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1.1. STATISTICAL BACKGROUND
Multi-omics efforts have taken center stage in biomedical research and can potentially
develop new insights into human diseases [11]. The central statistical aim of these
efforts is modeling the outcome disease in relationship with the correlation structure
within and across omic layers. For a single omic layer, a well known traditional sta-
tistical method is generalized linear model (GLM) [15]. In this model, the relationship
between an outcome z ∈R and a set of omic features x ∈Rp is given by

η[E(z|x)] =β0 +β⊤x, (1.1)

where η is the link function connecting the conditional mean of the outcome variable
z given x to a linear predictor; β0 is the intercept, and β is the p-dimensional regres-
sion coefficient vector describing how the features in x relate to the outcome. The GLM
model can be estimated by maximizing the log-likelihood. When x is high-dimensional
and highly correlated, which is often the case for omics data, the estimate of β and its
interpretation will be unreliable [14]. To address this problem, regularized regression
approaches like ridge [10], lasso [4], or elastic net [26] (which is the combination of the
former two) can be applied. Alternatively, latent variable method such as partial least
squares univariate regression [22, 9] (or PLS1, to be clearly distinguished from the PLS
later in the chapter) can be used.

The statistical challenge here is how to model the outcome utilizing multi-omic data-
sets. The most common application is to apply the GLM model in (1.1) to each omics
dataset. To obtain an overall result, multiple single-omic analyses are typically followed
by taking the union or the intersection of the associated genes or gene products across
the omics layers. Such an approach lacks an overview of the structure within and across
omics related to the outcome. Alternatively, one can stack multiple omics datasets into
one and apply GLM on the stacked dataset. Multiple penalties might be applied to reg-
ularize the regression coefficients for each set of omic features separately. This type of
models focuses on the relationship between an outcome variable and the omics data-
sets and does not model the joint distribution of the omics datasets thus lacks insight
into the multi-omics structure. Moreover, they do not explicitly take into account the
correlation structure between the omics datasets. Approaches that model an outcome
with the correlation structure both within and between omics datasets are needed. In
this thesis, such methods are proposed and studied.

To model the multivariate covariance structure within and across two datasets with-
out an outcome, latent variable approaches such as partial least squares (PLS) [20, 2]
have been developed. Latent variable approaches map both datasets from the original
high-dimensional spaces to low-dimensional joint latent spaces which retain the rela-
tionship (we refer such methods to integrative methods in this thesis). Let x ∈ Rp and
y ∈Rq be two distinct sets of omic features of dimension p and q , respectively. The PLS
model is given by

x = tW ⊤+e,

y = uC⊤+ f ,

u = tB +h,

(1.2)
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where the K -dimensional (K << p or q) joint latent variables t (for x) and u (for y) cap-
ture the relationship between x and y , and their inner relationship is modelled by the
K ×K diagonal matrix B . W (p ×K ) and C (q ×K ) are the loading matrices indicating
relative importance of each omic feature in x and y . The vectors e, f , h of dimension
p, q, K respectively are the residuals.

These PLS-type of methods tailored for omics datasets (which will be introduced in
the next section) do not model the outcome z. How to incorporate the regression model
for the outcome z in (1.1) into the integrative model for two omics datasets x and y ,
or more broadly, how to jointly model the outcome z with two omics datasets taking
into account the correlation structure within and across omic layers is not addressed in
current literature. This thesis will build upon integrative methods towards a solution to
this problem.

1.2. INTEGRATIVE METHODS FOR TWO OMICS - O2PLS
The analyses in this thesis involve several omic layers, including genomics, epigenomics,
transcriptomics, glycomics, and metabolomics. A prominent characteristic present am-
ong these data is the complex dependence structure both within and between the data-
sets, as illustrated in Figure 1.1. The PLS model (1.2) addresses the correlation within
dataset by projecting the dependent original omic features to independent latent vari-
ables, and models the dependence structure between datasets by associating the latent
variables for each omics dataset.

Figure 1.1: Dependence structure within and between several types of omics data. Each rectangle represents
an omic layer, where arrows depict possible relationships between the omics. Dependence within an omic
layer also exists. Figure taken from [25].

However, omics data are also heterogeneous in several aspects, with respect to the
source of variation, dimensionality, and measurement platform. When integrating two
heterogeneous omics datasets, the joint latent components t and u in the PLS model
in (1.2) also contain (strong) omic-specific variation that is not involved in the joint
variation of the two omics. Ignoring this omic-specific variation may lead to an erro-
neous representation of the true relationship. To account for the heterogeneity, the PLS
model was extended to two-way orthogonal PLS (O2PLS) [18, 6], which includes data-
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specific latent variables t⊥ and u⊥ that are independent of the joint and residual parts.
For example, x is genomics and y is glycomics. The underlying model of O2PLS for their
relationship is depicted in Figure 1.2. Here, t and u are joint latent variables model-
ing the relationship between genomics and glycomics, and t⊥ and u⊥ are specific latent
variables that capture the variance of genomics not related to glycomics and variance of
glycomics not related to genomics, respectively.

Figure 1.2: O2PLS model for relationship between two omics datasets x and y .

The equations for the underlying model of O2PLS are given by

x = tW �+ t⊥W �
⊥ +e,

y = uC�+u⊥C�
⊥ + f ,

u = tB +h.

(1.3)

where W⊥ and C⊥ are data-specific loading matrices.
Model (1.3) can be fitted by using algorithmic approaches [18, 6] or by using maxi-

mum likelihood estimation (MLE) methods [7, 8]. In the first approach, three sequential
steps are applied. First, the data-specific parts are ignored and model (1.3) reduces to
model (1.2) without data-specific parts. The parameters W and C are estimated per col-
umn by iteratively projecting (x, y) onto (t ,u) via the current estimates for the respective
columns in W and C , and vice versa [17, 21]. Next, with the initial estimate for the joint
parts from the first step, model (1.3) reduces to PCA models for x and y where W⊥ and
C⊥ are the loadings for the principal components. Lastly, these data-specific compo-
nents are subtracted and model (1.3) again reduces to model (1.2) as in the first step.
Likelihood-based approaches specify a multivariate normal distribution for the latent
variables and the residual terms, and optimizes all the parameters of model (1.3) simul-
taneously. Directly maximizing the likelihood function is analytically and computation-
ally not feasible. An EM algorithm [3] can be used as proposed in the probabilistic O2PLS
(PO2PLS) [8]. In the expectation (E) steps, it calculates the first and second conditional
moments of the latent variables, given the observed data and the current estimator of
parameters (starting with an initial guess for the parameters). In the maximization (M)
steps, the estimator is updated as the maximizer of the complete likelihood, where the
expectations are used as predictions for the latent quantities. Under some assumptions,
the sequence of estimates converge to a local optimum of the likelihood [3, 23]. Com-
pared to the algorithmic approaches, the likelihood-based approach has the advantage
of producing standard errors and hence facilitate statistical inference. For detailed de-
scriptions and discussions of the integrative models, see [1].
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1.3. MODELING THE OUTCOME

The model in (1.3) captures the joint variation between omics datasets in the joint latent
variables t and u. These joint latent variables can be used to unveil the relationship be-
tween the outcome and the integrated omics (or the joint parts of omics). An exploratory
analysis such as data visualization can be usually performed prior to any modeling of
the outcome. The dimension reduction embedded in model (1.3) provides a convenient
way to visualize the high-dimensional omics data and explore their relationship with the
outcome. For statistical modeling, a two-stage approach can be considered where the
outcome z is modeled in the second stage using linear models with the latent variables
estimated from the first stage. Compared to two separate models, a one-step approach
that models the joint distribution of the outcome and the omics is expected to yield bet-
ter results. In this thesis, the main interest is modeling the outcome with the joint parts
of omics. However, the data-specific latent variables can be of interest as well to un-
cover the mechanism underlying the outcome that involves only a specific omic layer.
This will be discussed in the last chapter.

1.3.1. VISUALIZATION OF THE RELATIONSHIP

One of the main advantages of dimension reduction is that it enables visualization of the
high-dimensional data. The number of joint latent variables K for the O2PLS model is
small, usually taken between 1 and 5, based on cross-validation or scree plots of eigen-
values of x⊤y . The values of the joint latent variables (also called the joint component
scores) for an individual can be estimated as t̂ = xŴ , where Ŵ is the estimated joint
loading matrix of x in model (1.3). These scores can be plotted against each other in a
scatter plot (or joint score plot) to visually identify clusters of closely related individuals.
Usually the scores of the first two joint components (t̂(1), t̂(2)) are used as they explain the
most of the covariance between omics. These scores are obtained in an unsupervised
manner, i.e., the information of the outcome is not used. One can add the information
of the outcome to a joint score plot by coloring the individuals based on the outcome
status (for a binary outcome such as disease status) to see if the clusters overlap with
the outcome. Figure 1.3 gives an example of such visualization from a study of hyper-
trophic cardiomyopathy (HCM) in Chapter 2, where regulomics and transcriptomics are
integrated. The x- and y- axes are the values of the first and second joint latent variables
(i.e., (t̂(1), t̂(2)) and (û(1), û(2))). Each healthy control is marked in red and each HCM pa-
tient is colored in blue. The 95% confidence regions of each group is also added. From
this plot, it is clear that the joint parts of both omics are associated with the outcome
disease with a clear separation of the two groups.

1.3.2. TWO-STAGE MODELING OF THE OUTCOME

Two-stage approaches are considered where in the first stage, an integrative model is fit
and the latent variables are estimated. In the second stage, the estimated latent variables
from the first stage and the outcome z are modeled using various linear models, leading
to different applications and interpretations.
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Figure 1.3: Joint score plots of regulomics (left) and transcriptomics (right). The x- and y- axes are (t̂(1), t̂(2))
and (û(1), û(2)) for regulomics and transcriptomics, respectively. HCM patients and controls were plotted in
different colors. Ellipses are the 95% confidence regions of each group.

LATENT VARIABLES AS COVARIATES

We first consider modeling an outcome z using the GLM model in (1.1), with the esti-
mated joint latent variables for omics from an O2PLS model as covariates. Specifically,
model (1.3) is followed by

η[E(z|t ,u)] =β0 + t a⊤+ub⊤, (1.4)

where β0 is the intercept, a and b are K -dimensional regression coefficients for t and u,
respectively. Here, t and u can be highly correlated as they are designed to capture the
covariance structure of x and y . This high correlation can cause the estimation of the
regression coefficients to be unstable. We propose two solutions to address the problem.

Use t to represent both omics One solution is to include only t in model (1.4),

η[E(z|t )] =β0 + t a⊤. (1.5)

The rationale is that t represents both omics well and u does not add much value (and
vice versa) to modeling the outcome if t and u are highly correlated. This leads to a
novel application of the two-stage approach in studies that involve genomics and heri-
table omics to construct scores from genomics representing the omics for modeling an
outcome.

Let x be the genomics of an individual. The value of the k-th joint latent variable is
estimated as

t̂(k) = xŵ(k) =
p∑

j=1
x j ŵ(k) j , (1.6)

where ŵ(k) is the k-th estimated joint loading vector of x (i.e., the k-th column of Ŵ ).
This is a weighted sum of all the alleles and is closely related to polygenic score (PGS) [5]
which summarizes the estimated effect of many genetic variants on an individual’s phe-
notype. A PGS is typically calculated as a weighted sum of m trait-associated alleles as

PGS =
m∑

j=1
G j β̂ j , (1.7)
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where G j is the allele count for the j -th SNP, and β̂ j is the effect size of the j -th SNP es-
timated by a relevant genome-wide association study (GWAS). Both t̂(k) in (1.6) and the
PGS constructed for omic features in (1.7) are representation of the variation in omics
that is related to genomics (namely the heritable part). Overall, they are stable over lifes-
pan as the genomics do not change. Therefore can be used to model the outcome in (1.5)
independent of time, and without the omics being measured (as long as the weights Ŵ
and β̂ are available from previous studies). The joint scores constructed from integrative
methods have advantages over PGS as the covariance structure of both omics are mod-
eled simultaneously, while the GWAS which PGS is based on typically examines pairwise
associations. Details of the methodologies and their comparison and applications will
be formulated in Chapter 3.

Re-parametrization Instead of discarding u in (1.4), another solution to address the
correlation between t and u is to substitute u = tB+h from the last equation in (1.3) and
re-parametrize (1.4) as

η(E[z|t ,h]) =β0 + t a⊤+ (tB +h)b⊤ =β0 + t ã⊤+hb̃⊤. (1.8)

Here, h is the part in u that is independent of t . With this equivalent parametrization,
instability due to high correlation in the linear predictor is reduced. The formulation
in (1.8) will be revisited in Chapter 5.

LATENT VARIABLES AS PSEUDO-OUTCOMES

The latent variables can also be regarded as pseudo-outcomes in a linear model in the
second stage. Separate models can be fitted for each k in {1, . . . ,K },

t(k) =β0 + zβ+ϵ, (1.9)

where ϵ is the residual. Analogously, another K regression models are needed for u(k).
The interpretation of regressions as (1.9) focuses on the effect of z on the omics. Such
a formulation is natural to use on an outcome disease that is not effected by omics, for
example, down syndrome (DS). In Chapter 4, an extended regression model of this type
with covariates and random effects will be used to model the effect of DS on the joint
part of methylation and glycomics.

Model (1.9) has an advantage that it models the estimation error from the first stage
with the residual term ϵ. This estimation error is not modeled in (1.4), which often re-
sults in biased parameter estimates [16] and inaccurate estimates for the standard er-
rors. This leads to the development of a joint modeling framework in the next section.

1.3.3. A ONE-STEP MODEL FOR THE JOINT DISTRIBUTION OF OUTCOME

AND OMICS
From a statistical point of view, a simultaneous approach, rather than two consecutive
steps, is expected to yield overall more accurate estimates for the parameters in each
step. A model for the joint distribution of an outcome variable z and two omics datasets
x and y can be formulated by combining the O2PLS model in (1.3) and the GLM model
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in (1.1), via shared latent variables,

x = tW ⊤+ t⊥W ⊤
⊥ +e,

y = uC⊤+u⊥C⊤
⊥ + f ,

u = tB +h,

η(E[z]) =β0 + t a⊤+hb⊤.

(1.10)

With assumptions on the joint distribution of the latent variables and the residual
terms, this model can be estimated by maximizing the likelihood. The most commonly
encountered outcome z in biomedical researches is normally or Bernoulli distributed,
corresponding to an identity or logit link function η in (1.10). For a normally distributed
z, the joint distribution of (x, y, z) is multivariate normal. The likelihood has the same
form as that of the O2PLS model in (1.3), and a similar EM algorithm described in Sec-
tion 1.2 can be used. For a binary outcome, the likelihood does not have an explicit
form. While an EM algorithm can still be used, numerical integration is required to get
approximate conditional expectations in the E steps, and nested iteration is needed to
find a maximizer in the M steps. The computation for a binary outcome is therefore
intense. In Chapter 5, this model will be formulated and studied.

1.3.4. FEATURE SELECTION
So far, we model an outcome via latent variables of omics, which are linear combina-
tions of all the observed omic features. It is often of interest to prioritize features for
further investigation aiming for biomarker development or drug targets. For integrative
models (1.2), (1.3), and (1.10), the loadings in the matrices W and C indicate the relative
importance of each observed omic feature for a corresponding latent variable. One can
select the omic features with an absolute loading value above a certain threshold for fur-
ther study. The selection of threshold here is arbitrary. Alternatively, one can add penalty
functions to the likelihood function or estimating equation to obtain sparse loadings. A
widely used penalty for this purpose is the least absolute shrinkage and selection oper-
ator (lasso) [4], which pushes small coefficients to exact zeros. Another useful penalty
in the biomedical context is the group-wise L2 penalty [24], which results in group-wise
sparsity (i.e., features belonging to the same group will always be selected altogether).
The groups are based on known biological knowledge, providing a way to augment the
model with extra information and potentially improve statistical power [19, 24, 13]. For
the PLS model in (1.2), lasso and group-wise L2 penalty have been applied to get sparse
loading vectors [26, 12, 13]. Sparse version of the O2PLS model in (1.3) will be developed
in Chapter 2.

1.4. GENERAL OUTLINE OF THE THESIS
The remainder of this thesis is organized following the development of methodology for
the outcome, from exploratory analysis of the outcome to modeling the outcome using
two-stage approaches, and finally to joint modeling of the outcome with omics.

In Chapter 2, a sparse extension of the O2PLS method - group sparse O2PLS (GO2-
PLS) - is developed. The method utilizes known group information among the features
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to select relevant groups of features, by imposing group-wise penalties in the joint sub-
spaces of omics. The method is implemented on methylation and glycomics from a
population study, and regulomics and transcriptomics from a small case-control study
of hypertrophic cardiomyopathy (HCM). In the latter, the relationship between the out-
come HCM and the omics is explored visually using plots of the estimated joint scores,
and the subsets of omic features selected are interpreted.

In Chapter 3, a novel way of modeling the outcome using genetic scores for omics is
proposed. The genetic scores are constructed using various integrative methods and a
newly proposed omic-PGS method. As mentioned in Section (1.3.2), the genetic scores
for an omics can be computed without the omics data being measured. Only a fitted
integrative model or GWAS summary statistics from previous studies is needed. We
construct genetic scores for glycomics and metabolomics in two cohorts, and use the
genetic scores to model BMI and type 2 diabetes.

In Chapter 4, we propose a two-stage approach to model down syndrome (DS) with
methylation and glycomics. First, joint components representing methylation and glyc-
omics are constructed using probabilistic O2PLS (PO2PLS). Each of these joint compo-
nents is then used as pseudo-outcome and modeled via a linear mixed model with DS,
age, sex as covariates and family as random effect. For the components that are signif-
icantly associated with DS, we identify the most important CpG sites and glycans and
give interpretations.

In Chapter 5, a holistic model for joint modeling of an outcome and two omics,
namely, GLM-PO2PLS is developed. The model identifiability is derived and EM algo-
rithms to obtain maximum likelihood estimators of the parameters for the model with a
normally or Bernoulli distributed outcome are developed. Test statistics are proposed to
infer the association between the outcome and the omics, and their asymptotic distri-
butions are derived. The method is applied on the same DS dataset as used in Chapter
4. The results are compared with previous studies as well as those in Chapter 4.

Finally in Chapter 6, a computationally more efficient two-stage EM algorithm is
developed for the GLM-PO2PLS model with a binary outcome. Its relationship with the
two-stage model in Chapter 4 is discussed. An extension of GLM-PO2PLS to allow omic-
specific latent variables in the linear predictor of the outcome is proposed. The chapter
concludes with other directions to incorporate various sources of information related to
omics into outcome modeling.
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ABSTRACT
Background: Nowadays, multiple omics data are measured on the same samples in the
belief that these different omics datasets represent various aspects of the underlying bi-
ological systems. Integrating these omics datasets will facilitate the understanding of the
systems. For this purpose, various methods have been proposed, such as Partial Least
Squares (PLS), decomposing two datasets into joint and residual subspaces. Since omics
data are heterogeneous, the joint components in PLS will contain variation specific to
each dataset. To account for this, Two-way Orthogonal Partial Least Squares (O2PLS)
captures the heterogeneity by introducing orthogonal subspaces and better estimates
the joint subspaces. However, the latent components spanning the joint subspaces in
O2PLS are linear combinations of all variables, while it might be of interest to identify a
small subset relevant to the research question. To obtain sparsity, we extend O2PLS to
Group Sparse O2PLS (GO2PLS) that utilizes biological information on group structures
among variables and performs group selection in the joint subspace.

Results: The simulation study showed that introducing sparsity improved the fea-
ture selection performance. Furthermore, incorporating group structures increased ro-
bustness of the feature selection procedure. GO2PLS performed optimally in terms of
accuracy of joint score estimation, joint loading estimation, and feature selection. We
applied GO2PLS to datasets from two studies: TwinsUK (a population study) and CVON-
DOSIS (a small case-control study). In the first, we incorporated biological information
on the group structures of the methylation CpG sites when integrating the methylation
dataset with the IgG glycomics data. The targeted genes of the selected methylation
groups turned out to be relevant to the immune system, in which the IgG glycans play
important roles. In the second, we selected regulatory regions and transcripts that ex-
plained the covariance between regulomics and transcriptomics data. The correspond-
ing genes of the selected features appeared to be relevant to heart muscle disease.

Conclusions: GO2PLS integrates two omics datasets to help understand the under-
lying system that involves both omics levels. It incorporates external group information
and performs group selection, resulting in a small subset of features that best explain
the relationship between two omics datasets for better interpretability.
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2.1. BACKGROUND
With the advancements in high throughput technology, multiple omics data are com-
monly available on the same subjects. To identify a set of relevant related features across
the omics levels, these datasets need to be integrated and analyzed jointly. For statistical
integration of omics data, there are several challenges to overcome: complex correlation
structure within and between omics data, high-dimensionality (p ≫ n, or “large p, small
n”), heterogeneity between different omics datasets, and selection of relevant features
in each dataset. To deal with the first two challenges, Partial Least Squares (PLS) has
been proposed [5, 30]. Dimension reduction is achieved by decomposing two datasets
X and Y into joint and residual subspaces. The joint (low-dimensional) subspace of
one dataset represents the best approximation of X or Y based on maximizing the co-
variance of the two. However, by integrating two heterogeneous omics datasets, the PLS
joint components also contain (strong) omic-specific variation. This heterogeneity can
be caused by differences (e.g. between methylation and glycomics) in size, distribution,
and measurement platform. Ignoring these omic-specific characteristics (variation spe-
cific to each of the data) in the model may lead to a biased representation of the under-
lying system. Two-way orthogonal partial least squares (O2PLS) [24, 9] was proposed to
decompose each dataset into joint, orthogonal, and residual subspaces. The orthogonal
subspaces in X and Y capture variation unrelated to each other, making the joint sub-
spaces better estimates for the true relation between X and Y. Hence, O2PLS accounts for
the heterogeneity of two omics datasets. However, the resulting low-dimensional latent
components spanning the joint subspaces are linear combinations of all the observed
variables. Therefore, to select a small subset of relevant features for better interpreta-
tion, one can impose sparsity on the loadings of the principal components. A straight-
forward approach is to ignore all loadings smaller than some threshold value, effectively
treating them as zero, which can be misleading [13].

Several sparse methods based on PLS have been proposed. Chun and Keleş pro-
posed sparse PLS (SPLS) [8] which fits PLS on a reduced X space, consisting of pre-
selected X -variables using a penalized regression. Sparse PLS (sPLS) by Lê Cao et al. [15]
imposes L1 penalty on the singular value decomposition (SVD) of the covariance matrix
of X and Y , resulting in sparse loading vectors for both datasets. Often it is of interest
to select a group of features instead of individual features, e.g. features within a gene
or a pathway. By so doing, one can improve power by identifying aggregate effects of
the selected features [25, 31, 16]. Liquet et al. extended sPLS to group PLS (gPLS) [16],
imposing group-wise L2 penalties on the loadings of the pre-defined feature groups. It
results in group-wise sparsity (i.e., features belonging to the same group will always be
selected altogether).

In this work, we propose to extend O2PLS to incorporate sparsity, called Group Sparse
O2PLS (GO2PLS). GO2PLS obtains sparse solutions by pushing a large number of small
non-zero weights (or loading values) to zeros, instead of employing hard thresholding
using arbitrary cut-off values. Therefore, GO2PLS constructs joint low-dimensional la-
tent components representing the underlying systems involving both omics levels while
taking into account the heterogeneity of different omics data, incorporates external bi-
ological information such as known group structure, and performs variable selection by
imposing group-wise penalties on the loading vectors in the joint subspaces.
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For illustration, we apply GO2PLS to datasets from two studies. Firstly, TwinsUK
is a population based study [19, 17], where methylation (482K CpG sites) and 22 im-
munoglobulin G (IgG) glycans were measured. A previous research [27] suggested the
presence of an indirect influence of methylation on IgG glycosylation that may in part
capture environmental exposures. We integrate the two omics datasets, aiming to iden-
tify genes of CpG sites affecting IgG glycosylation. In the CVON-DOSIS case-control
study [CVO], regulomics (histone modification) and transcriptomics data were mea-
sured on 13 hypertrophic cardiomyopathy (HCM) patients and 10 controls. Histone
modification can have an impact on gene expression. Therefore we integrate the two
omics datasets and identify a small set of regulatory regions and transcripts explaining
this relationship. Moreover, the extreme imbalance in a high-dimensional setting (33K
ChIP-seq and 15K RNA-seq vs 23 subjects) poses computational challenges. The result-
ing selected features are further studied using gene set enrichment analysis [21]. Several
possible scenarios containing these characteristics are designed and investigated in an
extensive simulation study.

This paper is organized as follows. In the methods section, an overview of O2PLS is
presented, followed by the formulation of GO2PLS. Via a simulation study, we explore
the properties of GO2PLS and compare its performance to other competitive methods.
We then apply GO2PLS to integrate methylation and glycomics in the TwinsUK study
and regulomics and transcriptomics in the CVON-DOSIS study. We conclude with a
discussion and possible directions to further extend the method.

2.2. METHODS

2.2.1. DATA DESCRIPTION

TWINSUK DATASETS

Whole blood methylation (using Infinium HumanMethylation450 BeadChip) and IgG
glycomics (Ultra Performance Liquid Chromatography) data were measured on 405 in-
dependent individuals, among which 392 are females and 13 are males. The age ranges
from 18 to 81, with a median of 58. The methylation dataset consists of beta values (ratio
of intensities between methylated and unmethylated alleles) at 482563 CpG sites. CpG
sites with missing values, on allosomes, or labeled cross-active [7] were removed. We
kept only the CpG sites on CpG islands or surrounding areas (shelves and shores) that
mapped to genetic regions. Age, sex, batch effect, and cell counts were corrected for us-
ing multiple regression. The glycomics dataset contains 22 glycan peaks. These peaks
were normalized using median quotient (MQ) normalization [26], log-transformed, and
adjusted for batch effect, age, and sex as well. The remaining 126299 CpG sites were then
divided into 16892 groups based on their target genes (biological information from the
UCSC database [14, UCS]). No group information was available for the glycomics data.

CVON-DOSIS DATASETS

In the CVON-DOSIS study, regulomics and transcriptomics datasets were measured on
the samples taken from the heart tissues of 13 HCM patients and 10 healthy controls.
HCM is a heart muscle disease that makes it harder for the heart to pump blood, leading
to heart failure. The regulomics data were measured using ChIP-seq, providing counts
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of histone modification H3K27ac in 33642 regulatory regions. The transcriptomics data
contain counts of 15882 transcripts, measured by RNA-seq. The raw counts of regul-
omics data were normalized with reads per kilobase million (RPKM) to adjust for se-
quencing depth. Transcriptomics data were normalized with counts per million (CPM)
with effective library size (estimated using the TMM method in EdgeR R package [18]).
Further, both normalized data were log-transformed.

2.2.2. TWO-WAY ORTHOGONAL PARTIAL LEAST SQUARES (O2PLS)
let X and Y be two data matrices with the number of rows equal to the sample size N
and the number of columns equal to the dimensionality p and q , respectively. Let the
number of joint, X -orthogonal (unrelated to Y ) and Y -orthogonal components be K ,
Kx and Ky , respectively, where K , Kx and Ky are typically much smaller than p and q .
The O2PLS model decomposes X and Y as follows:

X = T W ⊤+T⊥P⊤
⊥ +E ,

Y =UC⊤+U⊥Q⊤
⊥ +F.

The relation between X and Y is captured through the inner relation between T and U,

U = T BT +H ,

T =U BU + H̃ .

In this model, the scores are: T (N ×K ), U (N ×K ), T⊥ (N ×Kx ), U⊥ (N ×Ky ). They
represent projections of the observed data X and Y to lower-dimensional subspaces.
The loadings, W (p ×K ), C (q ×K ), P⊥ (p ×Kx ), Q⊥ (q ×Ky ), indicate relative importance
of each X and Y variable in forming the corresponding scores. Further, E (N ×p), F (N ×
q), H (N ×K ), H̃ (N ×K ), represent the residual matrices.

In O2PLS, estimates of the joint subspaces are obtained by first filtering out the or-
thogonal variation. The filtered data matrices X̃ and Ỹ are constructed as follows:

X̃ = (IN −T⊥(T ⊤
⊥ T⊥)−1T ⊤

⊥ )X ,

Ỹ = (IN −U⊥(U⊤
⊥U⊥)−1U⊤

⊥ )Y ,

where T⊥U⊥ are estimates for the orthogonal subspaces, and IN is identity matrix of size
N . For more details see [24]. The joint parts maximize the covariance between the joint
scores T = X̃ W and U = Ỹ C . Here, W and C consist of loading vectors (w1, . . . , wK ) and
(c1, . . . ,cK ), which can be found as the right and left singular vectors of the covariance

matrix Ỹ
⊤

X̃ [9]. Calculating and storing Ỹ
⊤

X̃ of dimension q×p can be cumbersome for
high dimensional omics data. Therefore we consider the following optimization prob-
lem sequentially for components k = 1, . . . ,K :

max
∥ck∥2=1,∥wk∥2=1

c⊤k Ỹ
⊤
k X̃ k wk ,

where parameters wk , ck are the loading vectors of the k-th joint components and X̃ k , Ỹ k

are the filtered data matrices after k −1 times of deflation. This can be solved efficiently
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using NIPALS [29] algorithm, which starts with random initialization of the X -space
score vector t and repeats a sequence of the following steps until convergence:

1)ck = Ỹ
⊤
k t

t⊤t
, 2)∥ck∥2 → 1, 3)u = Ỹ k ck ,

4) wk = X̃
⊤
k u

u⊤u
, 5)∥wk∥2 → 1, 6) t = X̃ k wk .

In step 1 and 4, Yk and Xk are projected onto the X -space score vector t and the Y -space
score u to get the loading vectors ck and wk . The loading vectors are then unitized (step
2 and 5) and used to calculated the new scores u and t . Convergence of the algorithm is
guaranteed. A detailed description and proof of optimality of the O2PLS algorithm can
be found in [24, 9].

While standard cross-validation (CV) over a 3-dimensional grid is often used to de-
termine the optimal number of components K , Kx , and Ky , the procedure is not opti-
mal for O2PLS, since there is not a single optimization criterion for all three parameters.
As in [9], we use an alternative CV procedure that first performs a 2-dimensional grid
search of Kx and Ky , with a fixed K , to optimize prediction performance of T →U and
U → T . Then a sequential search of optimal K is conducted to minimize the sum of
mean squared errors (MSE) of prediction concerning X → Y and Y → X .

2.2.3. GROUP SPARSE O2PLS (GO2PLS)
GO2PLS extends O2PLS by introducing a penalty in the NIPALS optimization on the fil-
tered data X̃ and Ỹ . This penalty encourages sparse, or group-sparse solutions for the
joint loading matrices W and C , leading to a subset of the original features correspond-
ing to non-zero loading values being selected in each joint component.

Briefly, we introduce an L1 penalty on each pair of joint loading vectors. The opti-
mization problem for the k-th pair of joint loadings ck , wk is:

max
∥ck∥2=1,∥wk∥2=1

c⊤k Ỹ
⊤
k X̃ k wk +λc ∥ck∥1 +λw ∥wk∥1 , (2.1)

where λc , λw are penalization parameters that regulate the sparsity level. The optimiza-
tion problem (2.1) can be solved [28] by iterating over the k-th pair of joint loadings,

ck = S(Ỹ
⊤
k t ,λc )∥∥∥S(Ỹ
⊤
k t ,λc )

∥∥∥
2

, wk = S(X̃
⊤
k u,λw )∥∥∥S(X̃
⊤
k u,λw )

∥∥∥
2

, (2.2)

where t = X̃ k wk and u = Ỹ k ck . Here, S(·) is the soft thresholding operator: S(a,const) =
sg n(a)(|a|−const)+ (const ≥ 0 is a non-negative constant, (x)+ equals to x if x > 0 and
equals to 0 if x ≤ 0).

To perform group selection, we impose group-wise L2 penalty on the joint loading
vectors. Let X̃ and Ỹ be partitioned into J (J ≤ p) and M (M ≤ q) groups, respectively.

The submatrices X̃
( j )

and Ỹ
(m)

( j = 1, . . . , J ; m = 1, . . . , M) contain the j -th and m-th
group of variables, with corresponding loading vectors w ( j ) (of size p j ) and c(m) (of size
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qm). The optimization problem for the k-th pair of loading vectors ck = (c(1)
k

⊤
, . . . ,c(M)

k

⊤
)⊤

and wk = (w (1)
k

⊤
, . . . , w (J )

k

⊤
)⊤ can be written as follows:

min
c(m)

k ,w
( j )
k

{
−

J∑
j=1

M∑
m=1

c(m)
k

⊤
Ỹ

(m)
k

⊤
X̃

( j )
k w ( j )

k

+λc

M∑
m=1

p
qm

∥∥∥c(m)
k

∥∥∥
2
+λw

J∑
j=1

√
p j

∥∥∥w ( j )
k

∥∥∥
2

+φc

(
M∑

m=1

∥∥∥c(m)
k

∥∥∥2

2
−1

)
+φw

(
J∑

j=1

∥∥∥w ( j )
k

∥∥∥2

2
−1

)}
,

(2.3)

where the last two terms are reformulations of the unit norm constraints on ck and wk ,
withφc andφw being the Lagrangian multipliers. The effective penalization parameters
on each group (λc , λw ) are adjusted by the square root of the group size to correct for
the fact that larger groups are more likely to be selected. This optimization problem can
be solved using block coordinate descent (for details, see Section 2.6.1). The solution
takes the form:

c(m)
k =

(∥∥∥Ỹ
(m)
k

⊤
t
∥∥∥

2
−p

qmλc

)
+

2φc

∥∥∥Ỹ
(m)
k

⊤
t
∥∥∥

2

Ỹ
(m)
k

⊤
t ,

w ( j )
k =

(∥∥∥X̃
( j )
k

⊤
u

∥∥∥
2
−p

p jλw

)
+

2φw

∥∥∥X̃
( j )
k

⊤
u

∥∥∥
2

X̃
( j )
k

⊤
u.

(2.4)

The X̃ -variables within the j -th group will have non-zero weights if
∥∥∥X̃

( j )
k

⊤
u

∥∥∥
2

(i.e., the

contribution of the whole group to the covariance) is larger than the size-adjusted pe-
nalization parameter

p
p jλw . In the same way, the Ỹ -variables within the m-th group

will be assigned non-zero loading values if
∥∥∥Ỹ

(m)
k

⊤
t
∥∥∥

2
>p

qmλc .

Note that when all the groups have size 1, the summation of group-wise L2 penal-
ties is equivalent to an L1 penalty on the unpartitioned loading vector and individual
features will be selected (i.e., (2.3) reduces to (2.1)). In this specific case, to avoid confu-
sion, we call the method Sparse O2PLS (SO2PLS). When the penalization parameters
λw = λc = 0, GO2PLS becomes to O2PLS. If the number of orthogonal components
Kx = Ky = 0, GO2PLS, SO2PLS, O2PLS are equivalent to gPLS, sPLS, and PLS, respec-
tively.

The k-th pair of joint loadings are orthogonalized with respect to the previous k −1
loading vectors. Letπ be an index set for selected variables in wk . The orthogonalization
is achieved by first projecting w (π)

k onto span{w (π)
1 , . . . , w (π)

k−1}, and then subtracting this

projection from w (π)
k . When the previous k−1 components do not select any variable in

π, span{w (π)
1 , . . . , w (π)

k−1} is actually a zero subspace and no orthogonalization is needed.
To determine the optimal sparsity level, it is more convenient and intuitive to focus

on the number of selected X̃ , Ỹ groups (donote hx , hy , respectively). If prior biological
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knowledge does not already specify certain hx and hy , cross-validation can be used to
search for combinations of hx and hy that maximize the covariance between each pair of
estimated joint components Cov(t̂ , û). Similar to LASSO [22], the “one-standard-error-
rule" [12] can be applied to obtain a more stable CV result. The GO2PLS algorithm is
described below:

Algorithm: GO2PLS

1 Get X̃ and Ỹ by removing orthogonal variation from X and Y :

(I) Apply NIPALS on X and Y , get an initial estimate of score matrices T,U and
loading matrices W,C ;

(II) E = X −T W ⊤; F = Y −UC⊤;

(III) W⊥ = Kx left singular vectors of SVD (E⊤T );
C⊥ = Ky left singular vectors of SVD (F⊤U );
T⊥ = X W⊥; U⊥ = Y C⊥;

(IV) X̃ = (I −T⊥(T ⊤
⊥ T⊥)−1T ⊤

⊥ )X ;
Ỹ = (I −U⊥(U⊤

⊥U⊥)−1U⊤
⊥ )Y .

2 Calculate joint loadings and joint scores sequentially:

(I) Let X̃ 1 = X̃ ; Ỹ 1 = Ỹ ;

(II) For k = 1,2, . . . ,K :

(a) Iterate between ck and wk until convergence, following Formula (2.4) (or
Formula (2.2) for SO2PLS);

(b) Orthogonalization of ck , wk with regard to the previous k −1 loading
vectors;

(c) tk = X̃ k wk ; uk = Ỹ k ck ;

(d) pk = X̃
⊤
k tk /(t⊤k tk ); qk = Ỹ

⊤
k uk /(u⊤

k uk );

(e) X̃ k+1 = X̃ k − tk p⊤
k ; Ỹ k+1 = Ỹ k −uk q⊤

k ;

(III) T = [t1, . . . , tK ]; U = [u1, . . . ,uK ];
W = [w1, . . . , wK ]; C = [c1, . . . ,cK ].

2.3. SIMULATION STUDY
We evaluate the performance of GO2PLS in two scenarios. First, we investigate the abil-
ity to select the relevant groups under various scenarios, focusing on the joint subspace,
where the group selection takes place. Second, we compare the performance of GO2PLS
and SO2PLS with other methods: O2PLS, PLS, sPLS, and gPLS. We investigate joint score
estimation, joint loading estimation, and feature selection performances.
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In the first scenario, we set the number of variables in X and Y to be p = 5000 and
q = 20, respectively. There are 10 groups of variables in X with non-zero loading val-
ues. The first 5 groups have group sizes of 100, 50, 20, 5, and 1, respectively, in which
all the variables have loading values equal to 1. The remaining 5 groups are of size 10,
with loading values of variables equal to 5. Note that large loading values are assigned
to the latter 5 groups to make the detection of the first 5 groups more difficult. The re-
maining variables have zero loading values and are divided into groups of size 10. All
the Y -variables have the same loading values and are not grouped. The sample size
N is set to 30. We simulate both data matrices with 1 joint component (T and U from
Equation 2.2.2 are both standard normally distributed and have correlation 1). We per-
form 1000 simulation runs and record the number of the runs GO2PLS selected rele-
vant groups; we compute the proportion of each truly relevant group (with non-zero
loadings) being selected across the simulation runs (number of times being selected di-

vided by 1000). The group importance measurement
∥∥∥X ( j )⊤U

∥∥∥
2

/
p

p j , that determines

whether a group is selected or not is recorded for the first 5 groups (with loading value
1) to investigate the stability of the selection procedure.

In the second scenario, we vary the sample size N from 30 to 600, and set p = 20000
and q = 10000, mimicking the dimensionality of the CVON-DOSIS datasets. Both X -
and Y - variables are evenly divided into 1000 groups. For each joint component, we se-
lect 50 relevant groups and assign non-zero loadings to the variables contained in them.
Within each group, variables have the same loading values: 1 for the first group, 2 for the
second,..., and 50 for the last relevant group. We set the number of joint components
K = 2 and the number of orthogonal components Kx = Ky = 1. The scores T,T⊥,U ,U⊥
from Equation 2.2.2 are generated from normal distributions with zero mean. The re-
lationship between the joint scores is represented by U = T +H , where H accounts for
20% of the variation in U . The noise matrices E, F are generated from normal distribu-
tions with zero mean and variance such that the variance of the noise matrix accounts
for a proportionα (0 <α< 1) of the variance of the data matrix (i.e.,α= Var(E)/Var(X ) =
Var(F )/Var(Y )). The ratio of the variance of the orthogonal components to the vari-
ance of the joint components (σ2

T⊥/σ2
T ), and noise level α are varied. For evaluating

the accuracy of the joint score estimation, we computed R2
T̂ T

= 1−∑
(T̂ −T )2/

∑
T 2 and

R2
T̂Û

= 1−∑
(Û − T̂ )2/

∑
Û 2, which quantify how well the true parameter T and the esti-

mated Y -joint component Û can be explained by the estimated X -joint component T̂ .
The performance of feature selection and the accuracy of estimated loadings are eval-
uated by true positive rate (TPR = TP/(TP+FN), where TP = True Positive, FN = False
Negative) and W ⊤Ŵ , which represents the cosine of the angle between the estimated
loading vector and the true one. The performances of all methods are evaluated on an
independent test dataset of size 1000. For each setting, 500 replications are generated.

An overview of scenario settings is presented in Table 2.1, 2.2. To make a clearer com-
parison of the behavior across all the methods, we use the optimum values for the tuning
parameters (number of components and number of relevant variables or groups).

2.3.1. RESULTS OF SIMULATION STUDY
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Table 2.1: Settings of Scenario 1 to study the performance of selecting relevant groups

Measure Selection proportion;

∥∥∥X ( j )⊤U
∥∥∥

2p
p j

p; q 5000;20
relevant group sizes 100;50;20;5;1

N 30
noise level α [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

The selection proportion is the number of times a relevant group being selected divided by the

number of simulation runs. The
∥∥∥X ( j )⊤U

∥∥∥
2

/
√

p j is a measurement of group importance. It pro-

vides more information on the stability of the group selection procedure. We simulate groups with
varying sizes to investigate the influence of group size on the group selection performance of GO2-
PLS.

Table 2.2: Settings of Scenario 2 to compare the performances regarding joint score estimation, joint loading
estimation, and feature selection

Methods GO2PLS; SO2PLS; O2PLS; gPLS; sPLS; PLS
Measure R2

T̂ T
, R2

T̂Û
, TPR, W ⊤Ŵ

p; q 20,000;10,000
relevant p; q 1000;500

N [30,100,200,300,600]
σ2

t⊥/σ2
t [1/5,1/3,1/2,1,2,3,5]

noise level α [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]

R2
T̂ T

and R2
T̂Û

quantify the joint score estimation performance; TPR measures the feature selection

performance; W ⊤Ŵ quantifies the joint loading estimation performance. The dimensions and
number of relevant features are set based on the CVON-DOSIS study. Sample size N , the relative
strength of orthogonal signal (σ2

T⊥/σ2
T ), and noise level α are varied.

SCENARIO 1
Figure 2.1 shows the selection proportion for each relevant group under each noise level.
Compared to smaller groups, the proportion for larger groups is higher at low to moder-
ate (α< 0.7) noise levels, and shows robustness against increasing noise. When the noise
level is very high (α> 0.8), the method loses power to detect relevant group of any size,
particularly, of larger size. Figure 2.2 shows the density of the group importance mea-

surement
∥∥∥X ( j )⊤U

∥∥∥
2

/
p

p j for the first 5 relevant groups with different group sizes under

3 different noise levels. The vertical dotted lines indicate the average threshold given the
correct number of relevant groups. Since a group will be selected if exceeds the thresh-
old, the total area on the right side of the threshold under each density curve equals the
selection proportion for the corresponding group. The measurement for larger relevant
group shows higher precision at all noise levels. The threshold increases along with the
noise.
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Figure 2.1: Simulation Scenario 1: Selection proportion of relevant groups with different sizes under vary-
ing noise. The proportion for larger groups is higher at low to moderate (α < 0.7) noise levels, and shows
robustness against increasing noise.

SCENARIO 2
The performance of the joint score estimation is compared focusing on the difference
between methods with orthogonal parts (GO2PLS, SO2PLS, O2PLS) and their counter-
parts without the “O2" filtering (gPLS, sPLS, PLS). The top row of Figure 2.3 shows the
performance measured by R2

T̂ T
& R2

T̂Û
under N = 30, α = 0.1 and varying relative or-

thogonal signal strength from one fifth to five times of the joint signal. In the left panel,
R2

T̂ T
of the various methods is depicted, representing how well the joint component

T̂ captured the true underlying T . Overall, penalized methods performed better than
non-penalized ones, especially when the orthogonal variation is relatively small. PLS
performed poorly compared to O2PLS, when the orthogonal variation exceeds the joint
variation. As the orthogonal variation further increases, performances of sPLS and gPLS
deteriorated, while SO2PLS and GO2PLS were less affected. In the right panel, R2

T̂Û
is

presented, an estimate of the true parameters R2
TU , capturing correlation of T and U .

Across different settings, O2PLS-based methods performed better, especially when the
orthogonal variation is large.

The bottom row of Figure 5.3 shows the score estimation performance under fixed
relative orthogonal signal strength of 1, α = 0.1, and varying sample size N from 30 to
600. Penalized methods performed better compared to non-penalized methods in gen-
eral, when the sample size is small. Regardless of the sample size, O2PLS-based methods
outperformed PLS-based methods.

Lastly, we present the results of GO2PLS, SO2PLS, and O2PLS with regard to feature
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Figure 2.2: Simulation Scenario 1: Density plot of estimated group importance measurement∥∥∥X ( j )⊤U
∥∥∥

2
/
√

p j for each group size under 3 different noise levels. The vertical dotted red line is the av-

erage threshold. When the measurement of a group is larger than the threshold, the group is selected. The
total area on the right side of the threshold under each density curve equals to the selection proportion for the
corresponding group. The less the density curve spreads out, the more stable is the estimate.

selection and estimation of joint loadings. Results of PLS-based methods are not in-
cluded since the performances of gPLS, sPLS, and PLS in this regard are very similar to
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Figure 2.3: Simulation Scenario 2: comparison of joint score estimation performance, under varying relative
orthogonal signal strength (top row), and varying sample size (bottom row). On the Y-axis, R2

T̂ T
(left) and R2

T̂Û
(right) are the coefficient of determination of regressing T on T̂ , and Û on T̂ , respectively, quantifying the joint
score estimation performances. Boxes show the results of 500 repetition.

GO2PLS, SO2PLS, and O2PLS, respectively. In Figure 2.4, the top row shows the TPR and
W ⊤Ŵ under N = 30 and varying noise levelsα from low to high. At all noise levels, GO2-
PLS had higher TPR than SO2PLS and O2PLS, and performed robustly against increas-
ing noise. Regarding W ⊤Ŵ , GO2PLS outperformed the other two as well. In the bottom
row, when increasing sample size at a fixed noise level of 0.5, the variance appeared to
decrease and the performances of all the methods converged. Overall, GO2PLS outper-
formed others.

2.4. APPLICATION TO DATA
We demonstrate SO2PLS and GO2PLS on datasets from two distinct studies. In the Twin-
sUK study, our aim is to integrate methylation and glycomics data and identify impor-
tant groups of CpG sites underlying glycosylation. In the CVON-DOSIS study, we inte-
grate regulomics and transcriptomics data and select a subset of genes and regions that
drive their relationship.

2.4.1. TWINSUK STUDY

We performed GO2PLS on the data with 1 joint, no methylation-orthogonal, and 3 glycomics-
orthogonal components based on 5-fold cross-validation. We set the sparsity parame-
ters to select the top 100 groups in the methylation and kept all the 22 glycan variables.
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Figure 2.4: Simulation Scenario 2: comparison of feature selection and joint loading estimation perfor-
mance, under varying noise level (top row), and varying sample size (bottom row). On the Y-axis are the True
Positive Rate (left) and W ⊤Ŵ (right), which is the cosine of the angle between the estimated loading vector Ŵ
and the true one W . Boxes show the results of 500 repetition.

The selected CpG groups from GO2PLS were mapped to their targeted genes for inter-
pretation.

We performed gene set enrichment analyses on the selected genes using the Topp-
Gene Suite [6]. The results appeared to be related to immune response. We listed the
most significant molecular function, biological process, and pathway in Table 2.3.

2.4.2. CVON-DOSIS STUDY

We applied SO2PLS on the regulomics and transcriptomics datasets, with 2 joint and 1
orthogonal components for each omics dataset. In each pair of the joint components,
1000 regulomics and 500 transcriptomics variables were selected. We then further iden-
tified the genes corresponding to the promoter regions where the selected 1000 histone
modification locates (using ± 10K window from the transcription start site of the gene).
These genes are of interest since they are likely to be related to epigenetic regulation
of gene expression. Genes corresponding to the selected transcripts were also identi-
fied. These gene sets identified from each joint component of the two omics data were
investigated separately using gene set enrichment analysis. The top results were listed
in Table 2.4. The GO analysis of the selected genes and regions showed terms related
to HCM that were also found previously [11]. Due to the presence of the case-control
status in both omics levels, we expect the joint components related to the disease. Plot-
ting the joint scores of the two datasets showed a separation between HCM cases and
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Table 2.3: TwinsUK study: top results of gene set enrichment analysis

GO2PLS Name pValue FDR
B&H

GO: Molecular Function peptide antigen binding 1.42E-06 5.45E-04
homophilic cell adhesion via
plasma membrane adhesion
molecules

1.82E-10 4.20E-07

GO: Biological Process cell-cell adhesion via plasma-
membrane adhesion molecules

5.46E-10 6.28E-07

cell-cell adhesion 3.43E-07 2.63E-04
interferon-gamma-mediated sig-
naling pathway

1.01E-05 5.83E-03

Viral myocarditis 8.00E-08 9.60E-06
Staphylococcus aureus infection 1.32E-06 7.92E-05
Allograft rejection 3.77E-06 1.51E-04

Pathway (Source:
KEGG)

Graft-versus-host disease 5.54E-06 1.66E-04

Type I diabetes mellitus 7.05E-06 1.69E-04
Autoimmune thyroid disease 2.00E-05 3.66E-04
Rheumatoid arthritis 2.14E-05 3.66E-04

The “pValue" column shows the p-value of each annotation derived by random sampling of the
whole genome; the “FDR B&H" column provides the false discovery rate (FDR) analog of the p-
value after correcting for multiple hypothesis testing [3, 20].

controls (Figure 2.5). For a comparison of score plots of PCA, PLS, O2PLS, and SO2PLS,
please see Section 2.6.2.

Figure 2.5: CVON-DOSIS study: SO2PLS joint score plots of regulomics (left) and transcriptomics (right).
HCM patients and controls were plotted in different colors. Ellipses are the 95% confidence regions of each
group.
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Table 2.4: CVON-DOSIS study: Gene set enrichment analysis results

Joint component 1 -
Regulomics

Name pValue FDR
B&H

muscle structure development 3.42E-08 2.09E-04
muscle tissue development 1.43E-07 4.37E-04
actin cytoskeleton organization 3.35E-07 6.70E-04
cytoskeleton organization 4.40E-07 6.70E-04

GO: Biological Pro-
cess

regulation of cellular response to
stress

8.14E-07 9.93E-04

striated muscle tissue develop-
ment

1.20E-06 1.19E-03

actin filament-based process 1.36E-06 1.19E-03
organ growth 4.31E-06 3.28E-03
heart development 5.85E-06 3.96E-03
contractile fiber 2.19E-07 1.17E-04

GO: Cellular myofibril 3.33E-07 1.17E-04
Component I band 1.54E-06 3.60E-04

Z disc 2.42E-06 4.25E-04
sarcomere 4.82E-06 6.77E-04

Joint component 1 -
Transcriptomics

Name pValue FDR
B&H

blood circulation 1.88E-08 4.19E-05
circulatory system process 2.64E-08 4.19E-05
regulation of system process 2.76E-08 4.19E-05

GO: Biological Pro-
cess

ion transport 3.28E-08 4.19E-05

positive regulation of develop-
mental process

2.58E-07 2.63E-04

neurogenesis 3.66E-07 2.70E-04
heart contraction 3.71E-07 2.70E-04
Myocardial Failure 6.57E-09 1.20E-06

Disease (Source: Congestive heart failure 6.57E-09 1.20E-06
DisGeNET Curated) Heart failure 6.57E-09 1.20E-06

Left-Sided Heart Failure 6.57E-09 1.20E-06
Heart Failure, Right-Sided 6.57E-09 1.20E-06

Joint component 2 -
Regulomics

Name pValue FDR
B&H

RNA binding 1.91E-19 2.63E-16
GO: Molecular
Function

unfolded protein binding 4.03E-09 2.17E-06

catalytic activity, acting on DNA 4.74E-09 2.17E-06
catalytic activity, acting on a tRNA 2.20E-08 7.57E-06
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cellular protein-containing com-
plex assembly

2.67E-24 1.74E-20

RNA processing 1.03E-15 3.36E-12
GO: Biological Pro-
cess

ribonucleoprotein complex bio-
genesis

2.49E-15 5.41E-12

amide biosynthetic process 9.83E-14 1.60E-10
translational elongation 2.98E-13 3.24E-10
translation 2.98E-13 3.24E-10

Pathway (BioSys-
tems REACTOME)

Gene Expression 4.96E-14 6.31E-11

Joint component 2 -
Transcriptomics

Name pValue FDR
B&H

receptor antagonist activity 9.72E-09 7.44E-06
GO: Molecular
Function

receptor inhibitor activity 7.44E-08 2.85E-05

signaling receptor activity 5.11E-05 1.06E-02
negative regulation of execution
phase of apoptosis

7.40E-10 2.75E-06

vascular endothelial growth factor
production

1.24E-09 2.75E-06

GO: Biological Pro-
cess

regulation of vascular endothelial
growth factor production

1.83E-08 2.02E-05

cell-cell adhesion via plasma-
membrane adhesion molecules

7.23E-08 6.40E-05

positive regulation of cytokine
biosynthetic process

8.79E-08 6.49E-05

Results from the gene set enrichment analysis using ToppGene on the selected genes and regions.
In the upper two tables, the first joint regulomics and transcriptomics component is shown, re-
spectively. The lower two tables are about the second joint components.

2.5. DISCUSSION AND CONCLUSION
Statistical integration of two omics datasets is becoming increasingly popular to gain
insight into underlying biological systems. O2PLS is a method that integrates two het-
erogeneous datasets and takes into account omic-specific variation. The resulting joint
and specific components are linear combinations of all variables, making interpreta-
tion difficult. To introduce sparsity and identify relevant groups, GO2PLS incorporates
biological information on group structures to perform group selection in the joint sub-
space. Depending on the group size, such an approach may also lead to a higher se-
lection probability of relevant features. We performed an extensive simulation study
and showed that O2PLS-based methods generally outperformed PLS-based methods re-
garding joint score estimation when orthogonal variation was present in the data. Since
PLS does not take into account orthogonal parts, the joint components also include part
of the orthogonal variation. Further, when the sample size was small or the noise level
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was high, penalized methods appeared to be much less prone to overfitting than non-
penalized methods. This suggests that results based on GO2PLS are likely to be gener-
alizable when applied to new datasets. Concerning feature selection, adding external
group information led to higher TPR, and larger groups of relevant features had a higher
proportion of being detected under a moderate noise level. We then applied GO2PLS to
the TwinsUK study, where we selected 100 target genes comprising of CpG sites that are
most related to IgG glycosylation. The results of the enrichment analysis on the selected
genes showed GO-terms involving the immune system in which the IgG glycans play
important roles. In the CVON-DOSIS study, we integrated regulomics and transcript-
omics and identified 1000 regulatory regions and 500 transcripts, and mapped them to
genes. Further analysis of the selected gene sets showed enrichment for terms related
to heart muscle diseases. Moreover, the implementation of GO2PLS is computationally
fast and memory efficient. It relies on an algorithm based on NIPALS that does not store
large matrices of size p ×q when performing the group-penalized optimization. A reg-
ular laptop (8G RAM, quad-core 2.6 GHz) was able to run GO2PLS on omics data from
both case studies.

The group information should be chosen together with domain experts based on the
research question and biological knowledge. For example, in our TwinsUK data applica-
tion, we aimed to identify the genes comprising of CpG sites, rather than the individual
CpG sites. Therefore, we grouped CpG sites in the same genetic region. Furthermore,
the biological knowledge that close-by CpG sites tend to function together supported
the choice of grouping. Different grouping information leads to a changed definition
of groups, consequently the selected groups will have a different interpretation. An ex-
tra analysis in the TwinsUK study was performed using another grouping strategy. We
grouped 55531 CpG sites that map to the promoter region (0-1500 bases upstream of the
transcriptional start site (TSS)) of a gene to 14491 groups based on their targeted genes.
We applied GO2PLS and selected 100 groups. Note that the size of these groups was
smaller, and many CpG sites in gene bodies are excluded. Enrichment analysis did not
result in significant results, supposedly due to weaker aggregated group effects. When
the research goal is to identify individual features (e.g., in our CVON-DOSIS data appli-
cation), or group information is not available, SO2PLS can be used.

In the CVON-DOSIS study, Plotting the first two joint components showed two dis-
tinct classes corresponding to the case-control status. This might be expected since the
analysis was conditional on case-control status, yielding a correlation between the two
omics datasets. This phenomenon is well known in regression analysis of secondary
phenotypes [23], but not well studied in PLS type of methods. This is a topic of future
research. Often omics data are collected to study their relationship with an outcome
variable or to predict an outcome variable. To this end, our approach has to be extended
to incorporate the outcome variable. Such an approach might also lead to a more sparse
solution since the selected features have to be correlated among the three datasets. Fur-
ther extensions of GO2PLS are to incorporate more than two omics datasets to represent
the actual biological system even better.

Finally, it is possible to extend the GO2PLS algorithm to a probabilistic model. Ex-
tending latent variable methods to probabilistic models is not new. PCA was extended
to Probabilistic PCA in [4], and PPLS [10] was proposed to provide a probabilistic frame-
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work for PLS. It has been shown that the probabilistic counterpart has a lower bias in
estimation and is robust to non-normally distributed variables [10]. More importantly,
the probabilistic model will allow statistical inference, making it possible to interpret
the relevance and importance of features in the population, and facilitating follow-up
studies. These extensions of GO2PLS will be suited for various studies with more com-
plicated designs.

To conclude, GO2PLS estimates joint latent components that represent underlying
systems by integrating two omics data while taking into account the heterogeneity be-
tween different omics levels. It incorporates external information on group structures
to perform group selection, leading to better interpretation.

2.6. SUPPLEMENTARY MATERIALS FOR CHAPTER 2
2.6.1. SOLVING THE OPTIMIZATION PROBLEM OF GO2PLS
The optimization problem of GO2PLS is block multi-convex. It can be solved by opti-
mizing one block at a time, holding the others fixed [12]. The optimization problem for

w ( j )
k is:

min
w

( j )
k

{
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By taking L2 norm at both sides of (2.6), we can solve for
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Combining with the case when w ( j )
k = 0, we have the general form
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⊤
u

∥∥∥
2

X̃
( j )
k

⊤
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Similarly, the solution for c(m)
k can be obtained.

2.6.2. ADDITIONAL ANALYSIS OF CVON-DOSIS STUDY
Due to the case-control study design, we expected that the first few principal compo-
nents of both datasets that explain most of the variance in the data are related to the
disease status. We performed PCA on each dataset separately and plotted the scores of
each data (Figure 2.6a) with different colors for the patients and controls. Though the
95% confidence regions of the two groups overlap, the scores of both data separated the
groups quite well. We further investigated if the joint components that explain the co-
variance between the datasets were also related to the disease. We integrated the two
omics data using PLS (2 joint components, Figure 2.6b), O2PLS (2 joint and 1 orthog-
onal components for each omics dataset, Figure 2.6c), and SO2PLS (Figure 2.6d). The
group separation by the first 2 joint components appeared to be clearer comparing to
PCA, especially when the data-specific variation was taken into account (i.e., in O2PLS
and SO2PLS). More research is needed to quantify the performance of group separation
and compare across methods.

The methods we applied are all unsupervised. It is interesting to incorporate the
disease status in the model. It is our future work to develop supervised integrative ap-
proaches. For more discussions on future directions, please refer to the Discussion sec-
tion in the article.
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(a) (b)

(c) (d)

Figure 2.6: Score plots of PCA (a), PLS (b), O2PLS (c), and SO2PLS (d); In each subplot, regulomics is
on the left, and transcriptomics on the right. PCA is non-integrative, hence performed on regulomics
and transcriptomics separately; PLS, O2PLS, and SO2PLS were applied on the two omics datasets jointly.
HCM patients and controls were plotted in different colors. Ellipses are the 95% confidence regions of
each group.
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3.1. INTRODUCTION
Advances in high-throughput genomic technologies have resulted in a large amount
of genomic data available in many studies. Many disease-associated genetic variants
have been identified. However, these genetic variants do not directly cause diseases
at the molecular level. They may affect other intermediate omic levels (such as glyc-
omics, proteinomics, and metabolomics) that in turn induce molecular and physiolog-
ical changes [43]. To better understand the underlying genetic architecture of diseases,
the variation of these intermediate omic levels that is related to the genomics (namely
the heritable part) needs to be incorporated into studies. The heritable part of omics
is stable over lifespan, and can be predicted using genomic data. Moreover, to use this
information in a study of an outcome disease, it is tempting to have a low-dimensional
representation (such as a few scores) of the high-dimensional and correlated omics. In
this paper, we propose methods to construct stable low-dimensional scores for omics
data using genomics (which we call ’omic-score’), and implement the methods on glyc-
omics and metabolomics, and incorporate the constructed omic-scores in studies of
body mass index (BMI) and type 2 diabetes (T2D).

A widely used approach to estimate an individual’s genetic liability to a trait is poly-
genic score (PGS), which is calculated as a weighted sum of trait-associated alleles. To
compute a PGS, two elements are required: a method to estimate the weights for all
the alleles, and a relevant GWAS study on which the weight estimates are based. Many
methods for constructing a PGS were proposed, such as the most classic clumping and
thresholding (C+T) and its extension stacked clumping and thresholding (SCT) [33], the
shrinkage methods lassosum [22], SBLUP [35], the Bayesian methods MegaPRS [53], LD-
pred2 [32], DBSLMM [50] etc. Details can be found in the recent review papers [30, 28, 6].
GWASs for omic levels have been conducted as well in the past decade (e.g., for glyc-
omics [40], proteinomics [42], and metabolomics [41]), hence it is possible to construct
omic-score for each omic feature using PGS methods. The PGSs for each omic feature
cannot be directly entered as covariates in a regression model for the disease outcome.
Rather, a dimension reduction step is needed. For example, the first few principal com-
ponents of all PGSs can be used as a low-dimensional representation of the genetics un-
derlying the omics. These principal components are then taken as the covariates instead
of the PGSs. We denote this two-stage approach ‘omic-PGS’, which performs standard
PGS approach on each omic feature followed by a PCA step. Note that, even if PCA is a
multivariate method, the PGSs are constructed based on univariate associations, ignor-
ing the correlation between the original omic features.

This leads to the question whether PGS methods are optimal for (high dimensional)
omics data. First of all, omic features often have a correlation structure that cannot
be neglected [38]. Shen et al. [37] incorporated the correlation among omic features
into the conventional GWAS and proposed a multi-phenotype method. However, the
summary statistics produced can not be used for computing a PGS as the p-values and
effect sizes are based on different combinations of phenotypes for each allele. Second,
for high-dimensional omics data such as methylation, typically only a small subset of
methylation CpG sites were studied in GWAS, and hence not possible to construct omic-
scores for all the CpG sites.

As alternative approach, integrative methods can be used for dimension reduction
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and to jointly analyse the genomic data X and the omic data Y . They take into account
the correlation structure in both genomics and omics and can be used to construct a
few scores for the whole omics dataset. Partial least squares (PLS) [3, 48] is a widely
used integrative method that decomposes two datasets X and Y into joint and residual
subspaces. The low-dimensional joint subspace of one dataset represents the best ap-
proximation of X or Y based on maximizing the covariance of the two. When applied to
integrate genomics and omics data, the joint genomic components that correlate with
the omics data can be a candidate of omic-score. However, genomic data contain rich
information on many biological processes. When integrated with a specific omic data-
set, the genomic variation uncorrelated with this omic dataset needs to be separated
from the joint subspace of PLS so that the joint subspace captures the true relationship
between the genomics and the omics dataset. Two-way orthogonal partial least squares
(O2PLS) [45, 8] was developed to correct for this data-specific variation, hence is better
suited for the task of estimating omic-score from genomics. We also consider various
extensions of O2PLS, namely, sparse O2PLS (SO2PLS) [12], which imposes penalization
on the combination weights so that the omic-scores are constructed from a small subset
of relevant alleles, and probabilistic O2PLS (PO2PLS) [10], which is a likelihood-based
method.

The rest of the paper is organized as follows. In Section 3.2.1, we first introduce the
datasets and the study cohorts, and describe the preprocessing steps. We then propose
the omic-PGS approach and integrative methods for constructing omic-scores in Sec-
tion 3.2.2, followed by simulation designs to evaluate and compare these methods in
Section 3.2.3. The data application is described in Section 3.2.4. In Section 3.3, we
present the results of the simulation studies and the data analyses. We conclude with
a discussion.

3.2. MATERIALS AND METHODS

3.2.1. DATASETS
The omic-scores will be based on SNP data and on gene-based data (summarized SNP
data per gene). The genomic data (SNP or summarized SNP) will be denoted by X . As
omics data sets we will consider glycomics and metabolomics, which we will refer to
as Y . We will use body mass index (BMI) and type 2 diabetes (T2D) as outcome vari-
ables, referred to as z. The omic-scores for these omics datasets Y will be included as
covariates in models of the outcome z to understand the associations between these
omic-based covariates and the outcome or to predict the outcome. We will conduct
data analysis in two cohorts, namely the Orkney complex disease study (ORCADES) and
the TwinsUK [39, 25]. In the ORCADES cohort, both omics (glycomics, metabolomics)
and outcomes (BMI, T2D) are available, along with the imputed genomics and demo-
graphic variables age and sex. In the TwinsUK cohort, only imputed genomics, BMI and
demographic variables age and sex are available. The genomic dataset in TwinsUK is
also used in simulation studies.

THE ORCADES COHORT

The ORCADES cohort consists of 1885 inhabitants from Orkney. Family structure is
present in the cohort. To remove the family structure in the data, we estimated the kin-
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ship coefficient between individuals from the genomic data using KING-robust [23] and
excluded one individual from each pair with a kinship coefficient greater than 0.25 (i.e.,
the first-degree relatives such as parents, full siblings and children are removed). The
individual excluded from a pair was determined in such a way that the number of par-
ticipants was maximized (using PLINK 2 [34]). After kinship-based pruning our study
comprised 1490 individuals. All these 1490 samples had missing genotype rate < 0.1.

We filtered out SNPs that had minor allele frequency (MAF) below 0.05. The 5314423
SNPs after the MAF filter were used to construct PGSs for both omic features and the
outcome. For the integrative methods, we further pruned the SNPs with a r 2 threshold
of 0.5 and removed SNPs that were not close to a gene (within +/- 50k base pair). The
remaining 261644 SNPs were used for the SNP-based analyses (and referred to as the
SNP data). For the gene-based analyses, we aggregated the SNPs around the same gene
using PCA, and the first few genomic principal components (GPCs) that explained at
least 80% of variance in each gene were taken. This resulted in a dataset with 95185
GPCs (referred to as the GPC data). The GPCs were approximately normally distributed.

The IgG glycomic data were measured using Ultra Performance Liquid Chromatog-
raphy (UPLC) (details have been described in [17]. The data contain 23 glycan peaks.
These peaks were normalized using log-transform of total area (logTA) [46], adjusted for
batch effects using empirical Bayes method correction (R package ‘sva’ [18]), and cor-
rected for age and sex using multiple regression.

The metabolomic data were measured using the high throughput NMR metabol-
omics assay (Nightingale Health Ltd., Helsinki, Finland), consisting of 225 metabolite
measures in molar concentration units. In this paper, we restrict our analysis to the 108
metabolites which overlap with the ones in the GWAS study of metabolomics conducted
in [15]. We first excluded metabolites with a missing rate greater than 5% (0 metabo-
lites excluded), and then replaced the zeros in the data with half of the lowest observed
level for this metabolite, following the quality control steps in [13]. A Box-Cox transfor-
mation [4] with parameter 1/4 was then performed to reduce skewness [8]. Metabolite
measures were set to missing based on a z-score cut-off of 6 [21]. The missing data were
imputed once by chained equations (mice) [47]. Lastly, the imputed dataset was cor-
rected for age and sex using multiple regression and the residuals were used.

The distribution of the observed log transformed BMI values is shown in left panel
of Figure 3.1a. The type 2 diabetes status was self-reported. There are in total 53 cases
among the 1490 individuals (prevalence 3.7%).

THE TWINSUK COHORT

To remove family structure, a twin from each pair was randomly chosen and discarded,
resulting in 3465 independent samples. For data analysis, we further removed individu-
als who did not have a BMI measurement or had a BMI larger than 100, resulting in 3323
samples. To be able to compare the results obtained using the TwinsUK with the ones
using the ORCADES cohort, we used the same set of SNPs, i.e. the set as described above
obtained after pruning and quality control in ORCADES. The GPCs were calculated by
using the PCA loadings obtained in ORCADES. The distribution of the log-transformed
BMI measurements is shown in Figure 3.1b.

The simulation study is based on the genomic data from TwinsUK, hence not the
same data as used for the data application. We used the 3465 independent samples and
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Figure 3.1: Histograms of log(BMI) in both cohort.

retained the SNPs that satisfied all of the following quality control (QC) criteria: with
no multi-character allele codes, genotype rate greater than 0.9, minor allele frequency
greater than 0.05, and information content metric greater than 0.9. We then pruned the
SNPs with a r 2 threshold of 0.5 and removed SNPs that were not close to a gene (within
+/- 50k base pair), resulting in 140277 SNPs. The SNP dataset was further aggregated
into 61747 GPCs in the same way described in Section 3.2.1.

GWAS SUMMARY STATISTICS

For constructing outcome-based and omic-based PGSs, we performed a discovery step
where we retrieved summary statistics (estimated effect sizes for each SNP and p-values)
from four external meta-analyses. The summary statistics of BMI were obtained from
a meta-analysis for up to 339224 individuals from 125 studies published by Locke et
al. [19]. The summary statistics of T2D were from a meta-analysis with 16 million gene-
tic variants in 62892 T2D cases and 596424 controls of European ancestry conducted
by Xue et al. [49]. The summary statistics used for glycomics were from a GWA study
conducted by Klaric et al. [16]) on four cohorts of European descent with a combined
sample size of 8090, where the associations of 77 ultraperformance liquid chromatogra-
phy (UPLC) IgG N-glycan traits (including original glycan peaks and derived ones) with
HapMap2 (release 22) imputed genomic data were studied. Note that both ORCADES
and TwinsUK were included as discovery cohort in this study. The summary statistics
for metabolomics were from a meta-analysis conducted by Kettunen et al. [15] using 14
cohorts from Europe, totaling up to 24,925 individuals. The study includes 123 circulat-
ing metabolic traits quantified by nuclear magnetic resonance (NMR).

3.2.2. STATISTICAL METHODS
In this subsection, we propose two approaches for constructing omic-scores. We first in-
troduce omic-PGS, which performs standard PGS approach for each omic feature with
an additional PCA step to reduce dimensionality. The integrative methods are then de-
scribed, which perform joint dimension reduction on X and Y simultaneously. We will
compare the proposed approaches in simulation studies and data applications.

OMIC-SCORES USING OMIC-PGS
The omic-PGS approach requires genomic data in three independent cohorts, namely,
discovery, tuning, and target. The discovery cohort should have the omics data Y mea-
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sured to obtain the GWAS summary statistics for each omic feature. Note that the GWAS
summary statistics of the features in Y are also often available from previous studies.
The tuning dataset contains the genomics and the outcome, which is used to tune pa-
rameters for omic-PGS. The target dataset contains genomics based on which the omic-
scores will be constructed, and the outcome variable which will be modeled by the omic-
scores. An illustration of the omic-PGS approach is given in Figure 3.2.

Figure 3.2: Illustration of constructing omic-scores for omics using omic-PGS.

For each individual, a polygenic score (PGS) of each omic feature (called omic-PGS)
is calculated using the clumping and thresholding (C+T) method available in the soft-
ware PRSice-2 [7]. The PGS of a omic feature for individual i is obtained as follows

PGSi =
m∑

j=1
Gi j β̂ j . (3.1)

Here m is the total number of SNPs satisfying the p-value treshold in the discoveray co-
hort, Gi j is the allele count for the j -th SNP in individual i , and β̂ j is the effect sizes es-
timated by a relevant GWAS in a discovery cohort. For imputed genotypes, the expected
values (real numbers between 0 and 2 known as the “dosage”) are used for Gi j [51].

The p-value thresholds are selected by optimizing an objective function based on the
PGS in a tuning cohort. Since the omic-PGSs will be used as covariates in a model for
the outcome, we use the correlation between the omic-PGS and the outcome variable
as objective function. When omics data are available, the corelation between the omics
measurements and the omic-PGSs measures the ability of the omic-PGS to represent
the omics data, which can be an alternative objective function for p-value thresholds
selection.

We reduce the number of omic-PGSs by taking the first few principal components.
These PCs capture the largest variances in the omic-PGSs and are independent to each
other. Therefore they are good omic-scores and can be used when modeling the out-
come. Note that the variances of the constructed omic-PGSs are not comparable, due
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to different p-value thresholds and effect sizes of alleles used when constructing these
omic- PGSs. To avoid a few omic-PGSs with relatively large variances dominating in the
PCA, we standardize the variances of omic-PGSs before applying PCA.

To determine the number of omic-scores (or PCs of the omic-PGSs) to represent the
omic-PGSs, we first determine the number of PCs in the original omics data by using
a scree plot of eigenvalues and compute the proportion of explained variance α in the
omics data by these PCs. This is again performed in the tuning cohort.

In the target cohort, we use the summary statistics from the discovery cohort and
the p-value threshold from the tuning cohort to construct omic-PGS for each omic fea-
ture using equation (3.1). We then take K omic-scores in the omic-PGSs such that the
explained variance in omic-PGSs is approximately equal toα, which was obtained in the
tuning cohort.

OMIC-SCORES USING INTEGRATIVE METHODS

In this subsection, we will elaborate on our proposed integrative approaches to obtain
omics-scores. In the same way as the omic-PGS approach, the constructed omic-scores
will be used as covariates in a regression model for the outcome. We will consider
O2PLS-based methods that also model the data-specific variation.

O2PLS Let X and Y be the genomic and the omic dataset of size N × p and N × q ,
respectively. The O2PLS model decomposes the space into joint (T and U of size r ),
specific (T⊥ and U⊥ of size rx resp. ry ) and residual (E and F of size p resp. q) subspaces.
The relationship between X and Y is captured through the inner relation between T and
U . The O2PLS model is written as

X = T W ⊤+T⊥W ⊤
⊥ +E ,

Y =UC⊤+U⊥C⊤
⊥ +F,

U = T B +H ,

where W (p×r ) and C (q×r ) are the loading matrices for the joint spaces of X and Y re-
spectively and W⊥ (p×rx ) and C⊥ (q×ry ) are the loading matrices for the specific parts of
X and Y respectively. The loading values indicate relative importance of each genomic
and omic variable in forming the corresponding components. The r ×r diagonal matrix
B models the relationship between the joint components T and U . The O2PLS model
can be estimated using the R package ‘OmicsPLS’ [9], and the details of the algorithm
can be found in [45, 9].

The genomic variation related to the omics is captured in the genomic components
T , which are linear combinations of the genetic variants. These linear combinations
can be used as omic-scores for the omics data. For future samples Xnew where only
genomic data is available, the genomic joint components Tnew can be computed using
the genomic loadings W and W⊥ from a fitted model as follows,

Tnew = (Xnew −X⊥new )W, (3.2)

where X⊥new is the variation in Xnew uncorrected to Y , which is estimated by projecting
the new data Xnew onto the X-specific subspace (details in [9]).
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The genomic components in O2PLS are linear combinations of all genetic variants.
Since we expect that only a limited number of SNPs are relevant, we also use the sparse
version SO2PLS [12] which imposes an L1 penalty on the joint loadings so that a large
number of small non-zero weights are pushed to zero. The genomic components Tnew

are constructed as in (3.2), where W is sparse for SO2PLS.

PO2PLS PO2PLS [10] is a probabilistic extension of O2PLS. It assumes that a p-di-
mensional random vector x (containing genetic variants) and a q-dimensional random
vector y (omic features) drawn from the population follow a multivariate normal distri-
bution. Because of this assumption, we only fit PO2PLS on the GPCs that are approx-
imately normally distributed and do not consider the discrete SNP data. The parame-
ters of PO2PLS are estimated simultaneously by maximum likelihood. It appears that
this approach is sensitive to model-misspecification (i.e., the number of joint and omic-
specific components) [10], specifically using a too small number of components yields
biased results. After estimation of the model, the genomic joint components for the
omics can be computed using formula (3.2).

3.2.3. SIMULATION SETTINGS
To evaluate the performance of omic-PGS and the integrative methods (O2PLS and PO2-
PLS), we performed two simulation studies. In the first study, we simulated a glycomic
dataset and an outcome using both the GPC and the SNP data from the TwinsUK study
described in section 3.2.1. We aimed to investigate how well the outcome is modeled
by the omic-scores constructed by each method in various scenarios. We computed the
correlation between the omic-scores and the outcome variable. We also investigated
whether these omic-scores have additional value to PGS. In the second study, we consid-
ered adding omic-scores of a second omics dataset (metabolomics) to the model. Both
omics datasets are known to be associated with the outcomes [44, 14, 31, 29]. The main
focus of this second simulation study was the accuracy of the method in identifying the
relevant genomic variables.

SIMULATION I
We generated in total 23 glycans using 5 genomic components representing the 5 func-
tion groups see [36]. Let X (N×p) be the GPC or SNP data, and Y (N×q) be the simulated
glycomic data. The relationship is given by

T = X W,

Y = TC⊤+F.
(3.3)

Here, T is a N ×5 matrix, containing 5 components, representing the 5 function groups,
simulated as linear combinations of the columns of X . The p×5 weight matrix W for the
5 linear combinations was obtained by hard-thresholding the PCA loading vectors of X .
The threshold was set to the 90th, 99th, and 99.9th percentile of the absolute loading val-
ues, representing causal proportions of 0.1, 0.01, and 0.001, respectively. To investigate
the impact of the variance of T with respect to X , the hard-thresholding was performed
on the first-fifth, sixth-tenth, and eleventh-fifteenth PC loadings. The q × 5 matrix C
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contains ones and zeros according to the biological grouping of the glycans, with each
column representing one of five groups. The element C j ,k is one if glycan j belongs to
group k, and zero otherwise. The zero-mean normally distributed residual F accounts
for 1−h2

y of the total variance in Y . The heritability h2
y was set to 0.5 and 0.2. Note

that most of the glycans have a heritability greater than 0.5 [24]. The outcome z was
simulated as

z = TC⊤l + g .

Here, the q-dimensional column vector l was taken as the first principal component
loading vector of the matrix TC⊤. It maps the genomic components underlying Y to the
outcome z. The zero-mean normally distributed residual g accounts for 10% of the total
variation in z.

We randomly split the data into 2000 discovery, 465 tuning, and 1000 target sam-
ples. We fitted O2PLS and PO2PLS models in the discovery set. the number of com-
ponents for O2PLS and PO2PLS was specified as 5, 5, 0 for joint, genomic-specific and
glycomics-specific, respectively. Because of the sensitivity of PO2PLS to the number of
components, we considered a second PO2PLS model with 5, 10, 0 components (referred
to as PO2PLS-2). The joint genomic components in the target set were then calculated
as (3.2) (Note that the integrative methods do not use the tuning set). For omic-PGS, we
performed GWAS for each variable in Y using the R package ’GenABEL’ [1] in the discov-
ery set, tuned the p-value thresholds in the tuning set, and computed omic-PGSs in the
target set, following the steps in Figure 3.2. To be compared with integrative methods,
we took 5 PCs (same as the number of joint components) of the correlated 23 omic-
PGSs as omic-scores of Y . In the target set, the multiple genomic components of the
integrative methods or PCs of omic-PGS were combined into a single score using the
coefficients from the regression of z on the corresponding omic-scores in the discovery
set. The prediction performance of the score was then measured by R2 = 1−SSE/T SS,
where SSE = ∑

(zi − ẑi )2, T SS = ∑
(zi − z̄i )2. The whole process was repeated 20 times

and the results for each simulation run were recorded.

SIMULATION II
The metabolomic data Y ′ (N × q ′) was generated using the same equations in (3.3).
Specifically, we simulated 10 apolipoproteins using 4 components T ′ = (t ′1, . . . , t ′4) (eleventh-
fourteenth PCs of the GPC data) representing 4 lipoprotein groups in [11], and a loading
matrix C ′ mapping each apolipoprotein to groups. The causal proportion was set to
0.001, and the heritability was set to 0.7, based on the heritability of apolipoproteins [2].
The glycomic data Y was from one of the scenarios in the first simulation (GPC-based,
causal proportion 0.001, sixth to tenth PCs, h2

y = 0.5). The outcome z ′ was then simu-
lated from the genomic components underlying both Y and Y ′ as

z ′ = TC⊤l +T ′C ′⊤l ′+ g ′,

where l ′ is the loading vector of the first PC of T ′C ′⊤, and the residual g ′ accounts for
10% of total variance in z ′.

We repeatedly split the data into discovery, tuning and target sets in the same way as
the first simulation. All the methods were applied on the genomic data X and the two
omics data Y and Y ′, resulting in two sets of omic-scores, namely one for the glycomics
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dataset Y , and one for the metabolomics dataset Y ′. For both omics, we calculated the
true positive rate (TPR) of the top 40 genes. Here, the cut-off point of 40 is the number of
genes in the method with the least number of genes selected to make the TPRs compa-
rable across methods. To evaluate the joint prediction performance, we combined the
two sets of omic-scores.

3.2.4. DATA APPLICATION
We applied omic-PGS and the integrative methods to the glycomics and metabolomic
datasets available in the ORCADES cohort. We estimated the contribution of the omic-
scores to the variation of BMI and of type 2 diabetes (T2D) measured by the adjusted-R2

and Nagelkerke’s R2 [27], respectively. For T2D, we also computed the area under the
curve (AUC). Additionally, we studied whether the results with regard to the correlation
between the omic-scores of the omics and BMI could be replicated in the TwinsUK co-
hort.

modeling BMI We first performed univariate regression of BMI on each glycan in OR-
CADES and selected the 10 glycans that had a nominal p-value of less than 0.05 for fur-
ther analysis. Analogously, 87 metabolites were selected for the metabolomic dataset.

We randomly split the ORCADES cohort into discovery (N = 1000) and target (N =
490) sets. Note that the GWAS summary statistics for omic-PGS were obtained from
external sources as described in Section 3.2.1, and therefore the discovery set here was
used as tuning set.

In the discovery set, we determined the threshold of p-values for the omic-PGS us-
ing the GWAS summary statistics and we applied the integrative methods. Specifically,
for each omic-PGS of an omic feature, we selected the p-value threshold, in such a way
that the correlation between the omic-PGS and BMI was maximized. The correlation
between each omic-PGS and its corresponding omic variable was also computed. The
omic-PGSs were standardized and summarized to a few PCs. The number of PCs was
chosen such that the proportion of explained variance in omic-PGSs was close to the
proportion explained by the first 5 PCs (based on scree plot of eigenvalues) in the omics
data. O2PLS and SO2PLS were applied on both the SNP data and the GPC data (referred
to by adding a suffix -SNP and -GPC, respectively), and PO2PLS was only fitted on the
GPC dataset. The number of joint and specific components in the integrative meth-
ods was chosen by visually identifying an elbow in the scree-plots. In the target set,
omic-scores were constructed using the p-value thresholds selected (for omic-PGS) and
loadings from the fitted models (for integrative methods) in the discovery set.

In both discovery and target sets, the proportion of explained variance of BMI was
measured using adjusted-R2 = 1− (1−R2) n−1

n−K−1 , where K is the number of omic-scores
used (i.e., the number of PCs of omic-PGSs or the number of joint components). We cal-
culated and compared the adjusted-R2 using only PGS (BMI ∼ PGS), only omic-scores
of one method (BMI ∼ omic-scores), and PGS and omic-scores combined (BMI ∼ PGS +
omic-scores).

To investigate the performance of the methods across cohorts, we constructed omic-
scores in the TwinsUK cohort using the weights obtained in the ORCADES data and used
these omic-scores to model BMI in the TwinsUK.
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Predicting type 2 diabetes Similar to the BMI study, we performed uni-variate logistic
regression of type 2 diabetes (T2D) on each glycan and metabolite and selected the 7
glycans and 78 metabolites that were significant in the ORCADES cohort.

We split the samples into discovery and target sets and applied methods in the dis-
covery set. In the target set, we combined the omic-scores into a single genomic score
using the regression coefficients from the logistic model in the discovery set. We tested
whether the score was significantly associated with T2D by fitting a logistic regression of
T2D on the score. We further measured the prediction performance by Nagelkerke’s R2
and area under the curve (AUC).

3.3. RESULTS

3.3.1. RESULTS OF SIMULATION

SIMULATION I
Omics and outcome generated from GPC data For all proposed methods, the ad-
justed R2 in the target set are shown in Figure 3.3. Overall, O2PLS outperformed the
other methods. Concerning omic-PGS, it had a small advantage over the traditional
PGS in most of the scenarios. As the causal proportion of X became smaller (columns
left to right), the R2 of O2PLS methods tended to decrease, while the performance of PGS
methods increased. Comparing across the rows, when Y was generated from the higher
numbered PCs of X (i.e., the genomic variation related to omics explains less variance
in X ), the R2 of all the methods dropped. The PO2PLS model (with 5 X-specific compo-
nents) appeared to decline most. PO2PLS with more X-specific components (PO2PLS-2)
performed more robust compared to the model with less X-specific components. Com-
paring the left and right panels, the heritability of Y had little influence on the results.

The degree of overfitting of each method, measured by the ratio of R2 in the target
set to the R2 in the discovery dataset is shown in Figure 3.4. The ratios for PO2PLS-2
were above 0.9 in all scenarios, while those for PO2PLS became unstable when Y was
generated from the higher numbered PCs of X . The ratios for O2PLS were above 0.9 in
most scenarios, and were slightly lower than PO2PLS-2. The ratios for omic-PGS were
mostly between 0.6 and 0.75, which were lower compared to the integrative methods.
The ratios for PGS were around 0.15 lower compared to those for omic-PGS. Recall that
omic-PGS and PGS performed similarly in the target set regarding R2 (see Figure 3.3).
Omic-PGS which is based on the GWASs performed on the omic features showed less
overfitting than PGS.

Omics and outcome generated from SNP data The adjusted R2 in the target set and
the ratio of R2 in target to discovery are shown in Figure 3.5. The left panel shows
that O2PLS outperformed the other methods in most of the scenarios regarding the R2.
PO2PLS-2 which was fitted on the GPC data performed poorly. Concerning the influence
of causal proportion (columns) and covariance (rows) on the methods, we observed
similar results as for the GPC data. In the right panel, O2PLS showed overfitting when
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Figure 3.3: Results of outcome prediction measured by adjusted R2 in the target set. The left and right panel
show the results when the heritability of Y is 0.5, and 0.2, respectively. Rows of each panel indicates which
PCs of the X dataset were used to generate Y . Columns show the causal proportion of GPCs. PO2PLS-2 is the
PO2PLS model with 10 genomic-specific PCs. Boxes show the results on 20 randomly split datasets.

the causal proportion was small and the omics was generated from the higher num-
bered PCs. The ratios for PO2PLS-2 were unstable (with large boxes). The PGS methods
showed most overfitting in all the scenarios.

SIMULATION II
The performance concerning prediction and feature selection for the scenario of two
omics datasets Y and Y ′ is shown in Figure 3.6. The left panel shows the prediction per-
formance evaluated on the combined joint components for two omics datasets. The
performances were similar to the scenario of one dataset shown in Figure 3.3 (with
causal proportion 0.001, PC 6-10). The middle and right panels show the TPR of the
top 40 genes selected in the X-joint components for Y and Y ′, respectively. The TPR
of O2PLS reached 1, suggesting the top genes in O2PLS were all relevant to the corre-
sponding omics. For PO2PLS-2, the TPR for Y is higher than for Y ′ which has a smaller
covariance with X . Although omic-PGS and PGS had similar prediction performance,
omic-PGS had higher TPR for both omics.
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Figure 3.4: Results of overfitting measured by the ratio of R2 in target to the R2 in discovery set. The h2
y was

set to be 0.5. A higher value close to 1 indicates less overfitting. Rows of each panel indicates which PCs of the
X dataset were used to generate Y . Columns show the causal proportion of GPCs. PO2PLS-2 is the PO2PLS
model with 10 genomic-specific PCs. Boxes show the results on 20 randomly split datasets.

3.3.2. RESULTS OF DATA APPLICATION

MODELING BMI

The correlation between each glycomic-PGS and its corresponding glycomic measure-
ment is shown in Figure 3.7. From the plot, it can be concluded that the glycomic data-
set was well represented by the glycomic-PGSs in both discovery and target sets, with
most correlations above 0.7. The correlations of the metabolomic-PGSs with the corre-
sponding metabolites are shown in Figure 3.8. The metabolomic data appeared to be
less represented by its omic-scores, with most of the correlations below 0.2.

For the omic-PGS method, we took the first 6 PCs of the glycomic-PGSs and the first
17 PCs of the metabolomic-PGSs so that the explained variances in the omic-PGSs were
close to the proportion of omics data explained by the first 5 PCs (79% in glycomics
and 42% in metabolomics). For the integrative methods, the number of joint, genomic-
specific, and omic-specific components were set to 5, 2, 0 for glycomics, and 7, 10, 0
for metabolomics, based on scree plots. The number of SNPs or GPCs retained in the
SO2PLS were set to 1% (i.e., 2616 SNPs, or 952 GPCs with non-zero joint loadings).

The explained variance of BMI by the various omic-scores, along with the p-values of
the F-test corresponding to the null hypothesis of no effect of the omic-scores are shown
in Table 3.1. From the second and third columns of the table, the glycomic data in the
discovery set explained 0.9% variance of BMI while the data in the target set explained
3.88% in the random split. The explained variances by the omic-PGS for glycomics were
similar to those by the glycomic data. This was expected as the glycomic-PGSs repre-
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Figure 3.5: Results of outcome prediction and overfitting, where the Y dataset was generated from the SNP
data. Rows of each panel indicates which PCs of the SNP dataset were used to generate Y . Columns show the
causal proportion of SNPs. PO2PLS-2 is the PO2PLS model with 10 genomic-specific PCs. O2PLS was applied
to the SNP data while PO2PLS-2 was fitted on the GPC data. Boxes show the results on 20 randomly split
datasets.

sented the glycomic data well (see Figure 3.7). The corresponding F-test for the associa-
tion between BMI and the omic-scores was significant in both discovery (0.031) and tar-
get (0.001) sets. Among the integrative methods, SO2PLS-SNP performed the best, but
it explained less variance of BMI compared to omic-PGS. The fourth and fifth columns
of Table 3.1 show the results for metabolomics. The metabolomic data explained more
variance in BMI (17.91% in discovery and 20.66% in target) compared to the glycomic
data. For omic-PGS, the omic-scores explained less BMI than the omics data, and the as-
sociation with BMI in the target set was not significant. Among the integrative methods,
O2PLS-GPC, O2PLS-SNP, and SO2PLS-SNP explained a larger proportion of the variance
of BMI than the omics data in the discovery set, but did not explain the variance of BMI
in the target set, suggesting overfitting in the discovery set. SO2PLS-GPC performed the
best in the target set, explaining 2.26% of the variance of BMI, and its joint genomic
components were significantly associated with BMI (p-value 0.012). The components
of PO2PLS appeared not to be associated with BMI.

The omic-scores obtained with omic-PGS and SO2PLS-GPC and which were signif-
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Figure 3.7: Correlation of the constructed glycomic-PGSs with the corresponding measurement of glycans
associated with BMI. The glycans were sorted based on the correlations in the discovery set.

icantly associated with BMI were combined with the (BMI-based) PGS in one model.
The explained BMI by the PGS was 13.1% in the discovery set and 13.74% in the target
set. After combining with the omic-scores from omic-PGS, the explained variance in-
creased to 15.65% in the discovery set and 17.04% in the target set. This improvement
was mainly driven by the omic-scores for glycomics. Combining the PGS with the omic-
scores from SO2PLS-GPC, the adjusted-R2 increased to 27.2% in the discovery set, and
moved slightly up to 13.98% in the target set.

We then investigated the genes selected in the SO2PLS-GPC for metabolomics, where
the omic-scores were significantly associated with BMI. Among the 7 genomic compo-
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Figure 3.8: Correlation of the constructed metabolomic-PGSs with the corresponding measurement of
metabolites associated with BMI. The metabolites were sorted based on the correlations in the discovery
set.

Table 3.1: Explained variance of BMI by omic-scores in ORCADES cohort

Glycomics Metabolomics

discovery target discovery target
Omics data 0.90 (0.016) 3.88 (2.0e-04) 17.91 (< 2.2e-16) 20.66 (< 2.2e-16)
omic-PGS 0.79 (0.031) 3.23 (0.001) 2.54 (5.7e-4) 0.93 (-)

O2PLS-GPC 0.21 (-) 0 (-) 19.75 (<2.2e-16) 0 (-)
O2PLS-SNP 0.25 (-) 0 (-) 20.14 (<2.2e-16) 0.06 (-)

SO2PLS-GPC 0.31 (-) 0 (-) 17.37 (<2.2e-16) 2.26 (0.012)
SO2PLS-SNP 0.51 (-) 0.86 (-) 20.17 (<2.2e-16) 0.14 (-)

PO2PLS 0 (-) 0.18 (-) 0 (-) 0.74 (-)

Note: the numbers in the table are percentages of BMI explained (adjusted-R2×100), negative adjusted-
R2s are recorded as 0. P-values less than 0.05 are shown in brackets.

nents, the second and the fifth components were the most significant. Therefore, from
each of these two components, we took the 952 GPCs with non-zero joint loadings and
performed gene ontology (GO) enrichment analysis using the ToppGene Suite [5]. In the
second component, the significant molecular function is cytoskeletal protein binding,
which is associated with obesity and is involved in adipocyte lipid storage and metabo-
lism [26]. The top 3 metabolites were apolipoprotein A-I, phosphatidylcholine, and total
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cholesterol in HDL. Their role in the pathways underlying obesity needs further investi-
gation. In the fifth component, the most significant term regarding molecular function
is transmembrane receptor protein tyrosine phosphatase activity, and the motabolite
with the largest joint loading value is tyrosine, showing a strong relevance.

We observed that SO2PLS showed less overfitting and performed better than O2PLS.
Therefore, we performed a pre-screening on the genomic data before applying the inte-
grative methods. We took the top 1000 SNPs with the smallest p-values for each glycan
and metabolite based on the GWAS summary statistics in [16] and [15], respectively. This
resulted in a union of 4124 SNPs (summarized to 1164 GPCs) for glycomics and a union
of 11272 SNPs (1148 GPCs) for metabolomics. The number of joint, genomic-specific,
and omic specific components were set to 4, 3, 0 for glycomics, and 6, 5, 0 for metabol-
omics based on scree plots.

The explained variance of BMI by the omic-scores using the pre-screened genomic
data is shown in Table 3.2. For glycomics, the genomic components of O2PLS-GPC ex-
plained a little more variance (0.91%) in the target set compared to the unscreened case,
but still small compared to the variance explained by omic-PGS (3.23%). For metabol-
omics, the components in O2PLS-GPC and O2PLS-SNP explained more variance in the
target set (1.49% and 1.07%) compared to the same methods in the unscreened case,
and were significantly associated with BMI. The explained variance was smaller than
the best-performing SO2PLS-GPC in the unscreened case. The differences between the
adjusted-R2 of target and discovery sets reduced compared to those in Table 3.1, sug-
gesting less overfitting. PO2PLS explained 0.67% in the target set, which was slightly less
compared to the unscreened case, but the association was significant. Combining the
omic-scores from O2PLS-GPC with (BMI-based) PGS, the adjusted-R2 improved from
13.1% to 15.32% in the discovery set, and from 13.74% to 14.95% in the target set. Using
the omic-scores from O2PLS-SNP, the combined variance explained increased similarly
to 15.08% and 14.60% in discovery and target set, respectively. Combining with PO2PLS
did not improve the performance of PGS.

Table 3.2: Explained variance of BMI by omic-scores using pre-screened genomic data in ORCADES cohort

Glycomics Metabolomics

discovery target discovery target
O2PLS-GPC 0 (-) 0.91 (-) 2.34 (4.8e-05) 1.49 (0.004)
O2PLS-SNP 0.07 (-) 0 (-) 1.64 (0.001) 1.07 (0.012)

PO2PLS 0.31 (-) 0 (-) 0 (-) 0.67 (0.039)
Note: the numbers in the table are percentages of BMI explained (adjusted-R2×100), negative adjusted-
R2s are recorded as 0. P-values that are less than 0.05 are shown in brackets.

We conclude that in glycomics, omic-PGS outperformed integrative methods, while
in metabolomics, SO2PLS-GPC on the unscreened data and O2PLS-GPC, O2PLS-SNP on
the screened data performed the best. It is worth mentioning that although the O2PLS
methods on the screened data explained less variance than SO2PLS-GPC (unscreened),
the added value on the PGS was greater.

Lastly, we checked how well the linear combinations of GPCs and SNPs from the
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ORCADES perform in the TwinsUK cohort. We used the p-value thresholds selected for
omic-PGSs and the fitted loadings for the integrative methods in the ORCADES to cal-
culate the omic-scores of glycomics and metabolomics in the TwinsUK. The first 6 PCs
of glycomic-PGSs (accounting for 78% of the glycomic-PGSs) had an adjusted-R2 (with
BMI) of 0.94% (p-value 1.565e-06). The first 17 PCs of metabolomic-PGSs (48% of the
metabolomic-PGSs) were not significantly associated with BMI. The joint genomic com-
ponents of all the the integrative methods did not explain BMI and were not significant.
Thus the results in ORCADES does not seem to replicate in the TwinsUK.

PREDICTION OF TYPE 2 DIABETES

The correlations of the constructed glycomic-PGSs and metabolomic-PGSs with the cor-
responding measurements of glycans and metabolites showed similar patterns as in the
BMI study.

The number of PCs in the omic-PGS method was determined in the same way as
described in the BMI study. The first 4 PCs of the glycomic-PGSs and the first 15 PCs of
the metabolomic-PGSs were taken, which explained 70% and 46% of the correspond-
ing omic-PGSs, respectively. The integrative methods were fitted on pre-screened SNP
and/or GPC data. Based on scree plots, the number of joint, genomic-specific, and
omic-specific components were set to 3, 4, 0 for glycomics, and 6, 5, 0 for metabolomics.

The Nagelkerke’s pseudo R2 and the p-value for the genomic score in the target set
(linear combination of the omic-scores based on the regression coefficients from the
discovery set) are shown in Table 3.3. For glycomics, the pseudo R2 of the scores in the
target set from omic-PGS was 11.75%, close to that of the glycomics data. The integrative
methods had lower pseudo R2 compared to omic-PGS, but the scores in the target set
were all significant. PO2PLS performed the best among the integrative methods, with
a pseudo R2 of 3.56% (p-value 0.024). For metabolomics, omic-PGS had the highest
pseudo R2, but less than that of the metabolomic data, and the scores were not signif-
icant in the target set. The integrative methods showed overfitting for metabolomics,
explaining little variance in the target set. Table 3.4 shows the AUCs of predicting T2D.
The conclusions were similar.

Table 3.3: Pseudo R2 of T2D by omic-scores using pre-screened genomic data in ORCADES cohort

Glycomics Metabolomics

discovery target discovery target
Omics data 6.98 12.13 (1.9e-05) 23.90 15.29 (9.9e-07)
omic-PGS 7.36 11.75 (5.5e-05) 19.43 2.21 (-)

O2PLS-GPC 2.72 3.01 (0.038) 11.50 0.69 (-)
O2PLS-SNP 2.31 2.92 (0.045) 12.59 0.005 (-)

PO2PLS 2.52 3.56 (0.024) 3.51 0.49 (-)

Note: the numbers in the table are the pseudo R2 of T2D (in percentage). P-values for the prediction
score in the target set that were less than 0.05 are shown in brackets.

The performance of combining (T2D-based) PGS with the omic-scores from each
method is shown in Table 3.5. The pseudo R2 increased when combining the PGS with
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Table 3.4: AUC of T2D by omic-scores using pre-screened genomic data in ORCADES cohort

Glycomics Metabolomics

discovery target discovery target
Omics data 0.673 0.774 0.853 0.814
omic-PGS 0.704 0.749 0.821 0.619

O2PLS-GPC 0.624 0.632 0.757 0.563
O2PLS-SNP 0.627 0.630 0.765 0.517

PO2PLS 0.619 0.636 0.630 0.568

the omic-scores from all the methods, especially with the ones from omic-PGS, which
almost doubled the R2 from 10.46% to 20.78%. Regarding the AUC, the omic-PGS in-
creased the AUC from 0.739 to 0.800. PO2PLS improved the AUC to 0.774, while the AUC
with O2PLS (-GPC and -SNP) appeared to be on par with the AUC using only PGS. We
conclude that omic-PGS performed the best for predicting T2D.

Table 3.5: Pseudo R2 and AUC of T2D combining PGS and omic-scores

Pseudo R2 AUC

discovery target discovery target
PGS 7.01 10.46 0.702 0.739

omic-PGS 33.01 20.78 0.878 0.800
O2PLS-GPC 19.10 12.99 0.794 0.744
O2PLS-SNP 20.26 12.20 0.785 0.734

PO2PLS 12.76 12.78 0.769 0.774

3.4. DISCUSSION
To better understand the genetic architecture and improve the prediction of outcomes,
we proposed omic-PGS and integrative methods to incorporate inheritable information
in omics into the linear model of the outcome, by constructing omic-scores of these
omics. The advantages of using the omic-scores over the traditional outcome-based
PGS (that does not utilize the omics data) regarding outcome prediction and feature
selection were shown via simulation studies. The methods were applied to construct
omic-scores of glycomics and metabolomics in two cohorts and appeared to increase
the explained variance of BMI and improve the prediction performance of T2D.

The omic-PGS and the integrative methods have different advantages. The omic-
PGS method utilizes the publicly available GWAS summary statistics for omic features
to reconstruct omics datasets, thus the omics data at individual level are not needed. It
can be used to incorporate information contained in any omic feature of which a GWAS
is available to a study, as long as the genomics are available. Omic-PGS uses only a small
subset of SNPs selected based on the p-values from the relevant GWAS, and it performs
well when the causal proportion is small (see Figure 3.3). Note that many other PGS
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methods can be implemented [28] in place of the classic C+T approach. We considered
the C+T approach as it is well known and most often used in genomic studies. Moreover,
it is one of the computationally faster algorithms. Comparing the performance of omic-
PGS implementing other PGS methods is future work.

Comparing to omic-PGS, the integrative methods take into account the correlation
structure in the genomics and omics simultaneously and construct a few omic-scores
for the whole omics dataset. For the integrative methods, a large sample size is not
needed, which is usually required in the GWA studies. O2PLS and PO2PLS are not sparse,
they use all the genomic variables to construct the genomic components, therefore tend
to perform better when the causal proportion is large. When the causal proportion is
small, the constructed joint components contain a large proportion of noise by includ-
ing a large amount of non-causal genomic variables. The sparse variant SO2PLS (or
GO2PLS) can be used in this case. A detailed comparison of performance in sparse set-
tings can be found in [12]. PO2PLS and O2PLS perform differently when the covariance
between X and Y is small relative to the variance of X (see bottom rows of Figure 3.3).
PO2PLS models the covariance of X and Y as well as their variances. As the covariance
between X and Y becomes smaller, PO2PLS tends to weigh more towards the relatively
larger X-specific variance in the joint subspace. Specifying more X-specific components
in PO2PLS shifts part of the specific variance captured in the joint subspace into the X-
specific subspace, which in turn improves the ability of the joint subspaces to capture
the correlated variance in X and Y . This is also indicated by the improved performance
of PO2PLS-2 in the simulation (PO2PLS with more X-specific components) in Figure 3.3.
O2PLS only models covariance, it ignores the relative size of the data specific variance,
therefore its performance is much less affected.

In data applications, the omic-scores modeled a relatively small proportion of the
outcomes (BMI and T2D) compared to the traditional PGS. One reason is that the out-
come variable is affected by many more omic levels other than the glycomics and metabol-
omics included in the model. For example, the BMI is also associated with transcript-
omics [20], proteomics [52], etc. Therefore the omic-scores of one or two omic levels
can only model a small part of the outcome. Another reason is the huge difference
in the sample size used in the GWAS for the outcome and that available to our study.
For example, for BMI, the contrast of sample size is 339K vs 1K. More research is need
to investigate the performance of the omic-scores in modeling outcome under a large
sample size. Nevertheless, we showed that omic-scores can provide omic-specific inter-
pretations, and improved the performance of the traditional PGS when combined in the
model for the outcome. Furthermore, by testing the associations between omic-scores
based on various omics with an outcome, researchers can have a preliminary idea of
the relevance of each omics to the outcome, without having to measure the omics. This
helps to decide which omics to include in a study in a cost-efficient way.

To conclude, we proposed methods for constructing omic-scores based on genomics
to better model an outcome disease and understand the genetic architecture underly-
ing the disease. The omic-scores are stable over lifespan hence can be applied inde-
pendent of age. They can be constructed using genomics and publicly available GWAS
summary statistics, without omics data, therefore have potential to be implemented in
a wide range of studies.
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[16] Klarić, L., Tsepilov, Y. A., Stanton, C. M., Mangino, M., Sikka, T. T., Esko, T., Pakho-
mov, E., Salo, P., Deelen, J., McGurnaghan, S. J., Keser, T., Vučković, F., Ugrina, I.,
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M., Novokmet, M., Mangino, M., Thaqi, K., Rudan, P., Novokmet, N., Šarac, J., Mis-
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Baković, M. P., Gornik, O., McCarthy, M. I., Zoldoš, V., Spector, T. D., Lauc, G., and
Valdes, A. M. (2013). Glycosylation of immunoglobulin G: Role of genetic and epige-
netic influences. PLoS ONE, 8(12).

[25] Moayyeri, A., Hammond, C. J., Hart, D. J., and Spector, T. D. (2013). The UK adult
twin registry (twinsUK resource). Twin Research and Human Genetics, 16(1):144–149.

[26] Moreno-Castellanos, N., Rodríguez, A., Rabanal-Ruiz, Y., Fernández-Vega, A.,
López-Miranda, J., Vázquez-Martínez, R., Frühbeck, G., and Malagón, M. M. (2017).
The cytoskeletal protein septin 11 is associated with human obesity and is involved
in adipocyte lipid storage and metabolism. Diabetologia, 60(2):324–335.

[27] Nagelkerke, N. J. (1991). A note on a general definition of the coefficient of deter-
mination.

[28] Ni, G., Zeng, J., Revez, J. A., Wang, Y., Zheng, Z., Ge, T., Restuadi, R., Kiewa, J., Ny-
holt, D. R., Coleman, J. R., Smoller, J. W., Ripke, S., Neale, B. M., Corvin, A., Walters,
J. T., Farh, K. H., Holmans, P. A., Lee, P., Bulik-Sullivan, B., Collier, D. A., Huang, H.,
Pers, T. H., Agartz, I., Agerbo, E., Albus, M., Alexander, M., Amin, F., Bacanu, S. A.,
Begemann, M., Belliveau, R. A., Bene, J., Bergen, S. E., Bevilacqua, E., Bigdeli, T. B.,
Black, D. W., Bruggeman, R., Buccola, N. G., Buckner, R. L., Byerley, W., Cahn, W.,
Cai, G., Campion, D., Cantor, R. M., Carr, V. J., Carrera, N., Catts, S. V., Chambert,
K. D., Chan, R. C., Chen, R. Y., Chen, E. Y., Cheng, W., Cheung, E. F., Chong, S. A.,
Cloninger, C. R., Cohen, D., Cohen, N., Cormican, P., Craddock, N., Crowley, J. J.,
Davidson, M., Davis, K. L., Degenhardt, F., Del Favero, J., Demontis, D., Dikeos, D., Di-
nan, T., Djurovic, S., Donohoe, G., Drapeau, E., Duan, J., Dudbridge, F., Durmishi, N.,
Eichhammer, P., Eriksson, J., Escott-Price, V., Essioux, L., Fanous, A. H., Farrell, M. S.,
Frank, J., Franke, L., Freedman, R., Freimer, N. B., Friedl, M., Friedman, J. I., Fromer,
M., Genovese, G., Georgieva, L., Giegling, I., Giusti-Rodríguez, P., Godard, S., Gold-
stein, J. I., Golimbet, V., Gopal, S., Gratten, J., de Haan, L., Hammer, C., Hamshere,
M. L., Hansen, M., Hansen, T., Haroutunian, V., Hartmann, A. M., Henskens, F. A.,
Herms, S., Hirschhorn, J. N., Hoffmann, P., Hofman, A., Hollegaard, M. V., Hougaard,
D. M., Ikeda, M., Joa, I., Julià, A., Kahn, R. S., Kalaydjieva, L., Karachanak-Yankova, S.,
Karjalainen, J., Kavanagh, D., Keller, M. C., Kennedy, J. L., Khrunin, A., Kim, Y., Klovins,



BIBLIOGRAPHY

3

65

J., Knowles, J. A., Konte, B., Kucinskas, V., Kucinskiene, Z. A., Kuzelova-Ptackova, H.,
Kähler, A. K., Laurent, C., Lee, J., Lee, S. H., Legge, S. E., Lerer, B., Li, M., Li, T.,
Liang, K. Y., Lieberman, J., Limborska, S., Loughland, C. M., Lubinski, J., Lönnqvist, J.,
Macek, M., Magnusson, P. K., Maher, B. S., Maier, W., Mallet, J., Marsal, S., Mattheisen,
M., Mattingsdal, M., McCarley, R. W., McDonald, C., McIntosh, A. M., Meier, S., Meijer,
C. J., Melegh, B., Melle, I., Mesholam-Gately, R. I., Metspalu, A., Michie, P. T., Milani,
L., Milanova, V., Mokrab, Y., Morris, D. W., Mors, O., Murphy, K. C., Murray, R. M.,
Myin-Germeys, I., Müller-Myhsok, B., Nelis, M., Nenadic, I., Nertney, D. A., Nestadt,
G., Nicodemus, K. K., Nikitina-Zake, L., Nisenbaum, L., Nordin, A., O’Callaghan, E.,
O’Dushlaine, C., O’Neill, F. A., Oh, S. Y., Olincy, A., Olsen, L., Van Os, J., Interna-
tional Consortium, P. E., Pantelis, C., Papadimitriou, G. N., Papiol, S., Parkhomenko,
E., Pato, M. T., Paunio, T., Pejovic-Milovancevic, M., Perkins, D. O., Pietiläinen, O.,
Pimm, J., Pocklington, A. J., Powell, J., Price, A., Pulver, A. E., Purcell, S. M., Quested,
D., Rasmussen, H. B., Reichenberg, A., Reimers, M. A., Richards, A. L., Roffman, J. L.,
Roussos, P., Ruderfer, D. M., Salomaa, V., Sanders, A. R., Schall, U., Schubert, C. R.,
Schulze, T. G., Schwab, S. G., Scolnick, E. M., Scott, R. J., Seidman, L. J., Shi, J., Sig-
urdsson, E., Silagadze, T., Silverman, J. M., Sim, K., Slominsky, P., So, H. C., Spencer,
C. C., Stahl, E. A., Stefansson, H., Steinberg, S., Stogmann, E., Straub, R. E., Streng-
man, E., Strohmaier, J., Stroup, T. S., Subramaniam, M., Suvisaari, J., Svrakic, D. M.,
Szatkiewicz, J. P., Söderman, E., Thirumalai, S., Toncheva, D., Tosato, S., Veijola, J.,
Waddington, J., Walsh, D., Wang, D., Wang, Q., Webb, B. T., Weiser, M., Wildenauer,
D. B., Williams, N. M., Williams, S., Witt, S. H., Wolen, A. R., Wong, E. H., Wormley,
B. K., Xi, H. S., Zai, C. C., Zheng, X., Zimprich, F., Wray, N. R., Stefansson, K., Visscher,
P. M., Case-Control Consortium, W. T., Adolfsson, R., Andreassen, O. A., Blackwood,
D. H., Bramon, E., Buxbaum, J. D., Børglum, A. D., Cichon, S., Darvasi, A., Domenici,
E., Ehrenreich, H., Esko, T., Gejman, P. V., Gill, M., Gurling, H., Hultman, C. M., Iwata,
N., Jablensky, A. V., Jönsson, E. G., Kendler, K. S., Kirov, G., Knight, J., Lencz, T., Levin-
son, D. F., Li, Q. S., Liu, J., Malhotra, A. K., McCarroll, S. A., McQuillin, A., Moran, J. L.,
Mortensen, P. B., Mowry, B. J., Nöthen, M. M., Ophoff, R. A., Owen, M. J., Palotie, A.,
Pato, C. N., Petryshen, T. L., Posthuma, D., Rietschel, M., Riley, B. P., Rujescu, D., Sham,
P. C., Sklar, P., St Clair, D., Weinberger, D. R., Wendland, J. R., Werge, T., Daly, M. J., Sul-
livan, P. F., O’Donovan, M. C., Trzaskowski, M., Byrne, E. M., Abdellaoui, A., Adams,
M. J., Air, T. M., Andlauer, T. F., Bacanu, S. A., Bækvad-Hansen, M., Beekman, A. T.,
Binder, E. B., Bryois, J., Buttenschøn, H. N., Bybjerg-Grauholm, J., Cai, N., Castelao,
E., Christensen, J. H., Clarke, T. K., Colodro-Conde, L., Couvy-Duchesne, B., Crawford,
G. E., Davies, G., Deary, I. J., Derks, E. M., Direk, N., Dolan, C. V., Dunn, E. C., Eley, T. C.,
Hassan Kiadeh, F. F., Finucane, H. K., Foo, J. C., Forstner, A. J., Gaspar, H. A., Goes, F. S.,
Gordon, S. D., Grove, J., Hall, L. S., Hansen, C. S., Hansen, T. F., Hickie, I. B., Homuth,
G., Horn, C., Hottenga, J. J., Howard, D. M., Ising, M., Jansen, R., Jones, I., Jones, L. A.,
Jorgenson, E., Kohane, I. S., Kraft, J., Kretzschmar, W. W., Kutalik, Z., Li, Y., Lind, P. A.,
MacIntyre, D. J., MacKinnon, D. F., Maier, R. M., Marchini, J., Mbarek, H., McGrath, P.,
McGuffin, P., Medland, S. E., Mehta, D., Middeldorp, C. M., Mihailov, E., Milaneschi,
Y., Mondimore, F. M., Montgomery, G. W., Mostafavi, S., Mullins, N., Nauck, M., Ng,
B., Nivard, M. G., O’Reilly, P. F., Oskarsson, H., Painter, J. N., Pedersen, C. B., Pedersen,
M. G., Peterson, R. E., Peyrot, W. J., Pistis, G., Quiroz, J. A., Qvist, P., Rice, J. P., Rivera,



3

66 BIBLIOGRAPHY

M., Mirza, S. S., Schoevers, R., Schulte, E. C., Shen, L., Shyn, S. I., Sinnamon, G. C.,
Smit, J. H., Smith, D. J., Streit, F., Tansey, K. E., Teismann, H., Teumer, A., Thompson,
W., Thomson, P. A., Thorgeirsson, T. E., Traylor, M., Treutlein, J., Trubetskoy, V., Uitter-
linden, A. G., Umbricht, D., Van der Auwera, S., van Hemert, A. M., Viktorin, A., Wang,
Y., Weinsheimer, S. M., Wellmann, J., Willemsen, G., Wu, Y., Xi, H. S., Yang, J., Zhang,
F., Arolt, V., Baune, B. T., Berger, K., Boomsma, D. I., Dannlowski, U., de Geus, E. J.,
DePaulo, J. R., Domschke, K., Grabe, H. J., Hamilton, S. P., Hayward, C., Heath, A. C.,
Kloiber, S., Lewis, G., Lucae, S., Madden, P. A., Magnusson, P. K., Martin, N. G., Nor-
dentoft, M., Paciga, S. A., and Pedersen, N. L. (2021). A comparison of ten polygenic
score methods for psychiatric disorders applied across multiple cohorts. Biological
psychiatry, 90(9):611.

[29] Nikolac Perkovic, M., Pucic Bakovic, M., Kristic, J., Novokmet, M., Huffman, J. E.,
Vitart, V., Hayward, C., Rudan, I., Wilson, J. F., Campbell, H., Polasek, O., Lauc, G., and
Pivac, N. (2014). The association between galactosylation of immunoglobulin G and
body mass index. Progress in Neuro-Psychopharmacology and Biological Psychiatry,
48:20–25.

[30] Pain, O., Glanville, K. P., Hagenaars, S. P., Selzam, S., Furtjes, A. E., Gaspar,
H. A., Coleman, J. R., Rimfeld, K., Breen, G., Plomin, R., Folkersen, L., and Lewis,
C. M. (2021). Evaluation of polygenic prediction methodology within a reference-
standardized framework. PLoS Genetics, 17(5 May):e1009021.

[31] Payab, M., Tayanloo-Beik, A., Falahzadeh, K., Mousavi, M., Salehi, S., Djalalinia, S.,
Ebrahimpur, M., Rezaei, N., Rezaei-Tavirani, M., Larijani, B., Arjmand, B., and Gilany,
K. (2022). Metabolomics prospect of obesity and metabolic syndrome; a systematic
review.

[32] Privé, F., Arbel, J., and Vilhjálmsson, B. J. (2020). LDpred2: Better, faster, stronger.
Bioinformatics, 36(22-23):5424–5431.

[33] Privé, F., Vilhjálmsson, B. J., Aschard, H., and Blum, M. G. (2019). Making the Most
of Clumping and Thresholding for Polygenic Scores. American Journal of Human
Genetics, 105(6):1213–1221.

[34] Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Maller,
J., Sklar, P., De Bakker, P. I., Daly, M. J., and Sham, P. C. (2007). PLINK: A tool set for
whole-genome association and population-based linkage analyses. American Journal
of Human Genetics, 81(3):559–575.

[35] Robinson, M. R., Kleinman, A., Graff, M., Vinkhuyzen, A. A., Couper, D., Miller,
M. B., Peyrot, W. J., Abdellaoui, A., Zietsch, B. P., Nolte, I. M., Van Vliet-Ostaptchouk,
J. V., Snieder, H., Medland, S. E., Martin, N. G., Magnusson, P. K., Iacono, W. G., McGue,
M., North, K. E., Yang, J., and Visscher, P. M. (2017). Genetic evidence of assortative
mating in humans. Nature Human Behaviour, 1(1).

[36] Shadrina, A. S., Zlobin, A. S., Zaytseva, O. O., Klarić, L., Sharapov, S. Z., D Pakho-
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WITH TWO-STAGE PO2PLS

ABSTRACT
Down syndrome (DS) is a condition that leads to precocious and accelerated aging in
affected subjects. Several alterations in DS cases have been reported at a molecular
level,particularly in methylation and glycosylation. Investigating the relation between
methylation, glycomics and DS can lead to new insights underlying the atypical aging.
We consider a data integration approach, where we investigate how DS affects the parts
of glycomics and methylation which are correlated, and which CpG sites and glycans are
relevant. Our motivating datasets consist of methylation and glycomics data, measured
on 29 DS patients and their unaffected siblings and mothers. The family-based case-
control design needs to be taken into account when studying the relationship between
methylation, glycomics and DS.

We propose a two-stage approach to first integrate methylation and glycomics data,
and then link the joint information to Down syndrome. For the data integration step,
we consider probabilistic two-way orthogonal partial least squares (PO2PLS). PO2PLS
models two omics datasets in terms of low-dimensional joint and omic-specific latent
components, and takes into account heterogeneity across the omics data. The relation-
ship between the omics data can be statistically tested. The joint components repre-
sent the joint information in methylation and glycomics. In the second stage,we apply a
linear mixed model to the relationship between DS and the joint methylation and glyc-
omics components. For the components that are significantly associated with DS, we
identify the most important CpG sites and glycans.

A simulation study is conducted to evaluate the performance of our approach. The
results showed that the effects of DS on the omics data can be detected in a large sample
size, and the accuracy of the feature selection was high in both small and large sample
sizes. Our approach is applied to the DS datasets, a significant effect of DS on the joint
components is found. The identified CpG sites and glycans appeared to be related to DS.
Our proposed method that jointly analyzes multiple omics data with an outcome vari-
able may provide new insight into the molecular implications of DS at different omics
levels.



4.1. INTRODUCTION

4

71

4.1. INTRODUCTION
Down syndrome (DS) is a common (14.47 per 10,000 live births [23]) but complex gene-
tic condition, caused by a total or partial trisomy of the chromosome 21 (HSA21). Sub-
jects with DS exhibit a number of characteristics associated with older age in the gen-
eral population. This has led to the classical description of DS as a progeroid syndrome
and as a model of precocious and accelerated aging [8, 24, 37, 12]. On the molecular
level, alterations by DS were reported across multiple omics, including DNA methyla-
tion [2], transcriptomics [33], and glycomics [5]. It is worth noting that these alterna-
tions in omics also correspond to precocious and accelerated biological aging in DS sub-
jects, based on the aging biomarkers developed on different omics levels [11, 12], e.g.,
the methylation-based epigenetic clocks [15, 16], and the glycomic-based GlycoAge [5].
However, previous studies on DS were conducted on a single omics level, overlooking
the interactions between omics. For example, studies of glycomics alone ignore the
possibility that changes in glycomics represent by-products of some other age-driven
processes [19], say, DNA methylation. Therefore, a unified view on the molecular im-
plications of DS requires a data integration approach that utilizes information across
omics datasets.

Our motivating data come from a family-based case-control study consists of 29
families. Each family is composed of a DS subject, an unaffected sibling and the mother.
Such design is often used to control for genetic and environmental influences in a study.
Particularly, both methylation and glycomics can be influenced by genetics and also re-
spond to environmental changes, therefore controlling the two factors allows us to focus
on the molecular consequences of DS. The methylation dataset contains 450981 CpG
sites and the glycomics data consist of 10 glycans. We aim to integrate the methylation
and glycomics data, investigate the impact of DS on both omics, and identify the target
CpG sites and glycans jointly.

A data integration approach poses several statistical and computational challenges:
i) the high-dimensionality of the methylation data (i.e., 450K CpG sites vs 85 samples); ii)
the complex correlation structure within and between omics; iii) the heterogeneity be-
tween omics (resulting from different source of variation, measurement platform, and
biological representation); iv) and assessment of statistical evidence for a relation be-
tween omics data and between the DS. To deal with the first two issues, we consider
partial least squares (PLS) [6, 35]. Dimension reduction is achieved by decomposing
two omics datasets X and Y into low-dimensional joint and residual parts. The joint
part of one dataset represents the best approximation of X or Y based on maximizing
the covariance of the two. However, by integrating two heterogeneous omics datasets,
the PLS joint parts also contain (strong) omic-specific variation. Two-way orthogonal
partial least squares (O2PLS) [30, 9] was proposed to capture the omic-specific varia-
tion using a specific part for each omics dataset, making the joint parts better estimates
for the true relationship between X and Y . O2PLS is algorithmic, thus cannot provide
statistical evidence for the relationship between omics data. To allow for statistical infer-
ence, probabilistic two-way partial least squares (PO2PLS) [10] was recently developed,
which models the two omics data in a probabilistic framework. Since PO2PLS performs
statistical inference only on the relationship between the two omics datasets, the DS is
not included in the model. To assess the relationship between DS and the two omics
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jointly, we propose a two-stage PO2PLS approach.

In the first stage, PO2PLS is used to construct latent variables that reduce the dimen-
sion of omics data. Also, we test the association of the joint components from methyla-
tion and glycomics data. In the second stage, the joint latent variables identified from
the first stage are considered pseudo outcomes influenced by having DS. A linear mixed
model is used to include age, DS status, interaction of age and DS, sex for fixed effects,
and a random intercept for each family in the model.

The rest of paper is organized as follows. We first describe the data in detail. In the
methods section, an overview of the two-stage PO2PLS approach is presented, followed
by the formulation of each step. Via a simulation study based on the DS dataset, the
performance of the method is investigated. We then apply the method to the DS data-
sets and give interpretation of the results. We conclude with a discussion and possible
directions to further extend the method.

4.2. METHODS

We propose a two-stage integration approach to investigate the effect of Down syn-
drome on methylation and glycomics jointly. In the first stage, PO2PLS decomposes the
two omics datasets into joint and omic-specific parts, where the joint parts represent
the relationship between methylation and glycomics. In the second stage, we model the
relationship between Down syndrome and the joint parts. Additionally, we study how
the joint parts reflect the effect of age and the interaction between age and DS.

An overview of the approach is illustrated in Figure 4.1.

Figure 4.1: An illustration of the two-stage PO2PLS approach. In the first stage, low-dimensional joint com-
ponents (T and U ) are constructed to capture the relationship between the omics, while correcting for the
omic-specific variation using specific components (T⊥ and U⊥). In the second, the components T and U are
modeled with age, DS status, and their interaction.
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4.2.1. STAGE I: JOINT MODELING OF METHYLATION AND GLYCOMICS
Let x and y be random vectors of dimensions p and q , respectively. In our context, x
represents methylation and y represents glycomics. In the PO2PLS model [10], x and
y are decomposed in joint, specific and residual parts. The joint parts consist of latent
variables t and u of size K . The specific parts are given by latent variables t⊥ of size Kx

and u⊥ of size Ky . Further, the residual random vectors are denoted by e, f , and h. In
the PO2PLS model, h represents heterogeneity between t and u. A graphical depiction
of the model is given in the green part of Figure 4.1. The PO2PLS model is written as

x = tW ⊤+ t⊥W ⊤
⊥ +e,

y = uC⊤+u⊥C⊤
⊥ + f ,

u = tB +h.

(4.1)

The loading parameters W (p ×K ) and C (q ×K ) are matrices that contain weights for
each variable in x and y , respectively, per component. These weights indicate which
variables are important for the joint latent variables and can be used to identify the most
relevant variables. Similarly, the matrices W⊥ (p ×Kx ) and C⊥ (q ×Ky ) contain weights
for the omic-specific latent variables. The K ×K diagonal matrix B links the joint com-
ponents t and u and hence represents the relationship between x and y .

The latent variables t , t⊥, u⊥, and the residuals h, e and f are assumed to be nor-
mally distributed with zero mean and respective covariance matrices Σt , Σt⊥ , Σu⊥ , Σh ,
σ2

e Ip , and σ2
f Iq . This yields a joint distribution of (x, y) ∼N (0,Σθ), with covariance ma-

trix Σθ depending on the parameters θ = {W,C ,W⊥,C⊥,B ,Σt ,Σt⊥ ,Σu⊥ ,σ2
e ,σ2

f ,Σh}.

To estimate the parameters in θ, we use maximum likelihood. The log-likelihood
function is written by

l (θ; x, y) =−1

2
{(p +q)log (2π)+ l og |Σθ|+ (x, y)Σ−1

θ (x, y)⊤}.

A direct optimization is complex and computationally infeasible in high dimensional
settings (i.e., when p or q is large). In the PO2PLS model, an efficient Expectation–Maximization
(EM) algorithm [7] is proposed. For a full description of the algorithm, we refer to [10].

STATISTICAL INFERENCE OF THE RELATIONSHIP BETWEEN OMICS

Within the PO2PLS framework, statistical evidence for the relationship between methy-
lation and glycomics is assessed. We test the null hypothesis of no relationship between
each pair of joint latent variables. We consider the following hypothesis for each com-
ponent k between 1 and K , H0 : Bk = 0 against H1 : Bk ̸= 0. Let X and Y be methylation
and glycomics data matrices consisting of N draws from x and y . To test the hypothesis
of no relationship between methylation and glycomics, the test statistic TB = B̂k /ŜE B̂k
is calculated for each component. Using an estimate for SEB̂k

based on X and Y , and
the asymptotic distribution of TBk (see [10]), a p-value is calculated per component. The
components that showed significant association (at the nominal level of 0.05) are then
used as outcome in a linear mixed model with Down syndrome and age. Since the com-
ponents are not observed, they are reconstructed using a linear projection of X and Y
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on W and C , respectively, as follows,

T = (X −X Ŵ⊥Ŵ ⊤
⊥ )Ŵ ,

U = (Y −Y Ĉ⊥Ĉ⊤
⊥ )Ĉ .

All the parameter estimation and the statistical testing in the first stage were per-
formed in R using ‘PO2PLS’ package (https://github.com/selbouhaddani/PO2PLS).

4.2.2. STAGE II: MODELING THE EFFECT OF DOWN SYNDROME AND AGING

ON METHYLATION AND GLYCOMICS JOINTLY
In the second stage of our proposed framework, we take the significant joint compo-
nents from the first stage as a representation of the joint information in methylation
and glycomics. We investigate the direct effect of Down syndrome on the joint compo-
nents, as well as whether a part of the joint variation in methylation and glycomics can
be be explained by age and the interaction between age and DS.

We propose a linear mixed model with the joint components as outcome. The age,
DS status and their interaction are taken as fixed effects. We further include sex as a
fixed effect. The family structure is considered by including a random intercept for each
family in the model. The full model is formulated as

T =β0 +β1Age+β21DS +β3Age∗1DS +β4Sex+Family+ϵ (4.2)

where 1DS is one for Down syndrome cases and zero for controls. In the model, β1,
β2, β3, β4 are the effect sizes of age, DS status, interaction between age and DS, and
sex, respectively. The parameter β0 is the intercept, and ϵ ∼ N (0,σ2) is the individual-
level error. These parameters are estimated using the restricted maximum likelihood
(REML) [25] approach with R package ‘lme4’ [3]. Since the scale of the joint scores and
effect sizes is not directly interpretable, we focus on the directions of the effects and the
significance levels. For the components that have a significant association with DS or its
interaction with age, we calculate the top loading values and their methylation sites and
glycans and compare them to results from previous studies.

4.3. SIMULATION
A simulation study is conducted to evaluate the performance of our two-stage integra-
tion approach. We focus on detecting the effect of age, DS, and their interaction on the
multi-omics joint parts, and the accuracy of identifying relevant features. We consider
two scenarios with different sample sizes. In the small sample size scenario, we take
N = 85, which is the same as in our data analysis. In the large sample size scenario, we
choose N = 900, with 300 simulated Down syndrome patients, siblings and mothers.
The dimensions of X and Y are p = 400000 and q = 10, similar as in our data analysis.
Further, we take 1 joint component, and 1 specific component for each dataset

Rather than simulating T independently, we introduce a dependence on DS and age.
We consider the fitted values from the linear model,

T̂ =β0 +β1Age+β21DS +β3Age∗1DS .
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Here, T̂ represents the part of T that is dependent on age and DS. We do not include a
random residual term, but regard T̂ as fixed across the simulation runs. Namely, ran-
dom variation is introduced in the observed X and Y via h, e, and f (4.1), which leads
to uncertainty in predicting T from X and Y . In the small sample size scenario, we use
the observed age and DS status from the data analysis. In the large sample size scenario,
age is generated once per subject group (DS, sibling, mother). The ages of the 300 sub-
jects in each group are generated from a normal distributions with mean and variance
estimated for the corresponding group in our dataset. Across the simulation runs, the
age and DS status are kept fixed. The parameters are β1 = 1, β2 = 20, and β3 = 0.5 for the
coefficients of age, Down syndrome, and their interaction. The intercept β0 is chosen
such that the resulting T̂ has mean zero.

Table 4.1: Simulation parameters

Table 4.1 shows the parameter choices of the other components. They are chosen
such that the proportions of explained variance in simulated data by each part match
the proportions estimated from the real dataset. The loading values W are generated
once from the N (1,0.52) distribution. We then retain 1000 non-zero values, represent-
ing 1000 relevant CpG sites, and set all other values to zero. The loading values for the
other components are generated once from a standard normal distribution. All loading
vectors are scaled to have unit norm, which is a constraint in the PO2PLS model.

After choosing all values for age, DS, and the parameters, the data matrices X and Y
are simulated 100 times based on the PO2PLS model (4.1), with T̂ as a function of age
and DS.

In both the small and large sample size scenarios, we fit two PO2PLS models to the
simulated data. In the first fit, the correct number of components (K = 1) is used, while
in the other fit, too many joint components (K = 3) are chosen. In the second stage, the
first X -joint component is regressed on age, DS status, and their interaction term and
the estimated coefficients β̂1, β̂2, and β̂3 with their p-values are calculated. We visual-
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ize the distributions of these estimates and calculate the proportion of each coefficient
being significant (p-value < 0.05) across 100 simulation runs. In each run where at least
one of β̂1, β̂2, and β̂3 is significant, we compare the top 1000 variables with the highest
estimated absolute loading values to the true 1000 selected variables. The true positive
rate (TPR = TP/(TP+FN), where TP = True Positive, FN = False Negative) is then calcu-
lated and averaged.

4.3.1. RESULTS
Results for the small sample size scenario are shown in Figure 4.2. The distribution of the
regression coefficients and their p-values are plotted in the case where one joint compo-
nent (K = 1) was used for PO2PLS. The estimates of the age effect β̂1, DS effect β̂2, and
effect of interaction between age and DS status β̂3 were all symmetrically distributed.
The means appeared to be biased towards zero. In terms of p-value, about 52% of β̂1

were significant (p-value < 0.05). The proportions of significant β̂2 and β̂3 were both
below 0.05. The TPR of the estimated top 1000 variables was 0.93. In the case where too
many joint components (K = 3) were specified in PO2PLS (Figure 4.3), the distributions
of the estimated coefficients remained largely unchanged. The proportion of significant
β̂1, β̂2, and β̂3 slightly increased to 0.58, 0.05, and 0.05. The TPR decreased to 0.86.
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Figure 4.2: Scenario N=85, 1 joint component: distribution of β̂ (top) and their p-values (bottom). In the
columns are estimates of the age affect β̂1, DS effect β̂2, and effect of interaction between age and DS β̂3,
respectively. The red vertical line in the left plot is the true value. The red horizontal line in the right plot is the
threshold of p-value: 0.05.

Results for the large sample size scenarios are shown in Figure 4.4. The means of the
coefficients when fitting K = 1 joint component were closer to the true values, compared
to the N = 85 scenario. However, the distributions were more left-skewed. The propor-
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Figure 4.3: Scenario N=85, 3 joint component: distribution of β̂ (top) and their p-values (bottom). The red
vertical line in the left plot is the true value. The red horizontal line in the right plot is the threshold of p-value:
0.05.

tion of significant coefficients was higher: 0.98 for β̂1, and 0.82 for β̂2 and β̂3. The TPR
also improved to 0.99. In the case where we choose K = 3 joint components, as shown in
Figure 4.5, the performance of coefficient estimation improved compared to the normal
sample size case. The means were closer to the true values and the standard deviation
decreased. The proportion of significant β̂2 and β̂3 improved to 0.94 and 0.97. The TPR
was around 0.98.

4.4. APPLICATION TO DOWN SYNDROME DATA
We apply the two-stage PO2PLS approach to the Down syndrome dataset. We first in-
tegrate the methylation and glycomics data. Then the effect of DS on the joint parts of
both omics is investigated. Finally, for the joint components that are significantly asso-
ciated with DS, we identify the target CpG sites and glycans.

4.4.1. DATA DESCRIPTION

Whole blood methylation (using Infinium HumanMethylation450 BeadChip) [2] and
plasma N-glycans (using DSA-FACE) [5] data were measured on 29 trios composed by a
down syndrome subject (DS), one non-affected sibling (SB), and the mother (MA). Due
to missing data in 2 siblings, the sample size N is 85. The age of the DS group ranges
from 10 to 43, with a median of 24. Ages of the siblings are roughly matched with the
DS subjects, ranging from 14 to 52. The mothers are aged between 41 and 83, with a
median of 57. The DS group has 18 males and 11 females, while the SB group contains
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Figure 4.4: Scenario N=900, 1 joint component: distribution of β̂ (top) and their p-values (bottom). The red
vertical line in the left plot is the true value. The red horizontal line in the right plot is the threshold of p-value:
0.05.
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Figure 4.5: Scenario N=900, 3 joint component: distribution of β̂ (top) and their p-values (bottom). The red
vertical line in the left plot is the true value. The red horizontal line in the right plot is the threshold of p-value:
0.05.
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7 males and 20 females. The methylation dataset consists of beta values (ratio of inten-
sities between methylated and unmethylated alleles) at 450981 CpG sites after quality
control following steps described in [2]. White blood cell counts are estimated from the
methylation data and corrected for using R package ‘Meffil’ [21]. The glycomics dataset
contains 10 glycan peaks, which are logTA normalized [31].

4.4.2. RESULTS
In the first stage, PO2PLS was applied to methylation (X ) and glycomics (Y ) with 3 joint
and 1 specific component for each omics dataset. The null hypothesis of no relationship
between each pair of methylation and glycomics joint components was tested. The p-
values were 0.0006, 0.14, and 0.02 for the three joint components, respectively. With a
threshold of 0.05 for the p-values, the first (T1 for methylation and U1 for glycomics) and
third pair (T3 and U3) of joint components were significantly associated.

In Figure 4.6, we visualized the relationship between the first joint components and
the three groups. It appeared that the DS group had a higher average of joint scores in
both omics, comparing to the SB group. Note that the SB group is roughly of the same
age as the DS group. The MA group, which is by design older, had a higher average score
than the SB group. The average score in the DS group was higher than in the MA group,
although the DS group was chronologically younger.
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Figure 4.6: Dot plot of the first joint components. On the X axis are the three groups in different colors. On
the Y axis are the scores of each individual. The mean score of each group is shown as a short horizontal line.

A linear mixed model (4.2) was then used to model the joint components in terms
of age, DS status and their interaction. Only the components that had a significant rela-
tionship were considered, namely T1, U1, T3 and U3. We included age, DS status, their
interaction, and sex as fixed effects, and further included a random intercept per family
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in the model.
Table 4.2 shows the coefficients of interest and their p-values. In the first X -joint

component, T1, both age and DS had a significant positive effect, but their interaction
term was not significant. Similarly, in U1, age had a significant positive effect size, but
the p-value of DS was slightly above 0.05. The DS effect size was also positive. The
interaction term was not significant. In both T3 and U3, the effect of age was positive
and significant.

Table 4.2: Estimated effects of age, DS status, and their interaction

Since the first pair of joint components were associated with DS, we further identify
the relevant CpG sites and glycans corresponding to T1 and U1. In the first methylation
joint component, the 1000 CpG sites with largest loading values were mapped to their
respective target genes, yielding 496 genes. Next, GO enrichment analysis [1] was per-
formed on this gene set using the GSEA software [22, 29]. The top significant GO terms
were listed in Table 4.3. From these terms, the cellular component of neuron projec-
tion and synapse, biological process of neurogenesis, and neuron differentiation were
shown to relate to DS [14, 17, 27, 26], while biological adhesion and cell-cell signaling
are biological functions of plasma glycans [32, 18]. We further compared the set of 496
with genes obtained from a single point differential expression analysis in DS from a
previous study [2]. The previously identified genes categorized into four main functions
were also selected in our geneset: haematopoiesis (RUNX1, DLL1, EBF4), morphogene-
sis and development (HOXA2, HOXA4, HOXA5, HHIP, NCAM1), neuronal development
(NAV1, EBF4, PRDM8, NCAM1, GABBR1), and regulation of chromatin structure (KD-
M2B, TET1).

For the first glycomics joint component, the loading values of each glycan is shown
in Table 4.4. The glycans H3N4F1 and H3N5F1 had the largest absolute loading values.
According to a previous study [5] on plasma glycans and DS, the first glycan was found
to be the top discriminators of DS subjects and siblings. The second glycan was one of
the main age discriminants.

4.5. DISCUSSION
We proposed a two-stage data integration approach to model the methylation and glyc-
omics jointly and investigate the impact of Down syndrome on methylation and glyc-
omics. In the first stage, we applied the PO2PLS model to integrate the two omics data.
PO2PLS estimates low-dimensional joint and omic-specific latent components and test
the relationship between the two datasets. The significantly associated joint compo-
nents are then taken as surrogates for the joint information in methylation and glyc-
omics. In the second stage, these joint components were modeled as a function of DS
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Table 4.3: Results of GO enrichment analysis.

The “p-value” column shows the p-value of each annotation derived by random sampling of the
whole genome; the “FDR q-value” column provides the false discovery rate (FDR) analog of the
p-value after correcting for multiple hypothesis testing [4, 28]. Complete list can be found in Addi-
tional file

Table 4.4: Loading values of the glycans in the first joint component.

status and aging using a linear mixed model, with sex as an additional covariate. Familial
relationships are taken into account by specifying a random intercept per family.

We conducted a simulation study to evaluate the performance of the two-stage ap-
proach to detect effects of aging, DS status, and their interaction on the joint methylation-
glycomics parts. In the large sample size scenarios, with 900 subjects, the proportions
of significant coefficients were high for all the three effects, and the TPR of identified
features was close to 1. In the small sample size scenarios, the effect of DS and its inter-
action with age were more difficult to detect. The proportions of significant coefficients
for these two effects were both low. A reason for the reduction of the performance is the
large amount of heterogeneity in the relation between the joint components of methy-
lation and glycomics. The variance of h, representing this heterogeneity, was set to be
94.3% of the total variance of u (see Table 4.1). This number was estimated from the
dataset. The underlying reason for a large heterogeneity between omics data might be
that the biological link between methylation and glycomics involves many intermediate
biological layers, e.g., transcription and protein expression [36, 34]. Combined with a
small sample size, there is limited information to accurately estimate the true underly-
ing joint components. The high noise level in the joint parts also implies a weak corre-
lation between the joint components. Consequently, some joint variation tends to be
estimated as omic-specific, especially if the number of joint components K is small. It
might explain why the model with fewer joint components (K = 1) underperformed in
detecting the effect of DS and its interaction with age on the joint components.

We applied the two-stage integration approach to the DS dataset. From the dot plot
(Figure 4.6) of the first joint components, we observed difference in scores between
groups. Since the effect of age was significant, these components might be seen as a
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representation of biological age, similar to the biological aging models in [15, 20]. A sig-
nificant and positive main effect of DS means that the biological age is higher in the
DS group, suggesting existence of precocious aging, which could be considered as an
intrinsic characteristic of DS [13]. The interaction effect of DS and age can be inter-
preted as accelerated aging, implying a faster rate of aging in the DS subjects compared
to controls. In our analysis, the interaction was not significant, hence no evidence for
accelerated aging in DS. However, as implied in the simulation results, with the small
sample size, we had limited information to detect the interaction.

Our proposed two-stage approach involves, in the first step, a model for the two
omics datasets that is independent of the Down syndrome status. In the second step, the
estimated components are used to infer the effect of DS on the omics data. This leads
to suboptimal efficiency when estimating the relation between Down syndrome and the
omics datasets. Also, the additional estimation uncertainty from the first stage is ignored
in the second stage. To model the DS status jointly with the two omics data and infer its
role, a holistic framework is desired. The joint latent variables will not only represent
the variation of the omics data, but also include information about the subject groups.
It is suited for studies aiming at identifying mechanisms underlying the omics data that
are particularly related to the subject groups. For complex study designs, such as the
family-based case control study, it is also necessary to consider the family structure in
the data integration approach. Including these functionalities in our methods will be
the directions of our future work.
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ABSTRACT
In many studies of human diseases, multiple omic datasets are measured. Typically,
these omic datasets are studied one by one with the disease, thus the relationship be-
tween omics are overlooked. Modeling the joint part of multiple omics and its associa-
tion to the outcome disease will provide insights into the complex molecular base of the
disease. In this article, we extend dimension reduction methods which model the joint
part of omics to a novel method that jointly models an outcome variable with omics. We
establish the model identifiability and develop EM algorithms to obtain maximum like-
lihood estimators of the parameters for normally and Bernoulli distributed outcomes.
Test statistics are proposed to infer the association between the outcome and omics,
and their asymptotic distributions are derived. Extensive simulation studies are con-
ducted to evaluate the proposed model. The model is illustrated by a Down syndrome
study where Down syndrome and two omics – methylation and glycomics – are jointly
modeled.
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5.1. INTRODUCTION
The biological mechanisms underlying human diseases are often complex. Diverse omics
datasets represent various aspects of these mechanisms. Recent advances in high through-
put technologies have made it affordable to measure these omic levels for many stud-
ies. Typically, these datasets are studied one-by-one. A good example is the analysis
of genomic data in more than 5700 GWAS conducted to identify the genetic risk vari-
ants associated with more than 3000 traits and human diseases [55, 51]. Other exam-
ples include studies of methylation data to pinpoint differentially methylated regions of
DNA as indicators of many diseases [41, 34], and studies of glycomic data to gain insight
into the role of post-translational modification of protein in disease pathways [48, 47].
Though these studies on a single omic dataset provided biological insights of diseases
from various aspects, they ignored the correlations among the omic levels. Analyzing
multiple linked omic datasets jointly can bring further insights into the biological sys-
tem underlying diseases. In this paper, we propose a new model for two omic datasets
and an outcome variable, where the relationship of the omic datasets with the outcome
is modeled via the joint parts of the omic datasets.

Our motivating dataset comes from a family-based case-control study of Down syn-
drome (DS). DS is the most frequent genomic aneuploidy with an incidence of approx-
imately 1 in 700 live-newborn [35], caused by the trisomy of all or part of chromosome
21 (trisomy 21). Studies at the molecular level of DS have reported several alterations
in methylation [15, 16, 4, 8] and glycomics [15, 6, 9]. These alternations are mainly dis-
covered by testing the mean difference of a single CpG site or glycan between the DS
subjects and healthy controls. Furthermore, these studies were conducted on each omic
level separately, overlooking the influence of methylation on glycosylation [54]. We will
use our new model to jointly analyze DS and both omics, aiming to investigate whether
the molecules involved in the relationship between methylation and glycomics are re-
lated to DS.

Generalized linear models (GLM) are flexible models which link linear predictors
with an outcome variable via functions such as identity and logit [33]. However, omic
datasets are often high-dimensional (p >> N ) and the features are highly correlated,
which leads to (near) collinearity, hence GLM cannot directly be employed. A solu-
tion is to use its penalized variants such as ridge regression [20] and elastic net [60],
which handle the dimensionality and correlation better. To incorporate information
from more than one dataset, stacked sets of omic features can be modeled. However,
such approaches do not model the relationship between omics, and hence cannot pro-
vide insight on the joint part. Furthermore, when the omic datasets are heterogeneous,
regressing on a stacked dataset can lead to inferior performance than using only one of
the available omic sources [39, 49].

To model the joint part of two omic datasets, several dimension reduction meth-
ods have been developed, which map both datasets from the original high-dimensional
spaces to low-dimensional spaces including a joint space which retains the relation-
ship. Among these, PLS [56, 10] simultaneously decomposes two datasets x and y into
joint and residual subspaces. The joint (low-dimensional) subspace of one dataset rep-
resents the best approximation of x or y . The joint subspaces of PLS may contain omic-
specific variation due to the presence of heterogeneity between the omics. To sepa-
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rate this omic-specific variation from the joint subspaces, two-way orthogonal partial
least squares (O2PLS) [50, 12] was proposed which decomposes each dataset into joint,
data-specific, and residual subspaces. The data-specific subspaces in x and y capture
variation unrelated to each other, and improve the estimates of the joint subspaces for
the true relationship between x and y . A drawback of PLS and O2PLS is that they are
algorithmic, and hence do not model the whole distribution. To enable statistical in-
ference, likelihood-based probabilistic approaches such as supervised integrated factor
analysis (SIFA) [26] and probabilistic PLS (PPLS) [13] were proposed. Recently, a gen-
eral framework probabilistic O2PLS (PO2PLS) [14] was proposed which contains SIFA
and PPLS as specific cases. In PO2PLS, the relationship between two omics is inferred
by using a Wald-type test-statistic to test the hypothesis that the joint latent variables
of the two omics are related. However, PO2PLS is unsupervised, i.e., the outcome vari-
able is not used in the joint dimension reduction. In this paper, we will propose a new
model GLM-PO2PLS which extends PO2PLS by including an outcome variable in the
model next to the omic datasets. The relationship between two omic data is modeled
by joint and omic-specific latent variables to deal with possible heterogeneity. The joint
latent variables are linked to an outcome variable by a generalized linear model. We
develop EM algorithms to obtain maximum likelihood estimators of the parameters for
normally and Bernoulli distributed outcomes. The relationship between the outcome
variable and the omics and that between two omic datasets can be inferred. The code is
available on GitHub (github.com/zhujiegu/GLM-PO2PLS).

The rest of the paper is organized as follows. In Section 5.2, the PO2PLS model is
recapped, and the GLM-PO2PLS model is formulated. The EM algorithms to estimate
its parameters are proposed. Also, two chi-square tests of the relationship between out-
come and both omics are proposed. In Section 5.3, the performance of GLM-PO2PLS
is studied for a range of simulation scenarios where the focus is on parameter estima-
tion and outcome prediction performance. In Section 5.4, we apply GLM-PO2PLS to the
motivating DS datasets. We conclude with a discussion.

5.2. METHODS
The GLM-PO2PLS was developed based on PO2PLS model which has been described in
detail elsewhere [14]. Briefly, let x and y be two random row-vectors of dimensions p
and q , respectively. In PO2PLS, x and y are decomposed into joint (t and u of size K ),
specific (t⊥ and u⊥ of size Kx resp. Ky ) and residual (e and f of size p resp. q) parts.
Heterogeneity between the joint parts is represented by an additional random vector h.
The PO2PLS model is written as

x = tW ⊤+ t⊥W ⊤
⊥ +e, y = uC⊤+u⊥C⊤

⊥ + f , u = tB +h,

where W (p ×K ) and C (q ×K ) are the loading matrices for the joint spaces of x and y
respectively and W⊥ (p ×Kx ) and C⊥ (q ×Ky ) are the loading matrices for the specific
parts of x and y respectively. The K ×K diagonal matrix B models the relationship be-
tween the joint components t and u. With regard to the random vectors, we assume that
t , t⊥, u⊥, h are zero mean multivariate normally distributed, with diagonal covariance
matrices Σt , Σt⊥ , Σu⊥ , Σh , respectively. Since u = tB +h, the covariance matrix of u is
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Σu = B⊤Σt B +Σh . The residual random vectors e, and f are independent normally dis-
tributed, with zero mean and respective diagonal covariance matrices , σ2

e Ip , and σ2
f Iq ,

where Ip and Iq are identity matrices of size p and q .

5.2.1. THE GLM-PO2PLS MODEL
GLM-PO2PLS jointly models an outcome variable z with two omic datasets x and y ,
where it is assumed that the effect of x and of y on z is solely through the joint parts of x
and y .

Using the same notations as in the PO2PLS model, the GLM-PO2PLS model is given
by

x = tW ⊤+ t⊥W ⊤
⊥ +e, y = uC⊤+u⊥C⊤

⊥ + f , u = tB +h,

η(E[z]) =β0 + t a⊤+ub⊤,
(5.1)

with β0 the intercept, a and b both row-vectors of size K and η the link function which
links the outcome z to the linear predictorβ0+t a⊤+ub⊤. Note that the equations in the
first row of (5.1) are identical to the PO2PLS model. Since the joint latent variables t and
u are linked to x, y , and z, GLM-PO2PLS jointly models the outcome and two omics.

Now, u is a linear function of t , namely u = tB +h. Hence, the model for z in (5.1)
can equivalently be written in terms of t and the h (the part in u independent of t ), i.e.

η(E[z]) =β0 + t a⊤+ (tB +h)b⊤ =β0 + t ã⊤+hb̃⊤,

where ã = a +Bb⊤ and b̃ = b. With this equivalent parametrization, instability due to
near colinearity in the linear predictor of z is reduced.

In the remainder of the paper, we use the rightmost form in (1.8) and omit the tildes
on a and b.

5.2.2. THE GLM-PO2PLS MODEL WITH A NORMALLY DISTRIBUTED OUT-
COME

In this subsection, we first consider a continuous outcome z. The details for a binary z
is then given in the next subsection. As link function, we use the identity, η(v) = v . We
assume that the outcome is centered and since t and h have zero-mean, the intercept
β0 can be omitted. We assume that the residual g (g = z − t a⊤−hb⊤) is normally dis-
tributed, g ∼ N (0,σ2

g ). Since (x, y, z) is linearly dependent on (t ,u, t⊥,u⊥,e, f ,h, g ), it
follows a multivariate normal distribution N (0,Σθ), with a covariance matrix given by

Σθ =

WΣt W ⊤+W⊥Σt⊥W ⊤
⊥ +σ2

e Ip WΣt BC⊤ WΣt a⊤
C BΣt W ⊤ CΣuC⊤+C⊥Σu⊥C⊤

⊥ +σ2
f Iq C (Σhb⊤+BΣt a⊤)

aΣt W ⊤ (aΣt B +bΣh)C⊤ aΣt a⊤+bΣhb⊤+σ2
g

 ,

(5.2)
where θ = {W,C ,W⊥,C⊥, a,b,B ,Σt ,Σt⊥ ,Σu⊥ ,σ2

e ,σ2
f ,Σh ,σ2

g } is the collection of GLM-

PO2PLS model parameters.

Identifiability of GLM-PO2PLS Latent variable models are typically unidentifiable due
to rotation indeterminacy of the loading components. In PO2PLS, identifiability up to
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sign has been shown under mild conditions [14]. Namely, the loading matrices are semi-
orthogonal, i.e. W ⊤W =C⊤C = IK , W ⊤

⊥ W⊥ = IKx , and C⊤
⊥C⊥ = IKy . Additionally, [W W⊥]

and [CC⊥] do not have linearly dependent columns. Furthermore, the covariance matri-
ces for the latent variables Σt , Σu , Σt⊥ , Σu⊥ are diagonal. Finally, the diagonal elements
of B are positive and the diagonal elements of Σt B are strictly decreasing. We show
that these conditions also guarantee the identifiability (up to sign) of the GLM-PO2PLS
model.

Theorem 1. Let (x, y, z) follow the GLM-PO2PLS model where z is normally distributed.
Additionally, let the parameters satisfy the PO2PLS conditions as described above. It fol-
lows that the GLM-PO2PLS model parameters are identifiable up to a sign.

Proof. Let f (x, y, z|θ) = f (x, y, z|θ̃) be identical joint distributions under two sets of pa-
rameters θ and θ̃. Then we necessarily have f (x, y |θ) = f (x, y |θ̃). Since (x, y |θ) follows
a zero mean multivariate normal distribution, its distribution is uniquely defined by
the covariance matrix Σx,y |θ. Thus Σx,y |θ = Σx,y |θ̃ follows. It has been proven in [14]
that if Σx,y |θ = Σx,y |θ̃ holds, then the parameters involved (i.e., {W,C ,W⊥,C⊥,B ,Σt ,Σt⊥ ,

Σu⊥ ,σ2
e ,σ2

f ,Σh}) are identified, up to sign.

For a normally distributed z, the random vector (x, y, z) follows a zero mean mul-
tivariate normal distribution, and its distribution is uniquely defined by the covariance
matrixΣθ in (5.2). It follows from f (x, y, z|θ) = f (x, y, z|θ̃) thatΣθ =Σθ̃ . Now let aΣt W ⊤ =
ãΣ̃t W̃ ⊤. SinceΣt W ⊤ = Σ̃t W̃ ⊤ and is of full rank, we have a = ã. Similarly, we have b = b̃,

and σ2
g = σ̃2

g from bΣhC⊤ = b̃Σ̃hC̃⊤ and aΣt a⊤+bΣhb⊤+σ2
g = ãΣ̃t ã⊤+ b̃Σ̃h b̃⊤+ σ̃2

g , re-
spectively. This shows identifiability of all the parameters in θ.

MAXIMUM LIKELIHOOD ESTIMATION

Since the GLM-PO2PLS model is a latent variable model and the likelihood factorizes in
terms which can be maximized separately, we propose an EM algorithm [11] to obtain
maximum likelihood estimates of the model parameters.

Suppose we observe the (x, y, z) for N subjects. Since we assume a multivariate nor-
mal distribution of (x, y, z) ∼N (0,Σθ), the log-likelihood for one subject is given by

ℓ(θ; x, y, z) =−1

2
{(p +q +1)log(2π)+ log |Σθ|+ (x, y, z)Σ−1

θ (x, y, z)⊤}.

Denote the complete data vector by (x, y, z, t ,u, t⊥,u⊥). For each current estimate θ′,
the EM algorithm considers the objective function

Q(θ|θ′) = E[log f (x, y, z, t ,u, t⊥,u⊥|θ)|x, y, z,θ′].
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Expectation step The conditional expectation of the complete data log likelihood can
be decomposed into different terms,

Q(θ|θ′) =E[log f (x, y, z, t ,u, t⊥,u⊥)] = E[log f (x, y, z|t ,u, t⊥,u⊥)]+E[log f (t ,u, t⊥,u⊥)]

=E[log f (z|t ,u)]︸ ︷︷ ︸
Q{a,b,σ2

g }

+E[log f (x|t , t⊥)]︸ ︷︷ ︸
Q{W,W⊥ ,σ2

e }

+E[log f (y |u,u⊥)]︸ ︷︷ ︸
Q{C ,C⊥ ,σ2

f
}

+E[log f (u|t )]︸ ︷︷ ︸
Q{B ,Σh }

+E[log f (t )]︸ ︷︷ ︸
QΣt

+E[log f (t⊥)]︸ ︷︷ ︸
QΣt⊥

+E[log f (u⊥)]︸ ︷︷ ︸
QΣu⊥

.

(5.3)
In this equation, the conditioning on x, y , z and θ′ is dropped, to simplify notation. The
individual conditional expectations depend on distinct sets of parameters, yielding sep-
arate optimization tasks. Compared to PO2PLS, the extra parameters in GLM-PO2PLS
{a,b,σ2

g } are included in the first term Q{a,b,σ2
g }. Therefore, we focus on the optimization

of Q{a,b,σ2
g } with respect to {a,b,σ2

g }. The rest of the terms are identical to the factorized

densities in the original PO2PLS EM algorithm, we refer to the PO2PLS paper [14] for the
expectation and maximization regarding these terms.

In the expectation step, Q{a,b,σ2
g } is calculated as

Q{a,b,σ2
g } =−1

2

{
log(2πσ2

g )+ 1

σ2
g

trE
[
(z − t a⊤− (u − tB)b⊤)⊤(z − t a⊤− (u − tB)b⊤)

]}
.

(5.4)
Here, the first and second conditional moments of the vector (t ,u) given x, y, z and θ′ are
involved. Since (x, y, z, t ,u, t⊥,u⊥) follows a multivariate normal distribution with zero
mean and known covariance matrix, the conditional density f (t ,u, t⊥,u⊥|x, y, z) can be
calculated following Lemma 3 in [14]. The conditional moments involved in (5.4) can
then be obtained from the mean and the covariance matrix of (t ,u, t⊥,u⊥|x, y, z) (see
the Supplementary material for details).

Maximization step In the maximization (M) step, each conditional expectation in (5.3)
can be optimized separately. Here, we restrict to the description of the term involving
the outcome, namely, maximize the Q{a,b,σ2

g } as given in equation (5.4). Note that the

coefficient vector (a,b) can be separately optimized from the residual parameter σ2
g , as

in the standard linear regressions. We first calculate the derivative with respect to (a,b)
and set it to 0, yielding

∂Q{a,b,σ2
g }

∂(a,b)
= 0 ⇒ (â, b̂) = z⊤

E[(t ,h)]E[(t ,h)⊤(t ,h)]−1.

where the conditional moments are calculated in the E step. The maximization with
respect to the parameter σ2

g can then be performed similarly. Details are given in the
supplementary material.

STATISTICAL INFERENCE

The GLM-PO2PLS method allows for statistical inference on the relationship between
the omic data and the outcome. This relationship is captured by the joint parts t and u,
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and given by the equation η(E[z]) = t a⊤+hb⊤ in (5.1). Here, we propose two tests, one
full test for the relationship between z and all the joint components together, and one
component-wise test for the relationship between z and each pair of joint components.

For the full test, we consider the null hypothesis,

H0 : a = b = 0 against H1 : a ̸= 0 or b ̸= 0.

For each component-wise test, we consider the null hypothesis of no relationship be-
tween z and the k-th pair of joint components,

H0 : ak = bk = 0 against H1 : ak ̸= 0 or bk ̸= 0.

where ak and bk are the coefficients for tk and hk , respectively.
Let α= (a,b) and αk = (ak ,bk ). The full test statistic is given by

T f ul l = α̂Π−1
α̂ α̂⊤, (5.5)

where Π−1
α̂

is the inverse of the covariance matrix of α̂. And the pair-wise test statistic is
given by:

Tcomp.wi se = α̂kΠ
−1
α̂k
α̂k

⊤. (5.6)

To calculate the (asymptotic) distribution of these test statistics, the asymptotic dis-
tribution of all parameters θ needs to be derived.

Asymptotic distribution Under certain regularity conditions, consistency of the esti-
mator θ and its asymptotic distribution N (θ,Πθ) follows from Shapiro’s Proposition 4.2
(Shapiro 1986) applied to the GLM-PO2PLS model.

Theorem 2. Let θ̂ be the maximum likelihood estimator for θ from the GLM-PO2PLS
model. When the sample size N approaches infinity, the distribution of θ̂ converges to a
normal distribution, i.e.

N 1/2(θ̂−θ) −→N (0,Πθ)

Details and proofs are given in the supplement.
In particular, α̂ = (â, b̂) is asymptotically normally distributed. Therefore, the test

statistics T f ul l and Tcomp.wi se follow a chi-square distribution with 2K resp. 2 degrees
of freedom. An estimate ofΠθ is obtained from the inverse observed Fisher information
matrix. Let ψi be an instance of observed data (x, y, z) and ζi be the latent variables
involved. In an EM algorithm, this matrix is given by [28],

I (θ̂) =
N∑

i=1
E[Bi (θ̂)|ψi ]−

N∑
i=1

N∑
j=1

E[Si (θ̂)S j (θ̂)⊤|ψi ;ψ j ]

where Si (θ̂) =∇l (θ̂;ψi ,ζi ) and Bi (θ̂) =−∇2l (θ̂;ψi ,ζi ) are the gradient and negative of the
second derivative of the log complete likelihood of instance i , respectively, evaluated at
θ̂.

To obtain Πα̂, the submatrix of I−1(θ̂) corresponding to α̂ (denote I−1(α̂)) has to
be calculated. However, inverting I (θ̂) is computationally infeasible, even for moderate
dimensions. Under additional assumptions that α̂ and θ̂/α̂ are asymptotically indepen-
dent and σ̂2

g is non-random, I−1(α̂) can be calculated, and be used to approximateΠα̂.
The details are given in supplementary materials.
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5.2.3. THE GLM-PO2PLS MODEL WITH A BINARY OUTCOME

For a binary outcome, we use a Bernoulli distribution for z and the logit link function
η(v) = logit(v) = log[v(1− v)−1]. The model is then given by

x = tW ⊤+ t⊥W ⊤
⊥ +e, y = uC⊤+u⊥C⊤

⊥ + f , u = tB +h,

logit(p(z)) =β0 + t a⊤+hb⊤.

Here, p(z) = Pr(z = 1|t ,h) is the conditional probability of the random variable z being 1,
given t and h. Note that the probability p(z) is logit-normally distributed, therefore the
linear predictor logit(p(z)) follows a normal distribution N (β0, aΣt a⊤ + bΣhb⊤). The
joint distribution (x, y, logit(p(z))) is multivariate normal with mean vector (0p+q ,β0)
and covariance matrix Σθ in (5.2) excluding σ2

g . The collection of parameters in the
GLM-PO2PLS model with a binary outcome is θ = {W,C ,W⊥,C⊥,β0, a,b,B ,Σt ,Σt⊥ ,Σu⊥ ,
σ2

e ,σ2
f ,Σh}.

Identifiability of GLM-PO2PLS with a binary outcome Theorem 1 also appears to
hold for a binary z that follows a Bernoulli distribution, under the same conditions.
The proof is similar. Specifically, let f (x, y, z|θ) = f (x, y, z|θ̃) be identical joint distribu-
tions under two sets of parameters θ and θ̃. Then f (x, y |θ) = f (x, y |θ̃), thus Σx,y |θ =
Σx,y |θ̃ holds regardless of the distribution of z. The conclusion follows that the pa-

rameters involved in PO2PLS model (i.e., {W,C ,W⊥,C⊥,B ,Σt ,Σt⊥ ,Σu⊥ ,σ2
e ,σ2

f ,Σh}) are

identified up to sign. Now consider (x, y, logit(p(z))) which is multivariate normally
distributed with mean vector (0p+q ,β0) and covariance matrix Σθ excluding σ2

g (de-
note Σθ/g 2 ). Since the mapping f (x, y, z|θ) 7→ f (x, y, logit(p(z))|θ) is one-to-one, it fol-

lows that f (x, y, logit(p(z))|θ) = f (x, y, logit(p(z))|θ̃). Necessarily, the means and covari-
ance matrices of two identical multivariate normal distributions are equivalent, thus
(0p+q ,β0) = (0p+q , β̃0) and Σθ/g 2 = Σθ̃/g 2 . It is clear that β0 = β̃0 from the equivalence of
the mean vectors. The identifiablity of a and b can be shown from the equivalence of
covariance matrices analogously as in the proof of Theorem 1. This shows the identifia-
bility of all the parameters in GLM-PO2PLS with a binary outcome.

EM ALGORITHM FOR A BINARY OUTCOME

For a Bernoulli distributed outcome, the log-likelihood of the observed data involves an
integral of dimension 2K +Kx +Ky . Let ν= (t ,u) and ξ= (t⊥,u⊥),

ℓ(θ; x, y, z) = log
∫

(ν,ξ)
f (x, y, z|ν,ξ,θ) f (ν,ξ|θ)d(ν,ξ). (5.7)

To estimate (5.7), numerical integration is needed. Note that given ν, the binary out-
come z is independent of x, y and ξ, thus the conditional density f (x, y, z|ν,ξ) in (5.7)
can be factorized as f (x, y, z|ν,ξ) = p(z|ν) f (x, y |ν,ξ). The factorization enables to inte-
grate out the specific random vector ξ, hence reducing the dimension of the integral to
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2K ,

ℓ(θ; x, y, z) = log
∫

(ν,ξ)
p(z|ν) f (x, y |ν,ξ) f (ν,ξ)d(ν,ξ)

= log
∫
ν

p(z|ν)

[∫
ξ

f (x, y |ν,ξ) f (ξ|ν)dξ

]
f (ν)dν

= log
∫
ν

p(z|ν) f (x, y |ν) f (ν)dν

= log
∫
ν

p(z|ν) f (x|ν) f (y |ν) f (ν)dν.

Here, the probability mass function p(z|ν) is given by

p(z|ν) =


(
1+exp{−(β0 + t a⊤+ (u − tB)b⊤)}

)−1
z = 1,(

1+exp{β0 + t a⊤+ (u − tB)b⊤}
)−1

z = 0.
(5.8)

The probability density functions f (x|ν), f (y |ν), and f (ν) follow from the following mul-
tivariate normal distributions,

x|ν∼N (tW ⊤,Σx|t ), y |ν∼N (uC⊤,Σy |u), ν∼N (0,Σν)

where the covariance matrices involved are:

Σx|t =W⊥Σt⊥W ⊤
⊥ +σ2

e Ip , Σy |u =C⊥Σu⊥C⊤
⊥ +σ2

f Iq , Σν =
[
Σt Σt B

BΣt Σu

]
.

Denote the partial complete data vector by (x, y, z,ν). For each current estimate θ′,
the EM algorithm for a binary outcome considers the objective function

Q(θ|θ′) = E[log f (x, y, z,ν|θ)|x, y, z,θ′]. (5.9)

Expectation step based on numerical integration Analogously to (5.3), the condi-
tional expectation in (5.9) can be decomposed to factors that depend on distinct sets
of parameters,

Q(θ|θ′) = E[log f (x, y, z,ν)] = E[log f (x, y, z|ν)]+E[log f (ν)]

= E[log p(z|ν)]︸ ︷︷ ︸
Q{β0,a,b}

+E[log f (x|t )]︸ ︷︷ ︸
Q{W,W⊥ ,σ2

e ,Σt⊥ }

+E[log f (y |u)]︸ ︷︷ ︸
Q{C ,C⊥ ,σ2

f
,Σu⊥ }

+E[log f (u|t )]︸ ︷︷ ︸
Q{B ,Σh }

+E[log f (t )]︸ ︷︷ ︸
QΣt

. (5.10)

Here, the first conditional expectation Q{β0,a,b} has no closed form,

Q{β0,a,b} =
∫

[log p(z|ν)] f (ν|x, y, z,θ′)dν= 1

f (x, y, z)

∫
[log p(z|ν)]p(z|ν) f (x, y |ν) f (ν)dν.

To obtain an approximation of the multivariate integral, Gauss–Hermite quadrature can
be used. For an integral of form

∫
ϕ(ν)p(z|ν) f (x, y |ν) f (ν)dν, where ϕ is any function,

we approximate it with∫
ϕ(ν)p(z|ν) f (x, y |ν) f (ν)dν≈

M∑
m1=1

. . .
M∑

m2K =1
ϕ(ν= νm)p(z|ν= νm) f (x, y |ν= νm)wm1 . . . wm2K

(5.11)
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with nodes vector νm = (νm1 , . . .νmK ) = p
2(Σ1/2

ν )⊤ν∗m and weights vector wm = (wm1 ,
. . . wmK ) = w∗

m/
p
π. Here, M is the number of sampling nodes, Σ1/2

ν is the Cholesky
decomposition of Σν, and ν∗m and w∗

m are nodes and weights of a M-point standard
Gauss–Hermite quadrature rule, which can be found on Page 924 in [1]. The transfor-
mation from the standard quadrature nodes ν∗m to νm is to make the sampling range of
the integrand in (5.11) more suitable based on the distribution of ν [27].

The other terms in (5.10) have explicit expressions in terms of the first and second
conditional moments of the vector ν given x, y, z and θ′ (see for details in the Supple-
mentary materials). Note that the conditional moments of ν are in forms of integrals as
follows

E[ν|x, y, z,θ′] =
∫
ν f (ν|x, y, z)dν= 1

f (x, y, z)

∫
νp(z|ν) f (x, y |ν) f (ν)dν,

E[ν⊤ν|x, y, z,θ′] =
∫
ν⊤ν f (ν|x, y, z)dν= 1

f (x, y, z)

∫
ν⊤νp(z|ν) f (x, y |ν) f (ν)dν,

which can be numerically calculated with (5.11).

Maximization step based on gradient descent Maximizing Q{β0,a,b} requires iterations
as its derivative with respect to β = (β0, a,b) has no analytical solutions. To find an up-
date of β in each EM iteration, we propose a one-step gradient descent strategy. The
gradient of Qβ is given by

∇Qβ =
[∂Qβ

∂β

]⊤ =
[ 1

f (x, y, z)
∗ ∂

∂β

∫
[log p(z|ν)]p(z|ν) f (x, y |ν) f (ν)dν

]⊤
=

[ 1

f (x, y, z)

∫
∂ log p(z|ν)

∂β
p(z|ν) f (x, y |ν) f (ν)dν

]⊤
To guarantee the increase of Qβ in each EM iteration, we search for a step size along

the direction of the gradient using the backtracking rule (also known as the Armijo rule) [2].
It is performed by starting with an initial step size of s = 1 for movement along the gra-
dient, and iteratively shrinking the step size (s ← 0.8∗ s) until an increase of Qβ exceeds
the expected increase based on the local gradient. More precisely, we keep shrinking the
step size until the following ascent condition is met:

Q(β+s∇Qβ) ≥Qβ+0.5∗ s∇Qβ∇Q⊤
β .

The maximization of the other conditional expectation terms in (5.10) can be found
in the supplementary materials.

5.3. SIMULATION
We conduct a simulation study to evaluate the performance of GLM-PO2PLS. Both con-
tinuous outcome zc and binary outcome zb are investigated. The datasets are simulated
following the GLM-PO2PLS model in (5.1), with the equations for the continuous and
binary outcomes being zc = t a⊤ +hb⊤ + g , and zb ∼ Bernoulli((1+ exp{−(β0 + t a⊤ +
hb⊤)})−1).
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5.3.1. SIMULATION SETTINGS

We consider combinations of small and large sample sizes (N = 100,1000) with low and
high dimensionalities (p = 100,2000; q = 10,25). The latent variables t , t⊥, u⊥ are simu-
lated from standard normal distribution, and u = tB +h following equation (5.1). Here,
B is the identity matrix and the joint residual h in u that is independent of t determines
the level of heterogeneity in the joint parts. To investigate the impact of heterogeneity
levels, we vary the variance of h to account for 40% and 80% of the total variance in u.
The residual terms e, f are generated from zero-mean normal distributions. In the low
noise level scenario, we set the noise proportion in x and y to both 40%. In the high noise
level scenario, we investigate the performance of GLM-PO2PLS when integrating a very
noisy large dataset and a less noisy small dataset, by increasing the noise in x to 95% and
decreasing the noise in y to 5%. The noise term g for the continuous outcome is gen-
erated from a zero-mean normal distribution, accounting for 20% of variation in zc . All
the loading matrices are generated from standard normal distribution and then semi-
orthogonalized. The coefficients a and b are set to 2 and 1, respectively. The number of
joint and specific components is set to 1 for simplicity of the model and computational
efficiency. For each setting, 500 replications are generated. The settings are summarized
in Table 5.1.

Table 5.1: Summary of simulation settings

Notations Description Setting/Distribution

N Sample size
Small: 100

Large: 1000

p; q Dimension of x, y
Low: 100,10

High: 2000,25

h
Heterogeneity between Normal

joint latent variables Moderate: 40% of variance in u
t and u High: 80% of variance in u

e, f Noise in x, y
Normal

Low: 40%, 40%
High: 95%, 5%

The metrics used to assess the performance are listed in Table 5.2. We first study the
estimation accuracy of the coefficients a and b. The errors (â −a) and (b̂ −b) are stan-
dardized by a and b to exclude the influence of the parameter scale. The performance
of outcome prediction is assessed by root mean square error of prediction (RMSEP), de-

fined as (E[(ẑc−zc )2])
1
2 for continuous outcome zc , and (E[(logit(p(zb))−logit(p̂(zb)))2])

1
2

for binary outcome zb . We compare the performance of GLM-PO2PLS with ridge re-
gression fitted separately on x (denote ridge-x) and on y (denote ridge-y). The shrink-
age hyper-parameter in ridge regressions is searched using a 10-fold cross-validation for
each fit. The prediction performance is evaluated on an independent test dataset of size
1000. The accuracy of loading estimation is measured by the inner product between the
estimated and the true loading vectors. The performance of feature selection is mea-
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sured by true positives rate (TPR) calculated as the proportion of true top 25% features
among the estimated top 25% in x (i.e., the top 25% of features in x with the largest abso-
lute loading values in GLM-PO2PLS, or with the largest absolute regression coefficients
in ridge regression).

Table 5.2: Metric of simulation

Category Metric Calculation Competing
methods

Coefficient
estimation

Scaled
error

(â −a)/a, (b̂ −b)/b

Outcome
RMSEP

(E[(ẑc − zc )2])
1
2 ,

ridge-x, ridge-y
prediction (E[(logit(p(zb))− logit(p̂(zb)))2])

1
2

Loading Inner
W ⊤Ŵ , W ⊤

⊥ Ŵ⊥, C⊤Ĉ , C⊤
⊥Ĉ⊥estimation product

Feature se-
lection

TPR of
top 25%

TP/(TP+FN) ridge-x

5.3.2. RESULTS OF SIMULATION STUDY
In Figure 5.1, results of the coefficient estimation in high-dimensional settings are de-
picted. Figure 5.1a shows that for the continuous outcome, overall, the scaled errors
of both â and b̂ were small. When the sample size was small and the noise was high,
the scaled error (â − a)/a was mostly negative, suggesting that a was underestimated.
For a large sample size, the estimators appeared to be unbiased. When the heterogene-
ity between the joint components was increased (from the left panel to the right), the
joint residual h had larger variance relative to t and explained a larger proportion of z.
Consequently, the estimation of the coefficient b (for h) became more stable, while the
estimation of a (for t ) became less stable. The results for a binary outcome are shown
in Figure 5.1b. Under a small sample size, the parameter estimation was less stable than
the continuous case (note that the scale of y-axis in subplot (a) and (b) are different).
The long upper whiskers suggested that the coefficients were overestimated in a some
simulation runs. For a large sample size, the scaled errors for all coefficients were close
to 0 and stable. Overall, the results for low dimensions were similar, except that the es-
timation of b was less stable in low dimensions compared to that in high dimensions.
Details are given in the supplementary material.

Figure 5.2 shows the results regarding outcome prediction in high-dimensional set-
tings. For the continuous outcome, GLM-PO2PLS outperformed both ridge-x and ridge-
y as shown in Figure 5.2a. The small boxes suggest that the prediction was very similar
in each repetition, hence stable. Ridge-y performed similarly as GLM-PO2PLS, while
ridge-x under-performed. When the noise in x was increased, the performance of ridge-
x deteriorated, especially when the sample size was small. The larger noise proportion in
x barely affected the performance of GLM-PO2PLS. Increasing the heterogeneity made
the RMSEP of ridge-x higher, as x explained less variation in z, while the performance
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(a) Continuous outcome zc

(b) Binary outcome zb

Figure 5.1: Performance of coefficient estimation for continuous (a) and binary (b) outcome. The y-axis
shows the scaled estimation error as defined in Table 5.2. In the moderate and high heterogeneity settings, h
account for 40% and 80% of total variance in u = tB+h, respectively. Boxes show the results of 500 repetitions.

of GLM-PO2PLS was less affected. For the binary outcome zb , GLM-PO2PLS still out-
performed ridge regression as shown in in Figure 5.2b. When the sample size increased,
the prediction of GLM-PO2PLS was less skewed and more stable. The conclusions also
hold in low dimensions, details are given in the supplementary material.

Lastly, we briefly present the key results for loading estimation and feature selection.
Overall, the loading estimates were accurate for both continuous and binary outcomes,
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(a) Continuous outcome zc

(b) Binary outcome zb

Figure 5.2: Performance of outcome prediction for continuous (a) and binary (b) outcome. y-axis shows the
RMSEP as defined in Table 5.2. Boxes show the results of 500 repetitions.

with most inner products between the estimated and the true loadings approaching the
optimum. When the sample size was small and the noise level was high, the accuracy
of loading estimation for x dropped. This was the same setting in which â was biased
as is shown in Figure 5.1a. Regarding feature selection, the lowest median TPR of GLM-
PO2PLS was 0.62 in the scenario with a small sample size, large noise proportion, and
high heterogeneity. In the other scenarios, the median TPR was above 0.85. The details
are given in the supplementary material.
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5.4. APPLICATION TO DOWN SYNDROME STUDY
We apply the GLM-PO2PLS model to the Down syndrome dataset, aiming to investigate
whether the relationship between methylation and glycomics is associated to DS, and
select the relevant molecules involved in the relationship. Since Down syndrome is often
considered as a model for aging [22], and both methylation and glycomics are associated
with biological age [21, 25], we expect the DS patients to be more similar to their mothers
than siblings.

5.4.1. DATA DESCRIPTION
The Down syndrome study includes 29 families. Each family consists of one Down
syndrome patient (DSP), one non-affected sibling (DSS), and their mother (DSM). The
family-based design is used to control for genetic and environmental influences. Two
DSS are missing. Thus, the total sample size N is equal to 85 . The ages of the DSPs range
from 10 to 43, with a median of 24 years. The ages of the siblings are roughly matched
with the DS patients, ranging from 14 to 52 years. The mothers have ages between 41
and 83, with a median of 57 years.

For each individual, the whole blood methylation was measured using Infinium Hu-
manMethylation450 BeadChip (Infinium 450k). After quality control following steps de-
scribed in [4], 450981 CpG sites were retained. Beta value was derived at each CpG site
as the ratio of intensities between methylated and unmethylated alleles. White blood
cell counts were estimated from the beta values and corrected for using R package ‘Mef-
fil’ [31]. Age and sex were corrected for using multiple regression. The glycomic dataset
consists of 10 plasma N-glycans measured using DNA sequencer-assisted fluorophore-
assisted carbohydrate electrophoresis (DSA-FACE) [6]. These glycans were logTA nor-
malized [52] and corrected for age and sex.

We will fit a GLM-PO2PLS continuous model and a GLM-PO2PLS binary model to
these data. We set methylation as x, glycomics as y , and the DS status as z. The direction
from methylation to glycomics (x to y) was chosen based on previous research [54] that
suggested the presence of an indirect influence of methylation on glycosylation.

5.4.2. RESULTS OF DS DATA ANALYSIS
For the GLM-PO2PLS continuous model, we used 3 joint and 1 specific component for
each omic dataset based on the scree plots of the eigenvalues of x⊤y , x⊤x and y⊤y .

We first present the results regarding the relationship between methylation and glyc-
omics, which is represented by the first three equations of the GLM-PO2PLS in (5.1). The
p-value for each pair of methylation and glycomics joint components was 0.0007, 0.03,
and 0.20, respectively. Using a threshold of 0.05 for statistical significance, the first (t1

for methylation and u1 for glycomics) and second pair (t2 and u2) of joint components
were significantly associated. Figure 5.3 shows the scores of the first two pairs of joint
components. For both t1 and u1, the DSPs were closer to the DSMs, than the DSS group,
which was in line with our expectation. No noticeable patterns were observed in the
second pair of joint components.

Table 5.3 shows the results regarding the relationship between the DS status and the
omics. The significant test statistic T f ul l suggests that DS was associated with the two
omics. Component-wise, only the first pair was significant, with a p-value of 6.32×10−5.
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Figure 5.3: Joint scores of the first (left) and second (right) pair of joint components. On the y-axis are the
scores of each individual colored by different groups. The mean score of each group is shown as a horizontal
line.

Table 5.3: Results of testing for no relationship between DS and joint components

T f ul l in (5.5) Tcomp.wi se in (5.6)
H0 a = b = 0 a1 = b1 = 0 a2 = b2 = 0 a3 = b3 = 0

p-value 6.32×10−5 1.35×10−5 0.15 0.20

Since t1 and u1 were significantly associated with DS, we investigated the CpG sites
and glycans in the first component pair. In the first methylation joint component, the
1000 CpG sites with the largest loading values were mapped to their respective target
genes, yielding 493 genes. Next, gene ontology (GO) enrichment analysis [3] was per-
formed on this gene set using the GSEA software [32, 46]. The top three significant GO
terms were listed in Table 5.4. Among these terms, the cell-cell signaling is a biological
function of plasma glycans [53, 24]. The cellular component of neuron projection and
biological process of neurogenesis were shown to relate to DS [18, 23, 43, 42]. We fur-
ther searched the mapped geneset in the DisGeNET database [36] for human diseases.
The significant diseases found were chronic myeloid leukemia (q-value 0.0004), com-
mon acute lymphoblastic leukemia (q-value 0.045), and glioblastoma multiforme (q-
value 0.045). Research has shown that children with Down syndrome have an increased
risk for developing acute lymphoblastic leukemia [36]. For chronic myeloid leukemia
and glioblastoma multiforme, we did not find evidence linking them with DS. We then
checked the 7 genes with the highest GDA score regarding Down syndrome (i.e., with the
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most evidence of association with DS) in the DisGeNET database, and found the gene
RCAN1 which relates to epigenetics was among our top genes mapped from methyla-
tion. It has been revealed that RCAN1 plays a critical upstream role in epigenetic reg-
ulation of adult neurogenesis [7], hence important in the pathogenesis of Down syn-
drome [58].

For the first glycomics joint component, the loading values of each glycan can be
found in the supplementary. The glycan H3N4F1 had the largest absolute loading value.
According to the result of a previous study [6] on plasma glycans and DS, H3N4F1 was
the top discriminators of DS subjects and siblings.

Next we fitted a GLM-PO2PLS binary model with 1 joint and 1 specific component
for each omic dataset. We chose for 1 joint component based on the test results in the
continuous model shown in Table 5.3. The relationship between the two omics was sig-
nificant with a p-value of 0.022. The top 1000 CpG sites were identified and mapped to
genes. The most significant GO terms of the geneset are shown in Table 5.4. The top two
terms were related to membrane organelle, more specifically, Golgi apparatus, which
is required for accurate glycosylation [59]. Terms related to DS, such as neurogenesis
(q-value 2.33e-6), neuron differentiation (1.11e-5), and synapse (1.33e-5) were also sig-
nificant. Regarding glycomics, the glycan with the largest absolute loading value was
H3N4F1, which was also identified in the GLM-PO2PLS continuous model.

Table 5.4: Top 3 GO terms of the mapped genesets in GLM-PO2PLS continuous and binary models

Gene Set Name (continuous model) p-value FDR q-value
GOBP CELL CELL SIGNALING 1.61e-13 2e-9
GOCC NEURON PROJECTION 2.96e-13 2e-9
GOBP NEUROGENESIS 4.08e-13 2e-9

Gene Set Name (binary model) p-value FDR q-value
GOCC ORGANELLE SUBCOMPARTMENT 4.22e-12 4.3e-8
GOCC GOLGI APPARATUS 8.27e-11 4.1e-7
GOCC VESICLE MEMBRANE 1.21e-10 4.1e-7

The p-value of each annotation was derived by random sampling of the whole genome; the FDR
q-value provides the false discovery rate (FDR) analog of the p-value after correcting for multiple
hypothesis testing [5, 45]. Complete list can be found in supplementary material.

Although for the continuous and binary models the sets of top CpG sites appeared
to be relevant to glycosylation and DS, there was little overlap between the top CpG
sites. This might be explained by the different number of joint components specified for
the two models. Therefore, we performed an additional analysis using a filtered data-
set, which was obtained by subtracting the second and third joint components, and the
specific components of the GLM-PO2PLS continuous model from the omic data. The
estimated parameters of the fitted GLM-PO2PLS binary model were very similar to the
ones in the continuous model. More specifically, the inner product of the joint loading
vectors from the two models reached 0.99. The correlation between the corresponding
joint components of the two models was also high (at 0.99). Note that an inner product
of 1 means the loading vectors are the same. Regarding the interpretation of top CpG
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sites and glycans, we refer to the results in the continuous model, as the loadings were
very similar, so as the top features identified.

5.5. DISCUSSION
Motivated by the studies on the relationship among Down syndrome, methylation and
glycomics, we developed a new statistical model GLM-PO2PLS, which simultaneously
models the relationships among an outcome variable and two heterogeneous omic data-
sets. We studied in detail the models for normally and Benoulli distributed outcome
variables. The identifiability of the model was established and EM algorithms were de-
veloped. For testing, we proposed two chi-square test statistics T f ul l and Tcomp.wi se and
derived their asymptotic distributions.

Via a simulation study, we have shown that the model parameters were well esti-
mated in various scenarios, and the outcome prediction performance of GLM-PO2PLS
was robust against high noise and heterogeneity between omics. GLM-PO2PLS pre-
dicted the outcome better than ridge regressions, because it considers all the informa-
tion in the data jointly, while ridge used each dataset separately. Another advantage of
GLM-PO2PLS over ridge regression is that it can provide insights into the relationship
between two omic datasets, on top of their relationship with the outcome.

The methylation dataset analyzed with GLM-PO2PLS was also analyzed by Bacalini
et al [4] using single point approaches. They identified four categories. Most of the genes
in these categories were also in our obtained geneset: haematopoiesis (RUNX1, DLL1,
EBF4, PRDM16), morphogenesis and development (HOXA2, HOXA4, HHIP, NCAM1),
neuronal development (NAV1, EBF4, PRDM8, NCAM1), and regulation of chromatin
structure (PRDM8, KDM2B). In total four genes mentioned in [4] were not in our gene
list, namely, HOXA5, TET1, GABBR1, and HOXA6. It appeared that three out of these four
genes rank just below our cut-off point of 1000, namely the CpG site with largest loading
value in HOXA5, TET1, and GABBR1 ranked 1059, 1142, and 1535 out of 450K respec-
tively. Concerning the fourth gene HOXA6, we performed univariate logistic regressions
of the Down syndrome outcome on each of the 20 CpG sites located in the genetic re-
gion, and only identified one significant CpG site (p-value of 0.018). In comparison, the
other selected genes from the HOXA family members have more significant CpG sites
(such as HOXA2 with 22, HOXA4 with 16, the borderline HOXA5 with 13), and smaller
p-values for the most associated CpG sites (HOXA2 0.0003, HOXA5 0.003). Therefore,
the association between DS and HOXA6 appeared to be weak in the data.

It is worth mentioning that we expect differences between our approach and the
single-omic studies. The single-omic approaches did not consider the presence of cor-
relation between CpG sites and glycomics when modeling the association of CpG sites
and Down syndrome. Therefore, some methylation-specific genes that are unrelated
with glycomics can rank lower in the joint components in our analysis. Furthermore, in
GLM-PO2PLS, we focus on the joint part and the omic-specific parts are not linked to
the outcome variable, and hence the top genes mapped from the methylation-specific
components are not necessarily associated with the outcome DS. In this regard, an ex-
tension of our model which also considers the omic-specific parts in the linear predictor
for the outcome variable can provide further insights into the disease from omic-specific
aspects.
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We have shown evidence for association between the mapped gene set and Down
syndrome. Nonetheless, The dedicated “Down syndrome” set in the DisGeNET database
was not enriched in our gene set. One reason could be that very few studies have been
conducted on DS with methylation data. Furthermore, common diseases and cancers
are usually more frequently studied, resulting in possible publication bias in the database.
We searched the genes identified by both our study and [4] (namely, RUNX1, DLL1,
EBF4, HOXA2, HOXA4, HHIP, NCAM1, NAV1, PRDM8, KDM2B) in the DisGeNET database,
and found none of these genes has their highest association score (i.e., amount of evi-
dence) with DS. For example, the RUNX1 gene had the highest association score of 0.8
with acute myeloid leukemia, and a score of only 0.1 with DS.

When estimating a GLM-PO2PLS binary model, we rely on numerical integration.
The computational complexity of the numerical estimation is O (M 2K ), with M nodes
per dimension. In practice this means that the binary model can only include 1 joint
component. A computationally feasible solution is to include only one pair of the joint
components in the linear predictor for the binary outcome. Such a model might be
suited for our Down syndrome analysis where only one pair of joint components was
associated to the outcome. However, the assumption that only one pair of joint compo-
nents is related to the outcome might not apply to other studies. Therefore, a more effi-
cient numerical integration strategy is needed. One strategy is to use adaptive quadra-
ture. Although for a fixed number of nodes M , the adaptive quadrature is computa-
tionally more complex than its non-adaptive counterpart we used, the adaptive variant
needs a smaller M to reach an equally precise approximation, thus can be more effi-
cient [37, 38]. Another strategy is to decompose the 2K -dimensional integration to K 2-
dimensional integrations. This will reduce the computational complexity to O (K ×M 2).

To calculate the p-values for the tests in (5.5) and (5.6), we derived the asymptotic
normality of the estimator for the parameters of GLM-PO2PLS with a normally dis-
tributed outcome. Asymptotic normality was proved by showing that the mapping (de-
note τ) from the parameter vector θ to the moment structure as well as the discrepancy
function with respect to the moments satisfy certain regularity conditions [40]. For the
GLM-PO2PLS model with a binary outcome, there is not an explicit mapping function
τ, and it is difficult to parameterize the likelihood in terms of the moments. Therefore,
while the p-values for the binary model can be calculated assuming the asymptotic nor-
mality holds, it is unclear whether they are correct. The derivation of asymptotic nor-
mality for the binary model is future work.

In this paper our aim was to use one model for all the data, and model the relation-
ships between the omics simultaneously with their relationship with an outcome. While
providing a holistic overview, for the binary outcome variable, the approach is compu-
tationally intensive. In our data analysis, it appeared that modeling the binary outcome
as continuous provided similar information. Alternatively, a two-stage approach might
be used. We recently proposed a two-stage PO2PLS approach [17], where we first con-
structed a few joint latent components that represent the two omics, then linked these
latent components to the outcome variable using a linear regression model. In the im-
plementation of two-stage PO2PLS to the DS dataset, the latent variables from the first
stage were used as outcomes in several separate regression models in the second stage,
thus the interpretation was different from a logistic regression model with DS as out-
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come. Alternatively, the latent variables can also be used as covariates in the second
stage. However, the latent variables contain errors from the dimension reduction pro-
cess. Ignoring these errors in the covariates can cause attenuated predicted probabilities
in the logistic regression [44]. Therefore, to correctly model the outcome, the two-stage
approach needs to be augmented with a measurement error model for the latent vari-
ables. Here more research is needed.

Several extensions of GLM-PO2PLS might be relevant. For an outcome variable from
other members of the exponential family (e.g., Poisson, gamma, etc.), the corresponding
EM algorithm can be obtained by modifying the EM algorithm for the binary outcome
by replacing p(z|ν) in (5.8) with the corresponding conditional probability mass/density
function. Regarding the relationship between omics and outcome, the omic-specific la-
tent variables are not included in the linear predictor for the outcome variable in GLM-
PO2PLS. As discussed above, linking the omic-specific parts to the outcome might pro-
vide further insights. Furthermore, since the omic-specific latent variable might also
be predictive of the outcome, a model where all the latent variables are linked to the
outcome can lead to improved outcome prediction performance in some studies. Ex-
tending GLM-PO2PLS to such a model will increase the computational complexity to
O (M 2r+Kx+Ky ) for non-normal outcomes. Another direction is to generalize the model
to incorporate more than two omic datasets jointly with an outcome. Such an exten-
sion would require to specify the directions of the relationships among more than two
sets of variables. A workaround might be to model a common set of latent variables for
all sets of variables [29]. For some studies, the directions of the relationships are clear
(e.g., among genetics, methylation, and glycomics), and specifying the direction in the
model and allowing the joint latent variables for each set of variables to differ can im-
prove model performance. However, the computation will also be intensive for a binary
outcome.

To conclude, GLM-PO2PLS is a promising method to model an outcome with two
omic datasets and as a base for further extensions.

5.6. SUPPLEMENTARY MATERIALS FOR CHAPTER 5
This section is structured into two parts: methods, and simulation results. Each part
contains additional materials for the respective section in the main article.

In section 5.6.1 and 5.6.2, we give mathematical details for the EM algorithms for
GLM-PO2PLS continuous and binary model, respectively. We then prove the asymp-
totic normality of the estimator, and give equations for the observed Fisher information
matrix needed in calculating the test statistics in section 5.6.3. In section 5.6.4, we show
simulation results omitted in the main article.

5.6.1. AN EM ALGORITHM FOR GLM-PO2PLS WITH A NORMALLY DIS-
TRIBUTED OUTCOME

Let X , Y and Z be data matrices consisting of N observations of (x, y, z). For empirical
identifiability of the components, we assume max(K +Kx ,K +Ky ) < N .

In the E step, the expectation of the complete data log likelihood for one subject can
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be decomposed to factors that depend on distinct sets of parameters as follows,

Q(θ|θ′) =E[log f (x, y, z, t ,u, t⊥,u⊥)] = E[log f (x, y, z|t ,u, t⊥,u⊥)]+E[log f (t ,u, t⊥,u⊥)]

=E[log f (z|t ,u)]︸ ︷︷ ︸
Q{a,b,σ2

g }

+E[log f (x|t , t⊥)]︸ ︷︷ ︸
Q{W,W⊥ ,σ2

e }

+E[log f (y |u,u⊥)]︸ ︷︷ ︸
Q{C ,C⊥ ,σ2

f
}

+E[log f (u|t )]︸ ︷︷ ︸
Q{B ,Σh }

+E[log f (t )]︸ ︷︷ ︸
QΣt

+E[log f (t⊥)]︸ ︷︷ ︸
QΣt⊥

+E[log f (t⊥)]︸ ︷︷ ︸
QΣu⊥

.

(5.12)
In this equation, the conditioning on x, y , z and θ′ is dropped, to simplify notation.
Given the observed data for N subjects, the factorized conditional expectations in (5.12)
are calculated as follows. Let (T,U ,T⊥,U⊥) be the collection of row vectors (t ,u, t⊥,u⊥)
for N subjects.

Q{a,b,σ2
g } =−1

2

{
N log(2πσ2

g )+ 1

σ2
g

trE
[
(Z −Ta⊤− (U −T B)b⊤)⊤(Z −Ta⊤− (U −T B)b⊤)

]}
,

Q{W,W⊥,σ2
e } =−1

2

{
N p log(2πσ2

e )+ 1

σ2
e

trE
[
(X −T W ⊤−T⊥W ⊤

⊥ )⊤(X −T W ⊤−T⊥W ⊤
⊥ )

]}
,

Q{C ,C⊥,σ2
f } =−1

2

{
N q log(2πσ2

f )+ 1

σ2
f

trE
[
(Y −UC⊤−U⊥C⊤

⊥ )⊤(Y −UC⊤−U⊥C⊤
⊥ )

]}
,

Q{B ,Σh } =−1

2

{
N K log(2π)+N log |Σh |+ trE

[
(U −T B)⊤(U −T B)Σ−1

h

]}
,

QΣt =−1

2

{
N K log(2π)+N log |Σt |+ trE

[
T ⊤TΣ−1

t

]}
,

QΣt⊥ =−1

2

{
N Kx log(2π)+N log |Σt⊥ |+ trE

[
T ⊤
⊥ T⊥Σ−1

t⊥
]}

,

QΣu⊥ =−1

2

{
N Ky log(2π)+N log |Σu⊥ |+ trE

[
U⊤

⊥U⊥Σ−1
u⊥

]}
.

(5.13)

Here, the conditional expectations involve the first and second conditional moments
of the vector (t ,u, t⊥,u⊥) given x, y, z and θ′ for each subject. Since the complete data
vector for one subject (x, y, z, t ,u, t⊥,u⊥) follows a multivariate normal distribution with
zero mean and known covariance matrix, the conditional distribution (t ,u, t⊥,u⊥|x, y, z)
for each subject can be calculated explicitly following lemma 3 in [14] as follows:

(t ,u, t⊥,u⊥|x, y, z) ∼N
(
(x, y, z)ΣϵΓΣ̃m , Σ̃m

)
,
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where

Σ̃m = {Σ−1
m +Γ⊤Σ−1

ϵ Γ}−1,

Σϵ =

Ipσ
2
e 0 0

0 Iqσ
2
f 0

0 0 σ2
g

 ,

Γ=
 W 0 W⊥ 0

0 C 0 C⊥
a −bB b 0 0

 ,

Σm =


Σt Σt B 0 0
Σt B Σu 0 0

0 0 Σt⊥ 0
0 0 0 Σu⊥

 .

In the M step, we set the partial derivatives of the conditional expectations in (5.13)
to zero and get an update of each parameter.

Regarding the first term Q{a,b,σ2
g }, taking partial derivatives with respect to α= (a,b)

yields

α̂= Z⊤
E[(T, H)]E[(T, H)⊤(T, H)]−1.

This resembles the usual maximum likelihood estimator for the regression coefficient
in a linear regression model where Z is regressed on E[(T, H)]. Taking partial derivatives
with respect toσ2

g yields the well-known maximum likelihood estimator for the residual
variance

σ̂2
g = 1

N
trE[(Z − (T, H)(a,b)⊤)⊤(Z − (T, H)(a,b)⊤)] = 1

N
trE[G⊤G].

Regarding Q{W,W⊥,σ2
e } which involves optimization over semi-orthogonal loading ma-

trices W and W⊥, Lagrange multipliersΛW andΛW⊥ are introduced. The objective func-
tion to minimize is then

trE
[
(X −T W ⊤−T⊥W ⊤

⊥ )⊤(X −T W ⊤−T⊥W ⊤
⊥ )

]+ΛW (W ⊤W − IK )+ΛW⊥ (W ⊤
⊥ W⊥− IKx ).

(5.14)
Note that the objective function involves both W and W⊥ and cannot be decoupled. We
adopt here the same strategy used in [14] that performs sequential optimization [30].
First, (5.14) is minimized over W , keeping W⊥ constant,

Ŵ = (X ⊤
E[T ]−W⊥E[T ⊤

⊥ T ])(E [T ⊤T ]+ΛW )−1 = orth(X ⊤
E[T ]−W⊥E[T ⊤

⊥ T ]), (5.15)

where orth(A) = JV ⊤ with J and V the singular vectors of A. The last step is proven
in [13]. Next, (5.14) is optimized over W⊥, keeping W equal to its minimizer,

Ŵ⊥ = (X ⊤
E[T⊥]−Ŵ E[T ⊤T⊥])(E [T ⊤

⊥ T⊥]+ΛW⊥ )−1 = orth(X ⊤
E[T⊥]−Ŵ E[T ⊤T⊥]).

In the same way, estimates for semi-orthogonal loading matrices C and C⊥ can be ob-
tained.
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For the matrices that are restricted to be diagonal, for example, the inner regression
matrix B , we set the off-diagonals to zero using its Hadamard product with an identity
matrix as follows,

B̂ = E[U⊤T ](E[T ⊤T ])−1 ◦ IK .

Now the EM updates at step j can be written as follows, starting with an initial guess
for j = 0. Denote E j [·] = E[·|X ,Y , Z ,θ j ].

(a,b) j+1 = Z⊤E j [(T, H)]E j [(T, H)⊤(T, H)]−1

W j+1 = orth(X ⊤E j [T ]−W j
⊥Ek [T ⊤

⊥ T ])

W j+1
⊥ = orth(X ⊤E j [T⊥]−W j+1E j [T ⊤T⊥])

C j+1 = orth(Y ⊤E j [U ]−C j
⊥Ek [U⊤

⊥U ])

C j+1
⊥ = orth(Y ⊤E j [U⊥]−C j+1E j [U⊤U⊥])

B j+1 = E j [U⊤T ](E j [T ⊤T ])−1 ◦ IK

Σ
j+1
t = 1

N
E j [T ⊤T ]◦ IK

Σ
j+1
t⊥ = 1

N
E j [T ⊤

⊥ T⊥]◦ IKx

Σ
j+1
u⊥ = 1

N
E j [U⊤

⊥U⊥]◦ IKy

Σ
j+1
h = 1

N
E j [H⊤H ]◦ IK

(σ2
e ) j+1 = 1

N p
tr(E j [E⊤E ])

(σ2
f ) j+1 = 1

N q
tr(E j [F⊤F ])

(σ2
g ) j+1 = 1

N
tr(E j [G⊤G])

(5.16)

5.6.2. AN EM ALGORITHM FOR GLM-PO2PLS MODEL WITH A BERNOULLI

DISTRIBUTED OUTCOME

The associated log-likelihood for the GLM-PO2PLS model with a Bernoulli distributed
outcome involves an integral with respect to (ν,ξ) = ((t ,u), (t⊥,u⊥)) of dimension (2K +
Kx +Ky ). By integrating out ξ, the dimension of integral can be reduced to 2K as follows

ℓ(θ; x, y, z) = log
∫

(ν,ξ)
f (x, y, z|ν,ξ,θ) f (ν,ξ|θ)d(ν,ξ) = log

∫
ν

p(z|ν) f (x|ν) f (y |ν) f (ν)dν.
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The conditional probability mass/density functions involved are given by

p(z|ν) =


(
1+exp{−(β0 + t a⊤+ (u − tB)b⊤)}

)−1
, z = 1(

1+exp{β0 + t a⊤+ (u − tB)b⊤}
)−1

, z = 0,

f (x|ν) = (2π)−
p
2 |Σx|t |−

1
2 exp

(
− 1

2
(x − tW ⊤)Σ−1

x|t (x − tW ⊤)⊤
)
,

f (y |ν) = (2π)−
q
2 |Σy |u |−

1
2 exp

(
− 1

2
(y −uC⊤)Σ−1

y |u(y −uC⊤)⊤
)
,

f (ν) = (2π)−K |Σν|−
1
2 exp

(
− 1

2
νΣ−1

ν ν⊤
)
,

(5.17)

where

Σx|t =W⊥Σt⊥W ⊤
⊥ +σ2

e Ip , Σy |u =C⊥Σu⊥C⊤
⊥ +σ2

f Iq , Σν =
[
Σt Σt B

BΣt Σu

]
.

Note here that the determinant and the inverse of a p×p matrix Σx|t (and a q ×q matrix
Σy |u) are required in (5.17). Calculating them directly is not feasible, even for a moderate
p (or q). Following matrix determinant lemma [19] and Woodbury matrix identity [57],
we perform the following transformation, such that only calculation of the determinant
and inverse of a Kx ×Kx (or Ky ×Ky ) matrix is required. Here, the transformation utilizes
the semi-orthogonality constraint of W ⊤

⊥ W⊥ = IKx .

log |Σx|t | = log
∣∣∣IKx +

1

σ2
e
Σt⊥

∣∣∣+p logσ2
e ,

Σ−1
x|t =

1

σ2
e

(
Ip − 1

σ2
e

W⊥(Σ−1
t⊥ + 1

σ2
e

IKx )−1W ⊤
⊥

)
,

The determinant and inverse of Σy |u are calculated analogously.
In the EM algorithm, we consider the partial complete data vector (x, y, z,ν). For

each current estimate θ′, the algorithm optimizes for each subject the objective function

Q(θ|θ′) = E[log f (x, y, z,ν|θ)|x, y, z,θ′]. (5.18)

Similar to (5.12), the conditional expectation in (5.18) can be decomposed to factors
that depend on distinct sets of parameters,

Q(θ|θ′) = E[log f (x, y, z,ν)] = E[log f (x, y, z|ν)]+E[log f (ν)]

= E[log p(z|ν)]︸ ︷︷ ︸
Q{β0,a,b}

+E[log f (x|t )]︸ ︷︷ ︸
Q{W,W⊥ ,σ2

e ,Σt⊥ }

+E[log f (y |u)]︸ ︷︷ ︸
Q{C ,C⊥ ,σ2

f
,Σu⊥ }

+E[log f (u|t )]︸ ︷︷ ︸
Q{B ,Σh }

+E[log f (t )]︸ ︷︷ ︸
QΣt

. (5.19)

The first term Q{β0,a,b} needs to be estimated with numerical integration for each ob-
served instance (Xi ,Yi , Zi ) with respect to νi = (Ti ,Ui ) as follows,

Q{β0,a,b} =
N∑

i=1

∫
[log p(Zi |νi )] f (νi |Xi ,Yi , Zi ,θ′)dνi

=
N∑

i=1

∫
[log p(Zi |νi )]p(Zi |ν) f (Xi |νi ) f (Yi |νi ) f (νi )dνi∫

p(Zi |νi ) f (Xi |νi ) f (Yi |νi ) f (νi )dνi
.

(5.20)
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The numerator and denominator for each subject in (5.20) can be approximated sepa-
rately by∫
ϕ(ν)p(z|ν) f (x, y |ν) f (ν)dν≈

M∑
m1=1

. . .
M∑

m2K =1
ϕ(ν= νm)p(z|ν= νm) f (x, y |ν= νm)wm1 . . . wm2K ,

(5.21)
with the function ϕ being log p(z|ν) and 1, respectively.

Given the observed data for N subjects, the other terms in (5.19) are given by

Q{W,W⊥,σ2
e ,Σt⊥ } =−1

2

(
N p log(2π)+N log |Σx|t |+ trE

[
(X −T W ⊤)⊤Σ−1

x|t (X −T W ⊤)
])

,

Q{C ,C⊥,σ2
f ,Σu⊥ } =−1

2

(
N q log(2π)+N log |Σy |u |+ trE

[
(Y −UC⊤)⊤Σ−1

y |u(Y −UC⊤)
])

,

Q{B ,Σh } =−1

2

{
N K log(2π)+N log |Σh |+ trE

[
(U −T B)⊤(U −T B)Σ−1

h

]}
,

QΣt =−1

2

{
N K log(2π)+N log |Σt |+ trE

[
T ⊤TΣ−1

t

]}
.

(5.22)

The conditional expectations in (5.22) involve calculation of the first and second condi-
tional moments of νi = (Ti ,Ui ) for each subject i . The conditional moments are given
by

E[νi |Xi ,Yi , Zi ,θ′] =
∫
νi p(Zi |νi ) f (Xi |νi ) f (Yi |νi ) f (νi )dνi∫

p(Zi |νi ) f (Xi |νi ) f (Yi |νi ) f (νi )dνi

E[ν⊤i νi |Xi ,Yi , Zi ,θ′] =
∫
ν⊤i νi p(Zi |νi ) f (Xi |νi ) f (Yi |νi ) f (νi )dνi∫

p(Zi |νi ) f (Xi |νi ) f (Yi |νi ) f (νi )dνi

Here, the integrals are numerically calculated with (5.21).
In the M step, maximizing Q{β0,a,b} requires iteration. We propose a one-step gradi-

ent descent strategy to find an update of β= (β0, a,b) along the direction of the gradient
given by

∇Qβ =
N∑

i=1

{∫
[ ∂
∂β log p(Zi |νi )]p(Zi |ν) f (Xi |νi ) f (Yi |νi ) f (νi )dνi∫

p(Zi |νi ) f (Xi |νi ) f (Yi |νi ) f (νi )dνi

}⊤
.

A step size that guarantees the increase of Qβ is searched using the backtracking rule [2].
To estimate the semi-orthogonal joint loading matrix W , we relax the orthogonality

constraint temporarily, and obtain an intermediate estimator Ŵ∗ by setting the partial
derivative of Q{W,W⊥,σ2

e ,Σt⊥ } with respect to W to zero,

Ŵ∗ = X ⊤
E[T ]E[T ⊤T ]−1.

To impose the orthogonality constraint, the “orth” operator in (5.15) is used,

Ŵ = orth(Ŵ∗).

This strategy was also used in [26] for estimation of orthogonal loading matrices.
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The parameters W⊥,σ2
e ,Σt⊥ are contained in Σx|t . Therefore, we take derivative of

Q{W,W⊥,σ2
e ,Σt⊥ } with respect to Σx|t as follows,

∂Q{W,W⊥,σ2
e ,Σt⊥ }

∂Σx|t
=Σ−1

x|t −
1

N
Σ−1

x|t E[(X −T W ⊤)⊤(X −T W ⊤)]Σ−1
x|t . (5.23)

Since Σx|t = W⊥Σt⊥W ⊤
⊥ +σ2

e Ip is a full-rank matrix, by setting (5.23) to zero, we get the
following relationship,

1

N
E[(X −T W ⊤)⊤(X −T W ⊤)] =Σx|t =W⊥Σt⊥W ⊤

⊥ +σ2
e Ip .

Taking trace of both sides, σ2
e can be estimated as

σ̂2
e =

1

p
(

1

N
trE[(X −T W ⊤)⊤(X −T W ⊤)]− tr[Σt⊥ ]).

Note that W⊥ and Σt⊥ can be obtained by eigendecomposition of the real symmetric

matrices ( 1
N E[(X −T W ⊤)⊤(X −T W ⊤)]− σ̂2

e Ip ). Here, power iteration is used to avoid
processing a p ×p matrix. Parameters in Q{C ,C⊥,σ2

f ,Σu⊥ } are estimated analogously.

Using the same notation as in (5.16), the EM algorithm updates parameters in step j
as follows:

(β0, a,b) j+1 = (β0, a,b) j + s j+1∇Q j+1
β

W j+1 = orth(X ⊤E j [T ]Ek [T ⊤T ]−1)

C j+1 = orth(Y ⊤E j [U ]Ek [U⊤U ]−1)

B j+1 = E j [U⊤T ](E j [T ⊤T ])−1 ◦ IK

Σ
j+1
t = 1

N
E j [T ⊤T ]◦ IK

Σ
j+1
h = 1

N
E j [H⊤H ]◦ IK

(σ2
e ) j+1 = 1

p
(

1

N
trE j [(X −T W ⊤)⊤(X −T W ⊤)]− tr[Σ j

t⊥ ])

(σ2
f ) j+1 = 1

q
(

1

N
trE j [(Y −UC⊤)⊤(Y −UC⊤)]− tr[Σ j

u⊥ ])

W j+1
⊥ = eigen vectors of (

1

N
E j [(X −T W j+1⊤)⊤(X −T W j+1⊤)]− (σ2

e ) j+1Ip )

C j+1
⊥ = eigen vectors of (

1

N
E j [(Y −UC j+1⊤)⊤(Y −UC j+1⊤)]− (σ2

f ) j+1Iq )

Σ
j+1
t⊥ = diag[eigen values of (

1

N
E j [(X −T W j+1⊤)⊤(X −T W j+1⊤)]− (σ2

e ) j+1Ip )]

Σ
j+1
u⊥ = diag[eigen values of (

1

N
E j [(Y −UC j+1⊤)⊤(Y −UC j+1⊤)]− (σ2

f ) j+1Iq )]
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5.6.3. THE ASYMPTOTIC DISTRIBUTION

Recall the GLM-PO2PLS model with a normally distributed outcome,

x = tW ⊤+ t⊥W ⊤
⊥ +e, y = uC⊤+u⊥C⊤

⊥ + f , u = tB +h,

z = t a⊤+ub⊤+ g .

The parameters are collected in θ = {W,C ,W⊥,C⊥, a,b,B ,Σt ,Σt⊥ ,Σu⊥ ,σ2
e ,σ2

f ,Σh ,σ2
g }, and

the associated log-likelihood is given by

ℓ(θ; x, y, z) =−1

2
{(p +q +1)log(2π)+ log |Σθ|+ (x, y, z)Σ−1

θ (x, y, z)⊤}.

Here, the covariance matrix Σθ is

Σθ =

WΣt W ⊤+W⊥Σt⊥W ⊤
⊥ +σ2

e Ip WΣt BC⊤ WΣt a⊤
C BΣt W ⊤ CΣuC⊤+C⊥Σu⊥C⊤

⊥ +σ2
f Iq C (Σhb⊤+BΣt a⊤)

aΣt W ⊤ (aΣt B +bΣh)C⊤ aΣt a⊤+bΣhb⊤+σ2
g

 .

(5.24)

We show here that under certain regularity conditions, consistency of the estimator
θ and its asymptotic distribution N (θ,Πθ) follows from Shapiro’s Proposition 4.2 ap-
plies to the GLM-PO2PLS continuous model. It has been shown in [14] that the propo-
sition applies to the PO2PLS model. Similarly, we define τ as the mapping from a θ′ to
Σθ′ , given in (5.24), and the discrepancy function F as F (S;Σθ′ ) = N log |Σθ′ | + trSΣ−1

θ′ −
N log |S|+trSS−1, where S is the maximum likelihood estimator of the covariance matrix
of (x, y, z). The function F can be recognized as the discrepancy of two log-likelihoods
evaluated at S and Σθ′ , respectively, with a minimizer Σθ̂. The mapping function τ is
analytic and quadratic in θ′. It follows from the definition of F and the regularity of the
normal log-likelihood ℓ that F is non-negative, zero only if S = Σθ′ , and positive every-
where else. Also, ℓ, thus F , is twice continuously differentiable and since GLM-PO2PLS
is identifable, F has a positive definite Hessian at θ′. Then, Proposition 4.2 in Shapiro
(1986) states that the elements of Σθ̂ are asymptotically normally distributed. Theorem
2 in the main article follows,

N 1/2(θ̂−θ) −→N (0,Πθ).

Covariance matrix of the coefficients Let α = (a,b) and αk = (ak ,bk ). The two test
statistics T f ul l = α̂Π−1

α̂
α̂⊤, and Tcomp.wi se = α̂kΠ

−1
α̂k
α̂k

⊤ involve calculation of the co-
variance matrix of the coefficientsΠα̂.

Let I (θ̂) be the observed Fisher information matrix. To obtain Πα̂, the submatrix
of I−1(θ̂) corresponding to α̂ (denote I−1(α̂)) has to be calculated. However, inverting
I (θ̂) is computationally infeasible, even for moderate dimensions. Under additional
assumptions that α̂ and θ̂/α̂ are asymptotically independent and σ̂2

g is non-random,

I−1(α̂) can be calculated, and be used to approximateΠα̂. The 2K ×2K observed Fisher
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information matrix I (α̂) is given by

I (α̂) =
N∑

i=1
E[Bi (α̂)|ψi ]−

N∑
i=1

N∑
j=1

E[Si (α̂)S j (α̂)⊤|ψi ;ψ j ]

=
N∑

i=1
E[Bi (α̂)|ψi ]−

N∑
i=1

E[Si (α̂)Si (α̂)⊤|ψi ]−
N∑

i=1

N∑
j=1, j ̸=i

E[Si (α̂)|ψi ]E[S j (α̂)|ψ j ]⊤

(5.25)
Here, Si (α̂) = 1

σ̂2
g

(
(Ti , Hi )⊤Zi − (Ti , Hi )⊤(Ti , Hi )α̂⊤)

, and Bi (α̂) = 1

σ̂2
g

(Ti , Hi )⊤(Ti , Hi ). Note

that (5.25) involves conditional expectations of cubic and quadratic terms of (Ti , Hi ). It
can be re-formulated in terms of the first and second conditional momentsµi = E[(Ti , Hi )],
and Vi = E[(Ti , Hi )⊤(Ti , Hi )], which are readily available from the E step of EM algo-
rithm,

I (α̂) = 1

(σ̂2
g )2

N∑
i=1

{
σ̂2

g Vi −Z 2
i Vi +Zi

(
µ⊤

i α̂Vi + (µ⊤
i α̂Vi )⊤+ α̂µ⊤

i (Vi −2µ⊤
i µi )

)
+Zi

(
µ⊤

i α̂Vi + (µ⊤
i α̂Vi )⊤+ α̂µ⊤

i (Vi −2µ⊤
i µi )

)⊤
−2Vi α̂

⊤α̂Vi −µi α̂
⊤α̂µ⊤

i (Vi −2µ⊤
i µi )− tr[α̂⊤α̂(Vi −µ⊤

i µi )]Vi

−
N∑

j=1, j ̸=i
(Ziµ

⊤
i −Vi α̂

⊤)(Z jµ
⊤
j −V j α̂

⊤)⊤
}

.

5.6.4. ADDITIONAL SIMULATION RESULTS
We evaluated the performance of GLM-PO2PLS for both normally and Bernoulli dis-
tributed outcome under different combinations of sample size, dimensionality, hetero-
geneity level, and noise level. In the main article, we only described the results of coef-
ficient estimation and outcome prediction in high-dimensional settings. Here, we show
the results of coefficient estimation and outcome prediction in low-dimensional set-
tings, and the results of loading estimation and feature selection in both high and low
dimensions.

Figure 5.4 and Figure 5.5 depict the results of coefficient estimation and outcome
prediction in low-dimensional settings, respectively. Overall, the performance regard-
ing both metrics were very similar in low-dimensional and high-dimensional settings.
The conclusions in high dimensional settings in the main article also hold for low di-
mensional settings.

Figure 5.6 shows the inner products of the estimated loading vectors and the cor-
responding true loadings. Overall, the loading estimation was accurate except for the
x-loadings in the scenarios of small sample size, high noise level. Be reminded that in
these scenarios where the x-loadings were not well estimated, the coefficient a for the
x-joint components in the linear predictor of z tended to be underestimated.

Figure 5.7 shows the results regarding performance of feature selection. From Fig-
ure 5.7a for continuous outcome in high-dimensional settings, in the scenarios with
small sample size and moderate heterogeneity, the median TPR of GLM-PO2PLS was
0.90 under low noise level and decreased to 0.62 when the dataset was more noisy. The
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Figure 5.4: Performance of coefficient estimation in low-dimensional settings. The y-axis shows the scaled
estimation error. Boxes show the results of 500 repetitions.

TPR of ridge-x stayed around 0.25 regardless of the noise level. When the sample size
was large, the median TPR of GLM-PO2PLS increased to 0.96 under low noise level and
to 0.86 under high noise level. The median TPR of ridge-x increased to 0.50 in both noise
levels. The amount of heterogeneity did not have much impact on the TPRs. Comparing
Figure 5.7b for binary outcome to Figure 5.7a, GLM-PO2PLS performed similarly well,
while the performance of ridge-x improved. In low dimensions (Figure 5.7c and Fig-
ure 5.7d), the TPRs of GLM-PO2PLS decreased slightly, compared to the TPRs in high-
dimensional settings. On the contrary, the TPR of ridge-x increased substantially. Note
that GLM-PO2PLS still outperformed ridge-x in low dimensions.
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Figure 5.5: Performance of outcome prediction in low-dimensional settings. y-axis shows the root mean
square error of prediction (RMSEP). Boxes show the results of 500 repetitions.
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(b) Binary z (high-dimensional)

Low noise High noise

N
=100

N
=1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

In
ne

r p
ro

du
ct

moderate heterogeneity
Low noise High noise

N
=100

N
=1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

In
ne

r p
ro

du
ct

high heterogeneity

Loading x-joint x-specific y-joint y-specific

(c) Continuous z (low-dimensional)

Low noise High noise

N
=100

N
=1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

In
ne

r p
ro

du
ct

moderate heterogeneity
Low noise High noise

N
=100

N
=1000

0.00
0.25
0.50
0.75
1.00

0.00
0.25
0.50
0.75
1.00

In
ne

r p
ro

du
ct

high heterogeneity

Loading x-joint x-specific y-joint y-specific

(d) Binary z (low-dimensional)

Figure 5.6: Performance of loading estimation. y-axis shows the inner product of the estimated loading vec-
tors and the corresponding true loadings. Inner product of 1 suggests the loading vector is accurately esti-
mated. Boxes show the results of 500 repetitions.
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(a) Continuous z (high-dimensional)
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(b) Binary z (high-dimensional)
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(c) Continuous z (low-dimensional)
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Figure 5.7: Performance of feature selection. y-axis shows the true positive rate calculated on the top 25% of
features in x with the largest absolute loading values in GLM-PO2PLS, or with the largest absolute regression
coefficients in ridge regression). Boxes show the results of 500 repetitions.
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The central aim of this thesis is to model an outcome disease with the correlation
structure within and across omic layers. Towards this aim, we developed GLM-PO2PLS
in the previous chapter. In this chapter, we give further thoughts on the limitations
of the method and propose possible extensions and future directions. Specifically, we
first propose a computationally feasible algorithm to overcome the computational issue
for the GLM-PO2PLS binary model with more than 1 joint component and apply it on
the Down syndrome (DS) dataset. Then we briefly describe an extended GLM-PO2PLS
model with both joint and data-specific latent variables in the linear predictor for the
outcome. It is followed by a further discussion on the importance and challenges of
deriving the asymptotic normality for the GLM-PO2PLS binary model. The chapter is
concluded with future directions of work.

6.1. GLM-PO2PLS BINARY MODEL WITH MULTIPLE JOINT COM-
PONENTS

In the previous chapter, the number of joint components in the GLM-PO2PLS binary
model is limited to 1 due to the computational complexity of the EM algorithm. In
the data analysis of Down syndrome, a two-stage ad-hoc approach was implemented,
where we first fitted a GLM-PO2PLS continuous model with 3 joint components and 1
specific component for both methylation and glycomics, and then we subtracted the
second and third joint components, and the specific components of the GLM-PO2PLS
continuous model from the omics data, and fitted a single-component GLM-PO2PLS
binary model on the filtered omics datasets. For easier reference, we call this approach
the ‘two-stage filtering’ approach in rest of the chapter. Let x̃ and ỹ be the filtered omics
datasets, the single-component GLM-PO2PLS binary model in the second stage is given
by

x̃ = t(1)w⊤
(1) +e,

ỹ = u(1)c
⊤
(1) + f ,

u(1) = t(1)B(1) +h(1),

logit(p(z)) =β0 + t(1)a(1) +h(1)b(1),

(6.1)

where the latent variables and parameters with a subscript ‘(1)’ are the corresponding
subset regarding the first pair of joint latent variables.

The rationale of utilizing the estimates from a continuous model is that the latent
variables in the two models represent similar underlying biological mechanisms. The
subset of parameters associated with the omics x and y are expected to be similar be-
tween the continuous and binary models. The main difference between the two models
lies in the estimation of the coefficientsβ= (β0, a,b), which should be therefore updated
by fitting a binary model.

In model (6.1), the coefficients β is only partly updated for a(1) and b(1), and the
effects of the other joint latent variables on the outcome z are not taken into account.
We generalize this ad-hoc approach to a two-stage EM algorithm that updates the whole
vector of coefficients β in the second stage.
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6.1.1. A TWO-STAGE EM ALGORITHM FOR THE GLM-PO2PLS BINARY MODEL
The algorithm involves fitting a fast GLM-PO2PLS continuous model in the first stage,
and updating the estimates of the parameters corresponding to each joint component
k = 1, . . . ,K sequentially, using a one-component GLM-PO2PLS binary model in the sec-
ond stage. The whole coefficient vector β = (β0, a,b) is always updated simultaneously
rather than sequentially.

Let the estimate of the GLM-PO2PLS continuous model parameters be θ̂0 = {Ŵ ,Ĉ ,

Ŵ⊥,Ĉ⊥, B̂ , Σ̂t , Σ̂h , ˆΣt⊥ , ˆΣu⊥ , σ̂2
e , σ̂2

f , â, b̂, σ̂2
g }. For each k, we fix the following subset of θ̂0

corresponding to the joint components other than k (referred to by adding a subscript
‘(|k)’ to the parameter)

θ̂(|k) = {Ŵ(|k),Ĉ(|k),Ŵ⊥,Ĉ⊥, B̂(|k), Σ̂t (|k), Σ̂h (|k), ˆΣt⊥ , ˆΣu⊥ , σ̂2
e , σ̂2

f },

and update the rest of the parameters corresponding to the k-th joint components (re-
ferred to by adding a subscript ‘(k)’)

θ(k) = {w(k),c(k),B(k),σ
2
t (k),σ

2
h (k),β0, a,b} (6.2)

using a binary model given by

x = t(k)w⊤
(k) + t̂(|k)Ŵ

⊤
(|k) + ˆt⊥Ŵ⊥

⊤+e,

y = u(k)c
⊤
(k) + û(|k)Ĉ

⊤
(|k) + û⊥Ĉ⊥

⊤+ f ,

u(k) = t(k)B(k) +h(k),

logit(p(z)) =β0 + (t(k), t̂(|k))a⊤+ (h(k), ĥ(|k))b⊤,

(6.3)

where t(k) and u(k) are the k-th joint latent variables; the other joint latent variables t̂(|k)

and û(|k) are predicted from the continuous model as ν̂(|k) = (t̂(|k), û(|k)) = E[ν(|k)|x, y, z, θ̂0];
ĥ(|k)) is derived as û(|k) − t̂(|k)B̂(|k); the specific latent variables ˆt⊥ and û⊥ are predicted
from the continuous model as ( ˆt⊥, û⊥) = E[(t⊥,u⊥)|x, y, z, θ̂0].

The binary model (6.3) is equivalent to

x̃ = t(k)w⊤
(k) +e,

ỹ = u(k)c
⊤
(k) + f ,

u(k) = t(k)B(k) +h(k),

logit(p(z)) =β0 + (t(k), ˆt(|k))a⊤+ (h(k), ˆh(|k))b⊤.

(6.4)

where x̃ = x − t̂(|k)Ŵ
⊤

(|k) − ˆt⊥Ŵ⊥
⊤

is the filtered x matrix, and similarly, ỹ is the filtered y
matrix.

the log-likelihood of the model (6.4) for the k-th component is given by

ℓ(k)(θ(k); x̃, ỹ , z, ˆν(|k)) = log
∫
ν(k)

f (x̃, ỹ , z|ν(k), ˆν(|k),θ(k))dν(k)

= log
∫
ν(k)

p(z|ν(k), ˆν(|k),θ(k)) f (x̃|ν(k),θ(k)) f (ỹ |ν(k),θ(k)) f (ν(k))dν(k).
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where

p(z|ν(k), ˆν(|k),θ(k)) =


(
1+exp{−(β0 + (t(k), ˆt(|k))a⊤+ (h(k), ˆh(|k))b⊤)}

)−1
, z = 1(

1+exp{β0 + (t(k), ˆt(|k))a⊤+ (h(k), ˆh(|k))b⊤}
)−1

, z = 0,

f (x̃|ν(k),θ(k)) = (2πσ2
e (k))

− p
2 exp

(
− 1

2σ2
e (k)

(x̃ − t(k)w⊤
(k))(x̃ − t(k)w⊤

(k))
⊤
)
,

f (ỹ |ν(k),θ(k)) = (2πσ2
f (k)

)−
q
2 exp

(
− 1

2σ2
f (k)

(ỹ −u(k)c
⊤
(k))(ỹ −u(k)c

⊤
(k))

⊤
)
,

f (ν(k)) = (2πσ2
t (k))

− 1
2 exp

(
− 1

2σ2
t (k)

ν(k)ν
⊤
(k)

)
.

Estimating the binary model in the second stage An EM algorithm similar to that pro-
posed for the binary model in Chapter 5 can be used to estimate the parameters θ(k) in
model (6.4). Denote the complete data vector by (x̃, ỹ , z,ν(k)). For each current estimate
θ′(k), it considers the objective function

Q(θ(k)|θ′(k)) = E[log f (x̃, ỹ , z,ν(k)|ν̂(|k),θ(k))|x̃, ỹ , z, ν̂(|k),θ
′
(k)],

which can be decomposed to factors that depend on distinct subsets of θ(k),

Q(θ(k)|θ′(k)) =E[log f (x̃, ỹ , z,ν(k)|ν̂(|k)] = E[log f (x̃, ỹ , z|ν(k), ν̂(|k))]+E[log f (ν(k)|ν̂(|k))]

=E[log p(z|ν(k), ν̂(|k))]︸ ︷︷ ︸
Q{β0,a,b}

+E[log f (x̃|t(k))]︸ ︷︷ ︸
Q{w(k),σ2

t (k)}

+E[log f (ỹ |u(k))]︸ ︷︷ ︸
Q{c(k)}

+E[log f (u(k)|t(k))]︸ ︷︷ ︸
Q{B(k),σ2

h (k)
}

+E[log f (t(k))]︸ ︷︷ ︸
Q{σ2

t (k)}

.

(6.5)
Here, the first conditional expectation Q{β0,a,b} is given by

Q{β0,a,b} =
∫
ν(k)

[log p(z|ν(k), ν̂(|k))] f (x̃, ỹ , z|ν(k), ˆν(|k),θ(k))dν(k)∫
ν(k)

f (x̃, ỹ , z|ν(k), ˆν(|k),θ(k))dν(k)
,

and the other terms are explicit functions with respect to

E[ν(k)|x̃, ỹ , z, ν̂(|k)] =
∫
ν(k)

ν(k) f (x̃, ỹ , z|ν(k), ˆν(|k),θ(k))dν(k)∫
ν(k)

f (x̃, ỹ , z|ν(k), ˆν(|k),θ(k))dν(k)
,

E[ν⊤(k)ν(k)|x̃, ỹ , z, ν̂(|k)] =
∫
ν(k)

ν⊤(k)ν(k) f (x̃, ỹ , z|ν(k), ˆν(|k),θ(k))dν(k)∫
ν(k)

f (x̃, ỹ , z|ν(k), ˆν(|k),θ(k))dν(k)
.

These integrals can be approximated using Gauss–Hermite quadrature as follows∫
ϕ(ν(k)) f (x̃, ỹ , z|ν(k), ˆν(|k))dν(k) ≈

M∑
m1=1

M∑
m2=1

ϕ(ν(k) = νm) f (x̃, ỹ , z|ν(k) = νm , ˆν(|k))wm1 wm2

(6.6)
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where ϕ is any function of ν(k) and M is the number of nodes per dimension. Details
of the nodes vector νm and weights vector wm = (wm1 , wmr ) can be found in Chapter 5.
Note that the most time-consuming component of the EM algorithm for GLM-PO2PLS
binary model is evaluating the joint density f (x̃, ỹ , z|ν(k) = νm , ˆν(|k)) in (6.6) at each node
(or νm value). In the EM algorithm in Chapter 5, the joint density is evaluated at M 2K

nodes in each EM iteration. By fixing ν(|k) at ˆν(|k), the joint density needs to be evalu-
ated at M 2 nodes in each EM iteration. Therefore the computational complexity of the
algorithm does not grow exponentially with the number of joint component K , allowing
K > 1.

The conditional expectation Q{β0,a,b} can be maximized using the one-step gradient
descent strategy in Chapter 5, and the other terms in (6.5) can be maximized by setting
the first derivatives to zero.

One can keep updating θ(k) for k = 1, . . . ,K until convergence. We expect the loading
estimates in the second stage will stay close to the initial estimate of the continuous
model from the first stage, and the major update will be for the coefficients (a,b). Since
the coefficient vector (a,b) is estimated jointly for any k, a iteration of k is not necessary.

6.1.2. RELATIONSHIP WITH TWO-STAGE PO2PLS MODEL
The two-stage estimation procedure for the GLM-PO2PLS binary model shares similar-
ity with the two-stage PO2PLS model in Chapter 4 in the sense that they both estimate
the loadings and predict the latent variables in the first stage and estimate the regres-
sion coefficients in the second stage. However, there are essential differences between
the two. Firstly, two-stage PO2PLS contains two separate models. the one in the first
stage models the omics datasets x and y , and the one in the second stage models the
outcome z. The two-stage EM algorithm is an approach to obtain an estimate for the
parameters of a one-stage model that jointly models (x, y, z). Secondly, the two-stage
PO2PLS constructs the latent variables in an unsupervised manner, i.e., the latent vari-
ables only explain the variance and covariance of x and y . The latent variables in the
first stage of the two-stage EM algorithm are predicted in a supervised manner from a
GLM-PO2PLS model, thus they do use the information in outcome variable z. Lastly,
two-stage PO2PLS uses the predicted latent variables as pseudo outcomes and z as co-
variates in several separate regression models in the second stage, and thus the inter-
pretation is different from a logistic regression model with z as outcome. Alternatively,
the predicted latent variables can be used as covariates in a logistic regression in the sec-
ond stage. This ignores the errors in the covariates (predicted latent variables) and can
cause biased inference results and attenuated predicted probabilities in the logistic re-
gression [7]. In the two-stage EM algorithm, the uncertainty is partly taken into account
by the joint modeling of (x, y, z) through one pair of joint latent variables in the second
stage. We expect the results to be less biased.

6.1.3. APPLICATION ON DS DATASET AND COMPARISON WITH OTHER METH-
ODS

We implemented the two-stage EM algorithm on the Down syndrome dataset described
in Chapter 5 and compared the results with GLM-PO2PLS continuous model, the two-
stage filtering approach, and two-stage PO2PLS. The focus is on the coefficients (a,b).
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We compared the estimates as well as their p-values, assuming asymptotic normality
holds for GLM-PO2PLS binary model.

We first fitted a GLM-PO2PLS continuous model with 3 joint, 1 methylation-specific,
and 1 glycomic-specific components. For the two-stage EM algorithm, we set k = 1 and
updated the parameters θ(1) defined in (6.2) with model (6.4). The two-stage filtering
model (6.1) was fitted on the filtered omics data (removing all the other components
estimated in the continuous model apart from the first joint). For two-stage PO2PLS,
a PO2PLS model with the same number of joint and specific components was first fit-
ted, the estimated latent variables based on the fitted PO2PLS model were then used as
covariates in a logistic regression. The standard error of (â, b̂) in GLM-PO2PLS models
were estimated using the inverse of observed information matrix and p-values for the
full test H0 : a = b = 0 and component-wise test H0 : ak = bk = 0 were computed us-
ing the corresponding chi-square test statistics (details in Chapter 5). The p-value of
chi-square test for the logistic regression in the two-stage PO2PLS was performed using
function ‘anova’ [1] in R. The results are presented in Table 6.1.

The top rows of Table 6.1 shows the estimates of each pair of (ak ,bk ). The GLM-
PO2PLS continuous model uses an identity link, thus the estimates are not comparable
to the other methods. The estimates of (a1,b1) were similar in the two-stage EM and the
filtering approach. For the two-stage PO2PLS, the estimate of b1 appeared to be smaller.
As mentioned in the previous section, two-stage PO2PLS is unsupervised, hence the as-
sociation between the joint latent variables and the outcome can be weaker than GLM-
PO2PLS. The bottom rows shows the p-values of the corresponding test. The continuous
model had the smallest p-value for the full test, and this significance was driven mainly
by the first pair of joint components. The two-stage EM showed similar results, but less
significant than the continuous model. The filtering approach had only the first pair
in the model and yielded a p-value slightly less than the two-stage EM. The full test in
the two-stage PO2PLS was more significant than that in the two-stage EM. Note that the
two-stage PO2PLS does not taken into account the uncertainty in predicting the latent
variables, hence can under-estimate the true variance.

6.2. LINKING DATA-SPECIFIC PART TO THE OUTCOME

An assumption of GLM-PO2PLS model is that the effect of the two omics datasets on
the outcome is solely through the joint parts of x and y . This is quite restrictive, as there
could be direct effects of x and y on z that are not joint. Furthermore, as discussed in
Chapter 5, linking the omic-specific parts to the outcome can provide insights into the
biological system underlying the outcome that is unique to a particular omic level, and
it can lead to improved outcome prediction performance in some studies. Therefore, we
propose an extended model which links the outcome to both the joint and data-specific
parts.

Inheriting the notations from the GLM-PO2PLS model, the extended model is given
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by

x = tW ⊤+ t⊥W ⊤
⊥ +e,

y = uC⊤+u⊥C⊤
⊥ + f ,

u = tB +h,

η(E[z]) =β0 + t a⊤+hb⊤+ t⊥a⊤
⊥+u⊥b⊤

⊥,

(6.7)

where the Kx -dimensional vector a⊥ and the Ky -dimensional vector b⊥ are the coeffi-
cients for the x- and y- specific latent variables t⊥ and u⊥, respectively. It can be shown
using the Theorem 2.1 in Chapter 5 that the extended model (6.7) is identifiable under
the same conditions.

From the methodological point of view, the extended model might also be more sta-
ble. Imagine an x-specific variation (specific with respect to only the other omics y , not
z) that is associated with the outcome z. Such a scenario is not uncommon in prac-
tice, for example, a genomic effect (of x) on a cardiovascular disease (outcome z) that
has nothing to do with glycomics (y). In this case, the first three equations of GLM-
PO2PLS (or the PO2PLS part) would ‘categorize’ this variation to the x-specific subspace
t⊥. However, the last equation η(E[z]) = β0 + t a⊤+hb⊤ tends to capture this variation
in the x-joint subspace t . Thus, where this variation ends up in the model becomes un-
predictable. The variation can also be split into both subspaces, making interpretation
difficult. In the extended model (6.7), such a variation will clearly be captured by t⊥.

For a normally distributed outcome z, the data vector (x, y, z) follows a multivariate
normal distribution N (0,Σθ), with a covariance matrix given by

Σθ =
 σ2

x σx y σxz

σy x σ2
y σy z

σzx σz y σ2
z

 ,

where σ2
x , σ2

y and σx y are the same as in the GLM-PO2PLS model and

σxz = aΣt W ⊤+a⊥Σt⊥W ⊤
⊥ ,

σy z = (aΣt B +bΣh)C⊤+b⊥Σu⊥C⊤
⊥ ,

σ2
z = aΣt a⊤+bΣhb⊤+a⊥Σt⊥a⊤

⊥+b⊥Σu⊥b⊤
⊥+σ2

g .

An efficient EM algorithm similar to the one proposed for GLM-PO2PLS continuous
model in Chapter 5 can be used to estimate the model.

For a binary outcome z, the log-likelihood of the observed data involves a integral of
dimension 2K +Kx +Ky ,

ℓ(θ; x, y, z) = log
∫

(ν,ξ)
f (x, y, z|ν,ξ,θ) f (ν,ξ|θ)d(ν,ξ), (6.8)

where ν = (t ,u) is a row vector of joint latent variables and ξ = (t⊥,u⊥) is a row vec-
tor of specific latent variables. In GLM-PO2PLS binary model, the joint distribution of
(x, y, z) conditional on ν has an explicit form. Therefore the dimension off the integral
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is reduced to 2K by integrating out ξ. This is not possible in the extended model (6.7).
The EM algorithm proposed for GLM-PO2PLS binary model in Chapter 5 will not work
due to the computational complexity (of O (M 2K+Kx+Ky )). The two-stage EM algorithm
proposed in this Chapter might be used.

6.3. ASYMPTOTIC PROPERTIES OF GLM-PO2PLS BINARY MODEL
GLM-PO2PLS and its extensions were developed towards the aim of modeling the rela-
tionship of the outcome variable with omics jointly. To formally establish the associa-
tion, statistical testing needs to be performed, which relies on the asymptotic properties.
For example, in Section 6.1.3, the p-values of the statistical testing and hence the con-
clusions depend on the assumption of the asymptotic distribution of the estimator. An
alternative way is to use resampling methods, like permutation or bootstrapping. How-
ever, in high-dimensional settings, such methods can be computationally cumbersome.
Therefore, the asymptotic properties need to be studied.

For GLM-PO2PLS continuous model, we showed that the estimator for the parame-
ters is asymptotically normally distributed and the test statistic proposed asymptotically
follows a chi-square distribution. Extending the derivation of the asymptotic properties
for the GLM-PO2PLS continuous model to the binary model is challenging. Firstly, in
the continuous model, the observed data follows a zero-mean multivariate normal dis-
tribution which is uniquely defined by the covariance matrix

Σθ =

WΣt W ⊤+W⊥Σt⊥W ⊤
⊥ +σ2

e Ip WΣt BC⊤ WΣt a⊤
C BΣt W ⊤ CΣuC⊤+C⊥Σu⊥C⊤

⊥ +σ2
f Iq C (Σhb⊤+BΣt a⊤)

aΣt W ⊤ (aΣt B +bΣh)C⊤ aΣt a⊤+bΣhb⊤+σ2
g

 .

The mapping (denote τ) from the parameter vector θ to the moment structure is thus
explicit. For a binary z which follows a Bernoulli distribution, the moment structure of
the data and the mapping function τ are not explicit. Therefore it is difficult to show
that τ satisfies certain regularity conditions [6]. Secondly, the likelihood function of the
continuous model is an explicit function of the moment structure of data

ℓ(θ; x, y, z) =−1

2
{(p +q +1)log(2π)+ log |Σθ|+ (x, y, z)Σ−1

θ (x, y, z)⊤},

while the likelihood function of the binary model is an integral as (6.8), and again, the
moment structure of the data is unclear. It is not possible to parameterize the likelihood
in terms of the moments as for a normally distributed outcome.

A second approach we have explored to prove the asymptotic normality is extending
the proof of asymptotic properties of a logistic regression model with measurement er-
ror, where the independent variables contain error and the true values are unobserved.
However, in a logistic regression model with measurement error, the observed data can
be formulated in terms of the unobserved true values and vice versa, and the asymp-
totic properties are studied by investigating the estimator obtained by regressing the
outcome on the observed variables [7]. In the GLM-PO2PLS model, the relationship
between the observed data and the unobserved latent variables is more complicated.
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Recall the model

x = tW ⊤+ t⊥W ⊤
⊥ +e, y = uC⊤+u⊥C⊤

⊥ + f , u = tB +h,

η(E[z]) =β0 + t a⊤+ub⊤.

It is not possible to formulate the unobserved latent variables t or u in terms of the
observed omics data x and y , because the joint latent variables are shared by more than
one equation, and each omics dataset contains an additional data-specific subspace.

The derivation of asymptotic properties for the binary model is future work.

6.4. FUTURE DIRECTIONS
In this chapter, we proposed a computationally feasible two-stage EM algorithm for es-
timating the GLM-PO2PLS binary model with more than one joint components. The
algorithm was implemented on the DS dataset and the results were interpreted. A ma-
jor limitation of the GLM-PO2PLS model is assuming the effect of omics on the outcome
goes solely through the joint parts. This limitation was addressed by allowing the data-
specific parts in the linear predictor of the outcome in an extended model. Apart from
the data-specific parts, one might also want to add other covariates into the linear pre-
dictor for the outcome. Actually, model (6.4) in the second stage of the two-stage EM al-
gorithm can be regarded as a binary model with 2K −2 covariates. Thus the correspond-
ing algorithm can be used to estimate a GLM-PO2PLS binary model with covariates (one
joint component). Estimating a GLM-PO2PLS continuous model with covariates is ex-
pected to be much easier and computationally efficient.

Often the number of observed individuals or samples in multiple omics datasets
studies is relatively small and novel datasets are augmented by current biological knowl-
edge to increase efficiency in parameter estimation. To include this type of information,
penalty functions that push the estimators in the direction of the prior can be added
to the likelihood function or estimating equation. For example, van de Wiel et al. [8]
developed an approach that utilizes information brought by links between genes and
an outcome (co-data). Li and Li [4] proposed an approach that directly incorporates a
given network into a penalised regression model. For joint analysis of two omics data-
sets, we have developed GO2PLS in Chapter 2 which incorporates group structures in
the variable selection process. More available information sources (such as databases
and networks) can be added to the model to further aid parameter estimation. Research
on multi-omics methods with multiple penalty functions to include these multi-source
information are needed.

In many studies (such as the TwinsUK), longitudinal omics data are available [9]. The
interest is often to model the effect of the omics on a survival outcome such as onset of
a disease using the history of the omics. Joint models are the golden standard for this
type of datasets [5]. However, the joint model is computationally intense and cannot
be applied directly on high-dimensional longitudinal omics. It needs to be combined
with method extracting time-dependent latent components representing the longitudi-
nal omics datasets. A functional form for the omics data over time can be used. For one
omics dataset, unsupervised method such as functional PCA [3] and supervised method
such as functional PLS [2] exist. For multiple longitudinal omics, novel methods that
generalizes these single-omic methods and incorporate the outcome jointly are needed.
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SUMMARY

For many human disease studies with multiple omics datasets available, a central aim
is to get a multi-angle view of the disease by modeling the disease using multiple omics
datasets jointly. The statistical challenges for this aim include 1) high dimensionality of
the omics datasets; 2) complex correlation structure within each omic layer; 3) presence
of both correlation and heterogeneity between different omic layers; and 4) different
distributions of the outcomes. Most of the currently available methods either model a
disease outcome with a single omic layer, overlooking the correlation between omics,
or model the relationship between omics without considering the outcome. This thesis
develops holistic statistical methods for jointly analyzing an outcome and two omics
datasets.

The first chapter gives an introduction to the regression models (generalized linear
model and its extensions) for modeling an outcome with a single omics dataset and la-
tent variable models (partial least squares and its extensions) for integrating two omics
datasets without an outcome. The aim of this thesis is to develop a statistical method
that models an outcome and two omics jointly. We therefore build upon the integrative
latent variable methods and propose approaches to incorporate an outcome variable.
We start with an example of visually exploring the relationship between an outcome
and integrated omics which are represented by the low-dimensional latent components
constructed using the integrative methods. We then describe how two-stage methods
can be used to model an outcome with integrated omics and statistically infer the rela-
tionships. Two-stage design can lead to biased inference, we therefore describe how to
obtain unbiased results using a one-stage approach that models the joint distribution of
an outcome and two omics datasets. The chapter finishes with an outline of the thesis.

In Chapter 2, we develop a sparse integrative method called group sparse two-way
orthogonal partial least squares (GO2PLS), which is an extension of the latent variable
method O2PLS. The method utilizes known group information among the features to
select relevant groups of features, and use these relevant features to construct joint la-
tent components. Simulation studies show that the accuracy of the constructed compo-
nents is robust against high noise levels. The method is illustrated on methylation and
glycomics from a population study, and regulomics and transcriptomics from a small
case-control study of hypertrophic cardiomyopathy (HCM). Enrichment analysis in the
population study shows involvement of the selected methylation CpG sites in the im-
mune system where glycans play important roles. In the HCM study, the scatter plots of
the estimated joint scores show separation of the HCM patients from the healthy con-
trols. And the subset of omic features selected appears highly relevant to the outcome
disease.

In Chapter 3 and Chapter 4, two-stage approaches are proposed to first integrate two
omics data in the first stage, and then model an outcome variable in the second stage
using the joint latent components constructed in the first stage. In Chapter 3, a novel
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way of modeling an outcome using genetic scores for omics is proposed. The genetic
scores are constructed from the genomics data, and contain the heritable information
of an omics layer. Various ways of constructing genetic scores are explored using in-
tegrative methods and polygenic score (PGS) methods. One of the advantages of such
genetic scores is that they can be computed without future observations of omics once
the model is fitted. Simulation studies show that the genetic scores have predictive value
for the outcome variable. We construct genetic scores for glycomics and metabolomics
in two cohorts, and use the genetic scores to model BMI and type 2 diabetes (T2D). It
appears that the explained variance of BMI is increased and the prediction performance
of T2D is improved.

In Chapter 4, we propose a two-stage probabilistic O2PLS approach to model Down
syndrome (DS) with methylation and glycomics in a family-based case-control study.
First, joint components representing methylation and glycomics are constructed using
probabilistic O2PLS (PO2PLS) and the association between the two omics is statistically
infered. Each of these joint components is then used as pseudo-outcome and modeled
via a linear mixed model with DS, age, sex as covariates and family as random effect.
The first pair of joint components is significantly associated with DS, and its score plots
show that the DS patients are more similar to the mothers than to the siblings possibly
due to accelerated and prematured aging in the DS patients. Further, we identify the
most important CpG sites and glycans in constructing the joint components. The CpG
sites are related to both DS the functionality of glycans, and the selected glycans are
shown to be discriminators of DS in a previous study.

The two-stage models are computationally fast, but the uncertainty in the estimates
of the first stage is not taken into account in the second stage, which might lead to biased
inference. In Chapter 5, a one-stage model for joint modeling of an outcome and two
omics, namely, GLM-PO2PLS is developed. The model identifiability is derived and ex-
pectation–maximization (EM) algorithms to obtain maximum likelihood estimators of
the parameters for the model with a normally or Bernoulli distributed outcome are de-
veloped. Test statistics are proposed to infer the association between the outcome and
the omics, and their asymptotic distributions are derived. In the simulation study, we
compare the outcome prediction performance of GLM-PO2PLS with ridge regression,
which models the outcome with each omics dataset separately, hence does not model
the correlation between omics. Results show the advantage of joint modeling over two
separate models. The method is then applied on the same DS dataset as used in Chapter
4. The results support the conclusions in Chapter 4. An important gene related to DS is
identified which is missed in Chapter 4.

There are several limitations of GLM-PO2PLS, among which is the heavy computa-
tional burden of the EM algorithm for a binary outcome, due to the numerical integra-
tion required in each iteration. In Chapter 6, a computationally more efficient two-stage
EM algorithm is developed for the GLM-PO2PLS model with a binary outcome. It first
estimates a GLM-PO2PLS continuous model regarding the binary outcome as a nor-
mally distributed variable, and then fits several one-component GLM-PO2PLS binary
models sequentially to update each pair of joint latent variables, treating the other pairs
as known. The algorithm makes the computation of a GLM-PO2PLS binary model with
multiple components feasible. The chapter conclude with relevant extensions and fu-
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ture directions of GLM-PO2PLS, including descriptions of the extended GLM-PO2PLS
model allowing omic-specific latent variables in the linear predictor of the outcome.

To conclude, in this thesis we propose multiple ways to model an outcome variable
with integrated omics data. The methods are validated via extensive simulations and
demonstrated on various datasets. Depending on the study design and research ques-
tion, each type of method has its advantages and value. Together with free and open-
source software available online, the work in the thesis provides useful tools to biomed-
ical research and helps further development of biostatistical methodology in the field of
omics research.





SAMENVATTING

Voor veel studies naar ziektes waarbij meerdere omics-datasets beschikbaar zijn, is het
doel om een ‘multi-angle’ beeld van de ziekte te verkrijgen. Dit kan d.m.v. een statistisch
model die de relatie tussen de ziekte en alle gemeten omics-datasets modelleert. De sta-
tistische uitdagingen hierbij zijn 1) de hoge dimensionaliteit van de omics-datasets; 2)
de complexe correlatiestructuur binnen elke omics-dataset; 3) de aanwezigheid van zo-
wel correlatie als heterogeniteit tussen verschillende omics-datasets; en 4) de verschil-
lende verdelingen van de uitkomsten. De meeste huidige methoden modelleren ofwel
een ziekte-uitkomst met één omics-dataset, waarbij dus de correlatie tussen omics over
het hoofd wordt gezien, ofwel de relatie tussen omics-datasets zonder rekening te hou-
den met de uitkomst.

Dit proefschrift ontwikkelt statistische methoden voor het gezamenlijk analyseren
van een uitkomst en twee omics-datasets. Het eerste hoofdstuk geeft een introductie
tot de regressiemodellen (‘generalized linear model’ en zijn uitbreidingen) voor het mo-
delleren van een uitkomst met één omics-dataset en latent variabele modellen (‘partial
least squares’ en zijn uitbreidingen) voor het integreren van twee omics-datasets zon-
der een uitkomst. Het doel van dit proefschrift is het ontwikkelen van een statistische
methode die een uitkomst en twee omics gezamenlijk modelleert. We bouwen daarom
voort op de integratieve latent variabele methoden en stellen verschillende methoden
voor om een uitkomstvariabele in het model op te nemen. We beginnen met een voor-
beeld van een visueel onderzoek naar de relatie tussen een uitkomst en geïntegreerde
omics die worden vertegenwoordigd door de laag-dimensionale latente componenten
die zijn geconstrueerd met behulp van de integratieve methoden. Vervolgens beschrij-
ven we hoe twee-staps-methoden kunnen worden gebruikt om een uitkomst met ge-
ïntegreerde omics te modelleren en statistisch inferentie te doen over de relaties. Een
twee-staps methode kan leiden tot vertekende inferentie, daarom beschrijven we hoe
we zuivere (‘unbiased’) resultaten kunnen verkrijgen met behulp van een één-staps be-
nadering die de gezamenlijke verdeling van een uitkomst en twee omics-datasets mo-
delleert. Het hoofdstuk eindigt met een overzicht van het proefschrift.

In Hoofdstuk 2 ontwikkelen we een integratieve methode genaamd group sparse
two-way orthogonal partial least squares (GO2PLS), die een uitbreiding is van de latente
variabele methode O2PLS. De methode maakt gebruik van vooraf bekende groepsin-
formatie over de variabelen om relevante groepen van variabelen te selecteren en deze
relevante variabelen te gebruiken om gezamenlijke latente componenten te construe-
ren. Simulatiestudies tonen aan dat de nauwkeurigheid van de geconstrueerde com-
ponenten robuust is tegen hoge niveaus van ruis. De methode wordt geïllustreerd met
een voorbeel van methylation en glycomics datasets gemeten in een populatiestudie,
en regulomics en transcriptomics gemeten in een kleine case-control studie naar hy-
pertrofische cardiomyopathie (HCM). Gen-verrijkings-analyse (‘gene enrichment ana-
lysis’) in de populatiestudie toont betrokkenheid van de geselecteerde CpG-sites in het
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immuunsysteem waarin glycanen een belangrijke rol spelen. In de HCM studie laten
de spreidingsplots van de geschatte gezamenlijke scores een structuur zien waarbij de
HCM patiënten van de gezonde controles onderscheiden kunnen worden. Daarnaast
blijkt een aantal van de geselecteerde omics variabelen relevant te zijn voor de ziekte.

In Hoofdstuk 3 en Hoofdstuk 4 worden twee-staps methoden voorgesteld om eerst
twee omics data te integreren in de eerste stap en vervolgens de relatie te modelleren
tussen de uitkomstvariabele en de gezamenlijke latente componenten uit de eerste stap.
In Hoofdstuk 3 wordt een nieuwe manier voorgesteld om een uitkomstvariabele te mo-
delleren met behulp van genetische scores voor omics. De genetische scores worden
geconstrueerd uit de genetische data en bevatten de erfelijke informatie van een omics
laag. Verschillende manieren om genetische scores te construeren worden onderzocht,
namelijk integratieve methoden en polygene score (PGS) methoden. Een van de voor-
delen van dergelijke genetische scores is dat ze kunnen worden berekend zonder toe-
komstige observaties van omics zodra het gefitte model beschikbaar is. Simulatiestudies
tonen aan dat de genetische scores voorspellende waarde hebben voor de uitkomstva-
riabele. We construeren genetische scores voor glycomics en metabolomics variabelen
beschikbaar in twee cohorten, en gebruiken deze om genetische scores om body mass
index (BMI) en type 2 diabetes (T2D) te modelleren. Het lijkt erop dat in de verkregen
modellen de verklaarde variantie van BMI is verhoogd en dat T2D beter wordt voorspeld.

In Hoofdstuk 4 stellen we een twee-staps probabilistische O2PLS-aanpak voor om
het Downsyndroom (DS) te modelleren met behulp van methylation en glycomics data-
sets in een op families gebaseerde case-controlstudie. Eerst worden de gezamenlijke
componenten die methylation en glycomics vertegenwoordigen, geconstrueerd door
probabilistische O2PLS (PO2PLS) toe te passen en wordt de associatie tussen de twee
omics statistisch getoetst. Elk van deze gezamenlijke componenten wordt vervolgens
gebruikt als pseudo-outcome en gemodelleerd via een lineair mixed model met DS, leef-
tijd en geslacht als covariaten. Correlatie binnen families wordt gemodelleerd met een
random effect. Het eerste paar gezamenlijke componenten is statistisch significant ge-
associeerd met DS en de scoreplots tonen aan dat de mensen met DS meer overeen-
komsten vertonen met hun moeders dan met hun broers en zussen. Mogelijk is dit het
gevolg van versnelde en vroegtijdige veroudering bij mensen met DS. Verder identifice-
ren we de belangrijkste CpG-sites en glycanen bij het construeren van de gezamenlijke
componenten. De CpG-sites hebben betrekking op zowel DS als op de functionaliteit
van glycanen, en de geselecteerde glycanen blijken discriminatoren te zijn van DS in
een eerdere studie.

De twee-staps methoden zijn rekenkundig snel, maar de onzekerheid in de schattin-
gen van de eerste stap wordt niet meegenomen in de tweede stap, wat kan leiden tot een
vertekende inferentie. In Hoofdstuk 5 wordt een een-staps methode ontwikkeld voor
het gezamenlijk modelleren van een uitkomst en twee omics, namelijk GLM-PO2PLS.
Identificeerbaarheid van het model wordt afgeleid en expectation-maximization (EM)
algoritmes worden ontwikkeld om maximum likelihood schatters van de parameters te
verkrijgen voor het model met een normaal of Bernoulli verdeelde uitkomst. Teststatis-
tieken worden voorgesteld om de associatie tussen de uitkomst en de omics te toetsen
en hun asymptotische verdelingen worden afgeleid. In de simulatiestudie vergelijken
we de prestaties van GLM-PO2PLS met die van ridge-regressie met betrekking tot het
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voorspellen van de uitkomst. Ridge modelleert de uitkomst afzonderlijk met elk omics
dataset, waardoor de correlatie tussen omics niet wordt meegenomen. De resultaten
laten het voordeel zien van het gezamenlijk modelleren ten opzichte van twee afzon-
derlijke modellen. De methode wordt vervolgens toegepast op dezelfde DS-dataset als
in Hoofdstuk 4. De resultaten ondersteunen de conclusies uit Hoofdstuk 4. Daarnaast
wordt een belangrijk gen gerelateerd aan DS geïdentificeerd dat in Hoofdstuk 4 gemist
is.

GLM-PO2PLS heeft verschillende tekortkomingen, waaronder de zware computati-
onele last van het EM-algoritme voor een binair uitkomst, als gevolg van de numerieke
integratie die bij elke iteratie van het algoritme gemaakt moet worden. In Hoofdstuk 6
wordt een meer computationeel efficiënt twee-staps-EM-algoritme ontwikkeld voor het
GLM-PO2PLS-model met een binair uitkomst. Hierbij wordt eerst een GLM-PO2PLS-
continu model geschat waarbij de binaire uitkomst wordt beschouwd als een normaal
verdeelde variabele en vervolgens worden verschillende GLM-PO2PLS-binaire model-
len sequentieel toegepast om elk paar van gezamenlijke latente variabelen te updaten,
waarbij de andere paren als bekend worden beschouwd. Het algoritme maakt de bere-
kening van een GLM-PO2PLS-binaire model met meerdere componenten computatio-
neel haalbaar. Het hoofdstuk sluit af met relevante uitbreidingen en toekomstige rich-
tingen van GLM-PO2PLS, waaronder beschrijvingen van het uitgebreide GLM-PO2PLS-
model dat omic-specifieke latente variabelen mogelijk maakt in de lineaire predictor
van de uitkomst.

Om samen te vatten, in dit proefschrift worden meerdere manieren om een uit-
komstvariabele te modelleren met geïntegreerde omics-data voorgesteld. De methoden
worden gevalideerd via uitgebreide simulaties en geïllustreerd met verschillende data-
sets. Afhankelijk van de onderzoeksopzet en de onderzoeksvraag heeft elk type methode
zijn eigen voordelen. Samen met gratis en open-source software die online beschikbaar
is, biedt het werk in dit proefschrift nuttige tools voor biomedisch onderzoek en helpt
het bij de verdere ontwikkeling van biostatistische methodologie in het veld van omics-
onderzoek.
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Lucija Klarić, thank you for the valuable discussions we had during my secondment in
Genos and afterwards. These discussions deepened my understanding of glycans and
their associated methods, which was crucial in the development of my thesis.

Big hugs to my fellow friends in the IMforFUTURE programme. The great time we
had together during our annual meetings, public engagement activities, secondments,
and all the other occasions will always be memorized. Particularly, I would like to thank
Azra for many inputs and discussions on glycans, and arranging the amazing month
in Zagreb with Samira during my secondment in Genos. Arianna, thank you for hel-
ping me obtain the ORCADES data with detailed documentation, and the laughters in
Zagreb. Iva, Bologna is amazing, and Omiš is more so. Anna, thank you for hosting me in

147



148 ACKNOWLEDGEMENTS

Bologna with Iva and coming to Utrecht for your secondment. I still wonder how many
kilometres we ran in the chaotic Utrecht Marathon. Maarten, we had great time sharing
an apartment in Bologna, and the pancake you taught me to make on the last day has
become my signature dessert. Shafiq, you made Cambridge feel like home upon my first
arrival. I am so glad that we ended up in the same department and neighbourhood after
IMforFUTURE.

I am grateful for all the colleagues in the biostatistics department, Julius Center,
UMC Utrecht for the friendly and welcoming working environment. Prof. dr. Miriam
Sturkenboom, thank you for your support in facilitating my PhD registration and com-
pletion. Bert, I always know that I can rest assured that everything is in good hands with
you. Marian, you are the first one buying me a beer in the Netherlands, and I am also
glad that we remain in touch. I would also like to thank the collaborators at the UMCU:
prof. dr. F. Asselbergs, dr. M. Harakalová, dr. M. Mokry, dr. J. Pei, and dr. R. Berbers.

I would like to express my heartfelt gratitude to the referees who provided invaluable
support at the outset of my academic journey. Prof. Jianmin Li, I still remember how
you supported my decision to switch from mechanical engineering to finance during
my bachelor’s studies. I am grateful that we have stayed in touch for over a decade and
even had the opportunity to meet in Paris. Prof. Jin Zhu, thank you for your guidance on
my bachelor’s thesis, and I only wish that I had written it better. Mr. Qinghao Li, the last
conversation we had in Shanghai has had a profound influence on my approach to life.
Your advice to be persistent and patient has stayed with me, and I am greatly inspired
by your remarkable journey in leading NewBanker to become a prominent leader in the
industry.

I wish to express my thanks to prof. dr. Damian Clancy for providing valuable ad-
vices and information on PhD application during my master’s study. The course ‘ad-
vanced statistical methods’ that you lectured was one of my favourite and built a solid
foundation for my statistical work.

I am honoured to express my appreciation to dr. Jessica Barrett for acknowledging
my work and providing me the opportunity to continue my journey in MRC, Cambridge.
It is truly a privilege to do research in such a vibrant and supportive institute.

I am filled with tremendous love and gratefulness towards my family. Hong Zhu, my
mother, and Jinxin Gu, my father, as your only son, my every decision has impacts

on your life, and I wish there have been less negative ones. I hope this piece of achie-
vement brings you confidence in the future, and most importantly, fills you with pride.
Xuefen Li, my grandmother, I regret that I am absent in your 80s, but I am happily taking
your crown as the most educated person in our family. Yongsheng Gu, my grandfather,
thoughts of you when I am feeling down give me comfort and strength. I believe I am
always blessed by you.

I would like to express my gratefulness and love to my girlfriend, Sisi Pu. I am truly
blessed to have your selfless love and unconditional support for my career. Your remar-
kable virtues of honesty, humility, compassion, gratitude, and integrity are just a few of
the many qualities that shine so brightly within you, and they continue to inspire me
to become a better person each and every day. Your companionship has filled so many
gaps in my life and brought immeasurable joy. I am so grateful for all that you do and



ACKNOWLEDGEMENTS 149

for the incredible person that you are. And when I say that you are extraordinarily wise,
I mean it.

I am deeply grateful to my life-long friend, dr. Xiang Zheng. This entire journey
would not have taken place without your call from Boston which gave me the strength
to get up off my knees on the very darkest day. As you always say, my life is like a movie,
and the scene where you walked into the movie two decades ago is one of the most
impressive and unforgettable moments. Sitting on the last row of the classroom on the
first day of high school, I glanced at the back door, there you were, late, with yellowish
hair and in slippers. I hoped you would not sit beside me, but you did, and became
the first classmate to talk to me - asking if you could copy my homework. Little did
I know that you would become an integral part of my life, offering unwavering support
throughout my academic journey, from master’s degree to PhD, to postdoc, and beyond.
Thank you for believing in my potential more than I do myself, and I am glad that I have
lived up to it.

I am indebted to another life-long friend, dr. Yu Shen. You have been my role model
since primary school. Our countless discussions on all kinds of topics have helped me
overcome doubts and confusion in my life. I am grateful that you were the one to wel-
come me on my first trip to a western country. The solemn Princeton campus, the fresh
noble price chocolate, what a luxury start of my academic journey. As I sit in my office
in Cambridge today, I often reflect on the time six years ago when I sat in your office,
applying for master programmes.

T his work is not possible without the support, kindness, generosity, trust, understan-
ding, and love from all of the following lovely people after the catastrophic collapse

of Kuailu. Despite direct and indirect losses, they showed me hope, gave me faith in
humanity, and brought me the courage and strength to move on.

I appreciate the good and tough times spent together with my former team mem-
bers. Particularly, C. Han, J. Qin, L. Zhang, and T. Kai, I am thankful to have had you in
my team and for having each other’s back.

F. Feng and X. Zhu, even though you never explicitly mentioned it, I am well aware of
the tremendous help you and your families provided me in the aftermath. Please know
that I am and always will be deeply grateful for this.

Dr. H. Tan, in many ways, you showed me what a well-educated person is truly made
of. Your encouragement and all the help you offered to me and my family will forever be
remembered.

H. Sun, I cannot imagine the extra pressure this unfortunate event has placed on
your shoulders, and I am heartily sorry that I could not be of more help. Your creativity,
humour, insightfulness, modesty, and diligence are just a few of the many virtues that
make you an indispensable leader and a highly respected person whom I deeply admire.

Q. Shen and X. Tan, few have the tremendous integrity that you possess to do what
you insisted in difficult times. You may still remember teaching me to pronounce words
properly almost thirty years ago, but what you may not know is that you have also given
me invaluable lessons on how to live life decently over these years.

H. Zhang, thank you for the countless favours you’ve done for me over the past nine
years, both professional and personal. I wish you, your lovely daughter, and your much-
loved mother a very happy life ahead.



150 ACKNOWLEDGEMENTS

My sincere appreciation goes to all my relatives who have provided constant care
and support all along the way, from my childhood to my school years, from my time in
Shanghai to my years abroad. I would like to extend a special thank you to my gran-
duncle and grandaunt S. Zhang & P. Xiang, as well as the families of W. Hu & J. Xue, J.
Xue & M. Jin, J. Gu & J. Jiang, M. Shen, and J. Shi for the tremendous understanding and
patience in the aftermath.

I owe a debt of gratitude to the family of Thomas Qin (Roger Qin, Anna Wu, and
George Zhu), for all the support, generosity, hospitality, and understanding. Thomas,
you were like an elder brother to me and welcomed me into your family. Every big and
small thing you and your family did for me is etched in my memory. Although we have
lost touch, the time I spent with you is a unique, happy, and meaningful part of my 20s
that will always be deeply cherished. I hope that one day, we can rekindle our friendship.
From the bottom of my heart, I wish good health and happiness to your whole family.

I extend my warmest thanks to my coach and my former business partner Y. Xu and
his wife S. Sun. Day after day, you reminded me of the fire within me hidden behind
thick, dark clouds. I will never forget the stormy days when you provided me with a
safe haven in Bridge No.8, a place where I found peace and gathered strength to face the
challenges ahead. I’d also like to thank Z. Zhou and Y. Su for their thoughtful gesture of
introducing me to Y. Xu and for the Buddhist book they gifted me, which granted me a
new perspective of the world.

Words cannot express how in debt of gratitude I am to Qianlin Shi, who stood with
me against all odds in the darkest days. In those times that challenged me to the very
core and determined who I am, your companionship, elegance, positivity, and resilience
guided me to be a better person than I would have been without you. I sincerely hope
that you always remember how extraordinary and deserving you are of all the beauty in
this world, and I wish you a fantastic life that aligns with your exceptional qualities with
all my heart.



CURRICULUM VITÆ

Z HUJIE GU was born on January 21st, 1990, in Nanxun, Huzhou, China. He began his
undergraduate studies in Mechanical Engineering in 2008, but soon discovered a

deeper interest in Finance. In 2012, he graduated with a Bachelor’s degree in Economics
and embarked on a career in the financial sector in Shanghai. From 2012 to 2016, he
held various positions, including independent financial advisor, consultant team leader,
consultant cluster manager, and CEO of a coaching business.

In 2017, he left China to pursue further studies in Scotland. The following year, he
obtained his Master of Science (MSc) degree with distinction in Actuarial Science from
Heriot-Watt University. In June 2018, he began his position as a Marie Skłodowska-Curie
early stage researcher in the biostatistics department of Julius Center, University Medi-
cal Center Utrecht. Funded by the European Union’s Horizon 2020 research and innova-
tion programme IMforFUTURE, as well as the EU/EFPIA BigData@Heart grant, he wor-
ked on the development of statistical methods for integrative analysis of multiple omics
with an outcome, which resulted in this thesis. The chapters of his thesis were presented
at several international biometrical conferences.

In September 2022, he joined as a postdoctoral fellow at the biostatistics unit of Me-
dical Research Council, University of Cambridge. His current research focuses on dyna-
mic risk prediction using large-scale electronic health records data.

151


	165806_Gu_OMS_R11_def_DPR.pdf
	165806_Gu_BNW_def_DPR.pdf

