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Abstract: To investigate the feasibility and tolerability of ultrasound and microbubbles (USMB)-
enhanced chemotherapy delivery for head and neck cancer, we performed a veterinary trial in feline
companion animals with oral squamous cell carcinomas. Six cats were treated with a combination
of bleomycin and USMB therapy three times, using the Pulse Wave Doppler mode on a clinical
ultrasound system and EMA/FDA approved microbubbles. They were evaluated for adverse events,
quality of life, tumour response and survival. Furthermore, tumour perfusion was monitored before
and after USMB therapy using contrast-enhanced ultrasound (CEUS). USMB treatments were feasible
and well tolerated. Among 5 cats treated with optimized US settings, 3 had stable disease at first,
but showed disease progression 5 or 11 weeks after first treatment. One cat had progressive disease
one week after the first treatment session, maintaining a stable disease thereafter. Eventually, all cats
except one showed progressive disease, but each survived longer than the median overall survival
time of 44 days reported in literature. CEUS performed immediately before and after USMB therapy
suggested an increase in tumour perfusion based on an increase in median area under the curve
(AUC) in 6 out of 12 evaluated treatment sessions. In this small hypothesis-generating study, USMB
plus chemotherapy was feasible and well-tolerated in a feline companion animal model and showed
potential for enhancing tumour perfusion in order to increase drug delivery. This could be a forward
step toward clinical translation of USMB therapy to human patients with a clinical need for locally
enhanced treatment.

Keywords: USMB; bleomycin; contrast-enhanced ultrasound; veterinary medicine; companion
animals; feline; oral squamous cell carcinoma; head and neck cancer

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) is diagnosed in approximately
900,000 patients annually worldwide, 5% of all cancer diagnoses [1]. Circa 450,000 patients
die of HNSCC yearly. Most patients present with locally advanced disease [2,3], and
because primary surgery is often not possible or is expected to result in unacceptable
morbidity, they are often treated with combination therapies, including radiotherapy,
chemotherapy and targeted therapy [4]. Even so, up to half of the patients develop (often
incurable) local recurrences [5,6] and treatment is associated with acute and long-term
toxicity [7–9]. Primary chemoradiotherapy with cisplatin as a radiosensitizer is often used
in locally advanced HNSCC. A higher cumulative cisplatin dose is associated with better
local control and, to some extent, longer overall survival [7,10], but due to local and systemic
toxicities, 30–50% of patients cannot complete all planned cycles of cisplatin [7,11]. This
emphasizes the need for improved local tumour delivery of cisplatin, without increasing
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the chemotherapy dose in healthy tissues. Consequently, a method to increase local
drug delivery without increasing systemic toxicity could lead to improved outcomes
of (chemo)radiotherapy.

We hypothesize that this goal could be achieved by means of ultrasound and mi-
crobubbles (USMB) therapy. Microbubbles are micron-sized gas-filled bubbles used for
contrast-enhanced ultrasound (CEUS) imaging [12,13]. When exposed to ultrasound, stable
or inertial cavitation of microbubbles can occur, creating a number of biological effects
collectively termed sonopermeation [14,15]. USMB therapy has been shown to improve
drug delivery for various molecules in vitro and in vivo [15]. In particular, addition of
USMB therapy improved the effect of chemotherapy or chemoradiotherapy with cisplatin
on HNSCC cells in vitro [16]. However, pre-clinical studies often use custom-made set-ups
and a large variety of US parameters, which cannot easily be translated to the clinic. Most
(ongoing) clinical studies of USMB therapy have focused on brain applications, using
dedicated systems not applicable to other organs [17–19]. Meanwhile, studies outside the
brain are limited to small numbers of patients with pancreatic cancer, liver metastases and
breast cancer, which all used different ultrasound settings [20–23]. Thus far, USMB therapy
has not been studied in human head and neck cancer patients. Using clinically available
US systems and settings (preferably uniform US settings across clinical studies) combined
with FDA/EMA-approved microbubbles can help make this technique more accessible.

In order to bridge the gap between human HNSCC patients and in vitro and lab-
oratory (rodent) animal studies, we performed an in vivo veterinary feasibility trial in
non-laboratory veterinary patients. Cats are a suitable model because they are large enough
to use clinical ultrasound equipment, and because many pathophysiological and genetic
similarities exist between humans and cats [24–26]. Furthermore, feline oral squamous
cell carcinoma (FOSCC) is very common in aged cats [27]. Like human patients, cats often
present with advanced stage disease (e.g., with muscle or bone invasion) [28] and often suc-
cumb to local disease progression, rather than metastatic disease [26,29]. Standard-of-care
treatment options are similar to the human setting: when surgery is not an option, primary
radiotherapy can be combined with chemotherapy as a radiosensitizer [30–32]. Supportive
care (antibiotics and/or anti-inflammatory drugs) results in a median overall survival
of approximately 44 days [33]. The platinum-based drug cisplatin, often used in human
patients, creates unacceptable toxicity in cats when systemically administered [34]. Instead,
bleomycin is a well-tolerated cytostatic drug in cats, but has limited efficacy because effi-
cacy is dependent on intracellular uptake, which is complicated by its hydrophilic nature
and dependence on protein receptors to enter the cell [35–37]. Bleomycin is very toxic
inside the cell, by inducing oxidative damage leading to DNA single- and double-strand
breaks. It is partly inactivated by the enzyme bleomycin hydrolase, which is present in most
tissues (but less abundant in skin and lungs, locations of bleomycin toxicity) and excreted
primarily via the kidneys (mean plasma drug clearance in humans is 70 mL/min/m2 and
strongly correlated with renal function) [36–38]. To improve the efficacy of bleomycin,
electroporation can be used, also known as electropermeabilization: making cell mem-
branes reversibly permeable by application of an electrical current [39,40]. In a feline study
the combination of bleomycin plus electroporation resulted in an overall response of 89%,
compared to 33% with bleomycin alone [41], but it causes unpleasant muscle contractions
and possibly an increased risk of cardiac arrhythmias [41,42]. After electroporation of large
bulky tumours, patients could be more susceptible to adverse events such as tumour lysis
syndrome, thromboembolism, disseminated intravascular coagulation, delayed wound
healing and local necrosis [40]. These adverse effects have not been described for USMB
therapy. A safety study performing USMB therapy on the livers of eight pigs with a clinical
US system did not result in any clinical adverse events or histopathological damage to
the liver [43]. Meanwhile, CEUS imaging has been studied in hundreds of cats, without
significant adverse effects [44–49]. In vitro, USMB therapy was shown to enhance local
bleomycin effects [50–52], also when using a clinical US system with standard settings and
clinically available microbubbles [53].
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The combination of bleomycin with USMB therapy using a clinically available US
system and microbubbles could provide a low-toxicity, low-burden additional treatment
option for these cats, as well as a step towards clinical translation to human head and neck
cancer patients. The primary objectives of this veterinary study were to evaluate tolerability
and feasibility of bleomycin plus USMB therapy while using a clinical US system and
microbubbles, while secondary objectives were to assess tumour response, survival and
the effect of USMB therapy on tumour perfusion.

2. Methods
2.1. Subjects

Six cats with spontaneously arisen FOSCC were eligible for inclusion in our single-
arm prospective study. They had at least cytologically proven squamous cell carcinoma,
without other suitable treatment options except for palliative care, and informed con-
sent was provided by the pet owner. Exclusion criteria were life-threatening comor-
bidities leading to a life expectancy of less than 1 month, contraindications for anaes-
thesia and known hypersensitivity to bleomycin or any of the excipients of SonoVue
(Bracco, Geneva, Switzerland).

2.2. USMB Treatment

Each cat was treated three times, once per week (see Figure 1 for timeline of treat-
ment procedures). US imaging and treatment were performed using an EPIQ5 or EPIQ7
imager with a C9-2 transducer (Philips, Best, The Netherlands) complemented by an L18-5
transducer solely for US imaging. A tissue-mimicking gel was used to obtain enough
distance between probe and cat for the region of interest to be outside the near field of the
transducer. The treatment was performed under general anaesthesia, while continuously
monitoring vital signs. USMB therapy was started 7 min after intravenous (i.v.) injection of
bleomycin (10,000 IU/m2). Microbubbles (SonoVue, Bracco, conc. 1–5 × 108 bubbles/mL,
dosage 0.1 mL/kg body weight per bolus injection) followed by a 1.5 mL saline flush were
administered through an i.v. catheter of at least 22 gauge. When the microbubbles appeared
in the tumour (based on CEUS imaging), treatment of the oral tumour was started in Pulse
Wave (PW) Doppler mode. PW Doppler for 15 s was alternated with CEUS imaging for 5 s
(to allow for complete reperfusion of the tumour with fresh microbubbles) and repeated
five times per MB injection, as by that time no more MBs were visible on CEUS images.
This process was repeated three times to a total of four microbubble injections for therapy.
During USMB therapy the probe was hand-held by a veterinary radiologist and the Sample
Volume of the PW Doppler was slowly moved to treat the entire tumour. Before a new
microbubble injection, transducer orientation was changed to treat a different cross-section
of the tumour. Optimized PW Doppler settings for USMB therapy and CEUS parameters
used in cats 2–6 are shown in Table 1. These procedures were optimized during treatment
of cat 1 and the first treatment session of cat 2.



Pharmaceutics 2023, 15, 1166 4 of 16
Pharmaceutics 2023, 15, x FOR PEER REVIEW 4 of 16 
 

 

 

Figure 1. Ultrasound and microbubbles (USMB) treatment procedures. (A) Each cat is treated three 

times, once per week. (B) Each treatment session is performed under general anaesthesia and starts 

with a clinical exam. Ultrasound imaging and contrast-enhanced ultrasound imaging (CEUS) are 

performed before and after USMB therapy. Seven minutes after intravenous injection (i.v.) of bleo-

mycin (BLM), USMB therapy is started by i.v. bolus injection of SonoVue microbubbles. (C) When 

the microbubbles appear on the CEUS image, 15 s of Pulsed Wave (PW) Doppler are alternated by 

5 s of CEUS imaging. This is repeated five times per microbubble injection, for a total of four mi-

crobubble injections. 

Table 1. Optimized Pulsed Wave Doppler settings for USMB therapy and CEUS parameters used in 

cats 2–6. 

Parameter Indication/Setting on EPIQ5 or EPIQ7 Value 

Optimized Pulse Wave (PW) Doppler settings for ultrasound and microbubble (USMB) therapy 

Frequency C9-2 probe in PW mode 2.9 MHz 

Pulse length Sample volume: 7.5 mm (maximum) 21 cycles per pulse 

Pulse repetition frequency Scale: −4–4 cm/s (minimum) 0.4 kHz 

Mechanical index Relative intensity: −10 dB * MI 0.3–0.4 at target depth  

Contrast-enhanced ultrasound (CEUS) settings 

Mechanical index (MI) MI in CEUS mode <0.1 CEUS MI = 0.06 

Gain 
Gain slightly above the noise floor in ab-

sence of microbubbles and kept constant 
Gain = 45% 

Dynamic range (compression)  Dynamic range = 50  

Focus position 
Focus positioned at the target or a bit deeper 

(2/3 of image depth) 

Adjusted per treatment session and 

moved during USMB therapy 

Time gain compensation (TGC) All switches in central position All switches in central position 

Persistence  Off 

* In cat 4 relative intensity was increased to −7 dB to account for enhanced attenuation due to exten-

sive bone invasion and fibrous tissue formation of bone. 

Figure 1. Ultrasound and microbubbles (USMB) treatment procedures. (A) Each cat is treated
three times, once per week. (B) Each treatment session is performed under general anaesthesia
and starts with a clinical exam. Ultrasound imaging and contrast-enhanced ultrasound imaging
(CEUS) are performed before and after USMB therapy. Seven minutes after intravenous injection
(i.v.) of bleomycin (BLM), USMB therapy is started by i.v. bolus injection of SonoVue microbubbles.
(C) When the microbubbles appear on the CEUS image, 15 s of Pulsed Wave (PW) Doppler are
alternated by 5 s of CEUS imaging. This is repeated five times per microbubble injection, for a total of
four microbubble injections.

Table 1. Optimized Pulsed Wave Doppler settings for USMB therapy and CEUS parameters used in
cats 2–6.

Parameter Indication/Setting on EPIQ5 or EPIQ7 Value

Optimized Pulse Wave (PW) Doppler settings for ultrasound and microbubble (USMB) therapy

Frequency C9-2 probe in PW mode 2.9 MHz

Pulse length Sample volume: 7.5 mm (maximum) 21 cycles per pulse

Pulse repetition frequency Scale: −4–4 cm/s (minimum) 0.4 kHz

Mechanical index Relative intensity: −10 dB * MI 0.3–0.4 at target depth

Contrast-enhanced ultrasound (CEUS) settings

Mechanical index (MI) MI in CEUS mode <0.1 CEUS MI = 0.06

Gain
Gain slightly above the noise floor in

absence of microbubbles and
kept constant

Gain = 45%

Dynamic range (compression) Dynamic range = 50

Focus position Focus positioned at the target or a bit
deeper (2/3 of image depth)

Adjusted per treatment session and
moved during USMB therapy

Time gain compensation (TGC) All switches in central position All switches in central position

Persistence Off

* In cat 4 relative intensity was increased to −7 dB to account for enhanced attenuation due to extensive bone
invasion and fibrous tissue formation of bone.
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2.3. Other Study Procedures

Primary endpoints were tolerability and feasibility, assessed at baseline and 1, 2 and
5 weeks after the first USMB therapy. Tolerability was assessed by reporting adverse
events, clinical performance score and quality of life. Adverse events were reported by
VCOG Common Terminology Criteria for Adverse Events version 1.1, clinical performance
(CPS, 0–5 [54]) was monitored and quality of life (QoL) was assessed using a 16-item
owner-completed questionnaire, translated to Dutch with permission from Adelphi UK
and Zoetis [55]. Feasibility was assessed by the amount of time needed for study procedures
and the ability to complete study treatments per cat. Secondary endpoints were clinical
response (including tumour response and survival) and the effect of USMB therapy on
tumour perfusion. Tumour response was evaluated by calliper measurements at baseline
and 1, 2 and 5 weeks after the first USMB therapy. Overall survival was registered from
first USMB therapy until death. To evaluate the effect of USMB on tumour perfusion, CEUS
was performed immediately before and after USMB treatment using a mechanical arm to
position the US probe and the same volume of MBs used for USMB therapy. All equipment
settings (MI = 0.06, gain = 45%, TGC at central position, dynamic range = 50, persistence
set to Off, see Table 1 for more details) were kept consistent for all cats and between CEUS
measurements before and after USMB therapy.

2.4. Quantitative CEUS Evaluation

Time—intensity curve analysis was performed on contrast loops before and after
USMB treatment to evaluate changes in tumour perfusion using in-house developed Mat-
lab software. Image data post-processing consisted of 5 steps. First, the DICOM images,
transferred from the ultrasound imager, were loaded using the standard Matlab DICOM
reader and the colour images were converted into greyscale. Second, the onset of the
contrast enhancement was determined. Third, from the images obtained before the onset
of contrast enhancement, an averaged image (background image) was calculated and this
background image was subtracted from the original images. Fourth, the temporal data
were smoothed using a moving-average filter. Finally, peak intensity (PI: maximum signal
intensity, also known as peak enhancement), time to peak (TTP: time between first arrival
of contrast and reaching maximum intensity) and area under the curve (AUC: area under
the time versus signal intensity curve) maps were calculated for each pixel [56]. Using a
region of interest (ROI) with the same size before and after USMB therapy, the parameters
were visualized with a colour scale and plotted in histograms to compare results pre and
post USMB therapy. Pixels which already had high signal intensity before onset of the
contrast enhancement (e.g., regions containing bone) were excluded for analysis. The per-
centage of pixels reaching >25% of the peak intensity in that ROI were compared between
before and after USMB with a paired samples Wilcoxon test. A two-sided p-value < 0.05
was considered significant. Median values of the AUC in the ROI were compared after
discarding AUC values ≤ 0.

3. Results
3.1. Baseline Characteristics

We included six feline patients with tumours located in different oral regions.
Table 2 describes relevant patient and tumour characteristics. All cats were domestic

shorthairs over 10 years of age, with T2 or T3 tumours [57], two cats had known lymph
node metastases and one cat had pulmonary metastases. Only cat 6 had received previous
surgical treatment and was included after finding that the tumour had not been removed
entirely. All cats received supportive care with antibiotics and pain medication, and two
cats required assisted feeding (oesophageal feeding tube). Three cats received concomitant
treatment for hyperthyroidism (thiamazole or carbimazole).
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Table 2. Relevant patient and tumour characteristics, including survival.

Patient 1 2 3 4 5 6

Sex male male male female male female
Age at

inclusion (years) 11 11 18 15 14 15

Body weight at
inclusion (kg) 2.8 7.2 3.4 2.8 6.7 5.5

TNM stage [57] T2N1M0 T2bN0M1 (lungs) T2bN0M0 T3bN0Mx cT3N1Mx T1N0M0 *

Tumour location
tongue, frenulum,

and sublingual
soft tissue

right maxilla

lip and cheek
extending into

corner of mouth
and

caudal maxilla

rostrally in the
mouth, infiltrated

into mandibula

tongue base and
floor of mouth

Sublingual, floor
of mouth

Supportive
care measures

Antibiotics
Analgesics
(NSAIDs,
tramadol)

Tube feeding

Antibiotics
Analgesics
(NSAIDs)

Antibiotics
Analgesics
(NSAIDs,

gabapentin)

Antibiotics
Analgesics
(NSAIDs,

gabapentin)

Antibiotics
Analgesics
(NSAIDs,

buprenorphine)
Tube feeding

Antibiotics
Analgesics
(NSAIDs)

Antiemetics
(maropitant)
mirtazapine

Concomitant
drugs

Treatment for
hyperthyroidism

(carbimazole)
initiated

during study

Treatment for
hyperthyroidism

(carbimazole)
initiated

during study

- - -

Treatment for
hyperthyroidism

(thiamazole)
initiated before
start of study

Survival
(days) 46 85 64 56 57 147

Death euthanasia euthanasia euthanasia euthanasia natural death euthanasia

* Cat 6 had surgery before inclusion, the sublingual tumour was macroscopically removed and no longer visible. At
inclusion, the floor of mouth felt firm over an area of <2 cm diameter (therefore the tumour was classified as T1).

3.2. Bleomycin plus USMB Therapy Was Tolerable

The USMB treatments were well tolerated. All cats experienced adverse events, all
except one were not severe and were primarily grade 1 or 2 (Table 3 lists all adverse
events). In addition, adverse events were considered related to anaesthesia (e.g., constipa-
tion, fatigue, hypotension, hypothermia, lethargy and vomiting), comorbidity (untreated
hyperthyroidism) or progressive tumour growth (e.g., anorexia, generalized weakness,
fatigue, haemorrhage from the tumour, pain, ptyalism, skin ulceration, soft tissue necrosis
and weight loss). One cat had localized alopecia and erythema related to an i.v. catheter.
Another cat experienced a mild sinus tachycardia during the treatment session, which
could be related to USMB therapy or anaesthesia but resolved spontaneously. Cat 6 had
small ulcers of the tongue which responded to antibiotics and later developed a functional
impairment of tongue movement with dysphagia grade 2 during follow-up, which pro-
gressed to grade 3, a serious adverse event leading to euthanasia after 147 days. We saw a
fibrosis-like clinical picture with chronical inflammation and epithelial proliferation in the
biopsy. Cat 6 also developed soft tissue necrosis grade 1 of the tip of the tongue, without
signs of tumour progression.

Clinical performance score (CPS) did not change from 0 (“fully active”) in cats 1, 2, 3
and 6. In cat 4 it temporarily decreased one point in week 1 but then recovered to “fully
active”, and in cat 5 it decreased from 1 (“slight tiredness/dyspnoea after severe exertion”)
to 3 (“spontaneous tiredness or dyspnoea without exertion, lies often on the floor”) after
5 weeks. Figure 2 shows QoL scores. QoL remained stable in cats 1–3, and decreased
gradually in cat 5, most likely due to tumour progression. In cat 6 it decreased after one
week and then stabilized. In cat 4, QoL decreased temporarily after one week, due to
pain and inability to eat. Supportive treatment was intensified (antibiotics restarted, pain
medication increased) and the next USMB treatment was postponed for 1 week. In this
week the cat’s condition and QoL improved. Since QoL recovered quickly, infection at the
tumour site was considered the most likely cause.
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Table 3. Adverse events.

Adverse Event
(VCOG CTCAE Version 1.1) Grade 1 Grade 2 Grade 3 Unknown

Grade Most Likely Related to

alopecia 1 i.v. catheter
anorexia 1 1 tumour progression

cardiac murmur 1 comorbidity
(hyperthyroidism)

constipation 1 anaesthesia

dysphagia (fibrosis-like tissue) 1
possible reaction to USMB,

chemotherapy or
previous surgery

generalized muscle weakness 1 tumour progression
haemorrhage/bleeding 1 tumour progression

hypotension 1 anaesthesia
hypothermia 1 anaesthesia

lethargy/fatigue/decreased
general performance 2 3 anaesthesia or

tumour progression
localized erythema 1 i.v. catheter

oral ulcers 1 infection
pain (most likely at

tumour site) 2 tumour progression

ptyalism 1 tumour progression

sinus tachycardia 1 possible reaction to USMB
or anaesthesia

skin ulceration 1 tumour progression

soft tissue necrosis 1 2

tumour progression in cat 1
and 5, possible reaction to
USMB or chemotherapy

in cat 6
vomiting 1 anaesthesia

weight loss 2 1 tumour progression
Any adverse event 15 11 2 1
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Figure 2. Quality of life per cat during the study, assessed by a 16-item owner-completed measure
of feline quality of life, translated to Dutch with permission from Adelphi UK and Zoetis. Baseline
was registered on the day of first treatment session, before treatment. Higher scores indicate better
quality of life. (A) Healthy behaviour score, (B) clinical signs score, (C) total score, which is the mean
of healthy behaviour and clinical signs.

3.3. Three Treatment Sessions of Bleomycin plus USMB Therapy Were Feasible

The study treatment was considered feasible, as all six pet owners completed all
planned study visits, including three USMB treatment sessions and a follow-up visit. In
the 5 cats with optimized procedures, mean time in hospital per treatment session ranged
from 153 min in cat 4 to 207 min in cat 3, and mean time spent on US imaging plus therapy
ranged from 41 min in cat 6 to 66 min in cat 3 (Figure 3).
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Figure 3. Feasibility of USMB treatment, assessed by duration of study procedures. For each
procedure, the mean of three treatment days was calculated. In cat 1, treatment procedures had not
yet been optimized.

3.4. Modest Clinical Response

For cat 1, USMB therapy procedures had not yet been optimized; therefore, its clinical
response parameters are not reported here. Upon clinical examination, 4 cats had stable
disease during the 3 treatment sessions, but disease progression was observed at 5 weeks
(cats 3 and 5) or 11 weeks after the first treatment session (cat 2). Cat 4 had progressive
disease one week after the first treatment session (possibly due to tumour infection) but
remained stable at follow-up. Eventually, all cats except for cat 6 had progressive disease
(Figure 4). Four cats were euthanized 85, 64, 56 and 147 days after their first treatment
session; the fifth cat died spontaneously after 57 days (Table 2).
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Figure 4. Estimation of tumour volumes (length × width × depth, percentage of baseline) in cats
treated with optimized USMB settings, based on calliper measurements of the tumour prior to that
day’s study treatment. Cats 2, 3 and 5 had stable disease during the three treatment sessions but
showed disease progression 5 weeks (cats 3 and 5) or 11 weeks (cat 2, not shown here) after first
treatment. In cat 5, reliable tumour measurement was not possible five weeks after treatment due to
tumour necrosis, but clear disease progression was noted. Cat 4 had progressive disease one week
after the first treatment (possibly due to tumour infection) but remained stable at follow-up. Cat 6
previously had macroscopical resection of the tumour prior to study inclusion, which made it difficult
to measure the remaining tumour. Two-dimensional measurements showed stable disease until the
moment of submission of this article and the cat is still alive 70 days after first USMB treatment.

3.5. Indication of Increased Tumour Perfusion Assessed by Contrast-Enhanced Ultrasound

CEUS imaging before and after USMB treatment was available for cat 2 (two treatment
sessions), cat 3 (three treatment sessions) cat 4 (one treatment session), cat 5 (three treatment
sessions) and cat 6 (three treatment sessions). During the first treatment session of cat 2,
the US probe was unintentionally moved during CEUS acquisition, and during the second
and third treatment sessions of cat 4, the US system with contrast license was unavailable.
Figure 5 shows representative US parametric maps in cat 3 and Supplementary Figures
S1–S3 show an overview of all cats. Based on visual interpretation of the data, peak
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intensity (PI) increased in seven out of twelve treatment sessions, decreased in four and
did not change in one (Supplementary Figure S1), while for time to peak (TTP) the changes
were small and there was no clear trend (Supplementary Figure S2). The median AUC in
the ROI decreased in six out of twelve treatment sessions (median decrease 39.1%, range
−4 to −65%) while it increased in six out of twelve treatment sessions (median increase
199%, range 10 to 1039%) (Supplementary Figure S3). When comparing the percentage of
pixels reaching >25% of the peak Intensity (PI) after USMB therapy with the baseline in
that treatment session, we observed an increase in 8 sessions (green line), a decrease in
3 sessions (red line) and no change in 1 one session (black line, Figure 6). These findings also
suggest a USMB-induced increase in perfusion, but a Wilcoxon matched-pairs signed-rank
test showed that medians before (17%) and after (19%) USMB therapy did not change
significantly (p = 0.1099).
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Figure 5. Contrast-enhanced ultrasound (CEUS) parametric maps of cat 3 before (first column) and
after (second column) USMB therapy for visual comparison. For each of the three treatment sessions,
from top to bottom, the following parameters are depicted: position of region of interest (ROI), peak
intensity (PI), time to peak (TTP), area under the curve (AUC). Pixels with high signal intensity before
administration of microbubbles (e.g., regions containing bone) were set to zero and are delineated
with white dotted lines. In the third column these parameters are compared in histograms before
(white) and after (blue) USMB. Note that the range of the y-axes differs between different treatment
sessions. ROIs pre and post USMB are identical in size within one treatment session and matched
in position as much as possible. CEUS parameters were kept constant between treatment sessions,
except in treatment session 2 of cat 3 when gain inadvertently changed from 45% (before USMB) to
49% (after USMB).
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Figure 6. Peak Intensity (PI) on CEUS in the tumour before (left) and after (right) USMB therapy.
Representative maps of cat 3 in three treatment sessions (S1–S3). Pixels with high signal intensity
before administration of microbubbles (e.g., regions containing bone) were set to zero and are
delineated with red dotted lines. The percentage of pixels reaching >25% of the peak intensity (white
pixels) in the ROI was not significantly higher after USMB therapy compared to baseline. Green lines
indicate an increase in the percentage of pixels reaching >25% of PI after USMB therapy compared to
baseline in that treatment session, red lines indicate a decrease and black lines indicates no change.
ns = Wilcoxon matched-pairs signed-rank test p = 0.1099.

4. Discussion

We conducted a clinical feasibility study in a small cohort of feline companion animals,
evaluating the combination of bleomycin chemotherapy and USMB therapy in cats with
oral squamous cell carcinoma.

The USMB treatment sessions were feasible and well tolerated. Due to our patient
selection process, all tumours were accessible to USMB therapy. Adverse events were
considered to be related to anaesthesia, comorbidity or progressive tumour growth. The
fibrosis-like functional impairment of the tongue leading to dysphagia grade 3 and finally
euthanasia in cat 6 could be related to USMB and/or chemotherapy, but also to scar
tissue of previous surgery. We did not observe severe adverse events, such as tumour
lysis syndrome and disseminated intravascular coagulation, which have been described
for electroporation [40]. Muscle contractions and arrhythmias are not expected to occur
with USMB due to the difference in technique (ultrasound versus electrical pulses) and
while vascular disruption caused by electroporation leads to acute tumour necrosis, USMB
therapy may have a more gradual and tolerable anti-tumour effect. The relatively mild
adverse effects of USMB therapy could imply that it is a more tolerable and feasible
option than electroporation and that there is room for treatment intensification (i.e., more
treatment sessions, higher dosages of chemotherapy or concurrent use of more than one
chemotherapeutic agent).

Unfortunately, all cats except one eventually had progressive disease based on clinical
tumour measurements. However, while the median overall survival is (historically) around
44 days with supportive care alone [33], survival in our study (albeit small and without a
control group) was somewhat longer (46–85 days and 147 days in cat 6 where the tumour
had been incompletely surgically removed before study treatment). Adding a control group
treated with bleomycin alone could have provided more robust data on efficacy, but this
was not feasible in our veterinary study. It can be expected that pet owners would not
want to enroll their cat into a study when there was a chance of receiving the bleomycin
alone, which is not a standard-of-care option and is reported to have limited efficacy in
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cats with this specific type of cancer. A previous study found a response rate of only
33% for bleomycin alone [41]. The possibility of a more effective treatment by addition
of USMB led patient owners to choose study participation over supportive care alone.
Since the primary goal of this study was to evaluate feasibility, the lack of a control group
was considered acceptable. A number of hypotheses may explain why tumour responses
and overall survival did not improve more substantially. First, the cavitation-induced
permeabilization of cancer cells to enhance the intracellular uptake of bleomycin, which
was previously demonstrated in vitro [50–53], may not have worked as well in vivo in our
veterinary study. Unfortunately, we could not measure sonopermeation efficacy directly,
i.e., by quantifying bleomycin uptake in tumours, nor indirectly, by monitoring microbubble
cavitation activity during the procedure. Future studies using simultaneous USMB therapy
and cavitation detection could confirm our assumption and lead to further optimization
of US settings. Based on previous literature, this is feasible using a clinical US system,
but it requires modifying predefined factory settings, which could lengthen the process
towards clinical approval [58]. Second, USMB therapy will only cause sonopermeation
in cells in the close proximity of microbubbles [59], i.e., endothelial cells and perhaps a
few layers of adjacent tumour cells. Moreover, CEUS imaging showed that microbubbles
did not spread throughout the entire tumour, which further diminishes the efficacy of
sonopermeation. Third, the US parameters we used (which are standard settings for PW
Doppler on the clinical US system) are likely to be suboptimal. Our previous in vitro results
demonstrated that PW Doppler using an unmodified clinical ultrasound probe with the
lowest centre frequency (S5-1 with a frequency of 1.6 MHz) and the maximum number of
cycles per pulse (46) resulted in the most efficient cell permeabilization [53]. While it was
not feasible to use the exact same settings in this veterinary study (the S5-1 probe provided
insufficient anatomical detail for target identification in the cat), we were able to closely
mimic them. Optimization steps were performed during the first treatment sessions. In
the first treatment session of cat 1, a lower MB dosage and the S5-1 probe were used. In
all treatment sessions of cat 1 and the first treatment session of cat 2, a higher mechanical
index was applied (relative intensity 0 dB, MI = 1.0–1.2). However, decreased perfusion
was noted on CEUS after USMB therapy in the first treatment session of cat 2; therefore,
the relative intensity was decreased to −10 dB (i.e., MI = 0.3–0.4). With this drop of MI, we
expect that we moved from an inertial cavitation to a stable cavitation regime. On the other
hand, customized settings, such as those used by Keller et al. in a healthy porcine model,
may provide even better results [43]. Fourth, if sonopermeation did occur successfully,
(part of) these tumours may not have been intrinsically sensitive to bleomycin, meaning
that bleomycin could not kill the cell even after entering it [60]. Finally, it is possible that
more bleomycin plus USMB treatment sessions are needed to obtain a durable clinical
response. It would be interesting to continue study treatment until tumour progression or
unacceptable toxicity in a future study.

Although clinical response in our small study was modest, our findings of possibly
increased tumour perfusion after USMB treatment were promising. While the median
AUC increased and decreased in an equal number of sessions, the increase in median
AUC was much larger. Increased AUC is a typical feature of increased perfusion, which
indicates increased microvascular blood volume (MBV: the proportion of tissue volume
existing of blood) [61,62]. Increased perfusion should also lead to shorter TTP, but this
was not observed in our study. Improving MBV will benefit the exchange of oxygen,
nutrients and drugs [63]. Note that these findings have to be interpreted with caution, as
the number of evaluable treatment sessions is small and the position of the transducer
(i.e., anatomical location) for CEUS ROIs before and after USMB was matched to the best
of our ability but was never identical. Similar transducer positions for CEUS in different
treatment sessions of the same cat are even harder to obtain. It is also possible that in cat 6
(in whom tumour perfusion apparently decreased in two out of three sessions), the effect
of USMB was different because cat 6 was the only cat who had received surgery before
study treatment. Nevertheless, previous studies have also shown that USMB therapy can



Pharmaceutics 2023, 15, 1166 12 of 16

affect tissue perfusion and thereby reduce tumour hypoxia. Both increased and decreased
perfusion have been described, and more research is needed to determine which ultrasound
parameters induce either effect. Decreased perfusion seems to be related to vascular damage
and platelet activation, while increased perfusion is associated with vessel dilation and
(in the longer term) induction of angiogenesis [64]. Improving tumour perfusion is also of
interest for (chemo)radiotherapy in HNSCC since clinical response to chemoradiotherapy
is negatively affected by tumour hypoxia [65], caused by structural abnormalities in the
tumour vasculature [66,67]. Consequently, increased tumour perfusion could decrease
hypoxia and thereby improve outcomes. Because the effect of bleomycin is mainly limited
by intracellular uptake, rather than by perfusion, only a small survival benefit can be
expected in our study due to increased tumour perfusion. In contrast, combining USMB
therapy with drugs known to be perfusion-limited could lead to improved outcome in
future studies.

Given the similarities between humans and cats in size and tumour characteristics,
a feline veterinary trial provides a good opportunity to study the feasibility of USMB
therapy using an unmodified clinical US system and clinically available microbubbles. Our
optimized USMB therapy procedure can be easily translated to human patients. In the
future, we expect that USMB therapy, if proven safe and feasible in human patients with
head and neck cancer, could be added to standard-of-care chemo(radio)therapy to improve
local drug delivery (e.g., of cisplatin and/or cetuximab) or to standard-of-care radiotherapy
(to enhance tumour perfusion and consequently reduce hypoxia). Finally, adding USMB
therapy to chemoradiotherapy could, in the future, lead to adapted treatment regimens
with similar efficacy while reducing systemic toxicity. Early clinical trials using USMB
in combination with chemotherapy in patients with various tumour types [20–23] (Clini-
calTrials.gov Identifiers: NCT04146441, NCT04821284, NCT03477019 and NCT03458975,
NCT03385200), as well as clinical studies of USMB therapy with radiotherapy in the absence
of a drug (Clinicaltrials.gov NCT04431674, NCT04431648), have already shown promising
results or are still ongoing. Since we used a clinical US system and EMA/FDA-approved
microbubbles in this study, the step to a clinical trial in human head and neck cancer
patients can be taken in the near future. While customized USMB therapy settings might
lead to even better results in the long term, the approval process could take longer and
we expect that the use of PW Doppler without adaptations will accelerate the road to
clinical benefit.

5. Conclusions

Our veterinary feasibility trial shows that the combination of bleomycin and ultra-
sound and microbubbles therapy, using an unmodified clinical ultrasound system and
FDA/EMA-approved microbubbles, is a feasible and well-tolerated treatment in cats with
oral squamous cell carcinoma. Besides a modest clinical response, we found indications
of enhanced tumour perfusion after USMB therapy. This could be a forward step toward
clinical translation of USMB therapy to human patients with head and neck cancer or other
tumours with a clinical need for locally enhanced treatment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics15041166/s1. Figure S1. Contrast enhanced ul-
trasound (CEUS) parametric maps of cats 2-6, visualizing peak intensity (PI), before (top) and after
(bottom) USMB therapy. For each cat the three treatment sessions are depicted from left to right.
CEUS was available for twelve treatment sessions. Pixels with high signal intensity before adminis-
tration of microbubbles (e.g. regions containing bone) were set to zero and delineated with white
dotted lines. Below the two maps PI is compared between before (white) and after (blue) USMB
in a histogram, excluding pixels with a PI < 5. Note that the range of the y-axes differs between
treatment sessions. ROIs pre and post USMB are identical in size within one treatment session and
matched in position as much as possible. CEUS parameters were kept constant between treatment
sessions, except in treatment session 2 of cat 3 when gain inadvertently changed from 45% (before
USMB) to 49% (after USMB). Based on visual interpretation of the data PI increased in six out of nine

https://www.mdpi.com/article/10.3390/pharmaceutics15041166/s1
https://www.mdpi.com/article/10.3390/pharmaceutics15041166/s1
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treatment sessions. Figure S2. Contrast enhanced ultrasound (CEUS) parametric maps of cats 2–6,
visualizing time-to-peak (TTP), before (top) and after (bottom) USMB therapy. For each cat the three
treatment sessions are depicted from left to right. CEUS was available for twelve treatment sessions.
Pixels with high signal intensity before administration of microbubbles (e.g. regions containing
bone) were set to zero and delineated with white dotted lines. Below the two maps TTP is compared
between before (white) and after (blue) USMB in a histogram. Note that the range of the y-axes differs
between treatment sessions. ROIs pre and post USMB are identical in size within one treatment
session and matched in position as much as possible. CEUS parameters were kept constant between
treatment sessions, except in treatment session 2 of cat 3 when gain inadvertently changed from 45%
(before USMB) to 49% (after USMB). Based on visual interpretation of the data we did not observe
a trend in changes of TTP. Figure S3. Contrast enhanced ultrasound (CEUS) parametric maps of
cats 2–6, visualizing area under the curve (AUC), before (top) and after (bottom) USMB therapy.
For each cat the three treatment sessions are depicted from left to right. CEUS was available for
twelve treatment sessions. Pixels with high signal intensity before administration of microbubbles
(e.g. regions containing bone) were set to zero and delineated with white dotted lines. Below the
two maps AUC is compared between before (white) and after (blue) USMB in a histogram, excluding
pixels with an AUC < 250. Median AUC values before and after USMB and the relative difference
are described in the histogram. Note that colour scales and the range of the y-axes differ between
treatment sessions. ROIs pre and post USMB are identical in size within one treatment session and
matched in position as much as possible. CEUS parameters were kept constant between treatment
sessions, except in treatment session 2 of cat 3 when gain inadvertently changed from 45% (before
USMB) to 49% (after USMB). The median AUC in the ROI decreased in six out of twelve treatment
sessions (median decrease 39%, range −4 to −65%) while it increased in six out of twelve treatment
sessions (median increase 199%, range 10 to 1039%).
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