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General introduction

“Declare the past, diagnose the present, foretell the future.”1 Hippocrates (460 

B.C. - 370 B.C.), the “father of medicine”, already stated this more than 2000 

years ago, and to this day it is still something physicians strive for in patient 

encounters. The focus in clinical practice is, however, most often on the first 

two - obtaining a medical history, diagnosing and treating the present disease. 

Foretelling the future of a patient is just as important in order to prevent potential 

future diseases, individualize treatment and promote shared decision making. 

Even though more than 2000 years have passed, the question still remains: 

Can we predict the future of a patient, including predictions of patient risks and 

treatment benefits in clinical practice? 

Type 2 diabetes, CVD and kidney disease – three pieces of the same 

puzzle

Worldwide, the prevalence of non-communicable diseases, including type 2 

diabetes, cardiovascular disease (CVD) and chronic kidney disease is growing.2 

Atherosclerotic CVD takes first place in common non-communicable diseases, 

being responsible for 17.8 million deaths annually worldwide. Chronic kidney disease 

is responsible for 1.2 million deaths and type 2 diabetes is the fourth most common 

non-communicable disease and responsible for 1 million deaths worldwide.

The increasing number of individuals with CVD, kidney disease and/or type 

2 diabetes is due to several factors, including increased survival of patients 

with disease as well as an ageing population who have more opportunity 

to develop disease. Also, it will come as no surprise that these diseases are 

strongly intertwined with shared risk factors such as obesity and sedentary 

behaviour while at the same time the presence of one of the mentioned 

diseases increases the risk of the others. For example, diabetes accounts for 

more than 40% of kidney failure cases,3 and the risk of CVD is 2-3 times higher in 

people with type 2 diabetes compared to people without.4 Also, CVD confers a 

4-fold increased risk of developing chronic kidney disease5 and the risk of CVD 

increases with declining kidney function.6 

Risk factors for cardiovascular and kidney disease

Before foretelling the future, i.e. predicting a patient’s risk of disease, we need 

to “diagnose the present”, which involves identifying risk factors that are causally 
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related to cardiovascular and kidney disease. Many amendable risk factors 

have already been manifested, including type 2 diabetes,4, 7 hypertension,8 

obesity and sedentary behaviour, dyslipidemia9 and smoking.10, 11 However, 

amendable risk factors are primarily investigated in low-risk populations and 

their effect may differ in high-risk patients with established CVD and/or chronic 

kidney disease, since the pathogenesis might involve different pathways in 

certain high-risk populations. For example, a previous study reported that the 

reduction in relative risk of major vascular events with statin-based treatment 

to lower LDL-c weakened with declining eGFR, suggesting other pathogenic 

factors play a bigger part in patients with worse kidney function.12 Therefore, 

the effect of amendable risk factors on cardiovascular and kidney disease must 

also be assessed in high-risk patients.

In patients with type 2 diabetes there is still a residual risk for CVD even when 

traditional risk factors are optimally controlled. Therefore, there is increasing 

interest in discovering novel, potentially amendable, causally related risk 

factors for CVD in people with type 2 diabetes. One such potential risk 

factor proposed is the hemoglobin glycation index (HGI). The HGI is to be 

understood as a possible marker of interindividual differences in haemoglobin 

glycosylation.13 It is defined as the difference between observed HbA1c and 

predicted HbA1c as calculated by the population linear regression equation of 

HbA1c and a wide discordance has been proposed as being causally linked to 

increased risk of diabetes-related outcomes, including CVD.14 However, before 

such novel potential risk factors, e.g. the HGI, are introduced as a possible part 

of the pathophysiological pathway and integrated as a risk factor in clinical 

practice, they need to be thoroughly examined to identify whether there is in 

fact a causal link.

Predicting cardiovascular and kidney outcomes in individuals with type 
2 diabetes

As touched upon previously, type 2 diabetes is considered a severe threat for 

global health, with a current global prevalence of 9% and a staggering number 

of 578 million people expected to have diabetes in 2030.15 Type 2 diabetes is not 

only associated with increased risk for cardiovascular and kidney disease, but 

also other outcomes such as neuropathy and retinopathy. Even more people 

are estimated to have pre-diabetes, and people often already have significant 
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macro- and microvascular damage at time of diagnosis and treatment.16 As the 

prevalence of type 2 diabetes keeps increasing, so does the diversity of this 

group of patients. Thus, a lot of different patients with type 2 diabetes visit the 

clinic everyday, whether at the general practitioner or a specialist out-patient 

clinic. Two such patients that may be seen are Mr. D and Mrs. T (Figure 1).

Mr. D is a 70-year old male, recently retired and looking forward to slowing 
down and spending more time with his family. 15 years ago, he was diagnosed 
with type 2 diabetes. He takes oral glucose-lowering medication every morning 
and evening (when his wife reminds him) and tries to cut down on fast sugars, 
but more often than not can’t resist desserts. Ideally, he should lose 25 kg, but 
on the other hand exercise was never really part of his sedentary corporate 
lifestyle. His biggest vice is the daily pack of cigarettes, but he enjoys them 
too much to actually quit. During his last visit at the out-patient diabetes clinic, 
the doctor did mention something about proteinuria and a declining kidney 
function, and dyslipidemia, but he doesn’t really see the need for taking more 
pills when he generally feels healthy. Thus, he attends his annual check-ups, 
but is not otherwise concerned with it.

Mrs. T is a 58-year old female, enjoying her grown-up kids and living an active, 
social life. She was recently diagnosed with type 2 diabetes during a routine 
visit at her general practitioner, which came as quite a shock to her. The doctor 
also mentioned something about protein in her urine and an elevated blood 
pressure, but she didn’t really think more of this. She’s determined to change 
the disease course and immediately opts her already healthy diet and increases 
exercise. She finds herself way too young to start taking pills chronically, even 
though this was what the doctor recommended.

A main question that arises in the encounters with both Mr. D and Mrs. T is; 

What is their individual risk of developing diabetes-related outcomes, including 

cardiovascular and kidney disease? This risk estimate is the starting point for 

a personalised discussion of the disease course and pros and cons of starting 

treatment. Generally, patients with type 2 diabetes, especially those with 

target organ damage or several major risk factors, are deemed at (very) high 

risk for both (recurrent) cardiovascular and kidney disease. However, also in 

this group of patients there is significant variation in risk depending on disease 

severity, duration and concomitant risk factors.17, 18 Should both Mr. D and Mrs. 

T be prescribed the same treatment even though risks and benefits may differ 

widely?
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Figure 1. Example of two patients with type 2 diabetes; Mr. D and Mrs. T 

BP = blood pressure; eGFR = estimated glomerular filtration rate; HbA1c = hemoglobin A1c; 
HDL = high density lipoprotein; uACR = urine-Albumine/Creatinine ratio.

Several prediction models for predicting cardiovascular and kidney disease 

in people with type 2 diabetes exist,19, 20 and other models aim to predict 

neuropathy, retinopathy and all-cause mortality.21, 22 Optimally, such models 

should be used in clinical practice to identify patients at high risk who are 

anticipated to derive greatest benefit from treatment and to promote shared 

decision making on treatment decisions. In order to do so, it is important that 

the predictions are accurate and applicable to the specific clinical situation. 

However, most of the prediction models for cardiovascular and kidney disease 

in people with type 2 diabetes have several methodological shortcomings. For 

example, most models only predict outcomes over a short time span, e.g. 5 to 10-

year predictions. These predictions are mostly driven by age, and since younger 

people have lower short-term risks even in the presence of high risk factor 

levels, they will mostly not receive preventive therapy, although their lifetime 

benefit may be very high. Also, in order to reliably use these prediction models 

in clinical practice, the models should be well calibrated so that predicted risks 

match the actual disease incidence for the individual of interest, and this should 

be proven in independent data that is representative of the target population. 

Outcome incidences in people with type 2 diabetes vary over geographical 

regions and over periods of time beyond what can be explained by risk factors 

alone. Recent advances in geographical recalibration methods using average 
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risk factor levels and incidence rates from nationally representative registry 

data allow for contemporary and geographic recalibration of models23, 24 and 

may thus aid in accuracy of predictions.

Individual benefit from preventive treatment

Several more questions arise in our encounters with Mr. D and Mrs. T: How 

to best prevent cardiovascular and kidney disease for Mr. D and Mrs. T? Is it 

for example appropriate to initiate glucose-lowering and blood pressure-

lowering therapy? And, what does the patient think of taking medications on a 

daily basis? Fortunately, several effective treatment options to prevent or delay 

cardiovascular and kidney disease in individuals with type 2 diabetes exist, 

including lifestyle interventions such as smoking cessation10 and intensive 

glucose- and blood pressure lowering and lowering of LDL-cholesterol.8, 25 

Furthermore, treatment with angiotensin-converting enzyme-inhibitors (ACEi) 

or Angiotensin-II Receptor Blockers (ARB) has proven to lower the risk of 

progressive kidney function decline and end-stage kidney disease26 and more 

novel agents such as sodium-glucose cotransporter-2 inhibitors (SGLT2i)27, 

28 and glucagon-like peptide-1 receptor agonists (GLP-1 RA)27, 29 reduce both 

cardiovascular and kidney disease risk. But how do we know what the benefit 

of these various treatments is for different individual patients?

Other questions that may emerge in our patients encounters: Are they themselves 

worried about cardiovascular and kidney disease associated with their diagnosis 

of type 2 diabetes? Or are they perhaps worried about possible side effects? Is 

the treatment covered by health insurance? The absolute benefit an individual 

may derive in terms of risk reduction from these treatments depends on 

several different factors including risk factor burden, duration of treatment 

and overall life expectancy. Thus, even though many treatment options are 

effective in reducing cardiovascular and kidney disease at a population level, 

disadvantages like adverse side-effects, polypharmacy and costs need to be 

taken into consideration and even intensive lifestyle factor modification may 

not be beneficial for all individuals with type 2 diabetes.30 Therefore, treatment 

should only be recommended to those who are expected to benefit most from 

therapy while of course also accounting for patient preferences.

The 2021 European Society of Cardiology prevention guidelines introduced 

a two-step approach as an individualized prevention strategy.31 A first line 
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approach of treatment is applicable to all individuals with type 2 diabetes 

and includes smoking cessation, lifestyle interventions and management of 

HbA1c. In step two, intensified preventive treatment should be considered at 

an individual level, and here it is especially important to also consider possible 

side effects, more frequent clinical visits, increased costs, predicted risks and 

patient preferences.

In conclusion, even with the lack of a future foretelling crystal ball, individual 

risk estimations of cardiovascular and kidney disease and potential benefit 

from treatment in people with type 2 diabetes can be obtained. This, however, 

needs to be done using risk scores with longer time span estimates that are 

in line with the latest methodological standards, including external validation. 

Such risk scores will help ensure accurate predictions and estimate benefit 

from treatment. This will help Mr. D and Mrs. T, in collaboration with their 

treating physician, choose the interventions most beneficial for their risk profile 

and personal preferences. 

Thesis objective 

The objectives of this thesis are to individualize predictions of cardiovascular 

and kidney outcomes in high risk patients with type 2 diabetes or established 

CVD. Therefore, the general objectives are: 

1. To identify risk factors associated with kidney and cardiovascular 

outcomes in high risk patients with type 2 diabetes and/or 

established CVD.

2. To improve the accuracy and clinical utility of risk prediction by 

increasing the time span of individual estimates of cardiovascular 

and kidney disease risk and to estimate individual benefit from 

treatment in people with type 2 diabetes.

Thesis outline

Part 1 focuses on risk factors for development of (recurrent) CVD and kidney 

disease, including kidney function decline and end-stage kidney disease in 

high-risk patients with established CVD and/or type 2 diabetes. In chapter 2 

the relationship between several amendable risk factors and end-stage kidney 
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disease is investigated in patients with established CVD from the UCC-SMART 

cohort. In chapter 3 change in lifestyle factors, including smoking, exercise, 

alcohol consumption and obesity markers, over 10 years and the effect on kidney 

function decline is examined in patients with established CVD. In chapter 4 the 

relation between HGI and risk of CVD in patients with type 2 diabetes from the 

UCC-SMART cohort is examined. Part 2 of this thesis focuses on prediction of 

cardiovascular risk and risk of end-stage kidney disease in people with type 2 

diabetes. In chapter 5 cardiovascular risk and lifetime benefit from preventive 

treatment is investigated in a cohort of people with type 2 diabetes spanning 

13 different countries. In chapter 6 a prediction model for end-stage kidney 

disease in people with type 2 diabetes is derived and validated using data 

from approximately 1,000,000 individuals with type 2 diabetes. In chapter 7 a 

comprehensive update of the DIAL model, a lifetime prediction model for CVD 

in people with type 2 diabetes, is derived and validated including geographical 

recalibration. Chapter 8 describes the derivation and validation of a prediction 

model for estimating 10-year risk of CVD in people with type 2 diabetes 

according to the latest methodological advancements. The main findings of 

this thesis are discussed in chapter 9. 
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Abstract

Background: Patients with cardiovascular disease are at increased risk of 

end-stage kidney disease. Insights in the incidence and role of modifiable 

risk factors for end-stage kidney disease may provide means for prevention in 

patients with cardiovascular disease. 

Methods: We included 8,402 patients with stable cardiovascular disease. 

Incidence rates for end-stage kidney disease were determined stratified 

according to vascular disease location. Cox proportional hazard models 

were used to assess the risk of end-stage kidney disease for the different 

determinants.

Results: 65 events were observed with a median follow-up of 8.6 years. The 

overall incidence rate of end-stage kidney disease was 0.9/1000 person-

years. Patients with polyvascular disease had highest incidence rate (1.8/1000 

person-years). Smoking (HR 1.87; 95%CI 1.10-3.19), type 2 diabetes (HR 1.81; 

95%CI 1.05-3.14), higher systolic blood pressure (HR 1.37; 95%CI 1.24-1.52/10 

mmHg), lower estimated glomerular filtration rate (HR 2.86; 95%CI 2.44-3.23/10 

mL/min/1.73m2) and higher urine albumin/creatinine ratio (HR 1.19; 95%CI 

1.15-1.23/10 mg/mmol) were independently associated with elevated risk of 

end-stage kidney disease. Body mass index, waist circumference, non-HDL-

cholesterol and exercise were not independently associated with risk of end-

stage kidney disease. 

Conclusions: Incidence of end-stage kidney disease in patients with 

cardiovascular disease varies according to vascular disease location. Several 

modifiable risk factors for end-stage kidney disease were identified in patients 

with cardiovascular disease. These findings highlight the potential of risk factor 

management in patients with manifest cardiovascular disease. 
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Introduction

Chronic kidney disease (CKD) is a growing health problem worldwide, predicted 

to be the 5th most common cause of life-years lost by 2040.1 The rise in CKD is 

mainly due to the increasing prevalence of type 2 diabetes and hypertension 

in the presence of increasing life expectancy.2 CKD is irreversible and in most 

cases progressive and the consequences include progression to end-stage 

kidney disease (ESKD), as well as an increased risk for cardiovascular disease 

(CVD) and mortality.3, 4 The relation between CVD and CKD is bidirectional and 

patients with manifest CVD are at increased risk for adverse kidney outcomes.5, 6 

Early identification and treatment of modifiable risk factors is the first-line 

strategy to reduce CKD progression in patients at high risk for developing 

ESKD, including patients with CVD at baseline. Known modifiable risk factors 

for ESKD include hypertension,7, 8 type 2 diabetes,9, 10 kidney function,11 obesity,12 

dyslipidemia,13 smoking14-16 and exercise.17 However, these risk factors for 

ESKD are primarily investigated in low-risk populations and the effect of these 

risk factors may differ in patients with vascular disease, especially in more 

advanced cases. To the best of our knowledge, no previous study investigated 

the relation between modifiable risk factors for CVD and occurrence of ESKD 

in a high-risk population cohort with different manifestations of CVD, including 

cerebrovascular disease, coronary artery disease (CAD), peripheral artery 

disease (PAD) or polyvascular disease.

The aim of this study is two-fold. First, we set out to determine the incidence 

of ESKD in patients with stable manifest CVD according to vascular disease 

location. The second aim was to assess the relation between modifiable risk 

factors for kidney disease and incident ESKD in a contemporary population 

cohort with stable manifest vascular disease. 

Materials and methods

Study population

The study population consisted of patients included in the Utrecht Cardiovascular 

Cohort - Second Manifestations of Arterial Disease (UCC-SMART) study. The UCC-

SMART study is an ongoing single-center prospective cohort study conducted 

in Utrecht, the Netherlands including patients from 18 years of age. A description 

of the study protocol has been provided elsewhere.18 Study participants were 
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patients newly referred to the University Medical Centre Utrecht with established 

CVD or an increased risk hereof, and were enrolled from September 1996 to 

February 2018. For this analysis, all patients with manifest cerebrovascular disease, 

CAD, symptomatic PAD and/or abdominal aortic aneurysm (AAA) were included. 

For definitions of CVD see Supplementary table 1. Patients with ESKD at baseline 

were excluded (n = 20). The UCC-SMART study was approved by the local Medical 

Ethics Committee and written informed consent was obtained from all patients.  

Collection of data

All patients underwent vascular screening at baseline, including a health 

questionnaire, a standardized physical examination and collection of fasting 

blood samples. eGFR was calculated using the Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) formula.19 Systolic blood pressure (SBP) 

was measured three times on both arms in supine position and the mean of 

the last two measurements of the highest arm was used. Type 2 diabetes was 

defined as either a referral or self-reported diagnosis of type 2 diabetes, or a 

fasting plasma glucose ≥ 7 mmol/L at study inclusion with initiation of glucose-

lowering treatment within 1 year, or baseline use of antihyperglycemic agents 

or insulin. Non-HDL-cholesterol was calculated as total cholesterol minus HDL-

cholesterol and LDL-cholesterol was calculated using the Friedewald formula 

up to triglyceride-values of 8.0 mmol/L. Smoking was self-reported and 

categorized as current smoking, former smoker or never smoker. Exercise was 

also self-reported as number of hours per week for sports, walking, cycling, 

and gardening, and this was multiplied by a specific metabolic equivalent of 

task (MET) derived from the Compendium of Physical activity,20 resulting in 

a number of MET hours per week per activity. The total amount of physical 

activity was the sum of MET hours per week of all activities. 

Participants were asked to fill out a questionnaire twice a year. If an event was 

reported, hospital discharge letters, relevant laboratory results and radiological 

examinations were collected. With this additional information, all events were 

audited by three members of the UCC-SMART study endpoint committee, 

comprising physicians from various departments. The outcome of interest for 

this study was ESKD, defined according to Kidney Disease Improving Global 

Outcomes21 as CKD stage 5 (sustained eGFR <15 ml/min/1.73 m2), long-term 

dialysis or kidney transplantation. 
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Data analyses

Data in the baseline table are presented as counts (percentages) for categorical 

values, as mean ± standard deviation (SD) for normally distributed variables and 

as median with interquartile range (IQR) for skewed distributions. The cohort 

was stratified according to previous vascular disease location. Vascular disease 

location was specified to either only cerebrovascular disease, only CAD, only 

PAD and/or AAA, or polyvascular disease defined as ≥2 locations.

To prevent loss of statistical power and potential bias,22 missing data were imputed 

by single regression imputation using all covariate and outcome data: eGFR (0.4%), 

urine albumin to creatinine ratio (uACR) (3%), smoking (0.4%), SBP (0.2%), BMI 

(0.2%), waist circumference (12%), non-HDL-cholesterol (0.6%) and exercise (23%). 

Incidence rates (IR) and 95% confidence intervals (CI) were determined according 

to subgroups of vascular disease location. Kaplan-Meier survival curves were fitted 

to determine ESKD-free survival over time. To test for significant differences in 

ESKD-free survival between the groups, the Peto’s log-rank test23 was performed. 

In addition, survival curves based on an unadjusted Cox proportional hazard 

model was fitted with age at baseline and age at event as time-axis instead of 

follow-up time. This was done in order to illustrate the possible difference in life-

expectancy free of ESKD between the subgroups of vascular disease location. The 

latter survival curve only included patients with a baseline age ≥50 years. 

To assess the association between smoking, type 2 diabetes, SBP, BMI, waist 

circumference, non-HDL-cholesterol, eGFR, uACR and weekly exercise and 

ESKD, Cox proportional hazard models were constructed to determine hazard 

ratios (HRs) and 95%CIs. For eGFR as determinant, the inverse hazard ratio was 

determined (1/HR) in order to report risk of ESKD associated with decrease of 

eGFR. The linearity assumption between determinants and the log-hazard of 

ESKD was not violated based on visual inspection of restricted cubic splines. 

Satisfaction of the proportional-hazards assumption was confirmed by visual 

inspection of Schoenfeld residual plots. To adjust for confounding, three 

models were constructed: the first model was adjusted for sex and age and 

the second model was further adjusted for smoking, type 2 diabetes, SBP, 

BMI, non-HDL-cholesterol and exercise (if not determinant of interest). A third 

model was constructed with addition of use of glucose-lowering medication, 

antihypertensive medication and lipid-lowering medication to the second 

model. All analyses were performed with R-statistic programming (version 
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3.5.1, R Foundation for Statistical Computing, Vienna, Austria). All p-values were 

two-sided, with statistical significance set at 0.05.

Sensitivity analyses

Since eGFR and uACR are part of the causal pathway in the relation between 

determinants and risk of ESKD, we did not include them as confounders in 

the main analyses. However, since these markers of kidney function may also 

partly act as confounders in the causal pathway, we performed analyses with 

these added to model 1. Also we show the hazard ratios of the crude data. 

Furthermore, for sensitivity analyses, the association between risk factors and 

ESKD was assessed in patients who were treated with RAS-inhibitors, as this is 

often used as treatment to prevent kidney function decline in high-risk patients 

and may thus act as an effect modifier in the relation between determinants and 

risk of ESKD. Also, as all-cause mortality constitutes a competing risk for ESKD, 

a Fine and Gray competing risk regression analysis was done with all-cause 

mortality as competing risk. Lastly, IR were calculated stratified according 

to sex and age groups and interaction with sex and age, respectively, in the 

relation between determinants and risk of ESKD was examined.

Results

Baseline characteristics

A total of 8,402 patients were included with a total follow-up of 75,131 person-years 

(median follow-up 8.6 years, IQR 4.7-12.8 years). Baseline characteristics of patients 

are shown in Table 1. Supplementary table 2 shows the distribution of determinants 

and incidence rates for total mortality in patients who reached ESKD and in patients 

who did not. The mean age was 60 ± 10 years, 74% percent of the patients were 

male, 1848 (22%) had a history of only cerebrovascular disease, 4119 (49%) had a 

history of only CAD, 1227 (15%) had a history of only PAD and 1208 (14%) had a history 

of polyvascular disease. Patients with CAD or polyvascular disease were more 

often treated with antihypertensive and lipid-lowering medication. Patients with 

PAD were more often smokers and patients with PAD and polyvascular disease 

had on average higher SBP and lower levels of physical exercise. Patients with 

polyvascular disease had overall lower eGFR and higher uACR. Overall mortality 

risk during follow-up was 23% (IR 26/1000 person-years, 95%CI 25-27) and CVD 

risk was 19% (IR 22/1000 person-years, 95%CI 21-23).
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Incidence rates of ESKD according to vascular disease location

A total of 65 ESKD-events were observed during follow-up (IR 0.9/1000 

person-years, 95%CI 0.7-1.1). In patients with only cerebrovascular disease, 10 

ESKD-events occurred (IR 0.6/1000 person-years, 95%CI 0.3-1.1). In patients 

with only CAD, 24 ESKD-events occurred (IR 0.6/1000 person-years, 95%CI 0.4-

1.0). In patients with only PAD, 14 ESKD-events occurred (IR 1.2/1000 person-

years, 95%CI 0.6-2.0) and in patients with polyvascular disease, 17 ESKD-events 

occurred (IR 1.8/1000 person-years, 95%CI 1.0-2.9). Overall absolute risk of 

ESKD was relatively small over time (Figure 1a), and at the age of 50 years, 

patients with polyvascular disease had a shorter life-expectancy free of ESKD 

compared to patients with only cerebrovascular disease or only CAD (Figure 

1b). 

Figure 1. End-stage kidney disease-free survival according to vascular disease location 
at baseline

Relation between risk factors and risk of ESKD

Using the model with clinical covariates, current smoking was independently 

associated with an elevated risk of ESKD (HR 1.87; 95%CI 1.10-3.19) and patients 

with type 2 diabetes had higher risk of ESKD (HR 1.81; 95%CI 1.05-3.14). An 

increase in SBP was associated with an increase in the risk of ESKD (HR 1.37; 

95%CI 1.24-1.52 per 10 mmHg). A 10 ml/min/1.73m2 lower eGFR increased the 
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risk of ESKD (HR 2.86; 95%CI 2.44-3.23) and a 10 mg/mmol higher uACR was 

significantly associated with higher risk of ESKD (HR 1.19; 95%CI 1.15-1.23) (Figure 

2).

Figure 2. Relation between determinants and risk of end-stage kidney disease 

No significant independent relation was observed between physical exercise 

(HR 1.00; 95%CI 0.93-1.07), BMI (HR 1.16; 95%CI 0.85-1.60 per 5 kg/m2), waist 

circumference (1.12, 95%CI 1.00-1.25) and non-HDL-cholesterol (HR 1.12; 95%CI 

0.94-1.34) and risk of ESKD. The magnitude and direction of the HR was not 

materially different compared with the model only adjusted for sex and age 

(Table 2), except that relations between non-HDL-cholesterol and risk of ESKD 

(HR 1.21; 95%CI 1.03-1.42) and waist circumference (HR 1.15, 95%CI 1.03-1.28) and 

risk of ESKD were significant. Further adjusting for use of medication added to 

the second model did not alter the HR meaningfully.

Sensitivity analyses

Adjusting for eGFR and uACR did not meaningfully alter the direction of 

the hazard ratios, except for type 2 diabetes as determinant which became 

insignificant (Supplementary table 3). When performing the analyses with all-

cause mortality as a competing risk, the direction and magnitude of the hazard 

ratios did not change substantially (Supplementary table 4). Furthermore, 

in patients who were using RAS-inhibitors, the hazard ratios for the relation 

between risk factors and ESKD also did not change considerably (Supplementary 
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table 5). IR for ESKD were higher in men (1.0/1000 person-years) compared to 

women (0.5/1000 person-years) and in subjects older than 70 years of age 

compared to subjects younger than 70 years of age (Supplementary table 6). 

However, no interaction between sex and age, respectively, and any of the 

determinants was observed (data not shown).

Table 2. Relation between determinants and risk of end-stage kidney disease 

Hazard ratios and 95%CI

Model 1 Model 2 Model 3

Current smoking (yes vs no) 1.90 (1.13-3.20) 1.87 (1.10-3.19) 1.93 (1.13-3.30)

Type 2 diabetes (yes vs no) 2.07 (1.21-3.54) 1.81 (1.05-3.14) 1.74 (1.00-3.01)

Systolic blood pressure (per 10 mmHg) 1.39 (1.26-1.54) 1.37 (1.24-1.52) 1.37 (1.24-1.51)

Body mass index (per 5 kg/m2) 1.23 (0.90-1.70) 1.16 (0.85-1.60) 1.12 (0.81-1.55)

Waist circumference (per 5 cm) 1.15 (1.03-1.28) 1.12 (1.00-1.25) 1.11 (0.99-1.24)

Non-HDL cholesterol (per mmol/L) 1.21 (1.03-1.42) 1.12 (0.94-1.34) 1.12 (0.96-1.30)

eGFR (per 10 mL/min/1.73 m2) 2.94 (2.50-3.33) 2.86 (2.44-3.23) 2.86 (2.44-3.33)

Albumine/creatinine-ratio (per 10 mg/mmol) 1.23 (1.19-1.27) 1.19 (1.15-1.23) 1.17 (1.13-1.22)

Exercise (per 10 MET hours/week) 0.97 (0.91-1.04) 1.00 (0.93-1.07) 1.00 (0.93-1.07)

Model 1: Parameters included in the model are sex and age.
Model 2: Parameters included in the model are sex, age, type 2 diabetes, systolic blood 
pressure, current smoking, body mass index, non-HDL cholesterol and exercise. 
Model 3: Parameters included in the model are sex, age, type 2 diabetes, systolic blood 
pressure, current smoking, body mass index, non-HDL cholesterol, exercise, antihypertensive 
medication, lipid-lowering medication and glucose-lowering medication (except for type 2 
diabetes as determinant, which was not adjusted for use of glucose-lowering medication)

Discussion

The present study shows that incidence of ESKD in patients with stable 

manifest CVD varies according to vascular disease location. A higher incidence 

of ESKD and lower life expectancy free of ESKD was observed in patients 

with polyvascular disease or only PAD compared to patients with only 

cerebrovascular disease or only CAD. With respect to risk factors for ESKD in 

patients with stable manifest CVD, current smoking, type 2 diabetes, systolic 

hypertension, lower eGFR and higher uACR were all independently associated 

with increased risk of ESKD. 

It is well known that the heart and kidneys are intertwined, in which dysfunction 

in one organ may induce dysfunction and increase the risk of disease in the 
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other.3, 4 The majority of previous studies examining the cardiorenal syndrome 

have focused on the relation between heart failure and CKD.24 We expand 

on these previous findings by including patients with stable CVD with 

manifestations in different vascular beds.

The incidences of ESKD observed in the current study are higher than IR 

reported in general population cohorts,11, 25, 26 indicating that patients with 

stable vascular disease have a higher risk of ESKD. A study performed in the 

CKD Prognosis Consortium cohorts found an IR for ESKD of 1.83/1000 person-

years in populations with previous CVD or at increased risk of vascular disease.11 

A study examining the risk of ESKD after hospitalization with an incident CVD 

event reported an overall incidence of ESKD of 3.3/1000 person-years.27 The 

incidence for ESKD in our study (overall IR of 0.9/1000 person-years) is lower, 

which might be due to the fact that the cohort consisted of patients who were 

overall intensively treated in terms of cardiovascular risk factors. Also, differences 

in case mix may strongly influence the incidence numbers across the studies. 

In a broader perspective, approximately 1,550,000 people in the Netherlands 

are living with CVD.28 Assuming the incidence rate found in this study, this will 

result in 1395 incident cases of ESKD per year. This agrees well with the incidence 

of ESKD-events within the Dutch population.29 Since ESKD is associated with 

mortality and severe morbidity, reduced quality of life and increased health-

care costs, this is a considerable number of events and focus on the prevention 

of ESKD in high-risk patients with manifest CVD is important. 

This study identified patients with PAD and polyvascular disease as patients 

at highest risk for ESKD. These findings may result from identification of a 

population with more advanced general atherosclerosis, which also affects the 

aorta, kidney arteries and the kidneys themselves, resulting in a higher risk of 

ESKD. The disparities in incidence of ESKD between men and women, with 

men having a higher IR than women, are complex and may relate to a faster 

decline of kidney function in men hypothesized to be related to protective 

hormonal effects in women and differences in lifestyle factors.30 

In the current study, several modifiable risk factors for ESKD in patients with 

stable CVD were identified. We observed a higher risk of ESKD in patients who 

were current smokers, patients with type 2 diabetes and patients with higher 

SBP. A previous study using general population cohorts found a relative risk for 
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ESKD in subjects who were current smokers to be very similar to our results.15 

This underlines the importance of encouraging smoking cessation for both 

prevention of cardiovascular and kidney outcomes. Also, type 2 diabetes and 

SBP showed similar associations with ESKD as in the general population,8, 31 

warranting close follow-up and treatment of these patients.

A previous meta-analysis found lower eGFR and higher uACR to be associated 

with increased risk of ESKD, independent of traditional CVD risk factors,11 and 

albuminuria has previously been shown to be associated with increased risk of 

ESKD.32 eGFR and albuminuria are measures of glomerular and tubular function 

and therefore intuitively important risk factors for ESKD. Also, a lower eGFR 

and higher uACR can both partly be attributed to the causal pathway between 

other risk factors and the development of ESKD. However, a lower eGFR is also 

associated with accumulation of uremic toxins, which increases progression of 

both CKD and CVD.33 Specific treatment strategies, for example prescription 

of RAS-inhibitors,34 glucose lowering drugs35 and lifestyle interventions,36 

may alter this long term process by diminishing eGFR decline and reduce 

proteinuria. Increased awareness of these kidney function measures is likely to 

lead to better risk stratification and treatment in these high-risk patients. 

Previous studies generally show obesity to be associated with increased 

risk of ESKD,12, 37-39 but little is known about the pathophysiology behind this 

relation. In the present study, larger waist circumference was found to be 

significantly associated with risk of ESKD when only adjusted for sex and age 

as confounders. A larger waist circumference is associated with higher insulin 

resistance,40 potentially leading to type 2 diabetes, which is a risk factor for 

ESKD. Thus, type 2 diabetes is likely part of the causal pathway in the relation 

between waist circumference and risk of ESKD. This was also suggested in our 

study, where the relation between waist circumference and risk of ESKD was 

slightly reduced when adjusting for type 2 diabetes. Furthermore, BMI was not 

found to be significantly associated with risk of ESKD. A recent study found a 

larger waist circumference to be associated with increased risk of ESKD, but no 

significant relation between BMI and risk of ESKD, as was also observed in the 

present study.41 Since BMI is a composite measure of muscle- and bone mass 

as well as adipose tissue, waist circumference might be a more specific marker 

for adiposity. Also, as higher BMI is somewhat protective of CVD and ESKD 

in individuals at risk for malnutrition,42 such as people with advanced CKD or 
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CVD, this might lead to reverse causality in the relation between BMI and risk 

of ESKD. These results indicate that obesity is a potential risk factor for ESKD in 

patients with manifest stable CVD, and waist circumference might be a better 

indicator for obesity when assessing this risk. 

The major strengths of this prospective cohort study include the large number 

of patients with manifest CVD with extensive phenotyping of risk factors at 

baseline and a long and complete follow-up. Furthermore, the cohort is very 

contemporary as demonstrated by the high prevalence of preventive drug 

prescriptions. Also, the UCC-SMART cohort consists of patients referred with a 

broad spectrum of vascular disease, making the results applicable to patients 

with various manifestations of CVD. Lastly, as patients with kidney disease often 

die of cardiovascular causes, we performed additional analyses to account for 

competing events and demonstrated similar results. Some limitations must 

also be considered. Baseline characteristics were only recorded at the start of 

the study but may have changed during the course of follow-up. Also, as ESKD 

develops over a longer time period there was a limited number of outcomes, 

thereby reducing the power of the study to find specific subgroup effects. 

Assessment of parameters known to influence vascular calcification, e.g. 

phosphate, calcium and serum levels of parathyroid hormone as risk factors 

for ESKD could also be relevant, but were unavailable in this study. However, 

their absence does not affect the validity of our findings.

In conclusion, the incidence of ESKD in patients with vascular disease is 

relatively low compared to vascular events and varies according to vascular 

disease location, being higher in patients with PAD or polyvascular disease. 

Modifiable risk factors for development of ESKD in patients with stable CVD 

include current smoking, type 2 diabetes, systolic hypertension, low eGFR and 

high uACR. These findings highlight the potential of risk factor management 

in this high-risk patient group not only to prevent recurring vascular disease, 

but also to reduce progression to ESKD. This is in particular important when 

discussing risk factor management with patients and may enhance shared 

decision making by showing the importance of lifestyle changes and 

medication in the prevention of both recurrent CVD and ESKD.



Chapter 2

36

References

1. Foreman KJ, Marquez N, Dolgert A, Fukutaki K, Fullman N, McGaughey M, Pletcher 
MA, Smith AE, Tang K, Yuan CW, Brown JC, Friedman J, He J, Heuton KR, Holmberg 
M, Patel DJ, Reidy P, Carter A, Cercy K, Chapin A, Douwes-Schultz D, Frank T, 
Goettsch F, Liu PY, Nandakumar V, Reitsma MB, Reuter V, Sadat N, Sorensen RJD, 
Srinivasan V, Updike RL, York H, Lopez AD, Lozano R, Lim SS, Mokdad AH, Vollset SE, 
Murray CJL. Forecasting life expectancy, years of life lost, and all-cause and cause-
specific mortality for 250 causes of death: reference and alternative scenarios for 
2016-40 for 195 countries and territories. Lancet 2018;392:2052-2090.

2. Burrows NR, Vassalotti JA, Saydah SH, Stewart R, Gannon M, Chen S-C, Li S, 
Pederson S, Collins AJ, Williams DE. Identifying High-Risk Individuals for Chronic 
Kidney Disease: Results of the CHERISH Community Demonstration Project. 
American journal of nephrology 2018;48:447-455.

3. Ronco C, McCullough P, Anker SD, Anand I, Aspromonte N, Bagshaw SM, Bellomo 
R, Berl T, Bobek I, Cruz DN, Daliento L, Davenport A, Haapio M, Hillege H, House 
AA, Katz N, Maisel A, Mankad S, Zanco P, Mebazaa A, Palazzuoli A, Ronco F, 
Shaw A, Sheinfeld G, Soni S, Vescovo G, Zamperetti N, Ponikowski P. Cardio-renal 
syndromes: report from the consensus conference of the acute dialysis quality 
initiative. Eur Heart J 2010;31:703-11.

4. Gansevoort RT, Correa-Rotter R, Hemmelgarn BR, Jafar TH, Heerspink HJ, 
Mann JF, Matsushita K, Wen CP. Chronic kidney disease and cardiovascular risk: 
epidemiology, mechanisms, and prevention. Lancet 2013;382:339-52.

5. Liu M, Li XC, Lu L, Cao Y, Sun RR, Chen S, Zhang PY. Cardiovascular disease and 
its relationship with chronic kidney disease. European review for medical and 
pharmacological sciences 2014;18:2918-2926.

6. Kuwahara M, Takehara E, Sasaki Y, Azetsu H, Kusaka K, Shikuma S, Akita W. Effects 
of Cardiovascular Events on End-Stage Renal Disease and Mortality in Patients With 
Chronic Kidney Disease Before Dialysis. Therapeutic apheresis and dialysis : official 
peer-reviewed journal of the International Society for Apheresis, the Japanese 
Society for Apheresis, the Japanese Society for Dialysis Therapy 2016;20:12-19.

7. Bae EH, Lim SY, Han K-D, Oh TR, Choi HS, Kim CS, Ma SK, Kim SW. Association 
Between Systolic and Diastolic Blood Pressure Variability and the Risk of End-
Stage Renal Disease. Hypertension (Dallas, Tex. : 1979) 2019;74:880-887.

8. Hsu C-y, McCulloch CE, Darbinian J, Go AS, Iribarren C. Elevated blood pressure 
and risk of end-stage renal disease in subjects without baseline kidney disease. 
Archives of internal medicine 2005;165:923-928.

9. Nasri H, Rafieian-Kopaei M. Diabetes mellitus and renal failure: Prevention and 
management. Journal of research in medical sciences : the official journal of Isfahan 
University of Medical Sciences 2015;20:1112-1120.

10. Lin Y-C, Chang Y-H, Yang S-Y, Wu K-D, Chu T-S. Update of pathophysiology 
and management of diabetic kidney disease. Journal of the Formosan Medical 
Association = Taiwan yi zhi 2018;117:662-675.

11. Gansevoort RT, Matsushita K, van der Velde M, Astor BC, Woodward M, Levey AS, de 
Jong PE, Coresh J, Chronic Kidney Disease Prognosis C. Lower estimated GFR and 
higher albuminuria are associated with adverse kidney outcomes. A collaborative 
meta-analysis of general and high-risk population cohorts. Kidney international 
2011;80:93-104.



2

ESKD in people with manifest CVD

37   

12. Chang AR, Grams ME, Ballew SH, Bilo H, Correa A, Evans M, Gutierrez OM, 
Hosseinpanah F, Iseki K, Kenealy T, Klein B, Kronenberg F, Lee BJ, Li Y, Miura K, 
Navaneethan SD, Roderick PJ, Valdivielso JM, Visseren FLJ, Zhang L, Gansevoort 
RT, Hallan SI, Levey AS, Matsushita K, Shalev V, Woodward M, Consortium 
CKDP. Adiposity and risk of decline in glomerular filtration rate: meta-analysis 
of individual participant data in a global consortium. BMJ (Clinical research ed.) 
2019;364:k5301-k5301.

13. Schaeffner ES, Kurth T, Curhan GC, Glynn RJ, Rexrode KM, Baigent C, Buring JE, 
Gaziano JM. Cholesterol and the risk of renal dysfunction in apparently healthy 
men. Journal of the American Society of Nephrology : JASN 2003;14:2084-2091.

14. Alba MM, Citarelli AN, Menni F, Agricola M, Braicovich A, De Horta E, De Rosa F, 
Filanino G, Gaggiotti R, Junqueras N, Martinelli S, Milan A, Morales ME, Setti S, 
Villalba DO. Tobacco and end stage renal disease: a multicenter, cross-sectional 
study in Argentinian Northern Patagonia. Tobacco induced diseases 2015;13:28-28.

15. Xia J, Wang L, Ma Z, Zhong L, Wang Y, Gao Y, He L, Su X. Cigarette smoking and 
chronic kidney disease in the general population: a systematic review and meta-
analysis of prospective cohort studies. Nephrology, dialysis, transplantation : official 
publication of the European Dialysis and Transplant Association - European Renal 
Association 2017;32:475-487.

16. Wesson DE. The relationship of cigarette smoking to end-stage renal disease. 
Seminars in nephrology 2003;23:317-322.

17. Pike M, Taylor J, Kabagambe E, Stewart TG, Robinson-Cohen C, Morse J, Akwo E, 
Abdel-Kader K, Siew ED, Blot WJ, Ikizler TA, Lipworth L. The association of exercise 
and sedentary behaviours with incident end-stage renal disease: the Southern 
Community Cohort Study. BMJ open 2019;9:e030661-e030661.

18. Simons PC, Algra A, van de Laak MF, Grobbee DE, van der Graaf Y. Second 
manifestations of ARTerial disease (SMART) study: rationale and design. Eur J 
Epidemiol 1999;15:773-81.

19. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, Kusek JW, 
Eggers P, Van Lente F, Greene T, Coresh J. A new equation to estimate glomerular 
filtration rate. Ann Intern Med 2009;150:604-12.

20. Ainsworth BE, Haskell WL, Whitt MC, Irwin ML, Swartz AM, Strath SJ, O’Brien WL, 
Bassett DR, Jr., Schmitz KH, Emplaincourt PO, Jacobs DR, Jr., Leon AS. Compendium 
of physical activities: an update of activity codes and MET intensities. Med Sci 
Sports Exerc 2000;32:S498-504.

21. Levey AS, Eckardt KU, Tsukamoto Y, Levin A, Coresh J, Rossert J, De Zeeuw D, 
Hostetter TH, Lameire N, Eknoyan G. Definition and classification of chronic kidney 
disease: a position statement from Kidney Disease: Improving Global Outcomes 
(KDIGO). Kidney Int 2005;67:2089-100.

22. Donders AR, van der Heijden GJ, Stijnen T, Moons KG. Review: a gentle introduction 
to imputation of missing values. J Clin Epidemiol 2006;59:1087-91.

23. Peto R, Peto J. Asymptotically Efficient Rank Invariant Test Procedures. Journal of 
the Royal Statistical Society 1972;A135:185-207.

24. House AA, Wanner C, Sarnak MJ, Piña IL, McIntyre CW, Komenda P, Kasiske BL, 
Deswal A, deFilippi CR, Cleland JGF, Anker SD, Herzog CA, Cheung M, Wheeler 
DC, Winkelmayer WC, McCullough PA. Heart failure in chronic kidney disease: 
conclusions from a Kidney Disease: Improving Global Outcomes (KDIGO) 
Controversies Conference. Kidney Int 2019;95:1304-1317.



Chapter 2

38

25. van Blijderveen JC, Straus SM, Zietse R, Stricker BH, Sturkenboom MC, Verhamme 
KM. A population-based study on the prevalence and incidence of chronic kidney 
disease in the Netherlands. Int Urol Nephrol 2014;46:583-92.

26. Collins G, Altman D. Predicting the risk of chronic kidney disease in the UK: an 
evaluation of QKidney® scores using a primary care database. Br J Gen Pract 
2012;62:e243-50.

27. Ishigami J, Cowan LT, Demmer RT, Grams ME, Lutsey PL, Carrero JJ, Coresh J, 
Matsushita K. Incident Hospitalization with Major Cardiovascular Diseases and 
Subsequent Risk of ESKD: Implications for Cardiorenal Syndrome. J Am Soc Nephrol 
2020;31:405-414.

28. A.R. de Boer IvD, F.L.J. Visseren, I. Vaartjes, M.L. Bots. Hart- en vaatziekten in 
Nederland 2019. https://www.hartstichting.nl/getmedia/41cf66bf-2107-44d6-
b2c3-739fc465ec73/cijferboek-hartstichting-hart-vaatziekten-nederland-2019-
rp92.pdf 2019.

29. T. Hoekstra FWD, K. Cransberg, W.J. Bos, M. van Buren and M.H. Hemmelder. 
RENINE annual report 2018. https://www.nefrovisie.nl/wp-content/
uploads/2019/12/20191212_RENINE-annual-report-2018.pdf 2018.

30. Carrero JJ, Hecking M, Chesnaye NC, Jager KJ. Sex and gender disparities in 
the epidemiology and outcomes of chronic kidney disease. Nat Rev Nephrol 
2018;14:151-164.

31. Johnson ES, Smith DH, Thorp ML, Yang X, Juhaeri J. Predicting the risk of end-stage 
renal disease in the population-based setting: a retrospective case-control study. 
BMC Nephrol 2011;12:17.

32. Astor BC, Matsushita K, Gansevoort RT, van der Velde M, Woodward M, Levey 
AS, Jong PE, Coresh J, Astor BC, Matsushita K, Gansevoort RT, van der Velde M, 
Woodward M, Levey AS, de Jong PE, Coresh J, El-Nahas M, Eckardt KU, Kasiske BL, 
Wright J, Appel L, Greene T, Levin A, Djurdjev O, Wheeler DC, Landray MJ, Townend 
JN, Emberson J, Clark LE, Macleod A, Marks A, Ali T, Fluck N, Prescott G, Smith 
DH, Weinstein JR, Johnson ES, Thorp ML, Wetzels JF, Blankestijn PJ, van Zuilen 
AD, Menon V, Sarnak M, Beck G, Kronenberg F, Kollerits B, Froissart M, Stengel B, 
Metzger M, Remuzzi G, Ruggenenti P, Perna A, Heerspink HJ, Brenner B, de Zeeuw 
D, Rossing P, Parving HH, Auguste P, Veldhuis K, Wang Y, Camarata L, Thomas B, 
Manley T. Lower estimated glomerular filtration rate and higher albuminuria are 
associated with mortality and end-stage renal disease. A collaborative meta-
analysis of kidney disease population cohorts. Kidney Int 2011;79:1331-40.

33. Tonelli M, Karumanchi SA, Thadhani R. Epidemiology and Mechanisms of Uremia-
Related Cardiovascular Disease. Circulation 2016;133:518-36.

34. Lewis EJ, Hunsicker LG, Clarke WR, Berl T, Pohl MA, Lewis JB, Ritz E, Atkins RC, 
Rohde R, Raz I. Renoprotective effect of the angiotensin-receptor antagonist 
irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 
2001;345:851-60.

35. Wanner C, Inzucchi SE, Lachin JM, Fitchett D, von Eynatten M, Mattheus M, 
Johansen OE, Woerle HJ, Broedl UC, Zinman B. Empagliflozin and Progression of 
Kidney Disease in Type 2 Diabetes. N Engl J Med 2016;375:323-34.

36. Chang A, Van Horn L, Jacobs DR, Jr., Liu K, Muntner P, Newsome B, Shoham 
DA, Durazo-Arvizu R, Bibbins-Domingo K, Reis J, Kramer H. Lifestyle-related 
factors, obesity, and incident microalbuminuria: the CARDIA (Coronary Artery Risk 
Development in Young Adults) study. Am J Kidney Dis 2013;62:267-75.



2

ESKD in people with manifest CVD

39   

37. Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for 
end-stage renal disease. Ann Intern Med 2006;144:21-8.

38. Vivante A, Golan E, Tzur D, Leiba A, Tirosh A, Skorecki K, Calderon-Margalit R. Body 
mass index in 1.2 million adolescents and risk for end-stage renal disease. Arch 
Intern Med 2012;172:1644-50.

39. Mohammedi K, Chalmers J, Herrington W, Li Q, Mancia G, Marre M, Poulter N, 
Rodgers A, Williams B, Perkovic V, Coresh J, Woodward M. Associations between 
body mass index and the risk of renal events in patients with type 2 diabetes. Nutr 
Diabetes 2018;8:7.

40. Racette SB, Evans EM, Weiss EP, Hagberg JM, Holloszy JO. Abdominal adiposity 
is a stronger predictor of insulin resistance than fitness among 50-95 year olds. 
Diabetes Care 2006;29:673-8.

41. Kramer H, Gutiérrez OM, Judd SE, Muntner P, Warnock DG, Tanner RM, Panwar B, 
Shoham DA, McClellan W. Waist Circumference, Body Mass Index, and ESRD in the 
REGARDS (Reasons for Geographic and Racial Differences in Stroke) Study. Am J 
Kidney Dis 2016;67:62-9.

42. Kalantar-Zadeh K, Rhee CM, Chou J, Ahmadi SF, Park J, Chen JL, Amin AN. The 
Obesity Paradox in Kidney Disease: How to Reconcile it with Obesity Management. 
Kidney Int Rep 2017;2:271-281.



Chapter 2

40

Supplementary material

Supplementary table 1. Definitions of cardiovascular disease

Cerebrovascular disease A clinical diagnosis of a transient ischemic attack or 
ischemic or hemorrhagic stroke.

Coronary artery disease A clinical diagnosis of angina pectoris, myocardial 
infarction, cardiac arrest or coronary revascularization.

Peripheral artery disease Symptomatic and documented obstruction of distal 
arteries of the leg (ankle brachial index ≤ 0.90), a 
revascularization procedure of the leg (percutaneous 
transluminal angioplasty or bypass surgery) or a prior 
amputation.

Abdominal aortic aneurism A history of abdominal aortic surgery or an abdominal 
aortic anteroposterior diameter of ≥ 3 cm at baseline.

Supplementary table 2. Distribution of determinants and incidence rates for total 
mortality in patients who did not reach ESKD and patients who did

ESKD outcome 
(n = 65)

No ESKD outcome
(n = 8337)

Current smoking [n (%)] 26 (40%) 2535 (30%)

Type 2 diabetes [n (%)] 19 (29%) 1367 (16%)

Systolic blood pressure (mmHg) 158 ± 23 139 ± 21

Body mass index (kg/m2) 27.3 ± 4.3 26.9 ± 4.0

Waist circumference (cm) 99.6 ± 11.4 95.8 ± 11.8

Non-HDL cholesterol (mmol/L) 4.0 ± 1.4 3.6 ± 1.2

eGFR (mL/min/1.73 m2) 45.7 ± 22.0 77.5 ± 17.4

Albumine/creatinine-ratio (mg/mmol) 27.4 ± 63.5 2.4 ± 9.9

Physical exercise (MET hours/week) 22 (7-55) 35 (17-63)

Incidence rate of mortality 83/1000 person-years 26/1000 person-years
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Supplementary table 3. Relation between determinants and risk of ESKD; crude data 
and markers of kidney function included as confounders

N = 8402, ESKD events = 65 HR (95%CI)

Model 1 Model 2

Current smoking (yes vs no) 1.41 (0.85-2.31) 1.81 (1.06-3.10)

Type 2 diabetes (yes vs no) 2.29 (1.34-3.91) 1.47 (0.85-2.55)

Systolic blood pressure (per 10 mmHg) 1.40 (1.28-1.53) 1.21 (1.10-1.34)

Body mass index (per 5 kg/m2) 1.17 (0.87-1.57) 1.15 (0.84-1.58)

Waist circumference (per 5 cm) 1.17 (1.05-1.30) 1.15 (1.03-1.28)

Non-HDL cholesterol (mmol/L) 1.16 (0.99-1.35) 1.13 (0.93-1.39)

eGFR (per 10 mL/min/1.73 m2) 2.79 (2.42-3.21) 2.76 (2.38-3.19)

Albumine/creatinine-ratio (per 10 mg/mmol) 1.21 (1.17-1.25) 1.10 (1.06-1.14)

Physical exercise (per 10 MET hours/week) 0.98 (0.92-1.05) 1.03 (0.97-1.09)

Supplementary model 1: Crude data
Supplementary model 2: Parameters included in the model are sex, age, eGFR and 
albumine/creatinine ratio.

Supplementary table 4. Relation between determinants and ESKD in competing risk 
analyses with all-cause mortality as competing risk

ESKD outcome (n = 65) Subdistribution HR (95%CI)

Current smoking (yes vs no) 1.67 (1.00-2.80)

Type 2 diabetes (yes vs no) 1.73 (1.01-2.95)

Systolic blood pressure (per 10 mmHg) 1.36 (1.24-1.49)

Body mass index (per 5 kg/m2) 1.16 (0.85-1.59)

Waist circumference (per 5 cm) 1.11 (1.00-1.24)

Non-HDL cholesterol (mmol/L) 1.12 (0.95-1.33)

eGFR (per 10 mL/min/1.73 m2) 0.39 (0.33-0.46)

Albumine/creatinine-ratio (per 10 mg/mmol) 1.16 (1.13-1.18)

Physical exercise (per 10 MET hours/week) 1.00 (0.93-1.08)

Parameters included in the model are sex, age, type 2 diabetes, systolic blood pressure, 
smoking status, body mass index, non-HDL-cholesterol and exercise.
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Supplementary table 5. Relation between determinants and risk of ESKD in patients 
treated with RAS-inhibitors

N = 3579, ESKD events = 39 HR (95%CI)

Current smoking (yes vs no) 1.31 (0.64-2.68)

Type 2 diabetes (yes vs no) 1.75 (0.90-3.39)

Systolic blood pressure (per 10 mmHg) 1.35 (1.20-1.53)

Body mass index (per 5 kg/m2) 1.27 (0.87-1.86)

Waist circumference (per 5 cm) 1.13 (0.99-1.29)

Non-HDL cholesterol (mmol/L) 1.11 (0.84-1.45)

eGFR (per 10 mL/min/1.73 m2) 0.35 (0.28-0.43)

Albumine/creatinine-ratio (per 10 mg/mmol) 1.18 (1.13-1.23)

Physical exercise (per 10 MET hours/week) 0.96 (0.88-1.06)

Parameters included in the model are sex, age, type 2 diabetes, systolic blood pressure, 
smoking status, body mass index, non-HDL-cholesterol and exercise.

Supplementary table 6. Incidence of ESKD stratified according to sex and age

Incidence rates per 1000 person-years (95% confidence intervals)

Sex: Males (n = 6199) Females (n = 2203) P-value*

1.0 (0.7-1.3) 0.5 (0.3-1.0) 0.08

Age: < 50 years (n = 1335) 50-70 years (n = 5635) > 70 years (n = 1432)

0.6 (0.3-1.2) 0.8 (0.6-1.1) 1.3 (0.7-2.3) 0.10

*P-value is based on the Peto’s log rank test for testing difference between survival curves 
between the specific subgroups.
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Abstract

Background: Patients with cardiovascular disease (CVD) are at higher risk 

of kidney function decline. The aim of the current study was to examine the 

association of lifestyle changes on kidney function decline in patients with 

manifest CVD. 

Methods: 2,260 patients from the UCC-SMART cohort with manifest CVD who 

returned for a follow-up visit after a median of 9.9 years were included. The 

relation between change in lifestyle factors (smoking, alcohol consumption, 

physical activity and obesity) and change in kidney function (eGFR and uACR) 

was assessed using linear regression models. 

Results: Increase in body mass index (β -2.81; 95%CI -3.98;-1.63per 5 kg/m2)  

and for men also increase in waist circumference (β -0.87; 95%CI -1.28;-0.47per 

5 cm) were significantly associated with a steeper decline in eGFR over 10 years. 

Continuing smoking (β -2.44, 95%CI -4.43;-0.45) and recent smoking cessation 

during follow-up (β -3.27; 95%CI -5.20;-1.34) were both associated with a steeper 

eGFR decline compared to patients who remained as non- or previous smokers 

from baseline. No significant association was observed between physical 

exercise or alcohol consumption and kidney function decline. No significant 

relation between any lifestyle factor and change in uACR was observed. 

Conclusions: In patients with CVD, continuing smoking, recent smoking 

cessation and an increase in obesity markers were related to a steeper kidney 

function decline. Although no definite conclusions from this study can be 

drawn, the results support the importance of encouraging weight loss and 

smoking cessation in high-risk patients as a means of slowing down kidney 

function decline. 



Lifestyle changes and kidney function

47   

3

Introduction

The number of patients with chronic kidney disease (CKD) is increasing 

worldwide with a current global prevalence in adults of 13%.1 This development 

is mainly due to increasing prevalence of lifestyle related conditions including 

hypertension and type 2 diabetes in combination with increasing life 

expectancy.2 CKD can progress to end-stage kidney disease (ESKD) and both 

conditions are associated with decreased life expectancy, loss in quality of life 

and high healthcare costs.3 Several chronic diseases contribute to increased 

risk of CKD, including cardiovascular disease (CVD) which confers a 4-fold 

increased risk of developing CKD.4 Furthermore, the risk of both ESKD and 

CVD increases with declining kidney function, and monitoring eGFR decline 

can predict time to onset of kidney failure and guide interventions aimed at 

altering kidney function decline.5 

Fortunately, progressive loss of kidney function can be diminished by a 

number of interventions, including prescription of a RAS-inhibitor,6 SGLT2-

inhibitor,7 adequate control of known risk factors such as diabetes mellitus and 

hypertension, and lifestyle interventions, including smoking cessation,8 weight 

loss,9 lower alcohol consumption10 and physical exercise.11 Reduced intake of 

sodium has also been shown to lower kidney function decline.12 These lifestyle 

factors are especially encouraged in patients with CVD, who often visit the 

out-patient clinic frequently, and an improvement in almost all risk factors will 

have beneficial impact on both CKD and CVD risk. Since patients with CVD 

are at increased risk of kidney function decline compared to patients without,13 

improvement in risk factors including lifestyle changes is likely to have greater 

benefit in patients with CVD. To the best of our knowledge, no previous study 

examined the effect of changes in these lifestyle factors on kidney function 

decline in a high risk cohort of patients with manifest CVD. 

The aim of the current study was to evaluate the relation between lifestyle 

changes (change in smoking status, alcohol consumption, markers of obesity 

and physical exercise) and kidney function decline (assessed by change in 

eGFR and urine-albumine/creatinine ratio (uACR)) over a 10-year time span in 

patients with manifest CVD. 
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Methods

Study population

The cohort consisted of patients from the Utrecht Cardiovascular Cohort – 

Second Manifestations of ARTerial disease (UCC-SMART), which is an ongoing 

prospective cohort study including patients from 18 years of age. Study design and 

rationale have previously been described in detail.14 Study inclusion for the cohort 

used for this study occurred between 1996 and 2012. From 2006 and onwards, 

patients with at least 4 years of follow-up were invited once for a second visit with 

reassessment of baseline measurements (UCC-SMART 2). Thus, all participants 

in UCC-SMART 2 had one visit at baseline and further one follow-up visit at least 

four years after baseline visit. The UCC-SMART study was approved by the local 

Medical Ethics Committee and written informed consent was obtained from all 

patients. Reporting of the study conforms to broad EQUATOR guidelines.15

Patients with manifest cardiovascular disease at baseline who returned for a 

second measurement and with eGFR levels ≥15 ml/min/1.73m2 at baseline 

were included (n = 2,260). Manifest CVD was defined as cerebrovascular 

disease, coronary artery disease, symptomatic peripheral artery disease 

and/or abdominal aortic aneurysm (AAA). For specific definitions of CVD see 

Supplementary table 1. After baseline visit, advice on lifestyle improvements 

was given according to general clinical practice, and no specific lifestyle 

intervention was performed in this observational study. 

Collection of data

Data collection at baseline and follow-up visit was identical, acquired using a 

standardized protocol. eGFR was calculated using the Chronic Kidney Disease 

Epidemiology Collaboration (CKD-EPI) formula.16 Information on smoking 

status (never, former or current, including number of pack-years) and alcohol 

consumption (no alcohol,<1, 1–10, 11–20, 21–30, or >30 units per week) was 

obtained with a questionnaire. A previously validated questionnaire suitable for 

ranking subjects17 was used for measuring physical activity, with one additional 

question on the intensity of sports activity. Number of hours per week reported 

by patients for sports, walking, cycling, and gardening was multiplied by a 

specific metabolic equivalent of task (MET), resulting in a number of MET hours 

per week per activity. The total amount of physical activity was the sum of the 

MET hours per week of all activities. Visceral adipose tissue (VAT) thickness was 
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measured as the distance between the lumbar spine and the peritoneum, and 

subcutaneous adipose tissue (SAT) thickness was measured as the distance 

between the linea alba and the skin. Both were measured using a previously 

validated ultrasound technique.18

Lifestyle changes

Lifestyle factors were assessed at baseline and follow-up regarding smoking, 

body mass index (BMI), waist circumference, VAT and SAT, physical activity and 

alcohol consumption. Change in eGFR (ΔeGFR) was calculated by subtracting 

eGFR at baseline from eGFR at follow-up and dividing the difference by 

follow-up time in years and multiplied by a factor 10 to account for change 

over 10 years (median follow-up time was 10 years). The same approach was 

done for change in uACR (ΔuACR). Thus, a negative ∆eGFR indicates a fall in 

eGFR and a positive ∆uACR indicates an increase in uACR over 10 years. The 

same approach was done for ∆pack-years, ∆physical exercise, ∆BMI, ∆waist 

circumference, ∆VAT and ∆SAT. Changes in smoking status was defined as 

either smoking cessation at any point during follow-up, smoking start at any 

point during follow-up, continued smoking or remained as non-smoker or 

previous smoker (if patient had a history of smoking at baseline). Heavy alcohol 

consumption was defined as > 20 units/week for men and > 10 units/week 

for women, and change in alcohol consumption was defined as persistent 

heavy alcohol consumer, persistent no/light alcohol consumer, stopped heavy 

alcohol consumption or started heavy alcohol consumption. 

Registration of events during follow-up

Events were assessed from baseline visit onwards by patients receiving 

biannual questionnaires obtaining information on incident cardiovascular 

disease, bleeding events, diabetes mellitus and end-stage kidney disease. If 

an affirmative answer was given, additional information from hospital or general 

practitioner’s data was gathered. All clinical events were independently 

evaluated by an endpoint committee consisting of three physicians and 

conflicting decisions were discussed. 

Data analyses

Descriptive statistics were assessed by a baseline table and histograms over 

distribution of change in eGFR and uACR and change in lifestyle factors between 
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baseline and follow-up. Change in eGFR according to baseline eGFR and 

baseline age, respectively, was evaluated by plotting mean difference (standard 

error of the mean (SEM)) stratified according to baseline eGFR and age category. 

In order to account for missing data and avoid potential bias, missing data (eGFR, 

smoking, pack-years, alcohol consumption and BMI < 1%, uACR 3%, physical 

exercise 27%, waist circumference 6%, VAT 16% and SAT 16%) was imputed 

using multiple imputation by predicted mean matching (MICE package) with 

10 imputation datasets. Results from the imputed datasets were pooled using 

Rubin’s rule.19 

Continuous variables and change in these were winsorized to the 1st and 99th 

percentile to diminish the effect of outliers. In order to investigate the relation 

between lifestyle changes and kidney function decline over time, linear regression 

analyses were performed, with ∆eGFR and ∆uACR, respectively, as dependent 

variables and change in each lifestyle factor (smoking, alcohol use, physical 

exercise and markers of obesity) as independent variables. For the categorical 

independent variables, remaining no/light alcohol consumer and remaining 

non-smoker, respectively, were set as reference categories. For continuous 

independent variables, pack-years was assessed per pack year increase, physical 

exercise was assessed per 10 METh/week increase, BMI per 5 kg/m2 increase, 

waist circumference and VAT per 5 cm increase and SAT per cm increase. 

In order to account for potential confounding, models were adjusted for baseline 

eGFR and uACR, respectively, since the change over time might depend on 

baseline levels. Furthermore, model 1 was adjusted for sex and age, model 2 

further for type 2 diabetes status and systolic blood pressure at baseline, and 

model 3 was further adjusted for BMI, smoking status, alcohol consumption 

and physical exercise at baseline (if not determinant of interest). For the main 

analyses, model 3 was used. The confounders for all models were pre-specified.

Type 2 diabetes status, RASi medication, sex and age were assessed as potential 

effect modifiers by examining these as interaction terms with each determinant. 

Since a significant interaction was found between waist circumference and sex 

(p-value 0.01) and the effect on eGFR decline, the analyses for this determinant 

was stratified according to sex.

Regarding assumptions of linear regression, linearity between independent 

variable and outcome, normality of residuals and homoscedasticity were all 
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assessed by visual inspection and no violations were observed. P-values were 

two-sided, with statistical significance set at 0.05. All analyses were performed 

with R-statistic programming (version 4.0.3, R Foundation for Statistical 

Computing, Vienna, Austria).

Sensitivity analyses

To evaluate whether time since change in smoking status acted as an effect 

modifier in the relation between change in smoking status and eGFR decline 

and uACR change, respectively, an interaction term between change in 

smoking status and time since smoking status was added to the models. 

Exploratory models were evaluated with the addition of blood pressure 

lowering medication, lipid lowering medication as well as education level at 

baseline added to model 3. Since it has been substantially debated whether to 

adjust for baseline variables in regression models using change as dependent 

variable,20 we also performed the analyses without adjusting for baseline 

variables for eGFR and uACR, respectively, and the results did not change 

substantially (data not shown). Furthermore, due to the difference in follow-up 

between patients, we performed the analyses for the categorical determinants 

(change in smoking status and change in alcohol intake) adjusted for follow-

up time as confounder. Baseline characteristics for patients in SMART2 (thus 

patients who returned for a follow-up visit) vs. patients in SMART1 (who did not 

return for a follow-up visit) are shown in Supplementary table 2.

Results

Baseline characteristics

A total of 2,260 patients with clinically manifest CVD were included in the study. 

Mean age at visit 1 was 58 years and the majority were men (78%). Median 

follow-up (time between first and follow-up visit) was 9.9 years (IQR 8.7-10.8, 

range 2.9-16.8 years). Patient characteristics for both visits are shown in Table 

1. Median eGFR was 79.3 ml/min/1.73m2 (IQR 68.4-90.0) at baseline and 77.0 

ml/min/1.73m2 (IQR 64.7-87.7) at follow-up, and 61% of patients experienced 

an unfavorable change in eGFR over 10 years (Figure 1A). Median uACR was 

0.82 mg/mmol (IQR 0.47-1.63) at baseline and 0.96 mg/mmol (IQR 0.59-1.75) 

at follow-up, and 56% of patients experienced an unfavorable change in uACR 

over 10 years (Figure 1B). 
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Table 1. Baseline table

n = 2,260 Baseline Follow-up

Sex (male) 1,752 (78%) 1,752 (78%)

Age (years) 58 ± 9 66 ± 9

History of cerebrovascular disease 589 (26%) 640 (28%)

History of coronary artery disease 1,453 (64%) 1,540 (68%)

History of peripheral artery disease 355 (16%) 418 (19%)

History of abdominal aortic aneurism 119 (5%) 161 (7%)

Type 2 diabetes 287 (13%) 494 (22%)

Metabolic syndromeb 1,097 (49%) 1,233 (55%)

Smoking 653 (29%) 377 (17%)

Packyears 19 ± 19 23 ± 21

Alcohol use (>10 units for women and > 20 units for men) 312 (14%) 224 (10%)

Physical exercise (MET hours/week) 53 ± 39 53 ± 38

Education level
   Low
   Middle
   High

 
1040 (46%)
598 (26%)
622 (28%)

974 (43%)
629 (28%)
657 (29%)

Blood-pressure lowering medication 1,665 (74%) 1,812 (80%)

Lipid lowering medication 1,541 (68%) 1,944 (86%)

Anti-platelet therapy 1,875 (83%) 2,078 (92%)

RASi medication 757 (34%) 1,247 (55%)

Body Mass Index (kg/m2) 27 ± 4 27 ± 4

Waist circumference (cm) 95 ± 11 99 ± 12

Systolic blood pressure (mmHg) 139 ± 20 139 ± 17

Diastolic blood pressure (mmHg) 82 ± 11 79 ± 10

eGFR (ml/min/1.73m2)a 79 (68-90) 77 (65-88)

u-Albumine/creatinine ratio (mg/mmol) 0.82 (0.47-1.63) 0.96 (0.59-1.75)

Cholesterol (mmol/L) 4.9 ± 1.2 4.5 ± 1.1

Triglycerides (mmol/L) 1.4 (1.0-2.0) 1.3 (0.9-1.8)

HDL-cholesterol (mmol/L) 1.2 ± 0.4 1.3 ± 0.4

LDL-cholesterol (mmol/L) 2.9 ± 1.0 2.6 ± 0.9

Microalbuminuria 188 (8%) 268 (12%)

Macroalbuminuria 23 (1%) 30 (1%)

Visceral adipose tissue thickness (cm) 9.0 ± 2.5 9.3 ± 2.6

Subcutaneous adipose tissue thickness (cm) 2.5 ± 1.3 2.3 ± 1.1

Median time between visits was 9.9 years (IQR 8.7–10.8 years).
Data are mean ± SD for normally distributed variables or median (interquartile range) for 
skewed distributions. Categorical variables are presented as number (%). 
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Figure 1. Change in eGFR and uACR during follow-up in the study population

Red color indicates unfavourable change (A. decrease in eGFR and B. increase in uACR over 
10 years) and green color indicates favorable change (A. increase in eGFR and B. decrease 
in uACR over 10 years). Legend represents frequency of patients with unfavourable and 
favourable change, respectively.

Overall mean eGFR decline over 10 years was 5.0 ml/min/1.73m2 (SEM 0.26) 

and overall mean uACR increase was 0.04 mg/mmol (SEM 0.6). A steeper 

eGFR decline was observed in patients with normal kidney function at baseline 

(>90 ml/min/1.73m2) and in patients with CKD 3b or higher at baseline (p-value 

<0.01) (Figure 2A). Patients with higher baseline age also had steeper eGFR 

decline, especially patients ≥70 years (p-value <0.01) (Figure 2B). Change in 

lifestyle factors between baseline and follow-up is shown in Figure 3.

Relation between change in smoking status and kidney function decline

Mean 10 year eGFR decrease for patients who remained non- or previous 

smoker was 4.3 ml/min/1.73m2 (SEM 0.3) (reference category). When adjusting 

for sex, age, eGFR, type 2 diabetes status, systolic blood pressure, alcohol 

consumption, exercise and BMI at baseline, patients who continued smoking 

(n = 319) had a significant additional eGFR decline compared to patients who 

remained non- or previous smoker of 2.44 ml/min/1.73m2 over 10 years (β 

= -2.44; 95%CI -4.43, -0.45) (Figure 4). Patients who stopped smoking during 

follow-up (n = 333) also had a significantly steeper decrease in eGFR of 3.27 ml/

min/1.73m2 over 10 years compared to patients who remained non- or previous 

smoker (β = -3.27; 95%CI -5.20, -1.34). The same trend was seen in patients 

who started smoking during follow-up (n = 59) (β = -2.82; 95%CI -7.08, 1.43),
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although this relation was not significant. Per 1 unit increase in pack-years, 

eGFR decline was 0.10 steeper (β = -0.10; 95%CI -0.17, -0.04). The results 

were not substantially different when only adjusting for sex and age or when 

adjusting for the aforementioned confounders excluding lifestyle factors 

(Supplementary table 3). Concerning change in smoking status and change in 

uACR, no significant relation was seen, although a trend of continuing smoking 

or starting smoking and an increase in uACR was observed.

Relation between change in markers of obesity and kidney function 

decline

Regarding measures of obesity, the effect of change in waist circumference 

on change in eGFR was different for men and women. Overall mean change 

in BMI over 10 years was 0.8 kg/m2 (SEM 0.02). Overall mean change in waist 

circumference was 4.4 cm (SEM 1.1) for men and 5.6 cm (SEM 1.0) for women. 

For VAT and SAT, overall mean change was 0.2 cm (SEM 0.08) and -0.2 cm 

(SEM 0.04), respectively. Per 5 units increase in BMI, eGFR decline steepened 

with 2.81 ml/min/1.73m2 (β = -2.81; 95%CI -3.98, -1.63). Per 5 cm increase in 

waist circumference, eGFR decline for men was 0.87 ml/min/1.73m2 steeper 

(β = -0.87; 95%CI -1.28, -0.47) (Figure 2). No significant relation was observed 

between change in waist circumference and eGFR decline in women, and also 

overall no significant relation was observed between 10 year change in VAT or 

SAT and eGFR decline. Adjusting for only sex and age or the aforementioned 

confounders excluding lifestyle factors did not significantly alter the results 

(Supplementary table 3). No significant relation was observed between changes 

in markers of obesity and change in uACR.

Relation between change in alcohol consumption and kidney function 

decline

Mean 10 year eGFR decline in patients who remained no/light alcohol 

consumers was 4.9 ml/min/1.73m2 (SEM 0.25). No significant relation was 

observed between continuing, starting or stopping heavy alcohol consumption 

and eGFR decline compared to patients who remained no/light alcohol 

consumers. Adjusting for fewer confounders did not significantly change 

the results. No significant relation was observed between change in alcohol 

consumption and change in uACR.
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Relation between change in physical exercise and kidney function 

decline

Mean 10-year change in physical activity was -1.8 METh/week (SEM 10.2). No 

significant relation was observed between change in physical exercise and 

eGFR decline (β = 0.09; 95%CI -0.13, 0.31) or change in uACR (β = -0.06; 95%CI 

-0.14, 0.01).

Figure 4. Relation between change in lifestyle factors and eGFR decline over 10 years

Adjusted for sex, age, type 2 diabetes status, systolic blood pressure, smoking status, number 
of alcohol units per week, exercise and body mass index at baseline (if not determinant of 
interest) and eGFR at baseline and stratified according to sex for waist circumference as 
determinant.

Sensitivity analyses

The results did not change substantially when adding lipid-lowering 

medication, blood pressure lowering medication and education level to model 

3 (Supplementary table 3 and 4). Furthermore, no indication of an interaction 

with smoking status and time since smoking status was found (p-value 0.11 for 

eGFR decline and 0.42 for change in uACR). Also, no interaction was observed 

between type 2 diabetes, or age, respectively, and eGFR decline or uACR 
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change. No interaction between RASi medication use at baseline and eGFR 

decline or uACR change was observed. When performing the analyses for 

change in smoking status and change in alcohol intake adjusted for follow-up 

time, the results did not change significantly (data not shown).

Figure 5. Relation between change in lifestyle factors and change in uACR over 10 years

Adjusted for sex, age, type 2 diabetes status, systolic blood pressure, smoking status, 
number of alcohol units per week, exercise and body mass index at baseline (if not 
determinant of interest) and uACR at baseline.

Discussion

The current study found that in a population of patients with manifest vascular 

disease, the majority of patients improved in lifestyle factors regarding smoking 

and alcohol consumption, however markers of obesity worsened over a 10 

year follow-up period. A steeper eGFR decline over 10 years was observed for 

patients who continued smoking or recently stopped smoking during follow-

up compared to patients who remained non- or previous smokers. Also, an 

increase in BMI, and for men increase in waist circumference, was associated 

with a steeper eGFR decline over 10 years. 
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Continuing smoking and recent smoking cessation compared to continuing as 

non- or previous smoker was associated with accelerated eGFR decline in the 

present study. Also, a negative trend regarding eGFR decline was observed in 

patients who started smoking compared to patients who continued being non- 

or previous smokers. These findings are in line with several previous studies 

that found an increased risk of CKD in current or former smokers compared 

to non-smokers.8, 21 The pathophysiology behind smoking aggravating kidney 

function decline is caused by several underlying mechanisms, including 

kidney-vascular disease due to endothelial cell injury.22 It is also worth noting 

that smoking cessation occurred at an unknown time between baseline and 

follow-up and could be very recent, which possibly explains the accelerated 

eGFR decline observed in the group who stopped smoking. 

The current study found an increase over 10 years in BMI to be associated 

with a steeper eGFR decline in patients with CVD. Furthermore, an increase 

in waist circumference was associated with a steeper eGFR decline in men 

with CVD, however this association was attenuated in women. Previous studies 

have found higher baseline BMI to be associated with increased risk of CKD.9, 

23, 24 The exact reason for the differences found in men and women is not fully 

understood, although this observation was also observed in previous studies.23 

It is well known that men have a faster decline in kidney function compared to 

women, and these findings have been stipulated as due to protective effects 

of endogenous estrogens in women.25 Possibly, several of the biological 

mechanisms attributed to the relation between obesity and kidney disease26 

are also affected by sex hormones, explaining sex as an effect modifier in 

the relation between waist circumference and accelerated eGFR decline. 

Furthermore, creatinine depends on muscle tissue, and with increase in obesity 

markers, muscle mass also increases, resulting in an increase in creatinine 

and thus lower eGFR. This might cause some overestimation in the relation 

between increase in obesity markers and eGFR decline observed in this study. 

Change in physical activity in our study was not associated with kidney function 

decline in patients with manifest cardiovascular disease. Previous studies have 

found higher physical activity to be associated with decreased risk of rapid 

eGFR decline.11 Physical inactivity indirectly influences risk of CKD through 

development of obesity, diabetes and hypertension, which were all adjusted 

for in our main analyses. Also, serum creatinine concentrations and muscle 
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mass are in general higher in active people than in sedentary people,27 which 

could disguise the beneficial effects of increase in physical activity on kidney 

function decline. 

Counterintuitively, the current study found a trend towards a less steep eGFR 

decline in patients who continued or started heavy alcohol consumption (> 

10 units per week for women and > 20 units per week for men) compared to 

patients who remained no/light alcohol consumers, however not significant. 

It is well known that alcohol consumption has severe detrimental effects on 

overall health and mortality, including cardiovascular disease.28 Previous 

studies examining alcohol consumption and kidney function decline have 

shown controversial results,29 and some studies indicated a possible inverse 

association.10, 30 However, the findings in our study are most likely due to 

epidemiologic fallacies playing a role in the inverse relation between change 

in alcohol consumption on kidney function decline. Since patients who have a 

more rapid eGFR decline often have several comorbidities, they might be less 

prone to continue or start heavy alcohol consumption, and the trend found in 

this study might thus partly be due to reverse causality. Furthermore, very few 

people started (4%) or continued (6%) heavy alcohol consumption, reducing the 

power of finding an effect in these groups.

The strengths of the current study include a large study population of patients 

with manifest CVD at baseline and the repeated and complete measurement 

of lifestyle factors and eGFR and uACR concentrations over substantial 

follow-up time. Also, as demonstrated by the high prevalence of preventive 

drug prescriptions, the cohort is very contemporary. Furthermore, the cohort 

consists of patients with a broad spectrum of vascular disease, making the 

results widely applicable to other patients with vascular disease. Potential 

limitations also need consideration. eGFR was used as an estimate for kidney 

function, however some determinants may have inherent effects on eGFR not 

associated with kidney function, why the causal relations should be interpreted 

with this in mind. Patients were assessed at baseline and follow-up, which 

might not be fully representative for the follow-up period. For example, it could 

have been that some patients quitted and restarted smoking, heavy alcohol 

consumption or certain medication, which would then not have been reflected 

in the follow-up data. Furthermore, the standardized questionnaires regarding 

smoking and alcohol intake were not specifically validated for lifestyle habits. 
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Also, social desirability bias and recall bias could have influenced the answers 

concerning physical activity, smoking and alcohol consumption, potentially 

leading to an underestimation of these relations with kidney function decline. 

As with all etiologic studies, unmeasured confounding might be present, e.g. 

social class, although the relations did not change when further adjusting for 

level of education. Furthermore, patients eligible for the study had to return for 

a follow-up visit approximately 10 years after the first visit, possibly resulting in 

selection bias. However, one would expect this to also result in underestimation 

of the relations between healthy lifestyle changes and kidney function decline, 

as the healthier subjects, and thus subjects with a less steep eGFR decline, 

would return for a follow-up visit. In the current study, the duration of RASi 

usage before baseline or time of initiation or cessation of RASi during follow-

up was not known, and since initiation of a RASi is potentially associated with 

an acute decrease in eGFR, this could potentially have an effect on eGFR 

change. However, in the current study, treatment with a RASi was not shown 

to be an effect modifier in the relation between any lifestyle factor and eGFR 

decline. Also, very few patients in the cohort started smoking or started heavy 

alcohol consumption during follow-up, thereby reducing the power of the 

study to find specific effects in these groups. Lastly, the majority of the cohort 

had normoalbuminuria both at baseline and follow-up and thus very low uACR 

values, making it difficult to detect an effect on change in uACR. 

In conclusion, in patients with CVD, continuing smoking and recent smoking 

cessation, and for men also increase in obesity markers, was related to a 

steeper kidney function decline. Although no definite conclusions from this 

study can be drawn, the results support the importance of encouraging weight 

loss and smoking cessation in high-risk patients as a means of slowing down 

kidney function decline.
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Supplementary material 

Supplementary table 1. Definitions of cardiovascular disease

Cerebrovascular disease A clinical diagnosis of a transient ischemic attack or 
ischemic or hemorrhagic stroke.

Coronary artery disease A clinical diagnosis of angina pectoris, myocardial 
infarction, cardiac arrest or coronary revascularization.

Peripheral artery disease Symptomatic and documented obstruction of distal 
arteries of the leg (ankle brachial index ≤ 0.90), a 
revascularization procedure of the leg (percutaneous 
transluminal angioplasty or bypass surgery) or a prior 
amputation.

Abdominal aortic aneurism A history of abdominal aortic surgery or an abdominal 
aortic anteroposterior diameter of ≥ 3 cm at baseline.

Supplementary table 2. Responders (SMART2) and non-responders (SMART1)

SMART2 
(n = 2260)

SMART1 
(n = 6537)

eGFR (ml/min/1.73)a 79 (68-90) 78 (65-90)

u-Albumine/creatinine ratio (mg/mmol) 0.82 (0.47-1.63) 0.85 (0.50-1.74)

Sex (male) 1,752 (78%) 4,742 (73%)

Age (years) 58 ± 9 62 ± 10

History of cerebrovascular disease 589 (26%) 2001 (31%)

History of coronary artery disease 1,453 (64%) 4000 (61%)

History of peripheral artery disease 355 (16%) 1161 (18%)

History of abdominal aortic aneurism 119 (5%) 614 (9%)

Type 2 diabetes 287 (13%) 1164 (18%)

Metabolic syndromeb 1,097 (49%) 3084 (55%)

Smoking 653 (29%) 1991 (31%)

Packyears 19 ± 19 20 ± 20

Alcohol use (>10 units for women and > 20 units for men) 312 (14%) 777 (12%)

Physical exercise (MET hours/week) 53 ± 39 54 ± 44

Education level
   Low
   Middle
   High

 
1040 (46%)
598 (26%)
622 (28%)

1997 (44%)
1132 (25%)
1440 (32%)

Medication

Blood-pressure lowering medication 1,665 (74%) 4973 (76%)

Lipid lowering medication 1,541 (68%) 4578 (70%)

Anti-platelet therapy 1,875 (83%) 5479 (84%)
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SMART2 
(n = 2260)

SMART1 
(n = 6537)

RASi medication 757 (34%) 2995 (46%)

Physical examination

Body Mass Index (kg/m2) 27 ± 4 27 ± 4

Waist circumference (cm) 95 ± 11 96 ± 13

Visceral adipose tissue thickness (cm) 9.0 ± 2.5 9.1 ± 2.6

Subcutaneous adipose tissue thickness (cm) 2.5 ± 1.3 2.4 ± 1.2

Systolic blood pressure (mmHg) 139 ± 20 138 ± 21

Diastolic blood pressure (mmHg) 82 ± 11 81 ± 12

Laboratory measurements

HbA1c (mmol/mol) 5.9 ± 0.8 5.9 ± 0.9

Cholesterol (mmol/L) 4.9 ± 1.2 4.8 ± 1.2

Triglycerides (mmol/L) 1.4 (1.0-2.0) 1.4 (1.0-2.0)

HDL cholesterol (mmol/L) 1.2 ± 0.4 1.2 ± 0.4

LDL cholesterol (mmol/L) 2.9 ± 1.0 2.8 ± 1.0

Microalbuminuria 188 (8%) 768 (12%)

Macroalbuminuria 23 (1%) 123 (2%)

Data are mean ± SD for normally distributed variables or median (interquartile range) for 
skewed distributions. Categorical variables are presented as number (%). 

Supplementary table 2. Continued
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Abstract

Background: The Hemoglobin Glycation Index (HGI) has been proposed as a 

marker of inter-individual differences in haemoglobin glycosylation. Previous 

studies showed a relation between high HGI and risk of cardiovascular disease 

(CVD) in patients with diabetes. However, no studies investigated the role of 

previous CVD in regards to this association.

Methods: The cohort consisted of patients with type 2 diabetes (n = 1910) 

included in the Second Manifestations of ARTerial disease (SMART) study. 

The relation between HGI or HbA1c and composite of cardiovascular events as 

primary outcome and mortality, cardiovascular mortality, myocardial infarction 

and stroke as secondary outcomes was investigated using Cox proportional 

hazards models. Similar analyses were performed after stratification for 

previous CVD.

Results: A one unit higher HGI was associated with a 29% higher risk of the 

composite of cardiovascular events (HR 1.29, 95% CI 1.06-1.57) in patients 

without previous CVD. No such relation was seen in patients with previous CVD 

(HR 0.96, 95% CI 0.86-1.08). The direction and magnitude of the hazard ratios of 

HGI and HbA1c in relation to outcomes were similar. Additional adjustment for 

HbA1c in the relation between HGI and outcomes decreased the magnitude of 

the hazard ratios.

Conclusions: Similar to HbA1c, a higher HGI is related to a higher risk of 

cardiovascular events in patients with type 2 diabetes without cardiovascular 

disease. As HbA1c was shown to be a comparable risk factor, and obtaining and 

interpreting HGI is difficult, the added benefit of HGI in a clinical setting seems 

limited.
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Introduction

Type 2 diabetes is a major global health problem with approximately 422 million 

patients diagnosed worldwide.1 Patients with type 2 diabetes have a two-fold 

greater risk of cardiovascular disease (CVD)2 and increased risk of microvascular 

complications.3 Since glycosylated haemoglobin (HbA1c) was discovered in the 

late 1960s, HbA1c has become the standard test for monitoring glycaemic control, a 

cornerstone in the treatment of type 2 diabetes.4 In 2002, the Hemoglobin Glycation 

Index (HGI) was for the first time proposed as a marker of inter-individual differences 

in haemoglobin glycosylation,5 and has since been investigated in a number of 

studies.6-10 HGI is the difference between observed HbA1c and predicted HbA1c 

calculated from the linear population regression equation of HbA1c on blood glucose.

A high discordance between observed and predicted HbA1c was indeed shown 

to be associated with a 3-fold higher risk of retinopathy and a 6-fold greater 

risk of nephropathy in patients with type 1 diabetes included in the Diabetes 

Control and Complications Trial (DCCT).7 A sub-study of the Action to Control 

Cardiovascular Risk in Diabetes (ACCORD) study investigated effect modification 

by HGI on the relation between strict glycaemic control (HbA1c <6.0%11) and 

cardiovascular outcome and mortality. Strict glycaemic control was shown to be 

associated with a 14% higher risk of mortality in patients with a high HGI (thus with 

a higher HbA1c than predicted based on fasting plasma glucose) when compared 

to patients with low and moderate HGI.8 However, there has also been opposition 

to adopting HGI as a marker of inter-individual differences in haemoglobin 

glycosylation arguing that HGI is a surrogate for HbA1c or a reflection of other 

factors such as insulin use, duration of diabetes, and glycaemic variability.
12, 13 

The purpose of the current study was to examine the relation between HGI and 

cardiovascular events and mortality in patients with type 2 diabetes with and 

without a history of CVD and whether this relation differed from that of HbA1c. 

We also investigated whether previous CVD at baseline was an effect modifier 

in the relation between HGI and cardiovascular events. 

Materials and Methods

Study population

The cohort consisted of 1910 patients with type 2 diabetes included in the 

Second Manifestations of ARTerial disease (SMART) study. Type 2 diabetes was 
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defined as a referral diagnosis of type 2 diabetes, or a self-reported diagnosis 

of type 2 diabetes, or a fasting plasma glucose ≥7 mmol/L at study inclusion 

with initiation of glucose-lowering treatment within 1 year, or baseline usage 

of anti-hyperglycemic medicine or insulin. Participants with known type 1 

diabetes mellitus were excluded. Patients were enrolled from September 1996 

to February 2015. The SMART study is an ongoing single-center prospective 

cohort study in the University Medical Center Utrecht (UMCU), the Netherlands. 

Inclusion criteria in the SMART study were manifest vascular disease or risk 

factors associated with CVD and an age between 18 and 80 years. All patients 

included in the SMART study underwent a vascular screening at baseline 

including a health questionnaire, a standardized physical examination and 

collection of fasting blood samples as described previously.14 

The study was approved by the Medical Ethics Committee of the UMCU and 

written informed consent was obtained from all participants (approval number 

13-597/D NL45885.041.13).

Follow-up of patients

The participants of the SMART study were asked to fill out a questionnaire twice a 

year. If a possible event was noted, hospital discharge letters and results of relevant 

laboratory and radiology examinations were collected. Using the additional 

information, all events were audited by three members of the SMART study 

Endpoint Committee, consisting of physicians from different departments. The 

primary outcome of interest for this study was the composite of a major vascular 

event (composite of myocardial infarction, stroke (infarction or hemorrhagic), 

retinal infarction, terminal heart failure (death as cause of heart failure), sudden 

death and vascular mortality), and secondary outcomes included total mortality, 

cardiovascular mortality, myocardial infarction and stroke (Supplementary Table 1). 

Measurement of variables

HbA1c was measured at baseline in all patients enrolled in the SMART study. 

HbA1c was measured on an automated HA8180 HPLC analyzer (Menarini 

Diagnostics, Florence, Italy). Fasting plasma glucose (FPG) was measured at 

baseline in all patients using a glucose hexokinase method on an AU 5811 routine 

chemistry analyzer (Beckman Coulter, Brea, California). Estimated glomerular 

filtration rate (eGFR) was estimated in ml/min/1.73m2 using the Modification of 

Diet in Renal Disease (GFR (mL/min/1.73 m2) = 175 × (Scr)
-1.154 × (Age)-0.203 × (0.742 if 
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female) × (1.212 if African American) (MDRD) equation. Proteinuria was defined as 

a urine-albumin/creatinine ratio (uACR) of 3-30 mg/mmol (microalbuminuria) 

or a uACR ≥30 mg/mmol (macroalbuminuria). Information about duration of 

diabetes, alcohol consumption, level of education and smoking was obtained 

through a patient questionnaire. 

Calculation of the HGI

Baseline and time matched FPG and HbA1c data from the cohort were used to 

estimate the linear relationship between FPG and HbA1c in the study population 

(Supplementary figure 1). The linear approach was chosen in concordance with 

previous studies,6-9 although the linear correlation between FPG and HbA1c 

was not strong (R2 = 0.39). A predicted HbA1c was calculated for each individual 

by inserting FPG in the linear population regression equation (Predicted HbA1c 

= 0.28 * FPG (mmol/L) + 4.68). Baseline HGI was calculated as the difference 

between observed HbA1c at baseline and the predicted HbA1c (Observed HbA1c 

– Predicted HbA1c).

Data analyses

The baseline characteristics are presented as mean ± standard deviation (SD) in 

case of a normal distribution or as median with interquartile range (IQR) in case 

of variables with a skewed distribution. Categorical variables are presented as 

frequency. For continuous variables, we used Independent Samples t Tests for 

normally distributed variables and Kruskal-Wallis tests for non-normally distributed 

variables, and χ2 tests for categorical variables. Baseline characteristics were also 

compared in terms of HGI tertiles (low, moderate and high HGI subgroups) and 

among HbA1c tertiles (low, moderate and high HbA1c subgroups).

Missing data for HbA1c (n = 133, 7.0%), FPG (n = 33, 0.2%) and for the confounders 

history of CVD (n = 81, 4.2%), body mass index (BMI) (n = 4, 0.2%), systolic blood 

pressure (SBP) (n = 4, 0.2%), total cholesterol (n = 10, 0.5%), HDL-cholesterol 

(n = 14, 0.7%), eGFR (n = 9, 0.5%) and level of education (n = 877, 45.9%) were 

singly imputed by weighted probability matching based on multivariable linear 

regression using all covariate and outcome data.

Analyses were performed to assess the relation between HGI and the 

occurrence of primary and secondary outcomes (Supplementary table 1). 

Similar analyses were performed with HbA1c as determinant. If a patient had 
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multiple events, the first event was used in the analyses. Cox proportional 

hazard models were used to determine hazard ratios and 95% confidence 

intervals. The proportional hazards assumption was satisfied based on visual 

inspection of Schoenfeld residual plots. 

In order to assess the relation between HGI and cardiovascular events and 

mortality, we built four models. Model I was adjusted for sex and age. Model 

II was additionally adjusted for BMI, diabetes duration, non-HDL-cholesterol 

level, eGFR, use of insulin and SBP. The confounders were both included based 

on previous investigations and on univariate linear regression between HGI and 

different covariates (data not shown).

Exploratory models were constructed with HbA1c or level of education added 

to model II (model III and IV, respectively). Similar models, with the exception of 

model III, were constructed with HbA1c as determinant. 

To test for effect modification, we added the cross-product of sex, age, 

insulin use, duration of diabetes, eGFR, level of education and previous CVD, 

respectively, and HGI to the Cox proportional hazard models with composite of 

cardiovascular events as outcome. 

Sensitivity analyses were performed excluding patients with missing HbA1c, FPG, 

or history of CVD to ensure that the relation was not influenced by imputation 

methods. All analyses were performed using IBM SPSS Statistics 21.0, IBM Corp., 

Armonk, New York and RStudio 3.3.2 (R-packages Hmisc and survival).

Results

Baseline characteristics are presented in Table 1. Patients with type 2 diabetes 

had an average follow-up time of 9.6 years (IQR 5.6-13.4), in which 380 (19.9%) 

patients experienced a cardiovascular event (myocardial infarction, stroke 

(infarction or hemorrhagic), retinal infarction, terminal heart failure, sudden 

death or vascular mortality) and 436 (22.8%) died, of whom 243 (12.7%) died of a 

vascular cause. 127 (6.6%) patients experienced a myocardial infarction, and 97 

(5.1%) experienced a stroke. 140 (7.3%) of the patients where lost to follow-up. 

Mean age was 60 ± 10 years, 70% of the patients were male, and 69% of the 

patients had a history of CVD. Baseline characteristics of the study population 

divided in tertiles of HGI and HbA1c, respectively, are shown in Supplementary 

table 2 and 3. 
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Table 1. Baseline characteristics

All patients
(n = 1910)

Previous CVD
(n = 1260)

No previous CVD 
(n = 569)

p-value*

HGI -0.00 ± 1.00 -0.08 ± 0.93 0.2 ± 1.1 < 0.001

Sex (male,%) 1329 (70%) 948 (75%) 338 (59%) < 0.001

Age (years) 60 ± 10 63 ± 9 55 ± 11 < 0.001

Current alcohol usage (%) 860 (46%) 585 (47%) 238 (43%) 0.03

Current smoking (%) 464 (25%) 321 (26%) 126 (22%) < 0.001

Level of education
Low (%)
Moderate (%)
High (%)

365 (35%)
410 (40%)
258 (25%)

259 (35%)
302 (41%)
175 (24%)

85 (34%)
90 (36%)
73 (29%)

0.04

Duration of diabetes (years) 4 (1-10) 4 (1-10) 3 (0-7) < 0.001

Weight (kg) 87 ± 17 86 ± 15 91 ± 20 < 0.001

Body mass index (kg/m2) 29 ± 5 28 ± 4 30 ± 6 < 0.001

Waist circumference (cm) 101 ± 13 101 ± 12 102 ± 15 0.07

Systolic blood pressure (mmHg) 145 ± 21 145 ± 21 146 ± 21 0.21

Diastolic blood pressure (mmHg) 83 ± 12 81 ± 11 86 ± 12 < 0.001

Use of insulin (%) 455 (24%) 302 (24%) 134 (24%) 0.85

Use of only metformin (%) 371 (19%) 247 (19%) 106 (18%) 0.63

Use of glucose lowering agents (%) 1262 (66%) 822 (65%) 388 (68%) 0.22

Glucose (mmol/L) 8.7 ± 2.9 8.5 ± 2.7 9.2 ± 3.2 < 0.001

HbA1c (%) 7.1 ± 1.3 6.9 ± 1.1 7.5 ± 1.5 < 0.001

Insulin (mU/L) 13.0 (8.0-20.0) 13.0 (8.0-20.0) 13.0 (9.0-22.0) 0.36

eGFR (ml/min/1.73 m2) 78.5 ± 22.1 75.9 ± 21.0 85.1 ± 22.6 < 0.001

Proteinuria
Micro (%)
Macro (%)

368 (21%)
61 (4%)

249 (22%)
41 (4%)

107 (21%)
14 (3%)

0.66

Total cholesterol (mmol/L) 4.8 ± 1.4 4.6 ± 1.2 5.3 ± 1.6 < 0.001

Non-HDL-cholesterol (mmol/L) 3.7 ± 1.4 3.5 ± 1.2 4.1 ± 1.7 < 0.001

HDL-cholesterol (mmol/L) 1.1 ± 0.3 1.1 ± 0.3 1.2 ± 0.4 0.001

LDL-cholesterol (mmol/L) 2.8 ± 1.1 2.6 ± 1.0 3.0 ± 1.1 < 0.001

Triglycerides (mmol/L) 1.7 (1.2-2.5) 1.6 (1.2-2.4) 1.8 (1.2-2.7) < 0.001

Hemoglobin (mmol/L) 8.7 ± 0.9 8.7 ± 0.9 8.9 ± 0.8 < 0.001

*p-value is the p-value for the difference between patients with previous CVD and patients 
without previous CVD.
HGI = Hemoglobin Glycation Index, CVD = cardiovascular disease. Microalbuminuria is 
defined as an albumin/creatinine ratio (ACR) 3-30 mg/mmol. Macroalbuminuria is defined 
as a urine-albumin/creatinine ratio ≥30 mg/mmol.
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Relation of HGI and HbA1c with cardiovascular events and mortality in 
patients with type 2 diabetes with and without cardiovascular disease 
at baseline

As previous CVD was proven to be the only effect modifier (p-value for 

interaction by CVD at baseline = 0.02) in the relation between HGI and composite 

of cardiovascular events, all analyses were stratified according to presence or 

absence of previous CVD. 

In patients with previous CVD, an inverse relation between HGI and myocardial 

infarction was seen when adjusting for confounders (model II; HR 0.78, 95% 

CI 0.63-0.96). No statistical significant relation was seen between HGI and 

composite of cardiovascular events, total mortality, cardiovascular mortality or 

stroke (Table 2). No significant relation was seen between HbA1c and any of the 

outcomes in patients with previous CVD (Table 3).

In patients without previous CVD, a significant relation between HGI and 

composite of cardiovascular events was seen when adjusting for confounders 

(model II; HR 1.29, 95% CI 1.06-1.57). No significant relation was observed 

between HGI and total mortality, cardiovascular mortality, myocardial infarction 

or stroke (Table 2).

A significant relation between HbA1c and composite of cardiovascular events 

was observed in patients without previous CVD when adjusting for confounders 

(model II; HR 1.23, 95% CI 1.04-1.45), although here the p-value for interaction 

was not significant (p-value = 0.14). There was no significant relation between 

HbA1c and total mortality, cardiovascular mortality, myocardial infarction or 

stroke (Table 3).

Sensitivity analyses in patients without missing HbA1c, fasting plasma glucose, 

or history of CVD did not alter our results. Although the inverse effects of HGI 

and myocardial infarction was not significant, this is probably due to a lack of 

power when excluding 123 of 1313 patients with type 2 diabetes (Supplementary 

table 4).

Additional adjustment for HbA1c and level of education 

In order to evaluate whether the relation between HGI and cardiovascular events 

and mortality would be influenced by HbA1c, we additionally adjusted for HbA1c.
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Table 2. Relation between HGI and cardiovascular events and mortality in patients with 
type 2 diabetes with and without cardiovascular disease

All patients 
(n=1910)

Previous CVD
 (n=1313)

No previous CVD 
(n=597)

HR (95% CI) HR (95% CI) HR (95% CI)

Composite of cardiovascular events

Events: n = 380 (19.9%) n = 315 (24.0%) n = 65 (10.9%)

Model I 1.04 (0.94-1.14) 1.01 (0.90-1.13) 1.30 (1.08-1.56)*

Model II 1.00 (0.90-1.11) 0.96 (0.86-1.08) 1.29 (1.06-1.57)*

Model III 0.93 (0.80-1.08) 0.89 (0.75-1.05) 1.17 (0.86-1.59)

Model IV 0.99 (0.89-1.10) 0.95 (0.85-1.07) 1.30 (1.07-1.57)*

Total mortality

Events: n = 436 (22.8%) n = 345 (26.3%) n = 91 (15.2%)

Model I 1.12 (1.03-1.22)* 1.14 (1.03-1.26)* 1.19 (1.01-1.40)*

Model II 1.07 (0.97-1.17) 1.07 (0.96-1.18) 1.14 (0.96-1.36)

Model III 0.99 (0.86-1.13) 0.96 (0.82-1.13) 1.09 (0.83-1.42)

Model IV 1.07 (0.97-1.17) 1.07 (0.97-1.19) 1.14 (0.96-1.36)

Cardiovascular mortality

Events: 243 (12.7%) n = 205 (15.6%) n = 38 (6.4%)

Model I 1.05 (0.94-1.19) 1.03 (0.90-1.19) 1.34 (1.07-1.69)*

Model II 1.00 (0.88-1.13) 0.97 (0.84-1.11) 1.27 (0.99-1.63)

Model III 0.92 (0.76-1.10) 0.82 (0.67-1.01) 1.38 (0.91-2.08)

Model IV 0.99 (0.87-1.12) 0.95 (0.82-1.10) 1.30 (1.02-1.65)*

Myocardial infarction

Events: 127 (6.6%) n = 106 (8.1%) n = 21 (3.5%)

Model I 0.87 (0.72-1.04) 0.81 (0.66-1.01) 1.26 (0.91-1.74)

Model II 0.82 (0.68-0.99)* 0.78 (0.63-0.96)* 1.33 (0.92-1.91)

Model III 0.78 (0.60-1.01) 0.74 (0.56-0.99)* 1.10 (0.64-1.89)

Model IV 0.82 (0.68-0.99)* 0.78 (0.63-0.96)* 1.35 (0.94-1.94)

Stroke

Events: 97 (5.1%) n = 79 (6.0%) n = 18 (3.0%)

Model I 1.11 (0.92-1.33) 1.11 (0.90-1.38) 1.25 (0.88-1.78)

Model II 1.09 (0.90-1.33) 1.06 (0.85-1.33) 1.42 (0.97-2.08)

Model III 1.04 (0.78-1.40) 1.05 (0.75-1.48) 1.22 (0.65-2.29)

Model IV 1.06 (0.87-1.29) 1.01 (0.81-1.27) 1.37 (0.95-1.99)

Model I is adjusted for sex and age. Model II is adjusted for sex, age, body mass index, insulin 
use, duration of diabetes, non-HDL-cholesterol, eGFR and systolic blood pressure. In model 
III, HbA1c is added to model II, and in model IV level of education is added to model II. 
* indicates a p-value < 0.05.
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Table 3. Relation between HbA1c and cardiovascular events and mortality in patients with 
type 2 diabetes with and without cardiovascular disease

All patients 
(n=1910)

Previous CVD 
(n=1313)

No previous CVD 
(n=597)

HR (95% CI) HR (95% CI) HR (95% CI)

Composite of cardiovascular event

Events: 380 (19.9%) n = 315 (24.0%) n = 65 (10.9%)

Model I 1.07 (0.99-1.16) 1.07 (0.98-1.17) 1.23 (1.06-1.42)*

Model II 1.04 (0.95-1.13) 1.02 (0.92-1.12) 1.23 (1.04-1.45)*

Model IV 1.03 (0.94-1.12) 1.01 (0.92-1.12) 1.24 (1.05-1.45)*

Total mortality

Events: 436 (22.8%) n = 345 (26.3%) n = 91 (15.2%)

Model I 1.12 (1.05-1.20)* 1.15 (1.06-1.25)* 1.15 (1.01-1.30)*

Model II 1.08 (1.00-1.16) 1.09 (1.00-1.20) 1.11 (0.97-1.28)

Model IV 1.08 (1.00-1.16) 1.10 (1.01-1.20)* 1.11 (0.96-1.28)

Cardiovascular mortality

Events: 243 (12.7%) n = 205 (15.6%) n = 38 (6.4%)

Model I 1.09 (0.99-1.20) 1.12 (1.01-1.25)* 1.16 (0.96-1.41)

Model II 1.05 (0.94-1.16) 1.06 (0.94-1.19) 1.13 (0.90-1.42)

Model IV 1.04 (0.93-1.15) 1.05 (0.93-1.19) 1.15 (0.92-1.43)

Myocardial infarction

Events: 127 (6.6%) n = 106 (8.1%) n = 21 (3.5%)

Model I 0.96 (0.84-1.11) 0.94 (0.79-1.11) 1.24 (0.95-1.60)

Model II 0.92 (0.79-1.07) 0.88 (0.73-1.05) 1.29 (0.97-1.72)

Model IV 0.92 (0.79-1.07) 0.88 (0.74-1.06) 1.30 (0.98-1.72)

Stroke

Events: 97 (5.1%) n = 79 (6.0%) n = 18 (3.0%)

Model I 1.10 (0.95-1.27) 1.11 (0.93-1.32) 1.22 (0.94-1.58)

Model II 1.08 (0.92-1.27) 1.04 (0.86-1.27) 1.30 (0.98-1.71)

Model IV 1.05 (0.89-1.24) 1.01 (0.83-1.23) 1.27 (0.97-1.66)

Model I is adjusted for sex and age. Model II is adjusted for sex, age, BMI, insulin use, 
duration of diabetes, non-HDL cholesterol, eGFR and systolic blood pressure. In model IV 
level of education is added to model II. 
* indicates a p-value < 0.05.

The magnitude of the hazard ratios decreased, for example from 1.29 (95% CI 

1.06-1.57) to 1.17 (95% CI 0.86-1.59) with composite of cardiovascular events as 

outcome in patients without previous CVD. Additional adjustment for level of 

education did not change the direction or the magnitude of the hazard ratios. 
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When performing the same analyses with HbA1c as determinant instead of HGI, 

the hazard ratios closely resembled those of HGI as determinant (Table 2 and 3). 

The linear relationship between HGI and HbA1c showed a correlation of R2 = 

0.61, indicating a close relation between HGI and HbA1c (Supplementary figure 

2). 

The group without previous CVD and the group with previous CVD differed 

in regards to the association between HGI and outcomes. In the study, we 

used the same linear regression for calculating HGI in both groups, since it is a 

population regression equation based on the whole cohort, also coherent with 

previous studies of HGI. 

Discussion

The current study showed that a higher HGI was associated with a higher risk of 

cardiovascular events in patients with type 2 diabetes but without previous CVD. 

The same was seen with HbA1c and risk of cardiovascular events in patients with 

type 2 diabetes but without previous CVD. An inverse relation between higher 

HGI and myocardial infarction was seen in the group with previous CVD. As 

the direction and magnitude of the hazard ratios of HGI and outcomes closely 

resembled the hazard ratios of HbA1c  and outcomes and adjustment for HbA1c 

decreased the magnitude of the hazard ratios, HGI closely resembles HbA1c as 

a risk factor for cardiovascular morbidity and mortality. 

Although the correlation between blood glucose and HbA1c measurements 

is generally good,15 this is not always the case. The relation between blood 

glucose levels and HbA1c may be influenced by factors influencing haemoglobin 

glycosylation such as age,16 race,17, 18 genetic variations,19 differences in 

erythrocyte life span and environment,7 as well as iron deficiency and anemia.20 

One way of approaching this discordance is the HGI;5 the difference between 

observed HbA1c and predicted HbA1c calculated from the population regression 

equation of HbA1c on FPG. A high and low HGI thus represent HbA1c levels that 

are higher or lower, respectively, than predicted compared to other patients 

with similar (fasting) plasma glucose levels. In addition, a single fasting plasma 

glucose may not always correlate with HbA1c due to day-to-day changes in 

fasting plasma glucose and postprandial glucose excursions.
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To the best of our knowledge, this is the first prospective study to investigate 

the relation between both HGI and HbA1c as separate determinants and their 

association with cardiovascular events in patients with type 2 diabetes with 

and without stable cardiovascular disease at baseline. Several previous studies 

have investigated the relation between HGI and micro- and macrovascular 

complications of diabetes. A sub-study of the ACCORD trial found increased 

mortality and increased risk of hypoglycemia with intensive treatment in the 

high HGI tertile compared with low and moderate HGI.8 This might be due to 

the fact that patients with a high HGI often had more pronounced glucose 

excursions with frequent lower blood glucose levels compared to their HbA1c, 

and thus were more exposed to the detrimental factors related to episodic 

hypoglycemia.21 However, in view of our results, it is important to note that in 

the original ACCORD trial, patients in the intensive treatment arm with a higher 

HbA1c also had increased risk of mortality compared to patients with a lower 

HbA1c.
22 The similar results of HGI and HbA1c, respectively, as risk factors for 

mortality in the ACCORD study could indicate that the HGI is a proxy for HbA1c. 

In a study from the DCCT, a high HGI was associated with a three-fold increase 

in the risk for retinopathy and a six-fold increase in the risk for nephropathy in 

patients with type 1 diabetes.7 A critical oponent to this study performed analyses 

with the DCCT data including HbA1c as covariate, and here the results were non-

significant.12 A recent study from the AleCardio trial found increased risk for 

cardiovascular mortality and total mortality in patients with a high HGI.23 A one 

percent increase in HGI was associated with a 16% higher risk of cardiovascular 

mortality. However, this association was no longer evident after additional 

adjustment for HbA1c, while the hazard ratios for the relation between HGI and 

outcomes were comparable to those seen between HbA1c and outcomes. 

A study from the ADVANCE trial compared HGI and HbA1c as predictors for 

cardiovascular disease in two groups with intensive and standard glucose 

control.24 They found that a higher HGI was associated with an increased risk of 

macro- and microvascular diabetes complications and mortality. However, when 

using the same confounders, HbA1c was a stronger predictor. 

We expand on this data by showing that this not only applies to a trial population 

but also to a stable real-life population of patients with type 2 diabetes with 

and without CVD. These data put together indicate that HGI is no more than a 

surrogate for HbA1c.
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A recent study from South Korea showed a significant relation between the 

high HGI tertile and cardiovascular events in patients with pre-diabetes 

or type 2 diabetes,9 while another study from South Korea in patients with 

type 2 diabetes found no significant relation between HGI and any diabetic 

complication.10 A recent study conducted in non-diabetic Caucasian Italians 

found that a high HGI was associated with a significant increase in carotid 

intima media thickness, an indicator of subclinical atherosclerosis, in non-

diabetic individuals predisposed for type 2 diabetes.6 However, none of these 

studies took potential effect modification by cardiovascular disease at baseline 

into account, and only one study performed additional analyses with HbA1c as 

a confounder.9 The previous studies of HGI as risk factor for CVD also differ in 

regards to patient population and the type of measurement of blood glucose, 

making the results difficult to interpret.

It is previously shown that hyperglycemia (a high HbA1c) increases the risk of 

mortality and cardiovascular disease in patients with type 2 diabetes, since it 

is associated with abnormalities in coagulation, dyslipidemia, and other known 

risk factors associated with increased risk of cardiovascular disease,25 mainly 

because of the formation of glycosylation end products.26 If HGI is no more than 

a surrogate for HbA1c, the results obtained in studies that showed a relation 

between high HGI and increased risk of cardiovascular disease and mortality 

might simply be due to the fact that patients with a high HGI simultaneously 

had a high HbA1c. The clinical use of HGI is furthermore hampered by the need 

to construct a linear relation between blood glucose and HbA1c, as the linear 

population regression equation used to calculate predicted HbA1c differs 

between populations across different studies. 

Furthermore, there are several factors that need to be taken into consideration 

when interpreting HGI, which we will briefly discuss. Glycemic variability, 

understood as fluctuations in blood glucose, has been proposed as a risk 

factor for diabetic complications.27-30 A high HGI could in theory be a reflection 

of high glycemic variability, and thus the association between a high HGI and 

increased risk of CVD might simply reflect this phenomenon. Insulin use affects 

fasting or postprandial glucose levels, but does not affect HbA1c to the same 

extent,13 which might also lead to a higher HGI. Furthermore, the use of glucose-

lowering agents has been shown to alter the relation between FPG and HbA1c, 

with a smaller increase in HbA1c for every unit increase in FPG.
31 A higher HGI 
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may thus in theory also reflect higher daytime or postprandial glucose levels 

compared to FPG or the use of insulin or glucose-lowering agents. 

Another problem to consider in using the HGI is the measurement of blood 

glucose. Although a study showed correlation between HGI calculated from 

fasting plasma glucose and HGI calculated from all glucose data,5 patients 

with type 2 diabetes may be subject to a “doctor-pleasing” attitude, achieving 

a lower FPG at the time of the clinical visit with a still higher than expected 

HbA1c, thus resulting in a higher HGI. However, when adding level of education 

to the model, as a marker of socio-economic status related to compliance, no 

change in the risk was seen. 

In the analysis, we divided the cohort into patients with and without previous 

CVD. However, the patients without previous CVD were still high-risk patients, 

as all patients were enrolled during hospitalization and they all had at least one 

risk factor for CVD. 

The effect modification of previous CVD can be caused by a number of factors. 

One possible explanation is that in patients with previous CVD, a high HGI (and 

thus a high HbA1c) is not the main factor for endothelial damage leading to a 

cardiovascular event. It could very well be that other known risk factors for CVD 

(e.g. hypertension and dyslipidemia) play a larger role in the pathogenesis of 

CVD in patients with established CVD. This could indicate that there is a need 

for individual treatment in patients with type 2 diabetes, especially in the high-

risk group. 

The inverse relation between HGI and myocardial infarction in patients with 

previous CVD is possibly due to the fact that a low HGI (and thus a low HbA1c) 

might be an indicator of frequent hypoglycemia and thus increased risk of 

morbidity and mortality,21, 32, 33 and patients with previous CVD might be more 

at risk of myocardial infarction with a lower HGI (and thus a low HbA1c). The 

relation between HbA1c and risk of myocardial infarction was of the same 

direction as the relation between HGI and myocardial infarction, although it 

was not statistically significant.

There are several strengths of the present study including the prospective 

design, the large number of events because of the substantial follow-up time 

and the large cohort size. Furthermore, the completeness of the data decreases 
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the risk of information bias. However, some study limitations also need to be 

considered. The predicted HbA1c used to calculate the HGI was based on only 

one value of FPG, which is a limitation to the study in regards to a precise 

calculation of HGI, as mean blood glucose in participants could be higher or 

lower. Ideally, more measurements of blood glucose, including postprandial 

measurements should be used to calculate HGI. Further, the linear regression 

equation used to calculate predicted HbA1c  cannot be extrapolated to other 

populations; thus a new equation will have to be made for each population. 

Also, the SMART study is conducted in a central academic university hospital, 

meaning that the diversity of the cohort is limited to almost only Caucasian 

individuals. Finally, there were not a lot of events for the secondary outcomes 

stroke and myocardial infarction, raising caution regarding the validity of the 

results for these outcomes. 

Conclusion

In conclusion, in patients with type 2 diabetes but without cardiovascular 

disease, a higher HGI is related to a higher risk of cardiovascular events, and 

in patients with previous cardiovascular disease, a higher HGI is related to a 

lower risk of myocardial infarction. However, since HbA1c confers similar risk 

and because of the strong correlation between HGI and HbA1c in patients, the 

added benefit of HGI as a risk factor for cardiovascular events seems limited.
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Supplementary material

Supplementary figure 1. The linear population regression equation of HbA1c as a 
function of FPG used to calculate predicted HbA1c in the cohort (HGI = observed HbA1c– 
predicted HbA1c)
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Supplementary figure 2. The linear regression equation between HGI and HbA1c for the 
entire cohort
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Supplementary table 1. Outcome events in this study

Composite of 
cardiovascular events

Composite of myocardial infarction, stroke (infarction or 
hemorrhagic), retinal infarction, terminal heart failure, 
sudden death and vascular mortality

Total mortality Death from any cause

Cardiovascular mortality Death caused by stroke, myocardial infarction, congestive 
heart failure, rupture of abdominal aortic aneurysm and 
vascular death of other causes

Myocardial infarction Two or more of the following criteria: 
(I) Chest pain for at least 20 minutes, not disappearing 
after administration of nitrates 
(II) ST-elevation > 1 mm in two following leads or a left 
bundle branch block on the electrocardiogram 
(III) Troponin elevation above clinical cut-off values or 
creatinine kinase (CK) elevation of at least two times the 
normal value of CK and a myocardial band-fraction > 5% 
of the total CK 
Sudden death: unexpected cardiac death occurring 
within one hour after onset of symptoms, or within 24 
hours given convincing circumstantial evidence 

Stroke Relevant clinical features ≥ 24 hours causing an increase 
in impairment of at least one grade on the modified 
ranking scale, with a new cerebral infarction on CT or MRI 
Relevant clinical features ≥ 24 hours causing an increase 
in impairment of at least one grade on the modified 
ranking scale, without a new (hemorrhage) cerebral 
infarction on CT or MRI
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Supplementary table 2. Baseline table grouped by HGI tertile

Low HGI 
(n =637)

Moderate HGI 
(n =637)

High HGI 
(n =636)

p-value

HGI -0.9 ± 0.4 -0.2 ± 0.2 1.1 ± 0.9 < 0.001

Sex, male (%) 475 (73%) 439 (70%) 415 (66%) 0.001

Age (years) 61 ± 10 62 ± 10 59 ± 10 < 0.001

Weight (kg) 86 ± 16 88 ± 17 88 ± 18 0.06

Body mass index (kg/m2) 28 ± 5 29 ± 5 30 ± 5 < 0.001

Waist circumference (cm) 100 ± 13 102 ± 12 102 ± 14 0.08

Duration of diabetes (years) 2 (0-8) 4 (1-10) 5 (1-11) < 0.001

Systolic blood pressure (mmHg) 145 ± 21 146 ± 20 144 ± 21 0.17

Diastolic blood pressure (mmHg) 83 ± 12 83 ± 11 82 ± 12 0.57

Current alcohol usage (%) 331 (53%) 288 (46%) 241 (38%) < 0.001

Current smoking (%) 150 (23%) 138 (22%) 176 (28%) 0.01

History of CVD (%) 441 (73%) 441 (72%) 378 (62%) < 0.001

Level of education
Low (%)
Moderate (%)
High (%)

113 (34%)
125 (39%)
95 (27%)

141 (36%)
165 (40%)
90 (24%)

111 (36%)
120 (41%)
73 (24%)

0.33

Use of insulin (%) 90 (14%) 129 (20%) 236 (37%) < 0.001

Use of only metformin (%) 138 (22%) 149 (23%) 84 (13%) < 0.001

Use of glucose lowering agents (%) 393 (62%) 448 (70%) 421 (66%) 0.005

Glucose (mmol/L) 8.8 ± 2.9 8.2 ± 2.4 9.1 ± 3.2 < 0.001

HbA1c (%) 6.2 ± 0.7 6.8 ± 0.7 8.3 ± 1.3 < 0.001

Insulin (mU/L) 13.0 (8.0-19.0) 12.0 (8.0-19.0) 14.0 (9.0-24.0) < 0.001

eGFR (ml/min/1.73 m2) 77.6 ± 21.3 77.2 ± 22.1 80.7 ± 22.9 0.01

Albuminuria
Micro (%)
Macro (%)

103 (17%)
14 (2%)

115 (20%)
21 (4%)

150 (26%)
26 (5%)

0.002

Total cholesterol (mmol/L) 4.8 ± 1.2 4.7 ± 1.3 4.9 ± 1.5 0.07

Non-HDL-cholesterol (mmol/L) 3.7 ± 1.2 3.6 ± 1.3 3.8 ± 1.5 0.02

HDL-cholesterol (mmol/L) 1.1 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 0.03

LDL-cholesterol (mmol/L) 2.8 ± 1.0 2.7 ± 1.1 2.8 ± 1.1 0.04

Triglycerides (mmol/L) 1.6 (1.1-2.4) 1.7 (1.2-2.4) 1.8 (1.3-2.6) 0.03

Hb (mmol/L) 8.8 ± 0.9 8.7 ± 0.8 8.7 ± 0.9 0.02

HGI = Hemoglobin Glycation Index, CVD = cardiovascular disease. Microalbuminuria 
is defined as a urine-albumin/creatinine ratio of 3-30 mg/mmol. Macroalbuminuria is 
defined as a urine-albumin/creatinine ratio ≥30 mg/mmol.
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Supplementary table 3. Baseline table grouped by HbA1c tertile

Low HbA 1c 
(n =637)

Moderate HbA1c 
(n =637)

High HbA1c 
(n =636)

p-value

HbA1c (%) 5.9 ± 0.3 6.8 ± 0.3 8.5 ± 1.1 < 0.001

HGI -0.7 ± 0.4 -0.2 ± 0.6 0.9 ± 1.1 < 0.001

Sex, male (%) 469 (74%) 441 (69%) 419 (66%) 0.01

Age (years) 61 ± 10 61 ± 10 59 ± 10 < 0.001

Weight (kg) 85 ± 16 87 ± 16 89 ± 18 0.001

Body mass index (kg/m2) 28 ± 5 29 ± 5 30 ± 6 < 0.001

Waist circumference (cm) 100 ± 12 101 ± 12 103 ± 14 < 0.001

Duration of diabetes (years) 2 (0-6) 4 (1-10) 6 (1-12) < 0.001

Systolic blood pressure 
(mmHg)

144 ± 20 146 ± 21 145 ± 20 0.06

Diastolic blood pressure 
(mmHg)

82 ± 11 83 ± 12 83 ± 11 0.88

Current alcohol usage (%) 347 (55%) 296 (47%) 217 (35%) < 0.001

Current smoking (%) 142 (22%) 142 (22%) 180 (29%) 0.01

History of CVD (%) 449 (75%) 442 (72%) 369 (60%) < 0.001

Level of education
Low (%)
Moderate (%)
High (%)

134 (34%)
152 (38%)
110 (28%)

141 (38%)
148 (40%)
86 (23%)

90 (34%)
110 (42%)
62 (24%)

0.03

Use of insulin (%) 58 (9%) 144 (23%) 253 (40%) < 0.001

Use of only metformin (%) 174 (27%) 130 (20%) 67 (11%) < 0.001

Use of glucose lowering 
agents (%)

409 (64%) 453 (71%) 404 (64%) 0.004

Glucose (mmol/L) 7.1 ± 1.5 8.3 ± 2.0 10.7 ± 3.5 < 0.001

Insulin (mU/L) 12.0 (8.0-18.0) 13.0 (8.0-20.0) 15.0 (10.0-26.0) < 0.001

eGFR (ml/min/1.73 m2) 76.2 ± 20.2 77.6  ± 21.8 81.7 ± 23.9 < 0.001

Albuminuria
     Micro (%)
     Macro (%)

101 (17%)
14 (2%)

121 (19%)
20 (3%)

146 (25%)
27 (5%)

0.001

Total cholesterol (mmol/L) 4.7 ± 1.2 4.6 ± 1.3 5.1 ± 1.6 < 0.001

Non-HDL-cholesterol 
(mmol/L)

3.6 ± 1.2 3.5 ± 1.3 4.0 ± 1.6 < 0.001

HDL-cholesterol (mmol/L) 1.2 ± 0.3 1.1 ± 0.3 1.1 ± 0.3 0.002

LDL-cholesterol (mmol/L) 2.8 ± 1.1 2.6 ± 1.0 2.9 ± 1.1 < 0.001

Triglycerides (mmol/L) 1.5 (1.1-2.2) 1.6 (1.1-2.5) 1.9 (1.3-2.8) < 0.001

Hb (mmol/L) 8.8 ± 0.9 8.7 ± 0.9 8.8 ± 0.9 0.51

HGI = Hemoglobin Glycation Index, CVD = cardiovascular disease. Microalbuminuria 
is defined as a urine-albumin/creatinine ratio of 3-30 mg/mmol. Macroalbuminuria is 
defined as a urine-albumin/creatinine ratio ≥30 mg/mmol.
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Supplementary table 4. Relation between HGI and cardiovascular events and mortality 
in patients with type 2 diabetes with and without cardiovascular disease. Only cases with 
complete data for previous CVD, FPG and HbA1c are included

All patients 
(n=1784)

Previous CVD 
(n=1190)

No previous CVD 
(n=594)

HR (95% CI) HR (95% CI) HR (95% CI)

Composite of cardiovascular events

Events: n = 323 (18.1%) n = 258 (21.7%) n = 65 (10.9%)

Model I 1.08 (0.98-1.20) 1.05 (0.93-1.19) 1.30 (1.09-1.56)*

Model II 1.04 (0.94-1.16) 1.00 (0.88-1.13) 1.30 (1.07-1.58)*

Model III 0.97 (0.83-1.14) 0.92 (0.76-1.11) 1.14 (0.84-1.55)

Model IV 1.03 (0.92-1.15) 0.99 (0.87-1.12) 1.30 (1.07-1.58)*

Total mortality

Events: n = 374 (21.0%) n = 283 (23.8%) n = 91 (15.3%)

Model I 1.17 (1.07-1.28)* 1.21 (1.08-1.35)* 1.19 (1.01-1.40)*

Model II 1.11 (1.01-1.22)* 1.12 (1.00-1.26)* 1.15 (0.97-1.37)

Model III 0.99 (0.86-1.15) 0.95 (0.80-1.13) 1.06 (0.82-1.39)

Model IV 1.11 (1.01-1.22)* 1.13 (1.01-1.27) 1.15 (0.97-1.37)

Cardiovascular mortality

Events: 206 (11.5%) n = 168 (14.1%) n = 38 (6.4%)

Model I 1.10 (0.96-1.25) 1.08 (0.92-1.26) 1.34 (1.07-1.69)*

Model II 1.04 (0.91-1.19) 1.00 (0.85-1.17) 1.28 (0.98-1.64)

Model III 0.95 (0.77-1.16) 0.82 (0.65-1.03) 1.36 (0.90-2.05)

Model IV 1.03 (0.90-1.17) 0.98 (0.84-1.15) 1.30 (1.02-1.65)*

Myocardial infarction

Events: 104 (5.8%) n = 83 (7.0%) n = 21 (3.5%)

Model I 0.92 (0.76-1.13) 0.86 (0.68-1.09) 1.26 (0.91-1.75)

Model II 0.87 (0.71-1.06) 0.81 (0.64-1.02) 1.33 (0.93-1.92)

Model III 0.78 (0.59-1.04) 0.73 (0.53-1.01) 1.06 (0.62-1.82)

Model IV 0.86 (0.70-1.06) 0.81 (0.64-1.02) 1.35 (0.94-1.94)

Stroke

Events: 84 (4.7%) n = 66 (5.1%) n = 18 (3.0%)

Model I 1.12 (0.92-1.36) 1.12 (0.88-1.42) 1.25 (0.88-1.77)

Model II 1.12 (0.91-1.38) 1.09 (0.85-1.39) 1.42 (0.97-2.08)

Model III 1.12 (0.81-1.56) 1.17 (0.79-1.75) 1.18 (0.63-2.23)

Model IV 1.08 (0.88-1.33) 1.03 (0.81-1.32) 1.37 (0.95-1.98)

Model I is adjusted for sex and age. Model II is adjusted for sex, age, body mass index, 
insulin use, duration of diabetes, non-HDL cholesterol, eGFR and systolic blood pressure. In 
model III, HbA1c is added to model II, and in model IV level of education is added to model II. 
* indicates a p-value < 0.05.
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Abstract

Aim: CAPTURE was a non-interventional, cross-sectional, multinational study 

collecting clinical characteristics on 9823 adults with type 2 diabetes, aiming 

to estimate cardiovascular disease (CVD) prevalence and treatment patterns. 

This post hoc analysis aimed to assess gain in life-years free of (recurrent) CVD 

event with optimal cardiovascular risk management (CVRM) and initiation of 

glucose-lowering agents with proven cardiovascular benefit.

Materials and Methods: The diabetes lifetime-perspective prediction model 

was used for calculating individual 10-year and lifetime CVD risk. Distribution 

of preventive medication use was assessed according to predicted CVD risk 

and stratified for history of CVD. For estimation of absolute individual benefit 

from lifelong preventive treatment, including optimal CVRM and addition of 

glucagon-like peptide-1 receptor agonist (GLP-1 RA) and sodium–glucose 

co-transporter-2 inhibitor (SGLT-2i), the model was combined with treatment 

effects from current evidence. 

Results: GLP-1 RA or SGLT-2i use did not greatly differ between patients with 

and without CVD history, while use of blood pressure-lowering medication, 

statins and aspirin was more frequent in patients with CVD. Mean (standard 

deviation [SD]) lifetime benefit from optimal CVRM was 3.9 (3.0) and 1.3 (1.9) 

years in patients with and without established CVD, respectively. Further 

addition of GLP-1 RA and SGLT-2i in patients with CVD gave an added mean 

(SD) lifetime benefit of 1.2 (0.6) years. 

Conclusion: Life-years gained free of (recurrent) CVD by optimal CVRM and 

addition of GLP-1 RA or SGLT-2i is dependent on baseline CVD status. These 

results aid individualizing prevention and promote shared decision-making in 

patients with type 2 diabetes.
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Introduction

The prevalence of type 2 diabetes is rapidly increasing worldwide and the 

current global prevalence is 9%.1 Furthermore, patients with type 2 diabetes 

have a two-fold excess risk of cardiovascular disease (CVD), independent of 

other risk factors, compared with people without type 2 diabetes.2 CVD is the 

main cause of disability and death in patients with type 2 diabetes, and is also 

associated with reduced health-related quality of life and increased healthcare 

costs.3 Assessing risk and preventing CVD in patients with type 2 diabetes is 

therefore highly important.

Available glucose-lowering agents (GLAs) with proven cardiovascular (CV) 

benefits include glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and 

sodium–glucose co-transporter-2 inhibitors (SGLT-2is).4, 5 The results of several 

randomized controlled trials indicate that these treatments provide specific 

benefits for patients with a history of CVD, above and beyond glycaemic 

control.6, 7 Therefore, current guidelines advocate their use in high-risk 

patients,8-11 although implementation of these therapies remains limited.12, 

13 Guidelines recommend regular cardiovascular risk management (CVRM) 

as the first-line treatment strategy: the effects of lipid-lowering,14, 15 glucose-

lowering16 and blood pressure-lowering medications,17, 18 aspirin use (in 

secondary prevention)19 and smoking cessation20 are all highly significant in 

CVD risk reduction, and their use is monitored. 

There is a wide distribution in terms of individual benefit from optimal CVRM 

and preventive treatment in patients with type 2 diabetes, based on risk 

factor burden, baseline risk and duration of treatment. The diabetes lifetime-

perspective prediction (DIAL) model predicts CVD risk in patients with type 

2 diabetes while adjusting for non-CVD mortality as a competing risk.21 

Furthermore, the model allows incorporation of treatment effects (hazard ratios 

[HRs] from trials or meta-analyses) to assess the number of life-years gained 

without a (recurrent) CVD event with the initiation of preventive medication 

strategies. The individual CVD risk and benefit from preventive treatment 

initiation can be discussed in clinical practice, and enhances shared decision-

making between the patient and clinician. 

CAPTURE was a non-interventional, cross-sectional study that collected 

demographic and clinical characteristics for 9823 adults with type 2 diabetes 
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across 13 countries worldwide in 2019,13 aiming to estimate CVD risk distribution 

and assess treatment patterns. The aim of this post hoc analysis of data from 

CAPTURE was to estimate the potential gain in the number of life-years free 

of a (recurrent) CVD event with CVRM and initiation of GLAs with proven CV 

benefits.

Materials and methods

Study population

All patients included in the CAPTURE cohort attended a single, routine clinical 

visit in a primary or specialist care setting. Owing to the functionality of the DIAL 

model, regions were defined solely based on geography and did not account 

for inter-regional differences, for example in healthcare systems. Regions 

were defined as Latin America (Argentina, Brazil and Mexico), Western Europe 

(Italy and France), Eastern Europe (Turkey, the Czech Republic and Hungary), 

Australia, East Asia (China and Japan) and the Middle East (Saudi Arabia and 

Israel). Baseline characteristics were described as mean ± standard deviation 

(SD) for continuous variables, median (interquartile range [IQR]) for skewed 

variables and count (percentage) for categorical variables.

Missing data in the cohort were imputed using single imputation by predicted 

mean matching (aregImpute algorithm in R, Hmisc package, version 4.5-

0). Imputation was performed with stratification according to region. The 

proportion of patients with missing data was: 0% for sex, age, region, history 

of CVD and medication use; 0.1% for diabetes duration; 2% for systolic blood 

pressure and body mass index; 7% for glycated haemoglobin (HbA1c) level; 

22% for non-high-density lipoprotein (HDL)-cholesterol level; 19% for eGFR; 

1% for smoking status; and 34% for albuminuria. Non-imputed baseline data, 

including numbers of missing values, are provided in Supplementary table 1.

The DIAL model is suitable for CVD risk prediction for patients with T2D aged 

30–85 years who have an estimated glomerular filtration rate (eGFR) above 

30 mL/min/1.73 m2. Therefore, CAPTURE participants younger than 30 years 

and older than 85 years were excluded (n = 169), as were those with an eGFR 

below 30 mL/min/1.73 m2 (n = 250); including 12 patients in both categories. 

Exclusion was done after imputation of missing data. This resulted in a cohort 
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for CVD risk prediction of 9416 patients with type 2 diabetes, 2901 with a history 

of CVD and 6515 without a history of CVD (Supplementary figure 1).

DIAL model for estimating CVD risk and treatment benefit

The DIAL model has previously been described in detail,21 and is available 

via an online interactive calculator (www.u-prevent.com). Individual 10-year 

and lifetime CVD risks were calculated using previously validated life-table 

methods.22 The model was combined with HRs from meta-analyses on the 

effect of GLP-1 RA and SGLT-2i, respectively, on CV outcomes,4, 5 to estimate 

individual absolute benefit from treatment in terms of gain in life-years free of 

(recurrent) CVD event.

Definition of individual optimal preventive treatment

Individuals were stratified into risk groups (moderate, high or very high CVD 

risk) according to the 2021 European Society of Cardiology (ESC) guidelines 

(Supplementary table 2).10 Optimal treatment was likewise assessed in line with 

these guidelines. The main analyses were based on CVRM according to step 

2 of the ESC guidelines two-step approach. Supplementary figure 2 shows life-

years gained free of (recurrent) CVD with optimal CVRM according to step 1 and 

step 2, stratified for history of CVD. Lifetime benefit was calculated individually 

for all patients using the scenario that those who were currently smoking 

would stop, and that all patients would reach their respective risk group targets 

for low-density lipoprotein (LDL)-cholesterol level, HbA1c concentration and 

systolic blood pressure. It was also assumed that treatment with aspirin, GLP-1 

RAs and/or SGLT-2is was initiated, if appropriate, following the aforementioned 

guidelines. GLP-1 RA and SGLT-2i therapy was therefore assigned to all patients 

classified as being at very high CVD risk. Definitions of targets are provided in 

Supplementary table 3. 

Prediction of individual CVD risk and lifetime benefit from preventive 
treatment 

Patient-level data from the CAPTURE study (age, sex, body mass index, 

smoking status, HbA1c level, history of CVD, duration of type 2 diabetes, non-

HDL-cholesterol level, insulin use, eGFR, albuminuria and region) were used 

for predicting individual CVD risk using the DIAL model. In line with the original 
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DIAL model, Eastern Europe was set as a high-risk region and the remaining 

regions were defined as low-risk regions.

Predicted risk was calculated taking current antiplatelet medication, GLP-1 

RA and SGLT-2i use into consideration using HRs from current best available 

evidence.4, 5, 19 Current treatment with lipid-lowering and antihypertensive 

medication was assumed to act by reducing non-HDL-cholesterol level 

and systolic blood pressure, respectively, both of which were included as 

predictors in the DIAL model. Treatment effects of GLP-1 RAs (HR of 0.85 in 

patients with CVD and 1.00 in those without CVD)4 and SGLT-2is (HR of 0.89 in 

patients with CVD and 1.00 in those without CVD),5 as well as HRs for reduction 

of blood pressure, HbA1c level and LDL-cholesterol level, aspirin treatment and 

smoking cessation, were combined with the DIAL model to estimate individual 

lifetime benefit free of (recurrent) CVD with initiation of preventive treatment.23 

HRs were based on three-component major adverse CV events (including 

myocardial infarction, stroke and CV death) as outcome. Supplementary table 4 

provides a full list of HRs for treatment effects.

Distribution of predicted CVD risk, current use of preventive medication 
and lifetime benefit

Distributions of predicted 10-year and lifetime risk of a (recurrent) CVD event were 

stratified according to history of CVD. A high CVD risk was defined as a 10-year 

risk of CVD of greater than 10%10 and a lifetime risk of CVD as greater than 50%. 

Distributions of the use of preventive GLAs with proven CV benefit (GLP-1 RAs and 

SGLT-2is) were stratified by history of CVD and according to deciles of predicted 

lifetime CVD risk. Distributions of the use of CVRM medications (antihypertensive 

medication, statins and aspirin) were assessed in the same way. 

Distributions of numbers of life-years gained without a (recurrent) CVD event 

with optimal CVRM and the addition of GLP-1 RAs and SGLT-2is were stratified 

by history of CVD and assessed according to deciles of predicted lifetime risk. 

All analyses were performed with R-statistical programming (version 4.0.3; R 

Foundation for Statistical Computing, Vienna, Austria).

Sensitivity analyses

Given that there was a substantial amount of missing data, we performed all 

the analyses as a complete case analysis. Baseline tables for patients with and 
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without CVD were also stratified by lifetime CVD risk decile. Furthermore, the 

use of GLP-1 RAs and SGLT-2is was assessed according to geographical region 

and stratified according to history of CVD. Gain in the number of life-years free 

of (recurrent) CVD with optimal CVRM and addition of GLP-1 RA and SGLT-

2i according to age was also evaluated. Lastly, the current ESC guidelines 

recommend considering a GLP-1 RA or SGLT-2i in patients with type 2 diabetes 

without established CVD but at high risk of CVD.10 Therefore, we assessed the 

lifetime benefit of adding GLP-1 RA and SGLT-2i to current treatment in patients 

without CVD, using the overall HR from the meta-analyses (HR for GLP-1 RA of 

0.864 and HR for SGLT-2i of 0.905) for patients at high CVD risk.

Results

Study population

Baseline characteristics stratified according to history of CVD are shown in 

Table 1. The cohort comprised 2901 patients with CVD (31%) and 6515 patients 

without CVD (69%). Generally, compared with patients without CVD, those 

with CVD were older, were more often male, had a longer duration of type 2 

diabetes, and more often had microvascular complications of type 2 diabetes. 

Furthermore, patients with CVD more often used CV preventive medication 

and insulin. 

Distribution of CVD risk

Distributions of 10-year and lifetime CVD risk stratified according to history of 

CVD are shown in Figure 1. There was a wide distribution of both 10-year and 

lifetime risk, with higher risk in patients with a history of CVD than in those without 

CVD. Two peaks were observed in patients with CVD; one at approximately 

30% 10-year and 65% lifetime CVD risk, and one at approximately 95% 10-year 

and 98% lifetime CVD risk. Patients with T2D and a history of CVD with lower 

predicted risks were generally older, had lower risk factor levels and had higher 

frequency of preventive CV medication use. The majority of patients with type 

2 diabetes and a history of CVD at very high predicted CVD risk belonged to a 

high-risk region. Among patients with a history of CVD, 96% had a 10-year risk 

of recurrent CVD over 10%, and 80% had a lifetime risk of recurrent CVD over 

50%. In patients without a history of CVD, 14% had a 10-year risk of a first CV 

event over 10%, and only 0.4% had a lifetime risk of a first CV event over 50%.
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Table 1. Baseline characteristics of the CAPTURE study population included in this 
analysis (N = 9416)

Characteristic History of CVD
(n = 2901)

No history of CVD
(n = 6515)

Demographics and medical history

Age, years 67 ± 9 61 ± 11

Sex, men 1831 (63) 3303 (51)

Diabetes duration, years, median (IQR) 13 (7–20) 10 (5–16)

Smoking, current 428 (15) 888 (14)

Nephropathy 800 (28) 1081 (17)

Retinopathy 697 (24) 1028 (16)

Neuropathy 874 (30) 1243 (19)

Cardiovascular medication use

Blood pressure-lowering medication 2240 (77) 3498 (54)

Lipid-lowering medication 1947 (67) 2845 (44)

Antiplatelet medication 1790 (62) 1309 (20)

Glucose-lowering agent use

Metformin 2163 (75) 5208 (80)

Insulin 1323 (46) 2208 (34)

DPP-4i 802 (28) 2015 (31)

Sulfonylurea 642 (22) 1525 (23)

SGLT-2i 517 (18) 1062 (16)

GLP-1 RA 281 (10) 715 (11)

Clinical characteristics and laboratory values

Systolic blood pressure, mmHg 132 ± 17 132 ± 15

Diastolic blood pressure, mmHg 76 ± 11 78 ± 10

Body mass index, kg/m² 30 ± 6 30 ± 6

eGFR, mL/min/1.73 m², median (IQR) 76 (59–90) 84 (68–96)

Microalbuminuria 870 (30) 1432 (22)

Macroalbuminuria 237 (8) 370 (6)

HbA1c, mmol/mol 62 ± 17 60 ± 18

HbA1c, %, mean 7.8 7.6

Cholesterol, mmol/L 4.2 ± 1.2 4.6 ± 1.1

HDL-cholesterol, mmol/L 1.2 ± 0.3 1.2 ± 0.3

LDL-cholesterol, mmol/L 2.3 ± 0.9 2.6 ± 0.9

Non-HDL-cholesterol, mmol/L 2.4 ± 1.0 2.6 ± 1.2

Predicted risks

Mean 10-year risk of CVD, % 40.1 4.9

Mean lifetime risk of CVD, % 65.0 10.2

Data are presented as n (%) or mean ± SD unless otherwise stated.
Abbreviations: CVD, cardiovascular disease; DPP-4i, dipeptidyl peptidase-4 inhibitor; eGFR, 
estimated glomerular filtration rate; GLP-1 RA, glucagon-like peptide-1 receptor agonist; HbA1c, 
glycated haemoglobin; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-density 
lipoprotein; SD, standard deviation; SGLT-2i, sodium‒glucose co-transporter-2 inhibitor.
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Figure 1. Predicted 10-year CVD risk for patients (A) with CVD and (B) without CVD, 
and predicted lifetime CVD risk for patients (C) with CVD and (D) without CVD in the 
CAPTURE study 

CVD, cardiovascular disease

Distribution of preventive CVD treatment

Distribution of preventive medication use stratified by history of CVD and 

according to decile of predicted lifetime CVD risk is shown in Figure 2. 

Larger proportions of patients with CVD were using blood pressure-lowering 

medication, statins and aspirin than those of patients without CVD (Figure 2A,B). 

Among patients with and without CVD, those with a higher predicted lifetime 

CVD risk generally had lower statin and aspirin use. Patients with CVD and at 

higher predicted CVD risk had higher use of antihypertensive medication. GLP-

1 RA use (10% in patients with CVD and 11% in patients without CVD) was lower 

than SGLT-2i use (18% in patients with CVD and 16% in patients without CVD). 

Overall, the proportion of patients with T2D using GLP-1 RA or SGLT-2i did not 

greatly differ between patients with and without a history of CVD (Figure 2C,D). 

In patients with a history of CVD, there was a trend for both GLP-1 RA and SGLT-

2i use to be lower in individuals with a higher predicted CVD risk. In patients 

without CVD, no clear pattern according to risk decile was observed. 
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Distribution of lifetime benefit from preventive treatment

The distribution of the number of life-years gained without (recurrent) CVD with 

optimal CVRM and addition of GLP-1 RAs and SGLT-2is is shown in Figure 3. In 

patients with CVD, mean (SD) number of life-years gained without recurrent 

CVD was 0.9 (0.5) years (Figure 3A) with addition of GLP-1 RA and 0.6 (0.4) years 

with addition of SGLT-2i (Figure 3B). The lifetime benefit from optimal CVRM was 

higher in patients with CVD (overall mean [SD] lifetime benefit gained 3.9 [3.0] 

years) (Figure 3C) than in those without CVD (overall mean [SD] lifetime benefit 

gained 1.3 [1.9] years) (Figure 3D). In patients with CVD, higher predicted CVD 

risk was associated with greater lifetime benefit from optimal CVRM, except 

for in the highest lifetime CVD risk decile. In patients with CVD, addition of both 

GLP-1 RAs and SGLT-2is to optimal CVRM led to an overall mean (SD) gain in 

the number of life-years free of a (recurrent) CVD event of 1.2 (0.6) years, which 

increased with rising lifetime CVD risk.

Figure 2. Distribution of current preventive medication use according to predicted 
lifetime CVD risk stratified by history of CVD. CVRM in patients (A) with CVD and (B) 
without CVD. GLA treatment in patients (C) with CVD and (D) without CVD 

CVD, cardiovascular disease; CVRM, cardiovascular risk management; GLA, glucose-
lowering agent; GLP-1 RA, glucagon-like peptide-1 receptor agonist; SGLT-2i, sodium‒
glucose co-transporter-2 inhibitor
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Sensitivity analyses

When performing the analyses as a complete case analysis (n = 3532), the results 

did not change substantially (data not shown). Baseline tables stratified by history 

of CVD and lifetime CVD risk decile are shown in Supplementary tables 5 and 

6. There was a wide distribution in the use of GLP-1 RA and SGLT-2i according to 

geographical region (Supplementary figure 3). Younger age at treatment initiation 

was associated with a larger gain in number of life-years free of (recurrent) CVD with 

optimal treatment and further addition of GLP-1 RA and SGLT-2i (Supplementary 

figure 4). Lastly, when assessing lifetime benefit of adding GLP-1 RA and SGLT-2i to 

current treatment in patients without CVD but at high CVD risk, a higher predicted 

CVD risk was associated with more benefit from treatment (Supplementary figure 5).

Figure 3. Distribution of the number of predicted life-years gained without (recurrent) 
CVD with the addition of (A) GLP-1 RA and (B) SGLT-2i treatment in patients with CVD, 
and with optimal CVRM, in patients (A, B, C) with CVD and (D) without CVD

Optimal CVRM includes smoking cessation (if the patient was a smoker), reaching specified 
target goals for LDL-cholesterol level, HbA1c level and systolic blood pressure, and 
initiation of aspirin treatment if appropriate. Panel C also shows the number of predicted 
life-years gained without (recurrent) CVD with the addition of SGLT-2is and GLP-1 RAs to 
CVRM. Error bars represent 95% confidence intervals. CVD, cardiovascular disease; CVRM, 
cardiovascular risk management; GLP-1 RA, glucagon-like peptide-1 receptor agonist; 
HbA1c, glycated haemoglobin; LDL, low-density lipoprotein; SGLT-2i, sodium‒glucose co-
transporter-2 inhibitor.
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Discussion

This post hoc analysis of the CAPTURE data showed a wide distribution of 

predicted CVD risk in patients with and without a history of CVD. The use of 

preventive medication varied across lifetime CVD risk deciles. Antihypertensive 

medication, statins and aspirin use was much more common in patients with 

CVD; however, no clear difference in GLP-1 RA and SGLT-2i use was seen 

between patients with and without CVD. When adding GLP-1 RA and SGLT-2i 

to current treatment, a wide distribution of gain in number of life-years without 

a (recurrent) CVD event was observed. The benefit of adding these GLAs to 

optimal CVRM was considerably smaller. Higher lifetime benefits of preventive 

treatment were seen in patients with type 2 diabetes with a higher predicted 

CVD risk, and younger patients had a higher lifetime benefit from preventive 

treatment. 

Use of prediction models in the field of CV medicine is increasing.24 Well-

performing models allow individualized predictions and tailored risk 

management based on a series of easily obtainable clinical values and patient 

characteristics. Translating CVD risk into lifetime CVD risk and life-years free 

of CVD with and without initiation of specific treatments is clear and relatable 

for patients, and may promote shared decision-making. Patients with type 2 

diabetes are often the primary managers of their condition, and such discussion 

may aid adherence to treatment or lifestyle changes, provided that the treating 

physician tailors communication to the individual. 

Several CVD prediction models have been developed for patients with type 2 

diabetes;25, 26 however, we chose the DIAL model because it is contemporary 

and also allows assessment of absolute risk reduction and gain in life-years 

without (recurrent) CVD with preventive treatment. Furthermore, the model 

accounts for non-CV mortality as a competing risk and allows for longer 

prediction time spans (including lifetime predictions). The model was derived 

and externally validated in large, contemporary population-based type 2 

diabetes cohorts from various regions, making it applicable to general type 2 

diabetes populations in routine clinical settings in various countries and regions. 

We observed two peaks in the distribution of predicted risk of recurrent CVD 

in patients with CVD. Patients with type 2 diabetes and a history of CVD with 

lower predicted risks were generally older, and thus possibly causing a healthy 
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survivor effect. Furthermore, as would be expected, risk factor levels were lower 

and there was a higher frequency of preventive CV medication use in these 

patients. The second peak could be attributed to the fact that the majority of 

patients with type 2 diabetes and a history of CVD at very high predicted CVD 

risk belonged to a high-risk region, as was seen in the predicted risk stratified 

baseline table.

Prescriptions of aspirin and statins appeared to be less frequent in patients with 

increasing predicted lifetime risk of CVD. These patients at highest risk of CVD 

are likely to be poorly treated in terms of CVRM, and therefore have higher CVD 

risk. GLP-1 RA and SGLT-2i provide significant CVD risk reduction independent 

of glucose lowering. Meta-analyses in patients with type 2 diabetes and a 

history of CVD have found a 15% lower risk of major CVD outcomes with a 

GLP-1 RA4 and a 11% lower risk with an SGLT-2i,5 compared with placebo. In the 

present study, there was a trend for patients with CVD at higher predicted CVD 

risk to have a lower frequency of both GLP-1 RA and SGLT-2i use. Only a small 

proportion of patients with CVD in the CAPTURE cohort used these therapies, 

and no substantial difference was seen between patients with and without CVD; 

even though these GLAs are recommended for patients with CVD in current 

guidelines.10, 11 The present study did not consider other reasons contributing 

to the low GLP-1 RA and SGLT-2i use, including lack of reimbursement from 

healthcare providers or contraindications in high-risk patients. Furthermore, the 

CAPTURE data were collected in 2019, and rates of GLP-1 RA and SGLT-2i use 

may have changed since then. We applied the CV treatment effects of GLP-1 

RA and SGLT-2i only to patients with established CVD, because a significant 

effect was observed only in this patient group in the meta-analyses.4, 5 It should 

be acknowledged that these preventive GLAs will likely also be effective in 

patients with CVD risk factors only, rather than established CVD, and interaction 

with established CVD in the meta-analyses was non-significant for both GLP-1 

RA and SGLT-2i.4, 5 Current guidelines recommend considering GLP-1 RA and 

SGLT-2i in patients with type 2 diabetes without established CVD but at high 

risk of CVD;10 however, because there is still limited evidence that this effect is 

significant in patients with CVD risk factors only, we chose not to incorporate 

this in our main analyses. 

CVRM remains the primary focus in reducing CVD risk in patients with type 2 

diabetes, including smoking cessation, lowering of lipid levels, blood pressure 
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and blood glucose concentrations, aspirin use and lifestyle interventions;11 

however, the level of evidence for efficacy of these interventions differs. 

Optimal CVRM is difficult to achieve in a large percentage of patients with type 

2 diabetes,27 and these patients will benefit from GLP-1 RA or SGLT-2i in terms 

of years gained free of (recurrent) CVD. In the present study, we combined HRs 

for several preventive treatments according to best available current evidence, 

to show the absolute benefit an individual patient may gain from treatment, 

both with optimal CVRM and with the addition of GLP-1 RA and SGLT-2i. We 

observed a wide distribution of the gain in (recurrent) CVD-free life expectancy. 

Patients with established CVD at higher CVD risk gained more life-years free 

of (recurrent) CVD, except for those in the highest decile, most likely owing to 

lower overall life expectancy in this group of patients and lower lifelong benefit 

from treatment. We previously used the DIAL model to demonstrate the benefit 

of adding semaglutide treatment for high-risk patients, which also showed 

a wide distribution in the number of life-years gained without (recurrent) 

CVD and a greater gain in patients with type 2 diabetes at higher CVD risk.28 

Furthermore, this approach has been used in other populations, including 

apparently healthy people29 and patients with vascular disease.30 By using an 

external cohort of patients with type 2 diabetes spanning various regions and 

including preventive treatment, we have expanded on these previous studies.

The cohort with type 2 diabetes included patients from various regions, making 

our results applicable worldwide. However, the original CAPTURE study 

involved a selected population, with inclusion of patients from both specialist 

care and general practice, which might not represent the general type 2 

diabetes population in each specific country; the use of preventive medication 

is likely to be higher than that in the general population with type 2 diabetes. 

This may also lead to a degree of selection bias, and participants in the 

CAPTURE study may have been at higher CVD risk than the general population 

of patients with type 2 diabetes. Furthermore, owing to the functionality of the 

DIAL model, the geographical regions were based solely on country location 

and did not represent inter-regional differences in healthcare systems. Also, 

since the DIAL model only allows for prediction of CVD as the outcome, no 

assessment could be performed regarding risk of chronic kidney disease and 

hospitalization for heart failure, which are also highly relevant outcomes in 

people with type 2 diabetes. With the data on people with type 2 diabetes 
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currently available, it is not feasible to validate the DIAL model for longer than 

10-year time span predictions, because this would require a cohort with a 

lifetime follow-up. The DIAL model has shown reasonable discrimination and 

calibration for 10-year risk of cardiovascular disease in different populations;21, 

28 however, as data on populations with type 2 diabetes accrues, the model 

will benefit from longer time span validations. Substantial amounts of data 

were missing for some predictors, which might have affected the results; 

however, imputation was used to reduce the risk of bias and a complete case 

analysis was also performed, which did not alter the results substantially. 

Furthermore, because data were collected cross-sectionally and no follow-

up was available, we were unable to geographically recalibrate the model to 

the current cohort. Recalibration according to the geographical regions from 

the original DIAL model was therefore used. HRs of preventive treatment are 

constant, so patients were assumed to experience the same clinical benefit for 

the remainder of their life expectancy.

Conclusions

We found a wide distribution of lifetime CVD risk in patients with type 2 

diabetes from the CAPTURE study. There was also a wide distribution in benefit 

from preventive treatment, in terms of both optimal CVRM and the addition of 

GLP-1 RA and SGLT-2i. Translating CVD risk into lifetime risk and expressing the 

benefit of preventive treatment as gain in (recurrent) CVD-free life expectancy 

aids in individualizing prevention in patients with type 2 diabetes and shared 

decision-making in the clinical setting.
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Supplementary material

Supplementary table 1. Baseline table for non-imputed data with the number of missing 
values per variable (N = 9416)

Characteristic History of CVD
(n = 2901)

No history of CVD
(n = 6515)

Missing values, 
n (%)a

Demographics and medical history

Age, years 67 ± 9 61 ± 11 0

Sex, men 1831 (63) 3303 (51) 0

Diabetes duration, years, median (IQR) 13 (7–20) 10 (5–16) 11 (0.1)

Smoking, current 424 (15) 876 (14) 97 (1)

Nephropathy 797 (28) 1080 (17) 5 (<0.1)

Retinopathy 696 (24) 1028 (16) 5 (<0.1)

Neuropathy 872 (30) 1242 (19) 6 (<0.1)

Cardiovascular medication use

Blood-pressure-lowering medication 2240 (77) 3498 (54) 0

Lipid-lowering medication 1947 (67) 2845 (44) 0

Antiplatelet medication 1790 (62) 1309 (20) 0

Glucose-lowering-agent use

Metformin 2163 (75) 5208 (80) 0

Insulin 1323 (46) 2208 (34) 0

DPP-4i 802 (28) 2015 (31) 0

Sulfonylurea 642 (22) 1525 (23) 0

SGLT-2i 517 (18) 1062 (16) 0

GLP-1 RA 281 (10) 715 (11) 0

Clinical characteristics and laboratory values

Systolic blood pressure, mmHg 132 ± 17 132 ± 16 199 (2)

Diastolic blood pressure, mmHg 76 ± 11 78 ± 10 201 (2)

Body mass index, kg/m² 30 ± 6 30 ± 6 204 (2)

eGFR, mL min–1 [1.73 m]–², median (IQR) 75 (59–90) 84 (68–95) 1834 (19)

Microalbuminuria 612 (31) 917 (22) 3205 (34)

Macroalbuminuria 175 (9) 266 (6) 3205 (34)

HbA1c, mmol/mol 61 ± 17 60 ± 18 672 (7)

HbA1c, %, mean 7.7 7.6  –

Total cholesterol, mmol/L 4.2 ± 1.2 4.6 ± 1.2 1473 (16)

HDL-cholesterol, mmol/L 1.2 ± 0.3 1.2 ± 0.4 1772 (19)

LDL-cholesterol, mmol/L 2.3 ± 0.9 2.6 ± 0.9 1644 (17)

Non-HDL-cholesterol, mmol/L 2.4 ± 1.1 2.6 ± 1.3 2044 (22)

aFrom the total of 9416 patients. 
Data are presented as n (%) or mean ± SD unless otherwise stated.
CVD, cardiovascular disease; DPP-4i, dipeptidyl peptidase-4 inhibitor; eGFR, estimated 
glomerular filtration rate; GLP-1 RA, glucagon-like peptide-1 receptor agonist; HbA1c, glycated 
haemoglobin; HDL, high-density lipoprotein; IQR, interquartile range; LDL, low-density 
lipoprotein; SD, standard deviation; SGLT-2i, sodium‒glucose co-transporter-2 inhibitor.
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Supplementary table 2. Classification of patients with type 2 diabetes in CAPTURE 
according to 2021 ESC guidelines

CVD risk group Definition in CAPTURE study population n (%)

Very high risk Type 2 diabetes with:
• ASCVD and/or
• Severe target organ damage defined as either:

 ο eGFR <45 mL min–1 [1.73 m]–2

 ο eGFR 45–59 mL min–1 [1.73 m]–2 and 
albuminuria A2 (uACR 30–299 mg/g)

 ο Albuminuria A3 (uACR ≥300 mg/g)
 ο Microalbuminuria and retinopathy and 

neuropathy

3820 (41%)

High risk Type 2 diabetes with: 
• No ASCVD and 
• No severe target organ damage and 
• Not fulfilling moderate risk criteria

5424 (58%)

Moderate risk Type 2 diabetes with all of the following:
• Type 2 diabetes duration <10 years and
• Well controlled type 2 diabetes:

 ο HbA1c <53 mmol/mol (7%)
• No evidence of TOD:

 ο No neuropathy 
 ο No retinopathy 
 ο No albuminuria and  

eGFR >60 mL min–1 [1.73 m]–2

172 (2%)

• No additional ASCVD risk factors:
 ο Systolic blood pressure <140 mmHg
 ο LDL-cholesterol ≤2.6 mmol/L
 ο Body mass index ≤30 kg/m2

 ο Non-smoker

Derived from Visseren et al.1

ASCVD, atherosclerotic cardiovascular disease; CVD, cardiovascular disease; eGFR, 
estimated glomerular filtration rate; ESC, European Society of Cardiology; HbA1c, glycated 
haemoglobin; LDL, low-density lipoprotein; TOD, target organ damage; uACR, urine 
albumin–creatinine ratio.
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Supplementary table 3. Treatment targets according to CVD risk group derived from 
the 2021 ESC guidelines

  Very high risk High risk Moderate risk 

SGLT-2i Yes No No

GLP-1 RA Yes No No

Aspirin Yes No No

Systolic blood pressure
Step 1
Step 2

140 mmHg
130 mmHg

140 mmHg
130 mmHg

No further reduction
No further reduction

HbA1c, mmol/mol 64 53 No further reduction

HbA1c, % 8 7 –

LDL-cholesterol
Step 1
Step 2

1.8 mmol/L
1.4 mmol/L

2.6 mmol/L
1.8 mmol/L

No further reduction
No further reduction

Smoking cessation Yes Yes Already non-smoker

Derived from Visseren et al.1

CVD, cardiovascular disease; ESC, European Society of Cardiology; GLP-1 RA, glucagon-
like peptide-1 receptor agonist; HbA1c, glycated haemoglobin; LDL, low-density lipoprotein; 
SGLT-2i, sodium‒glucose co-transporter-2 inhibitor.

Supplementary table 4. Treatment effects used for calculating lifetime benefit from 
optimal treatment

Treatment Hazard ratio of treatment

Patients with history 
of CVD

Patients without 
history of CVD

Lipid-lowering treatment 
1 mmol/L LDL-cholesterol reduction 0.782 0.782

Blood-pressure-lowering treatment 
10 mmHg SBP reduction 0.803 0.803

Glucose-lowering treatment 
10 mmol/mol HbA1c reduction 0.914 0.914

Aspirin or equivalent 0.815 0.885

Smoking cessation
CVD outcome
Non-CVD mortality outcome

0.606

0.737

0.606

0.737

SGLT-2i 0.898 1.008

GLP-1 RA 0.859 1.009

CVD, cardiovascular disease; GLP-1 RA, glucagon-like peptide-1 receptor agonist; HbA1c, 
glycated haemoglobin; LDL, low-density lipoprotein; SBP, systolic blood pressure; SGLT-2i, 
sodium‒glucose co-transporter-2 inhibitor.
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Supplementary figure 2. Life-years free of (recurrent) CVD with optimal CVRM according 
to step 1 and step 2 of treatment targets in patients (A) with a history of CVD and (B) with 
no history of CVD

CVD, cardiovascular disease; CVRM, cardiovascular risk management.

Supplementary figure 3. Distribution of preventive medication for (A) GLP-1 RA and (B) 
SGLT-2i and according to geographical region stratified according to history of CVD

CVD, cardiovascular disease; GLP-1 RA, glucagon-like peptide-1 receptor agonist; SGLT-2i, 
sodium‒glucose co-transporter-2 inhibitor. 
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Supplementary figure 4. Distribution of predicted life-years gained without (recurrent) 
CVD with optimal CVRM treatment and addition of GLP-1 RA and SGLT-2i according to 
age at baseline in patients (A, B, C) with a history of CVD and (D) with no history of CVD

CVD, cardiovascular disease; CVRM, cardiovascular risk management; GLP-1 RA, glucagon-
like peptide-1 receptor agonist; SGLT-2i, sodium‒glucose co-transporter-2 inhibitor.

Supplementary figure 5. Distribution of predicted life-years gained without (recurrent) 
CVD with addition of (A) GLP-1 RA and (B) SGLT-2i 

CVD, cardiovascular disease; GLP-1 RA, glucagon-like peptide-1 receptor agonist; SGLT-2i, 
sodium‒glucose co-transporter-2 inhibitor.
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Abstract

Background and objectives: Individuals with type 2 diabetes are at higher risk 

of developing end-stage kidney disease (ESKD). The objective of this study 

was to develop and validate a decision support tool for estimating 10-year and 

lifetime risk of ESKD in individuals with type 2 diabetes as well as estimating 

individual treatment effects of preventive medication.

Design, setting, participants, and measurements: The prediction algorithm 

was developed in 707,077 individuals with prevalent and incident type 2 

diabetes from the Swedish National Diabetes Register for 2002-2019. Two Cox 

proportional regression functions for ESKD (first occurrence of either kidney 

transplantation, long-term dialysis or persistent estimated glomerular filtration 

rate <15 ml/min/1.73m2) and all-cause mortality as respective endpoints 

were developed using routinely available predictors. These functions were 

combined into life-tables to calculate predicted survival without ESKD, while 

using all-cause mortality as competing outcome. The model was externally 

validated in 256,265 individuals with incident type 2 diabetes from the Scottish 

Care Information Diabetes database between 2004 and 2019. 

Results: During a median follow-up of 6.8 years (IQR 3.2-10.6), 8,004 (1.1%) of 

individuals with type 2 diabetes in the Swedish National Diabetes Register 

cohort developed ESKD and 202,078 (29%) died. The model performed well 

with a c-statistic for ESKD of 0.89 (95%CI 0.88-0.90) for internal validation and 

0.74 (95%CI 0.73-0.76) for external validation. Calibration plots showed good 

agreement in observed vs. predicted 10-year risk of ESKD for both internal and 

external validation. 

Conclusions: This study derived and externally validated a prediction tool for 

estimating 10-year and lifetime risk of ESKD as well as life-years free of ESKD 

gained with preventive treatment in individuals with type 2 diabetes using 

easily available clinical predictors. 
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Introduction

Worldwide, the prevalence of type 2 diabetes is rapidly increasing.1 Individuals 

with type 2 diabetes have three to five times higher risk of developing end-stage 

kidney disease (ESKD) compared with individuals without type 2 diabetes.2 

Treatment options to prevent or delay ESKD in individuals with type 2 diabetes 

include smoking cessation,3 intensive glucose- and blood pressure (BP)-

lowering,4, 5 treatment with angiotensin-converting enzyme-inhibitors (ACEi) 

or Angiotensin-II Receptor Blockers (ARB),6 sodium-glucose cotransporter-2 

inhibitors (SGLT2i)7 and glucagon-like peptide-1 receptor agonists (GLP1-RA).7 

The absolute benefit an individual may derive in terms of ESKD risk reduction 

from these treatments depends on several different factors including risk factor 

burden, duration of treatment and overall life expectancy.

Few prediction models exist for ESKD in individuals with type 2 diabetes.8-11 

These models have important limitations since they predict risk over a relatively 

short time period and often predict intermediate outcomes such as doubling of 

serum creatinine,8 which might be less relatable to an individual than ESKD as a 

hard outcome. Notably, shared risk factors associated with ESKD also contribute 

to a high cardiovascular disease and mortality risk.12 Therefore it is crucial to take 

all-cause mortality into account as a competing risk to avoid overestimation of 

ESKD risk, since most individuals with type 2 diabetes will die from other causes 

before developing ESKD. These gaps highlight the need to develop prediction 

models for long-term risk of ESKD in individuals with type 2 diabetes. 

Therefore, the aim of the current study was to develop and validate a prediction 

model for risk of ESKD in large population-based cohorts of individuals with 

type 2 diabetes. Further, we aimed to predict life expectancy free of ESKD and 

include treatment effects of preventive therapy.

Methods

Data sources and participants

The prediction model was developed and internally validated in the Swedish 

National Diabetes Register (NDR) (n = 707,077), which includes individuals with 

both incident and prevalent type 2 diabetes. Participants in NDR were included 

from January 1st 2002 until 25th September 2019.
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The model was externally validated in an extract of the Scottish Care Information 

(SCI)-Diabetes database (n = 256,265), which includes individuals with incident 

type 2 diabetes. Participants from SCI-Diabetes were included if their date of 

diagnosis of diabetes was between January 1st 2004 and January 1st 2019. Both 

registers have close to complete coverage of the population with a diagnosis of 

type 2 diabetes during the study period. Register details for both cohorts have 

been described elsewhere.13, 14 All participants were aged >30 years at cohort 

entry with a diagnosis of type 2 diabetes (Supplementary table 1) without ESKD 

at baseline. All use of data from these registers received appropriate local data 

governance approvals and all studies complied with the Declaration of Helsinki.

Predictor and outcome variables

ESKD was defined as chronic kidney disease (CKD) stage 5 (sustained estimated 

glomerular filtration rate (eGFR) <15ml/min/1.73 m2), long-term dialysis or 

kidney transplantation,15 and all-cause mortality was defined as death from any 

cause. Linkage of the NDR and SCI-Diabetes to national death registrations 

and hospital admission/discharge registries enabled the identification of ESKD 

using ICD-10 and procedure codes (Supplementary table 2).

Predictors were pre-selected based on existing risk scores for ESKD9-11 and 

their availability in clinical practice. Pre-selection of variables was applied to 

prevent overfitting.16 The predictors included age, sex (male/female), current 

smoking (yes/no), systolic BP, body mass index (BMI), Hemoglobin A1c, eGFR,17 

non-high-density lipoprotein (HDL) cholesterol, albuminuria (none/moderate/

severe), duration of type 2 diabetes (years since diagnosis), insulin treatment 

(yes/no) and history of cardiovascular disease (yes/no) (Supplementary table 

1). Non-HDL-cholesterol was chosen as single marker to represent lipid 

profile.18 Albuminuria was defined as a urine-albumin/creatinine ratio (UACR) 

of 3-30 mg/mmol for moderate albuminuria and UACR >30mg/mmol for 

severe albuminuria. An individual’s baseline was set as the date of the first 

eGFR measurement following enrollment in NDR or diagnosis of diabetes 

in SCI-Diabetes and the values of other predictors were defined at the first 

measurement within 12 months after this date. 

Statistical analyses

Baseline characteristics are described as median and interquartile range (IQR) 

for continuous variables and as count (%) for categorical variables.
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Development of the prediction model

A split-sample approach was used for development and internal validation 

of the prediction model. A random sample of 75% of participants from NDR 

(n=530,308) was used as the development dataset. Missing data were imputed 

using single imputation with predictive mean matching. Details are described 

in the Supplementary material, Predictors and missing data. 

In the derivation dataset, two Cox proportional hazards functions with left 

truncation and right censoring were developed using age as the time-axis: one 

for prediction of ESKD events (function A) and one for prediction of all-cause 

mortality (function B). 

Baseline hazards for ESKD (function A) were derived using 1-year intervals (due 

to the low amount of ESKD events) and thereafter smoothed and interpolated 

to 3-month intervals. Baseline hazards for all-cause mortality (function B) were 

derived using 3-month intervals (Supplementary figure 1). 

By combining the coefficients from the Cox proportional hazards functions A 

and B and the smoothed baseline hazards, ESKD-free survival, 10-year and 

lifetime risk of ESKD and all-cause mortality were calculated using previously 

validated life-tables.19 10-year risk of ESKD was calculated by summation of 

the predicted ESKD and all-cause mortality risk, respectively, in the first 10 

years and beyond from a person’s age at cohort entry. Similarly, lifetime risk 

of ESKD was calculated by the summation of the predicted ESKD risk from an 

individual’s age at cohort entry until the maximum age of 95 years. All analyses 

were performed with R-statistic programming (version4.0.3,R Foundation for 

Statistical Computing, Vienna,Austria). A detailed description of statistical 

methods is provided in the Supplementary material, Statistical analyses. 

Model validation for 10-year predictions

Goodness-of-fit was assessed in the remaining 25% of NDR by calibration plots. 

Observed risks of ESKD were calculated using cumulative incidence functions 

with the competing event being all-cause mortality. For external validation in 

SCI-Diabetes, the models were recalibrated based upon the incidence of ESKD 

and all-cause mortality, using the expected vs. observed ratios. The logarithm 

of the expected vs. observed ratio was subtracted from the linear predictor 

for both outcomes. Discrimination was quantified using Harrell’s c-statistic for 
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survival data.20 Our approach to model development and validation complies 

with PROBAST guidelines21 and TRIPOD.22

Prediction of treatment effects

To estimate the individual treatment benefit, the linear predictor for function 

A was combined with hazard ratios (HRs) from the most recent high quality 

meta-analyses describing effect sizes for each intervention. For the current 

study, we derived estimates of the effect of glucose-lowering, BP-lowering, 

GLP1-RA, SGLT2i, ACEi/ARB treatment and smoking cessation as described 

in the Supplementary material, Relative treatment effects. The HR of smoking 

cessation, BP-lowering and initiation of GLP1-RA or SGLT2i for all-cause 

mortality were added to the linear predictor for model B.5, 23-25

The lifetime benefit of treatment was calculated as the difference between 

predicted median ESKD-free life expectancy with and without treatment. Similarly, 

10-year absolute risk reduction was estimated by calculating the difference 

between the predicted 10-year ESKD risk with and without treatment. This same 

approach was used for estimating lifetime ESKD risk reduction with initiation of 

treatment. All model assumptions are provided in Supplementary table 9.

Sensitivity analyses

To incorporate the natural decline of eGFR in the predictions of ESKD-risk 

several sensitivity analyses were performed to incorporate functions of eGFR 

over time, see Supplementary materials, Sensitivity analyses. 

Results

Baseline characteristics

Selection of the development and the validation cohorts in NDR is illustrated in 

Supplementary figure 2. The NDR cohort consisted of 401,433(57%) men, median(IQR) 

age was 65(57-74) years and median(IQR) eGFR was 85(68-97) ml/min/1.73m2 

(Table 1). In SCI-Diabetes, 145,753(57%) were men, median(IQR) age was 61(52-70) 

years and median(IQR) eGFR was 83(68-96) ml/min/1.73m2. In NDR, median(IQR) 

follow-up was 6.8(3.2-10.6) years with 8004 individuals(1.1%) developing incident 

ESKD and 202,078(29%) deaths. In SCI-Diabetes, median(IQR) follow-up was 

5.9(2.6-9.6) years with 1653(0.7%) ESKD-events and 45,056(18%) deaths. 
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Table 1. Baseline characteristics of participants identified from the Swedish National Diabetes 
Register and Scottish Care Information - Diabetes cohort after imputation of missing data

Swedish National 
Diabetes Register 
(n = 707,077)

Scottish Care information - 
Diabetes cohort 
(n = 256,265)

Sex (male) 401,433 (57%) 145,753 (57%)

Age (years) 65 (57-74) 61 (52-70)

Current smoking 110,630 (16%) 57,702 (23%)

Duration of diabetes mellitus (years) 2 (0-7) 0 (0-0)

Incident type 2 diabetes 229,635 (32%) 256,265 (100%)

Insulin treatment 133,661 (19%) 25,227 (10%)

History of cardiovascular disease 155,806 (22%) 43,012 (17%)

eGFR (mL/min/1.73m2) 85 (68-97) 83 (68-96)

Moderate albuminuria 104,227 (15%) 49,536 (19%)

Severe albuminuria 43,454 (6%) 5,353 (2%)

Systolic blood pressure (mmHg) 138 (126-150) 135 (124-144)

Body mass index (kg/m2) 29 (26-33) 31 (28-36)

HbA1c (%) 6.7 (6.2-7.6) 6.9 (6.3-7.9)

HbA1c (mmol/mol) 50 (44-60) 52 (45-63)

Non HDL cholesterol (mmol/L) 3.6 (2.9-4.4) 3.3 (2.6-4.2)

Prescribed RASi medication 299,559 (42%) 38,769 (15%)

Variables are displayed as median (IQR) for continuous variables and counts (%) for categorical 
variables. Abbreviations: eGFR = estimated glomerular filtration rate, HbA1c = hemoglobin A1c, 
HDL = high-density-lipoprotein, RASi = Renin-angiotensin-system inhibition medication

Prediction model and validation

Supplementary table 3 shows the HRs and 95% confidence intervals (95%CI) for 

functions A and B. The formulae for calculating survival for 3-month intervals, 

including coefficients and age-specific baseline hazards are included in 

Supplementary tables 4 and 5. 

Predicted 10-year risk for ESKD and all-cause mortality showed good 

agreement with the 10-year observed risk in the internal validation dataset 

(Figure 1). Internal model performance in terms of discrimination was good, 

reflected in c-statistics of 0.89(95%CI 0.88-0.90) for ESKD and 0.77(95%CI 0.77-

0.77) for all-cause mortality. 

Incidence rates for ESKD and all-cause mortality were higher in NDR than in 

SCI-Diabetes (Table 2). Due to the difference in event rates, the model was 

recalibrated according to predicted vs. observed ESKD and all-cause mortality 

rates. Predicted 10-year risk for ESKD and all-cause mortality showed good 
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agreement with the 10-year observed risk in SCI-Diabetes (Figure 2), although 

risk in the highest decile was overestimated. The model performed well 

regarding discrimination with c-statistics of 0.74 (95% CI 0.73-0.76) for ESKD and 

0.77 (95% CI 0.77-0.77) for all-cause mortality. A table of baseline characteristics 

stratified for incident versus prevalent type 2 diabetes in NDR is provided as 

Supplementary table 6. A baseline table for predictors stratified according to 

predicted ESKD risk is provided in Supplementary table 7.

Figure 1. Calibration plots for internal validation in a random sample of 25% from the 
Swedish National Diabetes Register (n = 170,114)

Calibration slope for end-stage kidney disease as outcome 1.02, slope for all-cause 
mortality as outcome 1.04. ESKD = end-stage kidney disease.

Table 2. Outcomes and results for the Swedish National Diabetes Register and the 
Scottish Care Information – Diabetes database

Swedish National 
Diabetes Register 
(n = 707,077)

Scottish Care information - 
Diabetes cohort 
(n = 256,265)

Median follow-up (IQR) (years) 6.8 (3.2-10.6) 5.9 (2.6-9.6)

ESKD events (n, (%)) 8004 (1.1%) 1653 (0.7%)

All-cause mortality events (n, (%)) 202,078 (29%) 45,056 (18%)

Incidence rate, ESKD 1.6/1,000 person-years 1.0/1,000 person-years

Incidence rate, all-cause mortality 39.5/1,000 person-years 28.0/1,000 person-years

C-statistic for ESKD 0.89 (0.88-0.90) 0.74 (0.73-0.76)

C-statistic for all-cause mortality 0. 77 (0.77-0.77) 0.77 (0.77-0.77)

For individuals with incident type 2 diabetes in Swedish National Diabetes Register cohort (n 
= 229,635;32%), incidence rates were 0.7/1000 person-years for ESKD and 27/1000 person-
years for all-cause mortality. ESKD = end-stage kidney disease; IQR = interquartile range.
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Figure 2. Calibration plots for external validation in SCI-Diabetes cohort (n = 256,265)

Calibration slope for end-stage kidney disease as outcome 0.73, slope for all-cause 
mortality as outcome 0.99 after recalibration. ESKD = end-stage kidney disease.

Individual lifetime estimation of risk and treatment effects

An interactive user-friendly calculator is provided as supplementary file and 

will be provided at www.U-Prevent.com. Individual effects from medication 

initiation can be modelled in terms of ESKD-free life years gained and absolute 

risk reduction. Figure 3 illustrates ESKD-free life expectancy and 10-year 

ESKD risk for two individual examples with and without initiation of preventive 

medication.

Sensitivity analyses

When incorporating the natural decline of eGFR in the predictions of ESKD-risk, 

model performance did not improve for 10-year predictions (Supplementary 

material, Sensitivity analyses). 
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Figure 3. Example of 10-year ESKD risk, life-years free of ESKD and benefit from 
preventive treatment in two patient scenarios

Effect of initiation of RAS-inhibitor and SGLT2i on ESKD-free lifetime expectancy for two 
patient examples 
Patient A; a 50-year old male, non-smoker, 5 years diabetes duration, no history of 
cardiovascular disease, no insulin use, systolic blood pressure 140 mmHg, BMI 33 kg/
m2, eGFR 60 ml/min/1.73m2, moderate albuminuria, non HDL cholesterol 3.0 mmol/L, 
HbA1c 8.1% (65 mmol/mol). 
Patient B; a 65-year old female, non-smoker, 2 years diabetes duration, history of 
cardiovascular disease, no insulin use, systolic blood pressure 150 mmHg, BMI 25 kg/
m2, eGFR 50 ml/min/1.73m2, severe albuminuria, non HDL cholesterol 4.0 mmol/L, 
HbA1c 7.5% (58 mmol/mol). 
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Discussion

The current study describes the development and external validation of a 

prediction model for estimation of 10-year and lifetime risk of ESKD using data 

from almost one million individuals with type 2 diabetes. Furthermore, the 

model allows estimation of individual benefit of treatment with medication most 

often used for kidney protection in individuals with type 2 diabetes expressed 

as life-years gained free of ESKD with treatment initiation. The prediction tool 

is available as Supplementary material and will be provided as a calculator at 

www.U-Prevent.com to allow use in clinical practice.

Existing ESKD prediction models developed in individuals with type 2 diabetes 

are based on shorter prediction horizons of up to eight years.9-11, 26-28 These 

shorter term predictions remain relevant for use in some patient groups, i.e. 

those already having advanced kidney damage, for intensifying follow-up and 

timing of kidney replacement therapy.29 However, for patients with lower short-

term risk, including younger patients, longer-term predictions will be valuable 

to support decisions about preventive treatment. All models failed to adjust for 

competing risks. This is critical to avoid overestimating predicted ESKD risks 

and treatment effects,30 especially in older individuals and individuals at low 

risk for ESKD, who are likely to die before developing ESKD. Furthermore, only 

two previous ESKD risk prediction models in individuals with type 2 diabetes 

performed external validation. Elley et al. performed external validation for 

5-year risk of ESKD in 5,877 individuals with type 2 diabetes arising from the 

same geographical region as the derivation cohort with a c-statistic of 0.89 and 

reasonable calibration.11 Basu et al. performed external validation for 10-year 

risk of ESKD in 1,018 individuals with type 2 diabetes with a c-statistic for ESKD 

of 0.54 and did not perform calibration of this specific outcome.27 In the current 

model, c-statistics dropped from 0.89 for internal validation to 0.74 for external 

validation. The lower discrimination ability in the external validation is likely 

due to the categorical definitions of albuminuria used rather than continuous 

data that may provide a better predictor, as well as the lower availability of 

albuminuria in the validation cohort (54% missing data). Also, diabetes duration 

is a relevant predictor in NDR (since this was a cohort with both prevalent and 

incident type 2 diabetes), however not in SCI-Diabetes (since this was a cohort 

with incident type 2 diabetes). 
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In the current study, the event rates for both ESKD and all-cause mortality 

in individuals with type 2 diabetes were higher in Sweden compared to 

Scotland. The difference in ESKD event rates is likely explained by the use of 

an incident cohort from SCI-Diabetes who were almost five years younger at 

cohort entry than the population of individuals with prevalent and incident 

diabetes identified from NDR, despite the potential for survival bias in the NDR 

cohort. More individuals in the NDR had severe albuminuria and a history of 

cardiovascular disease and the prevalence of treatment with insulin was higher. 

Moreover, the prevalence of RASi medication prescription was higher in NDR. 

This may be due to differences in antihypertensive treatment algorithms with 

a more prominent role for RASi treatment in Swedish guidelines as compared 

to Scottish guidelines.31, 32 Furthermore, since SCI-Diabetes was a cohort with 

incident type 2 diabetes, prescription of RASi-medication is likely to have 

increased after diagnosis.33 Future validation and recalibration of the model will 

be valuable as data on individuals with type 2 diabetes with sufficient follow-up 

accrue, also to account for differences in baseline risk due to changing patterns 

of medication use.

The current model is intended for use in clinical practice to assess ESKD risk 

in individuals with type 2 diabetes as well as likely benefits from preventive 

treatment. The model is underpinned by two very large and contemporary type 

2 diabetes population-based cohorts with limited selection of participants. 

Large databases with extensive follow-up are important in order to ensure 

sufficient power with an adequate amount of ESKD events, since the incidence 

of ESKD is relatively low as compared with cardiovascular outcomes and 

mortality in these populations. In external validation of the current model, 

a slight overestimation of ESKD risk for patients at highest risk of ESKD was 

observed, which could indicate a modest degree of overfitting in the highest 

risk group. However, in clinical practice this is unlikely to lead to erroneous 

decisions regarding treatment, as the true observed risk in these patients is 

still high and justifies intensive medical therapy. The model was developed for 

the entire range of eGFR. Individuals with type 2 diabetes and CKD stage 3 or 

4 are likely already managed as a high-risk group where preventive treatment 

is indicated. However, also in these groups progression of kidney function 

decline may take several years and the model can still act as a suitable tool to 

aid adherence and shared decision making in the prevention of ESKD.
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The current model emphasizes lifetime benefit from treatment, which may 

support initiation of preventive treatment if absolute benefit is deemed 

appropriate. Contrary, the model may support not starting or postponement 

of preventive drug treatment if the absolute benefit is too low and focus on 

lifestyle changes might be a more appropriate initial treatment choice. In this 

way lifetime risk predictions inform shared decision making while lowering 

the risk of side effects and polypharmacy. Furthermore, trials are often not 

powered to detect an effect on ESKD risk, and albuminuria, eGFR slopes or a 

combined kidney event are often used as proxies for hard kidney outcomes.34 

With lifetime predictions for ESKD, a better alternative for translating absolute 

ESKD risk reduction with initiation of preventive treatment is provided. 

We chose to also incorporate effect on all-cause mortality of treatment initiation 

where there was substantial evidence for this, since this leads to longer life 

expectancy and thus also more years to develop ESKD. However, it should be 

noted that ESKD-free life years gained in individuals with a low risk of ESKD 

is mostly derived from the effect on all-cause mortality. Treatment should 

always be considered and initiated according to current guidelines,35, 36 and 

the ESKD prediction tool can help support these decisions. It should further 

be emphasized that preventive treatment in individuals with type 2 diabetes 

might be initiated for other reasons than prevention or postponement of ESKD 

(e.g. prevention of cardiovascular outcomes or heart failure) that were not 

incorporated into the current model. The model therefore underestimates the 

total benefit of treatment. Ideally, the model should be combined with models 

predicting risk of cardiovascular disease to fully capture treatment benefit.37

The model assumes that predictors follow a natural course over time 

that matches the course of predictors in the derivation cohort, and model 

predictions are based on the current predictor levels of a patient. However, 

follow-up in the derivation cohort was not sufficient to incorporate the natural 

course of predictors over the entire lifetime span, which might be particularly 

important for eGFR as a strong predictor for ESKD that is known to decline 

with increasing age. The different methodological approaches that we 

used to account for this general eGFR decline with age (e.g. incorporating 

standardized annual eGFR decline and modelled decline) did not improve 

model performance. Furthermore, the model assumes that other baseline risk 

factor levels follow the natural course captured in the dataset, which might 
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not always be appropriate. However, previous studies have validated methods 

of estimating lifetime predictions for up to 17 years.19 Since all risk factors are 

subject to change after baseline and because of the general decline of eGFR 

with increasing age, lifetime estimations should be repeated when decisions 

about new treatment approaches are required.

Potential limitations of the study merit consideration. Internal and external 

validation was performed for 10-year risk as it is not possible to perform 

validation over an individual’s lifetime. Also, diabetes duration is calculated as 

time since diabetes diagnosis, which is unlikely to be fully accurate as some 

people are likely to have developed diabetes some time before a clinical 

diagnosis is made.

We did not have information on ethnicity, so were not able to include this as 

predictor in the model. It is possible that the use of ICD-10 codes to identify 

outcomes may have resulted in misclassification, particularly underestimation 

of sustained eGFR <15ml/min/1.73m2 in the absence of long-term dialysis or 

transplantation as reported in a previous study.38 It is not possible to validate 

the ICD-codes in the study populations used for this analysis or to estimate the 

likely effect of misclassification on the estimated discrimination and calibration 

of the risk models without knowing whether the degree of misclassification 

varies with different levels of risk factors.

We performed single imputation due to computational feasibility, which might 

slightly underestimate the true variability of outcome measures as opposed 

to multiple imputation. However, no conclusions are drawn based on the 

significance of the model’s coefficients. Also, we chose for a split-sample 

approach for model development, while resampling methods would have 

been preferred. Model development was however still performed in >500,000 

individuals with type 2 diabetes making the power of the study more than 

sufficient. Another assumption made is full adherence to preventive treatment 

for the remaining lifetime. However, since lack of adherence is a common 

problem, this current model might be used in aiding communication and 

addressing the importance of adherence to preventive treatment. Since ESKD 

is a rare outcome and studies are often underpowered, treatment effects for 

glucose-lowering and BP-lowering were estimated using the best available 

evidence and should be interpreted with this in mind. Further research is 
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needed to investigate to what extent the model is used in clinical practice and 

whether its use improves outcomes.

In conclusion, 10-year and lifetime risk of ESKD as well as ESKD-free life 

expectancy and life-years free of ESKD gained with treatment initiation can 

be estimated for individuals with type 2 diabetes using readily available 

characteristics. Assessment of individual risk and gain from treatment facilitates 

personalized medicine and shared-decision in the management of long-term 

outcomes in clinical practice.
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Supplementary material

Expanded methods

Predictors and missing data

Predictors were predetermined and selected based on existing risk scores 

for end-stage kidney disease (ESKD) in people with type 2 diabetes, literature 

and availability in routine clinical practice. Baseline date was set as first date 

where an eGFR value was registered, and if no eGFR value was registered 

for an individual, eGFR was set as missing. Baseline data for the remaining 

predictors for Swedish National Diabetes Register (NDR) and Scottish Care 

Information(SCI) - Diabetes cohort were collected as first registered measured 

value in the first year after baseline date. 

For missing data, single imputation was performed using predictive mean 

matching (aregImpute-algorithm in R, Hmisc package) with weighted probability 

based on all available non-missing patient characteristics and outcomes. In the 

Swedish NDR, percentage of imputed data was 0% for age, sex and history 

of cardiovascular disease, 13% for smoking, 3% for eGFR, 27% for albuminuria, 

5% for SBP, 15% for body mass index (BMI), 23% for non-HDL-cholesterol (non-

HDL-c), 3% for HbA1c, 1% for insulin use and 9% for duration of diabetes. In the 

SCI-Diabetes cohort, percentage of imputed data was 0% for sex, age, history 

of cardiovascular disease and insulin use, 22% for current smoking, 21% for 

BMI, 15% for HbA1c, 36% for non-HDL-c and 54% for albuminuria. Duration of 

diabetes was set to 0 since the population was an incident type 2 diabetes 

cohort. Continuous predictors were truncated at the 1st and 99th percentile to 

limit the effect of outliers.

Restricted cubic splines were performed to test for log-linearity of the 

relationship between continuous predictors and the outcomes and 

transformations were applied when this improved model fit based on Akaike’s 

Information Criterion. Quadratic transformation of continuous predictors was 

applied for eGFR, BMI, HbA1c and non-HDL-c for the ESKD Cox proportional 

hazard function (function A) and for eGFR, BMI, SBP, non-HDL-c and HbA1c 

for the all-cause mortality Cox proportional hazard function (function B). The 

hazard ratios (HR) for transformed predictors is shown for the 75th percentile 

versus the 25th percentile.



Chapter 6

144

Statistical analyses

Development of the lifetime model

A random sample of 75% (n = 530,308) from the Swedish NDR was chosen for 

the derivation of the model. Two complementary Cox proportional hazards 

models were developed; one for the prediction of ESKD events (function A), 

and another for the prediction of all-cause mortality (function B). To enable 

lifetime predictions, age was used as the time-scale by adapting left truncation 

and right censoring to the models. Hereby, patients in the development dataset 

contributed data to the survival model from their age at study entry until the 

time of an event or censoring, defined by age at study exit. Due to the relatively 

low number of people and events in patients <30 years and >95 years, the 

development cohort was restricted to patients 30-95 years of age. Age-specific 

baseline survivals for both Cox proportional hazards functions were centred for 

continuous predictors using the population mean of that specific predictor (BMI 

of 30 kg/m2, systolic blood pressure of 138 mmHg, non-HDLc of 3.7 mmol/l, 

HbA1c of 55 mmol/l, and eGFR of 82 ml/min). Baseline hazards for the Cox 

proportional hazards model predicting ESKD were derived per 1 year intervals 

due to the relatively low number of ESKD events and thereafter smoothed and 

interpolated to 3-month intervals using a local regression smoother with a span 

of 0.7 (Supplementary figure 2). To account for the lower risk during a 3-month 

interval compared to a 1-year interval, baseline hazards were exponentiated 

to ¼. Baseline hazards for the Cox proportional hazards model predicting all-

cause mortality were derived per 3-month intervals and smoothed using an 

exponential function. The proportional hazards assumption was assessed by 

visual inspection of Schoenfeld residuals plots for the various predictors and 

age, and no violations were found. 

Predictions for individual persons

Next, these models were used to calculate life expectancy free of ESKD (median 

survival without ESKD) and ESKD risk for individual patients. Predictions were 

based on lifetable calculations.1-3 Starting at the current age of an individual with 

type 2 diabetes, the risk of having an ESKD event (at) combined with the risk 

of dying from all causes (bt) were predicted for each future 3-month interval. 

Next, the cumulative ESKD free survival (Survt+1) was calculated by multiplying 

the survival probability at the beginning of each 3-month interval (Survt) by the 

ESKD free survival probability during those 3 months (Survt * at - bt), allowing for 
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adjustment of all-cause mortality as competing risk. Logically the cumulative 

ESKD free survival started at 100% at the current age of a person. This process 

was repeated until the maximum age of 95 years. An example of such a life-

table for an individual person is shown in Supplementary table 8. ESKD free life 

expectancy of an individual was defined as the median survival without ESKD, 

determined as the age where the estimated cumulative survival drops below 

50%. 10-year ESKD risk was calculated by summation of the attributable ESKD 

risk in the first 10 years from a person’s current age onwards. The attributable 

ESKD risk was obtained by multiplication of the probability of survival without 

an ESKD event at the beginning of each 3-month interval (Survt) and the risk of 

having an ESKD event (at) during that 3-month interval. Similarly, lifetime risk 

was calculated by the summation of the attributable ESKD risk from a person’s 

current age onwards until the age of 95. The life table approach was used in 

order to be able to estimate lifetime predictions by projecting until the age of 95.

Validation

Internal validation of the lifetime model was performed in the remaining random 

sample of 25% of people in the Swedish NDR (n = 170,114) for 10 year risk predictions. 

The split-sample validation approach was chosen for feasibility reasons. Due to 

the large number of patients and a more than sufficient number of endpoints 

per variable this approach will not lead to biased results.4 External validation was 

performed using the SCI-Diabetes cohort. Recalibration of prediction models for 

external validation is most often necessary due to the difference in event rates 

between populations and cohorts,5 thus for external validation the intercept 

of the two Cox proportional hazards functions were recalibrated based on the 

incidence of ESKD and incidence of all-cause mortality, respectively, using the 

specific expected versus observed ratios in the SCI-Diabetes cohort.

Relative treatment effects to estimate lifelong treatment benefit in 
ESKD-free life years gained

SGLT-2 inhibition treatment

HR of SGLT-2 inhibition treatment is estimated as 0.71.6 This HR is based on 

ESKD as outcome as defined in the trials of the meta-analyses. An independent 

effect of SGLT-2 inhibition therapy in addition to HbA1c lowering is assumed. 

Furthermore, SGLT-2 inhibition treatment is assumed to have an effect on all-

cause mortality with a HR of 0.87.7 Because the use of SGLT2-inhibition was 
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negligible in the development cohort (<1%), it was assumed that all patients 

were non-users and thus the HR for not using SGLT-2 inhibition was set to 1.

GLP-1 receptor agonists (RA) treatment

HR of GLP-1 RA treatment is estimated as 0.78.6 This HR is based on ESKD as 

outcome as defined in the trials of the meta-analyses. An independent effect 

of GLP-1 RA therapy in addition to HbA1c lowering is assumed. Furthermore, 

GLP-1 RA treatment is assumed to have an effect on all-cause mortality with a 

HR of 0.88.8 Because the use of GLP-1 RA was negligible in the development 

cohort (<1%), it was assumed that all patients were non-users and thus the HR 

for not using GLP-1 RA was set to 1.

RAS inhibition treatment

The effect of starting treatment with RASi (Renine-Angiotensin-System inhibition) 

treatment (an angiotensin-converting-enzyme inhibitor or angiotensin2-receptor-

blocker) is estimated as a hazard ratio of 0.719 if starting treatment. This HR is based 

on ESKD as outcome as defined in the trials of the meta-analyses. Since there is no 

evidence that one treatment is superior to the other,9 this was the pooled HR for 

ACEi and ARB treatment, which were reported separately. An independent effect 

of RASi therapy in addition to lowering of blood pressure is assumed. 

Treatment with RASi medication is widely used in a population with type 2 diabetes, 

and in the Swedish NDR 42% of the cohort were using RASi medication at baseline. 

This of course impacts baseline risk, so the current ESKD model estimates the risk 

of ESKD for a person with a 42% usage of RASi. We accounted for this using the 

naïve method,10, 11 where this risk for the individual is calculated back to the real 

world scenario, being either no RASi use (0%) or RASi use (100%). This is done by 

adjusting the causal effect implemented to the current prevalence of RASi usage 

in the derivation cohort. The treatment-HR for ESKD risk is thus lowered for users 

(HR of using RASi at baseline was 0.81 (0.71/(0.58*1+0.42*0.71)) and raised for non-

users (HR of not using RASi at baseline was 1.14 (1/(0.58*1+0.42*0.71)). Thereby, the 

proportional ratio between the two is exactly 0.71.10, 11 

Blood-pressure lowering treatment

The effect of blood-pressure lowering treatment on the risk of ESKD is estimated as 

a HR of 0.88 per 10 mmHg reduction in systolic blood pressure in people with type 
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2 diabetes.12 This HR is based on ESKD as outcome as defined in the trials of the 

meta-analyses. No relative risk reduction is assumed for lowering systolic blood 

pressure below 130 mmHg. Individual expected relative risk reduction of ESKD 

is thereby calculated as 0.88(Blood pressure reduction in mmHg/10), blood pressure reduction 

being the current systolic blood pressure of the patient minus the target systolic 

blood pressure. Furthermore, lowering of systolic blood pressure in people with 

type 2 diabetes is assumed to have an effect on all-cause mortality with a HR of 

0.87 per 10 mmHg lowering12, so calculated as 0.87(Blood pressure reduction in mmHg/10). HR for 

systolic blood pressure changes below 130 mmHg is assumed to be 1.

Glucose-lowering treatment

There is abundant evidence that intensive HbA1c lowering has a beneficial effect 

on the risk of chronic kidney disease progression.13, 14 However, due to limited 

power and heterogeneity of trials, the exact percentage of ESKD risk reduction 

per unit HbA1c is unknown. Observational studies examining the causal relation 

between HbA1c and risk of ESKD are also of limited value to determine the 

treatment effect, since they are often performed in specific subgroups of patients 

with type 2 diabetes15 or only assess HbA1c as categorical variable.16 Therefore, 

we calculated the treatment effect using a Cox proportional hazards model with 

HbA1c as determinant and ESKD as outcome in the development cohort from the 

Swedish NDR. All predictors from the model were used as confounders, and no 

violations in regards to the assumptions of Cox proportional hazards models were 

observed. This led to a HR of 0.95 per 5 mmol/mol HbA1c reduction. No relative 

risk reduction is assumed for lowering HbA1c below 53 mmol/mol. Individual 

expected relative risk reduction of ESKD is thereby calculated as 0.95(HbA1c reduction 

in mmol per mol/5), HbA1c reduction being current HbA1c of the patient minus target 

HbA1c. HR for HbA1c changes below 53 mmol/mol is assumed to be 1. 

Smoking cessation

Smoking cessation is assumed to reduce the HR for ESKD events of current 

smokers versus never smokers (HR 1.91) to that of former smokers versus never 

smokers (HR 1.44).17 The resulting HR for ESKD events when stopping smoking 

is thus 0.75. Furthermore, smoking cessation is assumed to have an effect on 

all-cause mortality with a HR for current smokers versus never smokers of 1.83, 

and a HR for former smokers versus never smokers of 1.34,18 resulting in a HR 

for smoking cessation on all-cause mortality of 0.73.
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Combined individual treatment effect

The relative individualized risk reduction for the combination of added therapy is 

calculated by multiplying the hazard ratios of the intended treatments. Thereby the 

assumption is made that the different treatments are independent of one another. 

In the SGLT2i and GLP-1 RA trials, almost all subjects were using RASi medication 

at baseline, indicating an independent effect on ESKD risk reduction with these 

therapies. The combined hazard ratio is used in the lifetables for the function for 

ESKD events and the HR for smoking cessation, SGLT2i and GLP-1 RA on all-cause 

mortality is used in the lifetables for the function of all-cause mortality in order to 

estimate lifetime benefit with treatment (Supplementary table 8).

Sensitivity analyses

It is well known that eGFR has a natural decline during the course of one’s 

lifetime, with an estimated eGFR decline per year of 0.5-1 ml/min/1.73m2.19 An 

important assumption in the ESKD prediction model is that predictors follow a 

natural course over time (i.e. age) that matches the course of predictors in the 

derivation cohort, and model predictions are based on the current predictor 

levels of a patient. Predictor levels might change with age (e.g. a decrease in 

eGFR), but this happened during the follow-up period in the derivation cohort 

as well. As long as the change in predictor levels follows the same course 

over time as in the derivation cohort and the derivation cohort has substantial 

follow-up time, no adjustment is needed. However, for lifetime predictions, 

follow-up time is not sufficient, and the lifetime predictions therefore need 

careful interpretation, especially in younger patients.

In the Swedish NDR cohort, longitudinal laboratory values are included, and thus 

also eGFR obtained at different time points per subject. The dataset consisted of 

3,758,796 eGFR measurements, a mean of 5.5 eGFR measurements per subject 

(range 1 to 19 eGFR measurements and > 3months between measurements). In 

order to incorporate natural eGFR slope over the whole course of one’s lifetime, 

we tried several methodological adjustments in the derivation of the model.

eGFR incorporated as age- and sex specific percentile in the derivation of the 

model

With this methodological adjustment we aimed to depict the predictor for 

individual eGFR as age- and sex specific eGFR percentile. 
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The individual age- and sex specific eGFR percentile was obtained according to 

previously described methods.20 First, the percentiles for the overall population 

were calculated by modelling the mean of the eGFR distribution as a function 

of age for each sex using a local regression smoother with a smoothing span of 

0.7. For each individual eGFR observation, the corresponding estimated  eGFR 

value was then subtracted. The pooled residuals from this model were ranked, 

and the jth percentile for each of j=1…100 of the residuals were calculated. 

When adding these to the fitted eGFR value for a particular age and sex an 

estimated percentile for eGFR was calculated. Instead of eGFR as predictor 

in the Cox proportional hazards model, we used the calculated age- and sex 

specific percentile for eGFR. For validation of the model, individual age and sex 

specific eGFR percentiles were similarly calculated using the model obtained 

in the derivation cohort. All other steps in derivation and validation remained 

the same (as previously described). The internal validation of the model for 10-

year predictions when adapting this methodology is shown below.

Incorporating individual eGFR decline in lifetables when calculating ESKD risk

A further modification of the methodology to account for natural eGFR decline 

was to incorporate predicted individual eGFR slope in the lifetables when 

calculating individual ESKD risk and ESKD-free survival. First, in the derivation 

of the model, eGFR as predictor was specified as a time-varying covariate. 

Second, we aimed to estimate individual eGFR slope per year. This was done 

by first fitting a linear mixed model on the effect of age (as time axis) on eGFR 
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with a random intercept and random slope in the derivation cohort. Thereby 

individual eGFR slope was derived.21 The second step was to fit a linear model 

of eGFR slope (ml/min/1.73m2 per year) as a function of baseline age and 

baseline eGFR. This model was then used in the validation of the model for 

predicting individual eGFR slope based on age and baseline eGFR, and this was 

incorporated in the lifetables, so that eGFR declined per year correspondingly. 

The internal validation of the model for 10-year predictions when incorporating 

estimated individual eGFR slope is shown below.

Incorporating an overall eGFR decline of 0.5 ml/min/1.73m2

The internal validation of the model for 10-year predictions when incorporating 

an overall eGFR decline of 0.5 ml/min/1.73m2 per individual in the lifetables is 

shown below. 
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Interpretation of different approaches to incorporate continuous eGFR decline

When looking at 10-year predictions, the model without methodological 

modifications performed very well both in regards to discrimination and 

calibration, indicating that the natural eGFR decline is incorporated in the 

model for 10-year predictions (as would be expected with the sufficient follow-

up time in the cohorts for this time frame). However, it is not achievable to 

test the validity of lifetime predictions, since no cohort has sufficient follow-

up for this. Since the above methodological modifications also introduce 

assumptions and the continuous eGFR measurements in the Swedish NDR 

dataset are subject to selection bias (people with type 2 diabetes with more 

eGFR measurements are likely to be more ill and have more frequent clinical 

controls and thus accelerated eGFR decline), we chose to incorporate the 

original methodology in the main article. However, the lifetime predictions for 

ESKD should be interpreted with caution, especially in younger individuals, and 

predictions for the individual person with type 2 diabetes should be repeated 

every e.g. 10 years.

Supplementary table 1. Definition of type 2 diabetes and history of cardiovascular 
disease in Swedish National Diabetes Register and Scottish Care Information - Diabetes 
Database

Dataset Definition of type 2 diabetes Definition of history of 
cardiovascular disease

Swedish National 
Diabetes Register

The definition of type 2 diabetes 
was treatment with 1) diet only, 2) 
oral hypoglycemic agents only, 
or 3) insulin only or combined 
with oral agents, and onset age of 
diabetes ≥40 years

History of cardiovascular 
disease was defined as 
a history of myocardial 
infarction, stroke, peripheral 
vascular disease, PCI or CABG 
(ICD10-codes I20-25, I46, I61, 
I63, I64, I70.2, I71).Scottish Care 

Information - 
Diabetes Database

Type 2 diabetes was defined 
using an algorithm which uses 
information from the clinician 
recorded diabetes type, 
prescription data (use of and 
timing of sulphonylureas and 
insulin) and age at diagnosis.
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Supplementary table 2. Definition of ESKD and all-cause mortality outcomes in Swedish 
National Diabetes Register and Scottish Care Information - Diabetes Database

Dataset Definition of outcomes

Swedish National 
Diabetes Register

Outcome evaluation: All ESKD and all-cause mortality endpoints were 
retrieved by data linkage with the Swedish Cause of Death Register 
and the Hospital Discharge Register (National Board of Health and 
Welfare, Sweden). ESKD was defined as kidney transplantation, long-
term dialysis or chronic kidney disease stage 5. 

Kidney transplantation: Allogenic kidney transplantation from living or 
deceased donor. KVA-codes: KAS10, KAS20

Long-term dialysis: Long-term haemodialysis or long-term peritoneal 
dialysis. KVA-codes: DR012, DR013, DR014, DR016, DR024, DR055, 
DR056, DR060, DR061

Chronic kidney disease stage 5: Sustained eGFR <15 ml/min/1.73m2. 
ICD-10 codes: N18.5, N18.6

Scottish Care 
Information 
- Diabetes 
Database

Outcome evaluation: All ESKD and all-cause mortality endpoints 
were retrieved by data linkage with the National Records of 
Scotland death registrations and the national hospitalization register 
(Scottish Morbidity Record, SMR01). ESKD was defined as kidney 
transplantation, long-term dialysis or chronic kidney disease stage 5. 

Kidney transplantation: Allogenic kidney transplantation from living 
or deceased donor. ICD-10 codes: Z94.0. OPCS4 codes: M01.2, M01.3, 
M01.4, M01.5

Long-term dialysis: Long-term haemodialysis or long-term peritoneal 
dialysis. ICD-10 codes: Z49.1, Z99.2. OPCS4 codes: X40.1, X40.2, X40.3, 
X40.4, X40.5, X40.6.

Chronic kidney disease stage 5: Sustained eGFR <15 ml/min/1.73m2. 
ICD-10 codes: N18.5
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Supplementary table 3. Hazard ratios and 95% confidence intervals derived from 
multivariable Cox proportional hazard models 

  HR for ESKD 
(95 % CI)

HR for all-cause 
mortality 
(95 % CI)

Sex (male) 1.70 (1.61-1.80) 1.32 (1.30-1.33)

Current smoking 1.45 (1.35-1.55) 1.71 (1.69-1.74)

Systolic blood pressure (mmHg) 1.10 (1.10-1.10)b 0.91 (0.91-0.92)a

Body mass index (kg/m2) 1.14 (1.09-1.19)a 1.01 (1.00-1.02)a

eGFR (ml/min/1.73m2) 0.41 (0.41-0.41)a 1.09 (1.09-1.09)a

HbA1c mmol/mol 1.08 (1.07-1.09)a 1.07 (1.07-1.08)a

Non-HDL-cholesterol 1.02 (0.88-1.17)a 1.03 (1.00-1.07)a

Moderate albuminuria 2.69 (2.51-2.88) 1.26 (1.24-1.27)

Severe albuminuria 5.43 (5.08-5.83) 1.46 (1.44-1.49)

Duration of type 2 diabetes mellitus (years) 1.01 (1.01-1.02) 1.01 (1.01-1.01)

History of cardiovascular disease 0.96 (0.91-1.02) 1.38 (1.36-1.39)

Insulin treatment 1.30 (1.23-1.38) 1.32 (1.30-1.34)

aTransformed variable. Hazard ratios are presented as 75th percentile vs. 25th percentile 
(eGFR: 96.4 ml/min vs. 68.4 ml/min; systolic blood pressure: 150 mmHg vs. 126 mmHg; 
body mass index: 30 kg/m2 vs. 26 kg/m2; HbA1c: 7.6% (60 mmol/mol) vs. 6.2% (44 mmol/
mol); non-HDL-cholesterol: 4.4 mmol/L vs. 2.9 mmol/L) 
bHazard ratio is presented per 10 mmHg increase
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Supplementary table 4. Calculation formulas of 3-month interval survivals

ESKD Cox proportional hazard function (A)
3-month survival = (age-specific 3-month baseline survival¥)^exp(A)
A = 0.5295829868 (if male) -0.0302637391*(BMI - 30) + 0.0008332090*(squared 
BMI - 30²) + 0.3696540712 (if smoking) + 0.0089130229*(SBP-138) - 
0.1905498619*(nonHDL-3.7) + 0.0275638175*(squared nonHDL - 3.7²) - 
0.0088094561*(HbA1c-55) + 0.0001317019*(squared HbA1c - 55²) - 0.1345453423*(eGFR-
82) + 0.0006241907*(squared eGFR - 82²) + 0.9890738792 (if micro-albuminuria) 
+ 1.6925027125 (if macro-albuminuria) + 0.0167046698*(diabetes duration) - 
0.0392162074 (if history of cardiovascular disease) + 0.2643295233 (if insulin treatment) 
+ LN(Hazard Ratio of intended treatment)§

All-cause mortality Cox proportional hazard function (B)
3-month survival = (age-specific 3-month baseline survival¥)^exp(B)
B = 0.2740189 (if male) - 0.146682*(BMI - 30) + 0.002494125*(squared BMI - 30²) 
+ 0.5383219 (if smoking) - 0.04837925*(SBP-138) + 0.0001616799*(squared SBP 
- 138²)  - 0.007339466*(nonHDL-3.7) + 0.003946654*(squared nonHDL - 3.7²) + 
0.001541359*(HbA1c-55) + 0.00002801039(squared HbA1c - 55²)  - 0.03773463*(eGFR-
82) + 0.0002479993*(squared eGFR - 82²) + 0.2272037 (if micro-albuminuria) + 0.3796535 
(if macro-albuminuria) + 0.008351482*(diabetes duration) + 0.3194937 (if history of 
cardiovascular disease) - 0.2789714 (if insulin treatment) + LN(Hazard Ratio of intended 
treatment)§

¥ Age-specific baseline survivals are shown in table S4 for both Cox proportional hazard 
functions.
§ LN(Hazard ratio of intended treatment) is 0 if there is no estimation of treatment effects. 
The calculation of the hazard ratio of intended treatment is explained in the methods and 
Supplementary methods.
BMI: Body mass index in kg/m2; SBP: Systolic blood pressure in mmHg; non-HDLc: non-
high-density cholesterol in mmol/l; HbA1c: Hemoglobin A1c in mmol/mol; eGFR: estimated 
glomerular filtration rate in ml/min/1.73m2.
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Supplementary table 5. Age-specific baseline survivals per 3-month interval

Age 
(years)

3-month 
survival free of 
ESKD*

3-month survival 
for all-cause 
mortality**

Age 
(years)

3-month 
survival free of 
ESKD*

3-month survival 
for all-cause 
mortality**

30,00 0,999989994 0,9996502 39,75 0,9999468 0,9996049

30,25 0,999988484 0,9996495 40,00 0,9999461 0,9996029

30,50 0,999986998 0,9996489 40,25 0,9999454 0,9996009

30,75 0,999985534 0,9996482 40,50 0,9999447 0,9995988

31,00 0,999984092 0,9996475 40,75 0,9999441 0,9995966

31,25 0,999982673 0,9996468 41,00 0,9999434 0,9995944

31,50 0,999981277 0,9996461 41,25 0,9999428 0,9995921

31,75 0,999979902 0,9996453 41,50 0,9999422 0,9995898

32,00 0,99997855 0,9996446 41,75 0,9999416 0,9995873

32,25 0,99997722 0,9996438 42,00 0,999941 0,9995848

32,50 0,999975911 0,999643 42,25 0,9999405 0,9995822

32,75 0,999974624 0,9996421 42,50 0,99994 0,9995796

33,00 0,999973359 0,9996412 42,75 0,9999394 0,9995768

33,25 0,999972115 0,9996404 43,00 0,999939 0,999574

33,50 0,999970892 0,9996394 43,25 0,9999385 0,9995711

33,75 0,99996969 0,9996385 43,50 0,999938 0,9995681

34,00 0,99996851 0,9996375 43,75 0,9999376 0,9995651

34,25 0,99996735 0,9996365 44,00 0,9999372 0,9995619

34,50 0,99996621 0,9996355 44,25 0,9999368 0,9995586

34,75 0,999965091 0,9996344 44,50 0,9999364 0,9995553

35,00 0,999963993 0,9996333 44,75 0,999936 0,9995518

35,25 0,999962914 0,9996322 45,00 0,9999357 0,9995482

35,50 0,999961856 0,999631 45,25 0,9999353 0,9995446

35,75 0,999960817 0,9996298 45,50 0,999935 0,9995408

36,00 0,999959798 0,9996286 45,75 0,9999347 0,9995369

36,25 0,999958799 0,9996273 46,00 0,9999345 0,9995329

36,50 0,99995782 0,999626 46,25 0,9999342 0,9995287

36,75 0,99995686 0,9996246 46,50 0,999934 0,9995245

37,00 0,999955919 0,9996232 46,75 0,9999338 0,9995201

37,25 0,999954998 0,9996218 47,00 0,9999336 0,9995156

37,50 0,999954096 0,9996203 47,25 0,9999335 0,9995109

37,75 0,999953212 0,9996188 47,50 0,9999334 0,9995061

38,00 0,999952348 0,9996173 47,75 0,9999333 0,9995012

38,25 0,999951503 0,9996156 48,00 0,9999332 0,9994961

38,50 0,999950676 0,999614 48,25 0,9999331 0,9994909

38,75 0,999949868 0,9996123 48,50 0,9999331 0,9994855

39,00 0,999949079 0,9996105 48,75 0,9999331 0,99948

39,25 0,999948309 0,9996087 49,00 0,9999331 0,9994742

39,50 0,999947557 0,9996068 49,25 0,9999332 0,9994684
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Age 
(years)

3-month 
survival free of 
ESKD*

3-month survival 
for all-cause 
mortality**

Age 
(years)

3-month 
survival free of 
ESKD*

3-month survival 
for all-cause 
mortality**

49,50 0,999933257 0,9994623 59,25 0,9999367 0,9990127

49,75 0,999933372 0,9994561 59,50 0,9999366 0,998993

50,00 0,999933516 0,9994496 59,75 0,9999366 0,9989728

50,25 0,99993369 0,999443 60,00 0,9999366 0,9989519

50,50 0,99993389 0,9994362 60,25 0,9999365 0,9989304

50,75 0,999934114 0,9994292 60,50 0,9999364 0,9989083

51,00 0,999934357 0,9994219 60,75 0,9999364 0,9988855

51,25 0,999934611 0,9994145 61,00 0,9999363 0,9988621

51,50 0,999934867 0,9994068 61,25 0,9999362 0,9988379

51,75 0,999935117 0,9993989 61,50 0,9999361 0,998813

52,00 0,999935352 0,9993908 61,75 0,9999361 0,9987874

52,25 0,999935421 0,9993824 62,00 0,999936 0,998761

52,50 0,999935485 0,9993738 62,25 0,9999359 0,9987338

52,75 0,999935698 0,9993649 62,50 0,9999359 0,9987058

53,00 0,999935893 0,9993557 62,75 0,9999358 0,998677

53,25 0,999935943 0,9993463 63,00 0,9999358 0,9986473

53,50 0,999935985 0,9993366 63,25 0,9999357 0,9986167

53,75 0,999936157 0,9993266 63,50 0,9999357 0,9985852

54,00 0,999936314 0,9993163 63,75 0,9999357 0,9985528

54,25 0,999936339 0,9993057 64,00 0,9999356 0,9985194

54,50 0,999936354 0,9992948 64,25 0,9999356 0,998485

54,75 0,999936493 0,9992835 64,50 0,9999356 0,9984496

55,00 0,999936623 0,999272 64,75 0,9999356 0,9984132

55,25 0,999936619 0,99926 65,00 0,9999356 0,9983756

55,50 0,999936607 0,9992478 65,25 0,9999356 0,9983369

55,75 0,999936721 0,9992351 65,50 0,9999356 0,9982971

56,00 0,99993683 0,9992221 65,75 0,9999356 0,9982561

56,25 0,999936799 0,9992087 66,00 0,9999356 0,9982139

56,50 0,99993676 0,9991948 66,25 0,9999356 0,9981704

56,75 0,999936854 0,9991806 66,50 0,9999357 0,9981256

57,00 0,999936942 0,999166 66,75 0,9999357 0,9980794

57,25 0,999936885 0,9991509 67,00 0,9999357 0,9980319

57,50 0,999936821 0,9991353 67,25 0,9999358 0,997983

57,75 0,999936884 0,9991193 67,50 0,9999359 0,9979326

58,00 0,999936933 0,9991028 67,75 0,9999359 0,9978808

58,25 0,999936853 0,9990858 68,00 0,999936 0,9978274

58,50 0,99993677 0,9990684 68,25 0,9999361 0,9977723

58,75 0,999936798 0,9990503 68,50 0,9999362 0,9977157

59,00 0,999936812 0,9990318 68,75 0,9999363 0,9976574

Supplementary table 5. Continued
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Age 
(years)

3-month 
survival free of 
ESKD*

3-month survival 
for all-cause 
mortality**

Age 
(years)

3-month 
survival free of 
ESKD*

3-month survival 
for all-cause 
mortality**

69,00 0,999936409 0,9975973 78,75 0,9999472 0,9931591

69,25 0,999936561 0,9975354 79,00 0,9999477 0,9929658

69,50 0,999936721 0,9974717 79,25 0,9999481 0,9927667

69,75 0,999936827 0,9974061 79,50 0,9999486 0,9925618

70,00 0,999936939 0,9973386 79,75 0,999949 0,9923508

70,25 0,999937123 0,997269 80,00 0,9999495 0,9921337

70,50 0,999937314 0,9971974 80,25 0,99995 0,9919101

70,75 0,999937449 0,9971236 80,50 0,9999505 0,99168

71,00 0,999937592 0,9970477 80,75 0,999951 0,9914431

71,25 0,999937806 0,9969695 81,00 0,9999515 0,9911992

71,50 0,999938025 0,996889 81,25 0,999952 0,9909482

71,75 0,999938192 0,996806 81,50 0,9999525 0,9906898

72,00 0,999938366 0,9967206 81,75 0,999953 0,9904238

72,25 0,999938608 0,9966327 82,00 0,9999535 0,99015

72,50 0,999938855 0,9965422 82,25 0,9999541 0,9898682

72,75 0,999939106 0,9964489 82,50 0,9999546 0,9895781

73,00 0,999939362 0,9963529 82,75 0,9999552 0,9892795

73,25 0,999939623 0,9962541 83,00 0,9999558 0,9889722

73,50 0,99993989 0,9961523 83,25 0,9999563 0,9886559

73,75 0,999940163 0,9960475 83,50 0,9999569 0,9883304

74,00 0,999940443 0,9959396 83,75 0,9999575 0,9879954

74,25 0,99994073 0,9958285 84,00 0,9999581 0,9876506

74,50 0,999941023 0,9957141 84,25 0,9999587 0,9872957

74,75 0,999941325 0,9955963 84,50 0,9999593 0,9869305

75,00 0,999941633 0,995475 84,75 0,9999599 0,9865546

75,25 0,99994195 0,9953501 85,00 0,9999606 0,9861678

75,50 0,999942274 0,9952215 85,25 0,9999612 0,9857698

75,75 0,999942607 0,9950891 85,50 0,9999618 0,9853602

76,00 0,999942947 0,9949528 85,75 0,9999625 0,9849388

76,25 0,999943295 0,9948124 86,00 0,9999631 0,9845051

76,50 0,999943651 0,9946679 86,25 0,9999638 0,9840588

76,75 0,999944016 0,9945191 86,50 0,9999645 0,9835996

77,00 0,999944389 0,9943659 86,75 0,9999652 0,9831272

77,25 0,999944769 0,9942082 87,00 0,9999659 0,982641

77,50 0,999945158 0,9940458 87,25 0,9999666 0,9821409

77,75 0,999945555 0,9938787 87,50 0,9999673 0,9816264

78,00 0,99994596 0,9937066 87,75 0,999968 0,981097

78,25 0,999946374 0,9935294 88,00 0,9999687 0,9805524

78,50 0,999946795 0,9933469 88,25 0,9999694 0,9799921

Supplementary table 5. Continued
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Age 
(years)

3-month 
survival free of 
ESKD*

3-month survival 
for all-cause 
mortality**

88,50 0,99997015 0,9794158

88,75 0,999970893 0,978823

89,00 0,999971643 0,9782132

89,25 0,999972401 0,9775859

89,50 0,999973167 0,9769407

89,75 0,99997394 0,9762772

90,00 0,999974721 0,9755947

90,25 0,99997551 0,9748929

90,50 0,999976306 0,9741711

90,75 0,99997711 0,9734289

91,00 0,999977922 0,9726656

91,25 0,999978742 0,9718808

91,50 0,999979569 0,9710739

91,75 0,999980404 0,9702442

92,00 0,999981246 0,9693912

92,25 0,999982096 0,9685143

92,50 0,999982954 0,9676129

92,75 0,99998382 0,9666862

93,00 0,999984693 0,9657337

93,25 0,999985575 0,9647547

93,50 0,999986463 0,9637484

93,75 0,99998736 0,9627143

94,00 0,999988264 0,9616516

94,25 0,999989176 0,9605596

94,50 0,999990096 0,9594376

94,75 0,999991024 0,9582847

Age-specific baseline survivals for centered continuous variables with a systolic blood 
pressure of 138 mmHg, BMI of 30 kg/m², HbA1c of 55 mmol/l, non-HDL-c of 3.7 mmol/l, 
and eGFR of 82 ml/min. *Based on Cox proportional hazard function A for ESKD. **Based 
on Cox proportional hazard function B for all-cause mortality.

Supplementary table 5. Continued
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Supplementary table 6. Baseline characteristics of participants from the Swedish 
National Diabetes Register stratified according to incident or prevalent type 2 diabetes 
after imputation of missing data

Proportion with 
incident type 2 
diabetes

Proportion with 
prevalent type 2 
diabetes

Number of participants 229,635 (32%) 477,442 (68%)

Sex (male) 132624 (58%) 268809 (56%)

Age (years) 64 (54-72) 66 (58-75)

Current smoking 37099 (16%) 73531 (15%)

Duration of diabetes mellitus (years) 0 (0-0) 4 (2-10)

Insulin treatment 18245 (8%) 115416 (24%)

History of CVD 43879 (19%) 111927 (23%)

eGFR (mL/min/1.73m2) 88 (73-99) 83 (66-95)

Moderate albuminuria 28452 (12%) 75775 (16%)

Severe albuminuria 8210 (4%) 35244 (7%)

Systolic blood pressure (mmHg) 135 (125-145) 140 (128-150)

Body mass index (kg/m2) 30 (27-34) 29 (26-33)

HbA1c (mmol/mol) 50 (44-60) 51 (44-60)

Non-HDL-c (mmol/L) 3.8 (3.1-4.6) 3.6 (2.9-4.3)

Prescribed RASi medication 102883 (45%) 196676 (41%)

Variables are displayed as median (IQR) for continuous variables and counts (%) for 
categorical variables. Abbreviations: CVD = cardiovascular disease, eGFR = estimated 
glomerular filtration rate, HbA1c = hemoglobin A1c, non-HDL-c = non-high-density-
lipoprotein cholesterol, RASi = Renin-angiotensin-system inhibition medication
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Supplementary table 8. Example of a life table

Age Cumulative 
survival

% ESKD 
risk

% Mortality 
risk

% Attributable 
ESKD risk

% Sum attributable 
ESKD risk

55.00 1.000000 0.111  0.206 0.111 0.111

55.25 0.996829 0.111  0.210 0.110 0.221

55.50 0.993634 0.111  0.213 0.110 0.331

55.75 0.990415 0.111  0.217 0.110 0.441

56.00 0.987173 0.110  0.220 0.109 0.550

56.25 0.983907 0.110  0.224 0.109 0.659

56.50 0.980613 0.111  0.228 0.108 0.767

56.75 0.977292 0.110  0.232 0.108 0.875

57.00 0.973944 0.110  0.236 0.107 0.982

57.25 0.970569 0.110  0.241 0.107 1.089

57.50 0.967163 0.110  0.245 0.107 1.196

57.75 0.963725 0.110  0.250 0.106 1.302

58.00 0.960257 0.110  0.254 0.106 1.408

58.25 0.956757 0.110  0.259 0.106 1.514

58.50 0.953223 0.111  0.264 0.105 1.619

58.75 0.949653 0.110  0.269 0.105 1.724

59.00 0.946049 0.110  0.274 0.105 1.829

59.25 0.942409 0.111  0.280 0.104 1.933

59.50 0.938730 0.111  0.285 0.104 2.037

59.75 0.935012 0.111  0.291 0.104 2.141

60.00 0.931255 0.111  0.297 0.103 2.244

60.25 0.927458 0.111  0.303 0.103 2.347

60.50 0.923618 0.111  0.309 0.103 2.450

60.75 0.919735 0.111  0.316 0.102 2.552

61.00 0.915808 0.111  0.322 0.102 2.654

61.25 0.911837 0.112  0.329 0.102 2.756

61.50 0.907818 0.112  0.336 0.101 2.857

61.75 0.903752 0.112  0.343 0.101 2.958

62.00 0.899638 0.112  0.351 0.101 3.059

62.25 0.895475 0.112  0.359 0.100 3.159

62.50 0.891260 0.112  0.367 0.100 3.259

62.75 0.886995 0.112  0.375 0.100 3.359

63.00 0.882676 0.112  0.383 0.099 3.458

63.25 0.878303 0.112  0.392 0.099 3.557

63.50 0.873876 0.112  0.401 0.098 3.655

63.75 0.869392 0.112  0.410 0.098 3.753

64.00 0.864852 0.113  0.419 0.097 3.850
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Age Cumulative 
survival

% ESKD 
risk

% Mortality 
risk

% Attributable 
ESKD risk

% Sum attributable 
ESKD risk

64.25 0.860253 0.113  0.429 0.097 3.947

64.50 0.855594 0.113  0.439 0.096 4.043

64.75 0.850875 0.113  0.449 0.096 4.139

65.00 0.846094 0.113  0.460 0.095 4.234

…………………………………………………………………………………………………………………………………………………………………………..

75.00 0.591590 0.102  1.278 0.060 7.414

75.25 0.583427 0.101  1.313 0.059 7.473

75.50 0.575175 0.101  1.349 0.058 7.531

75.75 0.566835 0.100  1.386 0.057 7.588

76.00 0.558408 0.100  1.425 0.056 7.644

76.25 0.549896 0.099  1.464 0.055 7.699

76.50 0.541301 0.099  1.505 0.053 7.752

76.75 0.532623 0.098  1.546 0.052 7.804

77.00 0.523866 0.097  1.589 0.051 7.855

77.25 0.515030 0.097  1.634 0.050 7.905

77.50 0.506120 0.096  1.679 0.049 7.954

77.75 0.497136 0.095  1.726 0.047 8.001

78.00 0.488082 0.094  1.774 0.046 8.047

78.25 0.478961 0.094  1.824 0.045 8.092

78.50 0.469776 0.093  1.875 0.044 8.136

78.75 0.460530 0.092  1.928 0.042 8.178

79.00 0.451228 0.092  1.982 0.041 8.219

79.25 0.441873 0.091  2.037 0.040 8.259

79.50 0.432469 0.090  2.095 0.039 8.298

79.75 0.423021 0.089  2.154 0.038 8.336

80.00 0.413533 0.088  2.214 0.037 8.373

…………………………………………………………………………………………………………………………………………………………………………..

91.00 0.057784 0.039  7.558 0.002 9.044

91.25 0.053394 0.037  7.769 0.002 9.046

91.50 0.049226 0.036  7.986 0.002 9.048

91.75 0.045277 0.034  8.209 0.002 9.050

92.00 0.041545 0.033  8.438 0.001 9.051

92.25 0.038026 0.031  8.672 0.001 9.052

92.50 0.034716 0.030  8.913 0.001 9.053

92.75 0.031612 0.028  9.160 0.001 9.054

93.00 0.028707 0.027  9.414 0.001 9.055

Supplementary table 8. Continued
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Age Cumulative 
survival

% ESKD 
risk

% Mortality 
risk

% Attributable 
ESKD risk

% Sum attributable 
ESKD risk

93.25 0.025997 0.025  9.674 0.001 9.056

93.50 0.023475 0.024  9.941 0.001 9.057

93.75 0.021136 0.022 10.215 0.000 9.057

94.00 0.018973 0.021 10.495 0.000 9.057

94.25 0.016977 0.019 10.783 0.000 9.057

94.50 0.015143 0.017 11.078 0.000 9.057

94.75 0.013463 0.016 11.381 0.000 9.057

Life-table of a patient example: a 55-year old male, who does not smoke, duration of type 
2 diabetes of 5 years, a systolic blood pressure of 150 mmHg, BMI of 27 kg/m2, HbA1c of 
55 mmol/mol, non-HDL-C of 5 mmol/l, eGFR of 70 ml/min/1.73m2, severe albuminuria, no 
insulin use, and a history of cardiovascular disease. 
ESKD-risk (%) and all-cause mortality risk (%) are derived using the equations depicted 
in Supplementary table 4. ESKD-free life expectancy is the age at which the cumulative 
survival drops below 0.50, for this patient ESKD-free life expectancy is thus 78 years. The 
patient further has a 10-year risk of ESKD of 4.2% and a lifetime risk of ESKD of 9.1%. 
Attributable risk = ESKD risk / (all-cause mortality risk + ESKD risk)*(cumulative survival at 
beginning of current life-year – cumulative survival at beginning of next life-year).  
For feasibility reasons, some parts of the lifetable has been omitted in this example 
(indicated with the dotted line), for the calculations of course the lifetable in its full is used.

Supplementary table 8. Continued
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Supplementary Table 9. Model assumptions

Assumption Explanation

Lifetime prediction

Proportional hazards The model assumes proportional hazards for all predictors, 
meaning that hazard ratios are assumed to be constant over 
time. Since age is used as time scale, the assumption is 
made that hazard ratios are constant over age (e.g. the hazard 
ratio for male sex at age 50 years is the same as at age 80 
years). The proportional hazards assumption is tested using 
Schoenfeld residuals, and visual inspection of hazard ratios 
plotted against age. If a hazard ratio for a predictor significantly 
changes with age, an interaction term between this predictor 
and age is included in the model.

Linearity of the 
predictor-outcome 
relation

The model assumes a linear relationship between continuous 
predictors and the outcome. For all continuous predictors in 
relation to the outcome, it is assessed whether a logarithmic 
or quadratic transformation of the predictor substantially 
improves model fit. If the AIC decreases by ≥ 2 points, the 
transformation is included in the final model.

Natural course of 
predictors

The model assumes that predictors follow a natural course 
over time (i.e. age) that matches the course of predictors in 
the derivation cohort. Model predictions are based on the 
current predictor levels of a patient (e.g. an eGFR of 80 ml/
min/1.73m2). Predictor levels might change with age (e.g. a 
decrease in eGFR), but this happened during the follow-up 
period in the derivation cohort as well. As long as the change 
in predictor levels follows the same course over time as in the 
derivation cohort and the derivation cohort has substantial 
follow-up time, no adjustment is needed. However, for 
lifetime predictions, follow-up time is not sufficient, and 
these results should be interpreted with caution, especially in 
younger patients.

Stationarity of baseline 
hazards

The model assumes that the baseline survival for each age 
interval is equal for all patients, during that interval. It assumes 
that the baseline survival for an age interval (e.g. between 
60 years and 60 years and 3 months) is equal for patients 
currently within that interval (i.e. patients who just turned 60 
years old) as well as patients entering that interval in the future 
(e.g. 50-year olds who will turn 60 in 10 years). It is assumed 
that the baseline survivals are stationary over time (i.e. baseline 
survival for a 60-year old now is equal to baseline survival for a 
60-year old in the future).

Treatment effects

Equal relative treatment 
effect

It is assumed that relative treatment effects (i.e. the hazard 
ratios derived from meta-analyses) are equal for all patients 
for whom a treatment is recommended (e.g. the HR of SGLT2i 
therapy for ESKD is 0.71 for all patients with type 2 diabetes). 
This assumption is made since subgroup analyses from trials 
and meta-analyses mostly have not identified significant 
differences in relative treatment effects between eligible 
patients with varying characteristics. Also, subgroup analyses 
are underpowered for the detection of heterogeneity in 
relative treatment effects.
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Assumption Explanation

Constant treatment 
effect over time

It is assumed that the relative treatment effects remain 
constant over time, so that therapy benefits continue to 
accrue over lifetime exposure. In other words, it is assumed 
that the hazard ratios found in actual trials or meta-analyses 
are equal to hazard ratios that would have been found in trials 
with lifelong follow-up.

Additive benefits It is assumed that benefits of individual therapies are 
multiplicative when used simultaneously. 

Adequate adherence It is assumed that patients remain adherent to the prescribed 
therapies for their remaining lifetimes. Reassuring in this 
regard is that data have shown that clustered initiation of 
recommended therapies is safe,22 and that adding new 
therapies to extensive background therapy does not result 
in more serious adverse events. Also, adherence in trials is 
mostly also not 100%.

Abbreviations: AIC = Akaike Information Criterion, HR = hazard ratio, SGLT2 = sodium/
glucose cotransporter 2.

Supplementary table 9. Continued
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Supplementary figure 1. Selection of cohort Swedish National Diabetes Register
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Supplementary figure 2. Smoothing and interpolation of baseline hazards
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Abstract 

Background: The 2021 ESC cardiovascular disease (CVD) prevention 

guidelines recommend the use of (lifetime) risk prediction models to aid 

decisions regarding intensified preventive treatment options in adults with 

type 2 diabetes, e.g. the DIAbetes Lifetime perspective model (DIAL model). 

The aim of this study was to update the DIAL-model using contemporary and 

representative registry data (DIAL2) and to systematically calibrate the model 

for use in other European countries.

Methods and Results: The DIAL2 model was derived in 467,856 people 

with type 2 diabetes without a history of CVD from the Swedish National 

Diabetes Register, with a median follow-up of 7.3 years (IQR 4.0-10.6 years) 

and comprising 63,824 CVD (including fatal CVD, nonfatal stroke and nonfatal 

myocardial infarction) events and 66,048 non-CVD mortality events. The 

model was systematically recalibrated to Europe’s low and moderate risk 

region using contemporary incidence data and mean risk factor distributions. 

The recalibrated DIAL2 model was externally validated in 218,267 individuals 

with type 2 diabetes from the Scottish Care Information – Diabetes (SCID) and 

Clinical Practice Research Datalink (CPRD). In these individuals, 43,074 CVD 

events and 27,115 non-CVD fatal events were observed. The DIAL2 model 

discriminated well, with C-indices of 0.732 (95%CI 0.726-0.739) in CPRD and 

0.700 (95%CI 0.691-0.709) in SCID.

Interpretation: The recalibrated DIAL2 model provides a useful tool for the 

prediction of CVD-free life expectancy and lifetime CVD risk for people with 

type 2 diabetes without previous CVD in the European low and moderate risk 

regions. These long-term individualized measures of CVD risk are well suited 

for shared decision making in clinical practice as recommended by the 2021 

CVD ESC prevention guidelines.
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Introduction

Type 2 diabetes is a common chronic disease, with a worldwide prevalence of 

currently more than 6%.1 Despite major advances in treatment, cardiovascular 

disease (CVD, defined as myocardial infarction, stroke and fatal cardiovascular 

disease) remains the main cause of morbidity and premature mortality in this 

population.2 One consideration in the primary prevention of CVD is the use of 

(lifetime) risk prediction tools. The 2021 European Society of Cardiology (ESC) 

prevention guidelines introduced a two-step approach as an individualized 

CVD prevention strategy. A first line approach of treatment is applicable to 

all people with type 2 diabetes. In step two, intensified preventive treatment 

should be considered for each individual while taking into account personal 

preferences, expected side effects and predicted 10-year CVD risk and/or 

lifetime prediction measures.3 Lifetime prediction measures can be useful 

for supporting shared-decision making and projecting the lifetime effect of 

preventive treatment.

Different risk scores are available for use in people with type 2 diabetes. For 

estimating recurrent CVD risk in people with type 2 diabetes and established 

CVD, who are classified as being at ‘very high risk’ for a recurrent CVD event,3 the 

SMART2-risk score4 (10-year risk) and SMART-REACH model5 (lifetime risk) can 

be used. However, in people with type 2 diabetes without established CVD the 

individual level of 10-year or lifetime CVD risk varies considerably ranging from 

low to very high depending on individual and regional risk factors.6 The 2021 

ESC CVD prevention guidelines suggest the use of the ADVANCE risk score or 

DIAL-model for estimating CVD risk in this group of people,3 as these models 

include diabetes-specific variables and have been externally validated.7, 8 

The DIAL model estimates 10-year and lifetime CVD risk, life expectancy free 

of (recurrent) CVD and lifetime treatment benefit from risk factor treatment in 

people with type 2 diabetes aged 30 to 85 years.8 The model is available via the 

ESC CVD risk calculation app and as an interactive online calculator www.U-

Prevent.com. The DIAL model was developed in a cohort of people with type 

2 diabetes from the Swedish National Diabetes Register (NDR) included up 

until 2012. However, the continuous and ongoing inclusion of people with type 

2 diabetes in the Swedish NDR provides the opportunity to use more recent 

data and longer follow-up for derivation of a more contemporary model that is 
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capable of predicting 10-year and lifetime risks of CVD. Also, recent advances 

in geographical recalibration methods using aggregated age- and sex-specific 

average risk factor levels and CVD incidence rates and non-CVD mortality 

rates from nationally representative registry data9, 10 allow for contemporary 

and geographic recalibration of the model. 

The aim of this current study was to update and externally validate the DIAL 

prediction model (i.e. DIAL2) for estimation of lifetime risk of incident CVD in 

people with type 2 diabetes without established CVD, and to calibrate the DIAL2 

model to different geographical risk regions using an approach to easily update 

and enhance the accuracy of risk predictions with changing epidemiology of 

CVD in the future. 

Methods

Study populations

The target population for the DIAL2 model consists of people with type 2 

diabetes without established CVD (defined as coronary heart disease, stroke 

and peripheral artery disease) and aged 30-85 years. The DIAL2 model was 

developed using the Swedish NDR, which includes people with both incident 

and prevalent type 2 diabetes and has close to complete coverage of the 

population with a diagnosis of type 2 diabetes in Sweden during the study 

period (currently approximately 95% coverage). Details of the Swedish NDR 

have been described elsewhere.11 For this study, all participants registered in 

the Swedish NDR on January 1st 2008 as well as participants registering up 

until January 1st 2018 were included. Baseline date was set as January 1st 2008 

for those already registered in the Swedish NDR on this date and as date of 

enrollment for those registered after this date. All baseline characteristics 

were determined at baseline date, and if missing at this date, a time frame of 

inclusion of measurements of two years prior and six months after baseline 

was allowed (Supplementary Figure 1).

For external validation, we used the Scottish Care Information -Diabetes 

database12 (SCID, n = 143,042) and the Clinical Practice Research Datalink (CPRD) 

for England13 (n = 72,215). SCID is a dynamic population-based register of people 

with a diagnosis of diabetes in Scotland that has had almost complete coverage 

since 2006 from which research extracts are linked to national population-based 
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hospital and death records. Ethical and data governance approval for use of the 

linked database for research was obtained from the Scotland A multi-center 

research ethics committee (reference: 11-AL-0225) and the Public Benefit and 

Privacy Panel for health and social care in Scotland (reference: 1617-0147). CPRD is 

an ongoing primary care database of anonymized medical records from general 

practitioners, with coverage of over 11.3 million patients from 674 practices in the 

UK.12 With 4.4 million active (alive, currently registered) patients meeting quality 

criteria, approximately 6.9% of the UK population are included and patients are 

broadly representative of the UK general population in terms of age, sex and 

ethnicity. The CPRD data used for this study is restricted to the region of England. 

Model validation used records from both the SCID and the CPRD obtained for 

individuals with diabetes during the period on 1st of June 2008 with risk factors 

recorded nearest to this date, included during the prior two years or following 

6 months. Endpoints were obtained by linkage with Hospital Episode Statistics 

(HES) and death records from the Office of National Statistics (ONS). From these 

cohorts, all people with type 2 diabetes and without established CVD aged 30 

to 85 years were included. The definition of type 2 diabetes diagnosis in all data 

sources can be found in Supplementary Table 1.

Predictors and outcome variables

Two versions of the DIAL2 model were derived, a core model and an extended 

model including additional diabetes-specific risk factors. The predictors for the 

core DIAL2 model were predefined based on clinical availability and included 

age, sex, current smoking status (yes/no), systolic blood pressure (SBP) (mmHg), 

total cholesterol, high-density-lipoprotein-cholesterol (HDL-c), estimated 

glomerular filtration rate (eGFR) (estimated using the 2009 Chronic Kidney 

Disease Epidemiology Collaboration equation, CKD-EPI14), HbA1c and age at 

onset of type 2 diabetes (years). Furthermore, we derived an extended model 

with the aforementioned predictors as well as additional diabetes specific risk 

factors with sufficient availability in the development cohort. These additional 

variables were albuminuria (urine-albumin/creatinine ratio of <3 mg/mmol for 

none to mild albuminuria, 3-30 mg/mmol for moderate albuminuria and >30mg/

mmol for severe albuminuria15), body mass index (kg/m2), retinopathy (yes/no) 

and insulin use (yes/no). Previous research has shown that the associations of 

these risk factors with CVD decline with increasing age,10 therefore interactions 

with baseline age for all predictors were added. To assess the association of 
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continuous predictors with outcome variables, visual inspection of restricted 

cubic splines was used and this led to a log transformation of eGFR.

The outcomes of interest were CVD and non-CVD mortality, respectively. CVD 

was defined as a composite of nonfatal myocardial infarction, nonfatal stroke 

or cardiovascular mortality (death due to coronary heart disease, heart failure, 

stroke and sudden death). Non-CVD mortality was defined as death from any 

non-CVD cause. Endpoints were obtained by linkage to hospital records and 

mortality registers using ICD-10 codes (Supplementary Table 2), and did not 

include events observed in primary care practices.

Derivation of the DIAL2 algorithm

To account for differences in the relative effects of certain predictors between 

men and women, the models were derived separately for men and women. 

The coefficients for the DIAL2 model were estimated by fitting two cause-

specific Cox proportional hazards models with left truncation and right 

censoring thereby using age as the time-scale; one was developed with CVD-

event as outcome (function A) and another for non-CVD mortality as outcome 

(function B). Continuous predictors were truncated at the 1st and 99th percentile 

to limit the effect of outliers. Missing data were imputed by single imputation 

by predicted mean matching, further details regarding missing data are 

described in the Supplementary Methods. Baseline hazards for both functions 

were derived using 1-year intervals and smoothed using a LOESS function. By 

combining the coefficients from the cause-specific Cox proportional hazards 

functions A and B and the smoothed baseline hazards, lifetime risk of CVD 

and non-CVD mortality was estimated. This was done by adapting previously 

validated lifetable methods.16 Hereby, cumulative survival for both outcomes 

combined was calculated using one-year predictions for all future life years 

of an individual, enabling adjustment for competing risks. Lifetime risk of CVD 

was then calculated as the cumulative risk from an individual’s current age 

onwards until the maximum age of 95 years. A detailed description of statistical 

methods is provided in the statistical section in the Supplementary material. 

Geographical recalibration

The DIAL2 model was systematically recalibrated to the European risk regions 

defined in the 2021 ESC Cardiovascular Prevention Guidelines (Supplementary 



7

Lifetime risk prediction model for CVD in people with T2D

177   

Figure 2), using similar methods as were used for recalibration of SCORE2 and 

SCORE2-OP.17, 18 The methodology as well as the necessary adaptations of these 

methods for lifetime models and the population of patients with diabetes are 

explained in detail in Supplementary methods. In short, mean region-, age- and 

sex-specific risk factor values for individuals with diabetes and no prior CVD were 

obtained using CPRD data for low risk region and from the Swedish NDR data for 

moderate risk region. Annual CVD and non-CVD mortality rates were extracted 

from WHO global burden of disease database.19 Previously published SCORE2 

multipliers were used to convert WHO CVD mortality rates of the total population 

to incidence of fatal and non-fatal CVD in people not having established CVD, 

including both apparently healthy people and people with diabetes17. Secondly, 

incidence of fatal and non-fatal CVD in people not having established CVD 

was converted to incidence of fatal and non-fatal CVD in people with type 2 

diabetes using the SCORE2/SCORE2-OP hazard ratio (HR) of having diabetes 

for the respective event, adjusted for the age- and sex-specific prevalence of 

diabetes.20, 21 The same approach was used to convert WHO non-CVD mortality 

rates to non-CVD mortality rates in individuals with diabetes. Prevalence of type 

2 diabetes was obtained from the NCDRisc risk factors collaboration. Hazard 

ratios for diabetes on CVD and non-CVD mortality were obtained from SCORE217 

and SCORE2-OP18 (Supplementary figure 3). 

Model validation

Discrimination was quantified using Harrell’s C-statistic corrected for competing 

risks.22 Calibration was assessed visually by plotting predicted 10-year risks 

against 10-year CVD cumulative incidences adjusted for competing risks. 

Our approach to model development and validation complies with PROBAST 

guidelines23 and TRIPOD.24

Absolute risk reduction of CVD event from risk factor treatment

A theoretical application of the DIAL2 model is the estimation of individualized 

benefit from cardiovascular risk factor management.25 This process is described 

in detail in Supplementary material, methods. To estimate the effect of blood 

pressure and cholesterol lowering on CVD risk, average relative treatment 

effects estimated in large meta-analyses may be combined with DIAL2 

predictions. Examples of this include the effect of lowering SBP using a HR of 
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0.80 per 10 mmHg SBP reduction26 or the effect of LDL reduction with an HR of 

0.78 per 1 mmol/L.27 All analyses were performed with R-statistic programming 

(version 4.0.3, R Foundation for Statistical Computing, Vienna, Austria) and Stata 

(version 16.1, StataCorp, College Station, Texas).

Sensitivity analyses

Since 40% of the derivation population were on lipid-lowering agents, we 

performed sensitivity analyses assessing discrimination of the core model in 

the external validation cohorts in people with and without use of lipid-lowering 

agents, respectively. Also, we validated the original DIAL model and the 

ADVANCE risk score for 10-year predictions of CVD in the Swedish NDR cohort 

and the SCID cohort. It was not feasible to validate these models in the CPRD 

cohort due to several predictors not being available.

Results

Model derivation

The Swedish NDR cohort used for derivation comprised of 467,856 people 

with type 2 diabetes and without established CVD. Mean age at baseline was 

63 years and 55% were male. Median age at type 2 diabetes diagnosis was 58 

years (IQR 50-67 years). Baseline characteristics are presented in Table 1. Median 

follow-up was 7.3 years (IQR 4.0-10.6 years), in which 63,824 incident CVD events 

and 66,048 non-CVD mortality events were observed. For the core model, the 

C-statistic in the derivation dataset was 0.709 (95% CI 0.703-0.714) for CVD events 

and 0.723 (95% CI 0.718-0.728) for non-CVD mortality events. For the extended 

model, the C-statistic in the derivation dataset was 0.713 (95% CI 0.708-0.718) 

for CVD events (Supplementary table 6). All parameters necessary for individual 

predictions are listed in the Supplementary Materials: coefficients for individual 

predictions for both the core and extended model are shown in Supplementary 

Table 3, and shown graphically across different ages in Supplementary Figure 4. 

The age-specific baseline hazards are provided in Supplementary Table 4. The 

smoothed baseline hazards are shown in Supplementary Figure 5.

Geographical recalibration

The DIAL2 model was recalibrated to the low and moderate risk regions using 

the age-, sex-, and region-specific risk factor levels and CVD incidence rates 
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and non-CVD mortality incidences. After recalibration, the DIAL2 incidence 

rates observed well with the incidence rates for recalibrating the CVD events 

(Supplementary Figure 6) and the rates for recalibrating non-CVD mortality 

(Supplementary Figure 7). The rescaling factors derived for geographical 

recalibration are provided in Supplementary Table 5. Distributions of all 

individual prediction measures from DIAL2 in Swedish NDR are shown in Figure 

1. Individuals below 70 years of age had relatively low 10-year CVD event risks 

in comparison to older individuals, but higher lifetime CVD risks (Figure 1).

Table 1. Baseline characteristics of the Swedish National Diabetes Register cohort for 
derivation after imputation

Women 
(n = 211,761; 45%)

Men 
(n = 256,095; 55%)

Age (years) 65 ± 12 62 ± 12

Current smoking 31,503 (15%) 42,871 (17%)

Insulin use 36,619 (17%) 48,577 (19%)

Age at T2D onset 60 (51-69) 57 (49-65)

Antihypertensive medication use 138,869 (66%) 155,513 (61%)

Lipid-lowering medication use 83,560 (40%) 99,996 (39%)

Antiplatelet medication use 45,268 (21%) 57,536 (23%)

Systolic blood pressure (mmHg) 138 ± 17 138 ± 16

Diastolic blood pressure (mmHg) 78 ± 10 80 ± 10

Body mass index (kg/m2) 31 ± 6 30 ± 5

eGFR (ml/min/1.73m2) 85 (68-97) 90 (76-100)

Moderate albuminuria 26,937 (13%) 41,793 (16%)

Severe albuminuria 9,371 (4%) 16,450 (6%)

HbA1c (mmol/mol) 54 ± 15 56 ± 17

Triglycerides (mmol/L) 1.8 ± 1.2 2.0 ± 1.7

Total cholesterol (mmol/L) 5.2 ± 1.1 5.0 ± 1.1

HDL-c (mmol/L) 1.4 ± 0.4 1.2 ± 0.3

LDL-c (mmol/L) 3.0 ± 1.0 2.9 ± 1.0

Data are shown as mean  ± SD  or n (%) or median (IQR). eGFR = estimated glomerular filtration 
rate, HDL = high-density lipoprotein cholesterol, LDL-c = low-density lipoprotein cholesterol, 
T2D = type 2 diabetes. Albuminuria was defined as a urine-albumin/creatinine ratio of < 3 
mg/mmol for none to mild albuminuria, 3-30 mg/mmol for moderate albuminuria and 
urine-albumin/creatinine ratio >30mg/mmol for severe albuminuria.

Validation of the model

After recalibration, the DIAL2 model was validated in the data from CPRD, 

in SCID (both low risk region) and the Swedish NDR (moderate risk region). 
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Figure 1. Distribution of 10-year and lifetime CVD prediction measures in individuals 
younger and older than 70 years in Swedish NDR

Distribution of individual prediction measures from the DIAL2 model in Swedish NDR after 
recalibration to the moderate risk region. 
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Detailed characteristics of the individuals included in the external validation are 

shown in Table 2. In CPRD, validation included 75,215 individuals with type 2 diabetes 

comprising 7,286 CVD events and 5,236 non-CVD fatal events during a median 

follow-up of 6.1 years (IQR 0.8-11). In the validation performed in SCID, 143,042 

individuals with type 2 diabetes were included, comprising 35,788 CVD events 

and 21,879 non-CVD fatal events during a median follow-up of 11.0 years (IQR 6.7-

11.0). For predicting CVD events, the C-statistics were 0.732 (95%CI 0.726-0.739) and 

0.700 (95%CI 0.691-0.709) in CPRD and SCID, respectively (Figure 2). C-statistics for 

predicting the outcome of non-CVD mortality are also shown in Figure 2. 

Table 2. Baseline characteristics of the external validation cohorts 

CPRD (n = 75,215) SCID (n = 143,042)

Age (years), mean ± SD 63 ± 12 63 ± 13

Male sex, n (%) 39,708 (53%) 75,797 (53%)

Current smoking, n (%) 11,999 (21%) 27,383 (19.1%)

Insulin use 44,303 (30.9%)

Age at T2D onset, median (IQR) 57 (49-66) 58 (49-66)

Antihypertensive medication use 78,744 (55.0%)

Lipid-lowering medication use 70,007 (49.0%)

Antiplatelet medication use 48,714 (34.1%)

Systolic blood pressure (mmHg), mean ± SD 136 ± 16 135.6 ± 16.3

Diastolic blood pressure (mmHg) 87.1 ± 5.9

Body mass index (kg/m2) 32.5 ± 6.6

eGFR (ml/min/1.73m2), median (IQR) 75 (61-90) 79.8 (67.2-98.0)

Moderate albuminuria 26,319 (18.4%)

Severe albuminuria 3,969 (2.7%)

HbA1c (mmol/mol), mean ± SD 59 ± 17 58.0 ± 17.1

Triglycerides (mmol/L) 2.3 ± 1.3

Total cholesterol (mmol/L), mean ± SD 4.4 ± 1.1 4.4 ± 1.1

HDL-c (mmol/L), mean ± SD 1.2 ± 0.4 1.2 ± 0.4

LDL-c (mmol/L) 2.3 ± 0.8

Data are shown as mean  ± SD  or n (%) or median (IQR). eGFR = estimated glomerular 
filtration rate, HDL = high-density lipoprotein cholesterol, LDL-c = low-density lipoprotein 
cholesterol, T2D = type 2 diabetes. Albuminuria was defined as a urine-albumin/creatinine 
ratio of 3-30 mg/mmol for moderate albuminuria and urine-albumin/creatinine ratio 
>30mg/mmol for severe albuminuria.

For the extended model, the C-statistic for predicting CVD events was 0.705 

(0.695-0.714) in the SCID (Supplementary Table 6). Validation of the extended 
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model in CPRD was not feasible since all additional variables were not available 

in this dataset. Predicted 10-year CVD risks from the core DIAL2 model 

corresponded well with observed incidences up until 70 years of age in Swedish 

NDR and CPRD (Supplementary Figure 8). In older individuals, predictions were 

adequate in Swedish NDR but underestimated in CPRD. In SCID, observed 

incidence was higher than predicted CVD risks. 10-year predictions of non-CVD 

mortality corresponded well with observed incidences in Swedish NDR and 

SCID but were overestimated in CPRD (Supplementary Figure 9).

Figure 2. C-indices of the core DIAL2 model for assessing CVD events and non-CVD mortality

Absolute CVD event risk reduction from risk factor management

Figure 3 displays the estimated CVD-free life expectancy and gain in CVD-

free life expectancy from a 10 mmHg SBP reduction and 1.5 mmol/L LDL-c 

reduction for two individuals with type 2 diabetes, both men from a moderate 

risk region and aged 50 years both of whom have the following conventional 

risk factor levels: non-smoker, SBP of 140 mmHg, total cholesterol of 5.5 

mmol/L, HDL cholesterol of 1.3 mmol/L. Example A additionally has an HbA1c 

of 75 mmol/mol, diagnosis of type 2 diabetes 10 years prior to current age 

and an eGFR of 70 ml/min/1.73m2. Example B has an HbA1c of 50 mmol/mol, 

newly diagnosed type 2 diabetes and an eGFR of 70 ml/min/1.73m2.
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Figure 3. Theoretical example of lifetime benefit from 10 mmHg reduction in systolic 
blood pressure and 1.5 mmol/L reduction in LDL-c in two individuals with type 2 diabetes

Individual A:

Individual B:

Theoretical example of combining predicted CVD-free life expectancy with trial evidence on 
therapy benefit. Estimated CVD-free life expectancy and gain in CVD-free life expectancy 
from a 10 mmHg systolic blood pressure reduction and 1.5 mmol/L LDL-c for two 
individuals with type 2 diabetes, both men from a moderate risk region and aged 50 years 
with conventional risk factor levels (non-smoker, systolic blood pressure of 140 mmHg, total 
cholesterol of 5.5 mmol/L, HDL cholesterol of 1.3 mmol/L). Example A has an HbA1c of 
75 mmol/mol, diagnosis of type 2 diabetes 10 years prior to current age and an eGFR of 
70 ml/min/1.73m2. Example B has an HbA1c of 50 mmol/mol, newly diagnosed type 2 
diabetes and an eGFR of 70 ml/min/1.73m2.
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Sensitivity analyses

Discriminative performance of the core model was comparable among those on 

lipid lowering therapy and those not on lipid lowering therapy (Supplementary 

Table 7). C-statistic for the original DIAL model for CVD events was 0.558 (0.555-

0.560) in the Swedish NDR and 0.556 (0.538-0.574) in SCID. C-statistic for the 

ADVANCE risk score for CVD events was 0.673 (0.670-0.675) in the Swedish 

NDR and 0.674 (0.656-0.692) in SCID (Supplementary Table 8).

Discussion

This paper described the development and external validation of the DIAL2 

model for predicting lifetime risk of CVD in people with type 2 diabetes 

without established CVD. The model further allows for estimating CVD-free 

life expectancy to aid in individualized cardiovascular risk management. The 

updated DIAL2 model was recalibrated and validated using data from Europe’s 

low and moderate risk regions.

The DIAL2 model has several advantages and added clinical relevance 

as compared to the previously published DIAL model and other CVD risk 

prediction models for individuals with type 2 diabetes. The DIAL2 model 

showed improved discrimination for 10-year predictions as compared to the 

original DIAL model and the ADVANCE risk score. The low C-statistic for the 

original DIAL model is likely due to the model being derived in people with 

and without established CVD together, with the majority of events happening 

in the group of people with type 2 diabetes and established CVD. This affected 

discrimination in people with type 2 diabetes but without established CVD 

negatively, underlining the importance of updating the model. Furthermore, 

the key advantage of the DIAL2 model in comparison to its predecessors is 

the recalibration using contemporary and representative data on CVD and 

non-CVD mortality incidence and risk factor levels translated to populations 

with type 2 diabetes. This enables the use of the DIAL2 model across countries 

with different levels of CVD risk. By using a recalibration approach based on 

registry data, the model can be readily updated to reflect future CVD incidence 

and risk factor profiles as updated data become available. Due to a lack of 

reliable risk factors and external validation data in the high and very high risk 

region, the model was only recalibrated to the low and moderate risk region 
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at this point. However, the updated DIAL2 model is ready for recalibration to 

the high and very-high European risk regions as soon as such data become 

available for these countries. Previous CVD risk prediction models in people 

with type 2 diabetes did not perform recalibration to different populations or 

were recalibrated based on small cohorts or trial data, which may not reflect 

contemporary region-specific CVD and non-CVD mortality rates. 

Additionally, the DIAL2 model accounts for non-CVD mortality as competing 

risk, an asset that is crucial in preventing overestimation of risks and treatment 

benefits, especially in older individuals.22 Moreover, the extended DIAL2 model 

performed slightly better than the core model in terms of discrimination and 

further incorporates several diabetes-specific risk factors, including albuminuria 

which is a very important risk factor in people with type 2 diabetes.28 For 

individuals with such risks factors available in clinical practice the extended 

model therefore allows for more accurate predictions.

Furthermore, model derivation, recalibration and validation was performed 

in large and contemporary cohorts, enhancing accuracy and generalizability 

to individuals with type 2 diabetes without established CVD across different 

European countries, and minimizing the risk of model overfitting. The 

recalibrated model performed well both in regards to discriminating risk in 

individuals with type 2 diabetes in all data sources and showed generally 

adequate agreement between predicted and observed CVD risks both in the 

low and moderate risk region, underlining the validity of the recalibrated model. 

After recalibration to the low risk region, a systematic underestimation of CVD 

event risks was observed in Scottish data from SCID. These findings can likely 

be explained by the fact that the UK as a whole is considered low risk of CVD 

mortality, but Scotland is an outlier within the UK in having higher rates.29 These 

differences between countries also highlight the need for country-specific 

recalibration. Should high-quality data in specific countries be available, then 

the methodology as described in the current paper could be used to tailor the 

risk score to these specific countries.

The DIAL2 model can be used to estimate several prediction measures 

including CVD-free life expectancy. In contrary to the original DIAL model, 10-

year risk is not predicted with the DIAL2 model as this will be possible with 

the SCORE2-Diabetes model which has been developed in parallel, featuring 
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the same risk regions, predictors and similar recalibration methodology. As 

these key features have been streamlined between the two models, 10-year 

predictions from SCORE2-Diabetes and lifetime predictions from DIAL2 can be 

consistently used in parallel, allowing easy implementation in clinical practice 

and use of prediction parameters deemed most relevant for every individual.

Since age is the primary driver of 10-year CVD risk, lifetime measures might 

at times be a suitable additional measure to help make treatment decisions, 

especially in younger and older individuals with type 2 diabetes. In younger 

people, 10-year CVD risks will often be considered low, although lifelong 

benefit from long-term use of preventive treatment may be substantial.30 On 

the other hand, older persons almost always have very high 10-year CVD 

risks, but due to their limited remaining life expectancies, their benefit from 

preventive therapy may be small. Lifetime predictions, including CVD-free life 

expectancy, directly relate to life expectancy and are furthermore adjusted for 

competing risks, making them more suitable for individualized risk assessment 

and treatment in younger and older individuals.3 

The 2021 ESC prevention guidelines recommend a two-step approach as 

an individualized CVD prevention strategy in each individual with type 2 

diabetes. Step 1 includes prevention goals for all, i.e. stop smoking, lifestyle 

recommendations, and Hba1c <53 mmol/mol. In addition, patients with a 

diabetes duration >10 years but no established CVD or severe target organ 

damage are recommended to lower SBP <140 to 130 mmHg and LDL-c to 

<2.6 mmol/L. In addition, step 2 prevention goals should be considered in 

all patients, taking into account personal preferences, expected side effects 

and predicted 10-year CVD risk and/or lifetime prediction measures.3 Step 2 

prevention goals are SBP <130 mmHg, LDL-c <1.8 mmol/L, and initiation of 

SGLT2-i or GLP1-RA. Lifetime prediction measures can be useful for supporting 

shared-decision making on these step 2 prevention goals and to project the 

lifetime effect of preventive treatment. These interventions are to be initiated 

in a shared-decision making process, which requires a good understanding of 

these risk measures by both patient and physician. Lifetime risks and gain in 

CVD-free life years by initiation of preventive treatment have been shown to 

be an intuitive concept for individuals when considering preventive treatment.31 

Several limitations of the current study merit consideration. First of all, a 

validation was only performed for up to 10 years, since the cohort data did 
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not have longer follow-up. Although previous studies have shown the validity 

of lifetime predictions for up to 17 years,16 predictors may change during the 

course of a lifetime and as long-term follow-up data become available, the 

model will benefit from longer timeframe validations to further validate the 

methodology. 

Furthermore, ideally more data should be used for both estimating the mean 

risk factor levels for people with type 2 diabetes in each region and for the 

diabetes-specific CVD and non-CVD mortality event rates. This is currently not 

feasible with the lack of diabetes-specific representative and contemporary 

cohorts. However, the current methodology using general population data 

adapted to the diabetes-specific situation has been shown to lead to adequate 

calibration and can be used until high quality data with national coverage are 

available specifically for people with diabetes.

Another limitation is that model derivation was only performed in Swedish data 

from the Swedish NDR data, and ideally this would have involved data from 

all relevant regions in which the model is intended for usage. Reassuringly, 

previous studies have found the relative effects of model coefficients to be 

stable over geographical areas.10, 32 Also, information on ethnicity, family history 

of premature CVD and socio-economic status was not available in the Swedish 

NDR used for model derivation, so we were not able to incorporate these 

predictors, even though they may be of added relevance in clinical practice. 

For estimation of the rescaling factors used for geographical recalibration, 

region-specific mean risk factor levels were obtained from country-specific 

cohorts, which may not be representative for the whole region. However, the 

recalibrated DIAL2 model performed well in cohorts from both the low- and 

moderate risk regions. 

It should also be emphasized that the DIAL2 model does not predict other 

adverse outcomes in people with type 2 diabetes, such as incident heart failure 

or progression to kidney failure, which may also be key indications to initiate 

preventive treatment. The model may thus underestimate the total benefit 

from treatment which may also differ for different preventive agents. 

In conclusion, lifetime CVD risk as well as CVD-free life expectancy can be 

estimated based on readily available patient characteristics using the DIAL2 

model. The DIAL2 model is calibrated accounting for geographical differences 
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in CVD incidence and mortality for European low and moderate risk regions, 

and is ready for further recalibration to high and very high risk regions as soon 

as the relevant data become available. The DIAL2 model may be used to 

support shared decision making in clinical practice as recommended by the 

2021 CVD ESC prevention guidelines.
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Supplementary material

Expanded methods

Missing data

Missing data were singly imputed using predictive mean matching method 

(aregImpute-algorithm in R, Hmisc package) that involved taking probability 

weighted means of non-missing characteristics closest to the predicted value 

of a missing data point in regression model fitted to the observed data. Missing 

data in the Swedish NDR were infrequent: 3% for each of sex, age, eGFR, HbA1c 

and systolic blood pressure, 4% for smoking, 7% for total cholesterol, 10% for 

HDL-C and 12% for age at diabetes diagnosis.

Statistical analyses

Development of the lifetime model

The interlinked stages of model derivation and recalibration are summarized 

in Supplementary Methods, Figure 1. An overview of the process is as follows: 

Box 1. Risk model derivation

The Swedish NDR dataset was used to derive risk prediction models for men 
and women with diabetes separately, without history of cardiovascular disease 
(CVD). Two cause-specific Cox proportional hazards models were fitted: one 
for the event of interest (incident CVD) and another for the competing event 
(non-CVD mortality), using age as the time scale with left truncation and right 
censoring. Participants contributed data to the survival models from their age 
at study entry until the time of a respective event or censoring, defined by 
age at study exit. Continuous predictors were standardised by subtracting the 
mean and dividing by the standard deviation. Age-specific baseline survivals 
were calculated in 1-year intervals from age 30 to 94 years for the two Cox 
proportional hazard models and smoothed using a local regression smoother 
(Supplementary methods figure 2). Interactions between predictors and age at 
risk (e.g. age for calculating yearly risk in the lifetables) were included to allow 
for expected age-dependent associations.
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Box 2. Yearly cause-specific mortality risk in four previously defined risk regions

We aimed to update DIAL2 following a similar approach as used in the SCORE2 
CVD risk algorithm that has been recommended for CVD risk assessment in 
people without diabetes in four risk regions of Europe.1 The four risk regions 
were defined by grouping countries according to age-standardized CVD 
mortality rates calculated from the WHO mortality database. CVD-mortality 
comprised fatal events in the CVD endpoints considered, and non-CVD mortality 
comprised all other fatal events not in the CVD endpoint (for definitions see 
Supplementary Table 2). Region-level estimates of CVD and non-CVD mortality 
rates were obtained as the medians of country-specific rates by sex and 5-year 
age groups within the relevant region. 

For the DIAL2 model development we similarly obtained the region-level CVD 
and non-CVD mortality rates, but using 1-year age groups. The cause-specific 
mortality rates were then converted to 1–year mortality risks (r) using the formula:

r = 1 e-(-fatal
 rateagegroup-and sex specific)

As the WHO rates cover 1-year intervals already, no interpolation was needed.

Box 3. Converting mortality rates to incidence estimates

To convert 1-year mortality estimates to incidence estimates, age- and sex-
specific multiplication factors estimated previously for the SCORE2 model 
development were subsumed. 

multiplier =
Cumulative 1 year incidence total CV eventswithout prior CVD

Cumulative 1 year incidence fatal CV eventsentire population

This was done to convert population level mortality statistics (calculated among 
the whole population regardless of prior disease status) into first event incidence 
estimates (which are representative of the target primary population without 
prior CVD). To be as consistent as possible to the SCORE2 methodology, no new 
multipliers were derived, and the multipliers from SCORE2 were applied to these 
1-year mortality rates. The validity of this assumption was assessed by comparing the 
cumulative incidence of CVD mortality rates and CVD events at 1-year and 10-years 
in large-scale population-based data sources (Supplementary Methods Figure 3).

Multiplication factors were assumed to be stable within each region and over 
time which was additionally verified in several analyses in SCORE2.1 
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Box 4. Estimating yearly CVD incidence for patients with type 2 diabetes

The yearly incidence of first CVD event in the general population in people 
without prior CVD (Box 3) was translated to yearly incidence among people 
with type 2 diabetes using a naïve method2 that assumes that the general 
population incidence rate is a weighted average of the incidence rates in 
people with and without diabetes. Thus it modifies predicted risks based on 
the population prevalence of diabetes and the hazard ratio (HR) for diabetes. 

We used the NCD risk factor collaboration data to calculate the population 
prevalence of type 2 diabetes in each region. For the HR of diabetes on CVD 
event we used the age-specific estimates derived in the SCORE2 model1 for 
people ≤ 65 years and estimates derived in the SCORE-OP model for people > 
65 years3 (Supplementary Figure 3). 

We similarly calculated the HR for non-CVD mortality with diabetes in the dataset 
used for derivation of SCORE2 (sex-specific Fine and Gray model stratified by 
cohort fit using ERFC and UK Biobank data), with non-CVD mortality as primary 
endpoint and CVD event as competing endpoint. All predictors, including age 
interactions, were the same as in SCORE2. 

Population relative risk was calculated using the prevalence of type 2 diabetes 
per region (from the NCD data) as:

Population RR = T2D prevalenceregion * HR for diabetes+(1 - T2D prevalenceregion)

Risks were thereafter modified as follows:

One-year risk in T2D = 1 - (1 - (one - year risk))HR for T2D/(population RR)

Box 5. Recalibration of the DIAL-2 model

Predicted (uncalibrated) 1-year risks of CVD events and non-CVD mortality were 
estimated by applying the uncalibrated DIAL2 model to age- and sex-specific 
means of predictor variables within each region for every year of age from age 
40 years. The means of predictors were obtained from cohorts of people with 
type 2 diabetes in each region: CPRD for low-risk region and Swedish NDR for 
moderate-risk region.

Recalibration of the core DIAL2 model was completed separately for each 

risk region and sex using the previously published and validated process1 as 

described in Supplementary Methods Figure 2. Expected age- and sex- specific 
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1-year risks (Box 4) were regressed on the DIAL-2 model predicted 1-year risks 

(Box 5) with transformations to derive rescaling factors (the intercept and slope 

of the resulting regression line) for recalibration in each risk region. Since the 

age-groups of 35 and 40 years were observed to be outliers and due to the 

low prevalence of events in these age-groups (<2%) in the dataset used for 

derivation of coefficients and baseline hazards (for esti-mating predicted CVD-

risk), we did not include these in the calculation of the rescaling factors.

Predictions for individual persons

In order to calculate CVD-free life expectancy (median survival without CVD) 

and CVD risk, life-tables were estimated with 1-year time intervals. Starting at 

the current age of an individual with T2D, the risk of having a CVD-event (at) 

combined with the risk of a non-CVD mortality event (bt) were predicted for 

each future 1-year interval. Next, the cumulative CVD-free survival (Survt+1) was 

calculated by multiplying the survival probability at the beginning of each 1-year 

interval (Survt) by the CVD-free survival probability during that 1 year (Survt * at 

- bt). Logically the cumulative CVD-free survival started at 100% at the current 

age of a person. This process was repeated until the maximum age of 95 years. 

CVD-free life expectancy of an individual was defined as the median survival 

without CVD, determined as the age where the estimated cumulative survival 

drops below 50%. The attributable CVD-risk was obtained by multiplication of 

the probability of survival without a CVD-event at the beginning of the 1-year 

interval (Survt) and the risk of having a CVD-event (at) during that year. Similarly, 

lifetime risk was calculated by the summation of the attributable CVD risk from 

a person’s current age onwards until the age of 95.

Predicting treatment effects from risk factor treatment using DIAL2

It has previously been shown that risk estimations can be combined with relative 

treatment effects from trials to calculate absolute individualized treatment 

effects.4,5 To show the potential use of using DIAL2 in daily clinical practice, 

we included an example on the individual absolute benefit of blood pressure 

lowering and lipid lowering in people with type 2 diabetes. To estimate the effect 

of blood pressure lowering  on CVD, average relative treatment effects were 

added to DIAL2, using a hazard ratio (HR) of 0.80 per 10 mmHg SBP reduction 

taken from a large meta-analysis for blood pressure lowering, and estimating 

the benefit from a 10 mmHg blood pressure lowering for a patient example. 
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For lipid lowering, an HR of 0.78 per 1 mmol/L LDL reduction was used and 

the treatment benefit of a 1.5 mmol/L lowering was likewise estimated for a 

patient example. For both treatment effects, it was assumed that the HR can be 

applied across the entire age range. Indeed, no evidence for heterogeneity of 

these treatment effects across different age ranges has been found.

Treatment benefit was calculated for the respective risk factor treatment by 

combining the HR with the individualized estimated CVD event risks as used 

in the lifetable (here an example shown for a HR per 10 mmHg SBP reduction):

Riskwith treatment = 1 - (1 - riskoriginal)
exp(log(HR)×((SBP reduction)/10))

Treatment effects are calculated in the lifetable for every 1-year separately, 

thereby taking into account the probability of having a CVD event or non-CVD 

fatal event before the moment of interest.

Treatment benefit for individual patients is defined as the gain in life years with 

the initiated treatment:

Gain in CVDfree life years=median CVDfree life expectancy-treated median 

CVDfree life expectancy
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Supplementary Methods, Figure 3. Comparison of 10-year versus 1-year multipliers

Supplementary Table 1. Definition of type 2 diabetes in the different cohorts

Cohort Definition of type 2 diabetes

Swedish National Diabetes 
Registry

The definition of T2DM was treatment with 1) diet only, 
2) oral hypoglycemic agents only, or 3) insulin only or 
combined with oral agents, and onset age of diabetes ≥40 
years

Scottish Care Information - 
Diabetes Database

T2DM was defined using an algorithm which uses 
information from the clinician recorded diabetes type, 
prescription data (use of and timing of sulphonylureas and 
insulin) and age at diagnosis.
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Supplementary Table 2. Endpoint definitions

Fatal cardiovascular disease– cause specific mortality due to any of the following:

Endpoints included ICD10-codes ICD9-codes

Hypertensive disease I10-16 401 – 405

Ischemic heart disease I20-25 410 - 414

Arrhythmias, heart failure I46-52 426 - 429

Cerebrovascular disease I60-69 430 - 438

Atherosclerosis/AAA I70-73 440 - 443

Sudden death and death within 24h of symptom onset R96.0-96.1 798.1 , 798.2

Endpoints excluded from the above endpoint:

Myocarditis, unspecified I51.4 426.7

Subarachnoid haemorrhage I60 429

Subdural haemorrhage I62 430

Cerebral aneurysm I67.1 432.1

Cerebral arteritis I68.2 437.3

Moyamoya I67.5 437.4

Non-fatal cardiovascular disease

Non-fatal myocardial infarction I21-I23 410

Non-fatal stroke I60-69 430-438

Excluded from the non-fatal stroke endpoint:

Subarachnoid hemorrhage I60 429

Subdural hemorrhage I62 430

Cerebral aneurysm I67.1 432.1

Cerebral arteritis I68.2 437.3

Moyamoya I67.5 437.4
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Supplementary Table 4. Age-specific baseline hazards for individual predictions for the 
DIAL2 model

Core model

Age Baseline hazards for CVD Baseline hazards for non-CVD mortality

  Men Women Men Women

30 0.9998293 0.9998565 0.9994517 1

31 0.9997662 0.999854 0.9992266 0.9999997

32 0.9996901 0.9998489 0.9990281 0.9996788

33 0.9996019 0.9998397 0.9988527 0.9993951

34 0.9995023 0.9998255 0.9986977 0.9991462

35 0.9993913 0.999806 0.9985618 0.9989295

36 0.9992691 0.9997819 0.9984439 0.9987445

37 0.9991352 0.999755 0.9983447 0.9985923

38 0.9989872 0.9997294 0.9982671 0.9984744

39 0.9988238 0.9996981 0.9982163 0.9983979

40 0.9986793 0.9996267 0.9981685 0.9983665

41 0.9985078 0.9995375 0.9980773 0.9983094

42 0.9983092 0.999423 0.9979703 0.9982468

43 0.9981005 0.9992745 0.9978316 0.998208

44 0.997873 0.9991081 0.9976819 0.9981554

45 0.9976122 0.9989359 0.9975508 0.9980506

46 0.9973142 0.9987595 0.9974513 0.9979352

47 0.9969843 0.9985751 0.9973646 0.9978421

48 0.9966384 0.9983841 0.997278 0.9977632

49 0.9962791 0.9981962 0.9971717 0.997687

50 0.995904 0.9980184 0.9970235 0.9975903

51 0.9955246 0.9978511 0.9968283 0.9974611

52 0.995151 0.9976868 0.9965986 0.9972861

53 0.9947816 0.9975215 0.996327 0.9970572

54 0.994387 0.9973424 0.9959967 0.9967986

55 0.9939475 0.9971368 0.9956019 0.9965327

56 0.9934664 0.9969031 0.9951759 0.9962605

57 0.9929383 0.9966428 0.9947575 0.9959449

58 0.9923644 0.9963401 0.9943528 0.995566

59 0.9917537 0.9959813 0.9939268 0.995153

60 0.9910945 0.9955634 0.993446 0.9947426

61 0.9903806 0.9950855 0.9929045 0.9943342

62 0.989642 0.9945521 0.9923196 0.993883
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Age Baseline hazards for CVD Baseline hazards for non-CVD mortality

  Men Women Men Women

63 0.9888947 0.9939677 0.9916917 0.9933427

64 0.9881741 0.9933402 0.9909887 0.9927154

65 0.9874773 0.9926821 0.9901786 0.9920471

66 0.9867378 0.991968 0.9892775 0.9913655

67 0.9859176 0.9912046 0.9883097 0.9906735

68 0.9849895 0.9903964 0.9872678 0.9899269

69 0.9839251 0.9895306 0.9860997 0.9890634

70 0.9827127 0.988576 0.9847445 0.9881015

71 0.9813333 0.9874698 0.9831778 0.9870408

72 0.9797778 0.9862148 0.9814194 0.9858311

73 0.9780527 0.9848419 0.9794554 0.9844413

74 0.9761649 0.9833537 0.9772473 0.9828348

75 0.9741417 0.9817054 0.9747013 0.9809881

76 0.9719586 0.9798273 0.971754 0.9788992

77 0.9695478 0.977632 0.9683471 0.9765357

78 0.9668429 0.9750382 0.964308 0.9738093

79 0.9637983 0.9720317 0.9595616 0.9705838

80 0.9604942 0.9686439 0.9540458 0.9667519

81 0.9568775 0.9649187 0.9476512 0.9622104

82 0.9527988 0.9608883 0.9404653 0.9569748

83 0.9482612 0.9566166 0.9324025 0.9510166

84 0.9432077 0.9520183 0.9231998 0.9442042

85 0.9377561 0.9471244 0.9128504 0.9362527

86 0.932045 0.9419826 0.9017291 0.9269463

87 0.9261494 0.9364888 0.8887435 0.9159623

88 0.9198165 0.9307792 0.87377 0.9033584

89 0.9130291 0.9248601 0.856952 0.8891999

90 0.9058059 0.9187206 0.8383406 0.8734926

91 0.8981605 0.9123523 0.817949 0.8562255

92 0.8901037 0.9057563 0.7957676 0.8373831

93 0.8816344 0.8989348 0.7717645 0.8169509

94 0.8727474 0.8918909 0.7458921 0.7949127

Supplementary Table 4. Continued
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Extended model

Age Baseline hazards for CVD Baseline hazards for non-CVD mortality

  Men Women Men Women

30 0.99981682 0.999841605 1 1

31 0.999745449 0.999833396 0.999990171 0.999990171

32 0.999662585 0.999823888 0.999650585 0.999650585

33 0.999569233 0.999811444 0.999354685 0.999354685

34 0.999466106 0.999794978 0.999099913 0.999099913

35 0.999353288 0.999774361 0.998883294 0.998883294

36 0.999230963 0.999750236 0.998704231 0.998704231

37 0.999098455 0.999724764 0.998563939 0.998563939

38 0.998953177 0.999702344 0.998464105 0.998464105

39 0.998793252 0.999674522 0.998413151 0.998413151

40 0.998656499 0.999603385 0.998415774 0.998415774

41 0.998495451 0.999514588 0.998391432 0.998391432

42 0.998309113 0.999402421 0.998360012 0.998360012

43 0.998115425 0.999258185 0.998353153 0.998353153

44 0.997905438 0.999098003 0.998331679 0.998331679

45 0.997664761 0.998934176 0.998255594 0.998255594

46 0.997389305 0.998768334 0.998167316 0.998167316

47 0.997084942 0.998597677 0.998100925 0.998100925

48 0.996768502 0.998423401 0.998048773 0.998048773

49 0.996443782 0.998254679 0.99799871 0.99799871

50 0.996109087 0.998098206 0.997929869 0.997929869

51 0.995774505 0.997954063 0.997833818 0.997833818

52 0.995448895 0.997815399 0.997700975 0.997700975

53 0.995131225 0.997678226 0.997524097 0.997524097

54 0.994795624 0.997530004 0.997323005 0.997323005

55 0.994424927 0.997358787 0.997115296 0.997115296

56 0.994022102 0.997164108 0.996902224 0.996902224

57 0.993581649 0.996948197 0.996653809 0.996653809

58 0.99310471 0.99669659 0.996353938 0.996353938

59 0.992599479 0.996396599 0.996026256 0.996026256

60 0.992055322 0.996046126 0.995700166 0.995700166

61 0.991466123 0.995644647 0.995374137 0.995374137

62 0.990858402 0.995196653 0.995010591 0.995010591

63 0.990246405 0.994705948 0.994571431 0.994571431

Supplementary Table 4. Continued
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Age Baseline hazards for CVD Baseline hazards for non-CVD mortality

  Men Women Men Women

64 0.989660437 0.994179814 0.994058246 0.994058246

65 0.989097587 0.993629998 0.993509088 0.993509088

66 0.988500545 0.993035685 0.992946311 0.992946311

67 0.987837683 0.992403063 0.992372283 0.992372283

68 0.987088259 0.991736871 0.991750607 0.991750607

69 0.986230488 0.991027744 0.991030236 0.991030236

70 0.98525524 0.990250832 0.990226477 0.990226477

71 0.984146864 0.989354655 0.9893375 0.9893375

72 0.982898154 0.988341489 0.988319339 0.988319339

73 0.981514839 0.987235751 0.987144274 0.987144274

74 0.980002732 0.986038091 0.985778612 0.985778612

75 0.978385381 0.984711305 0.98419872 0.98419872

76 0.976643363 0.983198005 0.982399046 0.982399046

77 0.974720638 0.981424828 0.980346611 0.980346611

78 0.97256165 0.979322626 0.977960403 0.977960403

79 0.970126547 0.976878407 0.975115004 0.975115004

80 0.967482965 0.974117192 0.971707593 0.971707593

81 0.964591803 0.971076317 0.967639592 0.967639592

82 0.961332805 0.967783266 0.962917524 0.962917524

83 0.957708816 0.964288909 0.957497413 0.957497413

84 0.953673792 0.960516339 0.951235994 0.951235994

85 0.949325046 0.956484839 0.943847267 0.943847267

86 0.944782568 0.95223702 0.935113241 0.935113241

87 0.940070604 0.947685092 0.924691219 0.924691219

88 0.934975357 0.942932386 0.912614233 0.912614233

89 0.929487413 0.93798461 0.898951256 0.898951256

90 0.923624021 0.93283321 0.883711484 0.883711484

91 0.917396703 0.927471854 0.866885797 0.866885797

92 0.910813616 0.921901412 0.848458964 0.848458964

93 0.903872778 0.916123649 0.828415247 0.828415247

94 0.896568211 0.910140428 0.806736339 0.806736339

Supplementary Table 4. Continued
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Supplementary Table 5. Region-specific recalibration scales for calculation of the 
1-year CVD event and non-CVD mortality risks

Male Female

Scale 1 Scale 2 Scale 1 Scale 2

CVD events

Low risk region -1.1963 0.7686 -0.7647 0.8626

Moderate risk region -0.7944 0.7906 -0.2967 0.9083

Non-CVD mortality

Low risk region 0.0596 0.9920 0.6679 1.1289

Moderate risk region -0.2930 0.9002 0.3085 1.0426

Rescaling factors for the DIAL2 model to scale individual predicted risks within the life table 
to the target population, based on recent nationally representative estimates of incident 
cardiovascular disease and risk factor levels. 

Supplementary Table 6. Discrimination of both the core and extended model

Cohort C-statistic core model (95%CI) C-statistic extended model (95%CI)

CVD Non-CVD 
mortality

CVD-events Non-CVD 
mortality

Swedish NDR 0.709 (0.703-0.714) 0.723 (0.718-0.728) 0.713 (0.708-0.718) 0.720 (0.718-0.722)

SCID 0.700 (0.691-0.709) 0.702 (0.696-0.707) 0.705 (0.695-0.714) 0.700 (0.692-0.706)

CPRD 0.732 (0.726-0.739) 0.720 (0.712-0.727) NA NA

The extended model was not externally validated in CPRD as all additional variables 
necessary for validation of the extended model were not available in this validation dataset. 

Supplementary Table 7. C-indices (95%CI) for validation of the core DIAL2 model in 
people with and without use of statin therapy in the external validation cohorts

SCI-Diabetes CPRD

Statin-users 
(n = 70,007, 49%)

No statin-users 
(n = 73,035, 51%)

Statin-users 
(n = 61,981)

No statin-users 
(n = 13,234)

CVD events 0.697 (0.689-704) 0.705 (0.688-0.722) 0.739 (0.733-0.745) 0.790 (0.773-0.806)

Non-CVD 
mortality 
events

0.695 (0.689-0.702) 0.703 (0.687-0.719) 0.725 (0.718-0.732) 0.733 (0.718-0.748)
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Supplementary Table 8. C-indices (95%CI) for the original DIAL model and the ADVANCE 
risk score as well as the current DIAL2 model for 10-year CVD predictions in the Swedish 
NDR cohort and the SCI-Diabetes cohort

Swedish NDR SCI-Diabetes

DIAL 0.558 (0.555-0.560) 0.556 (0.538-0.574)

ADVANCE 0.673 (0.670-0.675) 0.674 (0.656-0.692)

DIAL2 0.708 (0.703-0.714) 0.700 (0.691-0.709)

These models were not externally validated in CPRD as several variables necessary for 
validation were not available in this dataset. 



7

Lifetime risk prediction model for CVD in people with T2D

209   

Supplementary Figure 1. Flowchart over selection of the Swedish National Diabetes 
Register derivation cohort
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Supplementary Figure 2. Risk regions based on standardised CVD mortality rates (from 
SCORE2, Hageman et al 2021)

Supplementary Figure 3. sHR for diabetes on CVD and non-CVD mortality according to 
age used for estimating diabetes-specific CVD incidences in expected risks
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Supplementary figure 4. Relative effect of risk factors across different ages

Hazard ratios for CVD events:
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Hazard ratios for non-CVD mortality:

All predictors of the core model, graphically across the relevant age-range. The plotted line 
is a summary of both the main effect estimate and the age-interaction at every age.

Supplementary figure 4. Continued
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Supplementary Figure 5. Smoothing of age-specific baseline survivals for (A) 1-year 
CVD baseline survival and (B) 1-year non-CVD mortality baseline survival. Black dots 
indicate the original baseline survivals based on the observed events per life-year, the 
red lines show the predicted progression of baseline survivals from the age of 30 years 
to 95 years
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Supplementary Figure 6. Agreement of the DIAL2 yearly CVD event rates with registry 
data before and after recalibration



7

Lifetime risk prediction model for CVD in people with T2D

215   

Supplementary Figure 7. Agreement of the DIAL2 yearly non-CVD mortality rates with 
registry data before and after recalibration 
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Supplementary Figure 8. Calibration of the core DIAL2 model for predicting the 10-year 
risk of CVD events

Calibration of the DIAL2 risk model. Predicted risks are obtained as the mean 10-year risk 
per age-group obtained using the recalibrated DIAL2 model. Observed risks are the mean 
10-year cumulative incidences adjusted for non-CVD mortality as competing risk according 
to age-groups.
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Supplementary Figure 9. Calibration of the core DIAL2 model for predicting the 10-year 
risk of non-CVD mortality

Calibration of the DIAL2 risk model. Predicted risks are obtained as the mean 10-year risk 
per age-group obtained using the recalibrated DIAL2 model. Observed risks are the mean 
10-year cumulative incidences adjusted for CVD as competing risk according to age-
groups.
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Abstract

Aims: To develop and validate a recalibrated prediction model (SCORE2-

Diabetes) to estimate 10-year risk of cardiovascular disease (CVD) in individuals 

with type 2 diabetes in Europe. 

Methods and results: SCORE2-Diabetes was developed by extending SCORE2 

algorithms using individual-participant-data from four large-scale datasets 

comprising 229,460 participants (43,706 CVD events) with type 2 diabetes and 

without previous CVD. We used sex-specific competing risk-adjusted models 

including conventional risk factors (i.e., age, smoking, systolic blood pressure, 

total- and HDL-cholesterol), as well as diabetes-related variables (i.e., age-

at-diabetes diagnosis, glycated haemoglobin [HbA1c] and creatinine-based 

estimated glomerular filtration rate [eGFR]). Models were recalibrated to CVD 

incidence in four European risk regions. External validation included 216,980 

further individuals (38,594 CVD events), and showed good discrimination, and 

improvement over SCORE2 (C-index change from 0.009 to 0.031). Regional 

calibration was satisfactory. SCORE2-Diabetes risk predictions varied several-

fold, depending on individuals’ levels of diabetes-related factors. For example, 

in the moderate risk region, the estimated 10-year CVD risk was 11% for a 

60-year-old man, non-smoker, with type 2 diabetes, average conventional 

risk factors, HbA1c of 50 mmol/mol, eGFR of 90ml/min/1.73m2, and age-at-

diabetes diagnosis of 60 years. By contrast, the estimated risk was 17% in a 

similar man, with HbA1c of 70 mmol/mol, eGFR of 60 ml/min/1.73m2, and age-

at-diagnosis of 50 years. For a woman with the same characteristics, risk was 

8% and 13%, respectively.

Conclusions: SCORE2-Diabetes, a new algorithm developed, calibrated, and 

validated to predict 10-year risk of CVD in individuals with type 2 diabetes, 

enhances identification of individuals at higher risk of developing CVD across 

Europe.
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Introduction

Cardiovascular diseases (CVD) remain a major cause of morbidity and mortality 

in Europe with almost 13 million new cases recorded in 2019 alone.1 Type 2 

diabetes mellitus is a major risk factor for CVD. Individuals with diabetes from 

high-income countries have, on average, 2-fold greater risk of developing CVD 

outcomes compared to counterparts without diabetes.2 The European Society 

of Cardiology (ESC) provides guidelines and advocates estimation of CVD risk 

in individuals with type 2 diabetes to inform treatment decisions.3 

Risk prediction models used in the primary prevention of CVD in general 

populations usually estimate individual risk over a 10-year period by integrating 

information on measured levels of conventional CVD risk factors (i.e., age, 

smoking status, systolic blood pressure, and total- and HDL-cholesterol) and 

information on diabetes status.4-6 To help account for substantial variation in risk 

across individuals with diabetes, however, additional diabetes-related information 

(e.g., age at diagnosis of diabetes, glycated haemoglobin [HbA1c], and markers 

of kidney function) have been included in several published risk models.7-10 

Nonetheless, available diabetes-specific models have important potential 

limitations. In particularly, they may not be optimal for use across Europe’s diverse 

populations since they have been developed from a narrow set of observational 

studies and/or intervention trials, and have not been systematically ‘recalibrated’ 

(i.e. statistically adapted) to reflect the substantial variation in CVD rates across 

different European countries.1,10,11 To address these limitations, the ESC has 

convened an effort to extend the regionally recalibrated European SCORE2 10-

year risk models12, enabling use in individuals with type 2 diabetes. 

Here, we describe development, validation, and illustration of SCORE2-

Diabetes to estimate 10-year risk of non-fatal myocardial infarction, stroke or 

any CVD mortality in individuals with diabetes but without previous CVD, aged 

over 40 years, in four different European risk regions. 

Methods 

Study design

The SCORE2-Diabetes project involved several interrelated components and 

data sources (Figure 1). First, the original SCORE2 risk prediction models for fatal 

and non-fatal CVD outcomes were adapted for use in individuals with type 2 
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diabetes using individual-participant data from four population data sources 

(Scottish Care Information – Diabetes [SCID], Clinical Practice Research Datalink 

[CPRD], UK Biobank [UKB], Emerging Risk Factors Collaboration [ERFC]) across 7 

countries (England, Wales, Scotland, France, Germany, Italy and the USA). Second, 

we recalibrated the derived risk models to each European risk region, applying 

methods previously used to develop SCORE2. Third, we completed external 

validation in individuals with type 2 diabetes across four countries (Sweden, 

Spain, Croatia and Malta) using data from the Swedish National Diabetes Register 

(SNDR), the Information System for Research in Primary Care (SIDIAP, Sistema 

d’Informació per al Desenvolupament de la Investigació en Atenció Primària), and 

two contributing registries from the EUropean Best Information through Regional 

Outcome in Diabetes (EUBIROD). Fourth, we illustrated the variation of CVD risk 

in individuals with type 2 diabetes across European regions by applying the 

recalibrated models to data from contemporary populations in each risk region.

Figure 1. Study design

ERFC: Emerging Risk Factors Collaboration, CPRD: Clinical Practice Research Datalink, 
SCID: Scottish Care Information – Diabetes, SNDR: Swedish National Diabetes Register, 
SIDIAP: Information System for Research in Primary Care, EUBIROD: EUropean Best 
Information through Regional Outcome in Diabetes.
eGFR: estimated Glomerular Filtration Rate, HbA1c: glycated haemoglobin
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Data sources and procedures

For model derivation, we used individual-participant data from patients with 

type 2 diabetes, without previous CVD, aged over 40 years, from SCID, CPRD, 

UKB, and 7 cohorts from the ERFC with available information on diabetes-

related variables. SCID is a dynamic population-based register of people with a 

diagnosis of diabetes in Scotland that has had almost complete coverage since 

2006.13 CPRD is an ongoing primary care database of anonymised medical 

records from general practitioners, with coverage of over 11.3 million patients 

from 674 practices in the UK14. With 4.4 million active (alive, currently registered) 

patients meeting quality criteria, approximately 6.9% of the UK population are 

included and patients are broadly representative of the UK general population 

in terms of age, sex and ethnicity. The data used for this study is restricted to 

the region of England.

Model derivation datasets for the SCID and the CPRD involved individuals with 

diabetes on 1st June 2008 and risk factor measurements recorded during the 

period from 30th June 2006 to 31st December 2008. Follow-up was to 1st June 

2019 for SCID and 31st December, 2019 for CPRD, with incident nonfatal events 

obtained from linkage with Scottish Morbidity Records and English Hospital 

Episode Statistics and deaths from National Records of Scotland and Office 

for National Statistics. The UKB is a single large prospective cohort study with 

individual-participant data on approximately 500,000 participants aged over 

40 years recruited across 23 UK based assessment centres during 2006-2010, 

and followed-up for cause-specific morbidity and mortality through linkages to 

routinely available national datasets and disease-specific registers.15 The ERFC 

has collated and harmonised individual-participant data from many long-term 

prospective cohort studies of CVD risk factors and outcomes.16 Prospective 

studies in the ERFC were included in this analysis if they met all the following 

criteria: had recorded baseline information on CVD risk factors necessary to 

derive risk prediction models (i.e., age, sex, smoking status, systolic blood 

pressure, total- and HDL-cholesterol, history of diabetes mellitus (defined by 

self-report plus medication and/or biochemical criteria2,17), age at diabetes 

diagnosis, HbA1c and creatinine or estimated glomerular filtration rate [eGFR]); 

were approximately population-based (i.e., did not select participants on the 

basis of having previous disease [e.g., case-control studies] and were not 

active treatment arms of intervention studies); had a median year of baseline 
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survey after 1990; and had recorded cause-specific deaths and/or non-fatal 

CVD events (i.e., non-fatal myocardial infarction or stroke) for at least five-

years of follow-up. Data selection for model adaptation/derivation is shown 

in Supplementary Figure 1. Details of contributing data sources are provided in 

Supplementary Tables 1 and 2.

For recalibration of models, recalibration factors from the SCORE2 risk models 

were used. SCORE2 has been systematically recalibrated to reflect risk of 

the entire population (including those with diabetes) in four risk regions of 

Europe. Hence, adapting SCORE2 for use in individuals with type 2 diabetes 

(i.e., SCORE2-Diabetes) does not require additional data and recalibration for 

diabetes-specific populations. Data from the SNDR, SIDIAP and EUBIROD were 

used for external validation (Supplementary Table 3). SNDR is a national registry 

that has close to complete coverage of the population with a diagnosis of 

type 2 diabetes in Sweden.18 As with data used in model derivation, we used 

records from individuals with diabetes during the period from 30th June 2006 

to 31st December 2008, and no previous history of CVD. Follow-up was to 31st 

December, 2019 with incident nonfatal events obtained from linkage to hospital 

and mortality records. SIDIAP is a primary care electronic health records 

database managed by the Catalan Health Institute, covering around 75% of 

individuals (>5 million)  in the Catalonia region of Spain across 328 primary 

care centres, and is representative of this population in terms of age, sex and 

geographic distribution19,20. For this analysis, we used individuals with type 2 

diabetes from a randomly selected 400,000 individuals whose records were 

linked to hospital and specific cause of death records to obtain CVD outcomes. 

Individuals had been included in SIDIAP for at least 1 year prior to 1st January 

2010 and were subsequently followed up until 2017. EUBIROD is the largest 

network of diabetes registries and data sources in Europe21, sharing a common 

dataset22 and open source software23 to analyse individual data in a privacy-

enhanced distributed infrastructure.24-26 Data on people with type 2 diabetes 

with baseline records between January 2013 and June 2015 were independently 

processed at each of the 8 participating countries (Belgium, Croatia, Denmark, 

Germany, Hungary, Latvia, Malta and Slovenia), and analysed using R source 

code embedded in the EUBIROD NeuBIRO software. Where available, follow-

up for CVD events was obtained through linkage to hospital and death records 

over the subsequent 5 years, enabling validation. Only aggregate data were 
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made available by each participating centre to the study coordinators. Risk 

factor data from CPRD, SNDR, SIDIAP, EUBIROD and the 2017/18 extraction 

from the National Diabetes Audit (NDA) were used to illustrate SCORE2-

Diabetes predicted risk distributions in each European risk region.  The NDA 

is an annually updated registry covering more than 98% of individuals with a 

recorded diabetes diagnosis from primary healthcare providers in England and 

Wales and specialist care healthcare providers in England.27 

The primary outcome was CVD events, defined as a composite of cardiovascular 

mortality, non-fatal myocardial infarction, and non-fatal stroke. Follow-up was 

until the first non-fatal myocardial infarction, non-fatal stroke, death or end 

of the study or registration period. Deaths from non-CVD were treated as 

competing events. Details of the different ICD-10 codes included in both the 

fatal and non-fatal components of the endpoint are provided in Supplementary 

Table 4. In all data sources, individuals with a known history of previous CVD at 

baseline were excluded, as defined in Supplementary Table 5. 

Statistical analysis

Details of statistical analysis are provided in Supplementary Methods. For model 

derivation, the SCORE2 models were extended by addition of diabetes-related 

variables: HbA1c, age at diabetes diagnosis and eGFR. These predictors were 

selected due to their predictive ability based on previous literature as well 

as their wide availability in clinical practice and in available datasets used for 

model derivation. Coefficients for the variables already included in SCORE2 

derivation (i.e., age, current smoking, history of diabetes mellitus, systolic blood 

pressure, and total- and HDL-cholesterol) were fixed at the same values used 

in the SCORE2 models and included as an offset in Fine and Gray competing 

risk-adjusted models used to estimate additional sex-specific coefficients 

(i.e., sub-distribution hazard ratios [SHRs]). Additional coefficients were then 

estimated for each of the SCORE2 variables, to allow their effects to vary 

among individuals with diabetes, as well as for the newly added diabetes-

related variables included in SCORE2-Diabetes. All newly derived coefficients 

were estimated separately by data source and pooled using fixed effects meta-

analysis. Since previous research showed that associations of these variables 

with CVD decline with increasing age, age-interactions were added for all 

predictors. A quadratic term was also included for eGFR to allow for its non-
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linear association with CVD outcomes (Supplementary Methods Figure). There 

were no (or very minimal) violations of the proportional hazards assumptions, 

as assessed by inclusion of time varying coefficients. 

Risk models were recalibrated to risk regions using recalibration factors 

previously derived for SCORE2 and SCORE2-OP models (Supplementary 

Methods Table 1). Similarly, the grouping of European countries into risk regions 

was defined according to WHO CVD mortality rates following SCORE2 and 

SCORE2-OP methodology (Supplementary Table 6, Supplementary Figure 2). 

For validation we assessed discrimination using Harrell’s C-index, adjusted for 

competing risk,28 and examined improvement when comparing use of SCORE2-

Diabetes versus SCORE2. Where data were available we compared SCORE2-

Diabetes with the ADVANCE risk model for individuals with diabetes.10 We use 

ADVANCE as a comparison as it is recommended by the 2021 ESC Guidelines 

on cardiovascular disease prevention in clinical practice3 and it is designed 

to predict CVD risk. To provide clinical context, we compared incremental 

improvements afforded by diabetes-related information included in SCORE2-

Diabetes with those afforded by total and HDL cholesterol, biomarkers 

commonly used in CVD risk assessment. Improvements in risk prediction 

were also quantified by the continuous net reclassification index (NRI), which 

summarises appropriate directional change in risk predictions for those who 

do (cases) and do not (non-cases) experience an event during follow-up (with 

increases in predicted risk being appropriate for cases and decreases being 

appropriate for non-cases). Similarly, the categorical NRI was also applied to 

summarise the appropriate movement between risk categories of <5%, 5-10%, 

10-15%, 15-20% and >25%. Calibration was assessed by comparing the observed 

and predicted risks.

To compare the proportion of the population with diabetes at different 

levels of CVD risk according to the SCORE2-Diabetes models, predicted risk 

distributions were estimated using age- and sex-specific risk factor values 

from the CPRD, NDA, SNDR and all contributing EUBIROD populations, with 

the region-specific recalibrated versions of SCORE2-Diabetes. To ensure that 

the SCORE2 recalibration factors were applicable in recalibration of SCORE2-

Diabetes we assessed that the average sex- and age-specific SCORE2-

Diabetes risk predictions matched the expected risks for each risk region, 

and that the average sex- and age-specific risk predictions were similar in the 
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whole population, as well as in individuals with diabetes, when using SCORE2 

and SCORE2-Diabetes. We also ensured similar risk predictions were obtained 

when using both the 2009 and 202129 versions of the CKD-EPI eGFR equations 

to ensure interchangeability of the two measures in clinical practice. Finally, 

SHRs were also estimated without inclusion of ERFC/UK Biobank data to 

ensure no sensitivity to potential minor overlap in individuals contributing to 

UK based studies and the CPRD.

Missing data were imputed for derivation datasets, SNDR and SIDIAP using 

methods described in the Supplementary Methods. We adopted analytical 

approaches and reporting standards recommended by the PROBAST guidelines 

and TRIPOD.30 Analyses were performed with R-statistic programming (version 

4.0.3, R Foundation for Statistical Computing, Vienna, Austria) and Stata 

(version 16.1, StataCorp, College Station, Texas). The study was designed and 

completed by the SCORE2-Diabetes Working Group in collaboration with the 

ESC Cardiovascular Risk Collaboration.

Ethical approval

Relevant ethical approval and participant consent were already obtained in 

all studies that contributed data to this work (Supplementary study-specific 

information). 

Results

Model derivation involved a total of 229,460 participants with diabetes and 

without history of CVD at baseline from SCID, CPRD, and ERFC/UKB. Mean 

age (SD) at baseline was 65 (11) years for SCID, 60 (8) years for CPRD and 64 (11) 

years for ERFC/UKB. A total of 122,543 (53.4%) participants were male across all 

data sources (Table 1). Median (5th, 95th percentile) follow-up in years was 10.9 

(6.8, 11.0) in SCID, 6.0 (0.8, 11.0) in CPRD, and 11.3 (2.8, 13.6) in ERFC/UKB, during 

which a total of 43,706 CVD events and 28,226 non-CVD deaths were recorded. 

SHRs are shown in Table 2. The association of the diabetes-related variables 

decreased with increasing age of participants (Supplementary Methods Figure). 

Associations were similar when excluding ERFC/UKB data (Supplementary 

Table 7).
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Table 1. Summary of available data on individuals with diabetes used in SCORE2-
Diabetes risk model derivation

N (%) or mean (SD)

  SCID ERFC/UKB CPRD

Participants 136,192 20,517 72,751

Male sex 72,525 (53%) 11,485 (56%) 38,599 (53%)

SCORE2 variables

Age (years) 65 (11) 60 (8) 64 (11)

Current smoker 24,447 (18%) 2353 (12%) 11,423 (21%)

Systolic blood pressure (mmHg) 136 (16) 142 (17) 136 (16)

Total cholesterol (mmol/L) 4.3 (1.0) 4.7 (1.1) 4.4 (1.0)

HDL-cholesterol (mmol/L) 1.3 (0.4) 1.2 (0.3) 1.2 (0.4)

SCORE2-Diabetes additional variables

Diabetes age of diagnosis (per 5-years) 58 (12) 53 (9) 58 (11)

HbA1c (mmol/mol) 58 (17) 55 (20) 52 (19)

eGFR (ml/min/1.73m2) 74 (20) 88 (17) 76 (17)

Follow-up (years, median (5th/95th percentile)) 10.9 (6.8, 11.0) 11.3 (2.8, 13.6) 6.0 (0.8, 11.0)

Cardiovascular events 34,595 1,864 7,247

Non-cardiovascular deaths 21,062 1,953 5,211

SCID: Scottish Care Information – Diabetes, ERFC: Emerging Risk Factors Collaboration, 
UKB: UK Biobank, CPRD: Clinical Practice Research Datalink
eGFR: estimated Glomerular Filtration Rate, calculated using the CKD-EPI 2009 equations; 
HbA1c: glycated haemoglobin, in International Federation of Clinical Chemistry and 
Laboratory Medicine (IFCC) units
Table shows summary statistics for datasets before imputation (which was carried out 
during analysis). A summary of missing data, by data source and variable, is provided in 
Supplementary Table 2

The C-indices in the derivation datasets were 0.704 (95% CI 0.701, 0.706), 0.733 

(0.727-0.739) and 0.666 (0.653, 0.678) in SCID, CPRD and ERFC/UKB respectively 

(Figure 2). In external validation, the C-index for SCORE2-Diabetes was 0.670 

(0.667, 0.673) using data from 168,585 individuals with diabetes (34,944 CVD 

events) from the SNDR and 0.658 (0.648, 0.669) using 21,698 individuals with 

diabetes (2464 CVD events) from SIDIAP. Using EUBIROD datasets including 

3,876 individuals from Malta and 22,821 individuals from Croatia with complete 

information on all risk predictors, the C-index was 0.661 (0.622) and 0.688 

(0.672, 0.705) respectively (Supplementary Figure 3).

In comparison to SCORE2, SCORE2-Diabetes showed improved risk discrimination 

in individuals with diabetes, with increases in C-indices (95% CI) of 0.021 (0.020, 
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0.022), 0.023 (0.020, 0.026) and 0.026 (0.018, 0.034) in SCID, CPRD and ERFC/UKB, 

respectively. Somewhat smaller improvements were observed in SNDR, and 

SIDIAP with increases in C-index of 0.009 (0.007, 0.010) and 0.009 (0.005, 0.014) 

respectively (Figure 2). In EUBIROD datasets from Malta and Croatia, increases 

in C-indices were of 0.031 (0.011, 0.050) and 0.013 (0.006, 0.021), respectively 

(Supplementary Figure 3). 

Table 2. Subdistribution hazard ratios for predictor variables in the SCORE2-Diabetes 
risk models 

Men Women

Main effect Age interaction 
term

Main effect Age interaction 
term

SCORE2 variables

Age (per 5 years) 1.71 (1.66, 1.76) - 1.94 (1.88, 2.00) -

Current smoking 1.61 (1.53, 1.70) 0.94 (0.91, 0.96) 1.85 (1.73, 1.98) 0.89 (0.87, 0.92)

Systolic blood pressure 
(per 20mmHg)

1.14 (1.11, 1.17) 0.97 (0.96, 0.99) 1.15 (1.12, 1.19) 0.98 (0.97, 1.00)

Total cholesterol  
(per 1 mmol/L)

1.12 (1.10, 1.14) 0.98 (0.97, 0.99) 1.12 (1.09, 1.15) 0.98 (0.97, 0.99)

HDL cholesterol  
(per 0.5 mmol/L)

0.90 (0.86, 0.93) 1.01 (0.99, 1.03) 0.85 (0.82, 0.89) 1.02 (1.00, 1.04)

History of diabetes 
mellitus

1.91 (1.81, 2.01) 0.91 (0.88, 0.93) 2.25 (2.11, 2.40) 0.88 (0.85, 0.91)

SCORE2-DM2 additional 
variables

Diabetes age at 
diagnosis (per 5-years)

0.90 (0.89, 0.91) 0.89 (0.88, 0.90)

HbA1c (per SD mmol/
mol)

1.10 (1.09, 1.11) 0.99 (0.98, 0.99) 1.12 (1.11, 1.14) 0.98 (0.98, 0.98)

ln eGFR (per SD ln(ml/
min/1.73m2))

0.94 (0.93, 0.96) 1.01 (1.01, 1.01) 0.94 (0.92, 0.95) 1.02 (1.01, 1.02)

ln eGFR2 (quadratic 
term)

1.01 (1.00, 1.01) 1.01 (1.00, 1.01)

Sex-specific subdistribution hazard ratios from Fine and Gray models predicting the risk 
of fatal and non-fatal CVD events as derived for SCORE2 and adapted in individuals with 
diabetes from ERFC, UK Biobank, CPRD, SCID to include adjustments to SCORE2 effects 
and SCORE2-DM2 additional variables. Age was centered at 60 years, systolic blood 
pressure at 120 mmHg, total cholesterol at 6 mmol/L, HDL cholesterol at 1.3 mmol/L, age 
at diabetes onset at 50 years HbA1c at 31 mmol/mol and eGFR 90 ml/min/1.732 (i.e. Ln-
eGFR of 4.5). The median baseline survival at 10 years in the derivation cohorts was 0.9625 
for men and 0.9795 for women. For HbA1c, 1 SD = 9.34 mmol/mol and for eGRF 1SD=0.15 
ln(ml/min/1.73m2)
*Values shown are the combination of original SCORE2 coefficients and additional 
coefficients which modify the associations for individuals with diabetes. See Supplementary 
methods for full sets of component effects for each risk predictor
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Significant improvements in C-indices were also seen in both men and women, 

and within 10-year age groups (Supplementary Figures 4 to 7). C-indices were 

similar when eGFR was calculated using different equations (Supplementary 

Figure 8), but were slightly attenuated when excluding individuals with 

eGFR <45 ml/min/1.73m2 (Supplementary Figure 9). Improvements in risk 

discrimination provided by the additional diabetes-related variables included 

in SCORE2-Diabetes (i.e., age of diabetes diagnosis, HbA1c, and eGFR) were 

greater than that provided by total and HDL-cholesterol concentration in the 

same model. SCORE2-Diabetes also showed slightly improved discrimination 

over the ADVANCE risk score (Supplementary Table 8).

Using SCORE2-Diabetes rather than SCORE2 improved risk classification, 

yielding a continuous NRI of 25.2 (95% CI, 22.4, 28.0) in the CPRD and 28.7 

(27.7, 29.8) in the SNDR. Similarly, using SCORE2-Diabetes rather than SCORE2 

yielded a categorical NRI of 24.6 (22.5, 26.8) in the CPRD and 13.7 (12.9, 14.5) in 

the SNDR, with a respective net of 44.8% (43.0%, 46.7%) and 31.9% (31.2%, 32.6%) 

cases being appropriately reclassified (Supplementary Table 9).

After recalibration, the SCORE2-Diabetes predicted risks showed good 

agreement with the expected 10-year CVD incidence in each risk region 

(Supplementary Figure 7), and were similar on average within each age-group 

to those produced using SCORE2 (Supplementary Figure 8). SCORE2-Diabetes 

predicted risks also agreed with observed risks in individuals with diabetes from 

nationally representative datasets with 10-year of follow-up (Supplementary 

Figure 9 and 10), and showed improved calibration over SCORE2 (Supplementary 

Figure 10). 

The SCORE2-Diabetes algorithms for CVD risk estimation in four European 

risk regions are shown in the Supplementary Methods Table 1. The estimated 

absolute risk for a given age and combination of conventional CVD risk 

factors differed substantially according to levels of the diabetes-related 

variables (Figure 3). For example, when using the moderate risk region version 

of SCORE2-Diabetes, the estimated 10-year CVD risk for a 60-year-old non-

smoking man with a history of diabetes, average levels of conventional risk 

factors (i.e., systolic blood pressure of 140 mm Hg, total cholesterol of 5.5 

mmol/L and HDL cholesterol of 1.3 mmol/L), HbA1c of 50 mmol/mol, eGFR of 

90ml/min/1.73m2, and age-at-diabetes diagnosis of 60 years, was 11.0%. For a 
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similar man with less favourable diabetes-related risk factors (i.e., of HbA1c of 

70 mmol/mol, eGFR of 60 ml/min/1.73m2, and age at diagnosis of 50 years), 

the estimated risk was 17.2%. For a woman with the same characteristics, risk 

was 7.9% and 12.7%, respectively. Risk estimates also varied across European 

risk regions due to recalibration, with a man or woman with the latter risk factor 

values having an estimated risk of 12.9% and 8.4% respectively in the low-risk 

region, and 31.3% and 34.0% in the very high-risk region (Figure 3). 

Figure 3. Predicted sex- and age-specific SCORE2-Diabetes 10-year cardiovascular 
disease risks for an individual with diabetes and different levels of type 2 diabetes risk 
factors from four European Risk Regions

Estimates are for non-smokers with systolic blood pressure of 140 mm Hg, total cholesterol 
of 5.5 mmol/L and HDL cholesterol of 1.3 mmol/L
eGFR: estimated Glomerular Filtration Rate (ml/min/1.73m2) calculated using the CKD-EPI 
2009 equations; HbA1c (mmol/mol): glycated haemoglobin, in International Federation of 
Clinical Chemistry and Laboratory Medicine (IFCC) units
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When we applied recalibrated SCORE2-Diabetes models to simulated data 

representing populations from each risk region, the proportion of individuals 

aged 40–79 years with an estimated risk greater than 10% varied substantially 

by region, from 61% in the low-risk region to 96% in the very-high risk region in 

men and from 51% to 94% respectively in women, with proportions increasing 

with age as expected (Figure 4).

Figure 4. Distribution of sex- and age-specific 10-year CVD risk according to recalibrated 
SCORE2-Diabetes models across European risk regions

The proportion of individuals expected in each risk category was estimated to reflect the 
age-group and sex-specific risk factor values in each risk region (Supplementary methods)
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Discussion

Compared with existing risk scores, SCORE2-Diabetes, an extension of the 

SCORE2 risk models tailored to individuals with type 2 diabetes across Europe’s 

diverse populations, should help better support allocation of preventative 

interventions, as it involves several advantages.

First, SCORE2-Diabetes has been systematically recalibrated to four distinct 

European regions defined by varying CVD risk levels, using the most 

contemporary and representative CVD rates available.12 This improves on 

previous CVD risk prediction models for individuals with diabetes which either 

have not incorporated any recalibration to different populations, or have been 

recalibrated based on sparse cohort or country-level data on individuals with 

diabetes, which may not accurately reflect the CVD rates and risk factor levels 

of populations in each region.9-11 Our analysis illustrates that three- to four-fold 

variation in estimated CVD risk for a given set of risk factors can be seen as 

a result of recalibration. Without recalibration this substantial variation in risk 

across Europe would be ignored. Because the recalibration approach we used 

is based on registry data, the model can be readily updated to reflect future 

CVD incidence and risk factor profiles of any target population to be screened, 

including those with diabetes. This means that if descriptive age- and sex-

specific epidemiological data are available from individual European countries 

(or within-country regions), they can be readily incorporated to revise models at 

a country-level. This is an important feature of the current risk score since there 

have been considerable changes in CV risk over time and region in people with 

type 2 diabetes, necessitating contemporary risk estimation.  

A second -and related advantage- is that, rather than being developed solely 

in data from individuals with diabetes, SCORE2-Diabetes extends SCORE2 

models that were developed in all individuals without previous CVD, including 

both those with and without diabetes (although the ESC does not recommend 

SCORE2 for use in those with diabetes). A key advantage of this approach is 

that it allows recalibration of the models using risk factor data and incidence 

rates from the general population, rather than requiring data specifically from 

individuals with diabetes, which are currently not available systematically across 

European countries. By extending SCORE2 we also ensure harmonization of 

risk estimation for individuals with and without diabetes across Europe, aiding 



8

10-year risk prediction model for CVD in people with T2D

235   

communication and interpretation of risk estimates. The existing ESC CVD Risk 

Calculation App31  and the “HeartScore” website32 will be updated to include 

SCORE2-Diabetes to facilitate risk estimation and communication between 

health professionals and individuals with type 2 diabetes.

Third, SCORE2-Diabetes shows good ability to discriminate risk among 

individuals with type 2 diabetes, that was higher than that observed with 

ADVANCE and SCORE2, mainly due to the addition of risk predictors relevant to 

type 2 diabetes, such as age of diabetes diagnosis, HbA1c and kidney function. 

SCORE2-Diabetes risk estimations could therefore be used to help guide 

clinicians and patients for considering the intensity of existing treatment (such 

as lipid lowering therapies) as well as additional interventions to prevent CVD 

(such as sodium-glucose co-transporter-2 inhibitors [SLGT2i] or glucagon like 

peptide-1 receptor agonists [GLP-1 RA]).

Fourth, development, calibration, validation, and illustration of the SCORE2-

Diabetes models have been underpinned by powerful, extensive and 

complementary datasets of contemporary relevance to individuals with type 

2 diabetes across European populations. In particular, SCORE2-Diabetes was 

developed and validated using data on a total of almost 450,000 individuals 

from 8 countries, which should enhance the accuracy, generalizability and 

validity of the approach. 

Fifth, the approach used in SCORE2-Diabetes accounts for the impact of 

the competing risk of non-CVD death. This statistical adjustment should 

prevent any overestimation of CVD risk, thereby reducing the chances of 

over-estimating the potential benefits of CVD-risk modifying treatments. This 

adjustment particularly benefits treatment decisions in older individuals, and 

those from high or very-high risk regions, where the risk of competing non-

CVD death is high.

Finally, our analysis has illustrated the performance of SCORE2-Diabetes with 

simulated data on individuals with type 2 diabetes from different European 

risk regions, showing that the proportions of individuals across different risk 

categories are strikingly different across regions. This finding suggests that 

our risk estimates should assist policy makers to make more appropriate and 

locally informed decisions about the allocation of resources. 



Chapter 8

236

The potential limitations of this study merit consideration. We extended the 

SCORE2 risk prediction models by estimating additional relative risks for the 

diabetes-related variables using data sources from European regions and 

populations at low- or moderate- CVD risk. Ideally, relative risk estimation for 

use in high and very high-risk countries would have involved large nationally 

representative, prospective cohorts in these countries, coupled with prolonged 

follow-up and validation of fatal and non-fatal CVD endpoints. Unfortunately, 

such data do not yet exist. Indeed, even in low- and moderate-risk regions, 

the data sources involved may not be nationally or regionally representative, 

reflecting past periods of time, ‘healthy’ volunteers contributing to cohort 

studies, or, in the case of registry data, individuals with increased tendency 

to seek medical attention. However, while such biases can lead to misleading 

levels of absolute risk, relative risks are generally unaffected.2,33,34 Furthermore, 

our analyses identified little heterogeneity in model coefficients across studies 

used in model derivation, suggesting transferability of model coefficients across 

different populations, as evidenced by good discrimination in all populations 

tested. Crucially, SCORE2-Diabetes models were recalibrated using nationally 

representative incidence rates, an important step not commonly considered in 

development of other CVD risk scores for individuals with diabetes10,11, avoiding 

the limitations of mis-calibration provided by potentially non-representative 

incidence rates in derivation datasets. 

The rescaling factors used in recalibration of SCORE2-Diabetes were identical 

to those used in recalibration of the SCORE2 risk models. This approach 

assumes that the additional measurement of diabetes age at diagnosis, HbA1c 

and eGFR among individuals with diabetes does not importantly change the 

average sex and age-specific risk predictions for the regional target population 

(including those with and without diabetes). We have tested this assumption 

using several datasets mostly from the low and moderate risk regions, but 

further testing should be completed if the relevant data become available in the 

future. Likewise, more accurate representation of the potential predicted risk 

distributions in each European risk region could be achieved by applying the 

recalibrated SCORE2-Diabetes models to risk factor levels from the diabetes-

specific populations from additional representative datasets in each risk region. 

In parallel to the analysis presented in the current study, we have developed 

methods and statistical codes that will allow future validation and illustration of 

SCORE2-Diabetes in diabetes-specific registries as data becomes available.21,35
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While fatal outcomes for heart failure and peripheral vascular disease were 

included in SCORE2-Diabetes outcome, data on non-fatal incident heart 

failure, peripheral artery disease and microvascular complications were not 

uniformly recorded in available derivation and recalibration data sources and it 

has therefore not been possible to include these outcomes. Previous research 

suggests that discrimination of SCORE2-Diabetes for these outcomes is still 

likely to be good7, however, estimates of CVD risk from SCORE2-Diabetes 

could be conservative and may underestimate the potential benefits of CVD-

risk modifying treatments that also reduce heart failure risk. 

It is assumed that many individuals using SCORE2-Diabetes will already be 

taking medication that affects  CVD risk, and this assumption is respected by 

inclusion of such individuals in datasets used to derive and recalibrate the 

models. In addition, some individuals in our model derivation cohorts may have 

initiated preventative treatment (e.g., statin) during follow-up and accounting 

for this could improve model calibration and discrimination. However previous 

analyses have suggested that inclusion of information on statin-initiation during 

follow-up provides only limited improvement in risk prediction.36 Furthermore, 

comprehensive individual-participant-data on medication use were unavailable 

in all data sources used for model development and recalibration. This was 

also the case with family history of CVD, socio-economic status, ethnicity, and 

albuminuria meaning interpretation of SCORE2-Diabetes estimates may require 

clinical judgement, especially for individuals for whom these factors may be 

relevant (e.g., those with a family history of premature CVD, or in higher-risk 

socio-economic and non-white ethnic groups) as well as in older age groups 

where additional consideration of multi-morbidities and life expectancy may 

be needed.9,37 While the SCORE2-Diabetes models are broadly applicable 

across all European countries, there remains a place for country-specific risk 

calculators that consider the specific characteristics relevant to that population 

(ideally incorporating information on socio-economic status and ethnicity). 

More generally, better quality data collection, both in terms of risk factors and 

outcomes will serve to improve the quality of risk prediction, and should be 

integral to the evolution of electronic health records and their linkage.

We compared the performance of SCORE2-Diabetes with the ADVANCE model 

in the SNDR dataset since this dataset is considered nationally representative 

of the diabetes population in Sweden. However, due to lack of data availability 
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albuminuria was used as a binary rather than continuous variable and atrial 

fibrillation was not included, meaning that the full predictive ability of ADVANCE 

may not have been observed in the current analysis. Further comparison 

with other risk models already developed for use in individuals with type 2 

diabetes was generally not possible because these models contain variables 

often not available in datasets. Similarly, data availability for recalibration is 

very limited, making such models less appropriate for use across different 

risk regions. Furthermore, previous analyses have suggested that only minor 

differences exist in risk discrimination among guideline-recommended risk 

prediction models including those developed in the whole population and 

those developed specifically within individuals with diabetes.7,38 By contrast, 

the clinical performance of risk prediction models depends importantly on 

differing ability to predict the correct level of risk in the target population (i.e., 

extent of ‘calibration’).38 We, therefore, ensured SCORE2-Diabetes was well-

calibrated to current absolute risk levels for each European region. 

In summary, we have derived, recalibrated, validated and illustrated SCORE2-

Diabetes, a 10-year risk model tailored to individuals with diabetes in European 

populations to predict 10-year risk of first-onset CVD. This will assist future 

guidelines on CVD prevention in individuals with type 2 diabetes, by providing 

an appropriate risk estimation system to enhance the accuracy, practicability, 

and sustainability of CVD prevention strategies and help guide preventive 

treatment.
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Supplementary material

Supplementary Methods

SCORE2-Diabetes derivation

SCORE2-Diabetes is an extension of the SCORE2 models for CVD risk 

prediction in Europe, to include additional information needed to estimate CVD 

risk in individuals with diabetes. The original SCORE2 models were derived 

using 44 studies from the Emerging Risk Factors Collaboration (ERFC) and 

the UK Biobank (UKB), and were recalibrated to four risk regions defined by 

CVD mortality rates, using risk factor averages and estimated incidence for 

each region. The 45 derivation cohorts included individuals with and without 

diabetes and the SCORE2 models included an adjustment for diabetes status.

Original SCORE2 risk models

The SCORE2 risk models take the following form.

1) Uncalibrated_score2 = 1-so(10)exp(LP_score2)    

Where, using the transformed variables defined in Supplementary Methods 

table 1:

LP_score2= β1 *cages + β2 *smoking + β3 *csbp + β4 *ctchol + β5 *chdl + β6 *hxdiabetes  

+ β7 *cages*smoking + β8 * cages *csbp + β9 * cages * ctchol + β10 * cages *chdl + β11 

* cages*hxdiabetes

β1-11 are the sex-specific log HR estimates from the original SCORE2 derivation 

data

so(10) is the baseline sex-specific survival estimate from the derivation data

2) Recalibrated_score2 = 1-exp(-exp(scale1 + scale2 * ln(-ln(1 – uncalibrated_

score2)))), where scale1 and scale2 are the region and sex-specific recalibration 

factors estimated for each of the four risk regions

Extension of SCORE2 to add new risk predictor effects specific to improving risk 

prediction for individuals with diabetes: The SCORE2-Diabetes model

The SCORE2-Diabetes prediction models are structured as follows:
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Uncalibrated_score2_DM2 = 1 - so(t)
LP

score2+
LP

DM+SCORE2vars , where 

LPscore2 and so(t) are exactly as defined for SCORE2

LPDM = β12 *cagediab + β13 *chba1c + β14 *cages*chba1c + β15 *clnegfr + β16 

*clnegfr*clnegfr + β17 *cages*clnegfr 

SCORE2vars = β18 * cages + β19 *Smoking + β20 *csbp + β21  *ctchol + β22 *chdl + 

β23 *Diabetes + β24 *cages*Smoking + β25 *cages*csbp + β26 *cages*ctchol + β27 

*cages*chdl β28 *cages*Diabetes

β12-28 are the sex-specific log SHR estimates from the new derivation data 

The additional inclusion of SCORE2 variables (as well as their use in the 

offset term) enabled inclusion of interactions between baseline age and the 

new variables of interest, corrected for any residual correlation/confounding 

between the conventional SCORE2 variables and the additional SCORE2-

Diabetes variables, and allowed the SCORE2 predictor effects to be modified 

for individuals with diabetes. 

This process was completed separate for each sex and data source and the 

estimates of β12-28 pooled using fixed effect meta-analysis, yielding the final 

model for use in clinical practice. 

The final SCORE2-Diabetes models and estimation process are summarized 

in Supplementary Methods Table 1, which displays the combined effects of 

β1-11 and β12-28 for the conventional SCORE2 risk predictors (mathematically 

identical to applying the two sets individually). The full set of β1-11 with β12-28 from 

the derivation models are provided for information in Supplementary Methods 

Table 2.

Missing Data

Missing data in all model derivation datasets, in the Swedish National Diabetes 

Register (SNDR) and in the Information System for Research in Primary Care 

(SIDIAP) were imputed using multiple chained equations with predictive 

mean matching with 10 imputations, including in the imputation model all risk 

predictors and Nelson-Aalen estimators for both the CVD, and non-CVD death, 

outcomes.
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Estimation of regionally representative predicted risk distributions

To compare the proportion of the population at different levels of CVD risk 

according to the SCORE2-Diabetes algorithm in the four risk regions, predicted 

risk distributions were estimated by rescaling individual participant data in 

CPRD according to estimated relative differences in age- and sex-specific 

means and prevalences of risk factors values in each region, compared to the 

low risk region. 

The region-specific risk factor means and prevalences were estimated by 

pooling summary data from CPRD, NDA, SNDR, SIDIAP and contributing 

registries from EUBIROD using a linear mixed model with fixed effects for sex, 

5-year age group, risk region, interactions of sex with 5-year age group and risk 

region, and random effect for country. 

Ratios corresponding to expected relative differences in risk factor means 

and prevalences in comparison to the low risk region were calculated and 

applied to rescale individual level data in CPRD to estimate region-specific risk 

distributions. This approach accounted for expected regional differences in risk 

factor levels, but assumed risk factor correlations were broadly similar to those 

observed in the CPRD dataset. 
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Supplementary Methods table 1. Calculation of 10-year CVD risk using SCORE2-
Diabetes

1) Calculation of Linear Predictor

Risk factor (units) Transformed
Risk factor

Log SHR

Men Women

SCORE2 variables

Age (yrs) cage = (age - 60)/5 0.5368 0.6624

Smoking (current vs. other) smallbin 0.4774 0.6139

SBP (mm Hg) csbp = (sbp - 120)/20 0.1322 0.1421

Diabetes (yes vs. no) hxdiabbin 0.6457 0.8096

Total cholesterol (mmol/L) ctchol = (tchol - 6)/1 0.1102 0.1127

HDL cholesterol (mmol/L) chdl = (hdl - 1.3)/0.5 -0.1087 -0.1568

Smoking interaction with age cage*smallbin -0.0672 -0.1122

SBP interaction with age cage*csbp -0.0268 -0.0167

Diabetes interaction with age cage*hxdiabbin -0.0983 -0.1272

TCHOL interaction with age cage*ctchol -0.0181 -0.0200

HDL interaction with age cage*chdl 0.0095 0.0186

SCORE2-DM2 additional variables

Diabetes age at diagnosis (yrs) cagediab=(agediab - 50)/5 
if hxdiabbin=1, else 0.

-0.0998 -0.118

HbA1c (mmol/mol) chba1c=(hba1c - 31)/9.34 0.0955 0.1173

Ln eGFR (ml/min/1.73m^2) clnegfr=(lnegfr - 4.5)/0.15 -0.0591 -0.0640

Ln eGFR2 clnegfr* clnegfr 0.0058 0.0062

HbA1c interaction with age chba1c*cage -0.0134 -0.0196

Ln eGFR interaction with age clnegfr*cage 0.0115 0.0169

Linear predictor= ∑ (transformed risk factor x log SHR)

2) 10-year risk estimation (un-calibrated) = 1-basesurv exp(linear predictor)

Men
Uncalibrated risk = 1-0.9605 exp(linear predictor)

Women
Uncalibrated risk = 1-0.9776 exp(linear predictor)

3) Calibration of risk estimate according to region specific scaling factors
Calibrated 10-year risk = 1-exp(-exp(scale1 + scale2 x ln(-ln(1-un-calibrated 10-yr risk))

Risk region Male Female

Low 1-exp(-exp(-0.5699+0.7476 x ln(-ln(1 un-
calibrated 10-yr risk)))) 

1-exp(-exp(-0.7380+0.7019 x ln(-
ln(1- un-calibrated 10-yr risk))))

Moderate 1-exp(-exp(-0.1565+0.8009 x ln(-ln(1- un-
calibrated 10-yr risk))))

1-exp(-exp(-0.3143+0.7701 x ln(-
ln(1- un-calibrated 10-yr risk)))) 

High 1-exp(-exp(0.3207+0.9360 x ln(-ln(1- un-
calibrated 10-yr risk))))

1-exp(-exp(0.5710+0.9369 x ln(-
ln(1 un-calibrated 10-yr risk))))

Very high 1-exp(-exp(0.5836+0.8294 x ln(-ln(1- un-
calibrated 10-yr risk))))

1-exp(-exp(0.9412+0.8329 x ln(-
ln(1- un-calibrated 10-yr risk))))

Note: final estimate should be multiplied by 100 in order to express as a percentage 
rather than a probability

eGFR: estimated Glomerular Filtration Rate (ml/min/1.73m2) calculated using the CKD epi 
2009 equations; HbA1c (mmol/mol): glycated haemoglobin, in International Federation of 
Clinical Chemistry and Laboratory Medicine (IFCC) units
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Supplementary Methods Figure 1. Association of Diabetes-associated variables with 
CVD outcomes in the SCORE2-Diabetes risk models; shown by age

Graphs on the left hand side show the shape of the association between each risk predictor 
and CVD outcomes, with each line representing a different baseline age. Graphs on the 
right hand side show how each risk predictor effect changes with age, with each line 
representing a different level of the relevant risk predictor.
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Supplementary Table 4. Endpoint definitions

Fatal cardiovascular disease– cause specific mortality due to any of the following:

Endpoints included ICD10-
codes

ICD9-codes

Hypertensive disease I10-16 401 – 405

Ischemic heart disease I20-25 410 - 414

Arrhythmias, heart failure I46-52 426 - 429

Cerebrovascular disease I60-69 430 - 438

Atherosclerosis/aortic aneurysm I70-73 440 - 443

Sudden death and death within 24h of symptom onset R96.0-96.1 798.1 , 798.2

Endpoints excluded from the above endpoint:

Myocarditis, unspecified I51.4 426.7

Subarachnoid haemorrhage I60 429

Subdural haemorrhage I62 430

Cerebral aneurysm I67.1 432.1

Cerebral arteritis I68.2 437.3

Moyamoya I67.5 437.4

Non-fatal cardiovascular disease

Non-fatal myocardial infarction I21-I23 410

Non-fatal stroke I60-69 430-438

Excluded from the non-fatal stroke endpoint:

Subarachnoid hemorrhage I60 429

Subdural hemorrhage I62 430

Cerebral aneurysm I67.1 432.1

Cerebral arteritis I68.2 437.3

Moyamoya I67.5 437.4

Supplementary Table 5. Definition of history of vascular disease at baseline

Prior disease ICD code

Coronary heart disease I20-I25

Stroke I60-69

TIA G45

Peripheral artery disease I70-71
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Supplementary Table 6. Age- and sex- standardized WHO CVD mortality rates per 
country 

Country Age and sex standardised CVD 
mortality per 100 000 person years,
ICD chapter 9

Year collected

Low risk region

France 70.9 2014

Israel 76.7 2015

Spain 89.4 2015

Netherlands 89.9 2016

Switzerland 90.2 2015

Denmark 90.4 2015

Norway 90.8 2015

Luxembourg 92.9 2015

Belgium 99.2 2015

United Kingdom 99.7 2015

Moderate risk region

Iceland 101.0 2016

Portugal 107.9 2014

Sweden 109.0 2016

Italy 110.1 2015

San Marino -

Ireland 111.5 2014

Cyprus 111.5 2016

Finland 128.5 2015

Austria 130.9 2016

Malta 133.3 2015

Greece 138.8 2015

Germany 139.0 2015

Slovenia 143.3 2015

High risk region

Albania 184.5 2010

Czech Republic 195.0 2016

Turkey 199.5 2015

Kazakhstan 214.0 2015

Croatia 214.6 2016

Poland 223.8 2015

Estonia 234.8 2015

Slovakia 239.2 2014

Hungary 274.1 2016

Bosnia and Herzegovina 279.2 2014
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Country Age and sex standardised CVD 
mortality per 100 000 person years,
ICD chapter 9

Year collected

Very high risk region

Armenia 306.3 2016

Lithuania 309.0 2016

Georgia 309.6 2015

Latvia 327.2 2015

Serbia 329.1 2015

Romania 330.5 2016

Montenegro 348.4 2009

Russian Federation 368.8 2015

TFYR Macedonia 387.8 2013

Belarus 395.4 2014

Azerbaijan 416.5 2007

Bulgaria 421.2 2014

Republic of Moldova 442.2 2016

Ukraine 476.7 2015

Kyrgyzstan 476.9 2015

Uzbekistan 478.6 2014

Egypt 543.7 2015

Morocco -

Syria -

Tunisia -

Lebanon -

Algeria -

Libya -

Countries without available population or incidence data in the WHO database (indicated 
by - ) were grouped using rates available from neighbouring countries.

Supplementary Table 6. Continued
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Supplementary Table 7. Subdistribution hazard ratios for predictor variables in the 
SCORE2-Diabetes risk models when using CPRD and SCID data only

Men Women

Main effect Age interaction 
term

Main effect Age interaction 
term

SCORE2 variables

Age (per 5 years) 1.72 (1.68, 1.77) - 1.95 (1.90, 2.01) -

Current smoking 1.63 (1.55, 1.71) 0.93 (0.91, 0.96) 1.86 (1.74, 1.98) 0.90 (0.87, 0.92)

Systolic blood 
pressure (per 
20mmHg)

1.14 (1.11, 1.17) 0.97 (0.96, 0.98) 1.15 (1.12, 1.19) 0.98 (0.97, 0.99)

Total cholesterol 
(per 1 mmol/L)

1.12 (1.10, 1.14) 0.98 (0.97, 0.99) 1.12 (1.10, 1.15) 0.98 (0.97, 0.99)

HDL cholesterol 
(per 0.5 mmol/L)

0.90 (0.86, 0.93) 1.01 (0.99, 1.02) 0.85 (0.82, 0.89) 1.02 (1.00, 1.04)

History of diabetes 
mellitus

1.91 (1.84, 1.98) 0.91 (0.89, 0.93) 2.25 (2.15, 2.35) 0.88 (0.86, 0.90)

SCORE2-DM2 additional variables

Diabetes age at 
diagnosis (per 
5-years)

0.90 (0.89, 0.91) 0.89 (0.88, 0.90)

HbA1c (mmol/mol) 1.10 (1.09, 1.11) 0.99 (0.98, 0.99) 1.13 (1.11, 1.14) 0.98 (0.98, 0.98)

Ln eGFR (ml/
min/1.73m2)

0.94 (0.93, 0.96) 1.01 (1.01, 1.02) 0.94 (0.93, 0.96) 1.02 (1.01, 1.02)

Ln eGFR2 
(quadratic term)

1.01 (1.00, 1.01) 1.01 (1.01, 1.01)

Sex-specific subdistribution hazard ratios from Fine and Gray models predicting the risk 
of fatal and non-fatal CVD events as derived for SCORE2 and adapted in individuals with 
diabetes from CPRD and SCID to include adjustments to SCORE2 effects and SCORE2-DM2 
additional variables. Age was centered at 60 years, systolic blood pressure at 120 mmHg, 
total cholesterol at 6 mmol/L, HDL cholesterol at 1.3 mmol/L, age at diabetes onset at 50 
years HbA1c at 31 mmol/mol and eGFR 90 ml/min/1.732 (i.e. Ln-eGFR of 4.5). The median 
baseline survival at 10 years in the derivation cohorts was 0.9625 for men and 0.9795 for 
women.
*Values shown are the combination of original SCORE2 coefficients and additional 
coefficients which modify the associations for individuals with diabetes. See Supplementary 
methods for full sets of component effects for each risk predictor
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Supplementary Table 8. Change in discrimination: SCORE2-Diabetes vs SCORE2, 
SCORE2-Diabetes vs SCORE2-Diabetes without lipids, and SCORE2-Diabetes vs 
ADVANCE

Result for CPRD

Risk model C-index Difference in C-index (95% CI)

SCORE2-Diabetes 0.733 (0.727, 0.739) reference

SCORE2-Diabetes with lipid 
values removed

0.730 (0.724, 0.736) -0.0035 (-0.0046 ,-0.0025)

SCORE2 0.710 (0.704, 0.716) -0.0228 (-0.0198, -0.0259)

Result for SNDR

Risk model C-index Difference in C-index (95% CI)

SCORE2-Diabetes 0.670 (0.667, 0.673) reference

SCORE2-Diabetes with lipid 
values removed

0.665 (0.662, 0.668) -0.0046 (-0.0061, -0.0031)

SCORE2 0.661 (0.658, 0.664) -0.0088 (-0.0102, -0.0074)

ADVANCE 0.665 (0.662, 0.668) -0.0046 (-0061, -0.0031)

Supplementary Table 9. Net reclassification when using SCORE2 diabetes versus 
SCORE2 

A. Using the Prospective continuous NRI

Data 
source

Expected net appropriate 
reclassification of CVD 
events occurring before 
10-years (%)

Expected net appropriate 
reclassification of 
individuals CVD event free 
at 10-years

Continuous NRI

SNDR 56.9 (56.0, 57.9) -28.2 (-28.8, -27.6) 28.7 (27.7, 29.8)

CPRD 62.4 (60.0, 64.8) -37.2 (-38.1, -36.4) 25.2 (22.4, 28.0)

B. Using the Prospective categorical NRI, with risk thresholds, 5, 10, 15, 20 and 25% 
CVD risk

Data 
source

Expected net appropriate 
reclassification of CVD 
events occurring before 
10-years (%)

Expected net appropriate 
reclassification of individuals 
CVD event free at 10-years 
(%)

Categorical NRI

SNDR 31.9 (31.2, 32.6) -18.2 (-18.6, -17.9) 13.7 (12.9, 14.5)

CPRD 44.8 (43.0, 46.7)   -20.2 (-20.8, -19.6)   24.6 (22.5, 26.8)

CPRD: Individuals with diabetes from the Clinical Practice Research Datalink 
SNDR: Swedish National Diabetes Register
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Supplementary Figure 1. Selection of studies and individuals for SCORE2-Diabetes 
model derivation

Emerging Risk Factors Collaboration/UK Biobank

Scottish Care Information- Diabetes

Clinical Practice Research Datalink
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Supplementary Figure 2. Risk regions for SCORE2-Diabetes application
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Supplementary Figure 13. Calibration of SCORE2-Diabetes and SCORE2 using individual 
participant data from individuals with diabetes from the CPRD
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General discussion

In this thesis, several risk factors associated with cardiovascular and kidney 

disease in high-risk patients with type 2 diabetes and/or established 

cardiovascular disease (CVD) were investigated. Furthermore, three risk 

prediction tools for individualized prediction of cardiovascular and kidney 

disease in people with type 2 diabetes were developed in line with the latest 

advancements in methodology. These prediction tools enhance the time 

horizon and precision of predictions, allow for estimation of benefit from 

treatment and thus promote shared decision making in clinical practice.

As mentioned in the introduction, the prevalence of non-communicable 

diseases, including type 2 diabetes, CVD and chronic kidney disease, is growing 

at a rapid speed.1 The management of these diseases is associated with a high 

burden on the health care system and, of course, for the individual patient. It is 

therefore important to look at risk factors and assess risk specifically in high-

risk patients and not just the general population, as some risk factors are of 

more importance in this patient group. 

Risk factors for kidney disease in patients with established cardiovascular 
disease

Several amendable risk factors for end-stage kidney disease (ESKD) are already 

integrated in clinical practice, including kidney function, blood pressure, 

obesity, smoking, cholesterol and exercise. These factors and the attributable 

risks are, however, primarily investigated in low-risk populations. However, 

patients with established CVD are at a 4-fold increased risk of developing 

chronic kidney disease,2 potentially leading to ESKD. This very high a priori risk 

could be a reason why the aforementioned risk factors may differ in the size 

of attributable risk in this already high risk patient population. In patients with 

established CVD, smoking, type 2 diabetes, a higher systolic blood pressure, 

lower eGFR and higher uACR were all significantly associated with higher risk 

of ESKD (Chapter 2). The focus on amendable risk factors is thus especially 

important in patients with established CVD, not only to prevent recurrent CVD, 

but also to reduce progression to ESKD. 

A cornerstone in the management of kidney protection in high-risk patients 

in clinical practice is amendable lifestyle factors, including smoking, alcohol, 
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exercise and weight management. Monitoring eGFR decline can predict 

time to onset of kidney failure and guide interventions aimed at reducing 

kidney function decline.3 In Chapter 3, we found that in a cohort of patients 

with established CVD, most patients improved in lifestyle factors regarding 

smoking and alcohol consumption, however markers of obesity worsened 

over a 10 year follow-up period. A steeper eGFR decline over 10 years was 

observed for patients who continued smoking or recently stopped smoking 

during follow-up compared to patients who remained non- or previous 

smokers. Also, an increase in body mass index, and for men especially increase 

in waist circumference, was associated with a steeper eGFR decline over 10 

years. Patients with established CVD and chronic kidney disease are prone to 

have more nontraditional CVD risk factors, including uremia-related ones i.e. 

inflammation, oxidative stress and promotors of vascular calcification, making 

it even more important to prevent a rapid decline in kidney function in this 

patient group. Changes in lifestyle, as shown in Chapter 3, may potentially 

prevent a rapid decline in kidney function, both via regular risk pathways and 

non-traditional pathways. Still, assessing the causal relation between lifestyle 

factors and outcomes remains a challenge. For example, it is near impossible to 

eliminate residual confounding, as confounding associated with lifestyle is very 

difficult to measure precisely, e.g. socio-economic status, diet and genetics 

may play a role.4 Furthermore, reporting and recall bias is almost always 

present. Next, a main obstacle in improving lifestyle factors as a means of 

preventing chronic kidney disease as well as CVD is implementation in clinical 

practice. Several public health campaigns have sought to improve lifestyle 

factors for the population, however implementation remains difficult and most 

patients do not reach lifestyle targets.5 Another main barrier is adherence to 

lifestyle changes. More research is thus needed to seek to diminish residual 

confounding as much as possible and to develop effective strategies for 

implementing and enhancing adherence to lifestyle improvements. 

Measures of glycemic control and risk for cardiovascular disease in 
patients with type 2 diabetes

Despite implementation of international guidelines focused on managing 

important amendable risk factors for CVD in people with type 2 diabetes,6, 

7 the risk of CVD in this patient group remains two-fold higher compared to 

counterparts without diabetes.8 In people with type 2 diabetes, blood-pressure 
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lowering, glucose-lowering, lipid-lowering and smoking cessation have long 

been the cornerstone of cardiovascular risk management (CVRM).9, 10 Optimal 

CVRM of known risk factors may not always be reached for all patients with 

type 2 diabetes (Chapter 5). Therefore, there is ongoing interest to find novel 

potential drivers of CVD risk in people with type 2 diabetes, and one such 

potential risk factor is the hemoglobin glycation index (HGI). The HGI has been 

proposed as a marker of interindividual differences in hemoglobin glycosylation 

and is calculated as the difference between observed HbA1c and predicted 

HbA1c, where predicted HbA1c is obtained by the population linear regression 

equation of HbA1c as a function of blood glucose.11 The HGI has previously 

been proposed as being an independent risk factor for CVD and microvascular 

outcomes in people with diabetes. A higher HGI was associated with a higher risk 

of CVD in people with type 2 diabetes and without established CVD, however 

not in people with type 2 diabetes with established CVD (Chapter 4). Similar 

results were seen when assessing HbA1c as determinant on risk of CVD, also 

only significant in people with type 2 diabetes without established CVD. Thus, 

the HGI is likely simply a surrogate for HbA1c and obtaining and interpreting 

the HGI is complicated. These results thus indicate a limited benefit of applying 

the HGI as a risk factor for CVD in people with type 2 diabetes in a clinical 

setting. HbA1c is the standard measure for glucose control in patients with type 

2 diabetes in clinical practice and has been associated with both macro- and 

microvascular outcomes.12 Thus, HbA1c should be used for glycemic control, 

as also recommended by international guidelines on diabetes management.7 

However, HbA1c does not identify interday glucose variations, and with 

the increase in continuous glucose monitoring, new methods for glucose 

monitoring, such as time in range (TIR), have emerged. TIR denotes the amount 

of time that the glucose level remains within the specific target for glycemic 

control (3.9-10.0 mmol/L)13 and thus allows for direct observations for glycemic 

excursions. TIR has been associated with microvascular diabetic complications 

in patients with type 2 diabetes.14 Also, a study found good correlation between 

HbA1c and TIR.15 Thus, TIR is a promising addition to HbA1c as marker for 

glycemic control. However, future studies should be conducted assessing TIR 

as a glycemic marker and its association with diabetic complications in patients 

with type 2 diabetes, also in high-risk patients who also have established CVD 

and/or chronic kidney disease.
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Treatment strategies for reducing risk of cardiovascular and kidney 
disease in patients with established CVD or type 2 diabetes

Even with optimal management of lifestyle factors, there is still a substantial 

(residual) risk for CVD and kidney disease in high-risk patients with established 

CVD and/or type 2 diabetes. Fortunately, several treatment strategies 

exist for reducing the risk of (recurrent) CVD events and kidney disease. 

International guidelines provide guidance for reaching specific treatment 

targets for LDL-c, blood pressure and, for patients with type 2 diabetes, 

HbA1c and recommendations for pharmacotherapy.3, 6, 7 Lowering of LDL-c is 

recommended to as low as 1.4 mmol/L in very high risk patients.6 Previous 

studies have found a 21% lower risk for CVD per 1 mmol/L LDL-c lowering16 and 

a reduction in risk of kidney disease by 39% with statin use compared to non-

statin users.17 Lowering systolic blood pressure has been shown associated with 

a 20% reduction of CVD risk per 10 mmHg lowering.18 For patients with type 2 

diabetes, a main preventive treatment goal for both CVD and kidney disease is 

management of HbA1c to values below 53 mmol/mol, however targets should 

be individualized according to diabetes duration, age and comorbidities.19, 

20 Furthermore, treatment with ACEi or ARB has proven to lower the risk of 

progressive kidney function decline and kidney failure by 23%.21

Novel anti-diabetic treatments

A major break-through in reducing risk of CVD and kidney disease in people 

with type 2 diabetes is the introduction of new glucose-lowering therapies, 

such as sodium-glucose transport protein 2 inhibitors (SGLT2i) and glucagon-

like peptide-1 receptor analogues (GLP-1 RA). SGLT2i have proven beneficial 

in reducing risk of CVD by 14% and risk of kidney outcomes by 38% in people 

with type 2 diabetes.22 GLP-1 RAs are proven effective in reducing CVD risk 

and risk of kidney outcomes by 10% and 21%, respectively, in people with 

type 2 diabetes.23 Current international guidelines recommend treatment with 

SGLT2i and GLP-1 RA in patients with type 2 diabetes at high risk for CVD.6, 7 

Even though the use of these medications is increasing, implementation still 

remains limited, as was also shown in Chapter 5. In a cohort of people with 

type 2 diabetes spanning 13 countries worldwide, the use of GLP-1 RA and 

SGLT2i did not greatly differ between patients with and without established 

CVD. Less than one out of five patients with CVD were treated with an SGLT2i 
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and only one in ten patients with CVD were treated with a GLP-1 RA. Use of 

blood-pressure lowering medication, statins and aspirin was more frequent in 

patients with type 2 diabetes with CVD. Worth noting is that the data for the 

cohort was collected in 2019 and did not consider reasons for not prescribing 

these treatments, however more recent data suggest that the prevalence 

of people with established CVD and type 2 diabetes receiving SGLT2i and 

GLP-1 RA has not improved.24 These results thus indicate that there is still a 

lot to be gained on a population level in terms of implementation. SGLT2i and 

GLP-1 RAs have been studied as glucose-lowering drugs, which could have 

impeded uptake by other specialists, i.e. cardiologists and nephrologists, 

even though both drugs have been shown to lower risk of CVD and kidney 

disease independent of their glucose-lowering abilities.25, 26 Also, there may still 

be a lot to be gained in terms of reimbursement from health care providers. 

Furthermore, fear of side-effects or contraindications due to limited research 

in high-risk patients (e.g. an eGFR <25-30 ml/min/1.73m2 for SGLT2i treatment) 

may abstain treating physicians from prescribing SGLT2i and GLP-1 RA. The 

ongoing gain of knowledge from several trials assessing risk reduction for 

different outcomes with SGLT2i and GLP-1 RA in different patient populations 

may result in an improved implementation of these medications. Also, as we’ll 

touch upon later in this chapter, prediction tools assessing individual benefit 

from preventive treatment may aid in deciding which patients will benefit the 

most, while also outweighing the risk of side-effects.

Risk prediction in patients with type 2 diabetes

So with the increasing evolutions in treatments to reduce risk of adverse outcomes, 

should we just treat all patients and with all the treatments available? Most would 

agree that that would not be a very beneficial approach, neither for the individual 

patient nor society. All medication have a risk of adverse events, add to the pill-

burden for patients, and some of the therapies are associated with high costs, 

why from an economic health care perspective it should be given to the patients 

with highest treatment benefits. Patient preferences are also very important, and 

adherence decreases as the amount of treatments given to the individual patient 

increases. Thus, how do we figure out who, when and how to treat? Previously, 

patients with established CVD and/or type 2 diabetes were all assumed to be 

at (very) high risk of CVD and kidney disease, however such a one size fits all 

approach is too simplistic. Future risk can be estimated using individualized risk 
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prediction models, both in primary and secondary prevention and can be used to 

guide treatment decisions in shared decision making in clinical practice.

Let’s return to our two patients described in the introduction of this thesis; Mr. 

D and Mrs. T (Figure 1). According to the ESC 2021 prevention guidelines,6 they 

are both at high risk of a CVD event since both have type 2 diabetes and target 

organ damage in the form of albuminuria. But what is their individual risk for 

CVD? And what about microvascular outcomes such as ESKD? Of course, Mr. 

D should lose weight, obtain a healthier diet, exercise more and definitely stop 

smoking! But what about Mrs. T who already has a healthy lifestyle? Should an 

SGLT2i or GLP-1 RA be considered? According to the guidelines yes, but what 

is their individual gain when initiating these treatments? In terms of shared 

decision making, shouldn’t we be frank about potential gains of treatment? 

And how should treatments be prioritized? 

Prediction models can inform individuals on their expected course of disease, 

estimate risk of developing a disease and guide clinicians and patients when 

deciding on future interventions and treatments.27 Many prediction models 

exist, with more and more being developed and there is increasing focus on 

risk prediction in secondary prevention. Risk prediction tools aimed at a target 

population allow for inclusion of specific predictors relevant for this population, and 

this will result in more accurate risk estimations. For example, several risk models 

include diabetes as a predictor, however using a model targeted at patients 

with diabetes will include diabetes-specific risk factors (such as HbA1c and the 

duration of diabetes). Several risk prediction models in secondary prevention 

exist, including the SMART2 risk score for people with established CVD28 and the 

ADVANCE29 and UKPDS risk engines30 for people with type 2 diabetes. The Kidney 

Failure Risk Equation (KFRE) predicts short-term ESKD risk in patients with chronic 

kidney disease,31 however this risk equation was developed specifically for people 

with an eGFR <60 ml/min/1.73m2 and does not account for type 2 diabetes. In 

Chapter 6, 7 and 8 we developed prediction models to assess individual risk and 

treatment benefit for CVD and ESKD in people with type 2 diabetes.

Reliability of predictions

Over the years, ongoing advancements in methodology for prediction tools 

have allowed for more accurate predictions, providing a significant step 

forward. For risk predictions to be reliable in clinical practice, the prediction 
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estimates must match the actual probability of disease. Most of the prediction 

models for cardiovascular and kidney disease in people with type 2 diabetes 

have several methodological shortcomings. 

Adjustment for competing risks

One methodological shortcoming in most prediction models within this field 

is the failure to adjust for competing risks. For example, none of previous ESKD 

prediction models in people with type 2 diabetes adjusted for all-cause mortality 

as competing risk.32 Adjusting for (non-CVD) mortality as competing risk avoids 

overestimations of risks and treatment effects.33 This is especially important in 

older individuals and other persons at high risk of death and also for individuals 

at low risk for the outcome, who are likely to die before developing said outcome. 

The overestimated risks and treatment benefits caused by not accounting for 

competing risks may lead to higher than real expected benefit and may cause an 

inaccurate weighing of benefits and harms in the shared decision making process. 

Therefore, all risk scores predicting outcomes that have relevant competing risks 

(so in reality all outcomes except for all-cause mortality) should be adjusted for 

competing risks, since this is methodologically feasible and avoids overestimation 

of risks and treatment benefits. In SCORE2-DM, DIAL2 and DIAL-ESKD (Chapters 

6, 7 and 8), one of the improvements in comparison to their predecessors was 

the adjustment for all-cause mortality as competing risk when predicting ESKD as 

outcome and non-CVD mortality when predicting CVD as outcome. 

Geographical recalibration

The incidence of most diseases, including CVD and kidney disease, varies between 

different populations, over geographical regions and over periods of time beyond 

what can be explained by risk factors alone. Therefore, when possible, geographic 

and temporal recalibration of prediction models in the populations for intended 

use should be performed. The majority of existing prediction models for people 

with type 2 diabetes failed to perform external validation and recalibration.34 

Furthermore, recalibration is most often performed using cohort data which may 

reflect past periods of time and are subject to some degree of healthy participant 

bias. A recent advancement in geographical recalibration is the usage of nationally 

representative registry data.35, 36 In Chapter 8, this methodology was adapted to 

people with type 2 diabetes. In Chapter 7, we updated the existing DIAL model 

and adapted the methodology for systematic recalibration of lifetime CVD risks in 
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people with type 2 diabetes. For the DIAL-ESKD model in Chapter 6, this approach 

was not possible due to the lack of reliable aggregate data on diabetes-specific 

risk factor levels and incidence of ESKD in individuals with type 2 diabetes. Also, 

since ESKD is a much less common outcome than for example CVD in people with 

type 2 diabetes, large databases with extensive follow-up are important in order 

to ensure sufficient power with an adequate amount of events. We developed and 

validated the model in two different, recent and large representative databases. 

However, future validation and recalibration of the model will be valuable as data 

on individuals with type 2 diabetes with sufficient follow-up accrue.

Prediction time spans

Most prediction models predict risk over a limited time horizon, up to e.g. 10 years. 

The ADVANCE model was developed for predicting 4-year risk of CVD29 and the 

KFRE up to 5-year risks of ESKD.31 Furthermore, existing ESKD prediction models 

developed in individuals with type 2 diabetes are based on shorter prediction 

horizons of up to eight years.37-42 Short-term predictions are mostly driven by age, 

and since younger people have lower short-term risks even in the presence of high 

risk factor levels, they will mostly not receive preventive therapy, although their 

lifetime benefit may be very high. Also, vascular damage and kidney impairment 

usually develops gradually over the course of many years, and short-term 

prediction may underestimate long-term gains. For some patient groups, shorter 

term predictions remain relevant. For example, for predicting ESKD as outcome, 

shorter time span predictions in patients already having advanced kidney damage 

may be relevant for intensifying follow-up and timing of work-up for kidney 

replacement therapy.43 However, for patients with lower short-term risk, including 

younger patients, longer-term predictions will be valuable to support decisions 

about preventive treatment. The DIAL-ESKD model in Chapter 6 and the DIAL2 

model in Chapter 7 both emphasize lifetime risk predictions. 

Returning to our patients, Mr. D and Mrs. T with type 2 diabetes at our out-

patient clinic. Using the DIAL-ESKD model in Chapter 6 and the DIAL2 model in 

Chapter 7, we can estimate their lifetime risks of a CVD event and ESKD (Figure 

1). Mr. D has a lifetime risk of a CVD event of 41% and a lifetime risk of ESKD of 

25%. Mrs. T has a lifetime risk of CVD of 45% and a lifetime risk of ESKD of 11%. 

Lifetime risk of CVD for Mrs. T is thus larger, even though Mr. D’s cardiovascular 

risk factor burden is intuitively larger. However, Mrs. T is younger and thus has 

more years to develop CVD.
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Figure 1. Lifetime risk estimates and treatment benefit for end-stage kidney disease and 
cardiovascular disease for two examples of patients with type 2 diabetes; Mr. D and Mrs. T 

BP = blood pressure; CVD = cardiovascular disease; eGFR = estimated glomerular filtration rate; 
ESKD = end-stage kidney disease; HbA1c = hemoglobin A1c; HDL = high density lipoprotein; 
SGLT2i = sodium glucose cotransporter 2 inhibitor; uACR = urine-Albumine/Creatinine ratio.

Individual benefit from treatment interventions

Fortunately, several preventive treatments exist for lowering risk of both 

cardiovascular and kidney disease in people with type 2 diabetes and international 

guidelines can provide recommendations on who, how and when to treat. However, 

these treatments may not be applicable to all and should be given to individuals 

with type 2 diabetes who will benefit the most. As shown in Chapter 5 there is a 

wide range of predicted benefit from different treatment options in people with 

type 2 diabetes, why estimating individual benefit from treatment is important 

to choose the right treatment for the right patient. The relative treatment effects 

that stem from trials apply to the group level, thus the average patient. However, 

clinicians treat individual, not average, patients, and applying this relative risk to 

individuals in clinical practice is not always informative regarding absolute benefit. 

A treatment may be associated with a considerable reduction in relative risk but 

result in a modest reduction in absolute risk when the absolute baseline risk of 

the outcome is low, and vice versa.44, 45 In chapters 5, 6, 7 and 8, the inclusion of 
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treatment effects allowed for estimating individual gain from preventive treatment, 

expressed as gain in CVD- or ESKD-free life years or absolute risk reduction (ARR). 

In this way, the relative risk reduction from trials is translated to individual benefit 

and this helps distinguish which patients may benefit the most. An older person 

may have high risk of a CVD or kidney outcome, but will have less benefit from 

an intervention, while a younger patient may have low risk of a CVD or kidney 

outcome, but high benefit from an intervention when taken life-long. Identifying 

which patients will benefit the most will enhance effective drug use, especially for 

expensive medication. It may also prevent unnecessary polypharmacy, while still 

ensuring that patients with a high-risk and significant treatment benefit are treated. 

When making decisions on treatments, patient preferences is of course also of key 

importance, and patients have reported it easier to comprehend gain in healthy 

life years than a relative risk.46 The estimations of individual treatment benefit is 

likely to aid in shared decision making and adherence. In time, incorporation of 

additional relevant treatment effects should be possible, including exercise, 

adapting a healthier diet and losing weight, which might also act as a motivator 

for the individual patient. However, as mentioned previously, the risk on outcomes 

associated with changes in lifestyle is difficult to investigate and define. 

What does this mean for our two patients? If Mr. D was to stop smoking, obtain 

a 10 mmHg reduction in his systolic blood pressure and initiate treatment with 

an SGLT2i, his lifetime CVD risk is estimated to be 27% (ARR 14%) with a gain 

of 3.5 CVD-free life years (Chapter 7), while his lifetime risk of ESKD would be 

18% (ARR 7%) and a gain of 3.5 ESKD-free life years (Chapter 6). If Mrs. T was 

to lower her systolic blood pressure with 10 mmHg and initiate treatment with 

SGLT2i, her lifetime risk of CVD would be 35% (ARR 10%) with a gain of 1.6 CVD-

free life-years, while her lifetime risk of ESKD would be 8% (ARR 3%) with a gain 

in ESKD-free life years of 2.9 (Figure 1). These measures can be used in clinical 

practice to promote adherence and shared decision making. Perhaps Mr. D is 

more willing to cut out his daily pack of cigarettes if he knows he will have an 

extra 3.5 disease-free years to spend with his grandchildren? Or that Mrs. T will 

be more keen to start blood-pressure lowering medication, despite her initial 

aversion, if she knows her estimated gain?

Risk prediction in clinical practice

Accurate and reliable predictions and treatment benefit estimations are worth 

nothing if not being used by the health care providers and the actual individual 
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patients. Several factors are important for a prediction model to be easily 

implementable in clinical practice. First of all, predictors required in the model 

should be routinely available. In SCORE2-DM, DIAL2 and DIAL-ESKD (Chapter 6, 

7 and 8) all predictors are most often available in patients with type 2 diabetes. 

Second, the model should be easy and not time-consuming to use. The models 

developed in this thesis will shortly be available as inter-active online user-friendly 

calculators via www.u-prevent.com. Future innovations should focus on further 

implementing risk prediction models, for example in a way that information from 

electronic health records is directly transferred to the risk prediction model. 

This will free time in clinical practice to explain and discuss the risk and benefit 

estimates as well as treatment strategies with patients based on their individual 

predictions to support the shared decision making process.

Concluding remarks

Cardiovascular disease, kidney disease and type 2 diabetes remain some of the 

most common non-communicable diseases and are associated with increased 

risk of several adverse outcomes, despite advances in management and treatment. 

Prediction tools with a lifetime scope for cardiovascular and kidney disease allow 

for individualizing risk assessment and choosing between treatments together 

with better informed patients. Prediction models for a number of outcomes and 

in different patient populations, also some presented in this thesis, are available 

on www.U-prevent.com. With the recent methodological advancements and 

the ongoing improvements in data collection, the accuracy of prediction models 

will likely improve even more. Also, future advancements of allowing linkage to 

individual electronic health records will enhance clinical applicability of prediction 

models. The latest 2021 ESC cardiovascular disease prevention guidelines have 

put a lot more focus on individual risk based treatment, and perhaps so far we’ve 

only seen the top of the iceberg when it comes to estimating individual risk and 

treatment benefits. So even though we cannot predict the exact future for our 

patients, accuracy and reliability of risk estimates continue to progress. 

Key findings of this thesis

• In patients with established cardiovascular disease, the incidence 

of ESKD varies according to vascular disease location and is highest 

in patients with polyvascular disease. Several modifiable risk factors 
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are associated with a higher risk of ESKD in patients with established 

cardiovascular disease, including smoking, type 2 diabetes, higher 

systolic blood pressure, lower eGFR and higher uACR (Chapter 2).

• Continuing smoking and recent smoking cessation and for men also 

an increase in obesity markers are associated with a steeper kidney 

function decline over 10 years in patients with established CVD 

(Chapter 3). 

• A higher Hemoglobin Glycation Index (as a marker of interindividual 

differences in hemoglobin glycosylation) is related to a higher risk of 

cardiovascular disease in people with type 2 diabetes, however only 

in those without established CVD. However, as HbA1c has proved to 

be a comparable risk factor, and obtaining and interpreting the HGI 

is complicated, any additional benefit of applying the HGI in clinical 

settings is likely to be limited (Chapter 4).

• In people with type 2 diabetes, GLP-1 RA or SGLT2i does not greatly 

differ between patients with and without CVD history, while use of 

blood pressure-lowering medication, statins and aspirin is more 

frequent in patients with CVD. Life-years gained free of (recurrent) 

CVD by optimal cardiovascular risk management and addition of 

GLP-1 RA and SGLT2i is dependent on baseline CVD risk and has a 

wide range in people with type 2 diabetes (Chapter 5).

• To estimate and communicate risk of ESKD and potential benefit 

with nephroprotective treatments in people with type 2 diabetes, 

a competing risk adjusted lifetime model was developed. This may 

promote shared decision making in the clinical practice (Chapter 6). 

• With the updated DIAL2 model, the lifetime risk of CVD events in 

people with type 2 diabetes can be estimated. The model was 

updated to align with recent methodological advancements in 

recalibration to low- and moderate risk regions in Europe (Chapter 7). 

• Using the SCORE2-DM risk score, 10-year risk of CVD events in 

people with type 2 diabetes can be estimated. The model can aid 

in identifying individuals at high CVD risk that will benefit most from 

treatment (Chapter 8).
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Chapter 10

Summary

The prevalence of type 2 diabetes, cardiovascular disease (CVD) and chronic 

kidney disease is growing at a rapid speed due to several factors, including 

increased survival of patients with disease, and an ageing population with more 

chance to develop disease. At the same time, the aforementioned diseases are 

strongly intertwined with shared risk factors, and the presence of one of the 

diseases increases the risk of the other two. The management of cardiovascular 

and kidney outcomes associated with both type 2 diabetes, chronic kidney 

disease and CVD is related to a high burden on the health care system and 

for the individual patient. Even with optimal management of lifestyle factors, 

there is still a substantial risk for CVD and kidney disease in “high-risk patients” 

with already established CVD and/or type 2 diabetes. Fortunately, several 

treatment strategies exist for reducing this risk, including lowering of LDL-c and 

blood pressure and for patients with type 2 diabetes lowering of HbA1c. Also, 

international guidelines recommend certain pharmacotherapy to reduce this 

risk. However, as these treatments are associated with a risk of adverse events, 

add to the pill-burden of patients and the fact that some of the therapies are 

associated with high costs, it is important to be able to precisely identify which 

patients are at higher risk and which will benefit most from preventive therapy.

This thesis consists of two parts: Part 1 focuses on traditional and novel risk 

factors for CVD and kidney outcomes in high-risk patients with established 

CVD and/or type 2 diabetes. Part 2 focuses on the prediction of cardiovascular 

and kidney disease in patients with type 2 diabetes.

Part 1. Risk factors for cardiovascular and kidney disease

Patients with established CVD are at increased risk of kidney disease, including 

end-stage kidney disease (ESKD). In chapter 2, it was shown that in 8,402 patients 

with established CVD from the UCC-SMART cohort, the incidence rate of ESKD 

differed according to vascular disease location and was highest in patients with 

polyvascular disease (1.8/1000 person-years). Several modifiable risk factors 

were associated with an increased risk of developing ESKD, including smoking 

(HR 1.87; 95%CI 1.10-3.19), type 2 diabetes (HR 1.81; 95%CI 1.05-3.14), higher systolic 

blood pressure (HR 1.37; 95%CI 1.24-1.52/10 mmHg), lower estimated glomerular 

filtration rate (HR 2.86; 95%CI 2.44-3.23/10 mL/min/1.73m2) and higher urine 

albumin/creatinine ratio (HR 1.19; 95%CI 1.15-1.23/10 mg/mmol). 
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Chapter 3 investigates the relation between changes in lifestyle factors, 

including smoking, alcohol consumption, exercise and obesity markers, and 

change in kidney function over a 10 year follow-up period in patients with 

established CVD. We found that an increase in body mass index (β -2.81; 95%CI 

-3.98;-1.63per 5 kg/m2)  and for men also increase in waist circumference (β 

-0.87; 95%CI -1.28;-0.47per 5 cm) were associated with a steeper decline in 

eGFR over 10 years. Continuing smoking (β -2.44, 95%CI -4.43;-0.45) and recent 

smoking cessation during follow-up (β -3.27; 95%CI -5.20;-1.34) were also both 

associated with a steeper eGFR decline compared to patients who remained 

as non- or previous smokers from baseline. The findings from chapter 2 and 3 

highlight the potential of risk factor management for preventing ESKD and the 

importance of encouraging especially weight loss and smoking cessation in 

patients with established CVD.

Despite implementation of international guidelines focused on managing 

important amendable risk factors for CVD in people with type 2 diabetes, 

there is still a substantial risk of CVD. Therefore, there is ongoing interest in 

finding novel potential drivers of CVD risk in this patient group. In chapter 4, 

we investigated one such potential risk factor, the Hemoglobin Glycation Index 

(HGI). The HGI has been proposed as a marker of interindividual differences 

in hemoglobin glycosylation and is calculated as the difference between 

observed HbA1c and predicted HbA1c, where predicted HbA1c is obtained 

by the population linear regression equation of HbA1c as a function of blood 

glucose. However, our findings were not supportive of integrating HGI as a risk 

factor in clinical practice, since HbA1c was shown to be a comparable risk factor, 

and obtaining and interpreting HGI is difficult.

Part 2. Individual prediction and benefit from treatment

New glucose-lowering therapies, such as sodium-glucose transport protein 2 

inhibitors (SGLT2i) and glucagon-like peptide-1 receptor analogues (GLP-1 RA), 

show promising results in reducing CVD risk and kidney disease risk in people 

with type 2 diabetes. In chapter 5, we found that in a cohort of 9,823 patients 

with type 2 diabetes spanning 13 countries, the use of GLP-1 RA or SGLT2i did 

not greatly differ between patients with and without a CVD history, while use 

of blood pressure-lowering medication, statins and aspirin was more frequent 

in patients with CVD. Also, we showed that life-years gained free of (recurrent) 
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CVD by optimal cardiovascular risk management and addition of GLP-1 RA and 

SGLT2i is dependent on baseline CVD risk and has a wide range in people with 

type 2 diabetes. 

Prediction models for predicting cardiovascular and kidney outcomes in 

people with type 2 diabetes should be used in clinical practice to identify high-

risk patients who are expected to benefit most from treatment. This ultimately 

helps in shared decision-making on treatment decisions. To do this, however, 

it is important that predictions are accurate and applicable to the specific 

clinical situation. In chapter 6 we developed and validated the DIAL-ESKD; a 

competing risk adjusted model for predicting individual 10-year and lifetime 

risk of ESKD (defined as first occurrence of either kidney transplantation, 

long-term dialysis or persistent estimated glomerular filtration rate <15 ml/

min/1.73m2) in people with type 2 diabetes. Development and validation was 

performed in more than 1,000,000 people with type 2 diabetes from large, 

contemporary and representative regional cohorts, stemming from Sweden 

and Scotland. Performance of the model was good (c-statistic 0.89; 95%CI 0.88-

0.90 for internal validation and 0.74; 95%CI 0.73-0.76 for external validation) and 

calibration plots showed good agreement in observed vs. predicted 10-year 

risk of ESKD. The model also allows for estimation of potential individual benefit 

from nephroprotective treatments and is intended for use in clinical practice to 

promote shared decision making. 

Chapter 7 describes the development and geographical recalibration of the 

DIAL2 model, a competing risk adjusted prediction tool for predicting lifetime 

risk of CVD in people with type 2 diabetes and without established CVD. 

The model was developed in 467,856 people with type 2 diabetes and was 

systematically recalibrated to Europe’s low and moderate risk region using 

contemporary incidence data and mean risk factor distributions. External 

validation of the recalibrated model in 218,267 people with type 2 diabetes 

was well (C-indices of 0.732; 95%CI 0.726-0.739 and 0.700; 95%CI 0.691-0.709). 

The DIAL2 model provides a useful tool for the prediction of CVD-free life 

expectancy and lifetime CVD risk for people with type 2 diabetes without 

previous CVD in the European low and moderate risk regions.

The counterpart of the DIAL2 model is the SCORE2-DM risk score discussed 

in chapter 8. The SCORE2-DM model can be used in clinical practice to 



10

Summary

297   

predict 10-year risk of CVD events in people with type 2 diabetes and without 

established CVD. The model was developed by extending SCORE2 algorithms 

using individual-participant-data from four large-scale datasets (229,460 

individuals with type 2 diabetes) and recalibrated to CVD incidence in four 

European risk regions (low, moderate, high and very high risk regions). External 

validation included 216,980 further individuals and showed good discrimination 

with regional calibration being satisfactory. The model can aid in identifying 

individuals with type 2 diabetes at high CVD risk that will benefit most from 

treatment.

To conclude, prediction tools for cardiovascular and kidney outcomes in “high 

risk”-patients developed in line with recent advances in methodology allow for 

improved individualized risk assessment and estimation of treatment benefits. 

This promotes a stronger foundation for shared-decision leading to higher 

patient commitment and potentially better adherence in clinical practice. 

With the ongoing improvements in data collection, the accuracy of prediction 

models will likely improve even more in the future. 
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Nederlandse samenvatting (voor niet ingewijden)

Het aantal patiënten met diabetes type 2, hart- en vaatziekten en chronische 

nierziekten neemt wereldwijd in snel tempo toe. Dit als gevolg van onder 

andere een vergrijzende samenleving met toegenomen levensverwachting 

en daarbij meer kans om een ziekte te ontwikkelen. Het behandelen van 

diabetes type 2, chronische nierziekten en hart- en vaatziekten gaat gepaard 

met een hoge belasting voor de gezondheidszorg en de individuele patiënt. 

Tegelijkertijd zijn bovengenoemde ziekten sterk met elkaar verweven, met 

gedeelde risicofactoren en de aanwezigheid van een van de ziekten verhoogt 

het risico op het krijgen van de anderen. Gelukkig bestaan er verschillende 

behandelingen om dit risico te verminderen, waaronder verlaging van 

cholesterol, bloeddruk en bloedsuiker (voor patiënten met diabetes type 2) en 

internationale richtlijnen geven aanbevelingen voor bepaalde medicatie voor 

patiënten met een bijzonder hoog risico. Deze behandelingen gaan echter 

gepaard met een risico op bijwerkingen, een toename van het aantal pillen dat 

patiënten moeten slikken en, voor sommige therapieën, hoge kosten. Daarom 

is het belangrijk te kunnen vaststellen welke patiënten een verhoogd risico 

lopen en welke het meeste baat hebben bij preventieve medicatie.

Dit proefschrift bestaat uit twee delen: Deel 1 richt zich op traditionele en nieuwe 

risicofactoren voor hart- en vaatziekten en nierziekten bij risicopatiënten met 

vastgestelde hart- en vaatziekten en/of type 2 diabetes. Deel 2 richt zich op de 

voorspelling van hart- en vaatziekten en nierziekten bij patiënten met diabetes 

type 2.

Deel 1. Risicofactoren voor hart- en vaatziekten en nierziekten

Patiënten met vastgestelde hart- en vaatziekten lopen een verhoogd risico op 

nierziekten, waaronder eindstadium nierfalen. In hoofdstuk 2 werd aangetoond 

dat in deze patiëntenpopulatie, de incidentie van eindstadium nierfalen 

verschilt naar gelang van de plaats waar de vaatziekte zich manifesteert, en het 

hoogst was bij patiënten met vaatziekten op meerdere plekken in het lichaam. 

Verschillende aanpasbare risicofactoren werden in verband gebracht met een 

verhoogd risico op het ontwikkelen van eindstadium nierfalen, waaronder 

roken, diabetes type 2, hogere bloeddruk, en lagere nierfunctie. 

Hoofdstuk 3 onderzoekt de relatie tussen veranderingen in leefstijlfactoren, 

waaronder roken, alcoholgebruik, lichaamsbeweging en obesitasmarkers, 
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en verandering in nierfunctie gedurende een follow-up periode van 10 jaar bij 

patiënten met vastgestelde hart- en vaatziekten. Er werd gevonden dat een 

toename van de body mass index (BMI) en voor mannen ook een toename van 

de middelomtrek samenhangt met een sterkere daling van de nierfunctie over 

een periode van 10 jaar. Blijven roken tijdens de follow-up was geassocieerd met 

een steilere daling van de nierfunctie in vergelijking met patiënten die vanaf de 

uitgangswaarde niet rookten. De bevindingen van hoofdstuk 2 en 3 benadrukken 

het potentieel van risicofactorbeheer voor het voorkomen van eindstadium 

nierfalen en het belang van het aanmoedigen van met name gewichtsverlies en 

stoppen met roken bij patiënten met vastgestelde hart- en vaatziekten.

Ondanks de toepassing van internationale richtlijnen die gericht zijn op het 

management van belangrijke risicofactoren voor hart- en vaatziekten bij 

mensen met diabetes type 2, is het risico op het ontstaan hiervan nog steeds 

aanzienlijk. In hoofdstuk 4 werd één zo’n potentiële risicofactor onderzocht: 

de Hemoglobin Glycation Index (HGI). De HGI wordt berekend als het verschil 

tussen waargenomen HbA1c (lange termijn bloedsuiker) en voorspeld HbA1c. 

De bevindingen ondersteunen echter niet de integratie van HGI als risicofactor 

in de klinische praktijk, aangezien HbA1c een vergelijkbare risicofactor blijkt te 

zijn. Ook is het verkrijgen en interpreteren van HGI moeilijk.

Deel 2. Individuele voorspelling en voordeel van de behandeling

Nieuwe medicatie voor het verlagen van de bloedsuikerwaarde (SGLT2i en 

GLP-1 RA) laten veelbelovende resultaten zien bij het verminderen van het 

risico op hart- en vaatziekten en nierziekten bij mensen met diabetes type 2. In 

hoofdstuk 5 vonden wij dat in patiënten met diabetes type 2, verspreid over 13 

landen, het gebruik van deze medicijnen niet veel verschilde tussen patiënten 

met en zonder hart- en vaatziekten in het verleden, terwijl het gebruik van 

bloeddrukverlagende en cholesterolverlagende medicatie vaker voorkwam bij 

patiënten met hart- en vaatziekten. Ook werd gezien dat het aantal levensjaren 

zonder (terugkerende) hart- en vaatziekten door optimaal management van 

risicofactoren en bij toevoeging van GLP-1 RA en SGLT2i afhankelijk is van het 

baseline risico voor hart- en vaatziekten en een grote spreiding kent bij mensen 

met diabetes type 2. 

Voorspellingsmodellen voor het voorspellen van hart- en vaatziekten en 

nierziekten bij mensen met diabetes type 2 moeten in de klinische praktijk worden 
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gebruikt om patiënten met een hoog risico te identificeren en van wie wordt 

verwacht dat zij de meeste baat hebben bij behandeling. Dit helpt uiteindelijk in 

het bevorderen van gedeelde besluitvorming over behandelingsbeslissingen. 

Daartoe is het echter van belang dat de voorspellingen nauwkeurig zijn en van 

toepassing op de specifieke klinische situatie. In hoofdstuk 6 hebben wij het 

DIAL-ESKD model ontwikkeld en gevalideerd voor het voorspellen van het 

individuele 10-jaars- en levenslange risico op eindstadium nierfalen bij mensen 

met diabetes type 2. De ontwikkeling en validatie werd uitgevoerd bij meer dan 

1.000.000 mensen met diabetes type 2 uit grote en representatieve regionale 

cohorten, afkomstig uit Zweden en Schotland. Een belangrijke component van 

het model is dat er ook rekening wordt gehouden met het feit dat mensen 

met diabetes type 2 vaak overlijden voordat zij eindstadium nierfalen krijgen. 

De prestaties van het model in externe data waren goed. Het model maakt 

ook een schatting mogelijk van het potentiële individuele voordeel van 

behandelingen bedoeld om nierziekten te voorkomen bij mensen met diabetes 

type 2. Daardoor is het model bedoeld voor gebruik in de klinische praktijk ter 

bevordering van gedeelde besluitvorming. 

Hoofdstuk 7 beschrijft de ontwikkeling en geografische herijking van het 

DIAL2-model voor het voorspellen van het levenslange risico op hart- en 

vaatziekten bij mensen met diabetes type 2 en zonder reeds vastgestelde 

hart- en vaatziekten. Het model werd ontwikkeld in bijna 500,000 mensen met 

diabetes type 2. Middels het gebruik van grootschalige data van mensen met 

diabetes type 2 in Europa en regionale incidentie van hart- en vaatziekten is 

het model zo precies mogelijk afgestemd op de klinische praktijk in de laag- 

en gemiddeld-risico gebieden in Europa (Nederland hoort bij het gebied met 

een laag risico). De prestaties van het model in externe data waren voldoende. 

Het DIAL2-model vormt een nuttig instrument voor de voorspelling van de 

levensverwachting zonder hart- en vaatziekten en het levenslange risico op 

hart- en vaatziekten voor mensen met diabetes type 2 zonder eerdere hart- en 

vaatziekten.

De tegenhanger van het DIAL2-model is de in hoofdstuk 8 besproken SCORE2-

DM risicoscore. Het SCORE2-DM-model kan in de klinische praktijk worden 

gebruikt om het risico op hart- en vaatziekten in 10 jaar tijd te voorspellen bij 

mensen met diabetes type 2 zonder vastgestelde hart- en vaatziekten. Het 

model is ontwikkeld door de veelal gebruikte en recente SCORE2-algoritme 
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uit te breiden met gegevens van individuele deelnemers met diabetes type 2 

uit vier grootschalige datasets. Het werd opnieuw aangepast naar de incidentie 

van hart- en vaatziekten in vier Europese risicogebieden; laag, gemiddeld, hoog 

en zeer hoog. In externe data was de prestatie van SCORE2-DM voldoende. 

Het model kan helpen bij het identificeren van personen met diabetes type 

2 met een hoog risico op hart- en vaatziekten die het meest gebaat zijn bij 

behandeling.

Kortom, voorspellingsinstrumenten voor hart- en vaatziekten en nierziekten 

bij patiënten met diabetes type 2, i.e. patiënten met een hoog risico, maken 

het mogelijk de risicobeoordeling te individualiseren en het voordeel van de 

behandeling zo nauwkeurig mogelijk in te schatten. Dit bevordert gedeelde 

besluitvorming in de klinische praktijk met beter geïnformeerde patiënten. 

Met de voortdurende verbeteringen in de gegevensverzameling zal de 

nauwkeurigheid van de voorspellingsmodellen in de toekomst waarschijnlijk 

nog verder verbeteren. 
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a lot of knowledge gained and friendships made, which all culminated in 

this thesis. I am beyond proud of the result and my own perseverance, but 

apparently it does take a village to write a PhD. This thesis isn’t complete 

without deeply thanking my ‘village’ of people who supported me through this 

and whom I couldn’t have done it without.

Als eerste wil ik mijn promotieteam heel erg bedanken; mijn promotor prof. dr. 

F.L.J. Visseren en mijn copromotoren dr. J. van der Leeuw en dr. J. Westerink.

Prof. dr. F.L.J. Visseren, beste Frank. Allereerst, bedankt dat je mij de kans gaf 

om bij jou en in de Vascu groep te promoveren en om de master klinische 

epidemiologie te volgen. Je bent altijd heel laagdrempelig bereikbaar geweest, 

zowel voor de grote als kleine dingen. Verder weet je ook altijd tijd voor iedereen 

te maken. Ik snap niet altijd hoe je dit doet, alhoewel, terwijl de meeste mensen 

hun tijd in het vliegtuig gebruiken om door de filmkeuze te browsen, gebruik 

jij die om manuscripten nauwkeurig te bekijken. Jij bent altijd heel positief en 

enthousiast, zowel binnen de onderzoekswereld als in de klinische praktijk, en 

je scherpe vragen en opmerkingen vereisten dat ik overal extra goed over na 

moest denken. Ook buiten werk vind je tijd voor gezelligheid om de afdeling 

nog hechter te maken en arrangeer je barbecues en thanksgiving diners bij jou 

thuis.

Dr. J. van der Leeuw, beste Joep. Ik ben heel blij en voel mij vereerd dat ik 

jouw eerste promovendus ben. Manuscripten werden altijd heel grondig 

doorgenomen en je feedback was altijd ‘spot-on’. Door je (vaak kritische) 

opmerkingen en vragen bij overleggen werden de projecten altijd stuk beter 

en duidelijker. Jij wist altijd tijd voor me te maken, ook ondanks jouw drukke 

schema. Er gebeurden voor ons allebei meerdere grote events tijdens mijn 

promotietijd (we zijn een paar verhuizingen en een paar kinderen verder), en 

tegelijkertijd hebben wij dit mooie resultaat bereikt.

Dr. J. Westerink, beste Jan. Eigenlijk moet ik jou bedanken dat ik nu in 

Nederland vastzit, met een man, kind en huis ;-) Bedankt dat je mij onder je 

hoede nam jaren geleden, toen je een e-mail kreeg van een of andere random 
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Deense geneeskundestudent. Ook bedankt voor het vertrouwen waarmee je 

mij daarna bij de Vascu binnen hebt weten te loodsen. Vanaf dag een was je 

een super begeleider. Je hebt een hele scherpe blik op zowel onderzoek als 

de kliniek, en daarnaast ook vooral in hoe je die twee weet te combineren. Jij 

weet het onderzoek naar een hoger niveau te brengen, maar ook heb ik van jou 

veel geleerd over, onder andere, de oorsprong van verschillende Germaanse 

woorden en (Duitse) metaaldetector vondsten.

Dr. J.A.N. Dorresteijn, beste Jannick, ook jou wil ik graag bedanken voor je 

onmisbare begeleiding op het gebied van predictie, voor het DIAL-ESKD 

model en natuurlijk voor de succesvolle samenwerking met DIAL2 en 

SCORE2-DM. Het was af en toe pittig met vele politieke belangen, maar met 

jouw aanwezigheid, enthousiasme en kritische blik hebben we een zeer mooie 

resultaat kunnen neerzetten.

De andere collega’s van de afdeling Vasculaire geneeskunde, Wilko, Stan, 

Jan-Steven, Thomas, Jorn, Melvin, Jean-Paul, Manon en Corine, bedankt 

voor de prettige samenwerking en fijne sfeer op de afdeling en veel kennis 

bij de wekelijkse poli-bespreking. Margie, the machine that keeps it all going, 

dankjewel voor al je hulp en je altijd positieve karakter. 

Corina, Sara en Inge, bedankt voor alle leuke gesprekken en jullie persoonlijke 

interesse. Ik vond het altijd ontzettend gezellig en prettig om met jullie samen 

te mogen werken op de researchpoli.

UCC-SMART medewerkers, beste Ursula, Ank, Lies, Loes, Yvonne, Hetty, 

Baukje, Angela en Rutger, bedankt voor de fijne samenwerking bij SMART en 

voor al jullie harde inzet voor de UCC-SMART studie.

De hooggeleerde leden van de beoordelingscommissie prof. dr. M. Bots, 

prof. dr. M. Verhaar, prof. dr. F.H. Rutten, prof. dr. R. Gansevoort en prof. dr. M. 

Nieuwdorp dank ik voor hun tijd en bereidheid dit proefschrift te beoordelen. 

Ik kijk er naar uit om mijn proefschrift met jullie te bespreken.

Prof. dr. Michiel Bots en prof. dr. Yvonne van der Schouw, jullie ook bedankt 

voor de begeleiding en beoordeling van het researchproject tijdens de master 

epidemiologie.

I would like to thank all co-authors for their invaluable inputs and fruitful 
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collaborations that contributed to a large part of this PhD. Especially thanks 

to Sarah Wild, Björn Eliasson, Naveed Sattar, Emanuele Di Angelantonio, 

Stephanie Read, Stephen Kaptoge and Lisa Pennells for the collaborations on 

the prediction models presented in this thesis and for the many meetings and 

discussions.  

Thank you to all patients and participants from various cohorts and trials, both 

domestic and international. Your contributions are essential and without it this 

PhD would not have seen the light of day.

To the many peer-reviewers, thank you for the insightful and critical comments 

and feedback that helped improve the manuscripts even more.

Mede Vascu-collega onderzoekers, wat heb ik toch geluk gehad om in zo’n 

leuke groep te landen! Wij zijn echt een goed team, helpen en steunen elkaar 

en ik had jullie voor geen goud willen missen! Dankjulliewel voor alle gezellige 

momenten; vrijmibo’s, weekendjes naar Sevilla, Breukelen en Lissabon, vele 

koffie-sessies, mentale steun, woordgrappen (die meestal zo slecht waren dat 

zelfs ik ze begreep), voor het helpen met de Nederlandse taal en het meedoen 

aan al mijn gekke Deense tradities! 

Tamar, echte Vascu-mama, ik ken niemand die zo efficiënt kan werken als die 

dan eenmaal werkt! Jouw aanwezigheid maakte het altijd een stuk gezelliger, 

met je humor, goede verhalen en praatjes! Ook bedankt dat je mij kilometers 

op een board door het water meegesleept hebt toen ik mijn paddle kwijt raakte 

tijdens het SUP’en in Breukelen. Ook zijn jouw karaoke-skills benijdbaar. Cilie, ik 

vond het super leuk en gezellig om samen met je te werken en heb veel respect 

voor hoe je wist door te werken van ’s morgens vroeg tot ’s avonds laat. Ik vind 

het nog leuker dat jij ook in de oosterse buitenwijken van Utrecht bent beland 

en ik denk dat Berend en Lasse hele goede vrienden gaan worden! Britt, mijn 

mede-vascu “partner in crime”, wij konden het altijd heel goed over alle PhD ups 

en downs hebben, maar ook alle andere grote en kleine dingen in het leven. 

Ik heb heel veel respect voor hoe hard je werkt en je doorzettingsvermogen, 

en tegelijkertijd ben je gewoon een fantastisch persoon (ook ben ik dankbaar 

voor je flexibele ruggengraat, dit maakte de “uit de hand gelopen” borrels 

altijd een stuk gezelliger). Mocht je ooit een bijbaantje zoeken dan doe je het 

uitstekend als nep-Deense voetbalfan! Steven, ons fenomeen, dat ben je wel 

echt! Niet alleen ben je predictie en – buiten proporties – R-expert, je bent 
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ook  heel behulpzaam en ik heb ontzettend genoten van alle samenwerkingen 

op werk, en uiteraard alle gezellige momenten buiten werk. Met jou was het 

nooit saai, en je toonde ook oprecht medeleven als je zag dat het even tegen 

zat. Maria, in het begin was je echt een soort mythe voor me, alle collega’s 

hadden het de hele tijd over “Maria de Winter” terwijl ik geen idee had over 

wie ze het hadden. Toen ontmoette ik jou, en ik snapte gelijk waarom. Ik heb 

heel veel respect voor hoe veel je weet te combineren en tegelijkertijd ben je 

super sociaal. De “koele-kast” sessies waren altijd een feest! Ik heb genoten 

van alle praatjes, etentjes, feestjes, borrels en hardloop-sessies! Eline, mede-

epi-master, zonder jou was de epi een stuk saaier geweest. Sorry dat je vaak 

helemaal niks aan me had als je weer een wiskundige formule volledig wilden 

begrijpen. Jij en Maria hebben ook cavia’s voor mij naar een heel nieuw niveau 

gebracht. Ik bewonder hoe hard jij werkt, je oog voor detail, jouw empathie 

en je smaak in wijn (en muziek uiteraard)! De interne geneeskunde heeft een 

grote aanwinst met jou gekregen. Pascal, jij begon in een rare tijd met lock-

down etc., maar daarna hadden wij gelukkig veel plezier van je droge humor 

en je vaardigheden in het schrijven van reviews over hotels. Ook bedankt voor 

al je hulp en het sparren over predictie-dingen. Ik ken niemand die zo lang, zo 

geconcentreerd (zonder noise-cancelling!) kan werken in een kamer waar er 

meer of minder geschreeuwd wordt. Marga, ook jij was een echte toevoeging 

voor de Vascu! Altijd zo lief en bedachtzaam, jij denkt echt aan alle mensen 

om je heen! Ook ken ik niemand die zo veel structuur heeft, zowel op werk als 

in het leven. Uiteraard ben je ook super gezellig en altijd borrel-klaar! Nadia, 

super leuk dat je na je onderzoeksstage een promotie kwam doen. Bedankt 

voor alle gezelligheid bij lunches, koffies en borrels. Met jouw talent laat je 

het lijken alsof promoveren een eitje is (ook al weet ik dat dat niet altijd zo is 

natuurlijk). Iris, werken met jou was nooit saai! Jouw enthousiasme, openheid 

en lach zijn besmettelijk, en ik heb heel veel respect voor hoe je dingen 

aanpakt en voor elkaar weet te krijgen! Katrien, ik dacht dat ik de Nederlandse 

taal redelijk onder de knie had, maar toen kwam jij bij de Vascu promoveren 

en een hele nieuwe wereld van hilarische uitspraken opende zich voor me! Jij 

hebt een onbreekbaar werkethos en tegelijkertijd ben je super sociaal, leuk 

en gezellig! Lukas, jouw vuurdoop was meteen een weekend met z’n allen 

weg, en wat hebben wij sindsdien mogen genieten van je energie, positivisme 

en enthousiasme! Super knap hoe je zo’n moeilijke trial hebt weten op te 

zetten. Joris, wij werkten niet lang samen, maar ik kan nu al zeggen dat je een 
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enorme aanwinst voor de Vascu bent! Bomvol energie en een brein dat sneller 

werkt dan van de meesten, het gaat met jou helemaal goed komen. Milena, 

ook met jou heb ik weinig gewerkt, maar ik vond het altijd gezellig! Infectie-

mensen, Patrick, Jesper en Bianca, ook jullie bedankt voor alle gezelligheid in 

de afgelopen jaren.

Nederlandse vrienden, emigreren wordt een stuk leuker en makkelijker met 

zo veel leuke mensen om je heen! Nicole, we met each other during my 

research-internship a couple of years ago. With the addition of motherhood, 

I’ve really found a lot of support in you and I cherish our friendship. Nina, fellow 

“expat-fell-in-love-with-a-Dutch-guy”, I’m very thankful that we now both 

live in Utrecht, and I always enjoy our talks and times together, let there be 

many more to come! Maria, fellow Dane og fodbold-fan der også forvildede 

sig til Holland, virkelig hyggeligt I også er i Utrecht omegn (for nu i hvert fald). 

Marlous, van trim-hockey en avontuurclubje, jij bent echt een heel leuk en 

sociaal persoon. Volgens mij zou je op de Noordpool kunnen zitten en nog 

steeds vrienden maken, je hebt mijn leven in Utrecht echt een stuk gezelliger 

gemaakt. PNS/P1/plus de rest; Jochem en Job, jullie hebben mij meteen met 

open armen ontvangen toen ik vele weekendjes in jullie huis kwam logeren, 

dank daarvoor! Samen met, Floor, Anna, Wouter, Patrick, Lieke, Nick, Dorine, 

Daan en Tessa vind ik jullie echt een leuke groep en ik geniet altijd ontzettend 

van alle momenten samen! Dankjulliewel voor al jullie hulp met het huis!

CP-groepje, Marlous, Elske, Annemie, Ingrid, Janne, Roos, Lisette en de rest, 

moeder worden en verhuizen naar Zeist was echt een stuk zwaarder geweest 

zonder jullie! Ik kan met jullie altijd goed relativeren en sparren over van alles; 

van groot tot klein. Dankjulliewel voor alle gezellige koffie (uiteraard met taart) 

en cocktail momentjes!

Mia, en sjælden gang imellem møder man et menneske, og så siger det bare 

klik – sådan var det med dig! Jeg har været så glad for at sparre med dig de 

sidste par år, både over PhD-struggles, men også alle andre op- og nedture. Du 

er så stærk, sej, sjov og omsorgsfuld, og jeg priser mig lykkelig for, at vi valgte 

lige præcis dig som roomie til vores hollandsk-inspirerede ”lej-vores-værelse-

jobsamtale” på Nørrebro! Julia, fra unge, blå og uvidende første semesters 

medicin-studerende på KU til læger, flittige PhD-studerende og mødre i hvert 

sit land. Jeg nyder altid, når vi snakker sammen og ses. Emilie, du er altid god til 
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at perspektivere og dejlig at snakke med, lad os blive ved med det. Catherina, 

hold fast vi har været igennem meget sammen, fra Hunsur, København, 

Hammerfest, Utrecht og ikke mindst verdens navle, aka Faaborg ;-) Selvom vi 

begge er lidt af nogle nomader, ved jeg, vi bliver ved med at holde kontakten 

– sådan er det jo med pure-sisses! Folkeskolepigerne, Siri, Sarah, Anna-Louise 

og Cecilie, vi har formået at holde kontakten, og selvom der går længe mellem 

vi ses, føles det altid så naturligt og hyggeligt, når det sker. Anne, ’dying frog’, 

der er sket meget i vores liv siden vi mødtes i en tipi i Canada! Din latter er så 

smitsom, og heldigvis er du gavmild med den, og jeg nyder virkelig, når det 

lykkes at ses. Camilla, fra parfume-produktion på Rørvangen (begriber stadig 

ikke at vores salgstal ikke var højere) til hus og barn i henholdsvis Thorsager og 

Zeist. Du har så meget viljestyrke, empati og humor, og jeg værdsætter virkelig 

vores venskab. Gry og Louise, vi rejste alle på udveksling før gymnasitet, unge 

og uvidende, og blev derefter veninder. Selvom livet er gået i alle mulige 

forskellige retninger for os, har vi vidst at holde sammen, og det er jeg meget 

taknemmelig for.

Schoonfamilie, wat heb ik toch geluk met jullie! Lieve schoonouders, Joop en 

Marieke, bedankt voor alle gezellige momenten en reizen in de afgelopen jaren. 

Jullie zijn een onmisbare steun en staan echt altijd voor ons klaar en dat waardeer 

ik enorm. Jullie hebben een gezin gecreëerd met heel veel liefde en warmte en 

ik heb het genoegen er nu deel van uit te maken. Wisse, Esther, Dirk en Pannie, 

ik vind het altijd super leuk met jullie en wat kunnen wij samen goed lachen! 

Dankjulliewel voor alle fijne en gezellige momenten; verjaardagen, Sinterklaas, 

borrels etc.! Ik kijk uit naar nog veel meer mooie momenten in de toekomst!

Kære familie, tak for jeres fantastiske støtte og opbakning gennem denne PhD-

rejse. Jeg ved godt, det ikke altid er optimalt at skulle krydse landegrænser for 

at ses, men ikke desto mindre er det så så meget mere hyggeligt, når vi ses! Vi 

har det altid utroligt sjovt, når vi er sammen, og jeg glæder mig til mange flere 

hyggelige stunder i fremtiden. 

Mor, tak for din evige støtte, dit store hjerte og enorme empati. Du har altid 

bakket mig op i alt, hvad jeg har foretaget mig. Når det hele blev lidt for meget, 

vidste jeg altid, hvem jeg skulle ringe til. Far, du har altid været en kilde til 

utrolig meget inspiration og et forbillede for mig. Dit drive, entusiasme og gå-

på-mod er intet mindre end beundringsværdigt, og jeg har altid lært utrolig 
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meget af dig. Samtidig er du en utrolig god støtte og far! Bettina, tak for mange 

hyggelige stunder, både i Århus og Utrecht!

Julia, verdens bedste lillesøster, tak for bare at være dig. Din humor, omsorg, 

energi og ukuelighed beundrer jeg virkelig meget, og jeg er sindssygt stolt af 

dig. Tusind tak for hjælpen med forsiden til bogen! Dig og Sinas har virkelig 

skabt et hjem med så meget hjertevarme. Sinas, tak for dit rolige væsen og for 

altid at tage imod os med åbne arme. Teodor, fantastiske lille nevø, med din 

livsglæde, stædighed og charme kommer du til at kunne opnå alt, hvad du 

sætter dig for. Jeg elsker at være din moster og se dig vokse op. Kommende 

niece, jeg glæder mig så meget til at møde dig! Andreas, tak for at være verdens 

bedste lillebror. Du er så livsklog og har samtidig en utrolig god (og til tider lidt 

sort) humor. Du er intelligent og samtidig så empatisk, og uanset hvad du giver 

dig i kast med, ”winger” du den bare. Du gør din storesøster helt vildt stolt. 

Tak for din hjælp til rigtig mange figurer, graphical abstracts etc. i denne her 

PhD! Freja, tak for dig, dit rolige, sjove og charmerende væsen (og bagværk) er 

virkelig en fantastisk tilføjelse til vores familie.

Lieve Sef, waar moet ik beginnen? Van “braaien” en wine-tours in Zuid-Afrika 

tot huisje, boompje en baby in Zeist. Het leven met jou is een groot avontuur 

en ik ben elke dag gelukkig en dankbaar dat ik jou naast me heb. Jouw steun 

en optimisme gedurende mijn promotietraject waren essentieel, en je wist 

mij altijd te “grounden” als ik weer een kleine break-down had over super-

computers of afgewezen manuscripten. Jouw liefde, energie en openheid zijn 

bewonderingswaardig en ik ben zo trots op hoe je in het leven staat. Tijdens 

mijn promotietijd waren er meerdere life-events; opleiding, bruiloft, huis kopen, 

ouders worden, wat het ook af en toe een klein beetje stressvol maakte, maar 

wij wisten en weten altijd samen te lachen. Je bent een geweldige man en 

vader en ik hou heel veel van je. 

Lasse, du har været med mig i nogle ret afgørende øjeblikke i løbet af denne 

PhD. Først inde i maven og derefter siddende i bæreselen på mit bryst, 

hoppende på en yoga-bold. Du kom, vendte vores verden på hovedet, og jeg 

har aldrig følt større kærlighed. Du er så fantastisk en lille mand, så nysgerrig på 

livet, viljestærk, åben og lattermild. En dag finder du måske denne bog støvet 

på reolen, og jeg håber, du alligevel vil være lidt stolt af, at din mor engang 

skrev en bog. Jeg elsker dig til månen og tilbage igen.
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“Wherever there is love for medicine, there is love for humanity.”

Hippocrates (460 B.C. - 370 B.C.)
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this thesis. I am beyond proud of the result and my own perseverance, but 

apparently it does take a village to write a PhD. This thesis isn’t complete 

without deeply thanking my “village” of people who supported me through this 

and whom I couldn’t have done it without.

First of all, I would like to sincerely thank my PhD team; my supervisor prof. dr. 

F.L.J. Visseren and my co-supervisors dr. J. van der Leeuw and dr. J. Westerink.

Prof. dr F.L.J. Visseren, dear Frank. First of all, thank you for giving me the 

opportunity to do my PhD with you and in the Vascu group and to pursue 

the master’s degree in clinical epidemiology. You have always been very 

approachable, both for the big and small things. Furthermore, you always 

manage to make time for everyone. I don’t always get how you do this, but 

then again, while most people use their time on the plane to browse through 

the in-flight movie selection, you use it to thoroughly look at manuscripts. 

You are always very positive and enthusiastic, both within research and 

clinical practice, and your insightful questions and comments required me 

to think about everything extra carefully. Even outside work, you find time for 

sociability to make the department even more united, arranging barbecues 

and thanksgiving dinners at your house.

Dr. J. van der Leeuw, dear Joep. I am very happy and honored to be your first 

PhD student. Manuscripts were always reviewed very thoroughly and your 

feedback was always ‘spot-on’. Your (often critical) comments and questions 

during meetings always made the projects much better and clearer. You always 

managed to make time for me, even despite your busy schedule. Several big 

events happened for both of us during my PhD period (we are a couple of 

moves and a couple of kids down the road), and at the same time we achieved 

this great result.

Dr J. Westerink, dear Jan. Actually, I have you to thank for the fact that I am now 

stuck in the Netherlands, with a husband, child and house ;-) Thank you for 

taking me under your wing years ago, when you received an e-mail from some 



Acknowledgements

319   

10

random Danish medical student. Thank you for the confidence with which you 

managed to get me into the Vascu afterwards. From day one, you were an 

amazing supervisor. You have a very keen eye for both research and the clinic, 

and especially in how you manage to combine the two. You know how to take 

research to the next level, but you also taught me a lot about other things, such 

as the origin of various Germanic words and (German) metal detector finds.

Dr. J.A.N. Dorresteijn, dear Jannick, I would also like to thank you for your 

indispensable guidance in the field of prediction, for the DIAL-ESKD model and 

of course for the successful collaboration with DIAL2 and SCORE2-DM. It was 

challenging at times, but with your presence, enthusiasm and critical eye we 

were able to achieve a very good result.

The other colleagues of the Vascular Medicine department, Wilko, Stan, Jan-

Steven, Thomas, Jorn, Melvin, Jean-Paul, Manon and Corine, thank you for the 

pleasant cooperation and great atmosphere in the department and a lot of 

knowledge at the weekly outpatient meeting. Margie, the machine that keeps 

it all going, thank you for all your help and your always positive character. 

Corina, Sara and Inge, thank you for all the nice conversations and your personal 

interest. I always found it incredibly pleasant and enjoyable to work with you at 

the research clinic.

UCC-SMART staff, dear Ursula, Ank, Lies, Loes, Yvonne, Hetty, Baukje, Angela 

and Rutger, thank you for the nice cooperation with SMART and for all your 

hard work for the UCC-SMART study.

I thank the highly learned opponents of the review committee, prof. dr. M. Bots, 

prof. dr. M. Verhaar, prof. dr. F.H. Rutten, prof. dr. R. Gansevoort and prof. dr. M. 

Nieuwdorp for their time and willingness to review this thesis. I look forward to 

discussing my thesis with you.

Prof. dr. Michiel Bots and prof. dr. Yvonne van der Schouw, thank you for your 

guidance and assessment of the research project during the master clinical 

epidemiology.

I would like to thank all co-authors for their invaluable inputs and fruitful 

collaborations that contributed to a large part of this PhD. Especially thanks 

to Sarah Wild, Björn Eliasson, Naveed Sattar, Emanuele Di Angelantonio, 



320

Chapter 10

Stephanie Read, Stephen Kaptoge and Lisa Pennells for the collaborations on 

the prediction models presented in this thesis and for the many meetings and 

discussions.  

Thank you to all patients and participants from various cohorts and trials, both 

domestic and international. Your contributions are essential and without it this 

PhD would not have seen the light of day.

To the many peer-reviewers, thank you for the insightful and critical comments 

and feedback that helped improve the manuscripts even more.

Fellow Vascu researchers, I consider myself very lucky to land in such a great 

group! We really are a good team, helping and supporting each other and I 

wouldn’t have missed you for anything! Thank you so much for all the good 

times; ‘vrij-mi-bo’s’, weekends to Sevilla, Breukelen and Lisbon, many coffee 

sessions, mental support, word jokes (which were usually so bad that even I 

understood them), for helping me with the Dutch language and participating in 

all my crazy Danish traditions! 

Tamar, true ‘Vascu-mama’, I don’t know anyone who can work as efficiently once 

they actually do work! Your presence always made it a lot more pleasant, with 

your humor, good stories and small talk. Thank you for dragging me along for 

miles on a board through the water when I lost my paddle while SUP’ing in 

Breukelen. Also, your karaoke skills are enviable. Cilie, I really enjoyed working 

with you and have a lot of respect for how you managed to work through from 

early morning to late evening. I enjoy even more that you also ended up in the 

eastern suburbs of Utrecht and I think Berend and Lasse are going to become 

very good friends! Britt, my fellow vascu ‘partner in crime’, we always had really 

good talks about all the PhD ups and downs, but also all the other big and small 

things in life. I have a lot of respect for how hard you work and your perseverance, 

and at the same time you are just a fantastic person (also, I am grateful for your 

flexible backbone, this always made the ‘out of control’ borrels a lot more fun). 

Should you ever look for a side job, you do an excellent job as a fake Danish 

football supporter! Steven, our phenomenon, you really are! Not only are you 

prediction and - disproportionately - R-expert, you’re also very helpful and I’ve 

immensely enjoyed all the collaborations at work, and of course all the pleasant 

moments outside work. With you it was never boring, and you also showed 

genuine compassion when you saw that things were not quite on the right 



Acknowledgements

321   

10

track. Maria, in the beginning you really were like a myth to me, all colleagues 

talked about “Maria de Winter” all the time while I had no idea who they were 

talking about. Then I met you, and I immediately understood why. I have a lot 

of respect for how much you manage to combine and at the same time you 

are super social. The ‘koele kast’ sessions were always a treat! I enjoyed all the 

chats, dinners, parties, get-togethers and running sessions! Eline, fellow epi 

master, without you the epi would have been a lot more boring. My excuses that 

you often had absolutely no use of me when you wanted to fully understand 

another mathematical formula. You and Maria have also taken guinea pigs to 

a whole new level for me. I admire how hard you work, your eye for detail, your 

empathy and your taste in wine (and music of course)! Internal medicine has 

gained a great asset with you. Pascal, you started in a weird time with lock-down 

etc., but after that we happily enjoyed your dry humor and your skills in writing 

reviews about hotels. Thank you for all your help and discussions on prediction 

matters. I don’t know anyone who can work so long, so concentrated (without 

noise-cancelling!) in a room where people are more or less screaming. Marga, 

you too were a real addition to the Vascu! Always so sweet and thoughtful, 

you really think of everyone around you! Also, I don’t know anyone who has so 

much structure, both at work and in life. Of course, you are also super social and 

always ‘borrel’-ready! Nadia, super nice that you came to do a PhD after your 

research internship. Thanks for all the sociability at lunches, coffees and borrels. 

With your talent, you make it seem like doing a PhD is a walk in the park (even 

though I know it’s not always like that). Iris, working with you was never boring! 

Your enthusiasm, openness and smile are contagious, and I have a lot of respect 

for how you tackle things and manage to get things done! Katrien, I thought I 

had pretty much mastered the Dutch language, but then you came to do a PhD 

at the Vascu and a whole new world of hilarious sayings opened up to me! You 

have an unbreakable work ethic and at the same time you are super social, 

fun and likable! Lukas, your baptism of fire was immediately a weekend away 

together with colleagues, and we have really had the pleasure of your energy, 

positivism and enthusiasm ever since! Respect for how you managed to set up 

such a difficult trial. Joris, we didn’t work together for long, but I can already say 

that you are a huge asset to the Vascu! Packed with energy and a brain that 

works faster than most, you are going to do just fine. Milena, I didn’t work with 

you much either, but I always enjoyed it! Infection people, Patrick, Jesper and 

Bianca, thank you too for all the nice moments over the past years.



322

Chapter 10

Dutch friends, emigrating becomes a lot more fun and easy with so many nice 

people around you! Nicole, we met each other during my research-internship 

a couple of years ago. With the addition of motherhood, I’ve really found a 

lot of support in you and I cherish our friendship. Nina, fellow “expat-fell-in-

love-with-a-Dutch-guy”, I’m very thankful that we now both live in Utrecht, 

and I always enjoy our talks and times together, let there be many more to 

come! Maria, fellow Dane and football-supporter, amazing that you are also 

currently living in the surroundings of Utrecht (for now, that is). Marlous, from 

trim-hockey and ‘avontuur-club’, you really are a very nice and social person. 

I think you could be sitting at the North Pole and still make friends, you have 

really made my life in Utrecht a lot more fun. PNS/P1/plus the rest; Jochem 

and Job, you immediately welcomed me with open arms when I came to stay 

in your house for numerous weekends, thank you for that! Together with Floor, 

Anna, Wouter, Patrick, Lieke, Nick, Dorine, Daan and Tessa, I think you are a 

really nice group and I always enjoy our times together! Thank you for all your 

work on the house!

CP group, Marlous, Elske, Annemie, Ingrid, Janne, Roos, Lisette and the 

rest, becoming a mother and moving to Zeist would really have been a lot 

more difficult without you! With you I can always relate well and spar about 

everything; from big to small. Thank you for all the great coffee (with cake of 

course) and cocktail moments!

Mia, once in a while you meet a person and it just clicks - that’s how it was 

with you! I’ve been so happy to spar with you over the last few years, both over 

PhD struggles, but also all other ups and downs. You are so strong, amazing, 

funny and caring, and I consider myself extremely lucky that we chose you as a 

roomie for our Dutch-inspired “rent-our-room-job-interview” at Nørrebro! Julia, 

from young and ignorant first-semester medical students at KU to doctors, 

diligent PhD students and mothers in each our country. I always enjoy when 

we talk and see each other. Emilie, you are always good at giving perspective 

and great to talk to, let’s keep that up. Catherina, we’ve been through a lot 

together, from Hunsur, Copenhagen, Hammerfest, Utrecht and not to mention 

the hub of the world, aka Faaborg ;-) Even though we’re both a bit of nomads, I 

know we’ll keep in touch - that’s how it is with pure-sisses! Folkeskolepigerne, 

Siri, Sarah, Anna-Louise and Cecilie, we’ve managed to keep in touch and 

even though there are often long gaps between seeing each other, I always 



Acknowledgements

323   

10

find it very natural and ‘hyggeligt’ when it happens. Anne, ‘dying frog’, a lot has 

happened in our lives since we met in a tipi in Canada! Your laughter is so 

contagious, and thankfully you are generous with it, and I really enjoy when we 

manage to get together. Camilla, from perfume production at Rørvangen (still 

can’t believe our sales figures weren’t higher) to house and child in Thorsager 

and Zeist, respectively. You have so much willpower, empathy and humor and 

I really appreciate our friendship. Gry and Louise, we all travelled on exchange 

before high school, young and naive, and straight afterwards became friends. 

Although life has gone in all sorts of different directions for us, we have known 

how to stick together and for that I am very grateful.

In-laws, how lucky I am to have you! Dear parents-in-law, Joop and Marieke, 

thank you for all the good times and trips over the past years. You are an 

indispensable support and are always there for us and I really appreciate that. 

You have created a family with a lot of love and warmth and I feel privileged to 

now be a part of it. Wisse, Esther, Dirk and Pannie, I always have a great time 

with you and we’re extremely good at laughing together! Thank you very much 

for all the nice and ‘gezellig’ moments; birthdays, Sinterklaas, borrels, etc.! I am 

looking forward to many more great moments in the future!

Dearest family, thank you for your amazing support and backing me up through 

this PhD journey. I know it’s not always optimal to have to cross borders to see 

each other, but nevertheless it makes it so much nicer when we do! We always 

have a great time when we are together and I am looking forward to many 

more pleasant moments in the future. 

Mom, thank you for your constant support, big heart and enormous empathy. 

You have always supported me in everything I have taken on. When it all got a 

little too much, I always knew who to call. Dad, you have always been a source 

of incredible inspiration and a role model for me. Your drive, enthusiasm and 

‘go-getter’ attitude are admirable and I have always learned so much from you. 

At the same time, you are an incredible support and father. Bettina, thank you 

for many nice moments, both in Aarhus and Utrecht!

Julia, the best little sister in the world, thank you for just being you. I really 
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little nephew, with your zest for life, stubbornness and charm you will be able 
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“Wherever there is love for medicine, there is love for humanity.”

Hippocrates (460 B.C. - 370 B.C.)
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