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Introduction

Nowadays, it seems there is more than enough data available about everything.
However, even in times of big data, there are situations where it is challenging
to collect enough data. Think of naturally small populations, such as people
with rare diseases or young children with severe burn injuries (see e.g., Mitani
& Haneuse, 2020; Veen, Egberts, Van Loey, & Van de Schoot, 2020). Or
hard to access target groups, such as people with addiction problems or low
literacy, survivors of violence, or undocumented migrants (see e.g., Bonevski
et al., 2014; Vollebregt, Scholte, Hoogerbrugge, Bolhuis, & Vermeulen, 2022).
Small samples can also be due to financial constraints, think of studies in
which expensive MRI scans are used and collecting enough data is simply too
expensive (see e.g., Turner, Paul, Miller, & Barbey, 2018). Small samples are
inevitable in situations like this.

When a sample is considered small, is discussed in Chapters 1 and 4 of this
dissertation. For now, it is important to know that small samples can cause
big problems. Statistical methods require a certain amount of data to perform
well. This dissertation focuses on Structural Equation Models (SEMs) - a
flexible modeling framework in which latent variables (i.e., variables that are
not directly observed, such as quality of life or happiness) can be modeled. An
example of such a model is a latent growth model, in which the development
of a latent variable can be investigated over time. Running an SEM without
enough data can result in extremely low levels of power, meaning that effects
in the data are probably not detected (see e.g., Cohen, 1988). Other problems
that can occur are inaccurate parameter estimates, inadmissible parameter
estimates, or the absence of parameter estimates due to non-convergence of
the model (see e.g., Boomsma, 1985; Nevitt & Hancock, 2004).
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One way to avoid these small-sample-problems is to simplify the research
question and statistical model, and for instance only report descriptive
statistics or use a very simple statistical test. However, this is not desirable
as complex and essential research questions about naturally small
populations and hard to access target groups cannot be answered in that
way, and important information is missed out on.

Another option to circumvent small-sample-problems that does not involve
simplifying the model or research question, could be the use of Bayesian
methods. In the Bayesian framework, observed data is combined with prior
knowledge. Prior knowledge is information about the model of interest and
corresponding parameters that exist before the data is collected. This
knowledge can for example be based on previous studies, opinions of experts
in the field, or on information about the parameters based on the scale that
will be used to collect data (see e.g., Lek & Van de Schoot, 2018;
Zondervan-Zwijnenburg, Peeters, Depaoli, & Van de Schoot, 2017). This
information is captured in a distribution, the so-called prior distribution.
The combination of prior distributions and the observed data is what we call
the posterior, this is the result of a Bayesian analysis. With a small sample
size, priors have a relatively larger impact on the posterior than with a large
sample size. For a basic introduction to Bayesian statistics, we refer to
Gelman et al. (2014) and Kruschke (2015). For an introduction to Bayesian
SEM, we refer to Kaplan & Depaoli (2012), Asparouhov & Muthén (2010),
and Depaoli (2021).

The inclusion of prior knowledge can increase the amount of information that
is available in the analysis, simply because more information is added through
the specification of prior distributions. Also, Bayesian methods do not rely
on large sample techniques in contrast to the classical frequentist methods
(see e.g., Gelman et al., 2014). Therefore, Bayesian estimation is in theory
more suitable for small samples. Recently, more and more often researchers
switch to a Bayesian approach to deal with their small sample sizes (McNeish,
2016a; Van de Schoot, Winter, Ryan, Zondervan-Zwijnenburg, & Depaoli,
2017). However, this switch is not without problems, and that is where the
studies of this dissertation come in.
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Outline of this Dissertation

In the four studies in this dissertation, we create an overview of the
performance of Bayesian Structural Equation Models (SEMs) with small
samples compared to classical frequentist methods. In addition, we discuss
precautions and provide guidelines on how to use Bayesian SEM in a
thoughtful way when samples are small.

All chapters have their own page at the Open Science Framework (OSF). Here,
supplemental files can be found as well as scripts containing annotated R or
Mplus code to reproduce the results. The link to the corresponding OSF page
is provided at the beginning of each chapter.

In Chapter 1, the results are presented from an extensive systematic literature
review on the performance of Bayesian and frequentist estimation methods
under small samples for SEMs. The results of this systematic review are widely
applicable, as in the included studies a variety of SEMs was investigated. We
present an overview of the included studies, as well as the models of interest,
which sample sizes are considered to be small according to the authors of the
included studies, and aggregate the information from the included studies. We
end the chapter with recommendations for researchers on analyzing a small
sample size and on how to specify thoughtful prior distributions. The study
described in this chapter is published in Structural Equation Modeling: A
Multidisciplinary Journal. Note that as a response on this publication, a
comment paper was written by Zitzmann, Lüdtke, Robitzsch and Hecht (2021).
Also, the data set containing all screened references is openly available at the
OSF, and can be used for other purposes as well (see e.g., the simulation study
by Ferdinands, 2021).

In the systematic literature review, we did not come across any simulation
studies investigating latent growth models with a long-term outcome. In this
model, growth processes can be modeled over time (e.g., the development of
posttraumatic stress symptoms over time), and it can be investigated whether
the initial starting point (i.e., posttraumatic stress score on time point 1) or
growth process (i.e., the development of posttraumatic symptoms over time)
can be indicators for another variable measured later in time (e.g., quality of
life). This type of model allows researchers to assess longer-term patterns, and
to detect the need to start a (preventive) treatment or intervention in an early
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stage. In Chapter 2, we discuss the results of a simulation study in which
we investigate the performance of Bayesian and frequentist estimation for a
latent growth model with a long-term (so-called ‘distal’) outcome variable.
The research described in this chapter is published in Structural Equation
Modeling: A Multidisciplinary Journal.

In Chapter 3, we touch on promising estimation methods for small samples
within the frequentist framework: twostep modeling and factor regression
score. Both methods are available in the software package lavaan in R
(Rosseel, 2012).1 In a simulation study, we investigate the performance of
twostep modeling and factor regression score, and compare them to
Maximum Likelihood estimation and Bayesian estimation. This study is
published as a book chapter in the book ‘Small Sample Size Solutions: A
Guide for Applied Researchers’ (2020), edited by van de Schoot and
Miočeviç.

In Chapter 4, we present the dangers of the defaults: a non-technical
tutorial in which we discuss the risks of using Bayesian estimation while
blindly relying on built-in software default priors when samples are small.
Also, we demonstrate an online educational Shiny app (Smid & Winter,
2020, available via https://osf.io/m6byv/), in which users can play around
with varying sample sizes and prior settings to investigate the impact of
priors on the results. Finally, we present guidelines on how to recognize
‘misbehaving’ and ‘behaving’ priors after the Bayesian analysis is conducted.
This study is published in a special issue on Bayesian methods in psychology
in the journal Frontiers in Psychology.

1Twostep modeling and FSR are both variants of the Structural-after-Measurement
(SAM) approach in the software package lavaan. In a nutshell, ‘twostep’ is gobal SAM,
and ‘fsr’ is local SAM. For more information about SAM, we refer to Rosseel & Loh (2022).
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Chapter 1

Bayesian vs Frequentist
Estimation for SEMs with
Small Samples: A
Systematic Review

This chapter is published as Smid, S. C., McNeish, D., Miočeviç, M., & van
de Schoot, R. (2020). Bayesian Versus Frequentist Estimation for Structural
Equation Models in Small Sample Contexts: A Systematic Review. Structural
Equation Modeling: A Multidisciplinary Journal, 27 (1), 131-161. https://doi.
org/10.1080/10705511.2019.1577140

Author Contributions: RvdS and SS designed the study. SS carried out
the largest part of the screening of abstracts and full-texts. All doubts were
discussed with DM, MM and/or RvdS. SS carried out the qualitative synthesis,
and wrote and revised the manuscript with feedback and input of DM, MM
and RvdS. RvdS supervised the project.

Online Data Archive and Supplementary Files: https://osf.io/7mght/
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Abstract

In small sample contexts, Bayesian estimation is often suggested as a viable
alternative to frequentist estimation, such as maximum likelihood estimation.
Our systematic literature review is the first study aggregating information
from numerous simulation studies to present an overview of the performance
of Bayesian and frequentist estimation for structural equation models with
small sample sizes. We conclude that with small samples, the use of Bayesian
estimation with diffuse default priors can result in severely biased estimates -
the levels of bias are often even higher than when frequentist methods are
used. This bias can only be decreased by incorporating prior information.
We therefore recommend against naively using Bayesian estimation when
samples are small, and encourage researchers to make well-considered
decisions about all priors. For this purpose, we provide recommendations on
how to construct thoughtful priors.
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1.1 Introduction

The use of Bayesian estimation is on the rise in many scientific fields (König
& Van de Schoot, 2017; Kruschke, Aguinis, & Joo, 2012; Rietbergen, Debray,
Klugkist, Janssen, & Moons, 2017; Rupp, Dey, & Zumbo, 2004; Van de
Schoot, Winter, et al., 2017), and during the last few decades there has been
a “steep increase” in the number of “theoretical, simulation and application
papers implementing Bayesian SEM [Structural Equation Modeling]” in
psychology (Van de Schoot, Winter, et al., 2017, p. 231). The rise in both
applications and methodological studies of Bayesian estimation might be due
to the availability in popular software packages and some advantages that
Bayesian estimation possesses over its frequentist counterpart, such as the
flexibility to include model uncertainty, and to estimate models that are too
complex or too computationally demanding for frequentist estimation (see
e.g., Kaplan, 2014, pp. 297–290; Van de Schoot, Winter, et al., 2017;
Wagenmakers, Lee, Lodewyckx, & Iverson, 2008).1

Another popular reason to choose Bayesian estimation is that, unlike
frequentist methods (e.g., maximum likelihood (ML) estimation), it does not
rely on asymptotic theory (see e.g., Gelman et al., 2014, pp. 83–97; Kaplan,
2014, pp. 285–286). It is often shown that in the context of SEM for small
sample sizes, in relation to the complexity of the model, frequentist
estimation often results in nonconvergence, inadmissible parameter solutions,
and inaccurate estimates. All of these issues might be circumvented by using
Bayesian estimation (see e.g., Muthén & Asparouhov, 2012; Wagenmakers et
al., 2008). This is a welcoming feature of Bayesian estimation, especially in
the social sciences where it can be challenging to collect enough data due to
naturally small populations (e.g., Egberts et al., 2016), hard to access target
groups (e.g., Coleman et al., 2002), or financial constraints may exist (e.g.,
Van Lier et al., 2017).2

1In the current chapter, we assume basic knowledge on Bayesian statistics. For a
discussion of the differences between Bayesian and frequentist estimation, see, for example,
the chapter on Bayesian and frequentist statistical schools in Kaplan (2014), pp. 285–296.
Readers interested in Bayesian statistics are referred to, among many others: Gelman et
al. (2014), Kaplan (2014), Kaplan & Depaoli (2013), Kruschke (2015), Lynch (2007), Lee
& Wagenmakers (2014), and for recent methodological articles to the two special issues on
Bayesian Data Analysis from Psychological Methods (Chow & Hoijtink, 2017; Hoijtink &
Chow, 2017).

2Although not further discussed in the current study, note that there are several other

9



Recommendations to use Bayesian over frequentist estimation in small
sample contexts are common in the literature. For example, Rupp et al.
(2004) mentioned that “Bayesian parameter estimation is more appropriate
than ML estimation for smaller sample sizes, because the former do not rely
on asymptotic results that are typically not satisfied with psychometric data
except in large-scale settings.” (p. 446). Kruschke et al. (2012) advised that
“Bayesian methods can be used regardless of the overall sample size or
relative sample sizes across conditions or groups.” (p. 743). Such statements
can create the impression that using Bayesian estimation universally solves
small sample problems. Although several textbooks on Bayesian estimation
stress the important role of prior distributions when Bayesian estimation is
used with small samples (e.g., Gelman et al., 2014, p. 88; Kaplan, 2014, p.
291; McElreath, 2016, p. 31), in practice prior distributions are often not
carefully chosen, and most empirical researchers rely on default software
settings (see e.g., König & Van de Schoot, 2017; McNeish, 2016a; Van de
Schoot, Schalken, & Olff, 2017; Van de Schoot, Winter, et al., 2017). Popular
software programs, such as: Mplus (Muthén & Muthén, 1998-2017); SPSS
(IBM Corp., 2017); JASP (JASP team, 2018); or the R package blavaan

(Merkle & Rosseel, 2018), offer Bayesian estimation with diffuse default prior
distributions. This permits a naive use of Bayesian estimation, which entails
that software defaults (e.g., Mplus default priors) or generic rules-of-thumb
(e.g., the Inverse Gamma (0.01, 0.01) for variance parameters in multilevel
models) are used to specify prior distributions. Naive priors should not be
confused with noninformative priors. Some diffuse default priors can act as
very informative priors when the sample size is small (see e.g., Gelman, 2006;
McNeish, 2016a). In contrast, thoughtful priors incorporate previous beliefs
about parameters and are adjusted to the specific research situation. These
prior distributions could be based on previous studies, meta-analyses or
expert opinions and are applicable only to a specific study. In a thoughtful
way of using Bayes, flat or software default priors can also be used, as long as
arguments are provided why this is a suitable prior for this specific
parameter, that is, a thoughtful choice is made about the prior distributions.
A last category are priors based on the data itself, so-called data dependent
priors. With data dependent priors, the model is first fit with a frequentist

techniques to handle small sample sizes in SEM, such as ridge SEM (Yuan, Wu & Bentler,
2011), and three-step estimation (Bakk, Oberski, & Vermunt, 2014).
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method (e.g., ML). The estimates of the frequentist estimation are then used
as hyperparameters for the prior distributions, often in combination with
very large variances to represent the uncertainty about the prior distribution
(see e.g., Darnieder, 2011).3

1.1.1 Goals of the Study

In the last decade, many simulations studies have investigated the
performance of Bayesian estimation for SEM in small samples and compared
its performance to frequentist estimation methods. The goal of our
systematic review is twofold. The first goal is to provide a comprehensive
overview of the performance of Bayesian estimation for SEMs with small
samples in comparison to frequentist estimation. Therefore, we report details
about the conditions investigated in the included simulation studies, which
sample sizes were defined as small by the authors of the studies, and which
prior distributions were used. In addition, we aggregate information about
coverage, power, and relative bias from all cells across the included
simulation studies. Second, we provide recommendations for researchers
regarding analyzing small data sets and how to specify thoughtful priors.

1.1.2 Organization of the Chapter

The remainder of the chapter is structured as follows: first, the methods used
to conduct the systematic review are described, followed by a description of the
included studies and the general performance of the investigated estimation
methods for SEM with small samples. In addition, we collected and graphically
present all the reported coverage, power and relative bias estimates for all
parameters from all cells as reported in the included studies. We end with
conclusions, a discussion of limitations, and recommendations.

3Hyperparameters are the parameters of the prior distribution, for example, the mean
and variance in a normal distribution.
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1.2 Methods

1.2.1 Inclusion and Exclusion Criteria

We included papers in which a simulation study was used to investigate and
compare the performance of Bayesian estimation to frequentist methods in
structural equation models with a small sample size. We only included
peer-reviewed papers in the field of social sciences. Non-English references
were excluded, as well as books, book chapters, conference talks and software
manuals. We used the following definitions of the inclusion criteria:

• Simulation study. Multiple replicated datasets were analyzed, and
results were summarized for all simulated data sets.

• Bayesian estimation was compared to frequentist estimation methods.
The performance of Bayesian and frequentist estimation was
investigated for the exact same model, so that the results can be
compared across the two estimation methods.

• Structural equation models. Models of interest fall under the umbrella
of structural equation models including mediation, confirmatory factor
analysis, latent growth, multilevel, and mixture models. Network
analysis, machine learning, meta-analysis and item response theory
were excluded.

• Small sample size. The original authors stated that at least one of the
sample sizes in the simulation study represent a small sample size for
their specific model.4 Small sample conditions must have been reported
explicitly; aggregated results including small sample conditions were
excluded.

1.2.2 Search Strategy

Three approaches containing six searches, were conducted to identify
possibly relevant papers, as displayed in Figure 1.1. As the first approach, we
used the simulation study papers on small samples which were identified by

4An exception is made for two studies in which the authors did not mention that a small
sample size was used in the simulation study, while an obviously small sample size was used:
6 and 12 clusters in a multilevel model (Browne & Draper, 2000, 2006).
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the systematic review of Van de Schoot, Winter, et al. (2017) on the use of
Bayesian estimation in psychology. As a second approach, we sent messages
to all subscribers of the mailings lists SEMNET and JISC Multilevel of
Listserv 16.0, and posted a message on the online platform ResearchGate.
The abstracts of the papers identified from these two approaches (Searches
1-5, see Figure 1.1) were screened and when these met the inclusion criteria,
the full-text version was examined. When the inclusion criteria were still
met, the paper was included in the qualitative synthesis and in the next
search phase, in which the references from the paper were examined as were
papers that cited the included paper. Scopus was used to identify the
references of the relevant papers, as well as the papers that cited the relevant
papers (when the paper was not available in Scopus, Google Scholar was
used). These steps were repeated until no new papers were identified. For
the first three searches, references that did not meet all our inclusion criteria
but did meet the criteria about simulation studies, Bayesian estimation and
small samples, were included in the upcoming searches because these papers
could still identify relevant references and citations. As a third approach, a
final search (Search 6) was carried out using Scopus to identify relevant
studies that were published after 2014, because the study of Van de Schoot,
Winter, et al. (2017), which was used as the first approach, included studies
published until 2015. The exact search strings can be found in the
Supplemental File S1 (all Supplementary files are available on the Open
Science Framework: https://osf.io/7mght/). The abstracts, followed by the
relevant full-texts of the identified records, were screened using the
aforementioned inclusion and exclusion criteria.

The first author carried out the screening and as a quality check, a random
sample of 10% of abstracts and 20% of full-texts were reviewed by each of
the three co-authors, which resulted in very few discrepancies. Disagreements
were discussed until the authors agreed. In the end, no additional studies
were included in the systematic review after discussion. In Figure 1.2, a
summary of the flow charts can be found following Preferred Reporting Items
for Systematic reviews and Meta-Analyses [PRISMA; Moher, Liberati,
Tetzlaff, Altman, & The PRISMA Group (2009)]. More details of the search
are provided online (Supplemental File S1) as well as all identified references
and the reason for exclusion (Supplemental File S2). Additionally, separate
flowcharts for Searches 1 to 6 are available in Supplemental File S3.
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Figure 1.1: The three approaches and six subsequent literature searches to
identify relevant references.

1.2.3 Results Search Strategy

A total of 32 studies, described in 27 papers and written by 24 unique groups
of authors, met all inclusion criteria and were included in the qualitative
synthesis. The following SEMs were investigated in these studies: mediation
model (n = 6), confirmatory factor analysis (n = 3), latent growth model
(n = 6), multilevel model (n = 12), autoregressive model (n = 1), and
mixture model (n = 4). Characteristics of the 32 included studies can be
found in Table 1.1. In addition, we collected coverage, power and relative
bias for all reported parameters for all cells as reported in the studies.5 We
graphically present these data in Figures 1.3, 1.4 and 1.5.

5We used all available results reported in tables in the included papers and appendices.
When figures with coverage, power and/or relative bias results were shown in the paper,
we contacted the authors to share their simulation results with us. For more details, see
Supplemental Table S4.
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- Search 1: n = 36 to Search 2 
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- Search 3: n = 10 to Search 4 

- Search 4: n = 6 to Search 5 

 

References directly included 

in qualitative synthesis: n = 3 

- Search 5: n = 0 

- Search 6: n = 2 + 1 

Excluded based on title and abstract: n =  3106 

 

Excluded: n =  413 

- No Bayesian estimation: n = 11 

- No simulation study: n = 130 

- No small samples: n = 188 

- No SEM as defined in inclusion criteria: n = 29 

- Not interested in estimating model parameters: n = 10 

- No comparison of estimation methods: n = 15 

 

- Duplicates: n = 3 

- No peer review: n = 10 

- Outside field of social sciences: n = 16 

- Inaccessible after contacting authors: n = 1 

Excluded: n = 47 

- No small samples: n = 1 

- No peer review: n = 1 

- No SEM as defined in inclusion criteria: n = 15 

- Not interested in estimating model parameters: n = 5 

- No comparison of estimation methods: n = 25 

References identified: n = 5050 

- Search 1: n = 36 (identified through approach 1: review van de Schoot et al. (2017))  

- Search 2: n = 2248 (identified through results Search 1) 

- Search 3: n = 45 (identified through approach 2: mailing lists) 

- Search 4: n = 2387 (identified through results Searches 2 and 3) 

- Search 5: n = 261 (identified through results Search 4) 

- Search 6: n = 73 (identified through Scopus) 

Figure 1.2: Summary flow chart of the search process (based on the PRISMA
guidelines). For a detailed description of the exclusion criteria, we refer to the
‘Inclusion and exclusion criteria’ Section. See Supplemental file S1 for more
details about the search process.
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Table 1.1: Selected characteristics of simulation studies investigating
frequentist and Bayesian estimation methods for SEM with small samples

    Sample Size 

Study Model of interest 
Estimation 

methods 
Software 

Number of  

Persons/ Clusters 

Time Points/ 

Cluster Size 
      

Mediation Models  
 

   

1. Chen et al., 

2014* 

Mediation model with 3 

manifest variables 

ML, 

BayesN 

OpenBUGS, Mplus  25, 50, 200 - 

      

2. Chen et al., 

2014* 

Mediation model with 3 

latent variables and 

continuous indicators 

ML, 

BayesN 

OpenBUGS, Mplus  50, 100, 400 - 

      

3. Chen at al., 

2015 

Mediated-effect model 

with 3 latent variables and 

ordinal indicators 

RWLS, 

BayesN, 

BayesT  

Mplus, OpenBUGS  100, 200, 400 - 

      

4. Koopman 

et al. 2015 

Mediation model with 3 

manifest variables 

OLS, 

BayesN 

MASS, boot, 

MCMCpack in R  

20, 40, 60, 80, 

100 

- 

      

5. Miočević et 

al. 2017 

Single mediator model 

with 3 manifest variables 

OLS,  

BayesN, 

BayesT 

SAS 9.4, 

RMediation, SAS 

PROC MCMC 

20, 40, 60, 100, 

200 

- 

      

6. Yuan & 

MacKinnon, 

2009 

Mediation model with 3 

manifest variables 

ML, 

BayesN, 

BayesT 

WinBUGS 25, 50, 100, 200, 

1000 

- 

      

      

CFA Models  
 

   

7. Natesan, 

2015 

Ordinal CFA model with 

2 factors 

RML, WLS, 

RDWLS, 

RULS, 

BayesT 

JAGS,  

LISREL 

42, 63, 84, 105, 

210, 315 

- 

      

8. Lee & 

Song, 2004 

Model with 2 overlapping 

correlated factors;  

Model with 3 overlapping 

correlated factors 

ML, 

BayesD 

LISREL,  

BUGS 

32, 48, 64, 80;  

44, 66, 80, 110 

- 

      

9. Van Erp et 

al., 2018 

Model with 3 latent 

variables and mediation 

effect 

ML, 

BayesN, 

BayesD 

Mplus 7.2 35, 75, 150, 500 - 

      

      

Latent Growth Models  
 

   

10. McNeish, 

2016a* 

Latent growth model with 

2 binary time-invariant 

exogenous predictors (I, 

LS) 

FIML,  

REML KR,   

BayesN, 

BayesT 

Mplus,  

SAS PROC 

MIXED 

20, 30, 50 4 

  
   

11. McNeish, 

2016b* 

Latent basis model and 

second order growth 

model (I, LS) 

FIML, 

BayesN, 

BayesD 

Mplus 7.1 20, 30, 50 4 

  
   

12. McNeish, 

2016b* 

Latent growth model with 

2 binary individual-level 

predictors (I, LS) 

FIML, 

BayesN 

Mplus 7.1 20, 30, 50 4 
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Sample Size 

Study Model of interest 
Estimation 

methods 
Software 

Number of  

Persons/ Clusters 

Time Points/ 

Cluster Size 
      

13. Van de 

Schoot et al., 

2015 

Latent growth model 

including covariate to 

predict the linear slope (I, 

LS, QS) 

 

ML, 

BayesN, 

BayesT 

Mplus 7.1 8, 14, 22 3 

      

14. 

Zondervan-

Zwijnenburg 

et al., 2019* 

Multigroup latent growth 

model (I, LS, QS) 

MLR, 

BayesT 

Mplus 7.11 Group 1 = 5, 10, 

25, 50; Group 2 = 

50, 100, 200, 500, 

1000, 2000, 5000, 

10.000 

4 

      

15. 

Zondervan-

Zwijnenburg 

et al., 2019* 

Multigroup latent growth 

model (I, LS, QS) 

MLR, 

BayesT 

 

Mplus 7.11 Group 1 = 50; 

Group 2 = 50, 

100, 200, 500, 

1000, 2000, 5000, 

10.000 

 

4 

Multilevel Models   
   

16. Baldwin 

& Fellingham, 

2013 

Two-level partially 

clustered design 

REML KR,  

BayesT 

SAS PROC 

MIXED/ MCMC  

8, 16 5, 15 

      

17. Browne & 

Draper, 2000 

Two-level random-slopes 

regression model 

IGLS, 

RIGLS, 

BayesN, 

BayesD 

MLwiN, BUGS  12, 48 (un)balanced, 

mean = 18 

      

18. Browne & 

Draper, 2006 

Two-level variance-

components model 

ML, REML, 

BayesN 

MLwiN, WinBUGS 6, 12, 24, 48 (un)balanced, 

mean = 18 
      

19. Depaoli & 

Clifton, 2015 

Two-level latent covariate 

model with dichotomous 

and continuous indicators 

MLR 

/WLSM, 

BayesN, 

BayesT 

Mplus 

 

40, 50, 100, 200 5, 10, 20 

      

20. Farrell & 

Ludwig, 2008 

Two-level response time 

model 

ML, BayesT N.A. (i) 20;  

(ii) 5;  

(iii) 80 

(i) 20, 80, 500; 

(ii) 500;  

(iii) 20 
      

21. Holtmann 

et al., 2016  

Two-level CFA model 

with two correlated 

factors at both levels, 

continuous and 

categorical indicators 

MLR/ 

WLSMV, 

BayesN, 

BayesT 

Mplus 7 and 

Mplusautomation in 

R 3.0.2. 

50, 100, 150, 200 2, 4, 6 

      

22. Hox et al., 

2012 

Two-level model with one 

factor and one exogenous 

predictor 

ML (results 

from other 

study), 

BayesN 

Mplus 6.1 10, 15, 20 1755 

      

23. Hox et al., 

2014 

Two-level mediation 

model 

ML, 

BayesN 

Mplus 7.0 5, 10, 25, 50 5, 10 

      

24. McNeish, 

2016a*  

Two-level model with 

treatment effect measured 

at level 2 

FIML, 

REML KR, 

BayesN, 

BayesT 

Mplus, SAS PROC 

MIXED 

8, 10, 14 7-14 

      

      

17



 
 

  
 

Sample Size 

Study Model of interest 
Estimation 
methods 

Software 
Number of  
Persons/ Clusters 

Time Points/ 
Cluster Size 

      

25. McNeish 
& Stapleton, 
2016 

Two-level model ML, REML, 
REML KR,  
BayesN 

SAS PROC 
MCMC/ MIXED/  
GLIMMIX 

4, 8, 10, 14 7-14, 17-34 

      

26. 
Stegmueller, 
2013 

Linear and nonlinear two-
level random-intercept 
models 

ML, 
BayesN 

N.A. 5, 10, 15, 20, 25, 
30 

500 

      

27. Tsai & 
Hsiao, 2008 

Two-level model REML, 
BayesN 

R, SAS PROC 
GLIMMIX 

15 6 

      
      

AR Model   
   

28. Price, 
2012 

Multivariate 
autoregressive lag-1 
model 

MLR, 
BayesT 

Mplus 6.2 1, 3, 5, 10, 15 25, 50, 75, 
100, 125 

      
      

Mixture Models   
 

 
 

29. Depaoli, 
2012* 

Two-factor model with 2 
classes, class separation at 
measurement level 

ML, BayesT Mplus 
 

100 (smallest 
class is 20), 300, 
800 

- 

      

30. Depaoli, 
2012* 

Two-factor model with 2 
classes, class separation at 
structural level 

ML, BayesT Mplus 100 (smallest 
class is 20), 300, 
800 

- 

      

31. Depaoli, 
2013 

Growth mixture model 
with 3 classes (I, LS and 
in 1 condition also QS) 

ML, 
BayesN, 
BayesT,  
BayesD 

Mplus 7 150 (smallest 
class is 15), 800 

4 

      

32. Serang et 
al., 2015 

Exponential growth 
mixture model with 2 
classes 

ML, BayesT 
 

R, OpenBUGS, 
Mplus 6.12 
 

200 (smallest 
class is 40), 500, 
1000 

5, 7, 9 

      

Note. Every line in the table represents one simulation study. * = multiple simulation studies from this paper are 
included in the qualitative synthesis. - = not applicable, I = intercept, LS = linear slope, QS = quadratic slope, ES 
= exponential slope. Bold = defined as a small sample size by the original authors. Underlined = not defined by 
original authors, defined by current authors as an obviously small sample size. Bayesian estimation methods 
abbreviations: BayesN = Bayesian methods with naive priors, BayesT = Bayesian methods with thoughtful priors, 
BayesD = Bayesian methods with data dependent priors, Frequentist estimation methods abbreviations (in 
alphabetical order): FIML = Full Information Maximum Likelihood, IGLS = Iterative Generalized Least Squares, 
ML = Maximum Likelihood, REML = Restricted Maximum Likelihood, REML KR = Restricted Maximum 
Likelihood with Kenward-Roger correction, RDWLS = Robust Diagonally Weighted Least Squares, RIGLS = 
Restricted Iterative Generalized Least Squares, RML/ MLR = Robust Maximum Likelihood, RULS =  Robust 
Unweighted Least Squares, RWLS = Robust Weighted Least Squares, WLSM = Weighted Least Squares using a 
diagonal weight matrix. N.A. in Software column = information on the software program used is not available in 
the article. 
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1.2.4 Bayesian vs. Frequentist Methods in Included
Studies

In the current study, we distinguish between three types of frequentist
estimation methods and three types of prior settings for Bayesian estimation.
For the frequentist estimation methods, we differentiate between maximum
likelihood (ML), restricted maximum likelihood (REML) and least squares
(LS). The ML category subsumes robust ML and full information ML. In the
REML category, REML with and without Kenward-Roger correction are
included (for more information, see Kenward & Roger, 1997, 2009; McNeish,
2016b). Note that REML with Kenward-Roger correction is often referred to
as a “small sample correction” (see e.g., McNeish & Stapleton, 2016, p. 4).
Finally, robust weighted least squares or unweighted least squares, all
comprise the LS category.

Furthermore, a distinction is made between three types of prior settings for
Bayesian estimation. We use the terms: naive (BayesN), thoughtful (BayesT)
and data dependent (BayesD) priors. In the current study, the prior setting
is categorized as BayesT when information is included in at least one prior
distribution. We do not intend to imply that studies using BayesN of BayesD
are necessarily lacking though as these approaches are justifiable under some
circumstances. Rather, this set of terminology is intended to imply that
additional thought was required to specify custom prior distributions instead
of relying on defaults, generalized suggestions, or the data to create priors.
In Supplemental File S6, the specified prior distributions from all included
simulation studies are presented.

Note that within the three Bayesian categories, still different levels of
informativeness can occur, as well as different combinations of naive,
thoughtful and data dependent priors. However, the study would not benefit
from creating subcategories in which only the exact same level of
informativeness and combinations of priors occur, as almost each study
would end up in a category on its own. Our view is that the three categories
we selected are specific enough to discriminate between different types of
prior distributions while also allowing for broad conclusions to be readily
interpretable.

In the next section, we describe how Bayesian estimation (BayesN, BayesT,
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BayesD) performed in comparison to frequentist estimation (ML, REML, LS)
in the included studies. We realized that the results in terms of performance
of estimation methods, were generally independent of the model. Therefore,
we discuss the results across all models together and focus on model specific
exceptions. Supplemental Table S6 shows which studies compared which
permutations of methods (e.g., which studies compared BayesT to frequentist
estimation), and Supplemental Tables S7-S10 include the raw conclusions
regarding the performance of the methods in each of the studies.

1.3 Results

1.3.1 Overall Coverage, Power and Relative Bias

The reported values of coverage, power and relative bias for the sample sizes
that were defined as small by the original authors are graphically displayed in
boxplots in Figures 1.3, 1.4 and 1.5. On the x-axes, the different estimation
methods are shown together with the number of reported values available for
this estimation method. Note that coverage, power and relative bias are
frequentist properties, but are still often used to evaluate and compare both
frequentist and Bayesian estimation methods (Berger & Bayarri, 2004; Van
Erp, Mulder, & Oberski, 2018). With the exception of 2 studies, all included
simulation studies used one or multiple of these evaluation criteria and the
results are combined to show the distribution of the coverage, power and
relative bias levels for the varying estimation methods.6 We divided
parameters of interest into two categories: structural parameters (e.g., latent
means, regression coefficients) and variance parameters (e.g., latent
variances, covariances, residual variances). Note that the coverage and power
for the variance parameters are not often investigated in the included studies,
as those are less often the parameter of interest in substantive studies than
structural parameters (see Dedrick et al., 2009) and therefore these results
are discussed in text but not presented in figures. In Supplemental Table S5,
the minimum, maximum and quartile values of the coverage, power and
relative bias can be found for each estimation method and parameter type.

6The two exceptions are the studies of Farrell & Ludwig (2008) and Serang, Zhang, Helm,
Steele, & Grimm (2015); they reported absolute mean bias instead of relative mean bias.
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Note that the number of reported values for REML and LS is relatively
small. As we have not focused explicitly on these methods, we are not able
to draw any strong conclusions based on our results for REML or LS.

Coverage. In Figure 1.3, the results for the coverage of structural
parameters can be found for the small sample sizes. The dashed grey lines
represent the desirable coverage interval of 92.50 and 97.50 (Bradley, 1978).
For the three Bayesian estimation methods, 90.97% of the values are at or
above the desirable coverage of 92.50. BayesN and BayesT perform especially
well: respectively 93.33% and 97.56% of coverage values are at or above
92.50. For BayesD, 64.94% are at or above 92.50. The three frequentist
methods show more under-coverage than the Bayesian methods: only 52.55%
of the values are above 92.50, although there are large differences between
the three methods. For ML, 52.94% are at or above the desired coverage
level, for REML 87.88% and for LS only 2.78%. Baldwin & Fellingham
(2013) explain that coverage can be lower for frequentist methods because
the sampling distribution of the parameter is assumed to be normal, an
assumption which is often violated when samples are small. Hox, Moerbeek,
Kluytmans, & Van de Schoot (2014) continue that because of biased
standard errors for ML estimation, as a consequence of small sample sizes,
ML resulted in worse coverage rates than Bayesian estimation. Using REML
can improve the standard error estimates (for more information, see
McNeish, 2017). This can explain why REML performs better than the other
frequentist methods in terms of coverage.

The coverage levels for variance parameters for BayesT and LS are hardly
investigated (number of data points = 11 and 6, respectively), and therefore
no conclusions are drawn for these estimation methods based on these results.
For ML and REML, 23.91% and 44.74% respectively, of the reported coverage
values are at or above 92.50. Bayesian estimation performs better: for BayesN
and BayesD, 65.16% and 74.00% of the reported coverage values are at or
above 92.50.

Overall, Bayesian estimation lead to better coverage rates for both parameter
types than the frequentist methods.

Power. In Figure 1.4, the reported power levels for the structural
parameters are shown for small sample sizes. The dashed grey line represents
the desirable 0.80 power level. A large part of the reported power levels of
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Figure 1.3: Reported coverage in the included studies for structural parameters
(e.g., latent means, regression coefficients), for sample sizes defined as small
by the original authors, presented for the varying estimation methods. Note.
Dashed grey lines represent the desirable [92.50; 97.50] coverage level interval. The n
represents for each estimation method the combined number of cells in the simulation designs
of the included studies, that is, the amount of data points that were available. The width of
the boxplots is a function of the number of data points. The boxplots are created by using
the package ggplot2 (version 2.2.1, Wickham, 2016) in R (R Core Team, 2022). The bold
black line in the boxplots represent the median, the lower and upper ends of the boxplot
correspond to the first and third quartiles, the whiskers are based on 1.5 times the inter-
quartile range, and the circles beyond the end of the whiskers represent outliers.
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the structural parameters is below 0.80. For BayesN, 85.58% are below 0.80,
for BayesT 51.29%, for BayesD 78.79%, for ML 90.65%, for REML 87.20%,
and for LS 87.20%. Only when BayesT was used, and thus prior information
was included, power of 0.80 was reached in a substantial portion (48.71%) of
the reported cases. In studies in which power levels of 0.80 or higher were
reported when using BayesT, it is explained that power increased when the
variance hyperparameter of the prior distribution became smaller, that is,
when specific prior information is included (Miočević, MacKinnon, & Levy,
2017; Price, 2012; Van de Schoot, Broere, Perryck, Zondervan-Zwijnenburg,
& Loey, 2015; Zondervan-Zwijnenburg, Depaoli, Peeters, & Van de Schoot,
2019). Thus, using BayesT increased chances of reaching a power level of
0.80 or higher. For the variance parameters, the power levels are hardly
investigated in the included studies (number of data points varies between 0
and 39 for the estimation methods).

Relative bias. In Figure 1.5, the relative bias for the structural parameters
(Figure 1.5a) and variance parameters (Figure 1.5b) is presented for the
small samples. The dashed grey lines represent the desirable ±10% level of
bias (Hoogland & Boomsma, 1998). For both parameter types, the median of
the distributions is within the 10% interval for all estimation methods,
except the median of the distribution of LS for the structural parameters
(Figure 1.5a), and the median of the distribution of ML estimation for the
variance parameters (Figure 1.5b). For structural parameters, the
distributions of BayesN, BayesT, BayesD, ML and REML tend to equally
spread around the 10% interval, while the distribution of LS is skewed
upwards. For the variance parameters, the distributions of BayesN, BayesT
and LS are skewed upwards, the distribution of ML is skewed downwards,
and the distributions of BayesD and REML tend to equally spread around
the 10% interval. Overall, the estimation of variance parameters seems to be
more problematic than the estimation of structural parameters.

For both parameter types and all estimation methods, there are outliers
reported. Interestingly, the highest outliers were reported for the structural
parameters, while in general the estimation of structural parameters seemed
to be less problematic than the estimation of variance parameters. Note that
the most extreme outliers are not visible in the boxplots, as the y-axes range
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Figure 1.4: Reported power in the included studies for structural parameters
(e.g., latent means, regression coefficients), for sample sizes defined as small
by the original authors, presented for the varying estimation methods. Note.
The dashed grey line represents the desirable 0.80 power level. The n represents for each
estimation method the combined number of cells in the simulation designs of the included
studies, that is, the amount of data points that were available. The width of the boxplots
is a function of the number of data points. The boxplots are created by using the package
ggplot2 (version 2.2.1, Wickham, 2016) in R (R Core Team, 2022). The bold black line in
the boxplots represent the median, the lower and upper ends of the boxplot correspond to
the first and third quartiles, the whiskers are based on 1.5 times the inter-quartile, and the
circles beyond the end of the whiskers represent outliers.
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between −100% and +100% bias.7 For BayesN, BayesT, BayesD, ML,
REML and LS, respectively 54.89%, 71.74%, 41.83%, 66.82%, 78.13% and
44.23% of the reported values lie within the ±10% cutoff values for the
structural parameters (Figure 1.5a). From the estimation methods, the use
of REML and BayesT led to most structural parameter estimates within the
ten percent boundary, followed by ML, BayesN, LS and BayesD. For the
variance parameters, it is reported that for BayesN, BayesT, BayesD, ML,
REML and LS, respectively 45.35%, 27.72%, 69.52%, 35.83%, 70.63% and
63.33% of the values lie within the ±10% cutoff values for the variance
parameters (Figure 1.5b). From the estimation methods, the use of REML
and BayesD resulted in the most variance parameter estimates within the ten
percent boundary, followed by LS, BayesN, ML and BayesT. An explanation
for the shift in position for BayesT is that thoughtful prior information was
more often included for structural parameters than variance parameters.
Note that these percentages can give a general idea of the amount of
reported values within the 10% interval, but that these percentages are
obviously influenced by the extreme outliers.

Overall, when looking at the median of the distributions, the performance of
BayesN, BayesT, BayesD and ML is acceptable for the structural parameters.
For BayesN, BayesT and ML, the performance is of poorer quality for the
variance parameters, although the medians are still within the 10% interval
for BayesN and BayesT. For BayesD, the performance is better for the variance
parameters than the structural parameters. REML seems promising for both
parameter types, although there are only 32 and 41 values reported for the
structural and variance parameters respectively. Not one estimation method
outperformed all others for both parameter types in terms of relative bias,
when considering the percentage of reported values within the 10% cut-off
values and the reported outliers.

Conclusions about overall coverage, power and relative bias. To
conclude, switching to Bayesian estimation when the sample size is small,
does not automatically solve small sample size problems in terms of bias.
When looking at the median of the distributions, the performance of BayesN,
BayesT, BayesD looks good for both parameter types, although extreme

7For more information about outliers, we refer to Supplemental Table S5, in which the
minimum and maximum relative bias values per estimation method are reported.
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outliers can occur. Higher levels of bias were found when variance
parameters were estimated than when structural parameters were estimated.
In terms of coverage and power, Bayesian estimation shows better results
than frequentist estimation. For small samples, the desirable power level was
only reached for a substantial amount of cases when BayesT was used.
Bayesian estimation results in coverage mainly at or above the desired
coverage level, while frequentist estimation mainly leads to values below the
desired coverage level.

In the next sections, we describe the performance of Bayesian and frequentist
estimation in more detail based on the results of the included simulation
studies.

1.3.2 BayesN vs. Frequentist Methods

In 22 out of 32 studies, BayesN is investigated and compared to frequentist
estimation. In the BayesN category, prior distributions are based on software
defaults, general literature recommendations, and the use of other default
priors. From the 22 studies, 5 studies reported that BayesN performs better
than frequentist methods (Hox et al., 2014; Hox, Van de Schoot, & Matthijsse,
2012; Stegmueller, 2013; Tsai & Hsiao, 2008; Van Erp et al., 2018), and 3
studies reported that frequentist methods perform better (Chen, Zhang, &
Choi, 2015; Depaoli & Clifton, 2015; Holtmann, Koch, Lochner, & Eid, 2016).
The remaining 14 studies reported that both estimation methods performed
equally or that the conclusion depended on other factors. Although one of
these 14 studies reported that both frequentist and BayesN methods lead to
minimal bias in the parameter estimates (Yuan & MacKinnon, 2009), 6 of
14 studies reported that both methods resulted in poor parameter estimates
(Browne & Draper, 2000, 2006; Depaoli, 2013; 2 simulation studies in McNeish,
2016b; Van de Schoot et al., 2015). The remaining studies show that the
conclusion depends on: the choice of the naive prior distribution (McNeish
(2016a); McNeish & Stapleton (2016); e.g., McNeish & Stapleton (2016) show
that BayesN with Inverse Gamma or half-Cauchy prior distributions for the
variance components in a multilevel model perform better in comparison to
the other BayesN option with a uniform prior distribution); the choice of the
frequentist estimation method to which the BayesN is compared (Koopman,
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Howe, Hollenbeck, & Sin (2015); McNeish (2016a); Miočević et al. (2017);
e.g., McNeish (2016a) concludes that REML with Kenward-Roger correction
performs better than ML and BayesN); or that the conclusions depend on the
interest in either point estimates or interval estimates (2 simulation studies in
Chen, Choi, Weiss, & Stapleton (2014)).

Despite the final conclusions of the included studies whether frequentist or
BayesN estimation methods performed better, in 15 out of 22 studies that
compared these estimation methods, excessively high levels of bias were
reported when using BayesN. In several of these studies, there is even more
bias reported with BayesN than when frequentist methods are used (see e.g.,
Browne & Draper, 2006; Chen et al., 2015; Depaoli & Clifton, 2015;
Holtmann et al., 2016; McNeish, 2016a). As stated by McNeish (2016a)
“relying on software defaults or diffuse priors with small samples can yield
more biased estimates than frequentist methods.” (p. 750). Besides high
levels of bias, the reported levels of power were rather low (see Figure 1.4).

In 7 out of 22 studies that examined BayesN and frequentist methods, no
severely biased estimates were reported when using BayesN. However, 6 of
these studies focused on mediation or multilevel mediation models and did
not evaluate the variance parameters (2 simulation studies in Chen et al.,
2014; Hox et al., 2014; Koopman et al., 2015; Miočević et al., 2017; Yuan &
MacKinnon, 2009). As shown in Figure 1.5, the variance parameters are
more often problematic in terms of bias than the structural parameters.
Interestingly, Tsai & Hsiao (2008) evaluated the variance parameters using
Bayesian estimation with reference priors, and reported that “the Bayesian
approach, particularly under the approximate Jeffreys’ priors, outperforms
other procedures” (p. 588). The discussion of reference priors is beyond the
scope of this paper. Readers interested in reference and Jeffreys’ priors are
referred to Berger, Bernardo, & Sun (2009), Bernardo (1979), Jeffreys (1945),
and Yang & Berger (1996).

Problematic parameters. The studies in which problematic levels of bias
were reported when BayesN was used did not report problematic levels of
bias for all parameters. Overall, the estimation of variance parameters led
to substantially more problems than the estimation of structural parameters,
which supports what is shown in the earlier discussed boxplot on relative bias
(Figure 1.5). There were also some model specific parameters that resulted in
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severely biased estimates.

In latent growth models, the highest bias was found in the estimates of the
intercept variance or linear slope variance (McNeish, 2016a; Van de Schoot
et al., 2015). For example, in the study by Van de Schoot et al. (2015),
using BayesN (referred to as “Mplus default priors“ in Supplemental File S6),
a relative bias of 84.40% is reported for the variance of the linear slope, and
they report that the estimate for the intercept variance is “not even provided
by Mplus because it is too large” (p. 7).

The estimation of variance parameters in multilevel models with small
samples is a well-known problem (see e.g., Gelman, 2006). This is supported
by the results of the included studies. The between level variance parameters
were severely biased (Browne & Draper, 2000; see e.g., Browne & Draper,
2006; Holtmann et al., 2016; Hox et al., 2012; Stegmueller, 2013) although
the highest levels of relative bias were reported for the between-level
covariate parameter in the study by Depaoli & Clifton (2015). The estimates
for the covariate of BayesN (referred to as “noninformative (diffuse) priors”
in Supplemental File S6) with a small sample size exceed the 10% cut off
value in 99 of out 120 conditions (82.50%) (Depaoli & Clifton, 2015, pp.
337–344 Tables 2-7). Gelman (2006) suggested using a half-Cauchy prior
distribution for the variance parameters to decrease bias. McNeish &
Stapleton (2016) compared this half-Cauchy prior to an Inverse Gamma and
Uniform prior for the variance components in a multilevel model (referred to
as “uninformative Half-Cauchy prior”, “uninformative IG prior”,
“uninformative U prior” in Supplemental File S6, respectively), and
concluded that the half-Cauchy prior “produced the best estimates of the
variance components with few clusters” (p. 12), but for the smallest number
of clusters (4 clusters), the bias was “still rather high” (p. 12). For a more
in-depth discussion of the half-Cauchy prior distribution, we refer to Gelman
(2006) and Polson & Scott (2012).

The study by Van Erp et al. (2018) which examined a linear SEM with a
mediation effect, reported problematic levels of bias for the measurement and
structural intercepts. In mixture models, the recovery of class proportions
was problematic when BayesN was used. The Dirichlet prior was specified for
class proportions, which assumes equal class proportions in the Mplus default
settings. With a clear majority or minority class, the class proportions in
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the data deviate from the ones specified by the default Dirichlet prior, and
therefore resulted in very poor class proportion recovery of BayesN (Depaoli
(2013); referred to as “Mplus default noninformative priors“ in Supplemental
File S6).

Aside from certain parameters that require some additional attention, some
other factors could also impact the performance of estimation methods, such
as: categorical versus continuous data (see e.g., Holtmann et al., 2016); the
strength of group differences (see e.g., Serang et al., 2015); the intra class
correlations in multilevel models (see e.g., Depaoli & Clifton, 2015); the level
of class separation (see e.g., Depaoli, 2012); and the number of measurement
occasions (see e.g., Serang et al., 2015).

Reasons for high levels of bias. One primary culprit of the high levels
of bias for the BayesN estimates is the relatively larger influence of the prior
on the posterior when the sample size is small and models are complex [see
e.g., Lee & Wagenmakers (2014); McNeish (2016b); Natesan (2015)]. When
using naive priors, a very wide range of plausible values is specified. All values
that fall within this range can be sampled during the MCMC procedure. The
probability mass can therefore also lie on extreme values. This is problematic
when the sample size is small, because the prior is given more relative weight
than with larger samples and therefore has more impact on the posterior than
it has with relatively larger sample sizes. In a complex model, there are many
parameters to estimate. With a small sample size, we can expect that priors
have more impact on the posterior, as the small data set is too sparse for
the complexity of the model, thus making the information in the prior more
impactful. The combination of the relatively large impact of the prior on the
posterior and the use of default priors can result in highly biased estimates.

Furthermore, the use of improper priors could also play an important role in
the cause of problematic levels of bias. Depaoli (2013) discussed that the
large variance hyperparameter for the Mplus default prior for intercepts,
regression slopes and factor loadings [N(0, 1010)] could be the reason for the
highly biased parameter estimates in growth mixture models, because “the
priors were acting as almost improper noninformative priors.” (p. 213). Van
de Schoot et al. (2015) discuss that the default hyperparameters for the
Inverse Gamma distribution in Mplus [IG(−1, 0)] result in improper prior
distributions, which could lead to computational problems as was pointed
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out by Asparouhov & Muthén (2010). Therefore, Van de Schoot et al. (2015)
recommend researchers to always use proper prior distributions instead of
improper prior distributions for variance parameters, for example, use
Inverse Gamma distributions with hyperparameters (0.001, 0.001) which is
considered to be a noninformative prior, by Van de Schoot et al. (2015, p. 9)
or Inverse Gamma (0.5, 0.5), which is considered to be a “very informative”
prior by Van de Schoot et al. (2015, p. 9).

To conclude, using Bayesian estimation with solely naive priors does not give
the desired results when sample sizes are small: it can cause extremely biased
parameter estimates – even more biased than frequentist estimates – and power
levels remain very low.

1.3.3 BayesT vs. Frequentist Methods

In 18 studies, BayesT was examined and compared to frequentist methods. In
the BayesT condition, prior information was included for at least one of the
parameters in the model, and often used in combination with flat or default
priors. The investigated BayesT prior distributions in the included studies
are based on (a) the specified population values in the simulation design; (b)
combinations of specified population values, the literature recommendations
and Mplus default priors; (c) results of previous studies; and (d) properties of
the model or knowledge of the parameter range. Especially the studies in which
the priors are based on the latter two categories (c and d), can be of interest
for researchers who want to apply Bayesian estimation with thoughtful priors
(for the use of previous studies in prior distributions see Baldwin & Fellingham
(2013) and Yuan & MacKinnon (2009); and for the use of properties of the
model and knowledge of parameter range in prior distributions see Price (2012)
and Yuan & MacKinnon (2009)).

From the 18 studies that compared BayesT to frequentist methods, 9 studies
concluded that BayesT performed better than the frequentist methods
(Depaoli & Clifton, 2015; Miočević et al., 2017; Natesan, 2015; Price, 2012;
Serang et al., 2015; Van de Schoot et al., 2015; Yuan & MacKinnon, 2009; 2
simulation studies in Zondervan-Zwijnenburg et al., 2019). The other 9
studies did not report a clear preference for one of the two methods, either
because BayesT and the frequentist methods performed equally well (Farrell
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& Ludwig, 2008) or because the superiority of one of the two estimation
methods depended on the amount or accuracy of information incorporated in
the prior distributions (2 simulation studies in Depaoli, 2012, 2013;
Holtmann et al., 2016; 2 simulation studies in McNeish, 2016a), the choice of
the prior distributions (Baldwin & Fellingham, 2013), or the evaluation
criteria and parameters of interest (Chen et al., 2014). For instance, in the
two simulation studies from McNeish (2016a) it is concluded that BayesT
with strong priors (referred to as “strong priors” in the latent growth model
study and “strongly informative priors” in the multilevel study, in
Supplemental File S6) lead to comparable results as REML with
Kenward-Roger correction, and both methods perform better than BayesT
with weak priors. In the two studies by Depaoli (2012), it is reported that
BayesT with “tight priors” (as referred to in Supplemental File S6) performs
best, followed by ML and then followed by BayesT with “weak priors” (as
referred to in Supplemental File S6). Depaoli (2013) investigated 4 types of
BayesT priors (referred to as “informative accurate”, “weakly informative”,
“partial informative” and “informative and inaccurate” priors in
Supplemental File S6), and concluded that only BayesT with “informative
accurate priors”, and BayesT with “partial knowledge priors” perform well,
and that all other BayesT options and ML perform very poorly.
Furthermore, Baldwin & Fellingham (2013) concluded that BayesT with
Gamma priors for the variance parameters (referred to as “thoughtful priors”
in Supplemental File S6) performed better than REML with Kenward-Roger
correction, while REML with Kenward-Roger correction performed better
than BayesT with uniform priors (referred to as “flat uniform prior” in
Supplemental File S6). This shows that not only the amount of information
captured in the prior distribution matters, but that also the distribution is of
importance. However, in comparison to the severely biased estimates as a
result of using BayesN, the bias can be extremely reduced by adjusting the
parameter range without specifying a distribution that represents the prior
information (Baldwin & Fellingham, 2013).

The result that BayesT performed better in general than frequentist methods
is not surprising. By adding prior information, and especially when the
hyperparameters of the prior distribution are centered at the population
values, the posterior will give less variable and more precise results in
comparison to results from frequentist methods. However, thoughtful priors
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can also be specified with hyperparameters that deviate from the population
values (so-called “inaccurate priors” as specified in Depaoli (2013), or
“weakly/ strongly informative inaccurate priors” as specified in Holtmann et
al. (2016)). Obviously, the use of these type of priors will result in worse
parameter estimates compared to the result of priors with hyperparameters
that are similar to the population values. However, note that the latter
represent the upper-bound performance of Bayesian estimation, which is
often not realistic in practice. For more details on the performance of priors
that deviate from population values see for example, Depaoli (2013), Depaoli
(2014), Holtmann et al. (2016), and Lee, Song & Tang (2007).

Weak vs. strong thoughtful prior distributions. In 14 studies, multiple
thoughtful prior distributions are compared. These priors were obtained by
varying the level of informativeness via adjusting the variance hyperparameter
of the prior distribution (see e.g., Depaoli & Clifton, 2015; 2 simulation studies
in Depaoli, 2012, 2013; Holtmann et al., 2016; Van de Schoot et al., 2015; 2
simulation studies in Zondervan-Zwijnenburg et al., 2019), or by adjusting both
hyperparameters (2 simulation studies in McNeish, 2016a; Natesan, 2015).
Other variations of thoughtful priors are obtained by varying the parameters
for which a thoughtful prior was specified or by adjusting the accurateness
of the prior information included in the distributions (e.g., Depaoli, 2013;
Miočević et al., 2017), or finally, by varying the distribution that is specified
(see e.g., Baldwin & Fellingham, 2013; Yuan & MacKinnon, 2009).

In multiple studies, it is shown that adding weak prior information (e.g., by
specifying distributions with large variance hyperparameters), the performance
can still be poor (Depaoli, 2012; Holtmann et al., 2016), probably because the
admissible parameter range can still be very large. This also explains the
occurrence of high levels of bias for BayesT in Figure 1.5. Even though the
use of weak priors can still lead to biased estimates, the results are already
improved in comparison to the results obtained using solely naive priors (e.g.,
Depaoli & Clifton, 2015; McNeish, 2016a). However, the results can further be
improved by adding stronger prior information (e.g., Depaoli, 2012; Holtmann
et al., 2016; McNeish, 2016a).

Furthermore, in mixture models, the use of BayesT in combination with a
naive prior on the class proportions parameter still produces highly biased
estimates (2 simulation studies in Depaoli, 2012). Depaoli (2012) concluded
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that Bayesian estimation can solely be used for mixture models when “tighter
priors can be placed on (. . . ) mixture proportions and the structural model
parameters” (p. 200), because it might otherwise result in higher levels of bias.

Whether a prior distribution is considered weak or strong, depends among
many other factors on the parameter for which the prior is specified, and the
scale of the variables in the data. To give an example of weak and strong
prior distributions, we discuss the specified prior distributions in the studies
of Depaoli (2012) and Holtmann et al. (2016). In both studies, normal
distributions are specified N(µ, σ2), where the mean hyperparameter µ

equals the population value, and the variance hyperparameter σ2 contains
different values to specify the level of informativeness. First, in the study of
Depaoli (2012), in which a two-factor model with two mixture classes is
investigated, the variance hyperparameter for the factor loadings prior
distribution was set to 100 in the “weak” condition, and set to 0.01 in the
“tight” condition. A variance of 100 corresponds to a standard deviation of
10, which means that 95% of the prior distribution lies between [−20; 20]
when the mean hyperparameter of the distribution equals zero. A variance of
0.01 corresponds to a standard deviation of 0.1, and thus 95% of the prior
distribution lies between [−0.2; 0.2] when the mean hyperparameter equals
zero. A second example can be found in Holtmann et al. (2016): the “weakly
informative accurate priors” for the factor loadings in the two-level
confirmatory factor analysis model have a variance hyperparameter of 0.2. A
variance of 0.2 corresponds to a standard deviation of 0.45, and 95% of the
prior distribution lies between [−0.90; 0.90]. The “strongly informative
accurate priors” in Holtmann et al. (2016) have a variance hyperparameter
of 0.01, which equals the variance used for the “tight” informative prior in
Depaoli (2012).

Priors on variance parameters. In the section on ‘BayesN vs. frequentist
methods’, it was shown that naive priors can cause high levels of bias,
especially for the variance components. Seven studies that used thoughtful
priors placed thoughtful priors on the variance components (Baldwin &
Fellingham, 2013; Depaoli, 2012; Holtmann et al., 2016; 2 simulation studies
in McNeish, 2016a; Miočević et al., 2017; Van de Schoot et al., 2015). These
studies showed that using informative priors on variance parameters reduces
the bias in variance estimates compared to the use of naive priors (e.g.,
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Holtmann et al., 2016; McNeish, 2016a). In only four of the other studies
and conditions in which naive priors were placed on the variance components
in combination with thoughtful priors on other parameters in the model, the
performance of variance parameters was discussed (see 2 simulation studies
in Depaoli, 2012, 2013; Holtmann et al., 2016). Depaoli (2012) and Depaoli
(2013) shows that naive priors on the variance parameters also in
combination with informative priors on other parameters can still result in
high levels of bias in mixture models (depending on the total sample size,
class proportions, and level of class separation). On the other hand,
Holtmann et al. (2016) conclude that the bias for variance parameters in a
multilevel model was decreased when informative priors for other parameters
were specified when naive priors were used for the variance parameters. This
shows that when the prior distribution for one parameter is changed, it can
also influence the posterior of another parameter, even when the prior
distribution for a particular parameter was held constant (e.g., Holtmann et
al., 2016).

Naive vs. thoughtful priors. In 8 studies, BayesN is compared to BayesT
(Chen et al., 2015; Depaoli & Clifton, 2015; Holtmann et al., 2016; 2
simulation studies in McNeish, 2016a; Miočević et al., 2017; Van de Schoot et
al., 2015; Yuan & MacKinnon, 2009) and all studies concluded that BayesT
performed better than BayesN. There was one exception: Holtmann et al.
(2016) concluded that for the two-level confirmatory factor analysis model
with continuous indicators, the performance of BayesN and BayesT was
comparable. For the model with categorical indicators, the performance of
the “weakly/ strongly informative accurate priors” performed better than
BayesN (Holtmann et al., 2016). In the other studies, BayesT was favored
over BayesN regardless of other simulation conditions. For example, Yuan &
MacKinnon (2009) wrote that the quality of the estimates can be improved
by including prior information. Other studies in which BayesT is investigated
go further in their conclusions and write that Bayes with prior information
[BayesT] is necessary when the sample size is small. For instance, Van de
Schoot et al. (2015) concluded that low levels of power and biased parameter
estimates can be “solved” using Bayesian estimation with thoughtful priors
(p. 1). Further, Zondervan-Zwijnenburg et al. (2019) pointed out, that to
acquire reasonable power with small samples, it is necessary to use Bayesian
estimation with “very specific prior information” (p. 17, and see Figure 1.3
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on p. 16 in Zondervan-Zwijnenburg et al., 2019). These conclusions support
the results shown in Figure 1.3, that only when Bayesian estimation is used
in combination with substantial prior information, it can lead to the desired
power level. When thoughtful prior distributions are placed on the parameter
of interest, the power level for this particular parameter is likely to increase
(Zondervan-Zwijnenburg et al., 2019), while using a naive prior on the
parameter of interest - in combination with thoughtful priors for other
parameters in the model - can still lead to low levels of power (McNeish,
2016a).

To conclude, when prior information centered at the population values is
added to the model, it is less likely to find highly biased estimates. However,
when weak thoughtful priors are specified, for example, because large
variance hyperparameters are specified, the admissible parameter range can
still be large, and therefore, the performance can still be poor (although
better than when only naive priors are used). Overall, by incorporating prior
information to the model, the parameter estimates improved in terms of
relative bias and power.

1.3.4 BayesD vs. Frequentist Methods

In 5 studies, BayesD is compared to frequentist methods. The data dependent
priors are based on ML estimates (Depaoli, 2013; McNeish, 2016b; Van Erp et
al., 2018), Restricted Iterative Generalized Least Squares estimates (Browne &
Draper, 2000), or BayesN estimates (Lee & Song, 2004). From these 5 studies,
3 studies reported that BayesD performed better than frequentist methods
(Lee & Song, 2004; McNeish, 2016b; Van Erp et al., 2018). For example, Lee
& Song (2004) favor BayesD over ML for small samples, because they found
that it can even be used with samples as small as “two or three times the
number of unknown parameters” (Lee & Song, 2004, p. 680). Furthermore,
McNeish (2016b) reports for the investigated latent growth models, that using
Bayes with data dependent priors still results in some parameter bias, but that
the performance is much improved in comparison to Full Information ML or
naively applying Bayes with Mplus default priors.

The 2 remaining studies reported that both BayesD and the frequentist
methods did not perform well with small samples (Browne & Draper, 2000;
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Depaoli, 2013). For example, Browne & Draper (2000) summarize that
Bayesian estimation [BayesD and BayesN; referred to as “gently
data-determined prior”, and two “diffuse Inverse Wishart priors”,
respectively, in Supplemental File S6] has equal or better levels of bias and
coverage in comparison to two least squares frequentist estimation methods,
but that “neither approach performs as well as might be hoped with small J
[number of clusters]” (p. 391). The five studies that investigated BayesD
yielded inconsistent results and recommendations, so it is difficult to make
definitive conclusions about the performance of the BayesD approach based
upon these inconclusive results.

In 3 studies, BayesD is also compared to BayesN (Browne & Draper, 2000;
McNeish, 2016b; Van Erp et al., 2018). In the study of McNeish (2016b),
BayesD (referred to as “data-dependent prior” in Supplemental File S6) is
favored over the two BayesN priors (referred to as “noninformative proper/
improper Inverse Wishart priors” in Supplemental File S6), because it
resulted in lower levels of bias and because of its ease of implementation.
Browne & Draper (2000) report that both BayesD as BayesN (referred to as
“gently data-determined prior” and two “diffuse Inverse Wishart priors” in
Supplemental File S6) did not perform well with small samples, and Van Erp
et al. (2018) concluded that, especially with small samples, all investigated
methods perform very differently, and “that there is not one default prior
[BayesN and BayesD; referred to as three “noninformative improper”, three
“vague proper”, one “vague normal” and two “empirical Bayes” priors in
Supplemental File S6] that performed consistently better than the other
priors or than ML estimation across all parameters or outcomes.” (p. 26).
Depaoli (2013) compared the performance of all three Bayesian estimation
methods, and concluded that Bayesian estimation with solely naive priors
[BayesN; referred to as “Mplus default noninformative priors” in
Supplemental File S6] and Bayesian estimation using data dependent priors
[BayesD; referred to as “data-driven informative priors” in Supplemental File
S6] resulted in poor performance. Parameter estimates were well recovered
only when highly informative prior distributions were used. This shows again
the importance of adding prior information when Bayesian estimation is used
with small samples.
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1.4 Conclusion

In the current study, a systematic literature review was performed to present
an overarching overview of the performance of Bayesian and frequentist
estimation for structural equation models with small samples. We included
32 simulation studies in which the performance of Bayesian and frequentist
estimation is compared for varying structural equation models with small
sample sizes. Whereas frequentist methods can result in severely biased
estimates, nonconvergence and inadmissible solutions when samples are
small, Bayesian estimation can be a viable alternative. However, based on
our systematic review, we strongly recommend against naively using
Bayesian estimation to address small samples. When Bayesian estimation
with solely naive priors is used, high levels of bias are reported, especially for
variance parameters. This bias is often even higher than for frequentist
methods, and can only be decreased by incorporating prior information, that
is, using Bayesian estimation with thoughtful priors. We therefore conclude
that naively using Bayesian estimation is not a solution for small sample
problems and, what we call, thoughtful priors are needed. We want to
encourage researchers to make well-considered decisions about all prior
distributions when Bayesian estimation is used with small sample sizes.
Therefore, in the next section, we provide recommendations on how to
construct weakly thoughtful priors.

1.5 Recommendations on How to Construct
Thoughtful Priors

Previous studies, meta-analysis, opinions of experts in the field, or information
about the scale can be used to come up with thoughtful priors. In two included
simulation studies, the authors show how they came up with thoughtful prior
distributions based on previous studies (Baldwin & Fellingham, 2013; Yuan &
MacKinnon, 2009). Van de Schoot et al. (2018) and Zondervan-Zwijnenburg
et al. (2017) also provide useful strategies for acquiring prior information in
practice. For more information on expert elicitation, we refer to O’Hagan et
al. (2006).
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Below, we discuss a few of many possible ways to construct thoughtful priors.
We illustrate the process of selecting thoughtful priors using a mediation
model (see Figure 1.6). Mediation analysis is used to evaluate the effect of an
independent variable (X) on a dependent variable (Y ) that is transmitted
through the mediator (M). When the mediator and the outcome are
continuous, the mediated effect in the single mediator model can be
computed using two linear regression equations (MacKinnon, 2008):

M = i2 + aX + e2, (1.1)

and

Y = i3 + c′X + bM + e3, (1.2)

where i2 and i3 represent intercepts, a represents the effect of the independent
variable on the mediator, c′ represents the effect of the independent variable
on the outcome controlling for the mediator, b represents the effect of the
mediator on the dependent variable controlling for the independent variable,
and residuals e2 and e3 are assumed to be normally distributed with variances
σ2

e2
and σ2

e3
, respectively. In Bayesian mediation analysis, the seven parameters

(i2, i3, a, c′, b, e2, e3, σ2
e2

and σ2
e3

) need prior distributions. Below, we
discuss hypothetical examples to construct priors for the following parameters:
intercept i2, regression coefficients a and b, and residual variance parameter
σ2

e3
. The examples of the prior distributions are presented in Figure 1.7, and

Appendix A contains the R-code to reproduce the prior distributions.

1.5.1 Impossible and implausible parameter space

When defining priors to deal with small samples and to avoid naive priors,
one could reduce the parameter space by differentiating between impossible
parameter space – parameter values that do not receive any density mass in
the prior and are prevented from occurring in the posterior, and implausible
parameter space – values that receive very little density mass and are very
improbable in the prior, but could be obtained after the prior has been
updated with the data. Note that by specifying an impossible parameter
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Figure 1.6: Single mediator model.

A B

C D

   

Figure 1.7: Uniform prior distribution for the intercept i2 (see A), Normal
prior distributions specified using mean and variance hyperparameters for
regression coefficients a (see B) and b (see C) and Inverse Gamma prior
distribution for the residual variance of Y specified using the shape (α) and
scale hyperparameters (β; see D).
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space (e.g. by using a Uniform or truncated-normal prior) one excludes
values from the posterior – even in the case that these values do occur in the
data. Therefore, we recommend to using such priors with caution and only
when the excluded values are actually impossible in the data. For instance,
variance parameters are often restricted to be positive, as a negative variance
parameter cannot be interpreted.

When selecting a prior for the intercept of M, i2 (see Equation (1.1)), one
could specify a prior distribution based on information from the scale that is
used to measure M. Suppose that a 7-point Likert scale was used to measure
M. The intercept i2 represents the value of M when X is zero (see Equation
(1.1)), and given the scale of M in this case, it is impossible for M to equal
any value below 1 and above 7. This is an example of an impossible parameter
space, which can be represented by selecting a prior distribution that does not
allow for values outside the range of 1 and 7, e.g., a Uniform prior distribution
U [1, 7] (see Figure 1.7A).

When selecting a prior for regression coefficient a (see Equation (1.1)), one
could consider what constitutes an implausible parameter space. Suppose that
in a new study where M is measured on a scale of 0 − 100, based on the
opinion of experts in the field, we expect that regression coefficients smaller
than −60 and larger than 60 are highly implausible; that coefficients between
−40 and 40 are implausible; and that coefficients between −20 and 20 are most
plausible. Based on this information, we can compute the appropriate variance
hyperparameter of the normal prior distribution. A standard deviation of 20
equals a variance hyperparameter of 400, and corresponds to a normal prior
distribution in which 68% of the distribution lies between [−20; 20], and 95%
of the prior distribution lies between [−40; 40], and 99.70% of the distribution
lies between [−60; 60]. Based on this information, the corresponding mean
hyperparameter can be computed, leading to a normal prior distribution with
a mean hyperparameter of 0, and a variance hyperparameter of 400 (see Figure
1.7B). Note that although we use a normal prior distribution in the example,
other types of prior distributions are also possible, depending on the software
program.

41



1.5.2 Previous Literature

Now suppose that there is relevant background information about the
relation between M and Y , which can be used to specify the prior for
regression coefficient b (see Equation (1.2)). Let’s say after performing a
literature search it appears that 58% of the papers reported a negative
regression coefficient, 10% reported a coefficient close to zero, and 32% of the
studies reported a positive coefficient. One could create a normal prior
distribution that represents these findings. For instance, a normal
distribution with a mean hyperparameter of −1 and a variance
hyperparameter of 9 yields these percentages (see Figure 1.7C). Note that
regression coefficient b represents the effect of M on Y controlling for X. If
previous literature is used to specify the prior distribution, these previous
studies should have used the same scales to measure X, M , and Y as the
current study, and should have been controlling for the same covariate X in
the model where M predicts Y .

If the consulted literature is not an ideal source of prior information (e.g., the
variables in previous studies are not the same as in the current study; or the
constructs being evaluated are related, but slightly different), one can choose
to make the prior less informative by increasing the variance hyperparameter.
Similarly, all detected literature may suggest that the regression coefficient is
negative. However, we advocate against including only negative values in the
possible parameter space. Instead, in this case we recommend using a prior
that allows for positive values, but makes them less probable than negative
values. For examples in which expert knowledge and previous literature is
used to construct priors, see Van de Schoot et al. (2018) and Zondervan-
Zwijnenburg et al. (2017).

1.5.3 Variance Parameters

Selecting prior distributions for variance parameters might be less intuitive.
The prior distribution that is often used for variance parameters is the
Inverse Gamma distribution, which consists of two hyperparameters: α and
β. To determine the values of these hyperparameters, information from a
previously observed sample, a previous study or a pilot study can be used.
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Hyperparameter α then equals half of the sample size of the previous study,
and hyperparameter β can be computed as half of the sample size of the
previous study times the variance estimate from the previous study (Gelman
et al., 2014, p. 130). To illustrate, we use this method to construct the prior
distribution for the residual variance of Y , σ2

e3
(see Equation (1.2)). Suppose

a researcher collects pilot data from 20 participants and fits the mediation
model, obtaining an estimate for the residual variance σ2

e3
of 2. The α

hyperparameter will then be 0.5 × 20 = 10, and the β hyperparameter will
be (0.5 × 20) × 2 = 20, which will yield an Inverse Gamma (α = 10, β = 20).
This Inverse Gamma distribution can now be used as a prior distribution for
residual variance σ2

e3
(see Figure 1.7D).

One can increase the uncertainty in the prior by substituting a smaller value
for the sample size of the previous study in the computation of the α and
β hyperparameters. In case we would like to down weigh the information
from the pilot study, we would encode that the sample size was below the
original sample size of 20, for example 10. This yields an Inverse Gamma
(α = 5, β = 10) prior distribution with smaller hyperparameters, and therefore
a less informative Inverse Gamma distribution.

1.6 Discussion and Concluding Remarks

Various sample size recommendations exist, such as: ratios in which the
number of participants and number of unknown parameters (i.e., model
complexity) is taken into account (e.g., Lee & Song, 2004), rules of thumb
that sample sizes below 100 are in general considered too small (Kline, 2015),
or that studies with sample sizes below 200 participants should be rejected
from publication (Barrett, 2007; Kline, 2015) – not to mention the numerous
simulation studies in which the minimum required sample size is discussed
based on the simulation results for a specific model of interest (see e.g., Hox
et al., 2012; Lee & Song, 2004). As shown in the current study (see Table
1.1), whether a sample size is considered to be small depends on many other
factors than only the number of participants. General rules of thumb for
sample sizes cannot take into account all these factors, and we should be
aware that those rules of thumb are not generalizable to all situations.
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A possible limitation of every systematic literature review, and thus also of
the current one, is the possibility of missing a relevant study, even though we
have carried out an extensive search process and have screened 3592 unique
abstracts. Another limitation of our study could be that the prior
distributions of all included studies are categorized into three categories,
while differences exist within categories. For instance, for thoughtful priors
varying levels of informativeness are studied, ranging from weak to highly
informative thoughtful prior distributions centered at population values. All
are allocated in the same category, while the more informative priors
(centered at population values) will obviously lead to better results in terms
of bias and power, than the weaker priors (centered at population values).

Based on our systematic review, we conclude that if Bayesian estimation is
used to overcome small sample problems, thoughtful priors should be
specified. However, the use of thoughtful priors is not a guarantee for
perfectly unbiased estimates. Thoughtful prior distributions with a large
variance hyperparameter, containing a large amount of uncertainty, can still
yield a large admissible parameter range. They can therefore still result in
poor estimates, although these estimates are likely to be an improvement
over the estimates produced by Bayesian estimation with solely naive priors.
Furthermore, a prior representing a high amount of certainty is only
desirable when the researcher is indeed very certain about the incorporated
information.

Additionally, in simulation studies, the true population values are known and
therefore prior distributions can be specified so they accurately represent
values of population parameters. We must bear in mind that such results
show the upper-bound performance of Bayesian estimation. In empirical
work, population values are obviously not known, and the specified prior
distributions are therefore likely to deviate from the data. The specification
of deviating (or so-called ‘inaccurate’) priors will evidently lead to less
favorable results compared to priors containing hyperparameters similar to
population values (see e.g., Depaoli, 2013; Holtmann et al., 2016). This
demonstrates the relevance of investigating the impact of specified prior
distributions on the posterior by performing a sensitivity analysis (see for
instructions Depaoli & Van de Schoot, 2017). In addition, trace plots should
always be inspected to check for spikes. They can occur when the permissible
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range for a parameter is large, and detecting spikes can be a sign of the
sampling of extreme values (see e.g., Depaoli & Clifton, 2015; Van de Schoot
et al., 2015).

To conclude, naively using Bayesian estimation is not a solution for small
sample problems: the specification of thoughtful priors is needed. We hope that
the results of the current study encourage researchers to make well-considered
decisions about all prior distributions in the model when Bayesian estimation
is used with small sample sizes.

Acknowledgments

We would like to thank Naomi Schalken for her assistance in collecting the
reported data on coverage, power and relative bias from all studies included
in the qualitative synthesis; and Gerbrich Ferdinands for her assistance in
preparing the manuscript for resubmission.

45



Studies included in the systematic literature
review

Baldwin, S. A., & Fellingham, G. W. (2013). Bayesian methods for the
analysis of small sample multilevel data with a complex variance structure.
Psychological Methods, 18 (2), 151-164.

Browne, W.J., & Draper, D. (2000). Implementation and performance issues
in the Bayesian and likelihood fitting of multilevel models. Computational
Statistics, 15 (3), 391–420.

Browne, W. J., & Draper, D. (2006). A comparison of Bayesian and likelihood-
based methods for fitting multilevel models. Bayesian analysis, 1 (3), 473-514.

Chen, J., Choi, J., Weiss, B. A., & Stapleton, L. (2014). An empirical
evaluation of mediation effect analysis with manifest and latent variables
using Markov Chain Monte Carlo and alternative estimation methods.
Structural Equation Modeling: A Multidisciplinary Journal, 21 (2), 253-262.

Chen, J., Zhang, D., & Choi, J. (2015). Estimation of the latent mediated
effect with ordinal data using the limited-information and Bayesian
full-information approaches. Behavior research methods, 47 (4), 1260-1273.

Depaoli, S. (2012). Measurement and structural model class separation in
mixture CFA: ML/EM versus MCMC. Structural Equation Modeling: A
Multidisciplinary Journal, 19 (2), 178-203.

Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of
class separation: frequentist versus Bayesian estimation. Psychological
methods, 18 (2), 186-219.

Depaoli, S., & Clifton, J. P. (2015). A Bayesian approach to multilevel
structural equation modeling with continuous and dichotomous outcomes.
Structural Equation Modeling: A Multidisciplinary Journal, 22 (3), 327-351.

Farrell, S., & Ludwig, C. J. (2008). Bayesian and maximum likelihood
estimation of hierarchical response time models. Psychonomic bulletin &
review, 15 (6), 1209-1217.

Holtmann, J., Koch, T., Lochner, K., & Eid, M. (2016). A comparison of ML,
WLSMV, and Bayesian methods for multilevel structural equation models in

46



small samples: A simulation study. Multivariate behavioral research, 51 (5),
661-680.

Hox, J. J., van de Schoot, R., & Matthijsse, S. (2012). How few countries
will do? Comparative survey analysis from a Bayesian perspective. Survey
Research Methods, 6 (2), 87-93.

Hox, J. J., Moerbeek, M., Kluytmans, A., & Van De Schoot, R. (2014).
Analyzing indirect effects in cluster randomized trials. The effect of
estimation method, number of groups and group sizes on accuracy and
power. Frontiers in psychology, 5.

Koopman, J., Howe, M., Hollenbeck, J. R., & Sin, H. P. (2015). Small sample
mediation testing: misplaced confidence in bootstrapped confidence intervals.
Journal of Applied Psychology, 100 (1), 194-202.

Lee, S. Y., & Song, X. Y. (2004). Evaluation of the Bayesian and maximum
likelihood approaches in analyzing structural equation models with small
sample sizes. Multivariate behavioral research, 39 (4), 653-686.

McNeish, D. (2016a). On using Bayesian methods to address small sample
problems. Structural Equation Modeling: A Multidisciplinary Journal, 23 (5),
750-773.

McNeish, D. M. (2016b). Using data-dependent priors to mitigate small
sample bias in latent growth models: A discussion and illustration using
Mplus. Journal of Educational and Behavioral Statistics, 41 (1), 27-56.

McNeish, D., & Stapleton, L. M. (2016). Modeling clustered data with very
few clusters. Multivariate behavioral research, 51 (4), 495-518.

Miočeviç, M., MacKinnon, D. P., & Levy, R. (2017). Power in Bayesian
mediation analysis for small sample research. Structural Equation Modeling:
A Multidisciplinary Journal, 24 (5), 666-683.

Natesan, P. (2015). Comparing interval estimates for small sample ordinal
CFA models. Frontiers in Psychology, 6.

Price, L. R. (2012). Small sample properties of Bayesian multivariate
autoregressive time series models. Structural Equation Modeling: A
Multidisciplinary Journal, 19 (1), 51-64.

47



Serang, S., Zhang, Z., Helm, J., Steele, J. S., & Grimm, K. J. (2015).
Evaluation of a Bayesian approach to estimating nonlinear mixed-effects
mixture models. Structural Equation Modeling: A Multidisciplinary Journal,
22 (2), 202-215.

Stegmueller, D. (2013). How many countries for multilevel modeling? A
comparison of frequentist and Bayesian approaches. American journal of
political science, 57 (3), 748-761.

Tsai, M. Y., & Hsiao, C. K. (2008). Computation of reference Bayesian
inference for variance components in longitudinal studies. Computational
Statistics, 23 (4), 587-604.

Van De Schoot, R., Broere, J. J., Perryck, K. H., Zondervan-Zwijnenburg,
M., & Van Loey, N. E. (2015). Analyzing small data sets using Bayesian
estimation: The case of posttraumatic stress symptoms following mechanical
ventilation in burn survivors. European journal of psychotraumatology, 6.

Van Erp, S., Mulder, J., & Oberski, D. L. (2018). Prior sensitivity analysis in
default Bayesian structural equation modeling. Psychological Methods, 23 (2),
363-388.

Yuan, Y., & MacKinnon, D. P. (2009). Bayesian mediation analysis.
Psychological methods, 14 (4), 301-322.

Zondervan-Zwijnenburg, M., Depaoli, S., Peeters, M., & Van De Schoot, R.
(2019). Pushing the limits: The performance of maximum likelihood and
Bayesian estimation with small and unbalanced samples in a latent growth
model. Methodology: European Journal of Research Methods for the
Behavioral and Social Sciences, 15 (1), 31-43.

48



Appendix A. R-code to reproduce the prior
distributions

The R-code corresponds to the prior distributions and figures discussed in
“Recommendations on how to construct thoughtful priors”

options(width = 60)

### Figure 1.7A, intercept i2
# Uniform prior distribution based on information of the 7-point
# Likert scale that is used to measure M
min <- 1

max <- 7

set.seed(122)

x <- runif(5000000, min = min, max = max)

plot(density(x), main = paste("Prior for intercept i2 ~ U[", min,

", ", max, "]", sep = ""), ylim = c(0, 0.20))

### Figure 1.7B, regression coefficient a
# Normal prior distribution based on expert knowledge on
# implausible and plausible values. Most implausible positive or
# negative value = mean ± 3 standard deviations (SDs), which
# equals ± 60 here
implausible <- 60

# To obtain the value of 1 SD, divide most implausible value by
# 3 SD
sd <- implausible/3

var <- round(sdˆ2, 2)

# Because we specify a normal distribution, we can find the mean
# by taking the mean of the most implausible negative and
# positive value
mean <- mean(c(-60, 60))

x <- rnorm(5000000, mean = mean, sd = sd)
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plot(density(x), main = paste("Prior for regression coefficient

a ~ N(", mean, ", ", var,")", sep = ""), ylim = c(0, 0.025))

### Figure 1.7C, regression coefficient b
# Normal prior distribution based on studies in literature
# Values within this interval represent a null effect for this
# parameter:
int_null_lower <- -0.4

int_null_upper <- 0.4

mean <- -1

sd <- 3

var <- sdˆ2

set.seed(122)

x <- rnorm(5000000, mean = mean, sd = sd)

# Check the probabilities that accompany the distribution based
# on the aforementioned parameters (mean, sd, int_null_lower and
# int_null_upper). Vary the sd until you get the right
# probabilities:
x.negative<- sum(x < int_null_lower)/5000000

x.null<- sum(x < int_null_upper & x > int_null_lower)/5000000

x.positive<- sum(x > int_null_upper)/5000000

# Check the probabilities
x.negative #0.58
x.null #0.10
x.positive #0.32
plot(density(x), main = paste("Prior for regression coefficient

b ~ N(", mean, ", ", var,")", sep = ""), ylim = c(0,0.15))

### Figure 1.7D, residual variance parameter
# Inverse Gamma prior distribution for the residual variance
# parameter
library(MCMCpack)
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# Inverse Gamma (IG) with shape and scale parameter.
# Note that in MCMC pack an IG is specified with a shape and
# rate parameter; rate = 1/scale
shape <- 10

scale <- 20

rate <- 1/scale

set.seed(122)

x <- rinvgamma(5000000, shape, rate)

plot(density(x), main = paste("Prior for residual variance

~ IG(", shape, ", ", scale,")", sep = ""), ylim = c(0,270))

# Less informative IG prior
shape <- 5

scale <- 10

rate <- 1/scale

set.seed(122)

x <- rinvgamma(5000000, shape, rate)

plot(density(x), main = paste("Prior for residual variance

~ IG(", shape, ", ", scale,")", sep = ""), ylim = c(0, 270))
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Abstract

Latent growth models (LGMs) with a distal outcome allow researchers to assess
longer-term patterns, and to detect the need to start a (preventive) treatment
or intervention in an early stage. The aim of the current simulation study
is to examine the performance of an LGM with a continuous distal outcome
under maximum likelihood (ML) and Bayesian estimation with default and
informative priors, under varying sample sizes, effect sizes and slope variance
values. We conclude that caution is needed when predicting a distal outcome
from an LGM when the: (1) sample size is small; and (2) amount of variation
around the latent slope is small, even with a large sample size. We recommend
against the use of ML and Bayesian estimation with Mplus default priors
in these situations to avoid severely biased estimates. Recommendations for
substantive researchers working with LGMs with distal outcomes are provided
based on the simulation results.

54



2.1 Introduction

Latent growth models (LGMs) are commonly used to study developmental
processes over time (Duncan, Duncan, & Strycker, 2013; Little, 2013, pp.
246–285; McArdle & Nesselroade, 2003; Meredith & Tisak, 1990). LGMs can
be extended with a distal (long-term) outcome variable, which refers to a
wave of assessment that occurs long after the other waves of assessment in
the LGM. By estimating the regression coefficients from the latent intercept
and latent slope to the distal outcome variable, researchers can examine
whether someone’s initial status (latent intercept) or growth rate (latent
slope) can predict the distal outcome variable. Examples within the field of
public health include predicting: young adult depression from conduct and
emotional problems at a younger age (Koukounari, Stringaris, & Maughan,
2017); health-risking sexual behavior among young adults from adolescent
substance initiation (Spoth, Clair, & Trudeau, 2014); or reading and writing
problems from the development of babies with a family risk of dyslexia
(Wijnen, Bree, Alphen, Jong, & Leij, 2015).

Another example of an LGM with distal outcomes is from Holgersen, Boe,
Klöckner, Weisæth, & Holen (2010), who studied post-traumatic stress caused
by an oil rig disaster. An LGM is analyzed with four time points closely after
the oil rig disaster (one to three days; four to seven days; two weeks; and three
weeks), and two distal outcome variables measured five and 27 years after the
disaster. By using this model, Holgersen et al. (2010) were able to investigate
whether the participants’ initial status or growth rate on post-traumatic stress
can predict the levels of stress five and 27 years later.

Hence, LGMs with distal outcomes allow for the assessment of longer-term
patterns through the inclusion of distal outcomes. Based on the analysis of
LGMs with distal outcomes, a treatment or intervention can be started sooner
in order to take preventive actions. Adding a distal outcome variable to an
LGM can therefore truly enhance the practical implications of a study.

In a review of the literature, no methodological or simulation studies were
found examining the performance of LGMs with a distal outcome. However, if
researchers base their sample size and choice for estimation method on LGM
simulation results, then the expected influence of the distal outcome variable is
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overlooked. Therefore, we see an important need to examine the performance
of an LGM with a distal outcome, so that researchers who want to analyze
such a model can rely on simulation results suitable for their model of interest.
To our knowledge, this is the first simulation study examining the performance
of an LGM with a distal outcome.

One important component when examining the performance of LGMs is the
estimation method implemented. Much of the literature implementing LGMs
represents frequentist estimation (e.g., maximum likelihood).1 A viable
alternative estimation method that is more recently established in the
literature is Bayesian estimation (for examples of Bayesian LGM simulation
studies see: Van de Schoot et al., 2015; Zhang, Hamagami, Wang,
Nesselroade, & Grimm, 2007; Zondervan-Zwijnenburg et al., 2019). Within
the Bayesian framework, prior information about parameters of the model is
combined with the observed data. A Markov chain Monte Carlo (MCMC)
estimation algorithm is used to obtain the posterior, which is a compromise
between the data and the specified prior distributions.2 One unique benefit
of Bayesian estimation is the inclusion of prior information (e.g., Kruschke et
al., 2012; Lee & Song, 2014; Van de Schoot & Depaoli, 2014). Using
informative priors can lead to a decrease in estimation bias and an increase
in statistical power compared to the results of frequentist methods, such as
maximum likelihood estimation (see e.g., Miočević et al., 2017; Van de
Schoot et al., 2015). These features are especially valuable under instances of
small sample sizes. As discussed in – among many others – Gelman et al.
(2014) and McNeish (2016a) and echoed in the literature review of Smid,
McNeish, Miočević, & Van de Schoot (2020), the successful use of Bayesian
estimation with small samples requires a thoughtful specification of priors.

2.1.1 Intended Goals and Organization of the Chapter

In the current study, we examine the performance of an LGM with a
continuous distal outcome. Our interests are specifically on factors that have

1Maximum likelihood (ML) estimation is based on asymptotic theory, which implies that
large sample sizes are required to meet the assumptions of the estimation method to obtain
unbiased parameter estimates. For a conceptual explanation of ML estimation we refer to
Myung (2003), and we refer to Meng & Rubin (1993) for a technical in-depth discussion.

2For an elaborative discussion of Bayesian estimation, we refer to, among many others:
Depaoli & Van de Schoot (2017), Gelman et al. (2014), Kaplan (2014), Kaplan & Depaoli
(2013), Kruschke (2015), S.-Y. Lee (2007), and Van de Schoot et al. (2014).
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been shown to be important in the LGM literature, which include: estimator,
sample size, the amount of variation around the latent slope, and effect size
of the regression coefficients (see e.g., Hertzog, Oertzen, Ghisletta, &
Lindenberger, 2008; Liu, Zhang, & Grimm, 2016; McNeish, 2016a; Van de
Schoot et al., 2015; Zondervan-Zwijnenburg et al., 2019). Regarding the
estimator, we are particularly interested in comparing Bayesian estimation
under various prior specifications (e.g., informative priors versus diffuse
default priors) to frequentist maximum likelihood estimation. This
investigation will highlight ‘best practice’ when assessing longitudinal growth
in the presence of a distal outcome.

Next, we discuss relevant simulation literature on the model, and then we
introduce the (Bayesian) LGM with a distal outcome. We then describe the
simulation design and discuss the results. We conclude with a discussion and
recommendations for researchers working with LGMs with distal outcomes.

2.2 Previous Research on Distal Outcomes

Within the finite mixture modeling framework, distal outcomes are regularly
studied. See for examples of empirical studies, Eastman, Mitchell, & Putnam-
Hornstein (2016), Hipwell et al. (2016), Jiang et al. (2016), and Petras &
Masyn (2010). For methodological and simulation studies see e.g., Bakk &
Vermunt (2016), Bray, Lanza, & Tan (2015), Huang, Brecht, Hara, & Hser
(2010), Van de Schoot, Sijbrandij, Winter, Depaoli, & Vermunt (2016), and
Vermunt (2010).

Distal outcomes and covariates can impact the latent class structure within
mixture models, and several methods are proposed to deal with this
(Asparouhov & Muthén, 2014; Bakk, Oberski, & Vermunt, 2016; Bakk &
Vermunt, 2016; Lanza, Tan, & Bray, 2013; Vermunt, 2010). Relevant to the
current investigation is that adding a distal outcome increases the complexity
of the model (Huang et al., 2010). A more complex model has a higher
chance of non-convergence during the estimation process (Huang et al.,
2010), implying a larger sample size is needed for proper estimation.
Additionally, Lanza et al. (2013) discuss another factor that further
complicates predicting a distal outcome variable from latent class
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membership: Namely, the value of the predictor – the true class membership
– is not known, but estimated in the model. There are similar concerns for
the model under investigation in the current study. Akin to mixture models,
the values of the predictors – the true values of the latent intercept and
latent slope from the LGM – are unknown and estimated by the growth
model. Furthermore, model complexity of LGMs increases when a distal
outcome variable is added. We therefore expect that a relatively larger
sample size is needed to circumvent convergence problems.

2.3 Latent Growth Models with a Distal
Outcome

There is a rich body of simulation literature examining many different
aspects of performance surrounding the LGM (see e.g., Hertzog et al., 2008;
Shin, Davison, & Long, 2017; Tong & Ke, 2016). One aspect that is
commonly addressed is the performance of LGM under small sample sizes
(see e.g., McNeish, 2016a, 2016b, 2018; Van de Schoot et al., 2015;
Zondervan-Zwijnenburg et al., 2019). Different types of LGMs have been
examined in this context, however, there is no previous simulation work
including distal outcomes. Simulation literature on LGMs (that do not
include distal outcomes) has shown that small sample sizes in relation to the
complexity of the model (i.e., N < 50, in an LGM with four time-points and
two covariates) can lead to convergence problems when frequentist methods
are used (see e.g., McNeish, 2016a). Furthermore, analyzing LGMs with
small sample sizes can lead to biased parameter estimates and low levels of
statistical power when frequentist methods are used (e.g., Van de Schoot et
al., 2015; Zondervan-Zwijnenburg et al., 2019). There are similar concerns
for LGMs with distal outcomes. The distal outcome variable can cause
higher rates of dropouts, as the time interval between the different
measurement moments is longer than for LGMs without distal outcomes.

58



2.3.1 The Model

Consider a general LGM with a latent intercept and a latent linear slope,
as originally described by McArdle (1986), McArdle & Epstein (1987), and
Meredith & Tisak (1990).3 The LGM consists of a measurement model (2.1)
and structural model (2.2):

yit = ηIi + ηSiλt + εit, (2.1)

with

ηIi = αI0 + ξIi,

ηSi = αS0 + ξSi, (2.2)

where yit is the observed outcome for person i at time t, ηIi and ηSi

respectively represent the person-specific latent intercept and latent linear
slope factors, λt denotes the time score at time t, and εit is the person- and
time-specific error term. αI0 is the population mean of individual intercept
factor values, αS0 is the population mean of individual slope factor values,
and ξIi and ξSi represent the differences between the latent factors (ηIi and
ηSi) and the population means (αI0 and αS0).

The LGM can be extended by including a distal outcome variable (see Figure
2.1). When adding a distal outcome variable, the structural model, as shown
in (2.2), is extended with:

ηDi = αD0 + β1ηIi + β2ηSi + ξDi, (2.3)

where ηDi is the person-specific latent factor for the distal outcome, αD0 is the
intercept of the distal outcome; that is, the population mean of the individual
distal outcome variable values when ηIi and ηSi are zero. β1 and β2 are
the regression coefficients representing the relations between the LGM and

3For an introduction into LGMs, we refer to, among many others: Curran, Obeidat, &
Losardo (2010), Duncan et al. (2013), McArdle (2012), Little (2013), and Stoel, Wittenboer,
& Hox (2004).

59



the distal outcome variable, and ξDi represents the person-specific difference
between ηDi and αD0. A more detailed description of all parameters in this
model can be found in Appendix B.

 

Figure 2.1: The model and population values used in the current simulation
study. Note that in this figure, population values are given for a small latent
slope variance ψs (0.10). For a large latent slope variance (1.00), the regression
coefficients for β2 are adjusted to 0.10/0.40 to still represent a small/large
effect.

2.3.2 Bayesian Specification of the Model

Within the Bayesian framework, prior distributions are specified for all
unknown parameters in the model. Hence, for the Bayesian LGM with a
distal outcome this contains the following parameters: latent factor means α,
regression coefficients β, covariance matrix Ψ containing the latent factor
variances and covariance ξ, and matrix Θ containing the residual variances
ε. We refer to these parameters as θ, which represents a vector of the
unknown parameters in matrices α, β, Ψ and Θ. Hence, the prior
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distributions p(α, β, Ψ, Θ) are denoted by p(θ).

We followed the discussion in S.-Y. Lee (2007, pp. 95–98), and adjusted the
posterior distribution for the inclusion of a distal outcome here. In the
posterior analysis, the observed data Y (yit, . . . , ynt) is augmented with the
matrix of latent variables η, resulting in the joint posterior distribution
[θ, η|Y ]. The unknown parameters in θ can be divided into two groups: θy,
the unknown parameters in Θ associated with the measurement model; and
θw, the unknown parameters in α, β, and Ψ associated with the structural
model. The prior distributions of the measurement model are assumed to be
independent of the prior distributions of the structural model, and can
therefore be seen as two different sets of prior distributions:
p(θ) = p(θy)p(θw). Hence, the likelihood is expressed by
p(Y |η, θ) = p(Y |η, θy) and p(η|θ) = p(η|θw). Accordingly, the posterior
distribution of the LGM with a distal outcome is given by
p(θy,θw|Y, η) ∝ [p(Y |η, θy)p(θy)][p(η|θw)p(θw)].

2.4 Simulation Design

The model of interest in the current simulation study, is an LGM with a
latent intercept, latent linear slope, four time points, and one continuous
distal outcome variable, as represented by (2.1), (2.2) and (2.3), and shown
in Figure 2.1. The population values for this model are based on McNeish
(2016a). Data sets were generated and analyzed using Mplus version 8
(Muthén & Muthén, 1998-2017), and R version 3.4.4 via the package
MplusAutomation version 0.7 (Hallquist & Wiley, 2017; R Core Team, 2022).
The following data generation conditions were varied: sample size (3 levels),
effect size (2 levels), and population values for the slope variance parameter
(2 levels). These three conditions were fully crossed with each other,
resulting in 12 different settings for data generation. For each of these 12
settings, 1, 000 data sets were generated, and we analyzed these datasets
using eight different estimation methods: (ML) estimation; Bayesian
estimation with Mplus default priors; Bayesian estimation with weak,
medium, and strong informative priors centered at the population values;
and Bayesian estimation with weak, medium, and strong priors deviating
from the population values. Accordingly, the simulation design includes: 3
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Table 2.1: Overview of the simulation design

(sample sizes) × 2 (effect sizes) × 2 (slope variance values) × 8 (estimation
methods) = 96 cells. An overview of the simulation design can be found in
Table 2.1, and the varying conditions are detailed below.

2.4.1 Conditions Simulation Design

Sample Size. Sample size was computed as a factor of the number of unknown
parameters, given by: n = d ∗ a, where a denotes the number of unknown
parameters in the model of interest, d = 2 represents a very small sample,
and d = 4 represents a small sample (as discussed in Lee & Song, 2004, p.
660). In the current study, the number of unknown parameters in the model,
a, is 13. Therefore, n = 26 represents a very small sample size, and n = 52 a
small sample size. We also included n = 325 to see how the various estimation
methods perform under a large sample size.

Effect Size. Two different effect sizes are investigated for β1 and β2: a
small effect size, represented by a standardized regression coefficient of 0.20;
and a large effect size, represented by a standardized regression coefficient
of 0.80. Supplementary file S1 shows the computation of the corresponding
unstandardized regression coefficients which are used for data generation (all
Supplementary files are available on the Open Science Framework: https://
osf.io/ycfvg/).
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Slope Variance. We investigated two levels of variation around the latent
slope to examine whether this influences the prediction of the distal outcome
variable in an LGM. In empirical studies, the ratio of the intercept and slope
variance is often small to moderate (Hertzog et al., 2008; Liu et al., 2016),
and the slope variance is usually less than 1/4 of the intercept variance (Ke
& Wang, 2015). Small ratios are regularly studied in the context of
simulation studies (see e.g., Bauer & Curran, 2003; Liu et al., 2016; McNeish,
2016a; Muthén & Muthén, 2002). However, larger ratios are also important
to examine, as empirical research can produce any values along that
continuum. In the current simulation study, the intercept variance was fixed
at 1.00, and the two following levels of slope variation were examined: a
small slope variation of 0.10 (ratio of 1/10), and a large slope variation of
1.00 (ratio of 1/1).

Estimation Methods. To investigate the impact of various estimation
methods on the results, we compared ML to seven levels of Bayesian
estimation. For ML, all Mplus default settings were used regarding
convergence (see Muthén & Muthén, 1998-2017). For the Bayesian analyses,
the median point estimate of the posterior was saved, no thinning was used
(i.e., thinning interval = 1), and two Markov chains were specified for each
model parameter. The Gelman-Rubin potential scale reduction (PSR) factor
(see e.g., Gelman et al., 2014; Gelman & Rubin, 1992) was used to assess
convergence. The convergence criterion was set to 0.01 instead of the 0.05
Mplus default, to request a stricter criterion and ensure convergence was
obtained. The minimum and maximum number of iterations per chain were
increased and set at 50, 000 and 150, 000, respectively. The first half of the
iterations within each chain was discarded as the burn-in phase, and the
remaining iterations defined the posterior. Aside from the PSR factor,
convergence was also visually examined for two randomly selected data sets
for each of the 12 data generating conditions. These randomly selected data
sets were analyzed using the different Bayesian estimation conditions, and
then trace plots for all estimated parameters were visually examined for
fluctuations or other signs of non-convergence.

Prior specifications for Bayesian estimation. Here, we discuss the prior
specifications for the seven Bayesian estimation settings. First, Bayesian
estimation with only diffuse Mplus default priors was used (i.e.,
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BayesDefault); default priors can be found in Appendix C. The other six
levels of Bayesian estimation contain informative prior distributions for five
parameters in the model to mimic an achievable applied data situation,
where the researcher would have information about some model parameters
but not all of them. The model parameters with informed priors were: the
mean of the latent intercept; the mean of the latent slope; the intercept of
the distal outcome; and the two regression coefficients. Mplus default priors
were used for the remaining model parameters.

Two main types of prior distributions were specified: prior distributions that
contained information similar to the population values (informative prior
conditions), and distributions that contained information that was deviating
from the population values (deviating prior conditions). By investigating
these two types of priors, we were able to examine the upper-bound
performance (i.e., when prior distributions are centered at the population
values), as well as a scenario that is probably more realistic in practice (i.e.,
when the location of the prior distributions deviates from the population
values). Under these two main categories of prior location (centered at the
population value, and deviating from it), we investigated varying degrees of
precision in the prior distributions.

Specifically, we investigated weak, medium, and strong levels of certainty by
manipulating the variance hyperparameter of the prior. In order to set up
these conditions, we used information we gained from the results of the
condition implementing all Mplus default prior settings. Upon obtaining the
results from the default prior settings, we logged the posterior standard
deviation (SD) for the five model parameters in question. We then used this
value to help us set three different degrees of (un)certainty within the prior
setting. Specifically, for all five parameters, a normal distribution was
specified, N(µ, σ2), where σ2 = 150%, 100%, and 50% of the (posterior SD)2

of the default prior setting results; these three settings created weak,
medium, and strong prior distributions, respectively. The weakly informative
prior had a variance hyperparameter of 1.50∗(posterior SD)2, indicating it
contained relatively more uncertainty (i.e., more variation). The medium
informative prior used the posterior standard deviation from the default
prior analysis: The variance hyperparameter was 1.0∗(posterior SD)2.
Finally, the strong informative prior was computed as 0.50∗(posterior SD)2,
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indicating it contained the most certainty out of the three conditions.

For the informative prior distributions, the mean hyperparameter (µ) of the
prior distribution was set to the population value in order to center the bulk
of the prior over the population value. For the deviating prior distribution
conditions, the mean hyperparameter (µ) was computed such that it
deviated from the true population value. Specifically, µ was specified in order
that there was a five percent overlap between the informative and deviating
prior distributions. For example, in the case of parameter β2 with n = 325,
small slope variance and small effect size, the population value was 0.32. The
corresponding posterior SD produced by BayesDefault was 0.4086.
Accordingly, the weakly informative prior was
N(0.32, (0.40862 ∗ 1.5 = ) 0.25), the medium informative prior was
N(0.32, (0.40862 ∗ 1 = ) 0.167), and the strong informative prior was
N(0.32, (0.40862 ∗ 0.5 = ) 0.083). Then the deviating prior distributions
were fixed to overlap with these distributions by five percent (see Figure 2.2).
Consequently, the weakly deviating prior was N(−1.642, 0.25), the medium
deviating prior was N(−1.282, 0.167), and the strong deviating prior was
N(−0.813, 0.083). This allowed us to assess the impact of priors that were
slightly deviating from the population, potentially representing a setting
more realistic to applied inquiries where the truth of the population is
unknown.

Note that in the informative conditions, the mean hyperparameters were the
same in the weak, medium, and strong distributions. While in the deviating
prior conditions, the means differed for the weak, medium, and strong
conditions to maintain the five percent overlap between the informative and
deviating prior distributions. The variance hyperparameters were the same in
the informative and deviating weak conditions; the informative and deviating
medium conditions; and the informative and deviating strong conditions. For
more information on the varying conditions in the simulation design and the
specified prior distributions, we refer to Supplementary file S1.

2.4.2 Evaluation criteria

With small samples or complex models, convergence problems, warnings, and
inadmissible parameter solutions can occur. Therefore, the number of
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Figure 2.2: Prior distributions for regression coefficient β2, when n = 325, the
slope variance is small (0.10), and the effect size is small (0.20). Note. The three
grey lines represent deviating prior distributions, which contain weak, medium and strong
amounts of information respectively. The three black lines represent the weak, medium and
strong prior distributions centered at population values. The triangle shows the specified
population value, and the three crosses the mean hyperparameters of the three deviating
prior distributions. Note that the mean hyperparameters of the three deviating priors differ,
to maintain the 5% overlap with the three informative prior distributions.

completed and non-completed replications (which were highlighted by
warning messages) was examined for each of the cells of the simulation
design. Furthermore, for all parameters in the model, the following
evaluation criteria were examined: relative mean bias, mean squared error
(MSE), and coverage.

Relative mean bias was computed by [θ̄−θ/θ] ∗ 100, where θ̄ denotes the
average estimate across replications, and θ denotes the specified population
value (Muthén & Muthén, 1998-2017). Because the population value of the
covariance of the intercept and slope was zero, the relative bias could not be
computed. The absolute bias (computed by (θ̄ − θ) ∗ 100) is therefore
reported for the covariance parameter. In interpreting parameter bias, the
cutoff value of ±10% was used as suggested by Hoogland & Boomsma
(1998). Values outside this interval represented problematic levels of bias.

The MSE was computed by (SD)2 + (θ̄ − θ)2, where SD denotes the
standard deviation across replications, θ̄ denotes the average estimate across
replications, and θ denotes the specified population value (Muthén &
Muthén, 1998-2017). The MSE takes the relative bias and variability across
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replications into account. Therefore, the smaller the MSE, the closer the
estimated value is to the population value, across replications.

Coverage was denoted by the proportion of replications for which the 95%
confidence or credibility interval contains the population value. Values
between 0.925 and 0.975 are considered to represent good parameter
coverage (Bradley, 1978). Values outside the interval could suggest biased
standard error estimates.

Finally, for the two regression coefficients β1 and β2, statistical power was
reported, that is, the proportion of estimates across replications that differs
significantly from zero (Muthén & Muthén, 1998-2017). The preferred value
for power is considered to be 0.80 (Muthén & Muthén, 2002).

2.5 Results

In this section, we focus extensively on the results of the parameters related
to the distal outcome, and briefly discuss results of the other LGM
parameters. The results of the medium prior distributions are very similar to
either the weak or strong prior distributions, and have therefore been moved
to Supplementary file S2 to conserve space.

2.5.1 Convergence and Warnings

The ML analyses did encounter convergence problems in 8.6% of the cases,
when taking all 12 data generation conditions into account (out of the 12, 000
requested replications, 1, 030 of them had convergence problems).
Furthermore, standard errors could not be computed in 0.075% of the cases
(9 out of 12, 000 replications). The total number of completed replications
under ML is shown in Table 2.2. The amount of non-completed replications
when the slope variance was small is 3.11 times as high as when the slope
variance was large (786 non-completed replications versus 253). Besides
non-convergence errors, warnings related to the latent covariance matrix psi,
and residual covariance matrix theta were given when ML was used, see
Table 2.2. The total number of warnings was also higher when the slope
variance was small: 2.89 times as high than when the variance of the slope
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was large (total of 1, 112 warnings versus 384). Warnings related to the
residual covariance matrix theta were present 1.80 times more often when the
slope variance was large, while warnings related to the latent variable
covariance matrix psi occurred 5.44 times more often when the slope variance
was small. For more information on convergence and warnings, we refer to
Supplementary file S1.

From the 1, 000 requested replications, the Bayesian analyses produced a
100% convergence rate, without any reported warnings. However, when
visually examining trace plots to inspect if the multiple chains truly reached
convergence, spikes were detected under the Mplus default priors when small
sample sizes were implemented. Spikes are extreme values sampled during
MCMC, which cannot always be identified by the PSR if they are happening
uniformly across the duration of the chain. For instance, for regression
coefficient β2, the trace plot showed spikes with estimates up to 4500 and
down to −2000, while the population value for this parameter was 1.27.4

With a larger sample size and large slope variance, no spikes were observed
in the trace plots. Interestingly, no spikes were detected when informative
and deviating priors were used in the analyses, even in the conditions with
the smallest sample size. The appearance of spikes (yes/no) for the varying
simulation conditions when Bayesian estimation with default priors was used,
is reported in Table 2.2. Interested readers are referred to Supplementary file
S1 for the trace plots with spikes for one of the examined data sets, and more
details on the visual convergence checks we performed.

4The values of the extreme spikes for parameter β2 correspond to the following data
generation conditions: small slope variance, large effect size, n = 26. The replication number
of the data set is 30. The spikes appeared when Bayesian estimation with default priors was
used. For more information, see Supplementary file S1.
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2.5.2 Relative Bias

We have organized this section into subsections to promote clarity and
highlight the most important patterns that emerged. First, the results of the
LGM are discussed, followed by an extensive discussion of the results of the
distal outcome. The results of the LGM parameters are very similar to
findings from previous simulation studies and are therefore only briefly
discussed in the main text.

Relative bias in the LGM. Results of the LGM parameters, can be found
in Supplementary file S3. The most problematic levels of bias are found for
the variance parameters of the intercept and slope, which is in line with
previous LGM simulation results (see e.g., McNeish, 2016a, 2016b; Van de
Schoot et al., 2015). The highest levels of bias for both parameters are
reported when the slope variance was small, although the impact of the slope
variance was more extreme for the variance parameter of the latent slope.
Unexpected was the deterioration of both variance parameter estimates when
informative priors were specified for other parameters in the model in
combination with Mplus default priors for the variance parameters (i.e., weak
and strong informative prior conditions), and the improvement of the
variance of the intercept parameter when deviating priors were specified for
other parameters in the model (i.e., weak and strong deviating prior
conditions) in comparison to the Bayesian default priors condition and ML
results. For the variance parameters of the intercept and slope, ML
estimation resulted in the median closest to the population value when
samples were small, followed by Bayesian estimation with default priors,
Bayesian estimation with informative and deviating priors (for more
information, see Figures 3-4 in Supplementary file S4). This might indicate
that the specified prior distributions for the variance parameters were not
suitable for the current study, in combination with informative priors for
other parameters in the model. This issue will be further explored and
discussed in the ‘Additional Exploration Priors on Variance Parameters’
section, and covered in more detail in the Discussion section.

Relative bias in the distal outcome. We start this subsection with a
discussion of the two regression coefficients, as these will often be the main
parameters of interest in substantive studies. The section will be continued
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by the description of the results of the intercept and variance of the distal
outcome.

Relative bias for regression coefficients β1 and β2. With a small slope
variance, problematic levels of bias were found when ML and the Bayesian
condition with default prior settings (BayesDefault) were used, even in
combination with a large sample size. Furthermore, higher levels of bias were
also produced with smaller sample sizes. The specification of informative
priors led to considerable improvements of the regression coefficient
estimates, as can be seen in Figures 2.3-2.4. Deviating prior distributions
resulted in extremely high levels of bias for the two regression coefficients.
Higher levels of bias with deviating priors were associated with a small effect
size. Furthermore, a counterintuitive pattern was visible for both coefficients
when the slope variance was small and BayesDefault and ML were used. As
can be seen in Figures 2.4A and 2.4B, the estimate of β2 with BayesDefault
was negatively biased when n = 26 and positively biased when n = 325, and
vice versa for β1 (see Figure 2.3A for β1). The pattern disappeared when
informative priors were specified (Figures 2.4A and 2.4B), and did return
when deviating priors were used, when the slope variance and effect size were
small (Figure 2.4E). When the slope variance was large, we did not encounter
this pattern and results looked more sensible: The amount of bias decreased
when the sample size increased. Note that the results for the smaller sample
sizes should be interpreted with caution. When inspecting the distribution of
estimates across replications, outliers were detected under small sample sizes,
as well as when BayesDefault or ML were used. It is reasonable to assume
that these outliers influenced the relative mean bias estimates and could have
caused the counterintuitive patterns shown in Figures 2.4A and 2.4B.
Therefore, boxplots are presented in Figures 2.5-2.6 to show the entire
distribution of estimates across replications. Hence, the figures showing the
relative mean bias should be interpreted in combination with the boxplots in
which the outliers are clearly visible.

In Figures 2.5-2.6 it can be seen that when the sample size increases, the
amount of outliers decreases and the distributions of estimates are closer to
the true population values. Furthermore, the distributions of estimates based
on Bayesian estimation with informative priors (weak and strong) were closer
to the population values than when ML and BayesDefault were used.
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, under varying sample sizes, effect sizes, slope variance values and 

Figure 2.3: Relative bias for regression coefficient β1, under varying sample
sizes, effect sizes, slope variance values and estimation methods. Note. The static
black horizontal lines represent the ±10% interval. Subfigures at the left (A-D) present a
smaller range of the y-axis to show the performance close to the ±10% boundaries, and
therefore deviating prior conditions are not included here. Subfigures at the right (E-H)
represent corresponding data generation conditions as A-D, but also include the deviating
conditions. Note that therefore the y-axes of the A-D graphs differ from the y-axes of the
E-H graphs.
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, under varying sample sizes, effect sizes, slope variance values and 

Figure 2.4: Relative bias for regression coefficient β2, under varying sample
sizes, effect sizes, slope variance values and estimation methods. Note. The static
black horizontal lines represent the ±10% interval. Subfigures at the left (A-D) present a
smaller range of the y-axis to show the performance close to the ±10% boundaries, and
therefore deviating prior conditions are not included here. Subfigures at the right (E-H)
represent corresponding data generation conditions as A-D, but also include the deviating
conditions. Note that therefore the y-axes of the A-D graphs differ from the y-axes of the
E-H graphs.
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*7.16

*-5.75

*5.18, 8.33, 8.61 *7.64

Figure 2.5: Distribution of the estimates for parameter β1 across completed
replications, under varying sample sizes, effect sizes, slope variance values and
estimation methods. Note. The static black horizontal line denotes the true population
value for β1. Outliers are displayed as black circles. Outliers outside the interval [−4; 5]
only occurred for ML, and are denoted by *.
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Figure 2.6: Distribution of the estimates for parameter β2 across completed
replications, under varying sample sizes, effect sizes, slope variance values and
estimation methods. Note. The static black horizontal line denotes the true population
value for β2. Outliers are displayed as black circles. Note that the range of the y-axes of
subfigures A and B differs from the range of the y-axes of subfigures C and D.
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The distributions of estimates based on the deviating priors (weak and
strong) were clearly deviated from the population values, although less
outliers did occur compared to ML and BayesDefault. Comparing β1 and β2,
more extreme outliers were present for the estimation of β2 (especially when
the slope variance was small, see Figures 2.6A and 2.6B). For β1, the
estimation of the four data generation scenarios led to more or less similar
distributions and amount of outliers.

Relative bias for intercept αD. When ML and BayesDefault were used, too high
levels of bias were only reported for the intercept of the distal outcome when
the effect size was large and slope variance was small (see Figure 2.7). The
estimates were biased for all sample sizes, and the counterintuitive pattern that
was observed for the regression coefficients was present when the slope variance
was small and the effect size was large (see Figure 2.7B). As expected, the use
of informative priors improved the estimates. With a large slope variance
(Figures 2.7C and 2.7D) – regardless of the effect size – the bias of the distal
outcome intercept was close to zero percent when using ML, BayesDefault and
the two informative prior conditions. The specification of deviating priors led
to extremely biased estimates when sample sizes were small.

The boxplots in Figure 2.8 show larger ranges of distributions and more outliers
when the slope variance was small (Figures 2.8A and 2.8B) compared to when
the slope variance was large (Figures 2.8C and 2.8D). This indicates that the
results were more stable across replications when the slope variance was large.

Relative bias for variance parameter ψD. For the variance of the distal
outcome, biased estimates were reported for ML when the sample size was
small, and this also occurred for BayesDefault when the sample size was
small in combination with a small slope variance and small effect (see Figure
2.9). The estimation of the variance parameter improved when informative
priors were specified for other parameters in the model and resulted in
unbiased estimates. There was only one exception: When n = 26, the slope
variance was small, and the effect was large (Figure 2.9B), the estimate was
slightly biased. Deviating prior distributions, specified for other model
parameters, led to increased levels of bias in comparison to ML,
BayesDefault, and the informative prior conditions.
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Figure 2.7: Relative bias for the intercept of the distal outcome, under varying
sample sizes, effect sizes, slope variance values and estimation methods. Note.
The static black horizontal lines represent the ±10% interval.
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*-5.48

*-4.46, -4.95 *-5.03, -5.16

Figure 2.8: Distribution of the estimates for the intercept of the distal outcome
across completed replications, under varying sample sizes, effect sizes, slope
vairance values and estimation methods. Note. The static black horizontal line
denotes the true population of 0.50 for the intercept of the distal outcome. Outliers are
displayed as black circles. Outliers outside the interval [−4; 4] only occurred for ML, and
are denoted by *.
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Figure 2.9: Relative bias for the variance of the distal outcome, under varying
sample sizes, effect sizes, slope variance values and estimation methods. Note.
The static black horizontal lines represent the ±10% interval.
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Figure 2.10: Distribution of the estimates for the variance of the distal outcome
across completed replications, under varying sample sizes, effect sizes, slope
variance values and estimation methods. Note. The static black horizontal line
denotes the true population of 0.25 for the variance of the distal outcome. Outliers are
displayed as black circles.
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In the boxplots in Figure 2.10, it can be seen that the highest outliers were
associated with ML estimation and deviating priors, when samples were small
(n = 26, 52); and when the effect size was large.

2.5.3 Mean Squared Error

In Supplementary file S3 the mean squared error (MSE) values are shown for
the varying parameters, sample sizes, effect sizes, and slope variance values.
For all parameters, higher levels of MSE were associated with smaller sample
sizes, the use of Bayesian estimation with weak and/or strong deviating
priors, and/or ML estimation. As the MSE took into account both
variability and bias of the estimates, the MSE values showed a similar
pattern as the distributions of estimates shown in the boxplots in Figures
2.5, 2.6, 2.8, 2.10, and in Supplementary file S4.

2.5.4 Coverage

Results in terms of coverage can be found in Supplementary file S3. When
ML was used, 21.15% of the cases showed under-coverage, but only in 5.13%
of all values the coverage values were below 0.90.5 With BayesDefault, under-
coverage only occurred in 3.21%, and values below 0.90 were not obtained.
Under-coverage was especially associated with smaller sample sizes. The use
of informative priors never resulted in under-coverage rates, while the use of
deviating priors often led to extremely low coverage values – especially for the
five parameters for which deviating priors were specified. Under-coverage was
found in 60.90% of the cases for weak deviating distributions, and 55.13% of
the cases for the strong deviating distributions, and dramatically low coverage
values were obtained down to 0.002.

ML resulted in 3.21% of the cases in over-coverage rates, while the use of
BayesDefault led to over-coverage rates in 25% of the cases. The use of
informative priors resulted in over-coverage rates for all situations for the five
parameters for which informative priors were specified. For the other 8
parameters, over-coverage occurred in 13.54% of the cases for the weak

5These values represent the percentage of cases that showed under- or over-coverage from
a total of 156 cases. 156 is computed as follows: 3 (sample sizes) x 2 (effect sizes) x 2 (slope
variance values) x 13 (parameters) = 156.
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informative priors, and in 9.38% for the strong informative priors.6 Deviating
priors hardly ever resulted in coverage rates that were too high; 2.56% of the
cases for weak deviating priors yielded over-coverage, as well as 3.85% of the
cases for strong deviating priors.

2.5.5 Power of the Regression Coefficients β1 and β2

In Table 2.3, the power rates of β1 and β2 are presented. With a small sample
size, it was impossible to detect a small effect when ML or BayesDefault were
used. Only in 16.7%, the power levels of ML and BayesDefault were at or
above 0.80.7 Higher levels of power were associated with a larger sample size,
a large effect in the simulated data and a large slope variance. With the use of
informative priors, the large effect was detected with all sample sizes for both
small and large slope variances. Additionally, it became possible to detect the
small effect when the largest sample size was used under informative priors.
Although high levels of power were reported for the deviating priors when the
effect and/ or sample size was large, the coverage was dramatically low for the
corresponding estimates, especially for β1.

2.5.6 Additional Exploration Priors on Variance
Parameters

In all simulation conditions, Mplus default priors were specified for the
variance parameters (see Appendix C). After finding some unexpected results
as discussed in the section: ‘Relative bias in the LGM,’ we explored alternate
prior distributions for the variance parameters. The Inverse Wishart
distribution is the default prior distribution in Mplus for the covariance
matrix of a multivariate normal distribution, which means that one prior
distribution is specified for all elements in the covariance matrix (Muthén &
Muthén, 1998-2017). Consequently, all elements in the covariance matrix are
assigned an equal level of informativeness (e.g., Asparouhov & Muthén,

6Here, we used 96 cases instead of 156, because we were interested in the remaining
parameters for which no informative and deviating prior distributions were specified: 2
(effects) x 2 (slope variances) x 3 (sample sizes) x 8 (parameters) = 96.

7Here, we used 48 cases instead of 156, because we were interested in the two regression
coefficient parameters: 3 (sample sizes) x 2 (effect sizes) x 2 (slope variance values) x 2
(estimation methods) x 2 (parameters) = 48.
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Table 2.3: Power of the regression coefficients β1 and β2

Note. Bold values represent power rates below 0.80. ML refers to maximum
likelihood estimation; BayesDefault refers to Bayesian estimation using Mplus
default priors; Info Weak and Info Strong refer to the weakly and strongly
informative prior settings in the simulation design, and Dev Weak and Dev Strong
to the weakly and strongly deviating prior settings.
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2010). For a comprehensive discussion of the Inverse Wishart prior
distribution, we refer to Schuurman, Grasman, & Hamaker (2016) and Liu et
al. (2016).

As suggested by Liu et al. (2016), another option is to specify separate priors
for the varying parts of the covariance matrix. This type of prior allows for
separate prior distributions for each variance and covariance parameter. We
followed the suggestions of Liu et al. (2016) when specifying the prior
distributions for the additional exploration. An Inverse Gamma prior:
IG(0.001, 0.001) was specified for the variance parameters of the intercept,
slope, and distal outcome. In turn, a Uniform prior, U [−1, 1], was specified
for the covariance of the intercept and slope. For one of the worst-case cells
in the design: n = 26, small slope variance, small effect size, we ran 1, 000
replications for the informative and deviating prior conditions including the
separate priors for the variance parameters and compared those to the
existing results.

The specification of the Inverse Gamma and Uniform priors for the variance
parameters resulted in an improvement of the estimates and led to sensible
findings (see Supplementary file S5 for the results in terms of relative bias,
and Supplementary file S6 for the boxplots of the distribution of estimates
across replications). Informative priors led to a decrease in bias compared to
the BayesDefault condition. In turn, deviating priors led to increased levels
of bias for all four variance parameters compared to the results of
informative prior conditions. For the variance of the slope and variance of
the distal outcome, higher levels of bias were found for the deviating prior
results compared to BayesDefault results. While for the variance of the
intercept, and the covariance of the intercept and slope, the deviating prior
condition showed an improvement over BayesDefault results in terms of bias.
The distribution of estimates across replications (see boxplots in
Supplementary file S6), showed similar patterns. The informative prior
conditions resulted in distributions closer to the true population values, and
less variable than the results of ML and BayesDefault. The estimates
resulting from the specification of deviating priors showed more variable
distributions and their medians were further away from the population value
compared to the informative prior condition.
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2.6 Discussion

The aim of the current study was to examine the performance of an LGM with
a continuous distal outcome, under varying estimation methods, sample sizes,
effect sizes, and variation around the latent slope. Caution is needed when
predicting a distal outcome from an LGM latent slope when the sample size is
small, or when the slope variance is small – regardless of the sample size. The
use of Bayesian estimation with informative priors did improve the estimates
in terms of relative bias, MSE, coverage, and power. On the other hand, the
specification of priors that deviated from the population values deteriorated
the results, especially when sample sizes were small.

Predicting a distal outcome variable can completely fail when there is almost
no variation around the latent slope. Even a sample size of 325 is not large
enough to yield unbiased regression coefficients when maximum likelihood or
Bayesian estimation with default priors are used. Additionally, the prediction
of the distal outcome from the latent intercept is also negatively impacted
by a small variation around the latent slope, although it is less impactful
when the effect size increases. Furthermore, Liu et al. (2016) associated
more variation around the latent slope with higher levels of power to identify
individual differences around the latent slope. A similar result was found in
the current study: Higher levels of power were reported for the two regression
coefficients in the large slope variance condition in comparison to the small
slope variance condition.

The results of Bayesian estimation with Mplus default priors (BayesDefault
condition) in the current study, are in line with the many recent simulation
studies, claiming Bayesian estimation with default priors is not preferred
when sample sizes are small (see e.g., Depaoli & Clifton, 2015; Holtmann et
al., 2016; McNeish, 2016a, 2016b; Shi & Tong, 2017). Spikes were detected
when default priors were used in two conditions: (1) when sample sizes were
small, and (2) when the slope variance and effect size were small in
combination with all examined sample sizes. When prior information was
incorporated, by specifying either informative or deviating prior
distributions, no spikes were detected. Note that the weakly informative and
weakly deviating prior conditions were still relatively informative
distributions in comparison to the default diffuse priors implemented in
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Mplus. It is plausible to assume that the Mplus default prior distributions
were not informed enough to prevent spikes for the parameter estimation in
the current model and are therefore likely to be the cause of high levels of
bias when using Bayesian estimation with default priors.

Findings of the LGM parameters of the model were in line with the existing
simulation literature on LGMs; that is, the most problematic levels of bias
were detected for the variance parameters of the intercept and slope (e.g.,
McNeish, 2016a, 2016b; Van de Schoot et al., 2015). In McNeish (2016a), an
LGM with two covariates was examined with population values and sample
sizes comparable to the current study. These similarities allowed us to explore
the differences in results. For instance, McNeish (2016a) showed that when
using Bayesian estimation with Mplus default priors, a sample size of 50 was
sufficient to obtain an unbiased estimate for the variance parameter of the
intercept. While in the current study, with an LGM with a distal outcome, a
sample size of 52 still led to a biased estimate for the same parameter.

The additional exploration of the variance parameters in the model,
indicated that the use of separate priors for the variance components (as
suggested by Liu et al., 2016) led to sensible results, whereas the Mplus
default prior distributions for variance parameters did not. Schuurman et al.
(2016) examined various specifications of the Inverse Wishart prior for the
covariance matrix, and concluded that the prior settings can negatively
impact the parameter estimates when the variances are close to zero.
However, we decided to implement this prior in the current study based on
findings of a previous studies. Based on a systematic literature review, Smid,
McNeish, et al. (2020) indicated that informative priors for other parameters
in the model could improve the estimates of variance parameters, when
default priors were specified for the variance parameters. Depaoli (2012),
Depaoli & Clifton (2015), and Holtmann et al. (2016) reported similar
findings: priors on parameters in one part of the model impacted results for
parameters in another part of the model. Further research is needed to
examine the exact conditions under which this finding holds. Options to
further explore the behavior of the variance parameters under varying prior
distributions include the use of the half-Cauchy prior as suggested by
Gelman (2006), or the use of reference priors as specified in Tsai & Hsiao
(2008). Another option is the use of data dependent priors (Darnieder, 2011;
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McNeish, 2016b), in which frequentist parameter estimates are implemented
in prior distributions. One criticism of data dependent priors is that data are
used twice: first to obtain frequentist parameter estimates, and second when
the data is analyzed by using the data dependent priors (Darnieder, 2011).
One way to avoid ‘double-dipping’ is the use of data-splitting techniques. For
instance, in the first step, 50% of the data is analyzed using frequentist
estimation, and in step two the results of step one are incorporated in prior
distributions to analyze the other 50% of the data using Bayesian estimation.
On the other side, as the data set needs to be split into two parts, this
method is not ideal when the sample size is already small. Hence, there is no
clear-cut solution as it depends on the model and the specific situation.
However, based on the results of the current study, we conclude that the
specification of priors for the variance parameters is of importance –
regardless of the use of informative prior distributions for other parameters
in the model. It is therefore necessary to further assess the Inverse Wishart
(or Inverse Gamma, depending on the model) prior distribution under
varying conditions in the future.

Finally, aside from the factors varied in the current simulation design, the
number of time points in an LGM can also influence the performance since
the number of time points directly impacts the amount of data points. Future
research should therefore consider examining the potential influence of the
number of time points in an LGM with a distal outcome. Another factor that
should be examined is the potential impact of a categorical distal outcome
instead of a continuous distal outcome. Also, the impact of adding a quadratic
and/or cubic slope to the LGM could be of interest since trajectory shape is
also likely to influence the impact of prior settings. Including additional slopes
to the growth model increases model complexity, as there could be three to
four latent factors that could be used to predict the distal outcome.
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2.6.1 Recommendations for Substantive Researchers

The sample size needed to analyze an LGM with a distal outcome depends
on the following four items: (1) the parameter of interest, (2) the amount of
variation around the latent intercept and slope, (3) the effect size, and (4)
the amount of prior information that a researcher can (or wants to) specify.
For example, to predict a distal outcome from the participants’ growth rate, a
sample size of 26 would be sufficient to obtain an unbiased parameter estimate
for the regression coefficient β2 when using ML, BayesDefault, or Bayesian
estimation with informative priors when the effect size and slope variance are
large (although the statistical power was extremely low in this condition when
BayesDefault was used). In contrast, a small effect and slope variance linked to
a sample size of 325 would not be sufficient to obtain an unbiased estimate for
β2 when using ML or BayesDefault. In this case, only the use of informative
priors could lead to an unbiased estimate when n = 325.

The specification of informative priors improved the estimates in terms of
bias, MSE, coverage and power. Accordingly, Bayesian estimation with
informative priors can be used with a smaller sample size or slope variance,
and it could therefore be a solution for the analysis of data with such
characteristics. However, note that informative priors represent the
upper-bound performance of Bayesian estimation and not necessarily the
practical application of Bayesian estimation in applied research settings. The
specification of priors that deviated from the population values deteriorated
the results, especially when sample sizes were small. Specifically, the
deviating priors negatively influenced the estimation of the parameters for
which deviating information was included, but also parameters for which no
deviating information was specified.

In real life applications, it is likely to have prior distributions that at least
slightly deviate from the data. One might therefore opt to choose
BayesDefault instead of risking the specification of deviating priors (when
comparing BayesDefault to situations when the prior deviates from the
population in the current study). However, as discussed earlier, BayesDefault
can lead to severely biased estimates when samples are small (see e.g.,
Depaoli & Clifton, 2015; Holtmann et al., 2016; McNeish, 2016a, 2016b; Shi
& Tong, 2017), and is therefore hard to recommend as a viable approach.
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Hence, we recommend researchers take the most careful approach possible,
which entails: (1) carefully constructing prior distributions; and (2) assessing
the impact and robustness of the specified priors through an extensive
sensitivity analysis. For more information on how to elicit prior information
(e.g., based on previous studies, meta-analyses, or knowledge of experts in
the field), we refer to: O’Hagan et al. (2006); Bolsinova, Hoijtink,
Vermeulen, & Béguin (2017); Zondervan-Zwijnenburg et al. (2017) and Veen,
Stoel, Zondervan-Zwijnenburg, & Van de Schoot (2017); Van de Schoot et al.
(2018). We also refer to Kruschke (2015, pp. 721–725) for an overview of
items that should always be reported when Bayesian estimation is used,
including reporting details on prior specifications. For information on how to
perform a sensitivity analysis, we refer to Depaoli & Van de Schoot (2017)
and Van Erp et al. (2018). An example of a sensitivity analysis in an
empirical setting can be found in Van de Schoot et al. (2018).

The results of the current study further emphasize the importance of inspecting
trace plots for all parameters for the appearance of spikes when using Bayesian
estimation (see also Depaoli & Clifton, 2015; Van de Schoot et al., 2015).
The inspection of trace plots should be a standard procedure when Bayesian
estimation is used to assess whether the different chains have truly converged
(see e.g., Gelman et al., 2014; Kaplan, 2014; and Lynch, 2007) – note that
convergence criteria cannot always identify spikes, as we saw in the current
investigation.

Although further research is needed to completely examine the performance
of the Inverse Wishart prior distribution, researchers should be cautious with
the use of the Inverse Wishart default prior in Mplus for the covariance
matrix. Caution is especially needed when the individual variance
parameters are expected to be small (as shown by Schuurman et al., 2016).
In such a situation, researchers should preferably specify separate priors as
suggested by Liu et al. (2016). However, extreme caution is needed if
adapting this approach, as one could easily end up with a non-positive
definite matrix.

To conclude, LGMs with a distal outcome are useful to assess longer-term
patterns, and to detect the need to start a (preventive) treatment or
intervention in an early stage. The results of the current study showed that
when predicting a distal outcome from an LGM, prudence is called for when:
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(1) the sample size is small; and (2) the variance of the slope is (expected to
be) small. ML and Bayesian estimation with Mplus default prior settings
should not be used in these situations to avoid severely biased estimates. A
larger sample size or the specification of informative priors can help to
improve the results. Note that the smaller the sample size, the larger the
impact of prior distributions on the posterior, and therefore deliberate
decisions about prior distributions are necessary. It is our hope that these
findings help to uncover the important estimation issues tied to properly
assessing the impact of distal outcomes on final model results.
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Appendix B. Description of the parameters in
the model

Measurement model matrices:

ν =


0
0
0
0
0

 Λ =


1 0 0
1 1 0
1 2 0
1 3 0
0 0 0

 Θ =


θx1

0 θx2

0 0 θx3

0 0 0 θx4

0 0 0 0 0


This leads to the measurement model, as given in Equation (2.4).

yit = ηIi + ηSiλt + εit, (2.4)

Structural model matrices:

α =

 αI0

αS0

αD0

B =

 0 0 0
0 0 0
β1 β2 0

 Ψ =

 ψI

ψS ψI−S

0 0 ψD


This leads to the structural model, as shown in Equations (2.5) and (2.6).

ηIi = αI0 + ξIi,

ηSi = αS0 + ξSi, (2.5)

ηDi = αD0 + β1ηIi + β2ηSi + ξDi, (2.6)

where,

yit = observed outcome y for person i(i = 1, . . . , n) at time t (in simulation
design: 0, 1, 2, 3)

ηIi = random intercept factor: the expected outcome on y (here measured by
y1 − y4) for person i at time score λt = 0.
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ηSi = random linear slope factor: the expected outcome on y (here measured
by y1 − y4) for person i for one unit increase in time, on the scale of λt.

λt = time score at time t : 0, 1, 2, 3

εit = represent individual and identically distributed measurement and
time-specific errors on the yit at time t, and the εit are usually assumed to
be uncorrelated over time.

ηDi = random distal outcome factor: the expected outcome on d (here
measured by the distal outcome variable) for person i, when taking the
predictions of the latent intercept and latent slope into account.

αI0 = population mean of individual intercept factor values
αS0 = population mean of individual slope factor values
αD0 = population mean of individual distal outcome variable values when
ηIi and ηSi are zero, that is, the intercept of distal outcome variable

ξIi = deviation of ηIi from αI0

ξSi = deviation of ηSi from αS0

ξDi = deviation of ηDi from αD0

β1 = difference in the mean of the distal outcome factor corresponding to a
one unit difference in the latent intercept factor; regression coefficient - distal
outcome is regressed on latent intercept

β2 = difference in the mean of the distal outcome factor corresponding to a
one unit difference in the latent slope factor; regression coefficient - distal
outcome is regressed on latent slope

Formulas and interpretation based on Masyn, Petras, & Lu (2014) and Duncan
et al., (2013, pp. 56–62).
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Appendix C. Mplus default priors

• Mean latent intercept, mean latent slope, and intercept distal outcome:
N(0, 1010)

• Regression coefficients: N(0, 1010)
• Variances Intercept, Slope, and Covariance Intercept-Slope: IW (0,−3)
• Variance Distal outcome: IG(−1, 0)
• Residual variances: IG(−1, 0)
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Chapter 3

Twostep Modeling and
Factor Score Regression vs
Bayesian Estimation with
Informative Priors

This chapter is published as Smid, S. C., & Rosseel, Y. (2020). SEM with
small samples: Twostep modeling and factor score regression versus Bayesian
estimation with informative priors. In R. Van de Schoot & M. Miočeviç (Eds.),
Small sample size solutions: A guide for applied researchers and practitioners:
Routledge.
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the chapter and YR gave feedback on the written work.

Online Data Archive and Supplementary Files: https://osf.io/bam2v/
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Abstract

Two promising frequentist methods to analyze SEMs with small samples are
twostep modeling and factor score regression. Using a simulation study, we
investigated those methods - under varying sample sizes - and compared
them to maximum likelihood estimation and Bayesian estimation with
default and informative priors. We conclude that with small samples, all
frequentist methods showed signs of breaking down (in terms of
non-convergence, negative variances, extreme parameter estimates), as well
as the Bayesian condition with default priors (in terms of mode-switching
behavior). When increasing the sample size is not an option, we recommend
using Bayesian estimation with informative priors. However, results should
be interpreted with caution, because of the large influence of the prior on the
posterior with relatively small samples. When researchers prefer not to
include prior information, twostep modeling or factor score regression are
recommended, as those led to higher convergence rates without negative
variances, more stable results across replications and less extreme parameter
estimates than maximum likelihood estimation with small samples.
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3.1 Introduction

Bayesian estimation is regularly suggested as a beneficial method when
sample sizes are small, as pointed out by systematic literature reviews in
many fields, such as: organizational science (Kruschke, 2010); psychometrics
(Rupp et al., 2004); health technology (Spiegelhalter, Myles, Jones, &
Abrams, 2000); epidemiology (Rietbergen et al., 2017); education (König &
Van de Schoot, 2017); medicine (Ashby, 2006); and psychology (Van de
Schoot, Winter, et al., 2017). Similarly, many simulation studies have shown
the advantages of applying Bayesian estimation to address small sample size
issues for structural equation models (SEMs), instead of using frequentist
methods (see e.g., Depaoli, 2013; Muthén & Asparouhov, 2012; Stegmueller,
2013; Van de Schoot et al., 2015; Van Erp et al., 2018). However, as
discussed in McNeish (2016a) and echoed in the systematic literature review
of Smid, McNeish, et al. (2020), the use of Bayesian estimation with only
diffuse default priors can cause extremely biased estimates when samples are
small. The specification of informative priors is therefore required when
Bayesian estimation is used with small samples.

Besides using Bayesian estimation with informative priors, there are also
options for analyzing SEMs with small samples within the frequentist
framework. Many studies have shown that the use of maximum likelihood
(ML) estimation with small samples can result in convergence problems,
inadmissible parameter solutions and biased estimates (see e.g., Boomsma,
1985; Nevitt & Hancock, 2004). Two newly introduced and promising
frequentist methods to analyze SEMs with small samples are twostep
modeling (twostep) and factor score regression (FSR). A recent development
is the implementation of twostep and FSR in the accessible software lavaan

(Rosseel, 2012), as discussed in Rosseel (2020).1 In twostep modeling, the
measurement models for the latent variables are estimated separately as a
first step. As a second step, the remaining parameters are estimated while
the parameters of the measurement models are kept fixed to their estimated
values. Twostep modeling originates from work of Burt (1976) and Anderson

1Twostep modeling and FSR are both variants of the Structural-after-Measurement
(SAM) approach in lavaan. In a nutshell, ‘twostep’ is gobal SAM, and ‘fsr’ is local SAM.
For more information about SAM, we refer to (Rosseel & Loh, 2022). The original functions
as used in the simulation study are still available via lavaan:::twostep() and lavaan:::fsr().
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& Gerbing (1988), and more recent work can be found in the latent class
literature (e.g., Bakk et al., 2014). In FSR, each latent variable in the model
is replaced by factor scores and subsequently path analysis or regression
analysis is ran using those factor scores. Recent developments in FSR can be
found in studies of Croon (2002), Devlieger, Mayer, & Rosseel (2016),
Devlieger & Rosseel (2017), Hoshino & Bentler (2013), and Takane & Hwang
(2018).

No simulation studies were found in which twostep and FSR are compared
to Bayesian estimation. Therefore, the goal of this chapter is to examine the
performance of the following estimation methods under varying sample sizes:
twostep, FSR, ML estimation, and Bayesian estimation with three variations
in the specification of prior distributions. The remainder of the chapter is
organized as follows: Next, the statistical model will be discussed, as well
as software details, the simulation conditions, and evaluation criteria. Then,
results of the simulation study will be described. We end the chapter with a
summary of the results, and recommendations on when to use which estimation
method in practice.

3.2 Simulation Design

3.2.1 Statistical Model

The model of interest in this simulation study is a SEM in which latent variable
X is predicting latent variable Y , see Figure 3.1. Both latent variables are
measured by three continuous indicators. The model and population values are
similar to the model discussed in Rosseel & Devlieger (2018). The parameter of
interest in the current chapter is the regression coefficient β. The standardized
regression coefficient, βZ , is 0.243, which can be considered a small effect
according to Cohen (1988).

3.2.2 Software Details

Data sets were generated and analyzed in R version 3.4.4. (R Core Team,
2022), using packages lavaan version 0.6-1 (Rosseel, 2012) for the analyses of
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Figure 3.1: The model and unstandardized population values used in the
simulation study. For scaling, the first factor loading for each factor is fixed
to 1 (denoted by 1* in the figure), and the means of the latent variables are
fixed to zero (not shown in the figure)

twostep, FSR and ML; and blavaan version 0.3-2 (Merkle & Rosseel, 2018) for
the analyses of the Bayesian conditions. Example code of the analyses using
the six estimation methods can be found in supplemental file S1. All simulation
code and supplemental files are available online (https://osf.io/bam2v/).

Six levels of sample size were examined, and for each sample size, 1, 000 data
sets were generated according to the model and population values shown in
Figure 3.1. Each generated data set was analyzed using six estimation
methods. Accordingly, a total of 6 (sample size) x 6 (estimation methods) =
36 cells were investigated in the simulation design.
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3.2.3 Simulation Conditions

Six levels of sample size are studied: 10, 20, 50, 100, 250 and 500 to investigate
how sample size influences the performance of the varying estimation methods.
For the current model, sample sizes of 10 and 20 are extremely small. A
sample size of 50 is considered small, and sample sizes of 100 and 250 are
considered medium. The sample size of 500 is considered large and included
as a benchmark.

Six estimation methods are considered in the current study. Three
frequentist estimation methods: twostep, FSR, and ML; and Bayesian
estimation with three types of prior specifications. For the three frequentist
methods, all default settings of the lavaan package were used. For the
default settings, see the help page for lavOptions() in the lavaan package.
For the Bayesian methods, we used 4 chains instead of the 2 default chains.
In terms of convergence, we used the Potential Scale Reduction (PSR) factor,
set it to a stricter criterion of 1.01, and used the following minimum number
of iterations: a fixed burn in period of 10, 000 iterations (specified in blavaan

by adapt = 2, 000, burnin = 8, 000), and for the sampling period 20, 000
iterations (specified in blavaan by sample = 20.000).2 As an additional
check, we visually assess convergence for two randomly selected data sets for
each of the sample sizes and the Bayesian conditions (2 data sets x 6 sample
sizes x 3 Bayesian conditions = 36 cases), by inspecting the traceplots for all
parameters.

Three variants of prior specifications were examined, and all priors were
specified for unstandardized parameters: BayesDefault, BayesInfoI, and
BayesInfoII, see Table 3.1. The BayesDefault condition refers to a naive use
of Bayesian estimation, where only blavaan default priors are used. The
BayesInfoI and BayesInfoII conditions refer to research situations where
weakly prior information is available. In BayesInfoI, weakly informative
priors are specified for the factor loadings, and blavaan default priors are
specified for the remaining parameters. In BayesInfoII, weakly informative
priors are used for both the factor loadings and regression coefficient β, in

2When the PSR criterion is not reached after the specified minimum number of iterations,
the number of iterations is automatically increased until the PSR criterion is met. We
adjusted the blavaan default for the maximum time that the software uses to increase the
amount of iterations to “24 hours” instead of the default “5 minutes”.
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Table 3.1: Specified prior distributions for the three Bayesian conditions

Parameter BayesDefault BayesInfoI BayesInfoII
Factor loadings N(0, 0.01) N(pop, 1) N(pop, 1)
Regression coefficient β N(0, 0.01) N(0, 0.01) N(pop, 1)
Variances latent variables* G(1, 0.5) G(1, 0.5) G(1, 0.5)
Intercepts observed variables N(0, 0.01) N(0,0.01) N(0, 0.01)
Residual variances observed variables* G(1, 0.5) G(1, 0.5) G(1, 0.5)

Note. The column BayesDefault shows the blavaan default priors (Merkle & Rosseel, 2018).
*Note that in blavaan the default priors are placed on precisions, which is the inverse of
the variances. Abbreviations: N = Normal distribution with mean µ and precision τ ; G
= Gamma with shape α and rate β parameters on the precision (which equals an Inverse
Gamma prior with shape α and rate β parameters on the variance); pop = population value
used in data generation.

combination with blavaan default priors for the remaining parameters.
Weakly informative priors were specified as follows: we set the mean
hyperparameter of the normal distribution equal to the population value,
and the precision hyperparameter equal to 1.

3.2.4 Evaluation Criteria

For each of the estimation methods and sample sizes, the occurrence of
convergence problems and warnings will be assessed. For the parameter of
interest, regression coefficient β, the following evaluation criteria will be used
to evaluate the performance under the varying estimation methods and
sample sizes: relative mean bias, relative median bias, mean squared error,
coverage and power. All evaluation criteria will be computed across
completed replications.3

Relative mean bias shows the difference between the average estimate across
completed replications and the population value, relative to the population
value. Relative median bias shows the relative difference between the median
across completed replications and the population value.

3We defined completed replications as replications for which (1) the model did converge
according to the optimizer and (2) for which for all parameters standard errors could be
computed. If the model did not converge or standard errors were not computed for one
or more parameters, we defined the replication as incomplete and excluded the replication
from the aggregation of the results. All simulation code can be found in supplemental file
S4 (https://osf.io/bam2v/).
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The relative mean and median bias are computed by:

Relative mean bias = [(θ−θ)/θ] × 100, (3.1)

Relative median bias = [(θ̃−θ)/θ] × 100, (3.2)

where θ denotes the mean across completed replications, θ is the population
value used for data generation, and θ̃ denotes the median across completed
replications. Values of relative mean and median bias below −10% or above
+10% represent problematic levels of bias (Hoogland & Boomsma, 1998).

Mean squared error (MSE) is a combination of variability and bias across
completed replications, where lower values indicate more stable and less biased
estimates across replications. The MSE is computed by:

MSE = (σ)2 + (θ − θ)2, (3.3)

where σ is the standard deviation across completed replications, θ denotes
the average estimate across completed replications, and θ is the population
value (Casella & Berger, 2002). A narrower distribution of estimates across
replications (i.e., less variable estimates) leads to a smaller standard deviation
across completed replications. Besides, the closer the estimated values are to
the population value across completed replications, the smaller the amount of
bias. MSE will be lower (and thus preferable) when the standard deviation
and amount of bias across completed replications are small.

Coverage shows the proportion of completed replications for which the
symmetric 95% confidence (for frequentist methods) or credibility (for
Bayesian methods) interval contains the specified population value. Coverage
values can range between 0 and 100, and values within the [92.5; 97.5]
interval are considered to represent good parameter coverage (Bradley, 1978).

Finally, statistical power is expressed as the proportion of estimates for
which the 95% confidence (for frequentist methods) or credibility (for
Bayesian methods) interval did not contain zero, across completed
replications. Power values can range from 0 to 100, where values above 80
are preferred (Casella & Berger, 2002).
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3.3 Results

3.3.1 Convergence

With small samples, we encountered severe convergence problems when
frequentist methods were used, see Table 3.2. Differences between the three
frequentist methods were especially visible when n < 100. With n < 100,
twostep resulted in most non-converged cases, followed by ML, and finally
followed by FSR.

The three Bayesian conditions produced results in all 1000 requested
replications under all sample sizes.4 However, when visually examining trace
plots (for 2 randomly selected data sets x 6 sample sizes x 3 Bayesian
conditions = 36 cases), severe convergence problems were detected for the
smaller sample sizes, such as mode-switching, see Figure 3.2A.
Mode-switching is defined as a chain that moves back and forth between
different modes (Erosheva & Curtis, 2011; Loken, 2005), such as the chains in
Figure 3.2A which move back and forth between values 5 and −5.

To further examine the extent of Bayesian convergence problems, we assessed
trace plots for another 25 randomly selected data sets (resulting in 25 data
sets x 6 sample sizes x 3 Bayesian conditions = 450 cases). In the assessment
of these 25 selected data sets, mode-switching only occurred when
BayesDefault was used when n = 10 or 20. Mode-switching disappeared
when weakly informative priors were specified, see Figures 3.2B and 3.2C.
Besides mode-switching, mild spikes were also detected when n < 100, see
Figure 3.2D. Spikes are extreme values that are sampled during MCMC
iterations, and could be seen as severe outliers. The appearance of spikes was
reduced by the specification of weakly informative priors, see Figures 3.2E
and 3.2F. From n = 100 onward, no convergence problems were detected
when default priors were used. For more details on the convergence checks
and more examples of trace plots, see supplemental file S2
(https://osf.io/bam2v/).

4Note that the number of iterations in the Bayesian analyses was automatically increased
until the PSR criterion of 1.01 was reached.
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3.3.2 Warnings

For all small sample sizes, the three frequentist methods lead to a high
percentage of warnings within the number of completed replications, see
Table 3.2. All warnings were about negative variance parameters.5

Differences between the three methods were especially present when n < 100.
For these sample sizes, ML lead to the highest percentage of warnings,
followed by FSR, and followed by twostep. As can be seen in Table 3.2, the
number of warnings decreased when sample size increased. The number of
completed replications without warnings about negative variance estimates is
higher for twostep and FSR compared to ML, especially when n < 100.

For BayesDefault, three warnings about a small effective sample size occurred
for n = 10, and two for n = 20.6 No warnings occurred in the BayesInfoI and
BayesInfoII conditions.

3.3.3 Results for Regression Coefficient β

In Figure 3.3, the relative mean bias (top) and relative median bias (bottom)
are presented for the varying sample sizes and estimation methods. Because
of the large discrepancy between the mean relative bias and median relative
bias for sample sizes below 100, we plotted the complete distribution of
parameter estimates for β across replications, see Figure 3.4. For all
estimation methods, an increase in sample size led to: a decrease in the
number of outliers; a narrower distribution of estimates (i.e., estimates are
more stable across replications); and estimates closer to the population value.
With samples as small as 10 and 20, the distributions of estimates are wider
and a lot of outliers are present, which are signs of unstable estimates across
replications. ML produced the most extreme outliers (up to 37.57 when
n = 10). FSR and twostep show the narrowest distribution of estimates,
indicating relatively stable behavior across replications. Overall, BayesInfoII

5The warning message that occurred for twostep, FSR and ML was: “some estimated
ov [observed variables] variances are negative”. For twostep and ML, a second message also
occurred: “some estimated lv [latent variables] variances are negative”.

6The warning message for BayesDefault: “Small effective sample sizes (< 100) for some
parameters”. The effective sample size expresses the amount of information in a chain while
taking autocorrelation into account, for a more detailed explanation see Veen & Egberts
(2020).
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Figure 3.3: Relative Mean Bias (top) and Relative Median Bias (bottom) for
parameter β, under varying sample sizes and estimation methods. Note. The
static black horizontal lines represent the desired ± 10 % interval.
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offers the best compromise between bias and stability: a narrow distribution
of estimates, a mean and median close to the population value, and the
smallest number of outliers. When n = 100, the differences between
estimation methods become smaller; and the estimates become more stable
across replications. For sample sizes of 250 and 500, differences between
estimation methods are negligible and all estimation methods led to unbiased
relative means and medians.

MSE for the regression coefficient β can be found in Figure 3.5A. Results
are comparable to those shown in Figures 3.3 and 3.4. Differences between
methods are especially visible when sample sizes are below 100. From n = 100
onward, MSE values are all close to zero. ML shows the highest MSE values for
n = 10 and 20. BayesInfoI shows higher MSE than BayesDefault for n = 10,
which was also visible in Figure 3.4 from the wider distribution of BayesInfoI
relative to the distribution of BayesDefault for n = 10. The lowest MSE
values are reported for BayesInfoII, followed by FSR, twostep, BayesDefault
and BayesInfoI at n = 10. MSE values for FSR, twostep, BayesDefault and
BayesInfoI are similar at n = 20, while BayesInfoII keeps the lowest MSE
value. When n = 50 MSE values are comparable between methods, and from
n = 100 onward the differences in MSE between methods are negligible.

Coverage results for regression coefficient β can be found in Figure 3.5B. All
estimation methods show adequate coverage levels from n = 100 onward. For
n < 100, the three Bayesian conditions show excessive coverage (> 97.50),
although this slightly improved under BayesInfoI and BayesInfoII. Within the
three frequentist methods, twostep and FSR resulted in higher coverage levels
than ML. When n < 100, ML shows undercoverage (< 92.50), while FSR only
shows slightly undercoverage when n = 10, and twostep when n = 10 and 20.

Results in terms of power can be found in Figure 3.5C. For all estimation
methods, power is extremely low when the sample size is small, and only
reached the desirable power level when n = 500. Across all sample sizes, the
highest power levels are found for ML, followed by BayesInfoII, BayesInfoI,
and twostep. The lowest power levels are found for FSR and BayesDefault.
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A

B C

Figure 3.5: Mean Squared Error (A), Coverage (B), and Power (C) for
parameter β, under varying sample sizes and estimation methods. Note. The
static black horizontal lines in subfigure B represent the [92.5; 97.5] coverage interval, and
the black horizontal line in subfigure C represents the desired 80% power level.
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3.3.4 Results for Remaining Parameters

Besides regression coefficient β, 12 remaining parameters are estimated in the
model: 2 variances for latent variables, 4 factor loadings and 6 residual
variances.7 In supplemental file S3 (https://osf.io/bam2v/), the distributions
of parameter estimates across replications are displayed for the remaining
parameters.

Estimates for these 12 parameters seem similar across estimation methods and
have good statistical properties when n = 250 and 500. However, with sample
sizes of 100 and below, frequentist methods show many (extreme) outliers and
wide distributions, indicating unstable results across replications. Bayesian
methods show notably fewer outliers and in general narrower distributions
than the frequentist methods, especially under BayesInfoI and BayesInfoII
conditions, although the medians of the distributions still deviate from the
population values when n < 100.

3.4 Conclusion

In this chapter, we assessed – under varying sample sizes – the performance of
three frequentist methods: twostep modeling (twostep), factor score regression
(FSR) and maximum likelihood estimation (ML); and Bayesian estimation
with three variations in prior specification. With sample sizes of 250 and 500,
differences between estimation methods are negligible, and all methods led to
stable and unbiased estimates. Consistent with existing simulation literature
(e.g., Depaoli & Clifton, 2015; Hox & Maas, 2001; Van de Schoot et al., 2015)
we found that ML led to severe convergence problems and a large amount
of negative variance parameters when sample sizes are small. Compared to
ML, both twostep and FSR led to better convergence rates without negative
variances. Also, with small samples, twostep and FSR resulted in more stable
results across replications and less extreme parameter estimates than ML.
When Bayesian estimation was used with default priors, problematic mode-
switching behavior of the chains did occur under small samples (n = 10, 20),
even though the PSR values indicated that the overall model had converged.

7Note that when FSR is used, only three parameters are estimated: regression coefficient
β, the variance of latent variable X and the variance of latent variable Y .
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The presence of mode-switching can be a sign that the model is too complex
for the data (Erosheva & Curtis, 2011).

Power is low for all estimation methods and only with a sample size of 500,
the desired level of 80 was reached. The use of weakly informative priors (i.e.,
BayesInfoI and BayesInfoII conditions) instead of highly informative priors,
as well as the specification of blavaan default priors for the remaining
parameters, could explain why ML led to slightly higher power levels than
Bayesian estimation in the current chapter (as opposed to previous studies,
e.g., Miočević et al., 2017; Van de Schoot et al., 2015).

Also, the differences in power between default and informative prior
conditions were smaller in the current chapter than expected. In previous
studies (e.g., Van de Schoot et al., 2015; Zondervan-Zwijnenburg et al.,
2019), priors with varying precision hyperparameters (e.g., 10 and 1) were
compared to Mplus default priors with a precision hyperparameter of 10−10

(Muthén & Muthén, 1998-2017). In the current chapter, the difference in
precision hyperparameters between the informative (precision = 1) and
default (precision = 0.01) conditions is noticeably smaller. This could
explain why the increase in power with informative priors is lower in the
current chapter than expected based on previous studies. Note that the level
of informativeness of a prior distribution can only be interpreted relative to
the observed data characteristics, and is therefore not generalizable to other
studies (i.e., a weakly informative prior in one study can act as a highly
informative prior in another study that uses different measurement
instruments).

In summary, with extremely small sample sizes, all frequentist estimation
methods showed signs of breaking down (in terms of non-convergence,
negative variances, and extreme parameter estimates), as well as the
Bayesian condition with default priors (in terms of mode-switching
behavior). When increasing the sample size is not an option, we recommend
using Bayesian estimation with informative priors. However, note, that the
influence of the prior on the posterior is extremely large with relatively small
samples. Even with thoughtful choices of prior distributions, results should
be interpreted with caution (see also Chapter 4) and a sensitivity analysis
should be performed, see Depaoli & Van de Schoot (2017) and Van Erp et al.
(2018) on how to perform a sensitivity analysis. When no prior information
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is available or researchers prefer not to use Bayesian methods, twostep and
FSR are a safer choice than ML, although they can still result in
non-convergence, negative variances, and biased estimates.

Note, however, that by adjusting the implementation of twostep and FSR,
non-convergence problems could be circumvented by using an alternative non-
iterative estimation method (instead of ML) to estimate the measurement and
structural models (see Takane & Hwang, 2018); and as discussed in chapter 16
(Rosseel, 2020). In addition, negative variances could be avoided by restricting
the parameter space to only allow positive values for variance parameters.
Therefore, the preferred approach to implement twostep and FSR in small
sample contexts should be further examined. We hope the current chapter is
a starting point for future research in those directions.

113





Chapter 4

Dangers of the Defaults: A
Tutorial on the Impact of
Default Priors with Small
Samples

This chapter is published as Smid, S. C., & Winter, S. D. (2020). Dangers of
the Defaults: A Tutorial on the Impact of Default Priors when using
Bayesian SEM with Small Samples. Frontiers in Psychology, 11 [Special
Issue on Quantitative Psychology and Measurement]
https://doi.org/10.3389/fpsyg.2020.611963

Author Contributions: SS designed the tutorial manuscript and shiny app,
and further developed the idea of the shiny app with SW. SW worked out the
code for the shiny app with input and feedback from SS. SS took the lead
in writing the manuscript. SW wrote the “Shiny App” section and provided
feedback on the manuscript.

Online Data Archive and Supplementary Files: https://osf.io/m6byv/
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Abstract

When Bayesian estimation is used to analyze Structural Equation Models
(SEMs), prior distributions need to be specified for all parameters in the
model. Many popular software programs offer default prior distributions,
which is helpful for novel users and makes Bayesian SEM accessible for a
broad audience. However, when the sample size is small, those prior
distributions are not always suitable and can lead to untrustworthy results.
In this chapter, we provide a non-technical discussion of the risks associated
with the use of default priors in small sample contexts. We discuss how
default priors can unintentionally behave as highly informative priors when
samples are small. Also, we demonstrate an online educational Shiny app, in
which users can explore the impact of varying prior distributions and sample
sizes on model results. We discuss how the Shiny app can be used in
teaching; provide a reading list with literature on how to specify suitable
prior distributions; and discuss guidelines on how to recognize (mis)behaving
priors.
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4.1 Introduction

Bayesian estimation of Structural Equation Models (SEMs) has gained
popularity in the last decades (e.g., Kruschke et al., 2012; Van de Schoot,
Winter, et al., 2017), and is more and more often used as a solution to
problems caused by small sample sizes (e.g., König & Van de Schoot, 2017;
McNeish, 2016a).1 With small samples, frequentist estimation (such as
[restricted] Maximum Likelihood or [weighted] least squares estimation) of
SEMs can result in non-convergence of the model, which means that the
estimator was unable to find the maximum (or minimum) for the derivative
of the model parameters. Even when a model converges, simulation studies
have shown that the parameter estimates may be inadmissible (e.g.,
Heywood cases) or inaccurate (i.e., the estimate deviates from the population
value; Boomsma (1985); Nevitt & Hancock (2004)). In contrast to
frequentist methods, Bayesian methods do not rely on large sample
techniques, which make Bayesian methods an appealing option when only a
small sample is available. Within the Bayesian framework, prior distributions
need to be specified for all parameters in the model.2 This additional step
may pose a barrier for novice users of Bayesian methods. To make Bayesian
SEM accessible to a broad audience, popular software programs for analyzing
Bayesian SEMs, such as Mplus (Muthén & Muthén, 1998-2017) and the
blavaan package (Merkle & Rosseel, 2018) in R (R Core Team, 2022), offer
default prior distributions. However, those default prior distributions are not
suitable in all cases. When samples are small, the use of solely default priors
can result in inaccurate estimates—particularly severely inaccurate variance
parameters—unstable results, and a high degree of uncertainty in the
posterior distributions (e.g., Gelman, 2006; McNeish, 2016a; Smid, McNeish,
et al., 2020). These three consequences of using default priors with small

1There are many other reasons why researchers use Bayesian SEM, such as the ability
to estimate models that are not identified in the frequentist framework or to resolve issues
with missing data, non-linearity, and non-normality (see e.g., Kaplan, 2014, pp. 287–290;
Van de Schoot, Winter, et al., 2017; Wagenmakers et al., 2008). However, the focus of this
chapter is the use of Bayesian estimation to deal with small samples.

2Prior distributions represent information about the parameters and can be based on
previous studies or the beliefs of experts in the field. The prior distributions are then
updated by the likelihood (observed data depended on the model). By using methods such
as Markov chain Monte Carlo (MCMC), the posterior distribution is simulated, which is a
combination of the prior and likelihood. For references with an elaborate introduction into
Bayesian estimation, we refer to our reading list (https://osf.io/pnmde).
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samples severely limit the inferences that can be drawn about the parameters
in the model.

With small samples, the performance of Bayesian estimation highly depends
on the prior distributions, whether they are software defaults or specified by
the researcher (e.g., Gelman et al., 2014; Kaplan, 2014; McElreath, 2016).
McNeish (2016a) discussed that small sample problems (such as
non-convergence, inadmissible and inaccurate parameter estimates) cannot
be fixed by only switching from a frequentist to a Bayesian estimator.
Instead, he argues that if Bayesian methods are used with small samples,
“prior distributions must be carefully considered” (McNeish, 2016a, p. 764).
This advice is not new: Kass & Wasserman (1996) already warned against
relying on default prior settings with small samples. In the quarter-century
since that initial warning, Bayesian estimation is increasingly used to deal
with small samples (Smid, McNeish, et al., 2020; Van de Schoot, Winter, et
al., 2017). Yet researchers remain stubbornly reliant on default priors,
despite clear caution against their use (as shown by König & Van de Schoot,
2017; McNeish, 2016a; Van de Schoot, Winter, et al., 2017).

4.1.1 Goals of this Tutorial

In this chapter, we provide a non-technical discussion of the risks associated
with the use of default priors. We discuss how default priors can
unintentionally behave as highly informative priors when samples are small.
Next, we demonstrate an educational online Shiny app (Smid & Winter,
2020, available on our Open Science Framework (OSF) page via
https://osf.io/m6byv), in which users can examine the impact of varying
prior distributions and sample size on model results. We discuss how the
Shiny app can be used in teaching and provide an online reading list
(available via https://osf.io/pnmde) with literature on Bayesian estimation,
and particularly on how to specify suitable prior distributions. Finally, we
provide guidelines on how to recognize (mis)behaving priors.
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4.2 What is a Small Sample?

Before we continue our discussion of the potential dangers of default priors
with small samples, we need to address the question: What exactly is a small
sample? Whether a sample is small depends on the complexity of the model
that is estimated. One way to express the size of a sample is to look at the
ratio between the number of observations and the number of unknown
parameters in the model (e.g., Lee & Song, 2004). A sample could be
considered very small when this ratio is 2, which means there are just two
observations for each unknown parameter. As SEMs often include many
unknown parameters (i.e., factor loadings, intercepts, covariances), samples
that may appear relatively large are in fact very small. For example, a
confirmatory factor analysis model with three latent factors and fifteen
observed items consists of 48 unknown parameters: 12 factor loadings (first
factor loading fixed at 1 for identification), 15 intercepts, 15 residual
variances, 3 factor variances, and 3 factor covariances. In this scenario, a
sample of 100 participants would still be considered very small (ratio = 2.08).
This example demonstrates that general rules of thumb about sample sizes
for SEM (e.g. n > 100, see Kline, 2015) can be misleading as they do not take
into account model complexity. Furthermore, model complexity depends on
more than just the number of parameters that are estimated. Other factors
that play are role in model complexity are whether the model includes
components such as categorical variables, latent factors, multiple groups, or
latent classes. A review of simulation studies on SEM (Smid, McNeish, et al.,
2020, see chapter 1 of this dissertation) showed that authors of these
simulation papers have widely varying definitions of a “small sample size”,
ranging from extremely small (e.g., n = 8 assessed at three time points with
one continuous variable, see Van de Schoot et al., 2015) to what some might
consider moderately sized (e.g., n = 200 with 12 ordinal variables, see Chen
et al., 2015). Thus, assessing whether a sample is (too) small is unfortunately
not as easy as checking whether a certain number of participants has been
reached, and should be done on an analysis-by-analysis basis.
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4.3 Dangers of the Defaults

The risks associated with default priors when Bayesian SEM is used with small
samples can be described as a combination of the following three factors.

First, when samples are small, priors have a relatively larger impact on the
posterior than when samples are large. The posterior can be seen as a
compromise between the prior and the likelihood. With a larger sample size,
the likelihood dominates the posterior (see Figure 4.1C). However, with a
small sample size, the likelihood has relatively less weight on the posterior.
Accordingly, the prior has relatively more weight on the posterior (see Figure
4.1A). Therefore, it is of great importance to specify suitable prior
distributions when samples are small (e.g., Gelman et al., 2014).

   

Figure 4.1: Examples of prior, likelihood and posterior distributions under
small (A), medium (B), and large (C) sample sizes. The posterior distribution
is dominated by the prior under the small sample size (A), and dominated by
the likelihood under the large sample size (C).

Second, most of the default priors have very wide distributions. For instance,
the Mplus default prior for means and regression coefficients is a Normal
distribution with a mean hyperparameter of zero and a variance of 1010

(Muthén & Muthén, 1998-2017). The variance hyperparameter corresponds
to a standard deviation of 100.000, meaning, that 68% of the prior
distribution contains values between -100.000 and 100.000, and 95% of the
prior distribution contains values between -200.000 and 200.000.3 When such

3Hyperparameters are the parameters of prior distributions, such as the mean and
variance of the Normal distribution, and the alpha and beta in inverse gamma.
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default priors are specified, a wide range of parameter values can be sampled
from the posterior during the Bayesian analysis. All those parameter values
are therefor considered plausible, which might not always be appropriate.
For instance, when measuring mathematical ability on a scale from 0 to 100,
values below 0 and above 100 cannot be present in the data. Specifying a
default prior with such a wide distribution on the mean of mathematical
ability will put a lot of weight on values that are not reasonable (see e.g.,
Stan Development Team, 2017, p. 131). For small sample sizes, the
combination of the relatively larger impact of the prior on the posterior and
the wide distribution of default priors can lead to extremely incorrect
parameter estimates (see e.g., Gelman, 2006; McNeish, 2016a; and the
systematic literature review of Smid, McNeish, et al., 2020).

The third factor that plays a role, is the false belief that default priors are
noninformative priors which ‘let the data speak’. Default priors can act as
highly informative priors, as they can heavily influence the posterior
distribution and impact the conclusions of a study (see e.g., Betancourt,
2017). As explained by McNeish (2016a) (p. 752): “with small samples, the
idea of noninformative priors is more myth than reality (. . . )”. The
terminology of informative and noninformative priors can therefore be
confusing (see also Bainter, 2017, p. 596). In addition, different software
programs use different default priors (see Table 4.1).

Van Erp et al. (2018, p. 26) investigated the performance of multiple default
priors and concluded that, especially with small samples, all investigated
default priors performed very differently, and “that there is not one default
prior that performed consistently better than the other priors (. . . ).” The
choice of software could thus unintentionally influence the results of a study
(see e.g., Holtmann et al., 2016), which is problematic if one is not aware of
this. Note that we are not advocating against default priors in general.

Default priors can be suitable — even when samples are small — in cases where
all values in the prior distribution are reasonable and can occur in the data
(for example values around 100,000 or 200,000 are realistic in housing price
data, see e.g., LeGower & Walsh, 2017). However, the use of default priors is
problematic when researchers assume they let ‘the data speak’ while in reality
they ‘let the default priors speak’, meaning that the priors can heavily impact
the results without one being aware of this.
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Table 4.1: Overview of default prior distributions in the software program
Mplus and the R package blavaan

Mplus priors (v. 8.4) blavaan priors (v. 0.3-8)
on variance σ2 on precision 1/σ2 or

standard deviation σ
Observed variable intercept N(0, 1010) N(0, 32)
Latent variable intercept, factor N(0, 1010) N(0, 10)
loading, regression
Variance covariance blocks of size 1 IG(-1, 0)
Variance covariance blocks of size > 1 IW(0, -p, -1), where

p is the size of
the matrix

Observed and latent variable variance G(1, 0.5)a

Covariance matrix W(3, I)b

Correlation B(1, 1)
Threshold N(0, 1010) N(0, 3.16)

Note. Prior distributions in Mplus are placed on the variance, while the
prior distributions in blavaan are placed on the precisions (the inverse
of the variance) unless stated otherwise. N = Normal distribution with
hyperparameters mean µ and variance σ2; I = Identity Matrix; IG = Inverse
Gamma; G = Gamma; IW = Inverse Wishart; W = Wishart; B = Beta
distribution. a The prior for the observed and latent variable parameters is
placed on the standard deviation. b In blavaan, three MCMC packages can
be used (target “stan”, “stanclassic” and “jags”) for the analysis. For all the
MCMC packages, the same default priors are specified, with one exception:
for target = “jags”, a different prior for the covariance is specified.
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In the next section, we discuss the Shiny app that we developed to demonstrate
in an example the possible informative behavior of default priors when the
sample is small.

4.4 Shiny App: The Impact of Default Priors

We have created a Shiny app that serves as an educational tool that can be used
to learn more about the impact of default priors in Bayesian SEM. It can be
found online via https://osf.io/m6byv, together with supplemental files and R
code to reproduce the app. In addition, we have created a lesson plan (available
for download in the app) to support the educational focus of the app. The app
consists of three pages: (1) a page where users can interactively explore the
impact of prior settings and sample size on a Bayesian latent growth model
(see Figure 4.2), (2) an overview of the prior specifications used in the app, and
(3) a list of further resources to learn more about various aspects of Bayesian
SEM. The main, interactive, page includes a menu that walks users through
selecting their sample size, prior specification settings, and running the model
a first time and a second time with a doubled number of iterations (in line with
the WAMBS checklist of Depaoli & Van de Schoot, 2017). The models in the
Shiny app were externally run using the software Mplus (Muthén & Muthén,
1998-2017) to enhance the user experience.4

The main window on the page has five tabs that can be used to (1) see what
model is estimated, (2) check convergence of the model using the potential
scale reduction factor (PSFR, Gelman & Rubin, 1992), examine the precision
of the posterior samples with the effective sample size (ESS), (3) look at plots
of the prior, likelihood, and posterior and trace plots, (4) inspect parameter
estimates, (5) access the lesson plan.

4This popular, user-friendly software program for estimating Bayesian SEM has made it
extremely easy to be a naive user of Bayesian statistics (one only needs to include the line
“Estimator = Bayes;” in the input file).
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4.4.1 The Model, Sample Sizes, and Priors used in the
Shiny App

The model, sample sizes, and prior settings used in the Shiny app are based
on Smid, Depaoli, & Van de Schoot (2020). Specifically, the model is a latent
growth model (LGM) with a latent intercept and linear slope, four time points,
and a continuous long-term variable (i.e., distal outcome) that is predicted by
the latent intercept and slope (see Figure 4.3). A long-term variable is a
variable that is collected at a wave of assessment that occurs long after the
other waves of assessment in the LGM. An example of a distal outcome is
young adult levels of depression that are predicted by conduct and emotional
problems at ages 4 to 16 (Koukounari et al., 2017). Users can select one of three
sample sizes: 26, 52, 325, which represent a very small, small, and relatively
large sample for the model of interest, which has 13 unknown parameters.

Three different prior specifications are included in the app: one specification
using software default priors and two specifications with increasing numbers
of thoughtful priors. The default priors that we selected are those specified in
Mplus (Muthén & Muthén, 1998-2017) and are called “Mplus default priors”
in the Shiny app. The two thoughtful prior specifications, called “Partial
Thoughtful Priors” and “Full Thoughtful Priors”, were taken from Smid,
Depaoli, et al. (2020), details of which are included on the second page of the
Shiny app. In short, “Partial Thoughtful Priors” includes informative priors
for the mean of the intercept and slope of the LGM, the regression
coefficients, and the intercept of the distal outcome. “Full Thoughtful Priors”
includes informative priors on all parameters in the model, with the
exception of the residual variances. These two specifications reflect scenarios
where a researcher has access to prior knowledge regarding some or most of
the parameters in the model.

The specific hyperparameter values of the thoughtful priors (e.g., where the
center of the prior is and how narrow the prior is) in the example used in the
app are somewhat arbitrary because they are based on a simulation study.
Specifically, the priors are all centered around the (known) population values
and the width of the priors is based on the width of the posterior distribution
of the analysis done with Mplus default priors. This approach is most closely
related to a type of prior specification called data dependent prior
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specification (McNeish, 2016b), where an initial analysis using default priors
or frequentist estimation methods provides the values for the prior
hyperparameters. In applied research, data dependent priors are
controversial, as the researcher technically double-dips by using their data to
specify the priors that are subsequently used to analyze their data
(Darnieder, 2011). To resolve this issue, researchers could split their data in
half and base the prior specification for the Bayesian analysis on the results
of a frequentist analysis using 50% of the total sample. As this approach
would further reduce the sample size for the final analysis, this approach for
specifying priors may not be feasible with small sample sizes.

The two thoughtful prior specifications included in the app are just two
examples of how thoughtful priors can be included in Bayesian SEM. Other
sources that can be used for specifying thoughtful priors include previous
research, meta-analyses, or knowledge from experts in the field (for in-depth
discussions of these topics, we refer to Lek & Van de Schoot, 2018; Van de
Schoot et al., 2018; Zondervan-Zwijnenburg et al., 2017). Even if prior
knowledge is not readily available, researchers can think about impossible
and implausible values for the parameters and specify prior distributions that
only contain information about the typical range of the parameters. To
illustrate this idea, imagine that the distal outcome of the LGM shown in
Figure 4.3 was measured with a questionnaire that had a range from 0 to 20.
A researcher could use this information to specify a prior for the intercept of
the distal outcome that makes values outside of that range highly improbable
(e.g., N(10, 15)). For some parameters, it may be challenging to identify
prior hyperparameters that will exclude implausible values. For example, the
inverse Gamma distribution is often used as a prior for the (residual)
variance parameters. The parameters of this distribution, called shape and
scale, are not as easily interpreted and thoughtfully specified as the mean
and variance of a normal distribution. Fortunately, methods for specifying
thoughtful prior hyperparameters for the inverse Gamma distribution have
been suggested (e.g., Zitzmann et al., 2021). Alternatively, researchers may
decide to switch to a different distribution altogether (Van Erp et al., 2018).
Examples include the half-Cauchy prior (Gelman, 2006; Polson & Scott,
2012) or reference priors such as Jeffrey’s prior (Tsai & Hsiao, 2008).
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Figure 4.3: The Latent Growth Model with a distal outcome variable that is
used in the Shiny app, including population values. Model and population
values are based on Smid, Depaoli, and van de Schoot (2020).
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4.4.2 Using the Shiny App as a Teacher

Since this Shiny app was explicitly developed to serve as an educational tool,
we have created a worksheet and answer key that can be downloaded directly
in the app itself.5 In addition, it is possible within our app to export all plots
and tables created. These can be used in answering the questions on the
worksheet. By making students aware of the impact of relying on default
settings when samples are small, we hope to teach students about the
importance of specifying suitable prior distributions and to contribute to the
responsible use of Bayesian SEM.

4.5 Guidelines: How to Recognize a
(Mis)behaving Prior?

To formulate suitable prior distributions and to check afterwards whether the
priors are ‘behaving’, information is needed about the reasonable range of
values for the parameters in the model. This information can be based on
previous studies, the scale or questionnaire that is used, or expert knowledge
from the field. In our reading list (available via https://osf.io/pnmde), we
provide an overview of relevant literature on how to specify suitable priors
based on multiple sources of information. Below, we discuss four ways to
identify a (mis)behaving prior after conducting a Bayesian analysis (see also
Table 4.2), by inspecting for all parameters the (a) effective sample size, (b)
trace plots, (c) prior-likelihood-posterior distributions, and (d) the posterior
standard deviation and 95% highest posterior density.

4.5.1 Effective Sample Size

Inspecting the effective sample size (ESS) of each parameter in the model is a
good first step in the search for misbehaving priors. The ESS represents the
number of independent samples that have the same precision as the total
number of samples in the posterior chains (Geyer, 1992). The ESS is closely
related to the concept of autocorrelation, where current draws from the

5The worksheet can be found on the main page under the fifth tab (“Lesson Plan”).
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Table 4.2: Possible signs of ‘misbehaving’ priors
Effective sample size
- Low effective sample size (i.e., < 1,000) can be a first indication that the priors are

problematic

Trace plots
- Spikes: shape of alien communication captured in a sci-fi movie instead of a fat caterpillar
- Highly improbable values for the parameter on the y-axis based on information about the

reasonable range of values about parameters
- Chains that are not overlapping

Prior-likelihood-posterior comparison
- Substantial deviation between prior, likelihood and/or posterior: e.g., a posterior that is

much narrower or wider than the prior and likelihood, while taking into account the amount
of information in the prior (i.e., level of informativeness of the prior) and in the likelihood
(i.e., sample size)

Posterior SD and 95% HPD
- Much smaller or larger posterior SD or 95% HPD than expected based on the amount of

information in the prior (i.e., level of informativeness of the prior) and in the likelihood
(i.e., sample size)

posterior distribution are dependent on previous draws from the posterior
distribution. Autocorrelation is undesirable as it increases the uncertainty in
posterior estimates. If autocorrelation within the chains is low, then the ESS
approaches the total number of samples in the posterior chains, and the
posterior distribution will be more precise and more likely to approximate
the parameter estimate well (Zitzmann & Hecht, 2019). If autocorrelation
within the chains is high, a larger number of samples will be necessary to
reach an adequate ESS. A low ESS can be the first indicator that there
might be a misbehaving prior. Multiple recommendations have been made
about how to assess whether the ESS is too low: Zitzmann & Hecht (2019)
recommend that ESSs should ideally be over 1,000 to ensure that there is
enough precision in the chain. It is also possible to compute a lower bound
for the number of effective samples required using a desired level of precision
and the credible interval level of interest (Flegal et al., 2021; Vats, Flegal, &
Jones, 2019). Finally, it can also be helpful to look at the ratio of the ESS to
the total number of samples, where a ratio < 0.1 indicates that there are
high levels of autocorrelation in the chains (although this does not
necessarily indicate that the posterior distribution is not precise, see Gabry,
Simpson, Vehtari, Betancourt, & Gelman, 2019). A low ESS can serve as the
first clue that something might be wrong, but even if all ESSs appear
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acceptable, plots and posterior estimates should be inspected to further
confirm if priors are behaving.

4.5.2 Trace plots

Three characteristics of a trace plot can indicate a misbehaving prior. First,
the shape of the trace plot: If the multiple chains are well-behaved, the
chains should resemble the hungry caterpillar after six days of eating (see
Figure 4.4A). A misbehaving prior can result in trace plots that exhibit
spikes, closely resembling alien communication captured in a sci-fi movie
(Figure 4.4C). Second, do the values that are covered by the posterior make
sense for this parameter, or is the y-axis stretched to cover unrealistic values?
Even when subtle spikes are present (Figure 4.4B), the y-axis range could
show that the chains are drawing improbable values from the posterior
distribution and should be given extra attention. Third, a lack of overlap of
the chains can indicate a misbehaving prior. When the chains do not overlap,
it indicates that they are sampling from different parts of the posterior
distribution and are not converging towards the same location.

4.5.3 Prior-Likelihood-Posterior Comparison

One important aspect of our Shiny app is that the prior, likelihood, and
posterior distributions are visualized to make comparisons across different
priors and sample size settings easy.6 When there is a substantial deviation
between the prior, likelihood and posterior distributions, results should be
interpreted with caution, especially when the sample size is small.
Researchers should decide how much impact of the prior and likelihood on
the posterior is desirable. Is it preferable that the posterior is a compromise
between the prior and likelihood, or that the posterior is dominated by one
of two? For instance, when the likelihood and the prior deviate a lot, one
might not want to trust the posterior results.7. In case of small samples, the

6For details on how we visualized priors, likelihood and posterior distributions, we refer
to the PLPPFunction.Mplus.R file on the OSF (https://osf.io/m6byv).

7For readers interested in the impact of so-called prior-data conflict, we refer to simulation
studies by Depaoli (2014); Holtmann et al. (2016); and Smid, Depaoli, et al. (2020)
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results might especially be driven by the prior distributions. This is only
desirable when researchers trust the specified prior distributions. Figure 4.4
shows the prior-likelihood-posterior comparison for three parameters.
Although the prior distributions (dashed lines) look completely flat, default
prior distributions were used for all parameters. In Figure 4.4A, the posterior
(solid line) closely follows the likelihood distribution (dotted line), which is
desirable here because the default prior (dashed line) is specified and we do
not want it to impact the posterior much. In Figures 4.4B and 4.4C, the
posteriors seem to have tails that are too fat (kurtotic) compared to the
likelihood distribution and the flat default priors, and results should
therefore be inspected further.

4.5.4 Posterior SD and 95% HPD

The posterior standard deviation (SD) and 95% credible (or highest posterior
density; HPD) interval can be inspected to assess whether the estimates are
unusually certain or uncertain. Uncertainty is demonstrated by a large
posterior SD and a wide 95% HPD. Available information about reasonable
values for the parameters as well as the amount of information in the prior
and likelihood should be used to assess whether the level of (un)certainty of
the posterior is reasonable. For instance, in Figure 4.4C, a posterior SD of
94.64 is reported, which is a much higher value than would be expected for a
regression estimate and implies that some very extreme values were likely
sampled from the posterior. This level of uncertainty is also reflected by the
extreme spikes in the trace plot and the kurtotic posterior distribution. The
parameters depicted in Figure 4.4 illustrate that the combination of a
noninformative prior and a small sample size does not always lead to
problems across all parameters in a model. It is important to note that even
if it appears that the priors of the main parameter(s) of interest are behaving
well, a misbehaving prior that is located elsewhere in the model may lead to
inaccuracies in the posterior estimates of the main parameters. For example,
in a multilevel SEM with a between-level covariate effect, the between-level
variance estimate may not be of substantive interest. However, a supposedly
noninformative prior [IG(.001,.001)] for the between-level variance parameter
can turn into a misbehaving prior when the amount of variance located at
the between-level is large (Depaoli & Clifton, 2015). In a simulation study,
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Depaoli & Clifton (2015) showed that this misbehaving prior resulted in a
biased posterior estimate of the between-level covariate effect. A researcher
who only inspected the trace plot for the between-level covariate effect may
not have realized that their results were negatively affected by a prior placed
on between-level variance parameter. For that reason, it is critical to always
examine all parameters in the SEM.

4.5.5 What to do if you suspect a misbehaving prior?

When one of the trace plots, prior-likelihood-posterior distribution plots,
posterior SDs or 95% HPDs show signs of a misbehaving prior, results should
not be trusted, and researchers should proceed with caution. Unfortunately,
we cannot provide rules of thumb for when these indicators of misbehavior
become problematic. It depends on the specified prior, the data, the
parameter, the model of interest, and the personal judgement of the
researcher. A sensitivity analysis can help assess the impact of the specified
prior distributions on the posterior (see Depaoli & Van de Schoot, 2017; Van
Erp et al., 2018). Again, it is up to the researcher to decide whether a
certain amount of impact of the prior is desirable or not. Therefore, Bayesian
SEM should only be used with small samples when researchers are able and
willing to make these types of decisions.

4.5.6 Reporting of Bayesian SEM

Although a rich body of literature exists on good practice of how to perform
and what to report for a Bayesian analysis (see e.g., Depaoli & Van de Schoot,
2017; Kruschke, 2015, pp. 721–725), we want to stress the importance of
transparency and reporting every decision. We advise to always provide an
(online) appendix in which is explained in detail which priors are specified
and why these specific priors are chosen. For more literature and examples on
reporting Bayesian SEM, we refer to our reading list on https://osf.io/pnmde.
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4.6 An Illustration: The Impact of Default
Priors

To illustrate the impact of prior settings and sample size—and the informative
behavior of default priors with a small sample size—we retrieved the trace
plots, prior-likelihood-posterior plots, and posterior SDs from the Shiny app
for a single parameter: the regression effect of the distal outcome regressed
on the linear slope (β2 in Figure 4.3). The plots (Figure 4.5 show signs of
a misbehaving prior when samples are small (n = 26, or 52 for this model)
when default priors are used. Specifically, the trace plots exhibit spikes that
reach highly improbable values for the regression coefficient, the plots have
a stretched y-axis, and show chains that are not overlapping. Moreover, the
prior-likelihood-posterior plots for the two small sample sizes show that the
posterior distribution (solid line) is wider than the likelihood estimate (dotted
line). Overall, the plots displayed in Figures 4.5 show that default priors, which
are assumed to be noninformative, can impact the results when samples are
small. Options for improving model estimation include increasing the sample
size or specifying suitable priors for the parameters.
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N = 26 

Mplus Default priors Partial Thoughtful Priors 

A 

 

B  

 

C 

 

D 

 

Posterior SD = 3.53 
95% HPD = -2.74; 1.19 

Posterior SD = 0.14 
95% HPD = -0.29; 0.26 

Figure 4.5: Trace plots; prior, likelihood, posterior plots; posterior standard
deviation (SD) and 95% highest posterior density intervals (HPD) for
regression coefficient β2 under sample size n = 26 when Mplus default priors
and partial thoughtful priors are specified. Figures under sample sizes n = 52
and 325 are shown on the next pages.
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N = 52 
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Posterior SD = 0.08 
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136



N = 325 
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95% HPD = 0.03; 0.14 
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4.7 Summary

In this tutorial, we discussed the risks associated with default priors in
Bayesian SEM when samples are small. We described the dangers of the
defaults as a combination of three factors: (a) the relatively larger impact of
the prior on the posterior when samples are small, (b) the wide distribution
of default priors that often contain unrealistic values, and (c) the false belief
that default priors are noninformative priors. We demonstrated an
interactive Shiny app, in which users can investigate the impact of priors and
sample size on model results. The Shiny app can also be used to teach
students about responsible use of Bayesian SEM with small samples. In this
chapter, we showed that default priors can act as highly informative priors
when samples are small. We provided an overview of relevant literature
(available via https://osf.io/pnmde) on how to specify suitable priors based
on multiple sources of information. We discussed how to recognize a
misbehaving prior by inspecting (a) effective sample size, (b) trace plots, (c)
the comparison of prior-likelihood-posterior distributions, (d) posterior
standard deviation and 95% highest posterior densities.

It is important to note that we are not arguing that researchers are solely
responsible for breaking away from their reliance on default priors. There are
several strategies that could be employed to help researchers improve their
decisions regarding prior specification. A simple way in which the use of
Bayesian methods can be improved is by making available educational tools,
such as the App introduced in this chapter, to a broad audience of
researchers. More generally, software developers could implement
notifications that nudge users to check the impact of their prior distributions
through techniques proposed in the current chapter (e.g., flag low ESSs and
suggest inspection of trace plots). Another opportunity to intervene and
improve occurs during the peer-review process. Reviewers should closely
examine the decisions authors have made regarding their prior specification
and intervene if the decisions made by the authors were inappropriate. In
such a case, a reviewer can advise that revisions are in order to ensure that
Bayesian methods were applied appropriately.
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Bayesian SEM should only be used with small samples when information is
available about the reasonable range of values for all parameters in the model.
This information is necessary to formulate suitable prior distributions and
to check afterwards whether the priors are ‘behaving’. It is our hope that
this tutorial helps spread awareness that the use of Bayesian estimation is
not a quick solution to small sample problems in SEM, and that we encourage
researchers to specify suitable prior distributions and carefully check the results
when using Bayesian SEM with small samples.
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Nederlandse Samenvatting

Tegenwoordig lijkt het alsof er over alles meer dan genoeg data beschikbaar
is. Echter, zelfs in tijden van big data zijn er situaties waarin het uitdagend is
om genoeg data te verzamelen. Denk aan kleine populaties, zoals mensen met
zeer zeldzame ziektes. Of een groep die moeilijk te bereiken is, zoals mensen
met verslavingsproblemen, laaggeletterden, of ongedocumenteerde migranten.
Ook financiële redenen kunnen een rol spelen, denk aan studies waarin dure
MRI scans gebruikt worden en genoeg data verzamelen simpelweg te veel kost.
Kleine steekproeven zijn in dit soort situaties onvermijdelijk.

Structurele vergelijkingsmodellen (Structural Equation Models; SEMs)
hebben net als alle statistische modellen, een bepaalde hoeveelheid data
nodig om goed te functioneren. Kleine steekproeven kunnen grote problemen
veroorzaken. Zoals een model dat niet convergeert, afwijkende of
nietszeggende resultaten genereert. Eén manier om deze problemen te
vermijden is het versimpelen van de onderzoeksvraag en het statistische
model. Dit is echter niet wenselijk, omdat complexe en essentiële
onderzoeksvragen over moeilijk te bereiken groepen en kleine populaties dan
niet beantwoord kunnen worden, en er zo belangrijke informatie misgelopen
wordt.

Een andere manier om de kleine-steekproef-problemen te omzeilen is door
het gebruik van Bayesiaanse statistiek. In theorie is het Bayesiaanse
framework meer geschikt voor kleine datasets, in vergelijking met de
klassieke frequentistische methoden (zoals Maximum Likelihood schatting).
Allereerst doordat met het specificeren van prior verdelingen extra informatie
toegevoegd kan worden aan de analyse. Daarnaast zijn Bayesiaanse
methoden niet gebaseerd op large-sample techniques.
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In de praktijk zien we dat onderzoekers steeds vaker kiezen voor het gebruik
van Bayesiaanse SEM (BSEM), om zo kleine-steekproef-problemen te
omzeilen. De overstap naar Bayesiaanse statistiek is echter niet zonder
problemen. Wanneer BSEM gebruikt wordt, moeten er prior verdelingen
gespecificeerd worden voor alle parameters in het model. Hoe kleiner de
steekproef, hoe groter de impact van de prior verdelingen op de posterior. Er
zijn een aantal software programma’s die gebruik maken van ingebouwde
default prior verdelingen. Helaas zijn deze priors niet altijd geschikt en
kunnen ze tot onjuiste resultaten leiden in het geval van kleine steekproeven.

Het doel van dit proefschrift is dan ook allereerst het creëren van overzicht over
het functioneren van Bayesiaanse schattingsmethoden voor SEM met kleine
steekproeven. Daarnaast bespreken we voorzorgsmaatregelen en verstrekken
we richtlijnen zodat BSEM op een bewuste manier gebruikt kan worden met
kleine steekproeven.

Elk hoofdstuk heeft een pagina op het Open Science Framework (OSF). Hier
zijn alle aanvullende bestanden te vinden, inclusief geannoteerde R en Mplus
code om te resultaten te reproduceren. De link naar de bijbehorende OSF
pagina wordt gegeven aan het begin van elk hoofdstuk.

In hoofdstuk 1, bespreken we de resultaten van een uitgebreide
literatuurstudie. We geven een overzicht van 32 simulatiestudies, waarin de
werking van Bayesiaanse en frequentistische methoden wordt onderzocht
voor SEMs met kleine steekproeven. Een reeks aan verschillende SEMs
wordt besproken, wat de resultaten van deze studie breed toepasbaar maakt.
We presenteren een overzicht van de geïncludeerde studies, laten zien wat
volgens de auteurs van de studies beschouwd wordt als een kleine steekproef,
en voegen de informatie uit de studies samen in figuren. Op basis van de
literatuurstudie, concluderen we dat met kleine steekproeven het gebruik van
Bayesiaanse schattingsmethoden met default priors kan leiden tot ernstig
afwijkende resultaten. We eindigen het hoofdstuk met aanbevelingen om
bewuste keuzes te maken over alle prior verdelingen in het model, en geven
voorbeelden hoe deze prior verdelingen opgesteld kunnen worden.

In hoofdstuk 2 onderzoeken we het latente groei model (LGM) met een
lange-termijn uitkomstmaat in een simulatiestudie. Bayesiaanse schatting
(met Mplus default en informatieve priors) wordt vergeleken met Maximum
Likelihood (ML) schatting. Voorzichtigheid is geboden wanneer (1) de
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steekproef klein is; en (2) er weinig variantie rondom de latente slope wordt
verwacht, zelfs wanneer de steekproef groot is. We adviseren om ML en
Bayesiaanse schatting met Mplus default priors niet te gebruiken in
bovenstaande situaties om ernstig afwijkende resultaten te voorkomen. De
specificatie van informatieve priors kan uitkomst bieden. Aan de andere kant,
de specificatie van priors die afwijken van de populatiewaarden, verslechteren
de resultaten bij een kleine steekproef. Wij adviseren onderzoekers daarom
om de meest zorgvuldige benadering te gebruiken: begin met het zorgvuldig
specificeren van prior verdelingen; en onderzoek de impact en robuustheid
van de priors naderhand in een uitgebreide sensitiviteitsanalyse.

In hoofdstuk 3 bespreken we twee veelbelovende frequentistische methoden
om SEM met kleine steekproeven te analyseren: twostep modeling (twostep)
en Factor Score Regression (FSR). In het hoofdstuk worden deze twee
methoden uitgelegd, en in een simulatiestudie vergeleken met Maximum
Likelihood (ML) schatting, Bayesiaanse schatting met blavaan default priors
en informatieve priors voor verschillende steekproefgroottes. Met kleine
steekproeven, geven bijna alle methoden problemen. De frequentistische
methoden (ML, twostep, FSR) in termen van een model dat niet convergeert,
negatieve varianties en extreme parameter schattingen; en de Bayesiaanse
methode met default priors in termen van mode-switching en spikes.
Wanneer het vergroten van de steekproef geen optie is, raden wij aan
Bayesiaanse statistiek te gebruiken met informatieve priors. Wanneer
onderzoekers geen prior informatie willen of kunnen toevoegen, adviseren wij
twostep of FSR te gebruiken. Deze methoden zijn een veiligere keuze dan
ML: ze leiden vaker tot een convergerend model zonder negatieve varianties,
stabielere resultaten tussen replicaties in de simulatiestudie en minder
extreem afwijkende parameter schattingen dan ML met kleine steekproeven.

De eerste drie studies in dit proefschrift duiden op dezelfde conclusie:
overstappen naar een Bayesiaanse schattingsmethode en daarbij blind
vertrouwen op de ingebouwde default priors is geen oplossing. Met kleine
steekproeven kan het gebruik van default priors leiden tot onjuiste parameter
schattingen (vooral ernstig afwijkende variantie parameter schattingen),
instabiele resultaten, en grote onzekerheid in de posterior verdeling.
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In hoofdstuk 4, brengen we op een toegankelijke manier de risico’s van het
gebruik van Bayesiaanse statistiek met default priors en kleine steekproeven
onder de aandacht. We bespreken de relatief grote impact van de prior op de
posterior wanneer steekproeven klein zijn, het probleem met de vaak zeer
wijde verdeling van de ingebouwde default priors, en de onjuiste overtuiging
dat default priors niet-informatieve priors zouden zijn en geen impact zouden
hebben op de resultaten. Daarnaast presenteren we een online shiny
applicatie (Smid & Winter, 2020, beschikbaar via https://osf.io/m6byv/),
waarbij gebruikers de impact van verschillende priors en steekproefgroottes
op de resultaten kunnen exploreren. We bespreken hoe de app gebruikt kan
worden in het onderwijs, en we verstrekken een lijst met literatuur over het
specificeren van prior verdelingen. We sluiten af met richtlijnen over het
herkennen van misbehaving en behaving priors na het uitvoeren van een
Bayesiaanse analyse.
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