ICS used 

was from a different batch. The ICS used for the microcosms was air-dried and stored in the 

dark with no additional washing or pretreatment and characterized by total extraction, 

scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDX), and x-

ray absorption spectroscopy (XAS). It contained on average 127.0 mg/g Fe, 9.4 mg/g Mn, 0.5 

mg/g S, 9.6 mg/g Ca, and 0.9 mg/g P (± 0.1 mg/g standard deviation) implying that the molar 

P/Fe ratio of the fresh ICS was about ~ 0.013. The grain size distribution of the ICS batch 

received from Aquaminerals was D10, 0.46 mm and D60, 2.11 mm. The maximum porosity was 

0.50 and the minimum was 0.39. The saturated hydraulic conductivity at the lowest porosity 

was 5.5 x10-3 cm/s and the bulk density was 1770 kg/m3. As for the maximum P adsorption 

capacity, Chardon et al. (2012) calculated 18.7 mg/g Fe for iron by-products obtained from 

drinking water treatment plants in the Netherlands, equivalent to a 0.10 P/Fe molar ratio. 

Microcosm experiments 

In the microcosm experiments, we aimed to capture the onset of weakly, moderately, and 

strongly reducing conditions and to have similar P concentrations and P loadings as in the 

field setting. The initial TDP concentration of 8.3 mg-P/L is close to the highest values we have 

measured in the field. We decided not to pre-load the ICS with P. Chardon et al. (2021) 

measured with total extractions that the P/Fe molar ratio of the ICS in the field had only 

marginally increased from 0.030 to 0.033 after 59 months of operation. That is, the dominant 

P pool of ICS used in the field was still the P inherited from production and the additionally 

adsorbed P represented only a minor fraction. The P originally present in the ICS is likely on 

the inside of the coating and the freshly adsorbed P on the outside of the coating.  Therefore, 

we assume that freshly adsorbed P is most prone to be released under reducing conditions. 

https://aquaminerals.com/en/
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Consequently, we used groundwater with relatively high TDP concentration to create freshly 

adsorbed P in our experiments.  

The intensity of reduction in the microcosms was modulated by introducing acetate as a 

carbon and electron source and by varying the availability of dioxygen (O2). This allowed us 

to investigate the fate of PO4 partitioning in the ICS at different rates of microbial respiration 

in the presence of alternative electron acceptors to Fe (hydr)oxides such as O2, NO3, Mn 

(hydr)oxides, and SO4. Four different treatments were investigated:  

i. Strongly reducing conditions were introduced by closing the bottles, replacing the 

headspace with 95% N2 and 5% CO2, and stimulating microbial respiration by adding 

acetate as an electron donor.  

ii. Moderately reducing conditions were introduced by allowing the resupply of O2 via 

diffusion through the headspace that was kept unaltered with atmospheric 

composition and adding acetate as an electron donor.  

iii. Weakly reducing conditions were introduced by replacing the headspace with 95% 

N2 and 5% CO2 and omitting the addition of acetate. The same amount of deionized 

anoxic water as from the acetate stock solution was added to maintain an equal 

dilution as in the other treatments. The DOC present in the groundwater was the 

only available electron donor.   

iv. Abiotic controls were autoclaved (20 minutes, 121 oC) on day 1 to prevent 

microbiologically induced electron transfer. The headspace was replaced with 95% 

N2 and 5% CO2, and acetate was added.  

Each treatment was done in triplicate in 250 mL glass bottles with 30 g of ICS and 80 mL of 

groundwater. The groundwater was flushed with CO2 containing anoxic gas (95% N2 and 5% 

CO2) to use the carbonate system as a pH buffer. This was done for all treatments, including 

the one with air in the headspace, to achieve a comparable starting pH. Immediately before 

sealing the bottles the pH was measured with a semi-microprobe (877 Metrohm Titrino) and 

was 6.8 ± 0.3. After the bottles were sealed the pH was checked by placing one drop on pH 

paper. Only small pH differences were observed after acetate addition. The bottles were 

sealed with butyl rubber stoppers and incubated horizontally in the dark for 45 days at 20 ± 

1oC with no mechanical shaking beside the movement introduced by sampling. The 
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temperature chosen was higher than the measured field temperatures and conservative with 

respect to the extent of microbial reduction in the field.  

To represent the onset of the different reducing conditions, enough acetate was added to 

stoichiometrically reduce one-third of the Fe in the ICS if the entire acetate was respired using 

Fe (III) as an electron acceptor. The acetate was introduced by injecting 3 mL of a 0.95 mol/L 

sodium acetate solution, giving a final acetate concentration of 2.27 g/L (2.88 mmol) in the 

corresponding bottles. On day 10 when the acetate was added, the initially present TDP was 

largely adsorbed by the ICS (corresponding to a molar Pads/Fe of ~ 0.00035) and residual TDP 

was below 0.006 ± 0.003 mg-P/L. The P originally present in the ICS was still the most 

important fraction (P0/Fe of ~ 0.013). 

The bottles were sampled three times per week. Aqueous samples were taken with a needle 

(0.5x25 mm) and a syringe. Before sampling the syringe was prefilled with the same gas as in 

the headspace of the bottles and a volume of 2.5 mL of gas was injected to maintain the 

pressure in the bottles and avoid O2 intrusion. The samples were directly filtered (0.45 μm) 

and 1 mL was placed on a 2 mL tube (Eppendorf) containing 100 μL of nitric acid (14 M) for 

photometric measurements. On three occasions, an extra 1 mL sample without acid was 

taken for IC measurements. On day 31, additional P was added to a concentration of 1.00 ± 

0.05 mg-P/L to all the bottles to assess the adsorption after the ICS has been subjected to 

microbial reduction, and microbial activity is expected to have declined. 

Analytical techniques 

Dissolved Fe (II) and total dissolved Fe were determined photometrically with an acetate 

buffered phenanthroline solution at 510 nm (Saywell & Cunningham, 1971). For total 

dissolved Fe, the samples were pre-reduced with hydroxylammonium chloride. Total 

dissolved Mn was determined photometrically with hydroxylamine, formaldehyde, and 

ammonium hydroxide, at 450 nm (Brewer & Spencer, 1969). TDP was measured 

photometrically at 880 nm after 30 minutes of incubation with ammonium heptamolybdate 

solution acidified with sulfuric acid and freshly added ascorbic acid (Murphy & Riley, 1962). 

Acetate, NH4, Ca, NO3, and SO4 were measured in non-acidified filtered samples with IC (ICS-

6000, Thermo Scientific). The ICS-6000 has two columns to perform anion and cation analysis 

at 30 and 60 oC, respectively. The equipment has an autosampler and eluent generator that 
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uses a standard potassium hydroxide solution for cations and a meta-sulfuric acid solution for 

anions together with freshly produced MiliQ water (Advantage, A10, Merk). 

For the total extraction the ICS was ground using an agate mortar, 0.125 g of sample was 

weighed into a vessel, and 2.5 ml of a mixture of HClO4 (72%) and HNO3 (65%) with a 3:2 

volume ratio and 2.5 mL HF (48%) were added. After being left overnight at 90 oC, the vessel 

was heated at 140 oC for 4 hours to evaporate the liquids. Then 25 mL of HNO3 were added 

and the samples were left once again overnight at 90 oC. After filtration (0.45 μm) the solution 

was analyzed with ICP-OES (Avio 500, Perkin-Elmer). The extraction was done in duplicate.  

XAS was used to characterize the Fe in the ICS before and after the different treatments. To 

obtain samples with an edge-step of around unity in transmission spectra, 10 mg of ICS were 

air-dried, ground, mixed with 40 g of cellulose, and pressed into 7-mm diameter pellets. To 

prevent oxidation artifacts during sample preparation, all manipulations were performed in 

a glovebox. For storage and transport, the pellets were placed in sealed aluminum bags under 

an inert N2 atmosphere. The fresh ICS was measured at the SuperXAS beamline at the Swiss 

Light Source (SLS, Paul Scherer Institute, Villingen, Switzerland) at room temperature. The 

treated samples were measured at the XAS beamline at the KIT Light Source at the Karlsruhe 

Institute of Technology (KIT; Germany) under vacuum. Based on a preliminary inspection of 

the sample spectra, the following reference spectra were included (i) silicate-containing 

ferrihydrite (Fh-Si) formed by the oxidation of Fe(II) in bicarbonate-buffered silicate-

containing synthetic groundwater, (ii) 2-line ferrihydrite (2L-Fh) synthesized by the forced 

hydrolysis of a concentrated ferric iron solution (Schwertmann & Cornell, 2000) (both spectra 

from (Senn et al., 2017)) and (iii) mackinawite (FeS; spectrum kindly provided by Mingkai Ma, 

Utrecht University). For data extraction and evaluation by linear combination fitting (LCF), the 

software code Athena was used (Ravel & Newville, 2005). 

SEM-EDX was used to observe the ICS grains before and after the different microcosm 

treatments. The ICS grains were embedded in resin and polished to investigate cross-sections 

of the Fe coating. Samples were mounted directly on 1.25 cm aluminum stubs using double-

sided carbon adhesive stickers. No platinum coating layer was used as it can interfere with P 

detection. Secondary electron and backscattered electron images were acquired on a Zeiss 

EVO 15 SEM, using the SmartSEM user interface (v 6.06). Qualitative (or semi-quantitative) 
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chemical compositions were obtained using a Bruker XFlash EDS system (Esprit v. 2.1). The 

electric high tension (EHT), scale, and working distance are indicated on the images.  

4.4 Results 

Field results 

The composition of the shallow groundwater varied considerably between the four sampling 

campaigns (Table 1). TDP was consistently lower in the drain outflow than in the shallow 

groundwater at all sampling dates. In contrast, Fe and Mn concentrations were higher in the 

drain outlet compared to in the shallow groundwater at all sampling dates, except for 14 

October 2020. The influence of the deeper groundwater on the drained water can be seen 

for example in the NH4 concentrations (Table and Figure 4-1). In the deep groundwater, Fe 

and Mn concentrations showed the general tendency to increase with depth and were higher 

than in the shallow groundwater at both field sites (Figure 4-1). The TDP concentrations were 

higher in the deep groundwater in field A than in B and the TDP removal calculated taking the 

shallow groundwater as reference was lower in A than in B. 

 

Figure 4-1. Concentration profiles of dissolved (<0.45 μm) Fe, Mn, NH4, and TDP in the 

groundwater below the drains at fields A and B. The groundwater level is at about -60 cm 

depth, the drains are installed at around -90 cm depth. Notice the different scales on the x-
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axis. The clay and sand were classified on site while making the profiles based on the 

plasticity of the soil. 
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Table 4-1 Concentrations in the shallow groundwater above ICS enveloped drains, 60 to 100 cm below the surface, and in the drain outflow in 

Fields A and B of dissolved (0.45 μm) Fe, Mn, TDP, DOC, EC, ORP, NO3, and NH4.  

 
Field A shallow groundwater Field A drain outflow 

Date (d-m-y) 11-Jun-19 9-Dec-19 7-Feb-20 14-Oct-20 11-Jun-19 9-Dec-19 7-Feb-20 14-Oct-20 

Fe (mg/L) 0.03 0.02 0.04 0.95 0.03 0.11 1.1 0.05 

Mn (mg/L) 0.8 1.4 1.1 1.6 3.9 2.4 2.6 5.0 

TDP (mg-P/L) 0.68 7.1 3.2 2.0 0.34 3.6 1.2 0.4 

TDP retention (%)*     50 50 63 80 

NO3 (mg-N/L) <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 

NH4 (mg-N/L) 0.9 4.0 1.3 2.1 3.2 4.9 4.9 3.9 

DOC (mg/L) 15.7 19.1 11.5 24.4 15.4 20.6 15.3 20.1 

EC (μS/cm) 1700 1300 1100 1500 1200 1100 1000 1200 

Temp (oC) 
  

5 12.7 
  

6 13 

pH 
  

7.1 6.9 
  

7 7.2 

ORP (mV) 
  

-160 -194 
  

-96 95 
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Field B shallow groundwater Field B drain outflow 

Date (d-m-y) 11-Jun-19 9-Dec-19 7-Feb-20 14-Oct-20 11-Jun-19 9-Dec-19 7-Feb-20 14-Oct-20 

Fe (mg/L) 0.05 0.04 0.44 0.06 0.05 0.71 1.3 0.24 

Mn (mg/L) 0.1 0.4 0.2 0.6 1.2 1.4 1.1 1.4 

TDP (mg-P/L) 2.2 4.0 4.3 3.7 0.34 0.41 0.38 0.32 

TDP retention (%)*     85 90 91 91 

NO3 (mg-N/L) 4.5 0.09 <0.02 2.6 <0.02 <0.02 <0.02 <0.02 

NH4 (mg-N/L) <0.04 0.08 0.23 0.08 1.8 1.8 1.6 1.6 

DOC (mg/L) 23.2 31.6 26.2 28.9 15.0 20.1 15.7 17.2 

EC (μS/cm) 830 850 710 950 950 1000 910 940 

Temp (oC) 
  

5 13.5 
  

6 13.4 

pH 
  

7 6.8 
  

7 7.2 

ORP (mV) 
  

70 176 
  

-105 -114 

*TDP retention (%) = 
𝑻𝑫𝑷𝒔𝒉𝒂𝒍𝒍𝒐𝒘 𝒈𝒓𝒐𝒖𝒏𝒅𝒘𝒂𝒕𝒆𝒓−𝑻𝑫𝑷𝒅𝒓𝒂𝒊𝒏 𝒐𝒖𝒕𝒇𝒍𝒐𝒘

𝑻𝑫𝑷𝒔𝒉𝒂𝒍𝒍𝒐𝒘 𝒈𝒓𝒐𝒖𝒏𝒅𝒘𝒂𝒕𝒆𝒓   
∙ 𝟏𝟎𝟎
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Dynamics of solution composition in microcosm experiments 

Changes in dissolved concentrations in the four different microcosms are shown in Figure 4-

2. The addition of acetate induced microbially mediated metal reduction. Mn concentrations 

peaked 2-4 days after acetate addition increasing from 0.09 mg/L to 24.8 ± 2.0 mg/L and 10.3 

± 1.7 mg/L under strongly (no O2) and moderately (with O2 diffusion) reducing conditions, 

respectively. Only under strongly reducing conditions, Fe concentrations peaked 6 days after 

acetate addition around 5.50 ± 0.59 mg/L and the color of the ICS changed from 

orange/brown to black (Figure S2).  The presence of DOC alone was not enough to induce an 

increase in Fe concentrations. Under weakly reducing conditions (only DOC was available as 

electron donor) the Mn concentration increased slightly to 2.9 ± 0.16 mg/L and the decrease 

was not as pronounced as in the treatments with acetate addition. In the abiotic control, Mn 

concentrations increased abruptly on day 2 (after the bottles were autoclaved) to values 

around 9.7 ± 0.6 mg/L and stayed constant afterward throughout the experiment. The 

increase in Mn concentration was possibly caused by abiotic, thermally induced reduction of 

Mn oxides during autoclavation and possibly followed by disproportionation of Mn (III).  

In all treatments, after PO4 adsorption onto the ICS, the SO4 concentration increased from 3.4 

to 9.8 ± 2.0 mg/L S. This was possibly caused by ligand exchange between PO4 and SO4 ions 

on adsorption sites.  Under strongly reducing conditions, the SO4 concentrations eventually 

decreased to 2.6 ± 0.6 mg/L S after 45 days, indicating microbial SO4 reduction. No P release 

was measured in any of the treatments. The P concentrations at the end of the experiment 

and after 1.00 ± 0.05 mg-P/L were added on day 31 were 0.09 ± 0.03 mg-P/L in strongly 

reducing conditions, 0.005 ± 0.02 mg-P/L in moderately reducing conditions, and 0.003 ± 

0.001 mg-P/L in the weakly reducing conditions and in the autoclaved control.  
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Figure 4-1. Dissolved (<0.45 um) concentrations of Fe (II), total Fe and Mn, and TDP in the 

microcosm experiments with ICS in groundwater at varying reducing conditions. In the 

bottles with acetate, 2.27 g/L was added on day 10. In the abiotic control, the bottles were 

autoclaved on day 1. The points are the mean and the error bars indicate the standard 

deviation of three replicates.  
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Ca, NH4 and NO3 concentrations decreased at the end of the experiments, in the microcosms 

under strongly and moderately reducing conditions. Ca decreased from 65.2 mg/L to 8.50 ± 

0.78 mg/L and 8.00 ± 0.28 mg/L, respectively. In both treatments, NH4 and NO3 were 

consumed. Under strongly reducing conditions both dropped to below detection (<0.02 mg-

N/L) and under moderately reducing conditions NH4 decreased to 1.8 ± 0.1 mg-N/L and NO3 

to 0.02 ± 0.01 mg-N/L. In both treatments, all acetate was consumed. Under weakly reducing 

conditions, the final NH4 was approximately half of the initial concentration, 5.07 ± 0.08 mg-

N/L, and NO3 was 0.02 ± 0.01 mg-N/L. In the abiotic control, the acetate was not consumed, 

and NH4 and NO3 did not change. Water chemistry data is available in the supplement (Table 

S2).  

Characterization of solids from the microcosm experiment 

Fe K-edge XAS was used to assess the speciation of Fe in the fresh and incubated ICS (see 

supplement; Figure S1). The Fe in the fresh ICS coatings was mainly contained in silicate-

containing ferrihydrite, consistent with its accumulation by oxidation of Fe (II) in silicate-

containing aerated groundwater (Senn et al., 2015), and in line with earlier XAS 

characterization results for Fe-sludge and ICS from drinking water treatment (Chardon et al., 

2021; Koopmans et al., 2020). Three of the reacted sample spectra closely matched the 

spectrum of the unreacted material, but one spectrum showed a spectral difference that was 

attributed to a contribution of 7% (XANES) to 13% (EXAFS) FeS based on LCF analysis. 

Although the four incubated samples were misplaced during pellet preparation or sample 

mounting in the glove box, this LCF result was attributed to the strongly reducing treatment 

(acetate, anoxic) which in contrast to the others showed clear signs of sulfidation, including a 

decrease in SO4 concentration during incubation and a change in color to black. The similarity 

of the Fe K-edge XAS spectra of the other three incubated samples to the spectrum of the 

fresh material indicating that silicate-containing ferrihydrite had not detectably transformed 

during incubation under less reducing conditions in the absence of sulfide formation. This 

observation was in line with earlier results suggesting that ICS deployed in a field did not 

detectably transform over 14 to 59 months (Chardon et al., 2021). 

Figure 4-3 shows the SEM images of the ICS. The ICS grains are larger than 1 mm in diameter, 

have a sand core, and a 100 μm to 500 μm coating composed of iron (hydr)oxides with a 1:3 
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average Fe:O ratio in a layered structure and regions of higher porosity and Mn contents 

(Figures 4-3-a and -b). The P:Fe ratio measured with EDX was 0.015 which closely matches 

the total extraction results of the original ICS. After the strongly reducing treatment, the grain 

surface transformed into a curved amorphous pattern (Figure 4-3-e). Although S could not be 

detected with EDX, other researchers detected the same pattern when ferrihydrite was 

transformed into FeS (Akhtar et al., 2012; Csákberényi-Malasics et al., 2012; Zhang et al., 

2021; Zou et al., 2018). In the samples from strongly and moderately reducing microcosms 

precipitates with similar C:O:Ca:Mn ratios were seen in suspension close to the grains and 

inside macropores (Figure 4-3-c, 4-3-d, S6, and S7). The average C:O:Ca:Mn molar ratio 

obtained with EDX point measurements was 20:65:13:2. No major differences in the coating 

characteristics were detected in the abiotic control and after the weakly reducing treatment. 

In the abiotic control, the autoclavation could potentially modify the structure of the iron 

(hydr)oxides, nevertheless, this sample looked similar to the original material under SEM-EDX 

and XAS suggesting no major structural transformation occurred. 
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Figure 4-2 SEM images of ICS grains before treatment and after incubation in microcosms 

under a range of reducing conditions. Scale bars are indicated on each image. Most of the 

cracks that can be observed were most likely produced during the vacuum step at the SEM-

EDX. 



 

Chapter 4-129 

4.5 Discussion 

Fe and Mn reduction in ICS at the field sites and P retention 

Removal of dissolved P from the drainage water by the ICS was indicated by consistently lower 

TDP concentrations in the drain outflow than in the groundwater at the same sampling event. 

Taking the concentrations in the shallow groundwater as a reference, the TDP removal 

efficiency varied between 50-80% and 85-91% in fields A and B, respectively. One of the 

reasons for the lower removal in field A may be the underestimation of the drainage water 

concentrations as the deeper groundwater had very high P concentrations. Although the field 

data suggests a significant TDP removal, it appears to be less effective than the TP removal 

observed by Chardon et al. (2021) who reported a 93% efficiency. Chardon et al. (2012) and  

Lambert et al. (2020) observed lower TDP removal efficiencies at higher flow velocities and 

at higher TDP inflow concentrations in ICS. The flow velocity was 60 cm/d in Chardon et al. 

(2021) while it was 180 cm/d at our sites. In field A, the lowest outflow TDP concentrations 

and highest removal efficiency coincided with Mn dissolution, suggesting TDP removal was 

not affected by metal reduction.  

On most occasions, dissolved Fe concentrations were higher in the drain outflow than in the 

shallow groundwater but not higher than in deeper groundwater. For example, on February 

2020, dissolved Fe concentrations were high in the drain outflow. This could be explained 

either by a larger contribution of deep groundwater in the drained water or by Fe reduction 

from the ICS. Therefore, without constraining the relative contribution of drainage water with 

different compositions to the drain outflow it cannot be unambiguously concluded that Fe 

concentrations increased while flowing through the ICS. Although direct evidence for Fe 

reduction in the ICS layers at the two field sites is missing, NO3 concentrations were 

consistently below the detection limit in the drain outflow, NH4 concentrations were higher 

in the outflow than in the shallow groundwater, and there was a constant supply of electron 

donors in the form of DOC. Hence, in the absence of oxygen and nitrate, it is likely that the 

abundant Fe and Mn (hydr)oxides were used in the ICS layers as terminal electron acceptors 

by dissimilatory metal-reducing organisms. The reduction of Fe (hydr)oxides may lead to 

transformations in the solid phase and does not necessarily lead to an increase in dissolved 
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Fe concentrations. The reduced Fe (II) can be effectively adsorbed by Fe (hydr)oxides or form 

secondary minerals such as magnetite (Fe3O4), siderite (FeCO3), or iron sulfides.  

Because it was difficult to quantify the importance of the metal reduction from the field data, 

we made an estimation of the metal reduction based on the stoichiometry of the reaction 

with DOC. When 12 g (1 mol) of C are oxidized going from C(0) to C(IV) oxidation state, 4 

electrons are transferred to reduce 4 mol Fe (III) to Fe (II).  As the drains are 10 m apart from 

each other, each linear meter of pipe drains 10 m2. We assumed that 70 % of the precipitation 

surplus was transported through the drains obtaining an annual flow of 3215 L/m/year ((860-

450+36.5) mm x 10 m2 x 70 %). Assuming the DOC concentration was 19.5 mg/L, the average 

TDP concentration in the drained water was 4.0 mg-P/L, 73 % TDP was retained, that there 

were originally 26.5 kg-Fe per linear meter of drain, and all reduced Fe (II) was removed from 

the filter. It is possible to estimate the lifespan in years of the ICS filter before a 0.10 P/Fe 

molar ratio is reached with the following formula: 

𝑃/𝐹𝑒(𝑛𝑦𝑒𝑎𝑟)= 𝑃/𝐹𝑒0  +
𝑛𝑦𝑒𝑎𝑟  ∙ 0.3 𝑚𝑜𝑙 𝑃/𝑦𝑒𝑎𝑟/𝑚

 474 𝑚𝑜𝑙 𝐹𝑒/𝑚 − %𝐷𝑂𝐶 ∙ 𝑛𝑦𝑒𝑎𝑟  ∙ 20 𝑚𝑜𝑙𝐹𝑒/𝑦𝑒𝑎𝑟/𝑚
< 0.10 

Where: 𝑃/𝐹𝑒0 is the original molar ration in the ICS 0.013, n is the filter lifespan in years, 

%𝐷𝑂𝐶  is the percentage of DOC oxidized in the filter, 0.3 mol P/year/m is the P removal load 

per year, 474 mol Fe/m is the original amount of Fe, and 20 mol Fe/year/m is how much Fe 

we assume is lost per year.  

We supposed two scenarios: one in which 100 % of the DOC was respired using Fe (III)-

(hydr)oxides as electron acceptors (which is not realistic, as part of the DOC is expected to be 

slowly or not degrading), and a more realistic case in which 10% of the DOC was respired. For 

these cases, respectively 4 and 0.4 % of the iron would be reduced annually and a 0.10 P/Fe 

(III) molar ratio would be reached after 20 and 80 years. These results are positive as drainage 

systems are traditionally designed for a lifespan between 20 and 40 years (Skaggs et al., 1994). 

The remaining question is whether P release can also be expected at the onset of Fe and Mn 

reduction. For that reason, microcosm experiments were used to systematically investigate 

the dependency of P removal on microbially induced redox conditions in ICS. 
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Phosphate release from ICS in microcosms at different reducing 

conditions 

The metal reduction in the microcosms was microbially mediated as no changes occurred in 

the abiotic control after acetate addition. Mn dissolved from ICS in the microcosms with 

moderately and strongly reducing conditions. Fe dissolution only occurred in the microcosm 

with strongly reducing conditions when oxygen was not available and SO4 reduction in the 

water and solid phases occurred. Fe reduction affected the outer layer of the coating, which 

is likely where P was initially adsorbed, and the risk of P release is highest. However, even 

under strongly reducing conditions neither the adsorbed P nor the P originally present in the 

ICS were mobilized into the overlying water in the microcosm experiments. These results are 

in agreement with the observation that P release upon reduction of P-loaded Fe (hydr)oxides 

can be effectively prevented if sufficient sorption sites remain available on unaltered Fe 

(hydr)oxides or secondary Fe minerals (Loeb et al., 2008; Smolders et al., 2017; Young & Ross, 

2001). Our results do not allow us to identify a critical P/Fe ratio or, more specifically, a critical 

P/Fe (III) ratio at which P release cannot be effectively counteracted anymore. Nevertheless, 

considering the presence of silicate in the drainage water, a 0.1 ratio could be used (Hilbrandt 

et al., 2019). Our mass balance calculations point towards a potentially long lifespan before a 

0.1 P/Fe (III) is reached.  

The dynamics of dissolved Fe and Mn concentrations indicate the formation of Fe (II) and Mn 

(II) containing secondary products in the moderately and strongly reducing microcosms. The 

decrease in Mn concentration after an initial increase can be attributed to the formation of 

carbonate precipitates, possibly in the form of rhodochrosite (MnCO3) or as a solid solution 

with calcium carbonates. The newly formed carbonates were not part of the coating but 

formed precipitates in suspension or inside macropores. In contrast to Mn (II), Fe (II) was not 

enriched in carbonates but formed FeS, which remained associated with the Fe coating. 

Neither the carbonates nor FeS showed visible P enrichment in the SEM-EDX analyses, 

implying that the formation of secondary minerals did not significantly contribute to the 

retention of solid-bound P. Nevertheless, the formation of precipitates and microbial biomass 

could affect the performance of ICS filters by reducing the hydraulic conductivity and cause 

clogging. For instance, Vandermoere et al., (2018) observed a slight decrease in the hydraulic 

conductivity of ICS filters after 10 weeks of use.  
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A minor FeS fraction formed in the strongly reducing microcosm. Microbial SO4 reduction can 

happen before or simultaneously with Fe (III) reduction. Sulfate-reducing bacteria such as 

Desulfotomaculum spp. use acetate as a carbon source and Fe (III) can be reduced by sulfide 

or by iron-reducing bacteria such as Geobacter spp. that also use acetate as a carbon source 

(Hansel et al., 2015; Islam et al., 2004; Kwon et al., 2016). The acetate added to each bottle 

was 2.85 mmol which, upon oxidation to CO2, should have been enough to reduce one-third 

of the initial metal (hydr)oxides present (22.8 mmol of Fe (III) to Fe (II), or 11.4 mmol of Mn 

(IV) to Mn (II)). Only 0.04 % and 1.54 % of the initially added Fe and Mn, respectively, were 

recovered in reduced form in solution. This suggests that most electrons released by acetate 

reduction were consumed by SO4 reduction or by the formation of solid-bound reduced 

metals. Based on XAS analyses 7 to 13% (corresponding to 4.77 and 8.86 mmol) of the Fe 

transformed into FeS in these microcosms, which accounts for most of the acetate 

consumption (0.57 to 1.05 mmol for Fe (III) reduction and 0.91 to 1.68 mmol SO4 reduction). 

Although these calculations close the electron balance, XAS might be overestimating the FeS 

fraction as it is not consistent with the sulfur mass balance based on the change in dissolved 

SO4. Furthermore, nitrogen was consumed, possibly in processes involving oxidation of NH4 

to N2, NO2
-, or NO3

- by iron-reducing bacteria (Feammox, Zhu et al., 2022), denitrification, and 

assimilation in biomass. Fe was in excess, if all the NH4 was transformed to NO3 and then 

denitrified, this could have reduced 0.38 mmol Fe (0.6%) and consumed a maximum of 0.23 

mmol (8%) of the acetate. Denitrification, generation of elemental hydrogen, or methane are 

potentially additional sinks for electrons.  

Changes in the material were only noted in the outer layer of the coating with SEM, which 

suggests that the access to Fe(III) in deeper layers of the coating was restricted by the small 

micropore sizes and the absence of electron-conducting materials or electron shuttles 

(Bonneville et al., 2006; Lies et al., 2005). The outer layer is expected to be relevant for fast 

removal of dissolved PO4 from the surrounding solution and formation at the ICS surface 

could, hence, limit further adsorption since FeS has a lower sorption capacity than Fe (III)-

(hydr)oxides such as ferrihydrite (Kocar et al., 2010). After PO4 was re-introduced 91% was 

adsorbed in the strongly reducing microcosm while 99% was adsorbed in the other 

microcosms. Therefore, for the moderately and weakly reducing conditions set in this study, 

the reductive pressure introduced was not enough to decrease the fast PO4 sorption capacity 

of Fe (III)-(hydr)oxides. However, after longer exposure to strongly reducing conditions, Fe 
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(III)-(hydr)oxide reduction and the formation of secondary minerals such as FeS could 

eventually become a limiting factor in the in the performance of ICS filters for PO4 retention. 

4.6 Conclusion 

This research aimed to investigate PO4 (im)mobility at the onset of ICS reduction. In the two 

investigated fields, the ICS filters still removed PO4 after 3 years of use while being subject to 

metal-reducing conditions. In the microcosm experiment, a range of treatments mimicked 

the field conditions. For exposure times of 45 days under weakly, moderately, and strongly 

reducing conditions for ICS with a molar P/Fe ratio of 0.013, P was not released even after Fe 

and Mn partial reduction. The P sorption capacity of the ICS and its mineral structure 

remained mostly unchanged after being exposed to moderately and weakly reducing 

conditions. After moderately and strongly reducing conditions we observed the formation of 

manganese calcium carbonate precipitates in suspension. Only under strongly reducing 

conditions, a small percentage of Fe became transformed into iron sulfides in the outer layer 

of the Fe coatings. These secondary products could be detrimental to filters by causing filter 

clogging or by reducing their P sorption capacity.  However, our results and the results from 

earlier work suggest that these detrimental effects only become relevant at operation periods 

substantially longer than periods of up to 5 years tested so far. 
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equations used for stoichiometric calculations, the mass balance of iron losses in the field, 

and tables with water quality results.  
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XAS results  

The X-ray absorption near-edge structure (XANES) and the extended X-ray absorption fine 

structure (EXAFS) spectra of samples and references are shown in Figure S1. The inspection 

of the sample spectra indicated that three reference spectra were required to describe the 

sample spectra by LCF: (i) silicate-containing ferrihydrite (Fh-Si) formed by the oxidation of 

Fe(II) in bicarbonate-buffered silicate-containing synthetic groundwater, (ii) 2-line 

ferrihydrite (2L-Fh) synthesized by the forced hydrolysis of a concentrated ferric iron solution 

(Schwertmann and Cornell, 1991) (both spectra from (Senn et al., 2017)), and (iii) 

mackinawite (FeS; spectrum kindly provided by Mingkai Ma, Utrecht University). Silicate-

containing ferrihydrite exhibits a similar degree of edge-sharing linkage of Fe(III)-octahedra 

but a lower degree of corner-sharing linkage than 2-line ferrihydrite, due to the inhibiting 

effect of Si on corner-sharing Fe(III)-octahedra linkage. The two ferrihydrite references thus 

served to describe ferrihydrite with a level of Fe(III)-polymerization slightly varying from the 

reference materials. Indeed, the spectrum of the fresh unreacted Fe-coated sand closely 

matched the reference spectrum of silicate-containing ferrihydrite obtained by Fe (II) 

oxidation in bicarbonate-buffered solution in the presence of silicate (Senn et al., 2015), 

whereas LCF analysis of both the XANES and EXAFS spectra (Table S1) returned a minor 

contribution for the 2-line ferrihydrite (2L-Fh). This result was in good agreement with XAS 

characterization results for Fe in Fe-sludge and ICS derived from drinking water treatment 

(Chardon et al. 2021; Koopmans et al. 2020)and indicated that Fe in the coatings was 

contained in ferrihydrite with a slightly higher degree of polymerization than the silicate-

containing ferrihydrite (Fh-Si) reference, possibly because of the aging of the coatings over 

the duration of sand used in water treatment. 

Three of the reacted sand samples closely matched the unreacted fresh sand. Nevertheless, 

minor but systematic differences were observed relative to the fresh sand, most notably a 

slight increase of the spectral feature at 7.5 Å-1 (see overlay of spectrum of fresh sand in Figure 

S1). These small differences may point to a slight increase in ferrihydrite polymerization 

during incubation, but for sure indicated that no substantial formation of a more crystalline 

Fe(III)-(hydr)oxide had occurred. The spectrum of the reacted sample 4 more distinctly 

differed from the fresh ICS. LCF analysis of the respective XANES and EXAFS spectra indicated 

that this difference could be described by a contribution of 7% (XANES) to 13% (EXAFS) FeS. 
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Figure S1. XANES and EXAFS spectra of the fresh unreacted Fe-coated sand and of four 

reacted samples in comparison to reference spectra of Fe(II)-derived silicate-containing 

ferrihydrite, of 2-line ferrihydrite and mackinawite (FeS). Red dashed spectra are linear 

reconstructions based on the LCF results listed in Table S1. Green dashed spectra represent 

the spectrum of the fresh unreacted sand. 

Because of the apparent signs of Fe sulfidization in the non-sterile incubation experiment 

with added C source (acetate; anoxic), and because the sample label of the reacted sample 4 

did not match with this treatment, we noted that the reacted samples must have been 

misplaced during pellet preparation or sample mounting in the glove box. Nevertheless, it is 

highly plausible that the spectrum of the reacted sample 4 corresponded to the experiment 

in which Fe sulfidation was inferred from color changes, solution chemistry and microscopy. 

We therefore conclude from the XAS results that in the non-sterile experiment with added 
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acetate, about 10% of the Fe was transformed into FeS during incubation, whereas in the 

sterile control and the experiment without acetate addition, no such transformation occured. 

Table S1. Linear combination fit results for the spectra of fresh unreacted sand and for the 
reacted sample 4. 

 

  

Figure S2. Observable changes in 

incubation: ICS grains in anoxic treatment 

with acetate addition turned black (top). 

Bottles without acetate addition (bottom) 

used as reference. 

 

Figure S3. Observable changes in 

incubation: bottles with Moderately 

reducing addition were less transparent 

and had whitish precipitates (bottom). 

Bottles without acetate addition (top) 

used as reference 

 

Fh-Si 2L-Fh FeS sum r-factor

fresh sand XANES 0.75 0.25 - 1.00 0.0001

EXAFS 0.85 0.13 - 0.99 0.0024

reacted sample 4 XANES 0.58 0.34 0.07 1.00 0.0001

EXAFS 0.61 0.26 0.13 1.00 0.0065
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SEM-EDX 

  

 

 

Figure S4. SEM image of ICS grain cross-section before treatment (left), EDX elemental map 

(right). The sand core is rich in silica, the coating is made of iron (hydr)oxides with 

manganese (hydr)oxides in separated areas. Points V1 and V2 were taken in the sand core 

and point V3 on the coating.  

Sand core 

Coating 

Resin 
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Figure S5. SEM image of ICS grain coating after adsorption and anoxic treatment with 

acetate addition (top-left), EDX elemental map of P(top-right), EDX analysis on a point in 

the high P red zone (bottom). Molar P/Fe ratio of 0.015 is in the range of typical ratios in 

fresh ICS 
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Figure S6. SEM image of ICS grain coating in treatment with Moderately reducing addition 

(top-left), EDX elemental map of Mn and Ca (top-right), EDX analysis on 4 different points 

from the Ca-Mn particles (bottom) 

Resin 

Coating 
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Figure S7. SEM image of ICS grain coating in treatment with Moderately reducing addition 

(left), EDX elemental map of Fe, Mn and, Ca(right), The Ca-Mn particles formed not only on 

the outside of the grain but on macropores or inner areas with originally high Mn.  

Resin 

Coating 

Sand core 
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Grain size distribution of the ICS 

 

Figure S8 Grain size distribution of the ICS 

 

Chemical equations used for stoichiometrically calculations  

Equations 1 and 2 represent the dissolution of Fe and Mn, mediated by microorganisms as 

Geobacter that use acetate as a carbon source and Fe and Mn (hydr)oxides as electron 

acceptors (Islam et al. 2004; Villinski, Saiers, and Conklin 2003). Equations 3 and 4 represent 

Fe (II) re-oxidation by Mn (IV) (Postma and Appelo 2000). Equation 5 represents the 

precipitation of manganese containing calcium carbonates. Equations 6 and 7 represent FeS 

precipitation as microbes reduced sulfate from the coating and groundwater (Van Beek et al. 

2021; Finke, Vandieken, and Jorgensen 2007; Kwon et al. 2016; Zhang et al. 2021). Equation 

8, 9, and 10 represents the possible Feammox reactions (Zhu et al. 2022) and equation 11 

denitrification. 

4 Mn4+  +  CH3COO−  +  4H2O →  Mn2+  +  2HCO3
−  +  9H+   (1) 
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8 Fe3+  +  CH3COO−  +  4 H2O →  8 Fe2+  +  2HCO3
−  +  9H+    (2) 

2Fe2+ + MnO2 + H2O ⇄ 2FeOOH + Mn2+ + 2H+     (3) 

Fe2+ + MnOOH + H2O ⇄ FeOOH + Mn2+      (4) 

7Ca2+ +  8HCO3
− + Mn2+ → Ca7Mn(𝐶𝑂3)8 (𝑠) + 8𝐻+     (5) 

CH3COO– + SO4
2− → 2HCO3 

− + HS–       (6) 

SO4
2− + Fe2+ + 8e− + 8H+ → FeS(s) + 4 H2O        (7) 

3𝐹𝑒2𝑂3 + 2𝑁𝐻4 + 10𝐻+ → 9𝐻2𝑂 + 6𝐹𝑒2+ + 𝑁2     (8) 

3𝐹𝑒2𝑂3 + 𝑁𝐻4 + 10𝐻+ → 7𝐻2𝑂 + 6𝐹𝑒2+ + 𝑁𝑂2
−    (9) 

4𝐹𝑒2𝑂3 + 𝑁𝐻4 + 14𝐻+ → 9𝐻2𝑂 + 8𝐹𝑒2+ + 𝑁𝑂3
−                    (10) 

2𝑁𝑂3
− + 10𝑒− + 12𝐻+ → 𝑁2 + 6𝐻2𝑂                      (11) 

Mass balance of Iron losses in the field per linear meter of ICS 

enveloped drain 

Mass of Iron: each linear meter of drain, has approximately 0.015 m3 of ICS, with a density of 

1770 kg/m3, and an iron content of 0.127 gFe/gICS, we get there are 26.5 kg-Fe/m or 474 mol-

Fe/m.  

Water balance: drains are 10 m apart from each other, therefore each linear meter drains 10 

m2, the estimated early rainfall is 860 mm, the yearly evapotranspiration is 450 mm, and the 

seepage 36.5 mm. Assuming 70 % of the groundwater is transported through the drains and 

the flow direction is vertical through the ICS layer, we get 3125.5 L/m/year.  

Available carbon load: the measured DOC in the groundwater is 19.5 mg/L, not all the carbon 

will react in the drains, some may be recalcitrant organic matter, and some may not have 
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enough time to react. If 100 % of DOC is consumed 61 g-C/m/year are available and if 10 % is 

consumed 6 g-C/m/year.  

Balance: When 12 g (1 mol) of C are oxidized going from C(0) to C(IV) oxidation state, 4 

electrons are transferred to reduce 4 mol Fe (III) to Fe (II). Therefore, if 100 % DOC is oxidized 

20 mol-Fe/m/year are reduced, and if 10 % DOC is oxidized 2 mol-Fe/m/year are reduced. If 

we express it as a percentage of the original mass of iron per meter of drain, we get: 4 % and 

0.4% could be reduced per linear meter per year. 

P removal: From the field measurements, it seems reasonable to assume a P inflow 

concentration of 4.5 mg-P/L and outflow of 1.2 mg-P/L (73 % removal efficiency). If 3125.5 

L/m/year are drained and the removal efficiency does not decrease with time, 10.31 g-

P/m/year (0.3 mol/m/year) would be removed.  

Filter lifespan: It is possible now to estimate when (𝑛𝑦𝑒𝑎𝑟) a 0.10 P/Fe molar ratio would be 

reached if 100 % or 10 % of the DOC is used for iron reduction and the initial P/Fe0 is 0.013.   

𝑃/𝐹𝑒𝑛𝑦𝑒𝑎𝑟= 𝑃/𝐹𝑒0  +
𝑛𝑦𝑒𝑎𝑟  ∙ 0.3𝑚𝑜𝑙𝑃/𝑦𝑒𝑎𝑟/𝑚

474𝑚𝑜𝑙𝐹𝑒/𝑦𝑒𝑎𝑟/𝑚 − %𝐷𝑂𝐶 ∙ 𝑛𝑦𝑒𝑎𝑟  ∙ 20𝑚𝑜𝑙𝐹𝑒/𝑦𝑒𝑎𝑟/𝑚
< 0.10 

If 100 % DOC is used in iron reduction a 0.10 P/Fe molar ratio is reached after 20 years and if 

10 % DOC is used a 0.10 P/Fe molar ratio is reached after 80 years.
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Water quality results 

Table S2. Average of triplicate bottles in different treatments in the microcosm experiment 

Microcosm Day P  
(mg-P/L) 

Fe II 
(mg/L) 

Tot Fe 
(mg/L) 

Mn 
(mg/L) 

Acetate 
(mg/L) 

Ca 
(mg/L) 

SO4  
(mg-S/L) 

Autoclaved control  1 8.31 0.94 1.70 0.92 0 65.24 3.4 

Strongly reducing 1 8.32 0.96 1.72 0.89 0 65.24 3.4 

Weakly reducing 1 8.32 0.91 1.68 0.95 0 65.24 3.4 

Moderately reducing 1 8.31 0.95 1.57 0.98 0 65.24 3.4 

Autoclaved control  2 0.02 0.00 0.00 0.92 24   

Autoclaved control  2 0.02 0.00 0.00 9.58 24   

Strongly reducing 2 0.06 0.00 0.00 0.15 2   

Weakly reducing 2 0.05 0.00 0.00 0.09 1   

Moderately reducing 2 0.17 0.01 0.03 0.02 2   

Autoclaved control  8 0.01 0.13 0.10 8.92 0   

Strongly reducing 8 0.01 0.00 0.00 1.60 0   

Weakly reducing 8 0.02 0.03 0.05 1.58 0   

Moderately reducing 8 0.02 0.00 0.00 0.00 0   

Autoclaved control  10 0.01 0.03 0.00 10.25 2316   

Strongly reducing 10 0.00 0.02 0.13 1.40 2316   

Weakly reducing 10 0.01 0.00 0.00 0.97 0   
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Moderately reducing 10 0.00 0.00 0.00 0.00 2316   

Autoclaved control  13 0.01 0.02 0.02 9.35 507   

Strongly reducing 13 0.01 0.00 0.00 8.63 633   

Weakly reducing 13 0.01 0.00 0.00 2.92 11   

Moderately reducing 13 0.00 0.01 0.04 10.32 550   

Autoclaved control  15 0.02 0.04 0.05 10.90 491   

Strongly reducing 15 0.02 4.10 4.15 24.79 536   

Weakly reducing 15 0.01 0.00 0.04 2.22 0   

Moderately reducing 15 0.01 0.01 0.03 9.45 493   

Autoclaved control  17 0.01 0.03 0.05 10.46 467   

Strongly reducing 17 0.03 5.43 5.49 12.42 463   

Weakly reducing 17 0.01 0.01 0.03 1.96 0   

Moderately reducing 17 0.00 0.07 0.10 5.77 421   

Autoclaved control  17 0.02 0.03 0.05 11.50 447   

Strongly reducing 20 0.03 3.31 3.29 5.69 394   

Weakly reducing 20 0.01 0.01 0.02 1.38 0   

Moderately reducing 20 0.00 0.05 0.19 3.53 373   

Autoclaved control  20 0.01 0.03 0.00 10.79 436   

Strongly reducing 22 0.04 2.61 2.40 3.80 353   

Weakly reducing 22 0.01 0.01 0.01 1.73 0   

Moderately reducing 22 0.00 0.12 0.20 2.73 338   

Autoclaved control  22 0.01 0.03 0.00 10.79 436   
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Strongly reducing 24 0.02 1.80 1.99 3.00 328   

Weakly reducing 24 0.01 0.03 0.09 1.85 0   

Moderately reducing 24 0.01 0.16 0.39 2.23 304   

Autoclaved control  24 0.01 0.04 0.01 10.15 407   

Strongly reducing 27 0.04 1.80 1.80 2.30 315   

Weakly reducing 27 0.01 0.01 0.01 1.83 0   

Moderately reducing 27 0.03 0.24 0.63 1.73 231   

Autoclaved control  27 0.01 0.03 0.03 9.86 383   

Strongly reducing 29 0.03 1.79 1.80 2.21 236   

Weakly reducing 29 0.01 0.00 0.00 1.90 1   

Moderately reducing 29 0.03 0.26 0.58 1.32 176   

Autoclaved control  31 0.11 0.01 0.06 9.52 401 340.1 9.9 

Strongly reducing 31 0.18 1.44 1.45 1.43 264 18.4 7.8 

Weakly reducing 31 0.07 0.16 0.03 1.82 0 144.2 10.4 

Moderately reducing 31 0.11 0.46 0.54 0.90 155 11.3 8.9 

Autoclaved control  36 0.02 0.03 0.05 9.97 367   

Strongly reducing 36 0.06 1.90 1.98 1.96 4   

Weakly reducing 36 0.01 0.59 0.89 1.87 0   

Moderately reducing 36 0.06 0.01 0.23 1.70 0   

Autoclaved control  38 0.01 0.01 0.05 9.09 335   

Strongly reducing 38 0.05 1.47 1.60 1.64 0   

Weakly reducing 38 0.01 0.05 0.06 1.94 0   
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Moderately reducing 38 0.04 0.39 0.55 0.72 0   

Autoclaved control  41 0.01 0.03 0.06 8.65 0   

Strongly reducing 41 0.06 1.47 1.51 1.50 0   

Weakly reducing 41 0.00 0.01 0.04 1.78 0   

Moderately reducing 41 0.03 0.30 0.38 0.57 0   

Autoclaved control  43 0.01 0.00 0.13 7.93 0 231.3 9.7 

Strongly reducing 43 0.06 1.48 1.52 0.86 0 8.50 7.3 

Weakly reducing 43 0.00 0.04 0.08 1.71 0 103.1 9.9 

Moderately reducing 43 0.03 0.38 0.59 0.56 0 7.73 8.8 

Autoclaved control  45 0.01 0.00 0.13 7.93 0 236.0 9.6 

Strongly reducing 45 0.05 1.40 1.40 0.02 0 8.56 7.2 

Weakly reducing 45 0.00 0.04 0.04 1.37 0 115.0 10.3 

Moderately reducing 45 0.03 0.52 0.64 0.10 0 8.02 9.0 

Table S4. PH in microcosms. Day 1 was measured with electrode (877, Mtrohm Titrino) and days 31 and 45 controlled with pH paper (Merk). 

PH Day 1 Day 31 Day 45 

Autoclaved control  6.66 6.5-7 6.5-7 

Strongly reducing 6.67 7.0 7.0 

Moderately reducing 6.68 6.5 6.0 

Weakly reducing 6.80 8.0-8.5 8.0 
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Table S5. Profiles of A and B fields made with GVP. Samples filtered (0.45um) 

Field Depth pH ORP 
(mV) 

Tot Fe 
(mg/L) 

Mn 
(mg/L) 

P  
(mg-P/L) 

P/Fe 
(molar) 

Cl /Br 
ratio 

NO3  
(mg-N/L) 

SO4  
(mg-S/L) 

NH4  
(mg-N/L) 

A -101 7.27 -135 0.1 1.0 11.4 174.0 447.4 0.02 25.9 5.8 

A -124 7.21 -160 0.1 1.5 10.4 157.9 312.7 0.02 18.5 5.4 

A -205 7.2 -150 4.3 2.8 11.2 4.7 191.6 0.02 0.03 12.3 

A -240 6.9 -125 0.4 2.3 10.9 49.7 166.2 0.36 0.03 12.9 

A -265 7 -127 1.2 1.9 12.1 18.9 167.0 0.02 0.03 13.6 

A -300 6.9 -175 8.2 4.2 9.6 2.1 156.8 0.02 0.03 16.1 

B -120 7.76 -55 2.9 1.6 2.5 1.6 367.7 0.0 6.10 1.1 

B -148 7.46 -100 3.7 1.7 2.5 1.2 343.4 0.0 11.3 1.5 

B -181 7.3 -120 4.9 1.6 1.7 0.6 315.0 0.02 12.5 1.2 

B -195 7.4 -75 5.1 2.1 1.7 0.6 312.7 0.0 12.1 1.2 

B -246 7.6 -120 5.5 1.7 1.8 0.6 313.6 0.07 12.3 1.1 

B -275 7.4 -110 5.4 3.0 2.1 0.7 315.6 0.07 12.2 1.0 

B -310 7.3 -120 4.8 1.8 1.8 0.7 311.9 0.02 11.7 1.1 

B -340 7.3 -100 4.8 2.3 1.7 0.6 303.4 0.02 9.9 1.3 

B -372 7.3 -100 4.6 2.0 1.2 0.5 298.2 0.02 9.6 1.4 
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5.1 Abstract  

Iron-coated sand (ICS) is a by-product from drinking water treatment made of sand coated 

with ferric iron (hydr)oxides. It is considered a suitable material for large-scale measures for 

phosphate removal from natural and agricultural waters to prevent eutrophication. Previous 

studies demonstrated that the residence time of water must be very long to reach equilibrium 

partitioning between phosphate and ICS but specifics for application are missing. First, SEM-

EDX images were used to support the conceptual assumption that P adsorption inside the 

coating is a transport-limited process.  Second, a conceptual model of phosphate adsorption 

was proposed considering two types of sites: one type with fast adsorption kinetics and 

reaching equilibrium with the percolating solution, and another type for which adsorption is 

also reversible but described by pseudo-first-order kinetics. The latter is conceived to account 

for transport-limited adsorption in the interior of the coating while the former fraction of 

sites is assumed to be easily accessible and located close to the grain surface. Third, the 

kinetics of phosphate adsorption on ICS were quantitatively determined to describe and 

predict phosphate retention in filters under various flow conditions.  The model was 

calibrated and validated with long-term column experiments, which lasted for 3500 hours to 

approach equilibrium on the slowly reacting sites. The model reproduced the outflowing 

https://doi.org/10.1016/j.jconhyd.2023.104160
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phosphate concentrations: the pronounced increase after a few pore volumes and the slow 

increase over the remaining part of the experiment. The parameterized model was also able 

to predict the time evolution of phosphate concentrations in the outflow of column 

experiments with different flow velocities, flow interruption, and in desorption experiments. 

The equilibrium partition coefficient for the experimental conditions was identified as 28.1 

L/g-Fe at pH 6.8 and a phosphate concentration of 1.7 mg-P / L. The optimized first-order 

mass transfer coefficient for the slow adsorption process was 1.56 10-4 h-1, implying that the 

slow adsorption process has a time scale of several months. However, based on the 

parameterized model, the slow adsorption process accounted for 95.5 % of the equilibrium 

adsorption capacity, emphasizing the potential relevance of this process for practical 

applications. The implications for the design, operation, and lifespan of ICS filters are 

exemplarily illustrated for different scenarios.   

Keywords: water treatment residuals, phosphorous, phosphorus sorbing materials, reactive 

transport model, mitigation measures, recycled iron oxides 

Abbreviations: BET-SSA, Brunauer-Emmet-Teller specific surface area; DDL, diffuse double 

layer; Fe, iron; IC, ion chromatography; ICP-OES, inductively coupled plasma - optical emission 

spectrometry; ICS, iron coated sand; Mn, manganese; P, phosphorus; SEM-EDX, scanning 

electron microscope with energy dispersive x-ray spectroscopy; 

Highlights   

• The presented model specifically accounts for slow P adsorption kinetics on ICS 

• The model is validated by column experiments with different flow scenarios 

• Time scale of slow P adsorption is determined and is in the order of months 

• Slow P adsorption by ICS accounts for 95 % of adsorption capacity  

• Performance of ICS filters can be improved when considering sluggish kinetics 
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Figure 5-0 Graphical abstract. 

5.2 Introduction 

Particulate and dissolved phosphorus (P) losses from agriculture are a major threat to surface 

water quality (Bol et al., 2018; De Klein & Koelmans, 2011; Dupas et al., 2018; Kronvang et al., 

2007; Schoumans et al., 2014; Withers et al., 2014). Because of the legacy P stored in the soil, 

reducing manure and fertilizer application is insufficient to reduce P loads reaching surface 

waters (Barcala et al., 2020; Bieroza et al., 2019; Gu et al., 2017; Sharpley et al., 2013). 

Phytoremediation, reducing the P in the soils by plant uptake, can reduce the legacy P but it 

will take decades before P losses to surface waters are reduced (Fiorellino et al., 2017; 

Koopmans et al., 2004; Lucas et al., 2021; Stoll et al., 2021). One option for short-term P load 

reduction is the implementation of permeable reactive barriers filled with iron (Fe)-

containing materials. They can remove P from percolating water on its hydrological pathway 

from groundwater to surface waters (Das Gupta et al., 2012; Nur et al., 2014; Penn et al., 

2011, 2017, 2020; Rittmann et al., 2011; Stoner et al., 2012). Particularly well-suited are 

byproducts from water treatment containing ferric iron (hydr)oxides given their easy 

availability and high binding affinity for P. 
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Iron-coated sand (ICS) and Fe sludge are residuals of deferrization of drinking water. A 

common procedure for deferrization is to oxidize dissolved Fe (II) and remove the produced 

Fe (hydr)oxides using sand filters. By this, an Fe coating develops around the sand grains 

resulting in ICS (Ippolito et al., 2011; Sharma et al., 2002; Van Beek et al., 2016, 2020). ICS and 

Fe sludge have been used to adsorb phosphate in soils, in filters around or at the end of tile 

drains, and in decentralized water treatment at farms (Boujelben et al., 2008; Chardon et al., 

2021; Koopmans et al., 2020; Lambert et al., 2020; Moelants et al., 2011; Vandermoere et al., 

2018; Zhang et al., 2022). The adsorption capacity of ICS is often underestimated as slow 

adsorption kinetics, controlled by intra-particle diffusion, are neglected (Ajmal et al., 2018; 

Koopmans et al., 2004; Willett et al., 1988). Iron (hydr)oxides in the coating of ICS are usually 

poorly crystalline or amorphous and exhibit a large specific surface area accounting for a high 

adsorption capacity (Chardon et al., 2012; Koopmans et al., 2020). However, the coating can 

be several hundreds of micrometers thick implying that the outer surface only represents a 

minor part of the total interfacial area. The outer surface of the ICS is in direct contact with 

the percolating water and the rates of adsorption are only controlled by the kinetics of the 

reaction. However, adsorption sites located in the interior of the coating can only be accessed 

via intra-particle diffusion.  

The time scale of intra-particle diffusion is generally much longer than that of the surface 

reactions and, hence, the phosphate adsorption rates in the interior of the coating are 

transport limited. The long-term adsorption capacity of ICS can be underestimated when 

neglecting the slow transport limited kinetics. The time scale of the slow adsorption exceeds 

the duration of typical batch adsorption experiments. Chardon et al. (2012) showed that the 

experimentally derived adsorption capacity of Fe sludge progressively increased in batch 

experiments over the duration of 21 days and in column experiments which lasted 238 days 

even further. The relevance of processes with different time scales was also reflected in the 

column experiments: P concentrations in the effluent quickly increased without reaching the 

inflow concentrations; instead, a quasi-steady state was reached at different P concentrations 

depending on the amount of Fe sludge in the column. This implies that the removal efficiency 

of Fe-containing filters depends on the contact time of the water in the filter being a function 

of pore volume and flow rates.  
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Lambert et al. (2020) and Zhang et al. (2022) investigated phosphate adsorption on ICS in 

batch and column experiments. Zhang et al. (2022) reported that the P outflow 

concentrations reached a quasi-steady state while the experimental data in Lambert et al. 

(2020) only represent fast P adsorption as experiments were stopped before the quasi-steady 

state was reached. In both studies, the Bohart-Adams model was applied to describe the 

breakthrough curves of phosphate. The Bohart-Adams model only accounts for the kinetics 

of one irreversible adsorption reaction and, consequently, its performance is limited when 

dealing with processes proceeding with different paces. Lambert et al. (2020) parameterized 

the model for the pronounced increase in dissolved P concentrations until adsorption 

equilibrium is reached for the fast-reacting sites. However, when changing flow velocities, the 

contribution of the slow adsorption processes to P retention varied and, consequently, 

column experiments with different flow velocities required individual optimization of model 

parameters.  In particular, the obtained P adsorption capacity was larger for the column 

operated at slow flow than that at fast flow, and both were significantly larger than the 

capacity obtained in a 1-day batch experiment. Furthermore, Lambert et al. (2020) reported 

that a pilot filter operated with intermittent resting periods performed better than when 

operated with continuous flow for the same treated volumes. These results demonstrate that 

slow adsorption kinetics need to be considered for optimizing the operation of ICS filters and 

the need for a reactive transport model, which accounts for the kinetics of both, fast and 

slow, adsorption processes. Here and in the following, the term ‘kinetics’ is used in the 

broadest sense, encompassing rates and mechanisms of chemical reactions as well as 

transport processes such as diffusion (Zhang, 2008). 

The objective of this study was to develop a quantitative model for phosphate adsorption on 

ICS that can adequately account for slowly proceeding phosphate adsorption, which can be 

easily implemented and applied to optimize the operation of ICS containing filters. Electron 

microscopy in combination with energy-dispersive X-ray spectroscopy was used to illustrate 

the model consideration that phosphate retention in the interior of the iron coating is 

transport limited.   A process-based physical model, including kinetic adsorption of phosphate 

on ICS, was parameterized using long-term column measurements. The model represents the 

slow kinetics dominated by the diffusion of phosphate inside the ICS coating and the fast 

adsorption on the outer surface of the ICS. It is shown that the model can be a valuable tool 
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to optimize the design and operation of ICS filters over their whole lifespan with different 

flow velocities and intermittent flow regimes.  

5.3 Materials and methods  

Iron Coated Sand 

The ICS used in this study was provided by AquaMinerals BV (https://aquaminerals.com/en/). 

The material was obtained from one mixed batch originating from different drinking water 

production sites. The ICS received no pre-treatment, was obtained air-dried, and stored in 

the dark at room temperature. The ICS contained on average 127.2 mg/g Fe, 9.4 mg/g Mn, 

0.5 mg/g S, 9.6 mg/g Ca, and 0.9 mg/g P (± 0.1 mg/g standard deviation) determined by total 

destruction. The Brunauer-Emmet-Teller specific surface area (BET-SSA) was 71.2 m2/g and 

was determined using argon gas with an ASiQwin instrument (Quantachrome Instruments). 

In addition, the pore size distribution in the ICS was determined with the BET-SSA analysis, 

nano-pores with a diameter between 0.42 and 2.00 nm were related to 54% of the specific 

surface and mesopores between 2.00 and 50.0 nm to 46%. Details of the measurement are 

specified in the Supplement Material.  

Column Experiments 

We performed flow experiments in 3 columns, named I, II, and III. The three columns were 

made from transparent polyethylene tubes of 30.8 cm height and 4.3 cm internal diameter. 

The column dimensions were selected accounting for dispersivity and reducing boundary flow 

effects along the tube walls (Bromly et al., 2007; Lewis & Sjöstrom, 2010). The reactive core 

of the columns contained 30 g of ICS and 300 g of quartz sand, both with grain diameters 

between 1.18 mm and 2.00 mm. The ICS was mixed with quartz sand to reduce the 

breakthrough times by maintaining column dimensions according to recommendations based 

on previous column experiments (Bromly et al., 2007; Lewis & Sjöstrom, 2010). Quartz sand 

is commonly used as an inert filling material in column experiments (Chardon et al., 2012; 

Jerez & Flury, 2006; Mystrioti et al., 2015; Pérez-López et al., 2007) and it is assumed that it 

does not contribute to phosphate retention in the columns. This implies that equilibrium 

constants or partition coefficients 𝐾𝑝 [𝐿/𝑔] determined for the whole stationary phase can 

https://aquaminerals.com/en/
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be normalized to the content of ICS. Two layers of 180 g quartz gravel (> 2 mm) were added 

at the top and bottom of the columns to improve the flow distribution.  

The columns were fed from the bottom via tubes of 0.8 mm internal diameter, which were 

also used for the outflow. The total volume of the tubing was 14.5 cm3 and taken into 

consideration in the parametrization of the models. The inflow solution was stored in 10 L 

glass bottles protected from the light with black plastic bags. The bottles’ cups were modified 

to work as Mariotte bottles (Maroto et al., 2002) to maintain a constant head pressure of 

approximately 2 cm above the columns assuring full saturation. A peristaltic pump 

(Masterflex L/S) with its tubing (13 L/S, Masterflex) was used for each column to maintain a 

constant flow. The pump-tubes system was calibrated before the experiment to know the 

discharge obtained at a given pump speed. Different flow regimes were used in the three 

different columns, including constant flow at various velocities, but also variable flow 

patterns. Furthermore, one column was used for a desorption experiment. The flow rates 

chosen are in the range of the flow velocities measured in field applications (Barcala et al., 

2022; Groenenberg et al., 2013). The flow rate in column I was 0.65 ml/min for 3500 hours 

(over 560 pore volumes).  

For the first 1440 hours, column II was running in parallel to column I with a flow rate of 0.65 

ml/min. Afterward, the flow rate was reduced to 0.39 ml/min for 600 hours. We also aimed 

to maintain the flow rate in column III at 0.65 ml/min during the first 1440 hours of the 

experiment but clogging occurred The cause of the clogging was the obstruction of the 

outflow tube by particles. The issue was solved by flushing the tube with water. The tube was 

cleaned six times during this period. Although unintended, clogging provided the opportunity 

to study the effect of interrupted flow and the data were included in this study. After the 

problematic tube had been replaced for a new one, column III was used without interruptions 

during 720 hours in a desorption experiment at 0.65 ml/min. In addition, a second adsorption 

experiment with a flow rate of 0.39 ml/min was performed in column III for the last 600 hours. 

Adsorption experiments were performed with a solution prepared from demineralized water 

containing 1.70 ± 0.05 mg /L P in the form of monobasic sodium phosphate solution. In order 

to maintain the ionic strength constant 0.10 M NaCl was also added. The desorption 

experiment was performed with 0.10 M NaCl without P. The pH was adjusted with NaOH to 
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6.80 ± 0.05 and controlled weekly in the inflow and outflow. The retention times at 0.65 

mL/min where 375 min in column I, 329 min in column II, and 301 min in column III. 

Samples were collected every 8 hours with an autosampler (SC-4DXS, Elemental Scientific) in 

50 mL PE centrifuge tubes pre-acidified with 1 mL 6M HCl. The volume collected by the 

autosampler served as a periodic control of the flow rate. P concentrations [mg/L] (equivalent 

to mg-P/L) in samples were measured photometrically (DR3900, Hach), as samples form a 

blue complex that follows Beer’s law when reacting with an acidified ammonium 

heptamolybdate solution and freshly added ascorbic acid (Murphy & Riley, 1962). For the first 

40 days, one sample per day was analyzed with ICP-OES (Avio 500, Perkin-Elmer) as an 

independent measurement. Because Stanmod (Simunek et al., 1999; Van Genuchten et al., 

2012) can only deal with constant flow velocities, the data series from columns I and II were 

quality checked and a few points that were affected by flow rate reductions were removed. 

Preliminary tracer experiments were performed in all columns to determine pore volumes 

and porosities. For this 0.10 M NaCl solution was used containing additionally 0.10 M NaBr. 

The flow was 0.65 ml/min. Samples were taken manually every 12 minutes for 9 hours. 

Electric conductivity (EC) was measured and bromine (Br) concentrations were determined 

by ion chromatography (ICS6000, Thermo Scientific) to determine the breakthrough of the 

non-reactive tracer.  

ICS Imaging techniques 

SEM-EDX images and elemental maps were made for fresh ICS and for ICS after adsorption 

from column III. The grains were embedded in resin and polished to investigate cross-

sections. Secondary electron and backscattered electron images were acquired on a SEM 

(EVO 15, Zeiss), using the SmartSEM user interface (v 6.06). (Semi-) qualitative chemical 

compositions were obtained using EDX (Esprit v. 2.1, Bruker XFlash). The images helped to 

conceptualize the two-site adsorption model. The first type of sites was considered to 

describe fast adsorption kinetics of the sites close to the grain surface reaching equilibrium 

with the percolating solution. The second type of sites describe transport-limited kinetic 

adsorption in the interior of the coating.  
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Reactive Transport Model 

The conceptual model was parametrized into a reactive transport model using the advection-

dispersion equation, and including two reactive adsorption terms. In order to account for 

different adsorption rates, two types of adsorption sites were included: fast-reacting sites for 

which the reaction progresses in time scales shorter than the hydraulic residence and 

conceived to reach equilibrium with the P concentrations in the mobile phase, and sites for 

which the adsorption is kinetically controlled. Adsorption of P to ICS is conceived as a 

reversible process. The fast adsorption process was characterized by linear adsorption using 

an equilibrium partition coefficient (Kp). The assumption of linearity is warranted at relatively 

low P concentrations as the relative occupation of adsorption sites remains low in equilibrium 

and the concentrations of occupied sites can be neglected in the mass balance for the reactive 

sites. When the content of vacant sites can be assumed to be constant, the kinetics of P 

adsorption to ICS simplify to pseudo-first-order rate laws for P adsorption and desorption 

solely depending on the P concentration in the mobile phase and P adsorbed to slowly 

reacting sites, respectively. The derivation of the equations is available in the Supplementary 

Material. 

Based on this conceptual model, the corresponding mass balance equations for P in the 

mobile and stationary phase in one-dimension read:  

(1 +
𝜌𝑓𝐾𝑝

𝜃
)

𝜕𝑐

𝜕𝑡
= 𝐷

 𝜕2𝑐

𝜕𝑥2
−

𝑣𝜕𝑐

𝜕𝑥
−

𝜌𝛼

𝜃
(𝑠𝑒𝑞 − 𝑠) (equation 1) 

𝜕𝑠

𝜕𝑡
= 𝛼(𝑠𝑒𝑞 − 𝑠)           (equation 2) 

Where 𝑐 is the P concentration [mg/L] in the mobile phase, 𝑥 is the longitudinal 

coordinate [cm], 𝑡 is time [h], 𝜌 is the bulk ICS density [g/L], 𝑓 is the fraction of fast reacting 

sites, 𝜃 is the porosity, 𝐾𝑝 is the equilibrium constant or partition coefficient [L/g], 𝐷 is the 

dispersion coefficient [cm2/h], 𝑣 is the pore-water velocity equal to the darcian flow velocity 

divided by porosity [cm/h], 𝛼 can be attributed to the rate constant for P desorption but also 

conceived as the exchange coefficient between the stagnant and mobile phase [1/h] (see  

Supplementary Material for details), and 𝑠 is the P concentration in the solid phase for which 

adsorption is kinetically controlled [mg/g]. 𝑠𝑒𝑞 is not an extra variable but the equilibrium 

concentration in the solid phase of the slow sites equal to 𝐾𝑝(1 − 𝑓)𝑐. The concentration of 
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P bound to the fast-reacting sites, being in equilibrium with the percolating solution, is not a 

state variable in the model but is calculated based on the product of f, 𝑐, and 𝐾𝑝.  

Model Solution and Parameter Estimation 

At constant flow and constant P concentrations in the inflow, the equation system has an 

analytical solution that has been implemented in the code Stanmod (Simunek et al., 1999; 

Van Genuchten et al., 2012). We used the module CXTFIT (Toride et al., 1995) for parameter 

estimation that minimizes the root mean squared error (RMSE) between the experimental 

and calculated concentrations.  

The hydraulic properties, pore-water velocity 𝑣, and the porosity 𝜃, of each column, were 

determined separately from the tracer experiments. We identified adsorption parameters f, 

𝛼, and 𝐾𝑝 by calibrating the P concentrations in the effluent of column I over the first 690 

hours of the experiment. During the first 690 hours, ICP-OES was used to measure P 

concentrations. Afterward, the photometric method was used, having a higher analytical 

uncertainty and some irregularities occurred in the flow such as short periods of flow 

decrease. These points were still included in the data series as the long-term P retention could 

still be observed. The model was validated by calculating RMSE and the coefficient of 

determination (R2) for the effluent concentrations in column I over the whole experiment 

duration of 3500 hours, the concentrations in column II during the first 1440 hours, and the 

P concentration of the last 600 hours of column III. In the latter case, the experiment was 

conceived as an independent P-removal experiment and any possibly remaining P in the 

column after the preceding adsorption and desorption experiments was neglected.   

For variable flow rates, equations 1 and 2 do not have an analytical solution. Therefore, we 

implemented a numerical solution using the R-packages ReacTran and deSolve (Soetaert & 

Herman, 2009; Soetaert & Meysman, 2012; Soetaert & Petzoldt, 2010). The model in R was 

fed with the calibrated parameters obtained from column I. The dynamic model allows to 

validate the experiment with intermittent flow velocities (flow interruptions). We calculated 

the RMSE and R2 between the parametrized model’s results and the effluent of column III 

during the flow interruptions and for the desorption experiments. The model is available at 

https://github.com/victoriabarcala/ICS_adsorptionmodel. 

https://github.com/victoriabarcala/ICS_adsorptionmodel
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The optimized value for Kp is conditional and accounts for the affinity of sorption sites for P 

at the given conditions plus the total concentration of sites. For example, phosphate 

adsorption to ferric iron (hydr)oxides depends, among other factors, on pH and ionic strength 

(Morel & Hering, 1993). To assess the possibility to extrapolate the model to other conditions, 

we compared the obtained value of Kp with calculated values based on surface complexation 

models. For this, the generic diffuse double layer (DDL) model parameterized by Dzombak 

and Morel (1991) for hydrous ferric oxide and implemented in MINEQL(version 5.0) was used 

to calculate the P partition for the given experimental conditions and calculate the 

corresponding Kp.  

Practical example 

We used the numerical R-model to set up a practical example illustrating the implications of 

considering the kinetics of P adsorption in the application of ICS. The example considers the 

use of ICS to remove dissolved P from water at the effluent of tile drains installed in an 

agricultural area. Thus, the chosen setting parameters are close to reality. The average P 

concentration in the incoming water is assumed to be 1.0 mg/L and the target P concentration 

should be below 0.15 mg/L after passing the filter. This concentration was chosen as the 

Dutch implementation of the water framework directive establishes a 0.15 mg/L limit in total 

phosphorus for open regional waters such as ditches (Fraters et al., 2021).  The filter has a 

porosity of 0.50, 1770 g/L bulk density with a Fe concentration of 0.13 mg-Fe/g-ICS, and the 

filter dimensions are 40x40x40 cm. The flow rate during operation is 4 L/h. We compare the 

efficiency of four different filter operations: (i) continuous flow, (ii) resting 3 months a year 

(during summertime), (iii) resting 1 week, and (iv) 2 weeks per month. 

5.4 Results 

Microscopy and ICS analysis 

The coatings around ICS grains have a thickness between 100 μm and 300 μm and often 

exhibited an anisotropic structure (Figure 5-1). The Fe-rich coating is traversed by Mn-rich 

layers typically exhibiting a higher porosity (Figure 5-1-a and 1-b). In the investigated coatings, 

EDX analyses show a distinct P enrichment in their outer part (Figure 5-1-d, highlight point 1 

and 1-f, point 4, EDX spectra are available in the supplementary material). In the outer parts 
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(Figure 5-1-f point 4), comprising about 20 % of the coating, P/Fe ratios were around 0.040 

and about10 times larger than in the P-poor areas (Figure 5-1-f, point 5) with ratios about 

0.004. Additionally, several thin layers with elevated P/Fe ratios were identified close to the 

core (Figure 5-1-f point 3). No P was detected in the Mn-rich areas (Figure 5-1-f point 6). The 

coatings were disrupted by several cracks. Some of the cracks exhibited P enrichments at the 

margins (Figure 5-1-d, point 2). However, most cracks seen on Figures 1-c and 1-d do not show 

this feature and were possibly created when vacuuming the sample before SEM analysis.  
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Figure 5-1: SEM-EDX images of ICS grains from column III after adsorption experiments. While grain 

A (c&e) is superficially polished, grain B (d&f) shows a cross-section. Electric high tension (EHT), 

scales and working distances are indicated on each image.  
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Adsorption experiments 

The general features of the time evolution of P concentrations in the effluent of column I 

were representative of the adsorption experiments with all columns. After an initial increase 

in outflow concentrations, a quasi-steady-state was reached at concentrations lower than in 

the inflow solution (Figure 5-2-a). Between hours 240 and 960, the outflow concentrations 

were about 1.05 mg/L for column I representing 62 % of the inflow concentration. The 

pronounced increase in P concentrations occurred significantly later than the hydraulic 

retention time, reflecting the retention of P via adsorption also at the beginning of the 

experiment. A one-site model assuming equilibrium partitioning of P cannot trace the 

measured effluent P concentrations (Figure 5-2-a). In particular, the model cannot produce a 

prolonged period of virtually constant concentrations below inflow concentration. In 

contrast, the two-site model based on equations 1 & 2 was able to reproduce the features of 

the concentration curve including the pronounced increase after the first days of operation 

and the plateau concentration reached after about 240 hours (Figure 5-2). The equilibrium 

constant for the fast sites 𝐾𝑝 was identified with 0.155 L/g for the ICS-sand mix and 3.57 L/g 

for pure ICS with 95% confidence intervals [1.15, 5.98] L/g (Table 5-1). The small value for the 

fraction of fast adsorption sites 𝑓, 0.045, indicates that most adsorption sites were located 

within the Fe coating. The small value for the mass transfer coefficient  𝛼, 1.56 10−4 h-1 

reflects the slow transfer process. Hydraulic parameters have been identified separately 

through tracer tests, which showed recovery rates of 97%. The dispersion coefficient D was 

fitted  to 30 cm2/h, and the Peclet number to 5.05. The tracer test curves and sensitivity 

analysis of the parameters in Stanmod are available in the Supplementary Material.  

The model was first validated for column I by modeling the whole duration of the experiment 

(3500 hours) beyond the first 960 hours for which parameters were determined. The larger 

deviation between observed and calculated data is associated with an increase in analytical 

uncertainty due to the switch in the analytical method. Notably, the model accounted for the 

slow increase in P concentration as the system was approaching equilibrium (Figure 5-2-b and 

3-b). The change in outflow concentration due to the slow adsorption process is emphasized 

when comparing concentrations at an early and a late stage of the experiment in Figure 5-3-

b. 
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By the end of the experiment the effluent concentration in column I reached around 1.35 

mg/L, corresponding to a P content in the solid phase of around 2.16 mg/g-ICS or 17.0 mg/g-

Fe (0.03 P/Fe molar ratio). At this moment, the effluent concentrations were still below the 

inflow concentration implying that equilibrium was not reached. With the model we 

extended the running-time to two years, the projected outflow P concentration was 1.60 

mg/L (94 % of the inflow concentration) and the concentration in the solid phase was 6.00 

mg/g-ICS or 47.02 mg/g-Fe. This value is close to the expected P loading in equilibrium 

(𝑠𝑒𝑞𝑡𝑜𝑡
= 𝑐 ∙ 𝐾) of 6.07 mg/g-ICS or 47.57 mg/g-Fe (0.09 P/Fe molar ratio). We thus conclude 

that when the experiment ended, about 36 % of the equilibrium concentration in the solid 

was reached.  

We obtained more validation results by running the transport model for the other columns 

with the parameters f, 𝛼, and 𝐾𝑝 identified for column I and the specific hydraulic parameters 

for each column. The model reproduced very well the effluent concentrations from column II 

(Figure 5-2-c, Table 5-1) and column III (Figure 5-2-d, Table 5-1) at different flow velocities. 

When column III reached quasi-steady-state the effluent concentrations were around 0.75 

mg/L and significantly lower than the values reached in columns I and II with higher flow 

velocities. The flow rate in column II was decreased to 0.39 ml/min to investigate the effect 

of changing the flow rate on the P concentrations at quasi-steady-state. As expected, P 

concentrations decreased and stabilized at a new quasi-steady-state about 0.2 mg/L lower 

than effluent concentrations of column I (Figure 5-3-a) illustrating the increasing effect of the 

slow adsorption process at increasing contact time. 

Stop-flow situations were studied with the early column III data where unintended flow 

interruptions due to obstructions in the outflow tube. Our conceptual model predicts the 

transfer of P from fast to slow sites due to diffusion during stopped flow accompanied by 

decreasing concentrations of dissolved P in the column. Consequently, we expect lower P 

concentrations in the effluent after resuming the flow, similar to the initial phase of the 

column experiments. Indeed, at most flow interruptions, the P concentrations in the effluent 

followed the expected pattern and the previous concentrations were approached with some 

retardation (Figure 5-4-a).  
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Table 5-1: Summary of tracer experiment results, as well as results of model calibration and 

validation for column experiments 

Tracer experiment 
 

column I column II column III 

Hydraulic retention time (min) (at 0.65 mL/min) 375 329 301 

Porosity ϴ 0.55 0.49 0.44 

Pore volume (mL)  243 241 196 

Flow velocity 𝐯 (cm/h) at 0.65 mL/min  
 

4.92 5.55 6.09 

Flow velocity 𝐯 (cm/h) at 0.39 mL/min - 3.33 3.66 

Calibration, figure 5-2-a  
 

Kp [L/g]* α [1/h] 𝒇 

Column I, adsorption, 4.92 cm/h, 960 h 0.155 1.56e-4  0.045 

Lower 95% confidence interval 0.05 1.47e-4 0.012 

Upper 95% confidence interval  0.259 1.65e-4 0.076 

R2 0.988   

RMSE (mg/L) 0.03  

Validation  
 

r RMSE (mg/L) 

Column I, adsorption, 5.55 cm/h, figure 5-2-b, 3024 h 0.88 0.138 

Column II, adsorption, 5.55 cm/h, figure 5-2-c 0.99 0.058 

Column III, adsorption, 3.66 cm/h, figure 5-2-d 0.98 0.059 

Column III, stop-flow, 6.09 cm/h, figure 5-4-a 0.91 0.182 

Column III, desorption, 6.09 cm/h, figure 5-4-b 0.96 0.074 

* Kp is of the ICS-sand mix. The Kp of the ICS is 3.57 L/g, 95% confidence intervals [1.15, 

5.98] L/g. For the equilibrium model, parameter fitting yielded unrealistic values in order 

to approach the quasi steady state concentrations after the initial rise in P concentrations: 

𝑲𝒑 was2.2 x1034 L/g with 95% CI [-5.6 x1035, 6.1 x1036] L/g, D was 0.169x1038 cm with 

95% CI [-0.434 x1039cm, 0.468 x1039cm], and R2 was 0.82. 

The numerical model was able to reproduce the stop flow regime in column III (R2 0.91, Table 

5-1). Figures 4-c and 4-d show the calculated time evolution of the concentrations in the 

mobile and stationary phases inside column III. The flow interruptions were reflected in a 

pronounced decrease in dissolved P concentrations, in particular at the lower part of the 
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column where the solution was entering. The continuation of P adsorption during stopped 

flow resulted in increasing contents of adsorbed P (Figure 5-4-d). After 1481 hours but only 

693 hours with flow, 1.39 mg/g-ICS of P were adsorbed, being 22% of the equilibrium 

concentration. Later, 0.57 mg/g (about 40% of the previously adsorbed mass) was recovered 

in the desorption experiment, in 720 hours.  

The transfer of phosphate from fast to slowly reacting sites becomes less efficient when the 

slow sites approach equilibrium as the distance from equilibrium (𝑠𝑒𝑞 − 𝑠), which drives the 

transfer, becomes smaller. During the desorption experiment in column III, the effluent 

concentrations decreased and reached a quasi-state concentration of about 0.4 mg/L (Figure 

5-4-b). This can be attributed to the release of P from the slow-reacting sites. The quasi-

steady-state behavior was well reproduced by the model while the agreement between the 

model’s results and observation is lower in the transition period as concentrations drop faster 

than predicted. The desorption process was modeled with the same mass transport rate (α), 

implying that transport limitations also retard desorption. Consequently, techniques only 

relying on P desorption may not be efficient for phosphate recovery due to the long time-

scale of desorption.
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a) Model calibration column I  b) Long-term model validation column I 
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c) Model validation column II  d) Model validation column III  

 

 

Figure 5-2: Results from continuous flow adsorption experiments and reactive transport model implemented in Stanmod with different pore-water 

velocities, a) model calibration column I at v = 4.92 cm/h the black dashed line in a shows the best fit using a one-site equilibrium adsorption model, b) 

long-term validation in column I at v  =4.92 cm/h, c) validation in column II at v = 5.55 cm/h, and d) validation in column III at v = 3.66 cm/h. The black 

dashed line in a shows the best fit using a one-site equilibrium adsorption model. The inflow concentration C0 is 1.70 mg/L. 
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a) Flow rate decrease in column II vs column I  b) Slow adsorption in column I in time 

 

 

Figure 5-3: Measured concentrations during slow adsorption. a) Effect of flow rate decrease: column II with v = 3.33 cm/h and column I with v = 4.92 cm/h 

at a late stage of the experiment. b) Differences in the slow adsorption in column I with time: steeper increase at early times (hour 460 to 930) compared 

to late time (hours 2520 to 3020). Shaded areas indicate 95% confidence interval of the trend lines. The inflow concentration C0 is 1.70 mg/L. 
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a) Interrupted flow in column III  b) Desorption in column III 

 

 

 

 

 

 

 

 

 

c) Model results for interrupted flow in column III 
P in the mobile phase [mg/L] 

d) Model results for for interrupted flow in column III  P adsorbed 
[mg/g] 
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Figure 5-4: Column III results of P concentrations. The inflow concentration C0 is 1.70 mg/L. a) Measured and numerically modeled P in the outflow 

during interrupted flow, b) measured and modeled outflow P during desorption, c) P in the mobile phase along the column during the experiment with 

flow interruptions, d) adsorbed P content along the column during the experiment with flow interruptions.  



 

Chapter 5-180 

5.5 Discussion 

 Expediency of the two-side model  

Considering a transport limited kinetic adsorption process in a two-site model was crucial to 

reproduce P outflow concentrations of long-term column experiments. The two-site 

adsorption model proved suitable to describe and predict P retention for different 

operational scenarios, including the variations in constant flow velocities, interrupted flow, 

and desorption. Although parameterized for one column experiment for a limited duration, 

it was able to reproduce the features of the observed effluent P concentrations in all other 

experimental settings.  

In particular, quasi-steady-state concentrations, being key in determining the P removal 

throughout the experiments, were well reproduced at all flow conditions. Only during 

transient flow periods, when resuming the flow or after abrupt changes in inflow 

concentrations, the predictive capability of the model was lower. The apparent delay in the 

predicted P concentrations in the outflow after flow interruptions or in the desorption 

experiment can be partially attributed to the remaining solution in the inert gravel layer at 

the top of the column. This layer is not included in the dynamic model and dissolved P 

concentrations do not change during no-flow concentrations due to the absence of ICS.  

The reactive model does not include an explicit description of the intra-coating diffusion 

process. Instead, the transport limitation is accounted for in the parameter , which can be 

interpreted as an exchange coefficient between the stagnant phase (intra-coating porosity) 

and a mobile phase (see Supplementary Material for details). An equivalent approach was 

used before to describe phosphate desorption from soil particles (Koopmans et al., 2004). 

Adsorption was considered to be reversible and to follow a linear isotherm. The desorption 

experiment demonstrates that adsorption of P to ICS is reversible. Studying P adsorption onto 

ICS, Lambert et al. (2020) employed Langmuir and Freundlich isotherms for dissolved P 

concentrations in the range of 0-1200 mg/L. Both isotherms may be approximated by a linear 

relationship at concentrations lower than 20 mg/L. In our study, dissolved P concentrations 

remain below levels at which deviation from linearity is typically reported for P adsorption 

isotherms and solid phase contents remain below the saturation capacity, for example, 
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reported for ferrihydrites (Wang et al., 2013). The linear approximation is justified in the 

context of applying ICS for P removal in drainage water in the Netherlands which typically 

have soluble reactive phosphate concentrations below 2 mg/L P (Rozemeijer et al., 2014).  

Model Parameters 

Despite the dilution of ICS with non-reactive sand and the long duration of the experiment, 

equilibrium between dissolved and adsorbed P was not achieved. The correlation of 

parameters f, Kp and  complicate the unequivocal determination of each parameter. 

Particularly, the pronounced, initial increase in P concentrations can be reproduced with 

infinite combinations of f and Kp. Similarly, quasi-steady-state concentrations are controlled 

by a combination of Kp and . However, the very slow increase in dissolved P concentrations 

after the initial increase constraints  , and allows a robust estimation of the partition 

coefficient Kp and consequently f.  

The major part of the adsorption capacity lays inside the coating. The fraction of fast 

adsorption sites 𝑓 was only 4.5 % reflecting the small number of sites at the outermost layer 

of the coating, which is in direct contact with the porewater. SEM-EDX analyses support the 

conceptual assumption that P adsorption inside the coating is a transport-limited process: P 

is not homogeneously distributed but enriched in the outer part of the coating and in some 

narrow layers inside the coating. Although SEM-EDX micrographs indicate the possibility of P 

transport through macro pores in the coating, transport into the bulk of the coating is likely 

controlled by diffusion through the intra-porosity of the Fe precipitates, which is supposed to 

be faster than solid diffusion (Willett et al., 1988). The Fe-(hydr)oxides in the coating are 

expected to be of low crystallinity comparable to the structure of ferrihydrite. A pore width 

between 0.42 and 50 nm was obtained from BET analyses being about half of them 

mesopores (2-50 nm). The range of pore widths indicates that the majority of pores are 

sufficiently large to allow for diffusion of hydrogen- and dihydrogen phosphate with Stoke’s 

radii of 0.35 and 0.26 nm, respectively(Hong et al., 2009). The relevance of mesopores for P 

adsorption was demonstrated by Suresh Kumar et al. (2017) who found, at low P 

concentrations, a linear relationship between the mesopore BET specific surface area and P 

adsorption in granulated activated carbon coated with Fe oxides. The pore size values for 2-L 

and 6-L ferrihydrite obtained by Wang et al. (2013) range from 1.6 to 4.4 nm. The relatively 
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large variability of pore sizes measured for ICS can be explained by changing conditions in the 

surrounding water during the growth of the coating. The composition of the inflow water in 

the sand filter can be variable as well as the position of the grains in the filter caused by 

backflushing. Both types of events might affect the structure of Fe precipitates in the sand 

filters (Jentzsch & Penn, 2006; Van Beek et al., 2020) and hence pore size distribution.  

Based on the optimized mass transfer coefficient 𝛼 of 1.56 10-4 h-1 the time scale of the slow 

adsorption process is about6400 hours. Consequently, the required equilibration times for 

determining Kp in batch experiments using ICS grains would be much longer than the duration 

of the column experiments. This implies that column experiments in combination with 

reactive transport modeling appear to be more efficient for estimating the equilibrium 

partition coefficient of P for ICS.  Furthermore, there are practical limitations for the use of 

batch experiments to constrain Kp for ICS as the coating can be lost during shaking and 

reduced to small pieces (Chardon et al., 2012).  

The obtained value of Kp compares well to those reported in other studies. We found Kp 

=3.56 L/g for pure ICS or 28.1 L/g-Fe (deduced from the estimated Kp for the ICS-sand mixture, 

see Table 5-1) at an equilibrium P concentration of 1.70 mg/L, corresponding to P contents of 

6.06 mg/g-ICS or 47.7 mg-P/g-Fe (0.09 P:Fe molar ratio) in the solid phase. Wang et al. (2013) 

report a value of 52.3 mg/g-Fe for 2-L ferrihydrite powder in equilibrium with 1.0 mg/L 

dissolved P, while Chardon et al. (2012) obtained 56.83 mg/g-Fe for iron sludge from drinking 

water treatment in column experiments at 3.95 mg/L after 283 days (6792 hours). Lambert 

et al. (2020) report a maximum adsorption of 16.3 mg/g-Fe for ICS in a column experiment 

after 280 days (6720 hours) and a 20 mg/L inflow concentration. Surprisingly, the value is 

lower than ours, as the inflow concentrations in Lambert et al. (2020) experiment were 

considerably higher, and the duration of their experiment was longer compared to our 

experiments. However, the amount of ICS in the column used by Lambert et al. (2020) was 

195 g, about seven times larger than in this study at a comparable flow rate of 2.53 cm/h. The 

experiment only captured the pronounced, initial increase in effluent concentrations and not 

the prolonged slow increase afterward. In this stage of the experiment, adsorption at the slow 

sites is of lower relevance leading to lower values when calculating an apparent partition 

coefficient. According to our results, the equilibrium solid concentration at a dissolved P 

concentration of 20 mg/L is 120.7 mg/g-Fe. When only considering the fraction with fast rates 
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(4.5% of total adsorbed), 5.5 mg/g-Fe are reached, which is close to the value obtained by 

Lambert et al. (2020) in their batch experiments with 24 h equilibration time (5.93 mg/g-Fe). 

Per surface area, the maximum P adsorption we obtained was 0.084 mg/m2 which is very 

similar to the value of 0.081 mg/m2 obtained by Koopmans et al. (2020) for Fe-containing 

precipitates from drinking water treatment, which was used 14 months for soil amendment. 

The optimized partition coefficient 𝐾𝑝 is conditional and expected to depend on pH, ionic 

strength, and the presence of other ions adsorbing to ICS. The model was calibrated and 

validated for pH 6.80 ± 0.05, 0.10 M ionic strength, 1.70 ± 0.05 mg/L inflow concentration, 

and no competing ions. Higher pH reduces P adsorption (R. Zhang et al., 2022) due to 

competing OH- ions and a decreasing surface charge at higher pH. Differences in ionic 

strengths can alter P adsorption by mitigating electrostatic effects. The effect of pH and ionic 

strength could be accounted for when applying surface complexation models including the 

acid-base chemistry of surface sites and electrostatic corrections such as the generic DDL 

model parameterized by Dzombak & Morel (1991) for hydrous ferric oxides (HFO).  The 

generic DDL provides a Kp value of 36.10 L/g-Fe for HFO at our experimental conditions. This 

value is 28% higher than the Kp we obtained for ICS but is in the same order of magnitude. 

The corresponding surface excess of 0.064 mg/m2 is, however, lower than calculated by the 

DDL model as Dzombak & Morel (1991) consider a theoretical SSA of 600 m2/g for HFO, which 

is higher than the BET surface area of ICS. Nevertheless, we consider the possibility that based 

on the DDL model the Kp value could be adjusted to other conditions by determining the 

relative effect of P distribution when changing pH or ionic strength. Next to pH and ionic 

strength, the equilibrium distribution coefficient can be affected by the presence of ions such 

as organic matter, sulfate, carbonates, silicates, and arsenate competing with phosphate for 

surface sites (Grafe et al., 2002; Hiemstra, 2018; Liu et al., 2018; Mendez & Hiemstra, 2019) 

and should be taken into consideration when treating natural waters. Also temperature is 

expected to effect both equilibrium concentrations and rate constants, but the temperature 

effect is out of the scope of this study. 

Implications for practical applications 

The contribution of slow sites to P adsorption has practical consequences for the design, 

operation, and lifespan of ICS filters. Integrating stop-flow periods in the operation of filters 
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allows the regeneration of fast adsorption sites, but the resting times have to be sufficient for 

P to be transferred to slow sites. We tested five different operation scenarios: (i) continuous 

flow, (ii) resting 3 months a year (during summer time), (iii) resting 1 week and (iv) 2 weeks 

per month, for a 40x40x40 cm filter with 4 L/h flow and 1 mg/L inflow water. The target is to 

keep concentrations below 0.15 mg/L. The scenarios are not strictly comparable, scenarios 

(ii) and (iii) treat the same volume, 75% of the total volume in scenario (i). Scenarios (ii) and 

(iii) demonstrate the contributions of slow kinetics and the effect of different lengths in the 

resting periods on P retention. To make the treated volume in scenario (iv) comparable to 

scenario (i), we assumed that 2 filter compartments (of the given dimensions) are used with 

alternating resting periods every 2 weeks. Figure 5-5 displays the P concentrations in the 

effluent for all scenarios. 

Scenario (ii) exhibits a larger recovery than scenario (iii), this effect is reached because the 

resting period is longer. Nevertheless, after 24.000 hours (2 years in operation) they both 

reach a comparable final concentration of about 0.15 mg/L and retain a similar mass of P for 

the same treated volume, about 0.065 kg P. Comparing scenario (i) and (iv) with the same 

treated volume, the continuous filter scenario (i) needs to be replaced three times in five 

years (every 1.65 years) to meet the 0.15 mg/L target. Instead, scenario (ii) can meet target 

using only two filters and alternating operation every 2 weeks. Making use of two filters 

scenario (ii) retains 0.342 kg while scenario (i) retains 0.167 kg P using three filters in five 

years.  
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Figure 5-1: P outflow concentrations for practical example of a 5-year ICS filter operation 

with 4 different operative scenarios: : (i) continuous flow, (ii) resting 3 months a year 

(during summer time), (iii) resting 1 week and (iv) 2 weeks per month. Dashed red line 

indicates the target outflow concentration, 0.15 mg/L.  

5.6 Summary and conclusion 

A quantitative model for phosphate adsorption on ICS was developed, which was able to 

account for slow adsorption reactions, with the intention to provide a tool for optimizing the 

application of ICS filters. The conceptual two-site model including transport-limited 

adsorption kinetics was supported by electron microscopic analyses of ICS. Long-term column 

experiments under several flow conditions were used to calibrate and validate the model. 

The model reproduced phosphate concentration of continuous and intermittent flow 

conditions, as well as adsorption and desorption. Adsorption proceeded rapidly on a small 

number of sites (4.5 %) and is described with a linear equilibrium adsorption model. 

Adsorption on most sites proceeded slowly on the time scale of months, which we related to 

intra-particle diffusion. The calculated maximum adsorption capacity under experimental 

conditions was 47.7 mg/g-Fe, or 0.084 mg/m2 at 1.70 mg-P/L inflow implying an equilibrium 

partition coefficient of 28.1 L/g-Fe. The model was used to test how ICS filter operation can 
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be optimized to exploit the high capacity of the slow adsorption. An example shows how 

introducing resting periods improve the phosphate removal and operation duration of ICS 

filters.  

From these results we conclude: 

• Phosphate adsorption on ICS takes place at two times scales: fast adsorbing sites at 

the outside of the grains and slow kinetic adsorption into the iron coating.  

• Only 4.5 % of sites are in equilibrium and represent fast-accessible sites. 

• Optimal ICS filter operation contains recovery phases. Flow interruptions in the 

time scale of the slow adsorption process (weeks to months) can extend the filter 

operation time significantly. 
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model are available at https://github.com/victoriabarcala/ICS_adsorptionmodel. 
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limited kinetics of phosphate retention on iron-coated 

sand and practical implications 
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The supplementary material includes an image of the column set-up, description of the 

analytical techniques, derivation of the model equations, tracer test results of columns I, II, 

and III, sensitivity analysis of the parameters in Stanmod, more detailed BET-SSA results, and 

EDX spectra. The data set and model are available at 

https://github.com/victoriabarcala/ICS_adsorptionmodel . 

https://github.com/victoriabarcala/ICS_adsorptionmodel
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Column set-up 

 

Figure S2 Columns I, II, and III with their feeding 10 L Mariotte bottles, tubing, Masterflex 

pump, SC-4DXS autosampler with pre-acidified tubes for sample collection. The bottles 

were covered with black plastic bags to prevent microbial growth. 

ICS analytical techniques 

For total extraction, ICS was grinded in an agate mortar, 0.125 g sample was added to a 2.5 

mL mix of HNO3 (72%) and HClO4 (65%) in a 1:3 volume ratio plus 2.5 mL HF (48%). The 

suspension was heated for 12 hours at 90 oC and 4 hours at 140 oC until the solution was 

evaporated. The precipitates were dissolved by adding 25 mL HNO3 (72%) and heating 

overnight at 90 oC. The final solution was filtered (0.45 μm), and analyzed with ICP-OES (Avio 

500, Perkin-Elmer). The extraction was done in duplicate.  

A Brunauer-Emmet-Teller (BET) instrument (ASiQwin, Quantachrome Instruments) was used 

to determine the specific surface area and the porosity of the ICS grains. Prior to the 
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measurement, the physically adsorbed water was removed to prevent interferences with the 

gas adsorption by heating the sample at 150 oC for 24 hours. After evacuation of the sample, 

argon was incrementally added to 0.6911 g sample at 87.5 K. The adsorption isotherm was 

analyzed based on the BET theory providing information of specific surface area as well as 

intraparticle pore volume and pore size. 

Derivation of model equations 

Mass balance equations for the concentrations of dissolved P and P adsorbed onto sites with 

slow kinetics are given by: 

(1 +
𝜌𝑓𝐾𝑝

𝜃
)

𝜕𝑐

𝜕𝑡
= 𝐷

 𝜕2𝑐

𝜕𝑥2 − 𝑣
𝜕𝑐

𝜕𝑥
−

𝜌𝛼

𝜃
(𝑠𝑒𝑞 − 𝑠)             (equation 1) 

𝜕𝑠

𝜕𝑡
= 𝛼(𝑠𝑒𝑞 − 𝑠)                    (equation 2) 

Where 𝑐 is the P concentration [mg/L] in the mobile phase, 𝑥 is the longitudinal 

coordinate [cm], 𝑡 is time [h], 𝜌 is the dry bulk ICS density [g/L], 𝑓 is the fraction of fast 

reacting sites, 𝜃 is the porosity, 𝐾𝑝 is the equilibrium constant or partition coefficient [L/g], 𝐷 

is the dispersion coefficient [cm2/h], 𝑣 is the pore-water velocity equal to the darcian flow 

velocity divided by porosity [cm/h]. 𝛼 is the mass transfer coefficient [1/h] which can also be 

conceived as the rate constant for P desorption from the slowly reacting sites, and 𝑠 is the P 

concentration in the solid phase for which adsorption is kinetically controlled [mg/g], i.e. the 

slowly reacting sites. 𝑠𝑒𝑞  =  𝐾𝑝(1 − 𝑓)𝑐 is the equilibrium concentration of P adsorbed onto 

slow sites. The concentration of P bound to the fast-reacting sites is the product 𝑓𝑐𝐾𝑝.  

The model equations are derived from the advection-dispersion equation that describes the 

solute transport through a porous medium with two reactive terms R1 and R2, The first term 

describes the fast equilibrium adsorption while R2 describes the slow mass transfer inside the 

iron-coating micro porosity:  

𝜃
𝜕𝑐

𝜕𝑡
= 𝜃𝐷

 𝜕2𝑐

𝜕𝑥2 − 𝜃𝑣
𝜕𝑐

𝜕𝑥
− 𝑅1 − 𝑅2  

The starting point for both reactive terms is the assumption of reversible: 
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𝑆𝑓𝑎𝑠𝑡 + 𝑃 ↔ 𝑠𝑓𝑎𝑠𝑡      (Reaction 1)  

𝑆𝑠𝑙𝑜𝑤 + 𝑃 ↔ 𝑠      (Reaction 2)  

Here, 𝑆𝑓𝑎𝑠𝑡 and 𝑆𝑠𝑙𝑜𝑤 denote the unoccupied sites, while 𝑠𝑓𝑎𝑠𝑡  and 𝑠 denote the occupied 

sites. The total concentration of sites in the solid phase 𝑆 is the sum of all sites, available or 

occupied with 𝑃: 

 𝑆 = 𝑆𝑓𝑎𝑠𝑡 + 𝑠𝑓𝑎𝑠𝑡 + 𝑆𝑠𝑙𝑜𝑤 + 𝑠 .  

With 𝑓  being the fraction of fast reacting sites, we get the mass balances for the sites: 𝑆𝑓𝑎𝑠𝑡 +

𝑠𝑓𝑎𝑠𝑡 = 𝑓 ∙ 𝑆 and 𝑆𝑠𝑙𝑜𝑤 + 𝑠 = (1 − 𝑓)𝑆 .  

Both reactions are reversible leading to rate laws including a forward and inverse reaction 

rate constant 𝑘𝑓𝑎𝑠𝑡1
, 𝑘𝑓𝑎𝑠𝑡−1

, 𝑘𝑠𝑙𝑜𝑤1
, 𝑘𝑠𝑙𝑜𝑤−1 = 𝛼. The rate constants can reflect the rates of 

the chemical reaction but also mass transfer in case of transport limited reactions. In the 

following consider identical ratios of both reactions rate constants, i.e. the same equilibrium 

constant: 
𝑘𝑓𝑎𝑠𝑡1

𝑘𝑓𝑎𝑠𝑡−1

=
𝑘𝑠𝑙𝑜𝑤1

𝛼
= 𝐾′. This is based on the assumption that both reactions behave 

similar at equilibrium conditions. 

The rate law for the fast sites is given by:  

𝜕𝑠𝑓𝑎𝑠𝑡

𝜕𝑡
= 𝑘𝑓𝑎𝑠𝑡1

𝑆𝑓𝑎𝑠𝑡𝑐 − 𝑘𝑓𝑎𝑠𝑡−1
𝑠𝑓𝑎𝑠𝑡  

For the fast sites we assume equilibrium, i.e. 
𝜕𝑠𝑓𝑎𝑠𝑡

𝜕𝑡
=  0. Including the mass balance for 

surface sites, 𝑆𝑓𝑎𝑠𝑡 =  𝑓 ∙ 𝑆 − 𝑠𝑓𝑎𝑠𝑡 , gives :  

 
𝑠𝑓𝑎𝑠𝑡

𝑐 (𝑓𝑆−𝑠𝑓𝑎𝑠𝑡)
=

𝑘𝑓𝑎𝑠𝑡1

𝑘𝑓𝑎𝑠𝑡−1

= 𝐾′  

At low concentrations of dissolved P, the equation can be simplified by assuming that the vast 

majority of fast sites remains vacant in equilibrium. The concentration of sfast is much smaller 

then the total number of fast sites 𝑓 ∙ 𝑆. We can neglect sfast in the denominator and obtain a 

linear adsorption equation with adsorption coefficient 𝐾𝑃 = 𝐾′𝑓𝑎𝑠𝑡𝑆:  
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𝑠𝑓𝑎𝑠𝑡

𝑐 
= 𝑆𝐾′𝑓 = 𝑓𝐾𝑃    

Following the same approach of reaction kinetics for the slow sites, the rate law can be 

reformulated as: 

𝜕𝑠

𝜕𝑡
= 𝑘𝑠𝑙𝑜𝑤1

𝑆𝑠𝑙𝑜𝑤𝑐 − 𝛼𝑠 = 𝛼(𝐾′𝑆𝑠𝑙𝑜𝑤𝑐 − 𝑠) = 𝛼(𝐾′((1 − 𝑓)𝑆 − 𝑠)𝑐 − 𝑠) ≈ 𝛼(𝐾′((1 −

𝑓)𝑆)𝑐 − 𝑠) = 𝛼(𝐾𝑝 ∙  (1 − 𝑓)𝑐 − 𝑠)  = 𝛼(𝑠𝑒𝑞 − 𝑠)   

Here we assume again that (1 − 𝑓)𝑆 ≪ 𝑠 and make use of the equilibrium concentration of 

P adsorbed onto slow sites, 𝑠𝑒𝑞  =  𝐾𝑝(1 − 𝑓)𝑐. A similar mass balance is obtained when 

conceiving the pore volume inside the coating as a separate phase, in which adsorption 

equilibrium is reached. In this case, 𝛼 represents the exchange coefficient between the 

stagnant, liquid phase inside the coating and the mobile phase (see for example Van 

Genuchten et al., 2012 or Schäfer et al. 1998).  

In summary the mass balances obtained for the fast and slow reactions are: 

𝜕𝑠𝑓𝑎𝑠𝑡

𝜕𝑡
=

𝜕𝐾𝑝𝑓𝑐

𝜕𝑡
= 𝑓𝐾𝑝

𝜕𝑐

𝜕𝑡
                                                    (𝑅1) 

𝜕𝑠

𝜕𝑡
= 𝛼(𝑠𝑒𝑞 − 𝑠)                                                                        (𝑅2)  

Writing the advection-dispersion equations including expressions for R1 and R2, we obtain 

𝜃
𝜕𝑐

𝜕𝑡
= 𝜃𝐷

 𝜕2𝑐

𝜕𝑥2 − 𝜃𝑣
𝜕𝑐

𝜕𝑥
− 𝜌

𝜕𝑠𝑓𝑎𝑠𝑡

𝜕𝑡
− 𝜌

𝜕𝑠

𝜕𝑡
 

𝜃
𝜕𝑐

𝜕𝑡
= 𝜃𝐷

 𝜕2𝑐

𝜕𝑥2 − 𝜃𝑣
𝜕𝑐

𝜕𝑥
− 𝜌𝑓𝐾𝑝

𝜕𝑐

𝜕𝑡
− 𝜌 𝛼(𝑠𝑒𝑞 − 𝑠) 

𝜕𝑐

𝜕𝑡
+

𝜌𝑓𝐾𝑝

𝜃

𝜕𝑐

𝜕𝑡
= 𝐷

 𝜕2𝑐

𝜕𝑥2 − 𝑣
𝜕𝑐

𝜕𝑥
−

𝜌𝛼

𝜃
(𝑠𝑒𝑞 − 𝑠) 

(1 +
𝜌𝑓𝐾𝑝

𝜃
)

𝜕𝑐

𝜕𝑡
= 𝐷

 𝜕2𝑐

𝜕𝑥2 − 𝑣
𝜕𝑐

𝜕𝑥
−

𝜌𝛼

𝜃
(𝑠𝑒𝑞 − 𝑠)     (equation 1) 

And equation 2 is the mass balance in the solid phase in the slow adsorption sites 
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𝜕𝑠

𝜕𝑡
= 𝛼(𝑠𝑒𝑞 − 𝑠) .       (equation 2) 

Experimental tracer test results 

• Inflow tracer water: EC 2070 uS/cm, 809 mgBr/L.  

• Previous background water: EC 1052 uS/cm, 0 mgBr/L.  

• Darcy flow velocity 0.65 ml/min. The time in the tubing is already subtracted from 

the x-axis.
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Tracer test column II Tracer test column I 
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Tracer test column III

 

 

Figure S3 Normalized tracer test results of columns I, II, and III.  

The “S” shape of the curves shows a good packing of the column material, in contrast to the asymmetrical shape of the adsorption experiments that 

denote kinetic adsorption.  
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Sensitivity analysis 

The sensitivity analysis is done with the Stanmod results with constant flow. Stanmod uses 

the same model equations but they are expressed with dimensionless parameters 

𝛽𝑅𝜕𝑐1

𝜕𝑡
+

(1−𝛽)𝑅𝜕𝑐2

𝜕𝑡
=    

𝐷

𝑣𝐿

𝜕2𝑐1

𝜕𝑥2
−

𝜕𝑐1

𝜕𝑥
     (equation 1) 

(1 − 𝛽)𝑅
𝜕𝑠

𝜕𝑡
= 𝜔(𝑐1 − 𝑠)      (equation 2) 

Parameter Definition/Value Physical interpretation 

𝑹 1 +
𝜌𝐾

𝜃
                 (4) Dimensionless retardation factor, R is 1 for non-reactive solutes as the 

tracer.  

𝑫 30 cm2/h Dispersion coefficient [L2/T]. Represents local-scale flow around grains, 
differences in fluid velocity within single pores, and differences in 
adjacent velocity between adjacent pores. It needs to be fitted for each 
column.  

𝜷 𝜃+𝑓𝜌𝐾

𝜃+𝜌𝐾
                 (5) Dimensionless partitioning coefficient between fast and slow adsorption 

sites. 1 ≤ 𝛽 ≥ 0 . 
 

𝝎 𝛼(1−𝛽)𝑅𝐿

𝑣
            (6) Dimensionless mass transfer coefficient of the solute to the solid phase 

a) R sensitivity 500 (P2) 95% CI [167, 834] (P1, P3). R represents K 
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b) β sensitivity 0.045 (P2) 95% CI [0.0159, 0.078] (P1, P3). β represents 𝒇 

 

c) ω sensitivity 0.4677 (P2) 95% CI [0.441, 0.494] (P1, P3). ω represents α 

 

Table S2 Sensitivity analysis of the obtained parameters 

The sensitivity was done for a D of 30 cm2/h and v of 4.92 cm/h, the same as in column I. The 

confidence in the first order mass transfer rate α is high, almost the same results were 

obtained with the upper and lower confidence intervals. The fraction of fast adoption sites is 

likely between 1.6 and 7.8 %, this does not affect the final quasi-equilibrium outflow. 
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However, higher 𝑓 means the fast adsorption gains more importance which is relevant for 

the first stages of the breakthrough curve compared to and 𝑓 of 4.5%. In R (and therefore K) 

is where the largest uncertainty lies, this is reflected in larger confidence intervals, variations 

in the breakthrough times and concentration at the quasi-steady state. Different K values are 

expected for different ICS from different origins, porosities, Fe content and impurities as Mn 

and could be adjusted with batch experiments if needed.  

ICP-OES results first 40 days 

In addition to using ICP-OES results to validate the phosphate measurements, the results 

could be used to control leaching of elements out of the column. The following were below 

the detection limit of the ICP-OES: As (detection limit 0.045 mg/L), Cd (detection limit 0.005 

mg/L), Cr (detection limit 0.005 mg/L), Ni (detection limit 0.015 mg/L), Pb (detection limit 0.07 

mg/L), Se (detection limit 0.15 mg/L). The fact that no toxic element leached is important as 

the ICS is placed in natural or agricultural areas. Color and particulate material were only 

detected in the “first flush” when the experiment started. When placing the filter in nature 

or in agricultural catchments it would be recommended either to wash the material 

previously or to flush it and collect the first flush as part of the installation procedure before 

leaving the filter ready to start working. 

As for other elements leaching out the column in the first 40 days: Ca was 3.4 mg/L ± 3.5 

mg/L, Fe was 0.18 mg/L ± 0.007 mg/L, S decreased from 0.881 mg/L to 0.142 m/g Si was 0.845 

mg/L ± 0.240 mg/L and Zn was 0.61 mg/L ± 0.50 mg/L. S and Si leaching may be related to 

ion-exchange with phosphate. 
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BET-SSA results 

 

Figure S3 Results of specific surface area (BET-SSA) of the ICS grains  
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The specific surface area (BET-SSA) of the ICS grains was 71.2 m2/g, which is very similar to 

the value of 70 m2/g reported by Chardon et al. (2012). However, this value is not high for 

ferric iron (hydr)oxides. Zhang et al. (2022) reported a SSA of 249 m2/g for ICS from a drinking 

water treatment plant in Belgium and Wang et al. (2013) found values between 234 and 427 

m2/g for laboratory synthesized ICS. With the measured specific surface area, the maximum 

adsorption at experimental conditions was 0.084 mg/m2.  

In the columns, the ICS had 71.2 m2/g of specific surface area and quartz sand typically has 

around 226 cm2/g (0.02 m2/g) (Pennell, 2018). In each column, there are 30 g of ICS and 660 

g of quartz sand. Therefore, there are 2136 m2 of specific surface area in the ICS and 13 m2 in 

the quartz sand (only 0.6%). The quartz sand is assumed to be unreactive for this reason 

. R model 

The function that solves the ODE needs to be run (P_column_k.R) first. The solution for a 

constant velocity and variable velocity is included in Model_ICS_Script.R. The input files of 

column I, II, and III are available in the GitHub repository 

(https://github.com/victoriabarcala/ICS_adsorptionmodel) ready to import to the R script. 

The velocity, initial concentration, filter height, and porosity can be modified to 

model/predict different situations.  

   

https://github.com/victoriabarcala/ICS_adsorptionmodel
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SEM-EDX results 

Fe:O ratio1:3 on light areas. (grain C) before adsorption 
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Mn-rich areas, P adsorption associated with iron rings (grain B) 

 

Fe:O ratio on gray areas 1:2 (grain B) 
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P accumulation in areas with low porosity (grain B) 
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P:Fe ratio in low P area (grain A) 
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P:Fe ratio in high-P area (grain A) 
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6 Chapter 6: Synthesis 

The research presented in this thesis was motivated by the impact that P leaching from 

agricultural catchments has on surface water quality and eutrophication. In many areas, 

eutrophication problems require measures to reduce the nutrients leaving the agricultural 

catchments. The objective of this thesis was to contribute to improving the management of 

drained agricultural areas and to optimize the retention of Fe-associated P. Different 

methodologies and a combination of laboratory experiments, field monitoring, and process- 

and data-based modeling were used. Monitoring of the nutrient transport is key to 

quantifying the nutrients export loads and determining the effectiveness of P retention 

measures. Chapters 2 and 3 investigated the transport of P at a dairy farm on the typical sandy 

iron-rich soils in the east of the Netherlands. In contrast, chapters 4 and 5 investigated the P 

retention onto filters made with an iron-by product (ICS) used in the west of the Netherlands, 

a region characterized for having iron-poor sandy soils and high P concentrations in the 

drainage water. This chapter synthesizes how the main findings of this thesis can help the 

monitoring and diagnosis of diffuse P pollution from agricultural areas and provide tools for 

designing and optimizing Fe-based P-retention measures. Finally, three case studies are used 

to illustrate the functioning of ICS filters in different settings.  

6.1 New insights into the monitoring and diagnosis of diffuse P 

pollution in agricultural areas 

To understand P transport processes, high frequency P measurements are needed to capture 

the large temporal variability in P concentrations, to quantify loads, and to evaluate the 

effectiveness of P-retention measures. However, high frequency monitoring equipment is 

vulnerable to technical failures resulting in data gaps. In chapter 3, six Machine Learning 

algorithms were evaluated for gap-filling of high-frequency water quality data. Random 

Forest showed the best performance with an R2 higher than 0.92 for all test sets. Random 

Forest enabled the accurate reproduction of discharge-concentrations relations that are non-

linear processes and was able to represent system changes that occurred within the training 

period. However, the prediction outside the training period showed large errors, because 

system modifications introduced by conservation measures caused changes in the nutrient 
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transport routes. Although the groundwater levels were used as input for the Random Forest 

predictive model, the model could no longer accurately predict the nutrient concentrations 

after water conservation was implemented. The higher groundwater levels induced top-soil 

P desorption and transport, which was not included in the training set. We concluded that 

Random Forest is a powerful tool for gap-filling but its use for forecasting and process 

interpretation should be done with care. Especially when the prediction involves scenarios 

with climate variability or climate change such as differences in rainfall and groundwater 

levels.  

As a practical implication for monitoring, we advise incorporating additional sensors such as 

for turbidity, conductivity, and dissolved oxygen in high-frequency monitoring stations. 

Autoanalyzers such as for P and NH4 continuous measurements are more sensitive and 

expensive than sensors. Autoanalyzers need reagents and are more likely to have gaps in the 

data series. In our dataset, the turbidity showed the largest information gain to fill the missing 

data. In addition, we advise keeping the Machine Learning models up to date with newly 

retrieved data to increase the reliability and robustness of the predictions. Furthermore, real-

time Machine Learning models can be used in high-frequency monitoring stations for 

detection of anomalies and warn when maintenance is needed.  

The groundwater quality was closely related to surface water quality. The interaction 

between groundwater and surface water is important in the nutrient transport. The 

groundwater quality showed heterogeneity in depth and in lateral distance to the drainage 

systems at the farms. Therefore, to study nutrient transport at the catchment scale we 

recommend putting some effort in shallow groundwater monitoring, together with tube drain 

effluent and ditch water monitoring. This can help identifying hot spots or nutrient sources. 

An alternative to measuring groundwater quality from permanent observation wells is the 

gas vapor probe (GVP) used for groundwater sampling in chapter 4. The GVP is a good tool to 

make shallow groundwater concentration-depth profiles (0 to 4 m depth). We recommend, 

if possible, to combine concentration-depth profiles with continuous groundwater level 

measurements and soil profiles to measure the dissolved Fe and P content together with 

other elements for which P has a strong affinity, such as Mn, Ca, and Al. 
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During this research, the nutrient input (manure and organic matter application in the field) 

was the information with the lowest level of detail. Precision farming can be a useful tool to 

incorporate and obtain high quality and detailed information on field-specific inputs. For 

future research we recommend looking into how to improve data collection on fertilizer 

application. It would be useful to collect data on the quantity of applied fertilizer, its form, 

and timing and incorporate this information into process- or data-based models. 

6.2 Importance of understanding P-Fe interactions in P transport 

It is important to understand P transport routes and the P-Fe interactions inside the farm to 

make a diagnosis and to select the best measures to reduce diffuse pollution. In this thesis 

we monitored farms with very different P-Fe dynamics. In both cases the soil was sandy, and 

the farms were drained with pipes and ditches, but the P transport dynamics from the soil to 

the surface water was different. The studied dairy farm in the east of the Netherlands had a 

low P/Fe ratio in the sub-soil and lower dissolved P concentrations in the drained water, while 

the two flower farms in the west had a high P/Fe ratio in the soil and high dissolved P 

concentrations in the drained water. To exemplify with values, the dairy farm in the east had 

a ammonium oxalate extractable P/(Fe+Al) molar ratio of 0.10-0.40 in the top soil and 0.04-

0.10 in the subsoil with dissolved P concentrations in the drained water between 0.02 and 

0.50 mg/L, while the flower farms in the west had a P/(Fe+Al) molar ratio of 0.40-0.60 in the 

top soil and 0.20-0.30 in the subsoil with dissolved P concentrations in the drained water 

between 2.50 and 10.00 mg/L. 

In the case that Fe-related sorption capacity was not occupied to critical levels, P was retained 

when the water moved though the subsurface. Therefore, P was found predominately 

associated with Fe-rich particles in the ditch. Consequently, changes in the farm water 

management that modified the P transport paths through different soil layers affected the 

seasonal P loads. In contrast, in the flower fields most P was transported as dissolved P as 

there was not enough Fe present naturally in the soil to retain the high P loadings. This gave 

the opportunity to place Fe-based P retention measures. ICS filters around the drains were 

used to remove the dissolved P. In the next sections new insight on P retention are explored 

for the two different scenarios.  
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6.3 New insights into P transport in agricultural areas with Fe-rich 

subsoil  

The P transport was investigated on a dairy farm with sandy Fe-rich subsoil in the east of the 

Netherlands in chapters 2 and 3. Results from soil analyses showed that the topsoil had 

accumulated high amounts of legacy P during the last decades leading to high P/Fe molar 

ratios and elevated dissolved P concentrations in the pore water, which implied a high risk of 

P leaching. However, the high Fe content in the subsoil (30-100 cm) and the water transport 

through this layer prevented high P concentrations in the groundwater and reduced the P 

losses to surface waters and deeper groundwaters. The transport through the iron-rich 

subsoil acted as a natural P-retention measure. 

From the P fraction that was not retained by the Fe-rich subsoil and was exported to the ditch, 

most (78%) was associated with Fe-rich particles that were resuspended in the ditch during 

discharge peaks. The Fe-rich particles were formed on site as the Fe-rich groundwater 

exfiltrated into the ditch or tube drains and got in contact with oxygen (not by overland flow 

or erosion). The suggested P-retention measures such as the construction of sedimentation 

ponds, or wider and vegetated ditches, which should allow the groundwater flow to go 

through the Fe-rich sandy subsoil and reduce the transport of P-rich sediments in the ditch 

towards downstream surface waters. These measures should be combined with periodic 

removal of the sediment in the ditch and sedimentation ponds. The summer season, when 

the ditch is dry, offers an ideal time for sediment removal. The sediment is rich in P and 

organic matter and may be re-used in the farm to improve the soil properties.  

We investigated whether water retention also enhances P retention. Water retention 

measures were implemented in the farm before the start of the 2020-2021 drainage season 

and resulted in a change of the nutrient transport routes. The water retention measures were 

designed to increase the groundwater levels and were thought as a climate-adaptation 

farming measure after the farm suffered from the effects of the drought in 2018. These water 

retention measures increased the lateral water transport through the P-rich topsoil which 

consequently increased significantly the P desorption from the top-soil and the P load 

transported downstream. This occurred despite the difference between the P input and 

uptake by the crop (P surplus) being negative in that year. Therefore, water retention involves 
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the risk of P-mobilization from the top-soil. We therefore advise to keep the groundwater 

levels below the topsoil and to combine water conservation with efforts to capture and reuse 

the ditch sediments.  

6.4 New insights into the implementation of Fe-based P retention 

measures at the farm scale 

Opposed to the dairy farm in the east of the Netherlands, the Fe-poor sandy soils of the tulip 

fields investigated in chapter 4 exhibited high P/Fe ratios in the soil and very high P 

concentrations in the groundwater. P was present in dissolved form and ICS filters were 

designed to retain it. Iron coated sand is a redox-sensitive material and when the ICS filters 

are placed below the groundwater level, the Fe could be reduced and, in turn, affect the P 

binding. The P (im)mobility at the onset of ICS reduction was investigated in two test fields 

and in the laboratory. In the two fields with three-year-old ICS filters, which were occasionally 

experiencing metal-reducing conditions, we observed that P was still efficiently removed by 

the ICS. Microcosm experiments were used to mimic the field conditions and investigate the 

P adsorption on ICS under reducing conditions further. For ICS with a molar P/Fe ratio of 0.013 

and exposure times of 45 days, P was not released even after partial Fe and Mn reduction 

under weakly, moderately, and strongly reducing conditions. Almost no changes were 

observed in the P sorption capacity and in the ICS mineral structure after the treatments 

under moderately and weakly reducing conditions.  

The main cause of the reducing conditions in the drainage water is the high organic matter 

content. When drains are below the groundwater level, the oxygen supply is limited. The 

absence of oxygen and the presence of dissolved organic matter can enable anaerobic 

respiration, in which microorganisms use nitrate (NO3), manganese (Mn) and Fe (hydr)oxides, 

sulfate (SO4), and/or CO2 as terminal electron acceptors. If the conditions are moderately or 

strongly reducing, the Mn and Fe oxides present in the ICS were partially dissolved, therefore 

it is recommended to monitor the Mn and Fe concentrations coming out of ICS filters. As Mn 

reduction is usually initiated before Fe reduction, the increase in Mn concentrations can be 

taken as a good early warning indicator.  We recommend monitoring the dissolved Fe and Mn 

losses as an early warning for reduced removal efficiency if the ICS filters are working under 

reducing conditions. In addition to Mn and Fe partial dissolution, mixed manganese-calcium 
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carbonate precipitates were formed in suspension under moderately and strongly reducing 

conditions, these particles could result in loss of hydraulic conductivity or clogging of filters. 

P was not released from the ICS under reducing conditions during the experiment because 

there were enough adsorption sites available. Therefore, we recommend that if possible, the 

ICS filters placed below the groundwater level are dimensioned to maintain low P/Fe molar 

ratios. When the conditions are strongly reducing, the ICS grains may change color from 

orange-red to black. This happens when there is a transformation of the iron oxides to iron 

sulfides. This is not desirable as the iron sulfides have a lower phosphate retention capacity 

than iron oxides. According to our calculations, under the studied conditions, P release would 

not be expected to be relevant within the lifespan of the drain tubes, about 20 years. The 

formation of iron sulfides is reversible, if the material is exposed to (water with dissolved) 

oxygen, the reduced iron is oxidized again to iron oxides.  

If the sulfide concentration is high in the drainage water or there are signs of sulfate 

reduction, using ICS may not be the best solution as the sulfide can reduce the Fe in the ICS. 

The redox sensitivity of Fe can be a limitation when applying ICS or iron sludge under strongly 

reducing conditions. Therefore, for future research, we recommend investigating other filter 

materials for such situations for example with elements that are not redox-sensitive and can 

bind P such as aluminum or calcium.  

Another relevant issue is that water management decisions about, for example, pumping 

rates and the corresponding flow-through velocities should be taken in view of the kinetics of 

P retention in the ICS filters. In chapter 5, a two-site adsorption reactive transport model was 

calibrated and validated to describe the kinetics of P adsorption to ICS. The model’s 

parametrization was based on long-term column experiments with two flow velocities and 

successfully represented adsorption and desorption processes, even under stop-flow 

conditions. Adsorption to the outer layers of the Fe-coating was conceived to be in 

equilibrium with the percolating water and follow a linear isotherm, but only represents a  

small fraction of the potential binding capacity. The lifespan of the filter is determined by the 

diffusion of P into the inner layers of the Fe coating, which is a slow process. For P 

concentrations below 20 mg-P/L, an equilibrium distribution coefficient of 28.1 L/g-Fe was 

obtained under the given conditions. This means that, for example, at a P concentration of 
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1.2 mg-P/L in the drainage water,  ICS with 0.15 g-Fe/g-ICS and a can retain 5 mg-P/g-ICS 

(28.1x0.15x1.2) in equilibrium. The corresponding P/Fe molar ratio for this example is 0.06. 

However, it is important to notice that only about 5% of the adsorption capacity is found on 

the outer layers of the ICS grains and can retain P almost instantly. The other 95% of the 

retention capacity is inside the coating of the grains and is limited by the diffusion of the P to 

the inside. This is a slow process which has a characteristic time scale of 267 days.  

 Due to the slow P transport into the coating, optimal ICS filter operation includes resting 

periods, which can extend the filter operation time. To make use of the total P retention 

capacity, it is important to give time for the P to diffuse inside the ICS grains. We advise using 

ICS filters in slow-flow systems to optimize P adsorption, with flow velocities below 10 cm/h. 

Resting periods can be introduced to improve the performance of the ICS filters. For example, 

having two parallel filters and alternating their use every 2 weeks can improve P retention. 

This operation can be implemented for example in decentralized systems such as greenhouse 

effluents or in edge-of-field filters. In addition, the contribution of slow adsorption can be 

significant in ICS applications in natural systems, which are naturally exhibiting resting periods 

between rain events.  

For future research we recommend performing a cost-benefit analysis and a life cycle 

assessment of different nutrient retention measures in agriculture including ICS filters. 

Moreover, it is interesting to evaluate the difference between ICS filters where the flow has 

stopped but the filter is still in contact with stagnant water versus filter, which dry out. The 

two scenarios might exert influence on P retention after the summer when water is 

percolating through the filter again. Currently, we do not know whether it is better to drain 

the ICS filter and keep it dry during the inactive summer period or to keep it wet. It would be 

interesting to do a pilot field study with ICS filters where the flow velocity is monitored to 

evaluate the reactive transport model under field conditions.  

6.5 Case studies using ICS filters  

The implementation of nutrient retention measures that sustain the growth of agriculture in 

a sustainable way are of great importance. With three case studies we want to show how the 

findings of this research contribute to the design and operation of P-retention measures that 

use ICS and offer new insights into the redox behavior and kinetic adsorption on ICS filters. 
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The first case study presented is about the ICS filters around drains presented in chapter 4. 

The second case study evaluates the performance of an ICS filter placed in surface waters. 

The third case study is on a protected natural area that had high particulate and dissolved P 

in the drainage water and a water retention basin was built to retain P particles combined 

with drains covered with ICS in the outflow to retain the dissolved P. For each case the 

principles of P retention, the main questions brought by the managers, and the advice offered 

are shortly described. 

6.5.1 ICS around drains in the Bollenstreek  

Phosphate adsorption on ICS was investigated under reducing conditions in two field sites. 

The ICS enveloped drains were constructed 3 years before and were during that time exposed 

to reducing conditions. The P concentrations in the drainage water are very high, between 2 

and 10 mg/L. The region has nutrient-poor sandy soils and the farmers add a mix of compost 

and straw as fertilizer which are sources of P  and organic matter. The drains transport 

rainwater and upwelling groundwater. The combination of these factors result in a high risk 

for dissolved P leaching. Furthermore, in the absence of oxygen and nitrate, it is likely that 

the abundant Fe and Mn oxides present in the ICS are used as terminal electron acceptors by 

dissimilatory metal-reducing organisms creating metal-reducing conditions.  

In both fields, about 0.015 m3 of ICS were added per linear meter of drain (~ 26.5 kg ICS/m) 

without mechanical packing (figure 6-1). The drains were constructed every 10 m, placed 90 

cm below the surface, and the groundwater level is kept at around 60 cm. In both fields, 

Rijnland waterboard, Delphy farmer association, and Deltares were involved in the design of 

the field experiment. The drains are connected to a main drain that discharges into a pumping 

station with a floater-activated pump that maintains the groundwater level constant by 

discharging into a ditch. In the summer, evapotranspiration is higher than precipitation and 

there is no need to continuously pump water out of the field, instead, the drains are used for 

irrigation, the level in the ditch is elevated and oxic water infiltrates from the ditch into the 

field via the tube drains.  
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Figure 6-1 ICS filter construction around drains in a flower growing farm in the west of the 

Netherlands 

Although the ICS filters around the drains were only subject to moderate reducing conditions, 

we measured dissolved Fe and Mn in the outflow of the drains. The dissolved P was still 

efficiently removed with a removal efficiency between 50 and 80% in one field and 85 and 

90% in the other. The differences in efficiency may be explained because the P concentrations 

measured in the shallow water may underestimate the real drainage water concentrations as 

the deeper groundwater had very high P concentrations at this location.  Even though the 

removal efficiencies were high, they were lower than the 93% efficiency reported previously 

by a similar experiment in the Netherlands (Chardon et al., 2021). We believe that the 

difference in efficiency can be ascribed to different flow velocities. Active water pumping led 

to flow velocities around 180 cm/d in the ICS at the two fields investigated in this study, while 

the water flow in the ICS  in the experiment described previously by Chardon et al. (2021) was 

only up to 60 cm/d and the water moved by gravity alone Our results together with the ones 

presented in Chardon et al. (2021) provide evidence that ICS filters under weak and moderate 

reducing conditions retain P efficiently, up to 5 years after the construction tested so far.  
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6.5.2 Filter in De Put, Rijswijk, managed by Delfland 

De Put is a recreation lake in the Rijswijk municipality in the Netherlands. The lake has an 

important recreational function in this dense urban area. There are a swimming club, fishing 

club, wedding resort, and tennis club around the lake. The lake was a sand extraction pit and 

is 12 m deep. Since 2015, the lake is having water quality issues resulting in algae blooms. 

Negative swimming advice was issued throughout the years 2016 to 2019 and the swimming 

club had to close its doors for these seasons. Another consequence of the poor water quality 

is that part of the fish population regularly dies in autumn. Due to fish mortality, the fishing 

club loses members, needs to buy new fish, and operates an aeration system, measures that 

are costly and not sustainable.  

The water board (Delfland) studied the water quality of the lake and determined that the high 

nutrient contents were the cause for the algae blooms and that the source of nutrients was 

the sediment. Because the lake is deep and in a highly urbanized area, the waterboard 

decided it was better not to dredge or cover the sediment. Therefore, an innovative solution 

to reduce the P concentration in the lake was needed. Together with the support of Delfland 

and the province of South Holland, Arcadis designed a submerged pilot ICS filter to remove P 

from the water (figure 6-2). A video showing the construction is available here:  

https://youtu.be/YP_IoWeLbKQ.  

Two ICS filters were deployed, each consisting of 1 m3 of ICS inside a big bag with an electric 

pump in the center. The filter had a second function which was mixing the water in the lake. 

The pump was selected to work continuously at a 100 L/min flow rate.  The water enters the 

filter from all the sides of the big bag and the outflow is a hose placed above the water level. 

The big bags were placed approximately 2 m below the surface. To avoid possible clogging, 

the ICS was sieved to sizes larger than 5 mm. The efficiency of the filter in the first four months 

of operation was very low (between 0 and 5%) despite being designed to remove 20% of the 

inflow P based on laboratory batch experiments. The managers posed the question why the 

filter was having lower performance than expected and if a solution could be identified.   

https://youtu.be/YP_IoWeLbKQ
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Figure 6-2 ICS filter in a lake. The filters are two big-bags with 1m3 of ICS each and a pump 

in the center, the filters are 2 m below the surface. The water enters from all sides of the 

big-bag and the hose is the outflow of the filter. 

We thought of possible reasons why the filters were having such low performance and later 

tested our hypothesis on a field experiment. The oxygen saturation average was 77%, 

therefore the conditions were oxic and issues related to reductive dissolution were discarded. 

Another possible explanation was the high flow and the short retention time of the water in 

the filter. The contact time was only 5 minutes. We proposed to increase the retention time 

to 60 minutes or more to make better use of the slow adsorption capacity of the ICS. 

However, the flow rate of the current pumps could not be adjusted, as the existing pump had 

to be replaced by a smaller pump which was not possible. As an alternative, we proposed to 

operate the filters in a stop-flow regime. This could be done simply by placing a timer in the 

pump’s socket. The new flow regime was set for the filters to work 4 hours per day and rest 

during the rest 20 hours of the day.  

Two weeks after the filters were working in the new regime, samples were taken during 

operation and the water flow was measured. One of the filters had constant flow and in the 
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other one the flow oscillated. The flow variations were linked to preferential flows. The 

preferential flows were likely caused by the reorganization of ICS grains during pumping, the 

height of the filters was about 30 cm lower than when deployed. In the filter with constant 

flow, the new flow regime had a positive effect on P removal. The starting removal efficiency 

was about 20% and it decreased after 2 hours to about 3%. This experiment proved the low 

efficiencies were explained by the high flow velocities and that higher removal rates could be 

achieved with longer retention times. Although the experiment successfully identified the 

problem, the measure was not considered suitable for the lake as too many filters would be 

needed to achieve the desired P removal in a short time frame.  

6.5.3 Basin and filter in the inflow of the Grote Meer, managed by Brabantse Delta 

The Grote Meer is a lake system in the Noord Brabant province of the Netherlands. The lake 

has several (rare) biological species and has had water quality problems in the last few years. 

High dissolved and particulate P concentrations are one of the reasons for the decrease in 

water quality. The lake is surrounded by farmlands and natural areas, it was agreed that the 

best option to preserve the lake’s water quality was to reduce the P input towards the lake. 

A high winter removal efficiency was needed as in the summer very little water flows into the 

lake.  For this reason, traditional solutions such as constructed wetlands were not suitable 

because they only have high removal efficiencies in summer.  

The measure designed by Arcadis consists of a water retention basin of about 1 hectare and 

an ICS filter system in the outflow (figure 6-3). The retention basin was designed to retain 

particles that could clog the filter and buffer the peak flows as high flow velocities decrease 

the P retention efficiency. The system works by gravity. At the outflow of the basin, there are 

three drains covered with ICS inside a trench, 1100 m3 of ICS were used. The ICS filter 

construction was finished at the end of 2020 and treats approximately half of the water 

entering the Grote Meer lake system. A video of the ICS filter provided by the waterboard is 

available here: https://youtu.be/ZmKvMsLqstI. The ICS is obtained from AquaMinerals and is 

from the same batch that was used in chapters 4 and 5. The filter was designed to keep 

outflow concentrations below 0.08 mg/L. After one year, the monthly monitoring was 

analyzed. The monthly monitoring included one sample in the basin and one sample in the 

outflow of the filter. It measured total and dissolved P, total nitrogen, nitrate, and ammonia, 

dissolved oxygen, pH, and metals, including Fe (unfiltered). The ICS filter was having a positive 

https://youtu.be/ZmKvMsLqstI
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effect on the P concentrations in the lake. As a result of the measurements and monitoring, 

additional questions regarding the pH of the filter outflow, heavy metals, and P 

concentrations were formulated by the water board.  

Water quality samples were taken inside the water retention basin and in the outflow of the 

ICS covered drains and measured total and dissolved P. Therefore, the efficiency considers 

the removal by the ICS filter but settling in the basin can also influence the results. The 

measurements show that the efficiency of the filter is high in the winter but decreased in the 

summer months. In the winter months from October to January, the dissolved P removal 

efficiency was between 95 and 99 %, and the dissolved P concentrations in the inflow 

between 0.25 and 0.80 mg/L. In the summer the efficiency decreased, moreover, the total P 

concentrations were very low in the inflow, below 0.08 mg/L, and the dissolved P was around 

0.02 mg/L. The flow rate was not measured, but observations showed that in the summer 

almost no water flowed out of the filter. Therefore, the flow velocities were not expected to 

cause the decrease in efficiency. In the column adsorption experiments in chapter 5, the 

lowest P concentrations obtained were around 0.02 mg/L in the outflow when the 

experiment started. It is therefore possible that it is very hard to obtain lower effluent 

concentrations with this ICS which has a P/Fe molar ratio of 0.015. Adsorption is an 

equilibrium process; P retention is reduced at low P concentrations. After longer exposure 

periods when the P concentration in the solid increases, low P concentrations could even 

cause P desorption from the solid. If this were to happen in the future, the filter could be 

bypassed during the summer months. We advised measuring the amount of water flowing 

out of the filter together with the P concentrations to get a better impression of the P loads 

removed.  

The pH increased about 1 unit after the filter but was always below 8 in the outflow. This 

effect was reported in the literature, Wang et al. (2013) measured OH- ions release as they 

were exchanged for phosphate ions in the active sites of ICS. Moreover, nitrate and metals 

concentrations decreased when comparing the inflow and the outflow of the filter. This 

decrease implies there are other processes beyond P adsorption taking place in the filter, 

such as metal adsorption, sedimentation, and denitrification, which may influence the pH. 

Another explanation is that calcium concentrations in the effluent were consistently higher 

than in the influent. The dissolution of calcium containing minerals can lead to higher hydroxyl 
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concentrations and therefore to an increase of pH. If this was the reason for the increase in 

pH, we expect the effect to decrease in about 3.5 years (time expected for the excess calcium 

to be washed out and the outflow calcium concentrations to be similar to the inflow values). 

Only one measurement was done inside the lake during the operation of the filter where the 

pH was 6.3, therefore, it is not yet clear whether the pH change of the filter outflow water 

affects the pH in De Groote Meer. We advised continuing to monitor the filter outflow and 

adding a sampling point in the lake.  

 

Figure 6-3 ICS filter and basin, three drains are covered by ICS which filters the water 

The measurements showed that the filter also captures most of the trace metals. 

Nevertheless, nickel concentrations were higher in the outflow of the filter than in the inflow. 

Research shows that Fe (hydr)oxides can also adsorb  trace metals (including nickel, zinc, 

cadmium, and copper), which may explain the decrease in the mentioned metals (Boujelben 

et al., 2009; Bruemmer et al., 1988; Cowan et al., 1991). A selection of metals (Cd, Cr, Li, Ni, 

Pb, and Zn) were measured with ICP-OES in the first 40 days of operation of the columns in 

chapter 5. No leaching of the mentioned metals was measured during the experiment; 

besides calcium, iron, and manganese, all metals were below the detection limit. For these 

reasons, it seems unlikely that the ICS is the cause of the additional increase in nickel. One 

possible explanation is the soil movement during the construction of the filter caused the 

additional nickel release. Pyrite is a mineral that is often associated with nickel. If this 
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explanation is correct, we expect a decrease in nickel over time. In the last month measured, 

the concentration of nickel decreased to be about the same as in the influent. We advised to 

continue monitoring these trace metals and if the nickel does not decrease to seal the bottom 

of the basin. 
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9 Summary 

This research was motivated by the impact of the diffuse P sources coming from agriculture 

on surface water quality and eutrophication. The goal of this Ph.D. thesis was to contribute 

to improving the management of drained agricultural areas to optimize the retention of Fe-

associated P. Because of the legacy P in the soil, P-retention measures are needed in 

agricultural catchments to improve the surface water quality in the short- to middle-term. 

The first part of this thesis focused on monitoring the P transport at the farm scale. The 

second part of this thesis focused on investigating the mechanisms of P-retention by iron-

coated sand (ICS), a Fe-rich by-product from drinking water production.  

At the monitored farm in the Fe-rich sandy soils in the east of the Netherlands, Fe had an 

important role in the P transport. After the first year of monitoring, it was observed that the 

topsoil (0-30 cm) had high soluble P contents and a high P/Fe molar ratio. This combination 

would result in a high risk of P leaching. However, the high Fe content in the subsoil prevented 

high P concentrations in the groundwater and reduced the P losses to surface waters and 

deeper groundwaters. Once in the ditch, most of the P was associated with Fe-rich particles. 

Particle transport to downstream areas mainly occurred when particles were resuspended 

during discharge peaks.  

After four years of data were collected, we optimized the post-processing of high-frequency 

data using Machine Learning and investigated the effect of water retention measures on P 

transport loads. Random Forest enabled an accurate estimation of missing data but its use 

for forecasting should be done with care, especially in scenarios involving system changes, 

such as forecasting the effect of differences in rainfall and groundwater levels caused by 

climate change. In the last measured season, water retention measures were implemented 

and there was a negative P surplus. Despite these facts, even more P left the farm. When 

water retention measures were implemented on the farm, the nutrient transport routes 

changed. The transport through the P-rich topsoil increased the P desorption and increased 

the total P load transported downstream.  

ICS filters are sometimes placed below the groundwater level and the oxygen supply is 

limited. Fe is a redox-sensitive material and the absence of oxygen and the presence of 
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dissolved organic matter can enable anaerobic metabolism which could affect the P 

retention. P adsorption on ICS was investigated under reducing conditions in two tulip field 

sites in the coastal dune sands and in the laboratory. Three-year-old ICS filters were subject 

to reducing conditions in the fields while P was still efficiently removed. Microcosm 

experiments were used to mimic the field conditions and P was also not released even after 

partial Fe and Mn reduction under weakly, moderately, and strongly reducing conditions. 

When the experiment ended, almost no changes were observed in the P sorption capacity 

and the ICS mineral structure. Only a small percentage of Fe transformed into iron sulfides in 

the outer layer of the Fe coatings under strongly reducing conditions which slightly reduced 

the P adsorption capacity. Nevertheless, these detrimental effects are expected to become 

relevant only after long operational periods (~20 years), i.e., similar to the lifespan of the 

drains.  

The P retention on ICS is a kinetic process. A two-site adsorption reactive transport model 

was used to describe the kinetics of P adsorption on ICS. The model parametrization was 

based on long-term column experiments and supported by scanning electron microscopy 

(SEM-EDX). At the relatively low P concentrations found in agricultural catchments, the 

adsorption to the outer layers of the Fe-coating can be represented with linear equilibrium 

adsorption. Nevertheless, 95 % of the ICS adsorption capacity was determined by slow 

kinetics that described the intra-particle diffusion inside the Fe-coating. The model can be 

used to optimize the design and operation of ICS filters including resting periods to profit from 

the slow kinetics.  

Take-home messages for managers include to have confidence in the use of ICS filters even if 

the filters are temporarily under moderately reducing conditions. We recommend monitoring 

the dissolved Fe and Mn losses as an early warning for ICS filters that are working under 

reducing conditions. Moreover, we recommend dimension the ICS filters to maintain low P/Fe 

ratios if they are constructed below the groundwater level. We support the incorporation of 

resting periods and low flow velocities in ICS filters and advice using the presented model 

(chapter 5) for their design and operation. We recommend the use of Machine Learning tools 

for the post-processing of monitoring data but warn against their use for forecasting, 

especially in scenarios involving climate change. Finally, we recommend the monitoring of 

system changes such as water retention measures or other farm practices and quantifying 
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the effect they have on nutrient transport to prevent water quality problems downstream. 

Hopefully, these results contribute to improving the management of Fe-associated P in 

agricultural areas.
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10 Samenvatting 

De aanleiding voor dit onderzoek is de impact van de diffuse P-bronnen afkomstig van de 

landbouw op de kwaliteit van het oppervlaktewater en de eutrofiëring. Het doel van dit 

proefschrift is een bijdrage te leveren aan de verbetering van het beheer van gedraineerde 

landbouwgebieden om de retentie van Fe-geassocieerd P te optimaliseren. Vanwege de 

historisch opgebouwde voorraad P in de bodem zijn P-retentiemaatregelen nodig in 

landbouwgebieden om de oppervlaktewaterkwaliteit op korte tot middellange termijn te 

verbeteren. Het eerste deel van dit proefschrift concentreert zich op het monitoren van het 

P-transport op bedrijfsschaal. Het tweede deel van dit proefschrift was gericht op het 

onderzoeken van de mechanismen van P-retentie door ICS (ijzerzand), een Fe-rijk bijproduct 

van drinkwaterproductie.  

Op het onderzochte melkveebedrijf speelde Fe een belangrijke rol in het P-transport. Na het 

eerste monitoringsjaar werd vastgesteld dat de bovengrond (0-30 cm) hoge oplosbare P-

gehaltes en hoge P/Fe-molaire verhoudingen had. Deze combinatie leidt tot een hoog risico 

op P-uitspoeling. Omdat de meeste uitspoeling via de Fe-houdende onderlaag plaatsvindt, 

blijven de P-concentraties in het uitspoelingswater laag en de P-verliezen naar het 

oppervlaktewater en diepere grondwater beperkt. Eenmaal in de sloot bindt het meeste P 

aan Fe-rijke deeltjes, waardoor het transport naar benedenstroomse gebieden vooral 

plaatsvindt wanneer resuspensie optreedt tijdens afvoerpieken. 

Nadat vier jaar lang gegevens werden verzameld, hebben we de nabewerking van 

hoogfrequente monitoringgegevens geoptimaliseerd met behulp van Machine Learning-

technieken. Random Forest maakte een nauwkeurige schatting van de ontbrekende gegevens 

mogelijk, maar het gebruik van Machine Learning voor voorspellingen vraagt voorzichtigheid, 

vooral in scenario's met klimaatverandering, bijvoorbeeld bij het voorspellen van de effecten 

van verschillen in regenval en grondwaterstanden. In het laatste gemeten seizoen werden 

waterretentiemaatregelen uitgevoerd en was er een negatief fosfaatoverschot. Toch spoelde 

er meer P uit dan in andere jaren. Toen op het bedrijf waterretentiemaatregelen werden 

uitgevoerd, veranderden de transportroutes voor nutriënten. De extra grondwaterstroming 

door de P-rijke bovengrond verhoogde de P-desorptie uit de bodem en verhoogde de P-

uitspoeling naar het oppervlaktewater. 
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ICS-filters worden soms onder het grondwaterniveau geplaatst en de zuurstoftoevoer is dan 

beperkt. Fe is een redoxgevoelig materiaal en de afwezigheid van zuurstof en de 

aanwezigheid van opgelost organisch materiaal kan anaeroob metabolisme mogelijk maken, 

en dit kan de P-retentie beïnvloeden. P-adsorptie aan ICS werd onderzocht onder 

reducerende omstandigheden op twee veldlocaties en in het laboratorium. In drie jaar oude 

ICS-filters in het veld ontwikkelden zich reducerende omstandigheden.  Toch werd P nog 

steeds efficiënt verwijderd. Er werden microkosmos-experimenten gebruikt om de 

veldomstandigheden na te bootsen en ook na gedeeltelijke reductie van Fe en Mn onder 

zwak, matig en sterk reducerende omstandigheden kwam er geen P vrij. Aan het eind van het 

experiment werden vrijwel geen veranderingen waargenomen in de P-sorptiecapaciteit en 

de minerale structuur van ICS. Slechts onder sterk reducerende omstandigheden 

transformeerde een klein percentage Fe  in ijzersulfiden in de buitenste laag van de ICS , 

waardoor de P-adsorptiecapaciteit enigszins afnam. Niettemin wordt verwacht dat deze 

nadelige effecten pas relevant zullen worden na lange operationele perioden vergelijkbaar 

met de levensduur van de drainagebuizen, circa 20 jaar.  

De P-retentie op ICS is een kinetisch proces. Om de kinetiek van P-adsorptie op ICS te 

beschrijven werd een reactief transportmodel met twee typen bindingsplaatsen gebruikt: 

snel en langzaam. De parameterisering van het model was gebaseerd op lange termijn 

kolomexperimenten en werd ondersteund door een rasterelektronenmicroscoop (SEM). Bij 

lage P-concentraties in landbouwgebieden kan de adsorptie aan de buitenste lagen van de 

Fe-coating worden gesimuleerd met lineaire evenwichtsadsorptie. Niettemin werd 95% van 

de adsorptiecapaciteit van ICS bepaald door een langzame bindingsplaatsen die pas na 

diffusie naar de binnenste lagen van de Fe-coating bereikbaar zijn. Het model kan worden 

gebruikt om het ontwerp en de werking van ICS-filters te optimaliseren, met inbegrip van 

rustperioden om optimaal gebruik te maken van de trage kinetiek.  

Een van de conclusies voor beheerders is dat zij vertrouwen moeten hebben in het gebruik 

van ICS-filters, zelfs als de filters tijdelijk onder zuurstofloze omstandigheden werken. Wij 

bevelen aan de verliezen aan opgelost Fe en Mn te monitoren als indicatoren voor een 

mogelijke verminderde effectiviteit als  de ICS-filters onder reducerende omstandigheden 

werken. Wij bevelen aan bij het ontwerp van de ICS-filters een hoge verhouding vaste 

stof/vloeistof te hanteren indien zij onder het grondwaterniveau worden aangelegd. Wij 
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raden rustperiodes en lage stroomsnelheden aan in ICS-filters en adviseren het gebruik van 

het gepresenteerde model (hoofdstuk 5) voor het ontwerp en beheer ervan. Wij raden het 

gebruik van Machine Learning aan voor de nabewerking van monitoringgegevens, maar 

waarschuwen voor het gebruik daarvan voor voorspellingen, vooral in scenario's waarin 

sprake is van klimaatverandering. Ten slotte adviseren wij systeemveranderingen zoals 

waterretentiemaatregelen of andere landbouwpraktijken te monitoren en  het effect ervan 

op het transport van nutriënten te kwantificeren om waterkwaliteitsproblemen 

stroomafwaarts te voorkomen. Hopelijk dragen deze resultaten bij tot een beter beheer van 

Fe-geassocieerd P in landbouwgebieden.
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