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Abstract: The global expansion of agricultural land is a leading driver of climate change and bio-
diversity loss. However, the spatial resolution of current global land change models is relatively
coarse, which limits environmental impact assessments. To address this issue, we developed global
maps representing the potential for conversion into agricultural land at a resolution of 10 arc-seconds
(approximately 300 m at the equator). We created the maps using artificial neural network (ANN)
models relating locations of recent past conversions (2007–2020) into one of three cropland categories
(cropland only, mosaics with >50% crops, and mosaics with <50% crops) to various predictor vari-
ables reflecting topography, climate, soil, and accessibility. Cross-validation of the models indicated
good performance with area under the curve (AUC) values of 0.88–0.93. Hindcasting of the models
from 1992 to 2006 revealed a similar high performance (AUC of 0.83–0.91), indicating that our maps
provide representative estimates of current agricultural conversion potential provided that the drivers
underlying agricultural expansion patterns remain the same. Our maps can be used to downscale pro-
jections of global land change models to more fine-grained patterns of future agricultural expansion,
which is an asset for global environmental assessments.

Keywords: agriculture; cropland; land-cover change; deforestation; integrated assessment models;
GLOBIO; biodiversity; sustainability

1. Introduction

Conversion of natural land for agricultural purposes is one of the leading causes
of biodiversity loss and ecosystem degradation worldwide [1–4]. Expansion of agricul-
tural land leads to terrestrial habitat loss and fragmentation [5], impacts on freshwater
ecosystems through altered surface runoff, increased usage of water for irrigation and
pesticides [4], and leads to increases in anthropogenic carbon emissions [6,7]. The global
area of cropland was estimated at 19.6 million km2 for the year 2000 [8], which equates
nearly twice the size of Canada. Scenario-based projections of cropland area based on
changes in dietary preferences and the global human population revealed considerable
potential future cropland expansion, albeit associated with large uncertainties [9,10].

Global land change models are critical for improving our understanding of the proxi-
mate and ultimate causes of global agricultural expansion and for the assessment of where
future expansion may occur [11]. To that end, global land change models typically require
three main inputs: information on future agricultural demands, usually estimated based on
the socio-economic characteristics of relatively coarse spatial units (e.g., countries or world
regions); an estimate of the area of land available for agricultural expansion; and relatively
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fine-grained maps indicating where the expansion is likely to occur [11–14]. These maps
are commonly based on empirical relationships between the occurrence of agricultural land
and a set of biophysical and socioeconomic predictor variables and are used to downscale
the coarse-grain projections of future agricultural land demand [11,12,15].

Modelling the global expansion of agricultural land and its impacts is, however, chal-
lenging in at least two ways. First, the spatial resolution of global land change models
tends to be relatively coarse, typically ranging between 5 and 30 arc-minutes (approxi-
mately 10 to 50 km) [11,15,16]. This hampers assessment of the impacts that are highly
dependent on the local context and spatial configuration of the landscape, such as impacts
on biodiversity and carbon stock [17,18]. Second, global land change models typically
downscale coarse-grain projections of land demand based on existing land-use patterns,
thus implicitly assuming that the predictors of the spatial patterns of agricultural expansion
are constant over time [11]. However, as agricultural expansion in frontier regions may
occur under very different circumstances than in consolidated agricultural regions, this
assumption may lead to inadequate projections of future expansion patterns [11,19].

In this study, we aimed to address these two challenges by developing global maps of
agricultural conversion potential with an unprecedented spatial resolution and parameter-
ized based on recent past conversions into agricultural land, thus capturing agricultural
frontier dynamics [19]. To that end, we made use of a consistent annual time series of global
land-cover maps (1992–2020) at a spatial resolution of 10 arc-seconds (approximately 300 m
at the equator) [20]. We distinguished three categories of cropland (cropland only, mosaics
with >50% crops, and mosaics with <50% crops) and trained artificial neural network
(ANN) models to predict the potential of conversion into each of these three categories as a
function of a set of predictor variables reflecting topography, climate, soil, and accessibility.
We then used the trained and validated ANN models to predict the potential of conversion
into cropland worldwide. The resulting maps can be used to downscale projections of
global land change models to more fine-grained patterns of future agricultural expansion,
which is an asset for global environmental impact assessments.

2. Methods
2.1. General Approach

Our approach for producing the global agricultural conversion potential maps con-
sisted of three main steps (Figure 1). In the first step, we identified locations of conversions
to agricultural land from 2007 to 2020 and collected data on possible predictors of conver-
sion. In the second step, we used the data on agricultural conversions and corresponding
predictor variables to train artificial neural network (ANN) models, which we validated
using both cross-validation and hindcasting. For the hindcasting, we used conversions
to agricultural land observed from 1992 to 2006. Finally, we combined the validated
ANN models with global raster layers of the predictor variables to create global maps of
agricultural expansion potential.

2.2. Identifying Locations of Agricultural Conversion

We identified locations of agricultural conversion based on the ESA CCI land-cover
dataset. This dataset contains yearly global land-cover maps based on remotely sensed data
for 1992–2020 [20,21]. The dataset has a spatial resolution of 10 arc-seconds (approximately
300 m at the equator) and includes 22 main land-cover categories. Agricultural land
encompasses rainfed crops (ESA CCI class 10), irrigated crops (ESA CCI class 20), and
two types of mosaic cropland: mosaics of >50% cropland with <50% natural vegetation
(ESA CCI class 30) and mosaics of >50% natural vegetation with <50% cropland (ESA CCI
class 40). Because irrigated and rainfed crops are not consistently distinguished as separate
categories in all regions of the world, we combined rainfed and irrigated crops into a single
category of ‘cropland only’. Thus, we distinguished three agricultural land categories:
cropland only (71% of the total agricultural area in the ESA CCI dataset), mosaics with >50%
crops (15% of the total agricultural area), and mosaics with <50% crops (14% of the total
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agricultural area). We divided the dataset in two parts, selecting the years 2007–2020 for
training our agricultural conversion potential model and the 1992–2006 period for model
evaluation (hindcasting). For each of the three agricultural land categories and each of
the two periods, we extracted the locations of conversion as those where the land cover
changed into the respective agricultural land categories.
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Figure 1. Schematic overview of the agricultural conversion potential modelling procedure according
to three main steps: (1) data preparation: identification of locations of conversions to agriculture and
extraction of predictor variables, (2) training and evaluating the ANN models, and (3) applying the
trained models to create global maps of agricultural conversion potential.

2.3. Predictor Variables

We selected a set of predictor variables that are expected to influence the spatial
patterns of conversion into agricultural land [15,19,22–24]. These variables are related to the
topographic characteristics of the landscape, climate properties, soil properties, accessibility,
and previous land cover (Table 1). As topographic landscape properties, we included
elevation, terrain slope, northness (a measure of terrain aspect), and the topographic
wetness index (TWI). We retrieved elevation from the global MERIT Digital Elevation
Model (DEM) [25] and calculated terrain slope and northness from this same DEM using the
gdaldem function from the Geospatial Data Abstraction Library (GDAL) 2.2.2 software [26].
We obtained the TWI from ISRIC’s worldgrids database (https://web.archive.org/web/
20170620003114/http://www.worldgrids.org/doku.php/wiki:twisre3; accessed on 24
February 2023). As climatic predictors, we included annual mean values of temperature
and precipitation as well as their seasonality (standard deviation and coefficient of variation
of monthly values, respectively), as both are expected to influence local suitability for crop
production [15,24]. We retrieved the climatic predictor variables based on long-term mean
monthly values over 1979–2013 as provided by the CHELSA climate database [27]. Soil-
related predictors included the available water capacity, cation exchange capacity, soil pH,
and the organic carbon, clay, silt, and sand contents. We retrieved these variables from the
SoilGrids database, using geometric mean values across 0–30 cm depth profiles [28]. We
further included four variables indicative of the accessibility of a site: the distance to roads,
distance to urban areas, distance to existing croplands, and the presence of protected areas.
We calculated the distances to roads, urban areas, and agriculture as the Euclidean distance
to any of the road types I–IV in the GRIP global road dataset [29] and cells classified as

https://web.archive.org/web/20170620003114/http://www.worldgrids.org/doku.php/wiki:twisre3
https://web.archive.org/web/20170620003114/http://www.worldgrids.org/doku.php/wiki:twisre3
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urban or agricultural in the ESA CCI land-cover map for 2007, respectively. We obtained a
layer with protected areas from the World Database of Protected Areas [30]. Finally, we
included the human population density (year 2000) from the Gridded Population of the
World database [31] and variables that describe the land-cover category that was present in
a given location prior to the conversion into agriculture to account for land-cover inertia,
i.e., how easy or difficult it is to convert current land cover into agriculture (Table 1).

Table 1. List of predictor variables with original units and spatial resolution (prior to resampling and
standardization).

Variable Unit Spatial Resolution Source

Climate Annual mean temperature ◦C 1 km CHELSA Climate [27]

Temperature seasonality ◦C 1 km CHELSA Climate [27]

Annual precipitation mm/year 1 km CHELSA Climate [27]

Precipitation seasonality dimensionless 1 km CHELSA Climate [27]

Soil Available water capacity % 250 m SoilGrids [28]

Cation exchange capacity cmol/kg 250 m SoilGrids [28]

Clay content % 250 m SoilGrids [28]

Organic carbon content g/kg 250 m SoilGrids [28]

pH dimensionless 250 m SoilGrids [28]

Silt content % 250 m SoilGrids [28]

Sand content % 250 m SoilGrids [28]

Topography Elevation m 90 m MERIT DEM [25]

Slope degrees 90 m this study

Northness index dimensionless 90 m this study

Topographic Wetness Index
(TWI) dimensionless 250 m ISRIC worldgrids

Accessibility Distance to roads m 300 m GRIP [29]

Distance to agriculture m 300 m this study

Protected areas 0 or 1 300 m WDPA [30]

Distance to urban areas m 300 m this study

Other Population density persons/km2 1 km GPW [31]

Previous land cover *
(agriculture, forests,

grasslands, wetlands,
urban/barren)

0 or 1 300 m this study

* Previous land cover includes five binary layers with aggregated land-cover categories, indicating whether in the
year prior to the conversion the land cover belonged to the given land-cover type or not. Agriculture encompasses
rainfed, irrigated, and mosaic croplands; forests encompass all categories with tree cover; grasslands encompass
shrublands, grasslands, and sparse vegetation; wetlands include flooded forests with brackish or saline water;
urban/barren includes urban areas, bare areas, and permanent snow and ice.

The original spatial resolution of the predictor variables ranged from 90 to 1000 m
(Table 1). We resampled all predictor variables to a spatial resolution of 10 arc-seconds
(300 m) to match the spatial resolution of the land-cover maps. We resampled variables
with a higher spatial resolution by calculating the average value of cells within the larger
10 arc-second cell. We resampled variables with a lower spatial resolution to 10 arc-seconds
using cubic spline resampling, which produces smoother surfaces compared with simpler
resampling techniques [32]. To harmonize the spatial resolution and extent of the predictor
variables, we used GDAL 2.2.2.
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2.4. Training the ANNs

We modelled the potential of conversion into each of the three agricultural land
categories as a function of the predictor variables using artificial neural network (ANN)
models, which are known for their ability to learn and mimic complex phenomena [33,34].
We employed feed-forward ANNs with a single hidden layer, i.e., a layer of mathematical
functions to translate the input data (predictor variables) into the output (conversion
potential). Prior to training the ANNs, we selected grid cells not being converted into
cropland from 2007 to 2020 as reference or absence locations. To avoid pseudo-replication,
we performed spatial subsampling or thinning of the data by randomly selecting one
observation (either a conversion or non-conversion) per 1 km2 grid cell (i.e., the spatial
resolution of the coarsest predictor variables; see Table 1). For each agricultural land
category, we then randomly selected a number of non-conversions equal to the number of
conversions in order to obtain a balanced sample. We further log-transformed predictor
variables with clear positive skew (human population density and distance variables) in
order to limit the effect of extreme values, and we standardized all continuous predictor
variables, as recommended for ANN training [35].

To prevent overfitting of the model, we tuned the hyperparameters that control the
number of units in the hidden layer and the weights decay regularization function by
identifying the combination that returned the highest kappa value in cross-validation. To
this end, we performed 10-fold cross-validation with two-thirds of the data used for model
training and the remaining third for model assessment. The tuning resulted in 20 units
in the hidden layer and a decay value of 0.001, hence we used these values for training
the final ANN models. For model training and hyperparameter tuning, we used the R
packages caret version 6.0-81 [36] and nnet version 7.3-12 [37].

2.5. Model Evaluation

We evaluated the predictive performance of the ANN models based on both cross-
validation and hindcasting. For the cross-validation, we used two-thirds of the 2007–2020
data for model training and the remaining third to evaluate the models. For the hindcasting,
we used the data from the 1992–2006 period to evaluate the models that were trained on the
full dataset for 2007–2020. We evaluated the performance of the models using the area under
the curve of the receiver operator characteristic (AUC in short). The AUC metric ranges
between 0 and 1, where a value of 1 indicates perfect discrimination between presence and
absence (in our case, conversion or non-conversion to agricultural land) [38]. In addition,
we evaluated the relationships between the conversion potential and the predictor variables.
First, we estimated the relative importance of each variable for predicting the conversion
potential of each of the three cropland categories. To that end, we followed a variable
permutation procedure similar to the random forest variable importance algorithm [38],
using our ANN model trained on the full 2007–2020 dataset. We used this model to make
predictions of the conversion potential with permuted values for the predictor variable of
concern, correlated those predictions with the predictions of the model based on the original
(non-permuted) data, and quantified the variable importance as one minus the Pearson’s
correlation coefficient (r). Thus, the higher the correlation between the predictions based
on the data with the permuted variable and the predictions based on the original data,
the less important the permuted variable. We repeated this procedure 100 times for each
of the predictor variables to obtain an importance measure and corresponding standard
error for each. Second, we assessed the direction and magnitude of changes in conversion
potential in relation to each of the predictor variables by establishing partial dependence
plots (PDPs). PDPs show how a response variable changes in relation to a variable of
interest given average predictions over all the other predictor variables. We created the
PDPs using R package pdp version 0.7.0 [39].



Land 2023, 12, 579 6 of 13

2.6. Conversion Potential Maps

After training and evaluating the ANN models, we applied them to create global
maps of agricultural conversion potential for each of the three cropland categories. Because
this process is highly computationally intensive, we divided the globe into 6630 tiles of
equal size. We cropped the predictor variable rasters for each tile and then used the trained
ANN models to obtain predictions for each tile by splitting the task across multiple cluster
computing nodes. Afterwards, we merged the resulting conversion potential maps across
the tiles into global maps (Figure 1). For splitting and merging of the layers we used GDAL
version 2.2.2. In addition to the 10 arc-seconds layers, we provide layers of 30 arc-seconds
and 5 arc-minutes resolutions for more coarse-grained applications. We provide three
layers for each aggregated set, containing the minimum, mean, and maximum values of
the 10 arc-seconds values within the larger cells. All conversion potential maps are publicly
available for download from https://doi.org/10.5281/zenodo.7665902 (accessed on 24
February 2023). We performed all modelling and post-processing in the R environment
(version 3.6.3). Scripts are available via GitHub at https://github.com/MirzaCengic/
agriculture_suitability (accessed on 24 February 2023).

3. Results
3.1. Model Performance

The performance evaluation of the ANN models revealed AUC values of 0.88–0.93
in the cross-validation and 0.83–0.91 in the hindcasting (Table 2). The high AUC values
indicate that the models are well able to distinguish locations of agricultural conversions
from locations without conversion. Further, the high model performance in hindcasting
indicates that the predictors of agricultural conversion patterns and the magnitude of their
influence have remained relatively constant over the past decades.

Table 2. Model performance as measured by the area under the curve of the receiver operator
characteristic (AUC), shown for three categories of agricultural land and two evaluation procedures.
For the cross-validation, we used two-thirds of the 2007–2020 data to train the models and the
remaining third for evaluation. Hindcasted models were trained on the entire dataset containing the
conversions from 2007 to 2020 and evaluated on a dataset from the preceding period (1992–2006).

Agricultural Category AUC

Cross-validation Hindcasting

Cropland only 0.88 0.84

Mosaics with >50% crops 0.93 0.91

Mosaics with <50% crops 0.93 0.83

3.2. Conversion Potential Maps

Our global agricultural conversion potential maps revealed high conversion probabili-
ties in some of the tropical regions (Congo basin, Borneo, New Guinea, Amazon region),
the Cerrado and Chaco regions in South America, the North American plains, eastern
China, the northern parts of the Indian sub-continent, and the steppes of Kazakhstan and
southern Russia (Figure 2). Although the conversion potential maps revealed considerable
similarities between the three cropland categories, we also found a few differences. For
example, for the cropland only category, we found high conversion potential particularly
in the tropical regions, whereas for the mosaic categories, the steppes of Kazakhstan and
southern Russia stood out (Figure 2).

https://doi.org/10.5281/zenodo.7665902
https://github.com/MirzaCengic/agriculture_suitability
https://github.com/MirzaCengic/agriculture_suitability
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Figure 2. Global conversion potential maps for the three agricultural categories: (a) cropland only,
(b) mosaics with >50% crops, and (c) mosaics with <50% crops. For visualization purposes, the global
maps were resampled to a spatial resolution of 5 arc-minutes (~10 km) and displayed in Robinson
projection. Areas with probabilities close to zero (1‰ cut-off value) are shown in grey. Inset maps are
displayed at the original 10 arc-seconds resolution.

3.3. Relationships between Conversion Potential and Predictor Variables

Important predictors of conversion potential included climatic variables (mainly mean
annual temperature and seasonality, followed by annual precipitation) and the distance
from existing cropland (Figure 3). For mean annual temperature, we found unimodal
responses, with increases in conversion potential followed by declines at higher annual
mean temperature values (Figure 4). The relationship between conversion potential and
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temperature seasonality was negative for cropland only and mosaics with >50% crops
and positive for mosaics with <50% crops, indicating that conversion to the latter is more
prevalent in more variable climatic conditions. For all three cropland categories, we found
positive relationships between conversion potential and annual precipitation. The distance
to existing cropland was especially important for the mosaic categories (Figure 3). For
mosaics with >50% crops as well as croplands only, we found a monotonic decrease in con-
version potential with increasing distance from existing cropland. For mosaics with <50%
crops, we observed a slightly different response, with the highest conversion potential at
some distance from the existing cropland (Figure 4). Of the variables representing previous
land cover, forest was relatively important. Here, we found positive response relationships
across the three cropland categories, indicating that recent conversions have been relatively
prevalent in forested areas. Of the soil variables, pH was relatively important, with the
highest conversion potential at average pH values (Figure 4).
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Figure 4. Partial dependence plots showing the change in conversion potential in relation to each of
the predictors (standardized values) for cropland only (left), mosaics with >50% crops (centre), and
mosaics with <50% crops (right).

4. Discussion

To our knowledge, this study is the first to derive global agricultural conversion
potential maps based on recent past conversions rather than current land-use patterns and
at a considerably improved spatial resolution compared with existing global land change
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models. These improvements were possible thanks to the development and release of the
ESA CCI dataset, which offers a consistent time series of global land-cover maps. The
ANN models that we developed to establish the agricultural conversion potential maps
showed high performance not only in cross-validation (2007–2020) but also in hindcasting
(1992–2006). This reflects that the frontiers of agricultural expansion have been relatively
stable during the past decades, with agricultural expansion happening mainly in regions
where some expansion has already occurred [19]. In line with this, we found that the
proximity to existing cropland was indeed a main predictor of conversion potential across
all three agricultural land categories (Figures 3 and 4). The clustered expansion of cropland,
in turn, may reflect that agricultural expansion frontiers build on agglomeration economies,
where the clustering of related firms and organizations brings benefits such as increased
access to knowledge, a pooled labour market, lower transportation costs, and reduced
entry barriers [40].

Our conversion potential maps revealed various hotspots of conversion that coincide
with regions of large recent agricultural expansion [8]. For example, the Chaco and Cerrado
regions in South America are characterized by significant recent expansions of large-scale
soy bean cultivation [41], whereas the Congo basin is home to various countries with
substantial expansions of oil palm plantations [42]. Large oil palm plantation expansions
have also occurred in Sumatra and Borneo over the recent decades [43]. The high conversion
potential in the steppes in Kazakhstan and southern Russia may reflect the recultivation
of land that was abandoned after the collapse of the former Soviet Union [44]. However,
our maps show relatively high conversion probabilities also in regions without significant
recent increases in total agricultural land area, such as North America, or even with net
declines in agricultural land, such as western Europe [8]. In these regions, the rates of
expansion might be similar to or even lower than the rates of abandonment, which in
turn may reflect that the expansion of large farms goes alongside the abandonment of
smallholder farms [45].

The high performance of our ANN models in both cross-validation and hindcasting
indicates that our conversion potential maps can help to improve the projections of global
land change models provided that the drivers underlying the global patterns of agricul-
tural expansion remain the same. As such, our conversion potential maps are useful for
researchers and practitioners interested in assessing the locations and effects of future
agricultural expansion, for example in integrated assessment modelling or biodiversity
impact modelling [9,18]. To that end, our maps need to be combined with estimates of
the expected future demands for agricultural land per socioeconomic region. In such a
coupled approach, our global conversion potential maps can be used to spatially allocate
the additional agricultural land demands. In this context, it is important to note that the
modelled relationships between the agricultural conversions and our set of predictors may
result in non-zero probabilities also in areas that are highly unlikely to be converted into
agriculture, such as urban areas or strictly protected nature reserves. This implies that users
of our maps may need to implement an additional map layer that masks areas unavailable
for agricultural expansion. We also stress that our maps represent agricultural conversion
potential conditional on the predictor variables that we included, implying that our maps
do not capture the possible influences of other potentially relevant predictors. For example,
our conversion potential models and maps do not account for permafrost, which may pose
significant challenges to possible agricultural expansion at higher latitudes in response to
climate change [46].

Finally, we note that our mapping procedure based on a consistent time series of
land-cover maps is easily extended to other land-use or land-cover types, such as built-
up areas. The procedure can also be applied to obtain maps representing the potential
of agricultural abandonment, which is characterized by its own dynamics and specific
drivers [45]. Ultimately, a consistent set of conversion potential maps for multiple land
categories, combined with corresponding estimates of demands per socioeconomic region,
may result in more accurate and spatially detailed projections of land change, including
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potential shifts in agricultural land. This in turn would be an asset, in particular, for
assessments of changes in ecological patterns and processes that operate on small scales [18].

5. Conclusions

We produced global maps of agricultural conversion potential at a 10 arc-seconds
resolution (about 300 m), based on location-specific information of sites where land was
converted into agriculture in the recent past (2007–2020). We obtained these maps with
machine learning models that we tested with two complementary approaches (cross-
validation and hindcasting). The testing revealed a good model performance (AUC > 0.80),
indicating that the resulting maps can be used to project future agricultural expansion
over the coming decades, provided that the drivers underlying the global spatial patterns
of expansion remain the same. Integrating our maps into scenario-based land use and
integrated assessment modelling can help to better quantify impacts of future agricultural
expansion on ecosystems and, ultimately, lead to more informed policy decisions. Further,
our modelling workflow can be extended to other land-use types and with the development
and improvement of long-term time series data, enable more accurate assessment of drivers
and patterns of land change and its effects.
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