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Abstract
How we can accelerate the diffusion of new clean energy technologies worldwide is a 
highly relevant topic for energy and climate policies, as well as industrial policies. We trace 
the time lag between the introduction and the diffusion of breakthroughs in solar photovol-
taic technology and wind power technology. Our results show that both domestic knowl-
edge base and organizational proximity to the country introducing breakthroughs, help 
latecomer countries catch up by actively innovating in these technologies on their own. 
Moreover, we find that there are more opportunities for latecomer countries with stronger 
domestic knowledge base to catch up in solar photovoltaic technology than wind power 
technology. The results of this paper provide systematic evidence of the technology-sensi-
tive catching-up process in the clean energy technological paradigm.

Keywords Catching-up · Solar photovoltaic technology · Wind power technology · 
Diffusion · Relatedness · Proximity · Multinational companies

JEL Classification O14 · O25 · O31 · O33 · Q55

1 Introduction

The decarbonisation of our current energy systems to meet climate change mitigation 
goals is crucial and urgent, requiring a faster diffusion of new clean energy technologies 
worldwide. This challenge is especially acute in latecomer countries where the demands 
for energy grow rapidly (Grubler et al., 2016; Sovacool, 2016). Besides the goal of climate 
change mitigation, the emerging clean energy technological paradigm offers latecomer 
countries windows of opportunity to catch up with countries on the technological frontier 
of these radically new technologies (Lema et al., 2020; Mathews, 2013; Pegels & Alten-
burg, 2020; Perez, 2016).
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Although latecomer countries can deploy clean energy technologies relatively easy 
relying on imported clean energy products (Bento et al., 2018; Grubler et al., 2016), their 
ability to innovate in clean energy technologies up is another matter. To catch up with 
countries on the technology frontier, latecomer countries need to acquire advanced tech-
nological capabilities for innovating in radically new technologies on their own by learning 
about the technology, its production and its deployment (Perez & Soete, 1988). Moreover, 
recent studies show that successful catching-up is mainly driven by a country’s ability to 
move into new technologies at an early stage (Alshamsi et al., 2018; Hartmann et al., 2021; 
Lee & Lim, 2001; Lee & Malerba, 2017).

Recent studies in evolutionary economic geography highlight that technological devel-
opment is a path-dependent process, with new technological capabilities building on exist-
ing ones [for systematic reviews: see Boschma (2017) and Hidalgo (2021)]. Using patent 
data, these studies found that countries tend to diversify into new technologies that are 
related to technologies that they already master. Moreover, besides domestic capabilities in 
related technologies, the ability to catch up in a new technology also depends on a coun-
try’s access to knowledge residing in other countries, in particular, where new technologies 
originate (Balland & Boschma, 2021; Boschma, 2017).

The present study deals with the catching-up process in clean energy technologies by 
investigating how fast latecomer countries can start innovating in radically new technolo-
gies on their own. We conceive of this process as a technological diffusion process. Follow-
ing a recent methodology to identify radically new technologies (we will use radically new 
technologies and breakthroughs interchangeably in the remaining part of the paper) as new 
combinations between patent classes (Verhoeven et al., 2016), we trace the spatial-tempo-
ral diffusion of breakthroughs in solar photovoltaic technology and wind power technology, 
and quantify the impacts of domestic knowledge base and international access to the new 
knowledge on the speed of diffusion. The comparison between the spatial-temporal diffu-
sion patterns of solar photovoltaic technology and wind power technology further allows 
us to shed light upon the technology-sensitive catching-up process in clean energy tech-
nologies as suggested by recent literature (Binz et al., 2017; Malhotra & Schmidt, 2020; 
Schmidt & Huenteler, 2016).

The remainder of the paper is structured as follows. In Sect. 2, we review the relevant 
literature on the temporal and spatial diffusion of new technologies. In Sect. 3, we describe 
the data, econometric model and variables. In Sect. 4, we present the results of descriptive 
analysis and econometric analysis. We conclude by discussing the implications of our find-
ings in Sect. 5.

2  Theoretical background

2.1  Windows of opportunity and the entry timing

The diffusion of new technology is inherently a spatial process that new technologies origi-
nate in certain places, often technology centres, and diffuse to other places if they are suc-
cessful (Hägerstrand, 1973). The spatial diffusion process from technology centres to the 
periphery is through a hierarchy of sub-centres. In this process, industrialized countries 
often enter early on, with the comparative advantage later shifting to latecomer countries 
as a new technology reaches maturity (Perez & Soete, 1988).
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The emergence of new technologies opens windows of opportunity for latecomers 
to catch up through imitating and improving upon them (Perez & Soete, 1988; Lee & 
Malerba, 2017) extended the notion of windows of opportunity to various building blocks 
of sectoral innovation systems. They explain that, besides technological breakthroughs, 
other forces such as major shifts in market structures and large shifts in politics, could 
also open such windows of opportunity. Yap and Truffer (2019) further argued that the 
latter two processes are especially important for the catching-up process in clean energy 
technologies.

Although the conventional spatial diffusion process of technologies suggests that it 
might be easier for latecomer countries to enter a new technology at a more mature stage, 
the right timing of entry is key to the catching-up process of latecomer countries when 
windows of opportunity emerge (Perez & Soete, 1988). The evolutionary view of techno-
logical change suggests that new technologies develop path-dependently following well-
defined technological trajectories (Dosi, 1982). Later entry indicates a larger gap with the 
technological frontier due to the accumulation of experience and skills in the incremen-
tal improvements of a new technology along the diffusion process (Dosi, 1991; Metcalfe, 
1981; Rosenberg, 1982). Furthermore, later entry also implies less technological opportu-
nities because most technological opportunities might have already been exhausted when a 
new technology matures (Dosi, 1982; Perez & Soete, 1988).

The importance of early entry in new technologies is corroborated by recent studies of 
the search behaviour of inventors and firms showing that the utilization of emerging knowl-
edge correlates with a higher technological impact of inventions (Capaldo et al., 2017; Kok 
et al., 2019; Mukherjee et al., 2017). Moreover, higher utilization rates of recent technolo-
gies are associated with the improvement in performance, or the cost reduction of new 
technologies (Benson & Magee, 2014, 2015).

Recent case studies in catching-up literature also confirm that mid- to long-run eco-
nomic catch-up is mainly driven by a country’s ability to move into new sectors at an 
early stage (Hartmann et  al., 2021; Lee & Lim, 2001; Lee & Malerba, 2017). However, 
these empirical insights on the timing of entry and catching-up remain largely qualita-
tive. Kwon et al. (2017) were the first to systematically quantify the catching-up process 
by investigating the time needed for inventors of a particular country to cite an invention 
from technological frontier. They showed that Korea, Israel and Taiwan managed to nar-
row the gap with technological frontier, whereas similar progress could not be observed 
in China and India. Nevertheless, we still lack a systematic understanding of the determi-
nants of the early entry of latecomer countries in new technologies since their study only 
focused on the overall technological progress of specific countries instead of in particular 
new technologies.

2.2  Local capabilities and the temporal dimension in evolution economic 
geography

The earlier version of windows of opportunity concept suggested that the diffusion of radi-
cally new technologies is rather independent of the pre-existing technology structure in the 
receiving country or region (Perez & Soete, 1988; Storper & Walker, 1989). The reasoning 
here was that radically new technologies are fundamentally different from previous tech-
nologies. Hence, what is learnt in the past would be less relevant for understanding and 
institutionalising the new technologies.
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However, new technologies do not diffuse automatically nor in isolation from other 
technologies (Grubler et al., 2016). Latecomer countries need the capacities to absorb and 
assimilate the new technology, and overcome the costs of entry (Cohen & Levinthal, 1990; 
Maskell & Malmberg, 1999; Perez & Soete, 1988). In this context, recent studies in evolu-
tionary economic geography highlighted the role of related capabilities in the development 
of new technologies (see an extensive review in Hidalgo (2021)). Building on an seminal 
study of the diversification in exports by Hidalgo et  al., (2007), these studies show that 
countries are more likely to diversify into new technologies that are related to their existing 
knowledge bases (Li et al., 2020; Perruchas et al., 2020; Petralia et al., 2017).

However, as pointed out by Henning (2019), these studies only compare the new tech-
nology emerging in a country with the pre-existing technology structure of the focal coun-
try in the past. It ignores whether the focal technology is already established globally and 
only new to the country, or is also new to the world (Boschma et al., 2017; Heimeriks & 
Boschma, 2014). Put differently, studies in evolutionary economic geography focused only 
on the introduction of novelty in a local context, while neglecting diffusion of technol-
ogy as a process at the global level. The temporal dimension thus remained rather abstract 
(Henning, 2019).

In this study, we focus on technologies that are new to the world and investigate to what 
extent the existing related capabilities in countries matter for the speed at which coun-
tries become actively innovating in these new technologies on their own. Radically new 
technologies or breakthroughs are considered the results from the combination of exist-
ing knowledge, technologies and artefacts in novel ways (Arthur, 2007; Arts & Veugel-
ers, 2015; Fleming, 2001; Henderson & Clark, 1990; Strumsky & Lobo, 2015; Verhoeven 
et al., 2016). Building on this view, Pezzoni et al. (2022) traced the diffusions of radically 
new technologies, and found that they can diffuse faster if their components were familiar 
to the inventors’ community. We therefore expect that the local related capabilities of coun-
tries can facilitate early entry in the radically new technologies.

2.3  Clean energy technologies and technology‑sensitive catching‑up processes

Clean energy technologies are considered radical and disruptive in the energy sector 
because of their distinct knowledge base and potential to replace fossil fuel technologies 
(Geels, 2018; Markard & Truffer, 2008; Wilson, 2018). These technologies rely on diverse 
knowledge inputs from largely unrelated technologies (Barbieri et al., 2020), and can thus 
be considered more complex than dirty technologies. However, knowledge and skills accu-
mulated in related technologies, even in fossil fuel technologies, can still help countries 
diversify into clean energy technologies (Li et al., 2020; Perruchas et al., 2020; van den 
Berge et  al., 2020). Furthermore, the increased global interdependence in clean energy 
transitions allows countries to engage in the global value chains and global innovation net-
works of clean energy technologies (Binz & Truffer, 2017; Meckling & Hughes, 2018). 
The technology transfer and learning through these international linkages play an impor-
tant role in the development of clean energy technologies, especially for the catching-up of 
latecomer countries (Binz & Anadon, 2018; Gosens et al., 2015; Haakonsson & Slepniov, 
2018; Lema & Lema, 2012, 2016; Quitzow, 2015; Zhang & Gallagher, 2016).

Lee & Malerba (2017) suggested that there are heterogeneities in the catching-up pro-
cesses of different technologies. This also holds for clean energy technologies. The techno-
logical characteristics of different clean energy technologies may have important impacts 
on the spatial-temporal diffusion of breakthroughs in these technologies (Binz et al., 2017; 
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Binz & Truffer, 2017; Malhotra & Schmidt, 2020; Schmidt & Huenteler, 2016). In the 
recent conceptual framework of the Global Innovation Systems, solar photovoltaic technol-
ogy is categorized as more footloose, whereas wind power technology is categorized as 
spatially more sticky (Binz & Truffer, 2017; Schmidt & Huenteler, 2016). This is related to 
the dominant design in wind turbine technology, which appeared earlier than the dominant 
design of solar photovoltaic technology (Huenteler et al., 2016b). The innovation focus of 
wind turbine has consequently shifted to its components and grid connection (Huenteler 
et al., 2016a), whereas inventors in photovoltaic technology are still researching alternative 
solar photovoltaic cells with better performance (Kalthaus, 2019; Leydesdorff, 2015). The 
continuing technological dynamism in the solar photovoltaic technology may thus offer 
continuing windows of opportunity for latecomer countries to catch-up.

Solar photovoltaic technology is further considered to follow mostly the STI (science-
technology-innovation) innovation model and standardized mass production which requires 
more manufacturing capabilities, whereas wind turbine technology is considered to fol-
low more the DUI (doing, using and interacting) innovation mode which requires more 
design capabilities (Binz & Truffer, 2017; Schmidt & Huenteler, 2016). Knowledge trans-
fer in solar photovoltaic technology is often embodied in capital goods like manufacturing 
equipment which can be relatively easily transferred across globalized markets, whereas 
the knowledge transfer in wind turbine technology is more dependent on the transfer of 
tacit knowledge (Binz & Truffer, 2017; Schmidt & Huenteler, 2016). Thus, it is more dif-
ficult for countries without previous knowledge accumulation to catch up in wind turbine 
technology.

3  Research design

3.1  Sample and data

The data used in this paper are patent applications filed at European Patent Office (EPO), 
United States Patent and Trademark Office (USPTO) and through the Patent Cooperation 
Treaty (PCT) from 1980 to 2015. Patent applications are extracted from European Patent 
Office Worldwide Patent Statistics Database PATSTAT 2018 Autumn Version. We only 
focus on patents assigned to companies and institutions following Mancusi (2008) because 
patents assigned only to individuals are usually considered less innovative. The type and 
the unique identifier of applicants are extracted from the PATSTAT Standardized Name 
table developed by ECOOM in KU Leuven (Du Plessis et  al., 2009; Magerman et  al., 
2009).

Since multiple equivalent patent applications can be filed at EPO, USPTO and PCT to 
protect the intellectual property rights of the same invention, we use IPC codes of all patent 
applications in the same PATSTAT simple patent family as the technological classifications 
of the invention under consideration (Martínez, 2011). The year of a PATSTAT simple pat-
ent family is based on the application year of its first patent application.

Patent classification codes in which a patent is assigned are considered as proxies for the 
specific technology components associated with the patented invention (Fleming, 2001). 
Although some studies also use the backward citations to proxy the knowledge recombina-
tion (see the review by Jaffe & de Rassenfosse (2017)), technological codes are determined 
by patent examiners; thus, unlike patent citations, they are not biased by firms’ strategic 
considerations. For that reason, co-occurrences of technology codes at the patent level 
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are ideal for determining the technological combinations that led to a patented innovation 
(Fleming, 2001; Fleming et al., 2007).

We identify the breakthroughs by assessing the new combinations of patent technology 
codes at the main group level of the International Patent Classifications (IPC) following 
Verhoeven et al. (2016). A pairwise combination of IPC main groups is considered new 
if they appear for the first time in (recent) history. We use all the patents applied between 
1980 and 1992 to find the already existing combinations and track the emergence of break-
throughs from 1993.

We assign each patent to the country of residence of the first named inventor in the 
earliest patent document in a patent family following Mancusi (2008). There are increas-
ing numbers of patents of which applicants and inventors are located in different countries. 
This phenomenon is mostly driven by the internationalization of R&D activities in multi-
national corporations (Alkemade et al., 2015; de Rassenfosse & Seliger, 2020). Consider, 
as an example, patent application number US20140248123A1 filed on 28 November 2012 
at the USPTO. The sole applicant was the Danish wind turbine manufacturer Vestas Wind 
Systems AS, while all three inventors were located in United Kingdom. We consider the 
first inventor’s address to best identify where the R&D was performed (Mancusi, 2008). 
However, the innovation network of a multinational corporation with inventors active in 
different countries does contain relevant information about possible international channels 
of knowledge diffusion (Phene et al., 2005). We thus also take into account the embedded-
ness of inventors in latecomer countries in the innovation network of multinational corpo-
rations in the empirical analysis.

We focus on the diffusion of breakthroughs in two leading clean energy technologies, 
solar photovoltaic and wind power. Patents in these two technologies are identified using 
the Y02E10/5 code (solar photovoltaic) and Y02E10/7 code (wind power) in the newly 
launched Cooperative Patent Classification (CPC). The Y02 class is developed by EPO 
experts by combining existing International Patent Classifications (IPC) and European Pat-
ent Classifications with a lexical analysis of abstracts or claims in identifying cross-sectoral 
technologies with potential in climate change mitigations (Veefkind et al., 2012).

3.2  Econometric model

In order to trace the determinants of the speed in the spatial-temporal diffusion of break-
throughs in clean energy technologies that are new to the world, we applied the Cox pro-
portional hazard model (Cox, 1972), in which the hazard is assumed to be as follows:

The Cox model has the advantage of estimating the hazard ratios ( �
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facilitate earlier adoptions of breakthroughs. We report the coefficients instead of hazard 
ratios (exponentiated coefficients) in the regression tables.

We consider all breakthroughs introduced between 1993 and 2007 to leave an 8-year 
window forward to this last cohort. We only focus on breakthroughs which are adopted 
more than 20 times in solar photovoltaic or wind power patents as to be able to apply a 
threshold for the impacts of new technologies following Pezzoni et  al. (2022). Here, 20 
times corresponds to top 2% of new combinations adopted in solar photovoltaic patents, 
and top 4% of new combinations adopted in wind power patents. However, new combina-
tions introduced in earlier years are more likely to be included in the sample when we use 
the number of times as a threshold. In the robustness check, we include only new combi-
nations that are among top 1% of new combinations introduced in the same year in terms 
of the number of times being adopted by solar photovoltaic or wind power patents. The 
results remain consistent.

We focus on breakthroughs introduced by inventors from United States to proxy new 
technologies developed at the technology frontier following Kwon et  al. (2017). As a 
robustness check, we also use breakthroughs introduced by inventors from Germany and 
Japan separately, and three countries together. The number of breakthroughs introduced by 
these three countries accounts for 70% of all breakthroughs introduced during the period 
1993–2007. Leydesdorff et al. (2015) also shows that these three countries are in fact at the 
technological frontier of solar photovoltaic technology.

Our main interest is the impacts of independent variables on the diffusion speed of 
breakthroughs. As emphasised by Griffith et  al. (2011), it is crucial to control for unob-
served heterogeneity at the breakthrough level since some breakthroughs diffuse more 
quickly than others, for example, due to their level of codification or usefulness. The Cox 
model allows estimating different hazard ratios across groups. We include four variables to 
stratify our breakthroughs to control the different diffusion speeds across breakthroughs.

First, we include the technological distance between technological components being 
recombined in the breakthrough inventions by exploring the hierarchical structure of the 
IPC codes following Pezzoni et al. (2022). We include a same field dummy (stating whether 
the IPC main groups in the new combination are from the same technological field) and 
a same sector dummy (stating whether the pairwise IPC main groups are from different 
technological fields but the same sector). The IPC main groups are linked to technological 
fields and sectors based on the concordance table developed by Schmoch (2008). Second, 
we include the intra-technology dummy (stating whether the breakthrough is introduced by 
the same type of renewable energy technology that adopts it). Third, we also include the 
year in which the focal breakthrough is introduced.

As pointed out by Jaffe et  al. (1993), and Griffith et  al. (2011), new technologies are 
more likely to diffuse locally. Thus, we only focus on the international diffusion of break-
throughs to avoid the home bias. We include all OECD countries, EU 28 countries and 
BRICS countries (Brazil, Russia, India, China and South Africa) as the potential adopting 
country. The list of countries included in our regressions is shown in the Appendix. Finally, 
we cluster the standard errors at the country level to control for the unobserved heterogene-
ity in adopting breakthroughs across countries.

The main explanatory variable we are focusing on in this paper is the familiarity of 
inventors in a country with the technology components being used in a new combination. 
Familiarity takes the minimum value of the number of patents in a country among the 
IPC main groups of the breakthrough invention, in the past five years, following Clancy 
(2018). A larger value of Familiarity indicates that inventors in the country have a larger 
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knowledge stock in both technological components used in the new combination, thus 
more likely to adopt breakthroughs earlier.

Apart from the domestic knowledge base, we are also interested in the role of proxim-
ity of a country vis-à-vis the country of origin. Proximity, in what ever sense, is expected 
to enhance the diffusion of technological knowledge (Hägerstrand, 1973) as for example 
shown in research using patent citations (Breschi & Lissoni, 2009; Jaffe et al., 1993). Here, 
we distinguish between geographical proximity and organizational proximity (Boschma, 
2005). The impact of geographical proximity on the speed of spatial diffusion is assessed 
using the distance between the capital of United States, Germany and Japan, respectively, 
and the capital of the adopting country. The Distance variable is constructed from data are 
extracted from the CEPII database (Mayer & Zignago, 2011).

The impact of organizational proximity is assessed by the embeddedness of latecomer 
countries in the innovation network of the company introducing the breakthrough. We con-
struct the variable Same assignee by including the number of patents invented by inventors 
in the focal country while assigned to the same multinational company who introduced 
the new combination in the previous 5 years before the adoption. These patents are usu-
ally innovations from subsidiaries of the multinational company in the focal country (de 
Rassenfosse & Seliger, 2020). The higher value of Same assignee indicates that the focal 
country is more important or better embedded in the global innovation network of the focal 
multinational company (Phene & Almeida, 2008; Phene & Tallman, 2018). Given the fact 
that these patents could also include co-patenting with inventors from the same company 
in other countries, this variable captures benefits from international co-patenting as well as 
benefits from knowledge transfer within multinational companies.

We add three control variables to control for the country-level factors which may affect 
the speed of technology diffusion. First, we include GDP per capita to control for the level 
of economic development of a country using data extracted from the Penn States Table 9.1 
(Feenstra et al., 2015). Second, we take into account whether the adopting country special-
izes in solar photovoltaic technology (wind power technology) using the Revealed Technol-
ogy Advantage index (RTA) following Soete & Wyatt (1983). The RTA  takes the value 1 
if the share of the solar photovoltaic patents (wind power patents) of a focal country in its 
total number of patents is larger than the share of solar photovoltaic patents (wind power 
patents) worldwide, and 0 otherwise. Third, we include the amount of electricity generated 
from solar photovoltaic (wind power) to control for the impact of domestic market develop-
ment (Market) on the development of new technologies. We expect positive impacts from 
GDP, RTA , and Market.

Finally, in order to trace whether latecomer countries are closing the gap with coun-
tries at the technological frontier, we include the interactions of Familiarity with GDP per 
capita and RTA  to test whether the impact of Familiarity differs across countries. Here, we 
expect that being familiar with the technologies recombined in breakthroughs will help 
countries at lower levels of economic development and countries with a lack of specialisa-
tions in solar (wind), to compensate for their lack of a more generic knowledge base and 
other unfavourable conditions (Petralia et al., 2017).
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4  Results

4.1  Descriptive results

We focus on the spatial-temporal diffusions of 110 breakthrough inventions in solar pho-
tovoltaic technology and 65 breakthrough inventions in wind power technology introduced 
by US inventors among 47 countries, therefore 5170 observations for solar photovoltaic 
and 3055 observations for wind power. Figure 1 shows the distributions of the number of 
countries adopting breakthroughs and time lags of adoption in solar photovoltaic (left pan-
els) and wind power (right panels). Most of breakthroughs in both technologies are only 
adopted by less than 15 countries, and most of the diffusion happen within 4000 days.

Tables 1 and 2 show the summary statistics and the correlation between the explanatory 
variables for solar photovoltaic and wind power technology respectively. The correlation 
between independent variables is not high. 

4.2  Econometric results

Table 3 shows the econometric results of solar photovoltaic technology using new combi-
nations introduced by inventors from United States. We divide our sample into pre-2000 
and post-2000 subsamples following Conti et al. (2018). They observed the acceleration in 
EU renewable energy patenting at the turn of the century.

Fig. 1  Descriptive analysis of number of adopting countries and time-lag of adoption (solar photovoltaic 
technology in the left panels, and wind power technology in the right panels)



702 D. Li et al.

1 3

Ta
bl

e 
1 

 S
um

m
ar

y 
st

at
ist

ic
s:

 so
la

r p
ho

to
vo

lta
ic

Va
ria

bl
e

O
bs

M
ea

n
SD

M
in

M
ax

Fa
m

ili
ar

ity
51

70
23

.0
8

10
7.

23
0.

00
27

66
.0

0
1.

00
0

G
D

P 
pc

51
70

32
,1

17
.0

8
13

,9
25

.1
1

20
04

.1
9

81
,9

11
.4

7
0.

04
2

1.
00

0
M

ar
ke

t
51

70
23

11
.5

6
60

94
.8

5
0.

00
44

,7
82

.0
0

0.
13

9
−

0.
11

7
1.

00
0

D
ist

an
ce

51
70

78
94

.5
7

27
94

.9
5

73
7.

04
15

,9
61

.9
5

0.
10

1
−

0.
19

9
0.

11
5

1.
00

0
Sa

m
e 

as
si

gn
ee

51
70

7.
22

65
.2

1
0.

00
14

42
.0

0
0.

10
0

−
0.

01
2

0.
06

9
0.

02
6

1.
00

0
RT

A
 

51
70

0.
31

0.
46

0.
00

1.
00

0.
17

6
0.

20
5

0.
00

4
0.

17
6

−
 0

.0
06

1.
00

0



703Catching up in clean energy technologies: a patent analysis  

1 3

Ta
bl

e 
2 

 S
um

m
ar

y 
st

at
ist

ic
s:

 w
in

d 
po

w
er

Va
ria

bl
e

O
bs

M
ea

n
SD

M
in

M
ax

Fa
m

ili
ar

ity
30

55
8.

49
27

.2
3

0.
00

40
8.

00
1.

00
0

G
D

P
30

55
32

,1
08

.7
1

13
,8

87
.8

8
33

99
.0

5
83

,8
51

.2
3

0.
08

2
1.

00
0

M
ar

ke
t

30
55

91
34

.7
7

21
,8

21
.6

6
0.

00
18

,5
76

6.
00

0.
23

7
−

0.
19

9
1.

00
0

D
ist

an
ce

30
55

78
94

.5
7

27
95

.1
3

73
7.

04
15

,9
61

.9
5

0.
05

5
−

0.
18

4
0.

06
0

1.
00

0
Sa

m
e 

as
si

gn
ee

30
55

13
.2

3
74

.2
9

0.
00

97
9.

00
0.

18
9

−
0.

10
8

0.
21

6
0.

07
5

1.
00

0
RT

A
 

30
55

0.
58

0.
49

0.
00

1.
00

−
0.

06
4

−
0.

20
8

−
0.

03
8

−
0.

16
4

−
0.

00
1

1.
00

0



704 D. Li et al.

1 3

The coefficients of Familiarity are significantly positive in all six models, indicating that 
countries adopt new combinations earlier if they are familiar with the technology compo-
nents used in the new combinations. Although the coefficients of GDP are not significant, 
the coefficients of Familiarity*GDP are significantly positive in the full sample, and in 
the sub-sample of pre-2000 new combinations, and significantly negative in the sub-sam-
ple of post-2000 new combinations. The results indicate that the impacts of Familiarity 
before 2000 are larger for high-income countries, and after 2000 for low-income countries. 
This suggests that domestic knowledge base is more important for the countries with lower 
income in catching-up in solar photovoltaic technology as it matures.

The coefficients of RTA  are not significant. However, after the introduction the inter-
action term Familiarity*RTA , the coefficients of RTA  are positive in the full sample and 
sub-sample of pre-2000 model, while the coefficients of Familiarity*RTA  are significantly 
negative in all three models. The results show that familiarity with the technological com-
ponents used in the new combination is more important for countries without a speciali-
zation in solar photovoltaic technology. This can be explained by the dynamic inventive 
pattern of solar photovoltaic technologies that several new types of solar photovoltaic cells 
emerged during the focal period opening up windows of opportunities (Kalthaus, 2019), as 
well as the rapid international transfer of codified knowledge concerning solar photovoltaic 
technology (Binz & Truffer, 2017), allowing latecomer countries to catch-up.

Concerning the two proximity variables, the coefficients of Same assignee are signifi-
cantly positive in the full sample and in the sub-sample of new combinations introduced 
after 2000. This result indicates that diffusion is faster when latecomer countries are well 
embedded in the global innovation network of the multinational company that introduces 
the breakthrough, underscoring the importance of organizational proximity for technology 

Table 3  Econometric results: Solar photovoltaic

1993-2007 Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6)

Familiarity 0.211*** 1.576*** 0.213*** 1.889*** 1.007*** 2.426***
(0.04) (0.20) (0.04) (0.23) (0.16) (0.37)

RTA 0.675 0.560 0.665 0.568 0.543 0.488
(0.44) (0.44) (0.47) (0.45) (0.43) (0.42)

GDP 0.034 0.053 −0.044 −0.017 0.139 −0.079
(0.18) (0.17) (0.19) (0.18) (0.17) (0.13)

Market −0.220 −0.537* −0.392 −0.882 −0.086 −0.200
(0.20) (0.32) (0.37) (0.78) (0.10) (0.12)

Distance 0.139 0.160 0.126 0.149 0.184 0.150
(0.22) (0.22) (0.24) (0.23) (0.19) (0.20)

Same assignee 0.081*** 0.075*** 0.050 0.032 0.533*** 0.530***
(0.03) (0.03) (0.04) (0.04) (0.11) (0.11)

Familiarity*GDP 0.210* 0.341* −1.254***
(0.12) (0.18) (0.35)

Familiarity*RTA −1.425*** −1.774*** −0.927***
(0.19) (0.23) (0.23)

Observations 5170 5170 2961 2961 1739 1739
Log likelihood −3889.248 −3799.358 −2118.874 −2039.937 −1367.174 −1342.662
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diffusion. This result is in line with the previous findings reported in Phene et al. (2005). 
The coefficients of Distance are however insignificant, which is unexpected. We do not find 
any effect of geographical proximity between countries on the speed of technology diffu-
sion. Finally, Market variable is not significant [with the exception that Market is signifi-
cant and negative in column (2)].

Table 4 shows the econometric results of wind power technology. Similar to solar pho-
tovoltaic technology, the coefficients of Familiarity are significantly positive in all six col-
umns, indicating the importance of domestic knowledge base in the catching-up process. 
Although the coefficients of GDP are not significant, the coefficients of Familiarity*GDP 
are significantly negative in the full sample and in the sub-sample of post-2000 new com-
binations. Similar to the results in solar photovoltaic technology, the results show that the 
impacts of Familiarity on the time of entry becomes more important for low-income coun-
tries in wind power technology as it matures in recent years.

The coefficients of RTA  are not significant. However, the coefficients of Familiarity*RTA  
are significantly positive in the full model and the sub-sample of the post-2000 model. The 
results show that the familiarity with technological components used in the new combina-
tion is more important for countries already specialized in wind power technology, indicat-
ing a strong path-dependent process.

Of the proximity variables, the effect of Same assignee is positive and significant in the 
full sample and the sub-sample of post-2000, while no effect of Distance is found. And, 
again, no effect of Market size was found.

Table 4  Econometric results: Wind power

1993–2007 Pre-2000 Post-2000

(1) (2) (3) (4) (5) (6)

Familiarity 0.256*** 0.422*** 0.221*** 0.445*** 0.263*** 0.461***
(0.04) (0.08) (0.05) (0.13) (0.04) (0.09)

RTA 0.471 0.495 0.341 0.413 0.636 0.621
(0.41) (0.43) (0.42) (0.42) (0.40) (0.45)

GDP 0.216 0.110 0.229 0.136 0.233 0.099
(0.17) (0.16) (0.16) (0.17) (0.17) (0.16)

Market 0.069 −0.185 0.155 −0.157 0.041 −0.258
(0.11) (0.22) (0.11) (0.35) (0.12) (0.22)

Distance −0.006 −0.054 −0.032 −0.091 0.026 −0.032
(0.16) (0.18) (0.20) (0.23) (0.16) (0.19)

Same assignee 0.073** 0.038 0.013 −0.041 0.078** 0.036
(0.04) (0.04) (0.10) (0.09) (0.04) (0.04)

Familiarity*GDP −0.462** −0.403 −0.594***
(0.18) (0.30) (0.20)

Familiarity*RTA 0.173* 0.093 0.216**
(0.10) (0.16) (0.09)

Observations 3055 3055 893 893 1786 1786
Log likelihood −2444.059 −2424.017 −781.850 −775.303 −1351.962 −1335.566



706 D. Li et al.

1 3

4.3  Robustness check

In order to check the robustness of our results, we first focus on the spatial-temporal dif-
fusions of new combinations introduced by inventors from Japan and Germany. Tables 5 
and 6 show the results from the robustness check for solar photovoltaic and wind power 
respectively. Most results are consistent with the results in Tables 3 and 4. One interest-
ing finding is the different impacts of Distance on the diffusion speed of new combina-
tions introduced by inventors from Japan and Germany in solar photovoltaic technology. 
The impacts of Distance are negative on the diffusion of new combinations introduced by 
Japanese inventors (as expected), whereas these are positive on the diffusion of new com-
binations introduced by German inventors (not as expected). The results may be explained 
by the rise of Asian economies like South Korea, Taiwan and China in solar photovoltaic 
technology (Binz & Anadon, 2018; Nemet, 2019; Quitzow, 2015; Wu & Mathews, 2012). 
The adoptions in these three countries account for approximately 25% of all adoptions of 
breakthroughs in solar photovoltaic technology introduced by German or Japanese inven-
tors. However, these countries are geographically much closer to Japan than Germany.

Second, we re-estimated the model by calculating the hazard rate for each new combi-
nation instead of using stratified groups. This allows further specification of baseline haz-
ards for each new combination instead of baseline hazards for each group of new combi-
nations categorized by technological distance, intra-technology and year of introduction. 
The results shown in column (1)–(3) in Tables 7 and 8 are consistent with the results in 

Table 5  Robustness check: Solar photovoltaic

Japan Germany

Full sample Post-2000 Full sample Post-2000

(1) (2) (3) (4) (5) (6)

 Familiarity 0.298*** 0.369*** 1.480*** 0.145*** 1.775*** 5.680***
(0.03) (0.10) (0.46) (0.04) (0.24) (1.06)

 RTA  − 0.293 − 0.278 − 0.212 0.565 0.474 0.225
(0.67) (0.64) (0.65) (0.52) (0.49) (0.54)

 GDP 0.160 0.154 − 0.001 0.141 − 0.038 − 0.473**
(0.19) (0.19) (0.19) (0.21) (0.20) (0.20)

 Market − 0.320 − 0.355 − 0.348 − 0.617 − 0.721* − 1.326***
(0.22) (0.24) (0.30) (0.58) (0.37) (0.47)

 Distance − 0.649** − 0.631* − 0.543* 0.337** 0.331** 0.306*
(0.31) (0.35) (0.30) (0.16) (0.16) (0.18)

 Same assignee 0.024** 0.025* 0.026** 0.303*** 0.201*** 0.189**
(0.01) (0.01) (0.01) (0.03) (0.02) (0.08)

 Familiarity*GDP − 0.063 − 0.999*** − 1.075*** − 4.286***
(0.09) (0.36) (0.16) (0.89)

 Familiarity*RTA  − 0.039 − 0.208 − 1.317*** − 3.014***
(0.27) (0.37) (0.17) (0.83)

 Observations 5875 5875 1833 2397 2397 470
 Log likelihood − 3985.301 − 3983.446 − 1219.283 − 1732.007 − 1672.767 − 256.738
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Tables 2 and 3, suggesting that the patterns we observed are robust regardless of the base-
line hazards we assumed for new combinations.

Third, we only focus on the Top 1% of the new combinations introduced each year in 
terms of the times of them being adopted in solar photovoltaic patents or wind power pat-
ents to test whether the results are sensitive to the change of threshold for breakthroughs. 
The results are shown in column (4)–(6) in Tables 7 and 8. The results are consistent with 
the results in Tables 2 and 3.

5  Conclusions

Catching-up by latecomer countries is generally achieved through a process of imitation 
followed by improvements upon new technologies on their own to seize the windows of 
opportunity offered by emerging technological paradigms (Hartmann et al., 2021; Perez & 
Soete, 1988). In this paper, we focused on the determinants of early entry in clean energy 
technologies by tracing the spatial-temporal diffusions of breakthroughs in solar photo-
voltaic technology and wind power technology using patent data. Following the view of 
breakthroughs as new combinations of existing technological components, our results sug-
gest that latecomer countries’ familiarity with the technological components recombined 
in the breakthroughs can facilitate early entry, especially in countries with lower levels of 
economic development.

Table 6  Robustness check: wind power

Japan Germany

Full sample Post− 2000 Full sample Post-2000

(1) (2) (3) (4) (5) (6)

 Familiarity 0.445*** 0.368*** − 0.012 0.309*** 0.333*** 0.286***
(0.09) (0.07) (0.19) (0.05) (0.06) (0.05)

 RTA  0.560 0.493 0.557 0.383 0.371 0.479
(0.49) (0.49) (0.46) (0.42) (0.42) (0.46)

 GDP 0.200 0.180 0.130 0.230 0.225 0.224
(0.17) (0.18) (0.18) (0.16) (0.16) (0.17)

 Market 0.029 0.028 0.048 − 0.029 − 0.028 0.009
(0.11) (0.11) (0.16) (0.07) (0.07) (0.07)

 Distance − 0.266 − 0.284 − 0.335* 0.037 0.039 0.101
(0.19) (0.20) (0.20) (0.17) (0.17) (0.16)

 Same assignee 0.184* 0.205*** 0.533*** 0.090*** 0.095*** 0.084***
(0.11) (0.08) (0.09) (0.01) (0.01) (0.01)

 Familiarity*GDP − 0.006 − 0.178 − 0.059 0.002
(0.05) (0.15) (0.04) (0.05)

 Familiarity*RTA  0.187 0.810*** 0.173 0.150
(0.13) (0.18) (0.13) (0.12)

 Observations 846 846 376 4747 4747 2538
 Log likelihood − 582.500 − 580.423 − 279.338 − 5102.293 − 5089.371 − 2458.478
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Our analysis provides the first systematic, quantitative evidence of the catching-up pro-
cess of latecomer countries in clean energy technological paradigm (Lema et  al., 2020; 
Mathews, 2013; Pegels & Altenburg, 2020; Perez, 2016). Although our theoretical reason-
ing is similar to the original concept of related diversification (Boschma, 2017; Hidalgo 
et  al., 2007), our analysis extends earlier studies on technological diversification in two 
ways. First, we look exclusively at new-to-the-world technologies by analysing their spa-
tial-temporal diffusion, whereas most existing studies did not differentiate between new-
to-the-country and new-to-the-world technologies (Boschma et al., 2017). Second, we go 
beyond the typical research question of whether or not a country diversifies into a par-
ticular technology by analysing how fast a country is able to diversify into radically new 
technologies, contributing to a better understanding of temporal dimension in evolutionary 
economic geography (Henning, 2019).

On a methodological note, our study design also has the advantage that we measure 
diversification in a straightforward way by simply observing the date that a country first 
adopts a radically new technology. Hence, our approach differs from previous studies 

Table 7  Robustness check: Solar photovoltaic

Stratify by new combination Top 1% new combination

Full sample Post-2000 Full sample Post-2000

(1) (2) (3) (4) (5) (6)

Familiarity 0.508*** 1.851*** 2.788*** 0.424*** 1.493*** 1.696***
(0.13) (0.29) (0.50) (0.07) (0.23) (0.25)

RTA  0.592 0.525 0.479 0.392 0.400 0.476
(0.42) (0.41) (0.40) (0.41) (0.40) (0.40)

GDP 0.034 0.047 − 0.110 0.044 0.026 − 0.061
(0.17) (0.17) (0.12) (0.18) (0.16) (0.13)

Market − 0.294* − 0.597** − 0.240* − 0.376* − 0.639** − 0.140
(0.18) (0.30) (0.13) (0.21) (0.26) (0.12)

Distance 0.128 0.138 0.142 0.167 0.150 0.215
(0.21) (0.21) (0.20) (0.20) (0.20) (0.19)

Same assignee 0.137*** 0.150*** 0.552*** 0.122*** 0.132*** 0.438***
(0.05) (0.05) (0.15) (0.03) (0.03) (0.09)

Familiarity*GDP 0.164 − 1.441*** − 0.067 − 0.929***
(0.11) (0.35) (0.16) (0.26)

Familiarity*RTA  − 1.445*** − 0.839*** − 1.053*** − 0.637***
(0.28) (0.25) (0.25) (0.14)

Observations 5170 5170 1739 2350 2350 1222
Log likelihood − 2893.843 − 2820.006 − 1071.575 − 1747.197 − 1698.668 − 845.854
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that measure diversification as becoming specialised in a particular technology relative 
to all other countries based on the Revealed Technological Advantage index with its 
known disadvantages (Laursen, 2015; van Dam et al., 2020).

Our empirical comparison of the two clean energy technologies shows that for solar 
photovoltaic technology, the knowledge base of countries is more important for coun-
tries without specialisation, whereas for wind power technology, the knowledge base 
of countries is more important for countries with specialisation. These findings provide 
systematic evidence of the technology-sensitive catching-up process in clean energy 
technologies (Binz et al., 2017; Binz & Truffer, 2017; Lee & Malerba, 2017; Schmidt & 
Huenteler, 2016).

Several questions remain for future research. First, as our results show that the 
embeddedness of latecomer countries in the global networks is important for the early 
entry of new technologies, more actor-level analyses are required to understand how 
latecomer countries can engage in the global value chains and global innovation net-
works, and the structural change processes that may follow (Boschma, 2017; Hausmann 
& Neffke, 2019; Henning, 2019; Neffke et  al., 2018). Second, although we find that 
the knowledge base of countries can facilitate early entry, institutional and organiza-
tional changes might be necessary for the better mobilisation local capabilities for scal-
ing up new clean energy technologies faster (Grubler et al., 2016; Hughes & Meckling, 
2018). Third, it is important to focus on the impacts of the spatial-temporal diffusion 
of breakthroughs on the cost reduction and performance improvement of clean energy 

Table 8  Robustness check: wind power

Stratify by new combination Top 1% new combination

Full sample Post-2000 Full sample Post-2000

(1) (2) (3) (4) (5) (6)

Familiarity 0.292*** 0.445*** 0.495*** 0.309*** 0.512*** 0.511***
(0.04) (0.10) (0.10) (0.04) (0.09) (0.09)

RTA  0.478 0.496 0.620 0.433 0.403 0.547
(0.41) (0.43) (0.43) (0.38) (0.41) (0.47)

GDP 0.220 0.113 0.093 0.260 0.105 0.052
(0.17) (0.16) (0.16) (0.17) (0.16) (0.17)

Market 0.069 − 0.185 − 0.269 0.020 − 0.199 − 0.213
(0.12) (0.22) (0.21) (0.11) (0.19) (0.16)

Distance − 0.012 − 0.056 − 0.035 0.030 − 0.025 − 0.040
(0.16) (0.18) (0.18) (0.15) (0.17) (0.18)

Same assignee 0.086* 0.051 0.042 0.109** − 0.014 − 0.031
(0.04) (0.04) (0.05) (0.05) (0.06) (0.05)

Familiarity*GDP − 0.462** − 0.626*** − 0.759*** − 0.791***
(0.19) (0.21) (0.28) (0.24)

Familiarity*RTA  0.181* 0.249*** 0.332*** 0.336***
(0.09) (0.09) (0.13) (0.10)

Observations 3055 3055 1786 752 752 517
Log likelihood − 1968.447 − 1950.222 − 1018.529 − 603.324 − 595.868 − 354.310
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technologies to better understand the role of technological change in sustainability tran-
sitions (Benson & Magee, 2014, 2015; Kavlak et al., 2018; Nemet, 2019).

Appendix

See Appendix Table 9.
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Table 9  List of countries and 
regions included in our analysis

Country

Australia Japan
Austria Korea
Belgium Latvia
Brazil Lithuania
Bulgaria Luxembourg
Canada Malta
Chile Mexico
Chinese Taipei/Taiwan Netherlands
Croatia New Zealand
Cyprus Norway
Czech Republic People’s Republic of China
Denmark Poland
Estonia Portugal
Finland Romania
France Russian Federation
Germany Slovak Republic
Greece Slovenia
Hong Kong (China) South Africa
Hungary Spain
Iceland Sweden
India Switzerland
Ireland Turkey
Israel United Kingdom
Italy United States
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