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Abstract

The majority of photovoltaic (PV) systems in the Netherlands are small scale, installed

on rooftops, where the lack of onsite global tilted irradiance (GTI) measurements and

the frequent presence of shadow due to objects in the close vicinity oppose chal-

lenge in their monitoring process. In this study, a new algorithmic tool is introduced

that creates a reference data-set through the combination of data-sets of the

unshaded PV systems in the surrounding area. It subsequently compares the created

reference data-set with the one of the PV system of interest, detects any energy loss

and clusters the distinctive loss due to shadow, created by the surrounding objects.

The new algorithm is applied successfully to a number of different cases of shaded

PV systems. Finally, suggestions on the unsupervised use of the algorithm by any

monitoring platform are discussed, along with its limitations algorithm and sugges-

tions for further research.
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1 | INTRODUCTION

1.1 | Motivation

The worldwide photovoltaic (PV) installed capacity has grown expo-

nentially the past years, from 25 GW in 2008 to at least 942 GW at

the end of 2021.1,2 In May 2022, the 1 TW milestone has been

reached.3 Similar growth is observed in the Netherlands: The national

PV installed capacity has increased from 59 MW in 2011 to 6.9 GW

in 2019,4 10.7 GW in 2020,5 and 14.4 GW by the end of 2021.6 At

the end of 2016, 70% of the installed capacity was attributed to

small-scale residential installations on rooftops.7 In the past years, this

number is declining, since new small scale installations are constantly

below 50% of the annual installed capacity, although it remains at high

values, 49% in 2017,8 38% in 2018,9 35% in 2019,4 31.4% in 2020,5

and 35.2% in 2021.5 Thus, small-scale residential installations still

form a large share of the total installed capacity in the Netherlands.

While their share in the market is decreasing, the number of PV sys-

tems on rooftops is expected to keep increasing. Furthermore, the

European Commission has been promoting the increase of residential

PV systems since 2010 through the Energy Performance of Buildings

Directive (EPBD) that provides guidelines with the aim of the realisa-

tion of net zero-energy buildings.10

The complexity of the urban environment imposes a challenge for

the application of PV systems on rooftops, where different objects,

(i.e., poles, chimneys, dormers, and nearby trees and buildings) can

obstruct the solar irradiance, which will decrease the energy output of

the installed solar panels.11 As a result, PV systems installed in urban

environments are under-performing, especially compared with the

ones installed in rural environments, and their performance is (further)

reduced in areas with higher building density and higher average

building height.12
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Monitoring of residential small-scale PV systems faces four main

challenges: first, the lack of onsite global tilted irradiance (GTI) due

the relatively high cost of a pyranometer; second, the presence of

shadows that affect the monitored panels but not any chosen refer-

ence data, either local (pyranometer, neighbouring PV systems) or not

(satellite, local weather station); third, in residential systems, power

measurements are obtained through the inverters or low cost data-

loggers with lower accuracy and smaller resolution, compared with

large-scale PV plants; finally, in a residential environment with differ-

ent buildings and rooftop areas, tilts and orientations of PV systems

may vary. Monitoring of large numbers of PV systems with diverse

characteristics requires complex and costly data inspection; thus, an

unsupervised performance monitoring system that includes auto-

mated malfunction detection is preferred.

In this paper, a new shadow detection algorithm is introduced

that tackles the challenges mentioned above by creating a reference

data-set for any studied PV system, detecting the moments that the

system is malfunctioning and distinguishes the shadow from other

malfunctions.

1.2 | Literature review

This paper focuses on the automatic malfunction detection of PV

systems and focuses on the identification, within the detected

malfunctions, of any shadows that occur due to objects in the

close vicinity. The first guideline on malfunction detection of PV

systems is based on the widely known Performance ratio,

introduced in 1998.13

In the past 25 years, the evolution of data science in combination

with the increase of computing capacity led to more sophisticated and

precise malfunction detection and shadow identification methods.

The performance ratio is simply calculated by dividing the total pro-

duced energy with the total reference one.

Later in the 2000s, it was combined with malfunction pat-

terns.14,15 In the same period, the simulation of PV production from

solar irradiance and other weather conditions was introduced.16

After 2010, more methods based on the comparison with simu-

lated power or voltage have been successfully introduced,17–20 along

with more PV performance simulation models21 and a method that

was able to determine the location of the fault22 in a PV plant. Fur-

thermore, the impact of shadow along with maximum power point

tracking (MPPT) control was proposed.23

In 2015, in the framework of IEA-PVPS (International Energy

Agency - Photovoltaic Power Systems Program) TASK 13,24 a report

with scatter-plots of different characteristic malfunctions was intro-

duced.25 The collection of plots (named “stamp collection”) was assist-

ing the user to the identification of malfunctions on PV systems

through visual inspection. In this “stamp collection,” many cases of

shading were included among the “stamps.” In the same year, Sinapis

et al26 studied the effect of the identical shading on three PV systems

with the same panels but different system designs (string inverter,

power optimisers, and string inverters). Based on the same system, a

simulation model was developed to quantify the benefits and draw-

backs of different PV system architectures.27

Later, in 2016, two newly introduced fault detection algorithms

allowed to detect different types of faults, with shadow among them,

one on the DC part28 and one by comparing the I-V curve at normal

operation and the I-V curve at shading conditions.29 Furthermore, a

method based on a different philosophy was proposed, able to predict

faults due to shadows (and other technical faults).30

In 2017, several methods were introduced for automatic fault and

shadow detection. Malor et al. monitored identical sets (sister arrays)

connected to the same inverter of the PV system.31 Topic et al. intro-

duced a model for detecting an optimal PV system configuration for a

given installation site,32 where the effect of the inter-row shading is

modelled. A different approach of shading detection, since it is taking

place on the direct current (DC) side, was proposed in Garoudja

et al.33

In 2018, the “real PR” method that will be used later in this paper

was introduced.34 Another, different approach for shadow identifica-

tion is presented in Bognár et al,35 where PV system and weather data

are processed by the support vector machine (SVM). LIDAR (light

detection and ranging of laser imaging detection and ranging) has

been used as well in a LiDAR-based model for shadow identification36

with quite promising results.

From 2019 onwards, several malfunction detection methods have

been introduced. A monitoring tool that combines thermography and

artificial inteligence for fault detection and filtering of non-significant

anomalies was introduced by Haque et al.37 Another approach, based

on analysing high-frequency components of voltage signals derived

from Kalman filters, is presented in Ahmadi et al,38 to detect series of

arc fault occurrences. An unsupervised and scalable framework for

fault detection in time series data was introduced in Pereira and Sil-

veira.39 Alternatively, Harru et al. focused on the DC side of PV sys-

tems and the detection of temporary shading with the use of a model

based on the one-diode model and a one-class support vector

machine (1SVM) procedure.40 Moreover, drones were successfully

used for temperature monitoring of PV plants on large rooftops.41

More recently, in 2020, Karimi et al. focused on hot spot detec-

tion with the use of a Teager-Kaiser energy operator technique and a

hot spot detection index.42 An interesting approach for PV output

energy modelling by combining a new data filtering procedure and a

fast machine learning algorithm named light gradient boosting

machine (LightGBM) was introduced in Ascencio-Vásquez et al43 and

can also be used for malfunction detection. Another fault diagnosis

technique, based on independent component analysis (ICA), was pro-

posed in Qureshi et al.44 Yet different approaches, based on malfunc-

tion forecasting, are introduced in Vergura45 and He et al.46 In the

first paper, authors detect low-intensity anomalies before they

become failures, while the second is based on similarities of inverter

clusters of a PV system.

Finally, in 2021, several interesting papers in the field of PV sys-

tems monitoring based on data science have been published. In

Murillo-Soto and Meza,47 an automated reconfiguration system is

proposed to detect and manage two types of faults at any position
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inside the solar arrays. Similarly, in Chao and Lai,48 a malfunction/

shadow detection method is introduced that triggers the reconfigura-

tion of the array for maximum output power. Finally, a different

approach is presented in Catalano et al,49 where an efficient method

for photovoltaic arrays study through infrared scanning (EMPHASIS)

is proposed for malfunction detection and power estimation at cell

level, with excellent results.

1.3 | Paper organisation

The remaining part of the paper is organised as follows: In

Section 2, the scope of the new algorithm is discussed, with its lim-

itations, and the necessary data preparation and description of the

commercial PV systems where the algorithm is tested. Section 3 is

concerned with the methodology used for this study, describes the

five different steps of the introduced algorithm in Sections 3.1 to

3.5, and verifies it in Section 4. In Section 5, the new and the old

algorithm are applied on commercial PV systems, focusing on three

key themes.

In Section 5.2.3, the new algorithm is applied unsupervised to

different cases of shaded PV systems for specific years of data.

In Section 5.1, it is applied to MLPE systems with different

shadow patterns, while in 5.2, it is applied to a PV system with

string inverter. In the final part of Section 5, Section 5.2.1, some

interesting and distinctive examples of shadow and shadow

detection are presented.

In Section 6, the effectiveness and the limitations of new algo-

rithm are discussed and suggestions for further research are pre-

sented, while in Section 7, the conclusions of this study are

presented.

2 | SCOPE AND DATA OF THE NEW
ALGORITHM

2.1 | Scope of the introduced algorithm

The purpose of this paper is the development of a monitoring algo-

rithm that automates the analysis and monitoring of partially shaded

PV systems on rooftops. The new algorithm is build based on two

older algorithms, developed based on PV production data extracted

using a testing facility,34,50 and it is adjusted according to the needs of

data extracted from residential systems.

The proposed method focuses on malfunctions detected by a

malfunction detection algorithm, called “Real PR,”34 or “Real Perfor-
mance Ratio.” The new algorithm clusters the detected malfunctions

either to groups of shadows or classifies them as faults. Then, the

ones clustered in groups are further studied, in order to investigate if

they are resulting from shading of the same object and detect periods

within groups where the shadow could not be detected due to high

diffuse irradiance. Finally, it creates a profile for each shadow that

affects the system.

The resulting shadow profile can be used to calculate the energy

loss due to any obstacles and to predict the shadow in a future year in

order to immediately distinguish it from any occurred malfunctions.

The algorithm is broken down in the following five steps and a

preparatory step 0, which are further explained in Sections 3.0–3.5:

1. Create reference data-set for the studied PV system

2. Cluster the data to normal (inliers) and non-normal (outliers)

operation with the application of the “Real PR” algorithm.

3. Analyse only the outliers and detect the groups in the date vs. time

scatter-plot with higher density.

4. Merge the groups of the previous step, based on solar azimuth in

larger clusters, that is, the shadows.

5. Detect the date and time boundaries for every cluster of groups.

6. Characterise as shadow all the measurements within the bound-

aries and create the shadow profile.

The first step 0 is preparatory and involves the creation of the

reference data-set, fitted to the studied PV system. Since no data

science techniques are used and can be skipped if a pyranometer or

reference cell exists, it is designated as step zero.

2.2 | Data preparation

Two different data-sets are required for the application of the

proposed algorithm, the power output (either AC or DC) of the

studied PV system (referred to as “studied PV” from now on) and the

reference data (referred to as “reference data” from now on).

2.2.1 | Data of studied PV system

The data of the studied PV system can either be used in the unit of

power output (Watt or kW) or normalised as system yield, with hours

(h) as unit, as is defined by the Performance Ratio (PR)51 in

Equation (1):

PR¼Yf

Yr
ð1Þ

Yf ¼ E
Ppeak

ð2Þ

Yr ¼HPOA

GSTC
ð3Þ

in which Yf is final energy yield (h), Yr reference energy yield (h), E

generated amount of energy (Wh), Ppeak rated power of the PV panel

or system (W), HPOA irradiance (in the plane of the PV panel, plane of

array [POA]) (Wh/m2), and GSTC irradiation at standard test conditions

(1000 W/m2).

The selection of the actual unit depends on the available refer-

ence data. If the reference data are solar irradiance or power of a

508 TSAFARAKIS AND VAN SARK
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differently sized PV system, then system yield is selected. Power

could be used as well if a PV system with identical capacity is used as

reference.

In this study, both options are used: (1) when the reference

data is power of identically sized PV systems, the power output of

each of the panels is used as data of the studied PV, and (2) when

PV systems with string inverters are compared with panels from

system with module level power electronics (MLPE), system yield

(Yf ) is used.

2.2.2 | Reference data

Reference data could vary depending on the studied PV system.

In testing facilities or large PV plants, solar radiation from pyran-

ometers or reference cells is usually available. However in

residential, small-scale PV systems, mounted on rooftops, the avail-

ability of such data is a luxury. Thus, different sources should be

used, such as the power output of a neighbouring PV system, with

same tilt and orientation (also known as peer-to-peer (P2P)

comparison).

The data selection method demands the knowledge of the system

and cannot be applied automatically to a large number of PV systems

already installed and with only available information on the usual

static (meta-)data (tilt, orientation, capacity, location, etc.)

In this paper, PV systems with power optimisers are used; thus,

each panel can be treated as an independent PV system and all the

other panels as different PV systems in the same neighbourhood.

Similarly, for the development of the “real PR” algorithm in Tsafarakis

et al,34 and for its use in Tsafarakis et al,50 data from MLPE systems

were used and for each studied shaded panel, and the average

production of the unshaded panels of the system was used as

reference data.

In order to create a reference data source for any panel of a

random MLPE system, in this paper as reference data for a selected

panel, the production data of all the other panels of the system are

used. For each timestamp, the panel with the highest power output is

selected, thus being the one with the lowest possibility to be shaded

or malfunctioning.

2.3 | Data source

The proposed method was developed by using data from 5 different

PV systems mounted on rooftops in the city of Breukelen, the

Netherlands (52.1710� N, 5.0013� E). The PV systems consist of iden-

tical panels, with capacity of 260 Wp per panel and identical power

optimisers. The total capacity varies per system, from 2340 Wp

(9 panels) to 4420 Wp (16 panels).

Tilt and orientation varies within the panels of each PV system;

thus, seven different tilt and orientation combinations are forming the

studied sample. Due to the power optimisers, each panel can be con-

sidered as a separate PV system; thus, the study sample consist of

69 panels-system, all with the same capacity (260 Wp) and 7 different

tilt and orientation combinations. Tilt varies from 13� to 40� and

orientation from 142� to 234� (South is 180�).

In all the PV systems of the sample, each MLPE device measures

using different time stamps. Thus, data had to be re-sampled to at

least 10 minutes time resolution in order to create samples with

comparable date-time index without empty (NaN) timestamps.

Due to privacy regulations, exact locations nor photos of systems

can be provided.

3 | DESCRIPTION OF THE ALGORITHM

The new algorithm is divided in five steps, and each step is described

and visualised in the following five subsections. Each sub-

section contains two or three subsections, where in the first (3.X.1)

the principle of the step is explained, in the second (3.X.2) the step is

applied to a shaded PV panel with power optimiser and visualised for

better understanding, and in the third (3.X.3) the results are discussed.

The process is summarised in a flowchart in Figure 1 for better

understanding.

In the presented example the power of a shaded solar panel with

power optimiser is used. The panel is part of a PV system mounted on

a rooftop with South-West orientation (220�). From an initial explora-

tion of the data, it was suspected that the panel was shaded by an

object in the morning, which was confirmed after visual inspection

using satellite imagery and Google street services and photos pro-

vided by the installer. In Figure 2, the PV system is presented with the

panel of the example pointed by a green arrow. It is placed on the

extension of the house together with five more panels. The panel is

shaded by the main part of the house due North-East, obviously in

the morning.

F IGURE 1 The flowchart of the process

TSAFARAKIS AND VAN SARK 509
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3.1 | Step 0: Creation of reference data-set

The reference data are calculated by the new automatic method,

introduced at the end of Section 2.2.2. The production data of the

other five panels mounted on the extension of the house are used.

For each timestamp, the output of the panel with the highest power is

selected and the data are re-sampled to 10 min time resolution in

order to create samples with identical date-time index, similar to the

data of the studied system.

The remaining eight panels installed on the tilted rooftop have

considerably different tilt (35� vs. 13�); thus, they cannot be used for

the creation of the reference data-set.

3.2 | Step 1: Detection of the outliers

3.2.1 | Explanation

The first step of the new algorithm is to detect outliers in the analysed

sample. The clustering algorithm “real PR” developed and tested by the

authors in a previous study34 is applied and clusters the measurements

into outliers and inliers. The inliers are following a linear relationship

between the studied PV and the reference data, while the outliers are

the measurements that fail to follow this relationship. These are the

moments where the studied PV is failing, thus the moments where the

new algorithm will search for a shadow in the following steps.

3.2.2 | Application and visualisation of step 1

The measurements are divided in inliers and outliers by the clustering

algorithm “real PR.” In Figure 3A, an example has been presented,

where the green markers are the inliers and the red markers the

outliers that will be further studied in the next steps. The measure-

ments are additionally plotted in a time versus date scatter-plot and

illustrated in Figure 3B. Closer inspection of the plot shows that the

outliers are concentrated around specific periods (i.e., during morning

hours), where their density is higher. In the next step, these periods

will be grouped and distinguished from the random faults, based on

the density variation.

3.3 | Step 2: Clear outliers from the noise

3.3.1 | Explanation

In step 1, the moments where the studied PV system is failing are

detected. In step 2, their density in a time vs. date scatter-plot is stud-

ied. The non-parametric clustering algorithm “Density-Based Spatial

Clustering of Applications with Noise” (DBSCAN)52 is preferred for

this step due to the presence of noise in the scatter-plot (Figure 3B).

Through DBSCAN, outliers in areas of higher density than the rest of

the data-set are clustered into groups, named “DBSCAN groups,”
which will be further studied in the following steps.

Data points in sparse areas are considered to be noise and

excluded from the rest of the analysis for shadow detection. How-

ever, they will be analysed during the verification of the algorithm

(Section 4) and further discussed in Section 6.

3.3.2 | Application and visualisation of step 2

Figure 4 illustrates the impact of step 2 on the outliers. DBSCAN clus-

ters high density areas into groups and characterises measurements in

low density areas as noise. In Figure 4, outliers clustered in DBSCAN

groups are coloured using various colours while the ones charac-

terised as noise remain red.

In the DBSCAN algorithm, a point is characterised as “core point”
if within the area of 20 min in x-axis and 5 days in y-axis (a rectangle

in the plot); 65% of the possible measurements exists that can fit,

depending on the data resolution. For instance, in the presented

example of 5-min data resolution, in a period of 40 min and 10 days, a

maximum of 80 measurements (either inliers or outliers) could fit.

Thus, a single measurement is considered as “core point” if more than

51 outliers exist within the area around it.

3.3.3 | Discussion of step 2

Interestingly, the output of DBSCAN for the same shadow yields

several small groups instead of a larger one. The dependence of

shadow on the irradiance conditions leads to this separation, since

in periods where diffuse irradiance is dominant, the creation of a

shadow is limited and the density conditions of DBSCAN are not met.

These periods can be seen in Figure 4, as the empty areas (sometimes

with red dots) between the DBSCAN groups. Hence, groups of the

F IGURE 2 3D representation of the system. Panels/roof are
facing South-West (220�). Shade is calculated for June 1, 9:00
a.m. (UTC). The green arrow indicates the panel that is used for the
description of the algorithm

510 TSAFARAKIS AND VAN SARK
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same shadow should be connected in a larger one, the shadow, an

action that takes place in the next step.

3.4 | Step 3: Cluster remaining outliers to shadows

3.4.1 | Explanation

In step 3, the frequency of outliers clustered into DBSCAN groups

during the day is studied, in order to detect any connection between

DBSCAN groups. A similar process has been used successfully in the

previously developed method, “shadow profile,”50 directly after the

initial clustering to inliers and outliers. In the new algorithm, the out-

liers are further processed through DBSCAN, and the majority of the

noise is filtered out. Thus, step 3 is applied for the categorisation of

different shadows that may exist during the day (morning–afternoon,

etc.), by studying the appearance of the outliers of DBSCAN groups

during the year.

3.4.2 | Application and visualisation of step 3

Figure 5 illustrates the operation of step 3. The graph represents the

distribution of the outliers, clustered in DBSCAN groups in step 2, dur-

ing the day. Between 7:45 and 10:00 (UTC timezone), the frequency

of outliers is higher than the average. Thus, all DBSCAN groups within

that moments are reordered as one unique shadow.

Once the DBSCAN groups are connected, based on the allocation

of their outliers on time, the merged shadow clusters are formed.

Figure 6 illustrates the results of step 3 after applying it to the data of

Figure 4. All the small groups are merged and a larger group is formed,

illustrated with black dots.

3.4.3 | Discussion of step 3

The outliers of the detected shadow are coloured black in Figure 6,

while the rest, the ones characterised as noise, are still coloured red.

Empty areas or even some filled outliers can be seen within the

shadow, especially from mid March to mid April. In these cases, the

outliers do not meet the density criteria of DBSCAN in order to be

clustered in a group. However, through the allocation of the DBSCAN

groups, it can be assumed that it is the same shadow, although the

irradiance for that period was not high enough in order to create a

shadow and consequently, a visible impact on the data. In the next

step, these gaps are going to be filled in order to cover the complete

date-time period of the possible expected shadow.

3.5 | Step 4: Define the contour of each shadow

3.5.1 | Explanation

During this step, the results of the two previous ones are combined to

estimate the period that the shadow of a single obstacle is expected to

affect the studied PV system. The algorithm aims to detect the contour

of the shadow and denotes all the included measurements, both out-

liers and inliers, within the contour as potential parts of the shadow.

F IGURE 3 Use of “Real PR”34

algorithm as the first step of the new
algorithm. In scatterplot (A), reference
vs. studied PV, data are clustered
successfully as inliers (green) and outliers
(red). By plotting the same data in a Time
vs. Date scatterplot as in (B), morning
shadow can be distinguished, together
with large numbers of outliers allocated in

the rest of the studied period

TSAFARAKIS AND VAN SARK 511
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The contour consists of four boundaries: two date-dependent

ones, the first day and the last day of the shadow during the year, and

two time-dependent ones, the starting and the ending times during

each day. Thus, the date boundaries considered the first day and the

last day of the shadow as selected from step 3.

The estimation of the time-related boundaries, left boundary for

the beginning, right for the end of the shadow demands a process that

depends on the solar position, which changes during the year due to

Earth's orbit around the sun. Each boundary can not be represented

by a single value (time), especially for a long period, but from a contin-

uous data-set. Since the shadow is already divided into DBSCAN

groups, they are used for the selection of these data-sets. For the left

boundary's data-set, the earliest moments of each DBSCAN group are

selected and, similarly, for the right boundary, the latest one(s). Thus,

two data-sets are created, with length equal or larger than the number

of DBSCAN groups. However, these moments cannot be used as

boundaries since a single moment for each DBSCAN group will lead

to stair curve boundaries. In order to obtain continuous ones, polyno-

mial fits are made. These models are trained to detect the relationship

between the day of the year and the solar azimuth of the data-sets.

Aim of the models is to use as input the day of the year and based on

the training to estimate the solar azimuth for the rest of the days that

the shadow exists. The solar azimuth of each measurement is pre-

ferred instead of the timestamp, due to its higher range of values and

resolution; thus, each measurement has a unique azimuth value.

3.5.2 | Application and visualisation of step 4

In Figure 7, step 4 is illustrated. Figure 7A,B represents the data selec-

tion for the left (blue squares) and right (green) time boundaries. In

Figure 7A, the earliest and the latest moments, based on time, of each

DBSCAN group are picked as training sets for the polynomial models.

In Figure 7B, the same data are plotted in a date versus solar azimuth

scatter-plot; these values are used as training input in the polynomial

models. The trained polynomial models are using as input for all the

days of the year for which shadow occurs (thus the days between the

day dependent boundaries) and return the left and right boundaries of

the shadow. This is shown in Figure 7C.

3.5.3 | Discussion of step 4

The selection of the training set is based on time and leads to the

selection of multiple points per DBSCAN group (Figure 7A), thus to a

larger training set and finally to a more accurate prediction model.

However, the use of solar azimuth instead of time in the training set

leads to a smoother and more representative curve. This is visible in

the connection of the first DBSCAN group (beginning of March) with

the others, where there is a period (mid March to Mid April) for which

the presence of shadow is weak and cannot be detected through

DBSCAN. In several cases, similar to the presented example, the use

of time, instead of azimuth, leads to straight lines in Figure 7C.

3.6 | Step 5: Characterisation of the measurements
within contours

3.6.1 | Explanation

In the fifth and final step of the algorithm the measurements

within the boundaries, calculated in step 4, are characterised as

shadow. Although, a considerable number of inliers lies within

these boundaries, these are considered as shadow that were not

observed, due to the dependence of shadow on weather condi-

tions, as mentioned in Section 6.1.1. However, it is expected that

F IGURE 4 Application of DBSCAN on the data sample. Red data
points in sparse areas are considered noise, while differently coloured
measurements are the detected groups and considered as shadows.
The green curves denote the sunrise and the sunset
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under conditions of higher solar irradiance, power loss would be

observed at these moments.

3.6.2 | Application and visualisation of step 5

In Figure 8B,C, the outcome of the algorithm is presented, along with

the initial clustering, in Figure 8A, for better understanding. In

Figure 8B, the boundaries of the shadow are plotted over the initial

clustering, while in Figure 8C, the area within the boundaries, in

between which shadow is observed and expected, is marked as black,

while the rest of the year, where no shadow is detected, data are

marked as green.

In Figure 8B, the comparison of the initial clustering with the

results of the shadow detection algorithm is easier, since both are pre-

sented in the same plot. This plot format is used in the rest of the

paper for the illustration of the results in Section 5.

The introduced algorithm successfully distinguishes normal and

non-normal operation of the studied solar panel, as can be seen in

Figure 8B,C. In the rest of the studied period, no shadow is expected

by the algorithm; thus, any outliers are still characterised as measure-

ment faults, as explained in Section 6.1.2. These are studied sepa-

rately in Section 4. Moreover, from the comparison of Figure 8A,B, it

can be seen that a significant number of measurements, initially char-

acterised as inliers in Section 3.1, are finally characterised as shadow.

These are the cases of shadow that “exist but cannot be observed,” as
explained in Section 6.1.1 and are further studied as well in Section 4,

where the algorithm is verified.

The final outcome of the algorithm is the detection of the period

within which the shadow impacts the studied PV system, or solar

panel, in case of this MLPE PV system. Further use of this outcome is

discussed in Section 6.

4 | VERIFICATION OF THE ALGORITHM

The introduced algorithm processes the outliers of a PV system and

detects, based on density clustering, the ones caused by a shadow of

F IGURE 5 The allocation of all inliers
and DBSCAN grouped outliers, during the
hours of the day. The outliers are
concentrated between 7:45 and 10:10
(UTC); thus, all the groups of Figure 4 can
be linked to the same shadow occurrence

F IGURE 6 The data sample of Figure 4, after the application of
step 3. All the initial small shadows are connected to a larger one,
based on the allocation on time of Figure 5
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a stable object. Its operation is summarised in Figure 8, where the ini-

tial date vs. time plot of the inliers and outliers (Figure 8A) is converted

through the algorithm to Figure 8B,C.

As discussed in Section 3.5.2, three categories of measurements

need to be reassessed:

1. Measurements initially characterised as outliers and later as

shadow—red dots within the black contour in Figure 8B, or red

dots in Figure 8A that switch to black in Figure 8C, referred as

shadow from now on.

2. Measurements initially characterised as outliers, that are remarked

as inliers by application of the algorithm—red in Figure 8A, and

green in Figure 8C—referred as faults from now on.

3. Measurements initially characterised as inliers, that are remarked

as shadow—from green in Figure 8A to black in Figure 8C—

referred as “expected shadow” from now on.

The first category is the result of the algorithm and reflects its

main function. The other two categories are not explained in the initial

description and are further analysed in the following.

4.1 | Faults: outliers not categorised as shadow

These measurements are characterised as faults due to the observed

power loss, and their appearance frequency does not fit in the pattern

of a shadow, as established by the new algorithm in Section 3.5. As

described in Section 6.1.2, the majority of them could be measure-

ment faults, either due to the low quality measuring equipment or due

to the different timestamps occurring in the measurements in the dif-

ferent power optimisers.

For the study of the faults, a probability density function (PDF),

estimated using Kernel density estimation,53,54 is used. The PDF is a

statistical expression that defines a probability distribution (the likeli-

hood of an outcome) for a discrete random variable as opposed to a

continuous random variable.55

In Figure 9A, two PDFs are compared of the outliers as a function

of solar azimuth, which is a continuous random variable with values

from 50� to 350�. The blue curve represents the PDF corresponding

to the shaded panel, which is compared with the average PDF profile

of an unshaded panel with similar tilt and orientation (green curve).

The average PDF profile is calculated by averaging the PDFs of

F IGURE 7 Visualisation of step 4. The earliest and latest outliers of each DBSCAN groups, based on time are forming the starting and ending
training sets. On these sets, polynomial regression models are applied, and the starting and ending times are connected, shown in (C)
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F IGURE 8 The initial clustering to inliers and outliers (A) is compared with the new shadow detection algorithm, on a solar panel connected in
the MLPE PV system. In (B), the detected boundaries of the shadow are plotted over the plot of the initial clustering. It can be seen that the
algorithm successfully includes only the periods with high density of outliers (red dots). In (C), the complete shadow is indicated in black

F IGURE 9 (A) Probability density of outliers as a function of solar azimuth (blue curve), compared with PDF for unshaded panels (green
curve), and (B) PDF as a function of deviation as defined in Equation (4) for faults (red curve) and shadows (black curve)
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13 unshaded panels from different PV systems (with similar tilt and

orientation) neighbouring to the studied one. It is clear that the PDF

of the shaded panel has a global maximum around 100�–140�, thus

within the solar azimuth interval where the algorithm detected the

shadow (Figure 7). On the other hand, the average PDF of the

unshaded panels for the same solar azimuth interval is a smooth

curve, with a global maximum between solar azimuth 200� and 220�,

where the studied panel has a local maximum at 220�.

The outliers at higher solar azimuths are similar for unshaded and

shaded panels. On the other hand, for the shaded panel, a local maxi-

mum is found at a solar azimuth of about 125� , which is not found

for the unshaded panels.

For further study of the faults and their comparison with the

shadow, the new algorithm was applied to 14 shaded panels. For each

panel, measurements characterised as faults and shadows were col-

lected in order to be studied collectively. Both shadows and faults are

initially clustered as outliers from the “real PR” algorithm. As described

in section 3.3.4 in Tsafarakis et al,34 the algorithm returns two polyno-

mial equations. For each measurement, these equations, based on its

reference power, return the upper and lower limits, within which the

measurement is characterised as inlier. From the equation that calcu-

lates the minimum limit, the deviation of each of the selected mea-

surements (from shadows and faults) is calculated as follows:

deviationð%Þ¼ ϵPolymin ðRefÞ�Power

Ref
∗100 ð4Þ

where ϵPolymin ðRefÞ: the polynomial function that returns the minimum

power for a measurement that is characterised as inlier for a certain

reference power,34 Ref: the reference power at the moment that the

measurement took place, and Power: the produced power at the

moment that the measurement took place. Thus, a measurement

resulting in a deviation of 0% has the lowest produced power in order

to be characterised as an inlier. A measurement with 100% deviation

has zero power.

In Figure 9B, the PDFs of the deviations of the measurements

characterised as shadows and faults of the 14 panels are compared.

The majority of the faults do not deviate substantially from the mini-

mum inlier limit compared to the measurements that correspond to

shadows, since the maximum of their PDF (red curve) is close to 5%

deviation from the minimum inlier limit. Thus, if the “real PR” would

be applied by the user with less strict parameters, these measure-

ments could be inliers. On the other hand, the allocation of the

shadows (black curve in Figure 9B) is visible in a wider deviation

range, from 5% to 60%, from where it is slowly decreasing to almost

zero probability around the deviation of 80%.

4.2 | Expected shadow: inliers categorised as
shadow

In these measurements, no power loss is observed and initially (step

3.1); these are characterised as inliers. However, they will be

categorised as shadow in the final step (3.5), since they are located

within the shadow barriers. As explained in Section 6.1.1, these could

be cases where direct solar irradiance is a small percentage of the total

tilted irradiance and shadow cannot be observed from an object. Thus,

they can be denoted as “a potential shadow that cannot be seen.”
In this section. these measurements are analysed further, and

results are summarised in Figure 10. For the analysis, the irradiance data

from the meteorological station of the testing facility of Utrecht Univer-

sity is used56 as well as satellite data provided by the Netherlands Royal

Meteorological Institute (KNMI).57 The outdoor test facility is equipped

among others with a pyranometer for the measurement of global

horizontal irradiance (GHI) and a pyrheliometer for the measurement of

direct normal irradiation (DNI). The testing facility is located at the uni-

versity campus, approximately 14 km from the studied PV systems.

In the histogram of Figure 10A, the ratio of diffuse to direct irradi-

ance for these measurements is presented. In approximately 70% of

the measurements, where the expected shadow is not observed, the

DHI was the dominant irradiance component. Thus, it can safely be

assumed that due to high diffuse irradiance any faults cannot be

observed during these moments, since, in contrast with the DNI, DHI

is largely unobstructed by the shade-causing objects and thus still

causes energy generation.

In Figure 10B, these measurements are compared with the rest of

the measurements corresponding to shadow, that is, the ones initially

characterised as outliers. For the comparison, their kernel density esti-

mate plots54,53 are plotted by using Gaussian kernels of their normal-

ised reference power. The reference power is selected for the

comparison since higher values imply higher irradiance values, thus a

higher chance that shadow would be observed in a measurement and

vice versa. Normalised power is used in order to provide a better ref-

erence of the level of power production.

As expected, the majority of the shadow with observed power

loss is concentrated at higher reference power values, while the mea-

surements that represent the expected but cannot be seen shadow at

lower ones. Thus, it can safely be assumed these measurements are

initially characterised as inliers simply due to the absence of sufficient

irradiance.

5 | RESULTS

In this section, the introduced shadow detection algorithm is applied

to a larger sample of PV systems, and its effectiveness is tested for

different cases of shadow. In Section 5.1, it is applied on three panels

of different MLPE systems with different shade characteristics, while

in Section 5.2, the algorithm is applied to two PV systems connected

with string inverters.

5.1 | Shadow detection in MLPE systems

In Section 3.5.2, Figure 8, the new algorithm is applied on annual power

production data of a solar panel in an MLPE PV system. In Figure 11,
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the algorithm is applied to the data of the same panel for all the years

of the studied period. Thus, Figures 8B and 11A are the same and rep-

resent the operation of the studied solar panel during 2015, while

Figure 11B,C corresponds to the years 2016 and 2017, respectively.

The detected shadow is created by a pole during morning hours.

Minor differences are observed in its shape through the years, mostly

at the ending times, while the starting and ending days are almost the

same. Furthermore, the shadow starts almost the same time during

F IGURE 10 (A) Histogram of the diffuse to global horizontal irradiance ratio of the “unseen shadow” measurements. Approximately 70% of
measurements are taken at DHI=GHI>0:8 indicating that shadow cannot be caused by an object; thus, no power loss observed; (B) kernel density
estimate plots of the normalised reference power of “seen” (observed) and “unseen” (expected) shadow. “Unseen” shadow measurements are
taking place under lower irradiance, where shadow is expected but is not observed

F IGURE 11 Shadow detection on a
solar panel connected in an MLPE system,
which is shaded in the morning. The
algorithm is applied to three years, from
2015 to 2017, giving plots (A), (B), and (C),
respectively
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the year, while the ending time differs, a fact that makes the shadow

to last longer during the summer period.

In this section, two more cases of shaded solar panels, connected

to a power optimiser, are presented. The algorithm is applied to a

panel that is shaded in the morning (Figure 12) and one shaded in the

afternoon (Figure 13). This morning shadow, Figure 12, differs from

the previous one, Figure 11, since its starting and ending times vary

during the year although its duration is almost constant. These facts

leads to a completely different shape of the predicted shadow that is

thin and looks like a bow. However, these examples show that the

algorithm is able to detect shadows with different patterns on dura-

tion and starting/ending time.

The last case in this section is of a panel that is shaded in the

afternoon, see Figure 13. Both starting and ending times of the

shadow as well as its duration vary during the year. Furthermore,

some missing data, from August 2015 to October 2015 (subplot a),

does not seem to affect the effectiveness of the algorithm and the

shape of the predicted shadow is similar to the other two years, that

have full data.

5.2 | Shadow detection in systems with string
inverters

In this example the introduced algorithm for shadow detection is

applied on a PV system that is connected to a string inverter. As refer-

ence power the combination of panels of a neighbouring PV system

with MLPE is used.

Similarly to the analyses of the cases with MLPE systems

(Figures 11, 12, and 13), the shadow is successfully detected by the

algorithm. However, small differences in the ending dates are

observed between the plots. The longest period is observed in 2016,

Figure 14B. On the other hand, due to the missing data during 2015,

Figure 14A, the end of the shadow is detected earlier. Moreover, in

late 2017 (Figure 14C), the concentration of outliers in September is

lower compared with 2016, and it does not meet the spatial require-

ments of DBSCAN, even if higher than usual concentration of outliers

can be observed by the user. This is further analysed in Section 6,

where suggestions for further study and use of the algorithm are

discussed.

5.2.1 | More shadow examples

In this section, the new shadow detection algorithm is applied to two

different cases of MLPE connected panels. In Section 5.2.2, it is

applied to a shaded panel that showed a defect and was replaced dur-

ing the studied period, while in Section 5.2.3, it is applied to two dif-

ferent MLPE connected panels on the same rooftop that are installed

next to each other.

5.2.2 | Shadow detection on a malfunctioning panel

This studied panel is shaded in the morning and its shadow is recog-

nised successfully by the algorithm. Apart from the shadow, It was

F IGURE 12 Shadow detection on a
solar panel connected in an MLPE system,
which is shaded in the morning, for
3 years

518 TSAFARAKIS AND VAN SARK

 1099159x, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pip.3654 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [05/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



operating normally until July 2016, from which time it suffered from a

defecting fuse and it was replaced in October 2016. The new panel

operated normally during the last year of the available data, on 2017.

Similarly to the previous examples, the “real PR” and the new shadow

detection are applied to each year independently, and the results are

presented in Figure 15.

F IGURE 14 Shadow detection on a
PV system connected to a string inverter,
which is shaded in the afternoon, for
3 years

F IGURE 13 Shadow detection on a
solar panel connected in an MLPE system,
which is shaded in the afternoon, for
3 years. Data are missing for late 2015.
However, this gap does not affect the
effectiveness of the algorithm
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It can be seen in Figure 15A,C that the shadow has a similar pat-

tern, which stems from similar results from the algorithm. Further-

more, in 2016 (Figure 15B), until the failure the pattern is similar with

the other two years as well. However, the results of the algorithm is

not following the same pattern, since it is disoriented from the large

increase of the outliers after the fault occurred in July 2016.

The application of the algorithm on the detection of similar mal-

functions depends on the user. An approach suggested by the authors

is the following: After the first year (in this case 2015, Figure 15A),

the pattern of the shadow is known. Thus, during the second year and

until July, the power loss due to the shadow is expected, and no alarm

is triggered. However, due to the fault, from the first occurrence of a

large deviation of the expected pattern, an alarm could be triggered

immediately, revealing that the extra power loss is not a shadow but a

malfunction of the panel.

5.2.3 | Shadow variation on back to back panels

In this example, the shadow patterns of two panels placed next to

each other and shaded by the same object are studied. The distance

between the panels may be limited; however, as can be seen in

Figure 16, the daily duration of the shadow on one panel is almost

double for the other panel. Shadows have almost the same starting

time, but significantly different ending times. Starting and ending

dates are the same for both shadows.

F IGURE 15 Application of the
shadow detection algorithm to a panel
that showed a defect during the second
year of the studied period and was
replaced

F IGURE 16 Application of the shadow detection algorithm to
panels placed next to each other that are affected by different
shadows from the same object
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In this example, the introduced algorithm identifies successfully

the shadows in both PV systems and serves as perfect example of

how important the positioning of the panels is on the rooftop relative

to an shading object and the difference that some centimetres can

make on the power production.

6 | LIMITATIONS AND FURTHER
SUGGESTIONS

6.1 | Limitations

6.1.1 | Dependence of shadow on irradiance
conditions

The aim of the algorithm is the detection of any shadow created by

obstacles that may be on rooftops (e.g., dormers and exhaust pipes).

These obstacles are constantly present, yet their shadow is not con-

stant, since it is strongly dependent on the ratio of the direct normal

and diffuse horizontal irradiance (DNI and DHI, respectively) to the

global horizontal irradiance (GHI). The higher the DNI to GHI ratio,

the higher the effect of the shadow. Furthermore, the higher the DHI

to GHI ratio, the lower the shade impact of an obstacle.50 Thus, within

two days with different weather, large differences can be observed in

the effect of an obstacle to a system, even in situations with the same

solar position.50

6.1.2 | Outliers outside shadow (faults)

A significant number of outliers are observed outside of the detected

shadow in every example; see, for example, Figures 15 and 16. A

number of factors play a role on this; however, the two major ones

are not due to malfunctions but due to the components and the

nature of the residential systems.

While in testing facilities or large solar parks very high accuracy

devices are measuring directly the power, in residential systems,

power measurements are obtained by the multiplication of the voltage

and current measurements of the optimisers. The measurements

obtained from these devices are considerably less accurate than the

sophisticated and expensive device of the testing facility.

Additionally, the time resolution of the measurements results in a

mismatch of timings of faults between the systems. In more expensive

installations, like a facility, a sophisticated monitoring system mea-

sures the power at 1 s resolution, which can be re-sampled to lower

time resolution, depending on the needs of the analysis. On the other

hand, the time resolution in the residential systems is not constant

and varies between 5 to 7 min, in the same MLPE device. Further-

more, the moment of the measurement of each MLPE device (power

optimiser in this case) is not synchronised with the others of the same

system. Thus, one panel could be measured at XX:12, the other at

XX:15 and so forth. On a non-clear sky day, these time difference

could lead to differences in power.

6.2 | Suggestions for application of the algorithm

In section 3.4 of our previous paper,34 a method to estimate the

power loss of the detected outliers was presented. In that paper, all

the detected outliers are considered for the calculation. However,

after the application of the presented algorithm in this paper, outliers

due to shadow can now be isolated from the rest of the sample. The

power loss due to the shadow (and thus, due to the object that is

causing it) can be estimated and provided to the owner of the system,

where she/he can take further action, if possible. Another key thing

to remember is the dependence of the shadow on irradiance condi-

tions, as explained in Section 6.1.1. Thus, a dataset larger than 2 years

can provide a more accurate estimation about the power loss due to a

shadow.

Furthermore, by processing one full year of data with the pro-

posed algorithm, the energy losses due to a potential shadow for

future years can be estimated. Thus, any new observed power loss

can be identified immediately and proper actions can be taken by the

operator/owner of the system for very fast repairs.

6.3 | Suggestions for further studies

In a detailed observation of the shadow plots, it can be seen that

some small parts of the shadow before the first day and after the last

one are not detected by the algorithm. For instance, in Figure 14,

before the first day and after the last day of the detected shadow, the

density of red marked data points is higher than normal but only for a

couple of hours per day for three to four more days. Since during the

winter where the duration of the shadow is significantly shorter, the

density of the red marked data points does not fulfil the requirements

of DBSCAN, set in step 2, Section 3.2. In order to achieve even more

detailed shadow detection, a further, local density search could be

implemented by the algorithm, similar to the local search taking place

in the fourth step of the original shadow detection algorithm, see Tsa-

farakis et al.50

A further study could be implemented in a case where two

shadows exist during the day, for instance, during the morning and

during the afternoon. Unfortunately, within the 60+ panels of the

studied MLPE PV systems, none was shaded twice in a day, a logical

fact, since a double shading fact would be highly inefficient and less

productive.

7 | CONCLUSION AND OUTLOOK

In conclusion, this paper describes the development of a new shadow

detection algorithm and its application for the monitoring on partially

shaded residential PV systems. Since the power output is the most

common timeseries data for a PV system, it is the only one that

is used.

The proposed algorithm creates a reference data-set, based on

the neighbouring PV systems with similar characteristics. With the
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use of an older method, the measurements are clustered into normal

and non-normal operation or faults, and colour-coded to

represent them.

Then the new algorithm studies the outliers, firstly by removing

the noise with the use of DBSCAN, then finds whether the outliers

are occurring in the same time periods for consecutive days, followed

by clustering them in the same shadow and finally defines a contour,

where all the measurements within it are shadows from the same

object.

The outliers outside of the contour are verified as measuring

faults in our study, while the existence of an unseen shadow is veri-

fied to be correlated with high DHI/GHI ratios.

In this study a combination of the power of the surrounding solar

panels is used for the creation of the reference data-set, where for

each timestamp the power of the best performing panel is selected.

The method is proven to be highly adequate in the presented exam-

ples and can be used as well in an online cloud-based monitoring plat-

form, where the combined power data of neighbouring PV systems, in

which panels are connected as strings to inverters, could form refer-

ence data for each monitored PV system.

The clustering algorithm DBSCAN proved very effective for the

removal of noise. Since noise is very common when solar panels are

monitored through satellite measurements or pyranometers that mea-

sure global horizontal irradiance, it is suggested for further use.

The algorithm delivers a contour in time versus date plots, which

reflects the detected shadow. Due to variations in diffuse irradiance

per year, the contour differs slightly (less than 4%) every year. Adding

several years in one scatter-plot, for more accurate detection was not

efficient, since DBSCAN was detecting all the noise successfully.

However, when more years are available, comparison of contours may

be useful for the study of progress and changes of the shadow

(in case it is a tree that grows or anything that can change).
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