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Abstract

Detection of fatigue helps prevent injuries and optimize the performance of horses. Previous

studies tried to determine fatigue using physiological parameters. However, measuring the

physiological parameters, e.g., plasma lactate, is invasive and can be affected by different

factors. In addition, the measurement cannot be done automatically and requires a veteri-

narian for sample collection. This study investigated the possibility of detecting fatigue non-

invasively using a minimum number of body-mounted inertial sensors. Using the inertial

sensors, sixty sport horses were measured during walk and trot before and after high and

low-intensity exercises. Then, biomechanical features were extracted from the output sig-

nals. A number of features were assigned as important fatigue indicators using neighbor-

hood component analysis. Based on the fatigue indicators, machine learning models were

developed for classifying strides to non-fatigue and fatigue. As an outcome, this study con-

firmed that biomechanical features can indicate fatigue in horses, such as stance duration,

swing duration, and limb range of motion. The fatigue classification model resulted in high

accuracy during both walk and trot. In conclusion, fatigue can be detected during exercise

by using the output of body-mounted inertial sensors.

Introduction

Equestrian sports are under increasing attention of public opinion regarding equine well-

being. Therefore, providing more insight and transparency into the physical and biomechani-

cal demands of horses is essential. In this regard, fatigue can be considered one of the critical

elements of horse performance and welfare. During training and competition, horses usually

reach some level of fatigue. Exercising after certain levels of fatigue affects the performance in

several ways, including coordination reduction, muscle power decrease, and slower reaction.

Continuing the exercise with excessive or prolonged fatigue may result in overtraining and

injuries [1]. By assigning fatigue as an indicator [2], the injuries and overtraining may be

prevented.
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In contrast to human athletes, horses cannot verbally express their fatigue state. Therefore,

the fatigue level should be monitored throughout the exercise. A lack of proper quantitative

determination may result in not receiving adequate training stimulus or recovery periods.

Finding a balance between exercise and recovery periods is very difficult, yet it is essential

for optimal health and performance. Several studies showed an unusual increase in exercise

load results in an increased risk of injury, as the body has not adapted to the earlier exercise

responses [3–5]. In addition, fatigue has several consequences on the performance [6–8],

health and welfare of the horse [9]. In severe cases, fatigue can cause horses to collapse and

result in sudden death during competitions [10]. Therefore, monitoring fatigue during exer-

cise and competition is vital for injury prevention, performance optimization, and welfare

improvement.

Fatigue and subsequent injuries might be prevented by understanding fatigue mechanisms

and indicators [2]. In general, “fatigue” is a multifaceted and a multidimensional term, thus,

lacks a consensus definition across different domains of human and equine studies, such as

exercise physiology, cognitive psychology and medical practice [11, 12]. In many studies,

fatigue indicator was considered as the moment that the horse “cannot maintain the pace on

treadmill despite verbal encouragement” [13–24]. This indicator can be practical in a treadmill

measurement setting accompanied by veterinarians. However, it is a qualitative indicator and

not practical during on-field exercise or competition [25]. Monitoring and analyzing the exer-

cise on-field is more challenging than measurement on a treadmill since multiple factors

changes between measurements, which might be surface types, weather conditions, rider

effects, and speed [25, 26]. In addition, the moment when a horse voluntarily halts the exercise

differs inter-individually. Some may stop before the occurrence of fatigue, while others push

themselves far over their limits [27].

Fatigue assessment methods

One of the common methods for the assessment of fitness and fatigue is standardized exercise

testing (SET). In general, SET evaluates the physiological responses to the exercise. A field SET

should replicate the competition environment as much as possible. It usually consists of multi-

level incremental exercise steps during which plasma lactate (LA), heart rate, and speed are

measured. SETs have to be adapted to the discipline and competition level to present meaning-

ful results. Therefore, a specific exercise is often added to the SET, consisting of skills related to

the discipline. As a result, the intensity of a SET, which is determined by the heart rate and LA

of the performers, can vary between disciplines [25, 28, 29].

Among physiological measurements during SET, the heart rate can be evaluated by equip-

ping the horse with a heart rate monitor. However, measuring LA is invasive and discrete

(since horses are stopped several times during an exercise for blood sample collection). In

addition, physiological parameters can be influenced by horse emotion and stress level [30].

In addition to the physiological parameters, biomechanical features can indicate fatigue

changes. As an example, stride duration increases and speed decreases due to fatigue [13, 31–

34]. However, only a few biomechanical features were investigated in fatigue studies despite

many features studied in performance-related literature. For instance, stride length, stride

duration, and limbs angular range of motion were studied as the indicators of performance

[35, 36].

By using inertial measurement units (IMU), more biomechanical features can be moni-

tored, especially in real-time applications. IMUs have been designed for continuous measure-

ment, in contrast to the discrete measurement of LA. They are small, non-invasive, and easily

mountable on the body. By analyzing its output signals, i.e., acceleration and angular velocity,
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biomechanical features, specific to the point of attachment on the body, can be calculated [37].

Therefore, IMUs can be used during exercise, with the combination of scientifically validated

algorithms, for monitoring the biomechanical features during exercise [38, 39].

Approach

Assessing fatigue of sport horses using biomechanical parameters can be approached in three

steps. The first step is to identify the biomechanical features that are closely correlated to

fatigue. The next step is to automatically detect fatigue using the identified features while mini-

mizing the number of body-mounted IMUs to enhance the practicality of field measurements.

And the final step is to compare the values of the biomechanical features between two levels of

exercise intensity (determined by LA levels). The final step is essential for understanding the

effect of training intensity on biomechanical parameters. This paper takes these steps to inves-

tigate equine fatigue indicators and detect fatigue based on extracted biomechanical features

from a minimum number of body-mounted IMUs.

Materials and methods

Study design

The proposed system for identifying and evaluating the fatigue indicators is summarized in

Fig 1. In summary, all the subjects were equipped with body-mounted IMUs and performed a

specific SET adjusted to their discipline. Data was collected from in-hand walking and trotting

before SET (fully rested) and after SET (some level of fatigue, which were referred in this paper

as pre-SET and post-SET, respectively. The sequence of tasks during SET is demonstrated in

Fig 2. Subsequently, the biomechanical features were extracted from IMU signals. In this

study, the fatigue state of horses during pre-SET and post-SET measurements were assigned as

“non-fatigue” and “fatigue”, respectively. A Neighborhood Component Analysis (NCA) was

applied to the extracted features to identify the important fatigue indicators. Finally, to quan-

tify the importance of the selected features, they were implemented in classification algorithms,

and the performances of the trained classification models were compared and analyzed.

Study subjects

The study subjects were sixty sport horses, consisting of sixteen young Friesian stallions,

twenty-eight international eventing horses, ten elite showjumping, and six elite dressage

horses. For more information on the age and competition level of the subjects, see S1 Text.

The inclusion criteria were horses that either performed on an international competition level

or were selected for the final studbook approval test. All the subjects were examined for lame-

ness pre- and post-SET by a veterinarian. The ones that presented lameness during the exami-

nations were excluded from this study.

All the owners of participant horses informed written consent for research purposes. Ani-

mal Ethics Committee of Utrecht University issued the ethical permissions for the measure-

ment of young Friesian horses. The Committee concluded that ethical approval was not

required for measuring the remaining horses since it did not qualify as an animal experiment

under Dutch law.

Data collection

The data were collected from horses walking and trotting in-hand (on a hard surface) during

pre- and post-SET with self-preferred speed. The assigned SET protocol for each discipline
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Fig 1. Our method for identification and evaluation of fatigue indicators.

https://doi.org/10.1371/journal.pone.0284554.g001

Fig 2. Order of the tasks for horses to perform a SET.

https://doi.org/10.1371/journal.pone.0284554.g002
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was different in terms of the specific skills tests. For more information on the SET protocol of

each discipline, see S2 Text.

For the measurement, the horses were equipped with seven ProMove-mini IMUs [38]

attached to the sacrum, withers, head (poll), and the lateral aspect of all four limbs (cannon

bone). The IMUs contained a tri-axial accelerometer and a tri-axial gyroscope and were set to

a sampling rate of 200 Hz, acceleration range of ±16 g, and angular velocity of ±2000 deg/s. Fig

3 demonstrates the IMU locations and orientations on the horse body. In addition to the bio-

mechanics measurements, LA was also measured. Blood samples were taken from the jugular

vein once before pre-SET, three to four times during the SET, and once before post-SET (after

cool down, as recovery LA in Fig 2). After each collection, the blood sample was inserted into

a portable hand-held measurement device (Lactate Pro2, Arkray Inc., Kyoto, Japan) for an

instant plasma LA computation.

As demonstrated in Fig 3, the three axes of rotation for the sacrum, withers, and poll IMUs

were x,y, and z, defined in the order as roll, pitch, and yaw angles. For the limbs, x, y, and z-

axis were internal/external rotation, abduction/adduction, and retraction/protraction, respec-

tively [38]. Furthermore, the three axes of horse locomotion, in general, were the longitudinal

axis (aligned to the forward locomotion and parallel to the ground), the vertical axis (perpen-

dicular to the ground or parallel to the gravitational force vector), and the mediolateral axis

(perpendicular to longitudinal and vertical axes).

Fig 3. IMUs locations and orientations on horse body.

https://doi.org/10.1371/journal.pone.0284554.g003
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Datasets and subsets

Based on the maximum LA values during SET, the relative intensity level of SET can be deter-

mined. The cut-off value for maximum LA was set at 4.0 mmol/L. This value is generally con-

sidered as the cut-off value for plasma lactate concentration in the anaerobic threshold [25].

Below and above the anaerobic threshold, we considered a low and high intensity, respectively.

SET intensity was lower for show jumping and dressage horses than for young Freisian and

eventing horses. Therefore, we created three datasets, which were:

• Dataset 1: Horses performed in high and low intensity SETs, which were Eventing, young

Friesian, showjumping, and dressage horses (all horses in this study)

• Dataset 2: Horses performed in high intensity SET only, which were eventing and young

Friesian horses

• Dataset 3: Horses performed in low intensity SET only, which were showjumping and dres-

sage horses

The LA of all subjects pre-SET was considered low and can be indicated as normal resting

values (between 0.6 and 0.8 mmol/L) [40]. Dataset 1 consisted of all horses, while datasets 2

and 3 were based on the disciplines or breeds that performed in higher and lower SET inten-

sity levels. The SET intensity levels were defined using the maximum LA values (in Table 1),

where the average for dataset 2 was more than 4.0 mmol/L, while the average for dataset 3

was less than 1.7 mmol/L. We considered the average and deviation of the datasets as the

SET intensity indicators, therefore, we defined the intensity of dataset 2 and dataset 3 as high

and low, respectively.

As shown in Fig 1, three subsets were created from each dataset: data during walk, trot, and

Walk+Trot (combination of walk and trot). By defining gaits as subsets, fatigue indicators

present during each gait and independent of gait type (Walk+Trot subset) can be derived. The

following steps (feature extraction, feature normalization, feature selection, and model devel-

opment and evaluation) were taken on all nine subsets separately.

Data preprocessing

The raw signals derived from the IMUs (three signals of acceleration and three signals of angu-

lar velocity) were low-pass filtered (fourth-order Butterworth filter and 30 Hz cut-off fre-

quency) for noise reduction [38]. Then, the filtered signals were windowed into strides (from

hoof-on to next hoof-on of right front limb) by implementing an estimation method on the

right front limb IMU signals [39]. The pre- and post-SET data were separated from the start,

hence, the strides were automatically labeled as pre-SET or post-SET.

Table 1. Number, age (in years), and plasma lactate concentration (post-SET and the maximum value during SET) of horses by datasets.

Dataset Number Age Plasma lactate concentration (mmol/l)

Mean (SD) Maximum Recovery

Mean (SD) Range Mean (SD) Range

Dataset 1 60 9.6 (4.5) 3.49 (1.90) 0.90—10.00 1.23 (0.55) 0.60—4.00

Dataset 2 44 8.3 (4.5) 4.04 (1.80) 1.60—10.00 1.29 (0.57) 0.70—4.00

Dataset 3 16 13.1 (1.83) 1.62 (0.57) 0.90—2.90 0.98 (0.40) 0.60—2.40

https://doi.org/10.1371/journal.pone.0284554.t001
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Feature extraction

As shown in Table 2, fifty-two features were calculated per stride, which were:

• Gait events durations (stride, stance, and swing duration) were determined using the hoof-

on/off timings estimated from a deep learning model in a study [39].

• Speed was estimated using a speed estimation model from a study, which receives accelera-

tion and angular velocity signals from the sacrum and limb IMUs and accurately estimates

the speed [37].

• Angular range of motion (ROM) of the limbs around their three axes (protraction/ retrac-

tion, adduction/abduction, and internal/external rotation) were calculated by considering

the limb as cannon bone, carpal joint as the reference point, and axes as demonstrated in

Fig 3. Angular ROM of the limb were calculated using the method developed by Bosch et al.

[38], where they used Valenti et. al [41] attitude and heading reference system algorithm for

orientation of IMU during measurement.

• Angular ROM of the head, pelvis, and withers around three axes (roll, pitch, and yaw)

were determined by considering the reference point as the center of the IMUs and axes as

depicted in Fig 3. Angular ROM of the head, pelvis, and withers were calculated by integrat-

ing the angular velocity signals per stride and then, calculating the range (maximum minus

minimum) of the integration results per stride.

• MaxDiff, MinDiff, and displacement ROMs: To calculate the displacement features, we

applied a cyclical integration process on acceleration signals, described in [42]. MaxDiff and

MinDiff are essential indicators of movement (a)symmetry and were calculated using the

difference between the two peaks (MaxDiff) and troughs (MinDiff) of sacrum, withers, and

head vertical (z-axis) displacement within a stride [43]. Also, the longitudinal, mediolateral,

and vertical displacement ROM of sacrum, withers, head, and limbs within each stride were

determined by double integration of acceleration signals per stride and then, calculating the

range (maximum minus minimum) of the integration results per stride.

Table 2. Extracted features from strides.

Feature name Extracted from IMU mounted on Number

Stride duration Right front limb 1

Stance duration Right front limb 1

Swing duration Right front limb 1

Speed Sacrum, Right front limb 1

MaxDiff Sacrum, Withers, Head 3

MinDiff Sacrum, Withers, Head 3

Protraction/retraction range of motion (Pro/Ret) Limbs 4

Adduction/abduction range of motion (Add/Abd) Limbs 4

Internal/external rotation range of motion (Int/Ext) Limbs 4

Roll angle range of motion Sacrum, Withers, Head 3

Pitch angle range of motion Sacrum, Withers, Head 3

Yaw angle range of motion Sacrum, Withers, Head 3

Longitudinal displacement (horse longitudinal axis) Sacrum, Withers, Head, Limbs 7

Mediolateral displacement (horse mediolateral axis) Sacrum, Withers, Head, Limbs 7

Vertical displacement (horse vertical axis) Sacrum, Withers, Head, Limbs 7

Total 52

https://doi.org/10.1371/journal.pone.0284554.t002
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Feature normalization

We combined the pre- and post-SET features per subject and then normalized them to the

range of 0 to 1. Intra-individual normalization helps focus on the differences between pre- and

post-SET rather than on the inter-individual variations, which can depend on many factors,

including the physical and fitness level. In addition, we assigned a representative of each fea-

ture per horse per trial (pre-SET or post-SET) instead of analyzing the individual strides of all

horses. This helps to focus on the pre- and post-SET variations rather than individual strides

differences. Therefore, the most suitable representatives of the variations are the mean and var-

iability of the extracted features. As a definition, variability specifies the scatteredness of data

points and statistically summarizes them. By other means, it can be used as a metric to check if

a horse’s strides are consistent during pre- or post-SET [44, 45].

Each feature mean and variability were calculated per horse per trial (pre- or post-SET),

which resulted in 104 features for each horse per trial. To find the best metrics for variability,

four metrics were chosen based on the literature, which were root mean square, coefficient of

variation, standard deviation, and variance [44–48] and tested on each subset (depicted as

“Third Loop” in Fig 1). The best variability metric was selected according to the performance

results of classification models per subset (the output of “Third Loop” into the “Second Loop”

in Fig 1).

Feature selection

The seven body-mounted IMUs were required to extract the 104 features for the model. How-

ever, equipping a horse with seven IMUs can be cumbersome for field measurements. The

number of features can be reduced by selecting only the meaningful features, which may result

in fewer IMUs for extracting the selected features. Selecting the important features (or feature

selection) also has more advantages. It prevents the model from overfitting and increases the

accuracy [37]. Hence, we implemented an NCA [49] on the features of each subset, where it

assigns a weight to each feature. On the outcome of each subset, features were ranked relative

to the assigned weight values. It should be noted that speed and gait events durations were

calculated regardless of the selection/rejection by the proposed feature selection model consid-

ering their importance in the equine fatigue literature [13, 31–34, 36], and their outcome

between pre- and post-SET were analyzed and compared.

Model development and evaluation

According to the feature evaluation step in Fig 1, the importance of selected features per subset

(walk, trot, or Walk+Trot) was quantified by testing the performance of classification models

that trained solely on those features. The purpose of classification models was to classify the

strides to non-fatigue or fatigue. We trained a classification model using the first selected

feature by NCA as the feature for each subset and then evaluated the model performance. In

the following steps, we added the next-ranked (from second-ranked to nth-ranked) feature

selected by NCA and evaluated the model performance trained by a feature set consisting of

the selected feature in each step and the higher-ranked features. The feature addition process

was terminated as soon as the accuracy of the model decreased. Then, the features of the final

feature set (that yielded the highest accuracy) were reported as the most significant fatigue

indicators for that subset.

In terms of choosing the best performing algorithm, four machine learning algorithms

were implemented as the model training and testing method in “Fourth Loop” (Fig 1). The

tested algorithms were Support Vector Machine (SVM), k-Nearest Neighbor, decision tree,

Naive Bayes, and logistic regression.
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As shown in Fig 1, for each subset, a leave-one-subject-out cross-validation method was

implemented in the training of classification models to make certain that a subject has been

used at least one time as training and testing data, and to prevent biased results [50]. The per-

formances of models were quantified by calculating the performance metrics (using true posi-

tive, false positive, true negative, and false negative) as follows:

• True positive (TP): The number of predictions if the true class is pre-SET and the prediction

is pre-SET

• False positive (FP): The number of predictions if the true class is post-SET and the prediction

is pre-SET

• True negative (TN): The number of predictions if the true class is post-SET and the predic-

tion is post-SET

• False negative (FN): The number of predictions if the true class is pre-SET and the prediction

is post-SET

• Accuracy =
TPþ TN

TPþ FPþ TN þ FN

• Sensitivity or classification accuracy of pre-SET strides =
TP

TPþ FN

• Specificity or classification accuracy of post-SET strides =
TN

TN þ FP

The selected features and the performance results of the models per subset are compared in

the next section. Matlab R2020a (MathWorks Inc., Natick, MA, USA) was used for all the com-

putations for this study.

Results and discussion

This paper investigated the possibility of detecting fatigue by using biomechanical parameters

in machine learning algorithms. Important biomechanical indicators of fatigue as well as the

effects of gait type and SET intensity level on the indicators were studied. Furthermore, the

importance of selected indicators was determined by implementing machine learning tech-

niques on the data and calculating their performance. It is the first time that the important bio-

mechanical indicators of fatigue were identified using machine learning methods in equine

literature. In addition, there was no other study on developing fatigue/non-fatigue classifica-

tion models for horses. This study achieved highly accurate models trained with feature sets

consisting of only three to six biomechanical features.

According to the definition of post-SET in the present study, horses were not pushed to

exhaustion during SET. However, all horses showed some level of fatigue during post-SET,

meaning that horses were not more in pre-SET condition (or resting condition), which can be

reflective of some level of fatigue after SET.

In total, 3976 strides were extracted from the data of all horses (approximately sixty-six

strides per horse). The number of strides per subset and the most significant features per sub-

set, and classification models performances are presented in Table 3. The performance results

and selected features are compared in the following sections.

It should be noted that if a front (or hind) limb feature is presented in the Table 3, it could

be the feature that was extracted from the left or right front (hind) limb IMU. Pooling the

front (or hind) limbs features allows us to focus on the feature rather than on the side. In addi-

tion, all quadrupedal vertebrates perform bilateral movement symmetry between front limbs
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and hind limbs [51] (including walk and trot), thus, the difference between left and right side

limbs features were negligible.

According to Table 3, the selected indicators by the feature selection method were mostly

gait events durations features, limbs longitudinal displacement, protraction/retraction ROM,

and abduction/adduction ROM. Among the selected indicators, the longitudinal displacement

of front limbs was presented in all subsets. For simplicity, the features from both front and

hind limbs were considered features from “front limbs” and “hind limbs”, respectively. None

of the upper body extracted features were selected from the poll (head). The angular ROMs of

sacrum were selected in five subsets. The withers yaw angle ROM and vertical displacement

ROM were selected as important fatigue indicators.

All the four variability metrics were reported at least once as the best performer in terms of

accuracy. Standard deviation was chosen six times, while variance, root mean square, and coef-

ficient of variation performed better each in one subset. The comparison between models per-

formances per variability metric was reported in S1 Table.

Table 3. Features (mean and variability) with highest weight value based on different subsets, the best performing variability, the average performance results of the

SVM classification models from leave-one-subject-out cross validation (reported as mean ± standard deviation), and the number of strides per subset.

Feature name Datasets and subsets

Dataset 1 (High/low intensity SET) Dataset 2 (High intensity SET) Dataset 3 (Low intensity SET)

Walk Trot Walk+Trot Walk Trot Walk+Trot Walk Trot Walk+Trot

Event duration StanceM SwingV - StanceM SwingV - StanceM SwingV -

Speed - - - - - - - - -

MaxDiff - - - - - - - - -

MinDiff - - - - - - - - -

Pro/Ret ROM HLV,1 FLV&HLV - HLV - FLV HLV HLV FLV

Abd/Add ROM FLM,2 - FLM&HLM - FLM FLM HLM -

Int/Ext ROM - - - - - - - - -

Roll angle ROM - SacrumM - SacrumM - - - - SacrumM

Pitch angle ROM - - - - - - - - -

Yaw angle ROM - - SacrumM - - - WithersV SacrumM

Longitudinal disp. FLM FLV FLV&HLV FLM FLV FLV FLM FLV FLV

Mediolateral disp. - - - - FLM - FLM - -

Vertical disp. - - - WithersM - - - - -

Performance results of the models based on the subsets (Mean ± Standard deviation):

Variability metrics VAR3 CV4 SD5 SD SD RMS6 SD SD SD

Accuracy 95±2% 83±1% 82±2% 95±2% 86±4% 80±2% 100±0% 88±2% 83±3%

Sensitivity 97±3% 80±1% 80±2% 95±2% 81±4% 78±1% 100±0% 89±2% 85±4%

Specificity 93±2% 87±2% 85±2% 95±2% 91±5% 81±2% 100±0% 88±2% 82±3%

Number of strides:

Pre-SET 732 1234 1966 452 756 1208 280 478 758

Post-SET 782 1228 2010 451 755 1206 331 473 804

M Mean of the feature,
V Variability of the feature
1 Hind limbs,
2 Front limbs,
3 Variance,
4 Coefficient of variation,
5 Standard deviation,
6 Root mean square

https://doi.org/10.1371/journal.pone.0284554.t003
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The best performing algorithm was SVM; thus, the reported results in Table 3 were based

on the SVM classification method. The performance of the models based on the other methods

were reported in S2 Table. It can be inferred from Table 3 that the accuracy results of classify-

ing walking strides using the selected walking features (95%—100%) were higher than classify-

ing trot (83%—88%) and Walk+Trot (80%—83%) strides using their selected features.

Comparison of the IMU locations for fatigue detection

All the subsets included at least three limb features, which presented the limbs as important

locations for mounting the IMU on the body, independent of gait type and SET intensity level.

In fact, by attaching one IMU to a front limb, 86% and 80% accuracy were achieved during

high-intensity SET Trot and Walk+Trot, respectively. Moreover, adding another IMU on

the hind limb increased the accuracy in another subset to 95% (dataset 1- Walk subset). The

decrease in the number of IMUs resulting from feature selection facilitates the practicality of

equipping IMU on the body.

Features extracted from poll IMU were not selected as an important feature by any model.

The reason can be that horses become distracted when they are introduced to a new environ-

ment; thus, they look around and get familiar with the surroundings. Another reason could

be different forces exerted by different handlers during in-hand walk and trot. Therefore, the

IMU signals might get disturbed independent of the fatigue state, and the extracted features

will no longer represent the horses normal head position during locomotion.

Comparison of selected features (or fatigue indicators)

The longitudinal displacement of front limbs was the only feature present in all subsets, repre-

senting itself as an important fatigue indicator for both intensity levels and gaits. This feature

is aligned with horse primary direction of movement. Therefore, it can be inferred that the lon-

gitudinal displacement of limbs can be correlated to the step length.

According to Figs 4 and 5, independent of SET intensity level, the front limb longitudinal

displacement of forty-seven and fifty-two horses (more than 78 and 86 percent of all horses)

became shorter after exercise during walk and trot, respectively. This result is aligned with the

outcomes of previous studies [13, 34]. A possible explanation for the decrease of longitudinal

displacement can be the decreasing of limb muscles stiffness due to fatigue [19]. Furthermore,

the feature values between low and high-intensity SETs were compared in Fig 6, where the

Fig 4. Comparison of biomechanical features of all horses between pre- and post-SET during walk and trot. The vertical axes of all plots represents

the range-normalized value of the feature. The box represents the interquartile range, while the red line (horizontal line within the box) shows the

median value. Each box (two for each plot) consists of one value per horse, which was averaged from all strides of the horse.

https://doi.org/10.1371/journal.pone.0284554.g004
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length became shorter after high-intensity SET during Walk+Trot. In contrast, the length

was not shorter in all cases after low-intensity SET. It can be concluded that the horses perfor-

mances might not primarily get affected by less intense exercise since the LA was low and the

limb muscles were not in excessive fatigue levels.

Regardless of SET intensity and during walk or trot, the protraction/retraction angle of

hind limbs appeared as an important indicator, according to Table 3. Similar to the decreasing

length of limbs longitudinal displacement, the protraction/retraction angles of hind limbs

were also decreased (Fig 4), which might be due to the lack of force in limb muscles caused by

fatigue.

Stance duration and swing duration were specified as important fatigue indicators during

walk and trot, respectively. Stance duration was increased in fifty-four horses (90 percent of

horses) after SET during walk (Figs 5 and 7), while swing duration was decreased during the

trot (Figs 5 and 8) in forty-three horses (more than 71 percent of horses).

Owing to the importance of gait events features, we also investigated the other related fea-

tures that the feature selection system did not select. The duration of stride, during Walk+Trot

was increased, same as was reported in literature [13, 31–33, 36]. From a biomechanical point

of view, the increase in stride duration is due to the decline of activity in the muscles responsi-

ble for propulsive force [34], which lets the muscle shortens with an optimal rate to output a

Fig 5. Number of horses with increased/decreased (in percentage) features values in post-SET compare to pre-SET. The vertical axes of all plots

represents the range of increase (if positive) or decrease (if negative) of the specified feature value. Each bar represents the number of horses that have

an increase or decrease of value within the specified range. Each plot consists of one value per horse, which was averaged from all strides of the horse.

https://doi.org/10.1371/journal.pone.0284554.g005
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more sustained power and more cumulative work [19, 52]. Stance duration increased in the

walk as well as trot, and swing duration was approximately the same pre- and post-SET during

the walk, while it was decreased during the trot. It can be seen in Fig 9 that the walking stance

duration was longer, and the trotting swing duration was shorter in higher intensity SET.

Combining the walking and trotting strides, stance, swing, or stride duration were not indi-

cated as distinguishing fatigue indicators. Overall, it can be derived that the significant changes

Fig 6. Comparison of biomechanical features between low and high intensity SETs (datasets 2 and 3) during walk and trot. The vertical axis

represents the increase/decrease percentage of feature value during post-SET compared to pre-SET. The box represents the interquartile range, while

the red line (horizontal line within the box) shows the median value. Each box (two for each plot) consists of one value per horse, which was averaged

from all strides of the horse.

https://doi.org/10.1371/journal.pone.0284554.g006

Fig 7. Comparison of speed and stride, stance, and swing duration features of all horses between pre- and post-SET during walk. The vertical axes

of all plots represents the range-normalized value. The box represents the interquartile range, while the red line (horizontal line within the box) shows

the median value. Each box (two for each plot) consists of one value per horse, which was averaged from all strides of the horse.

https://doi.org/10.1371/journal.pone.0284554.g007
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of gait events features are dependent on the gait type and independent from the SET intensity

level.

Comparison of models performances

By extracting the few selected features (Table 3) from strides, these models accurately classify

horse fatigue state. The classification model trained on the walk subset of dataset 1 used no

Fig 8. Comparison of speed and stride, stance, and swing duration features of all horses between pre- and post-SET during trot. The vertical axes

of all plots represents the range-normalized value. The box represents the interquartile range, while the red line (horizontal line within the box) shows

the median value. Each box (two for each plot) consists of one value per horse, which was averaged from all strides of the horse.

https://doi.org/10.1371/journal.pone.0284554.g008

Fig 9. Comparison of biomechanical features between low and high intensity SETs (datasets 2 and 3) during walk and trot. The vertical axis

represents the increase/decrease percentage of feature value during post-SET compared to pre-SET. The box represents the interquartile range, while

the red line (horizontal line within the box) shows the median value. Each box (two for each plot) consists of one value per horse, which was averaged

from all strides of the horse.

https://doi.org/10.1371/journal.pone.0284554.g009
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upper body features, while the models based on trot and Walk+Trot subsets of dataset 2 (high-

intensity SET) used only features extracted from front limbs. The accuracy of the models were

also different. For example, if both gait type and SET intensity level are unknown, the classifi-

cation accuracy would be 82%. In addition, if only the SET intensity level is known, for the

lower level, the model yields higher accuracy (83%) than the higher level of intensity (80%).

Furthermore, if stride gait type is known, we can achieve high model performance for walk

with 95% accuracy during high-intensity SET, 100% during low-intensity SET, and 95% accu-

racy if the intensity level is not known. In addition to walking strides, the trotting classification

models based on known SET levels (86% in high intensity and 88% in low intensity) suggest

better results than the model accuracy based on the mixture of high and low SET intensity lev-

els (83%).

According to the results, the models performances in all subsets are higher for low SET

intensity than high SET intensity. This can be explained due to different subjects in high and

low intensity datasets. In addition, the horses disciplines are different, which can influence

their gait pattern. Furthermore, the higher accuracy could be achieved if deep learning algo-

rithms were executed. However, the low number of strides and subjects (i.e. low amount of

data) could not allow for the development of deep learning models.

Comparison to the state-of-the-art

Since there was no study on the classification of equine fatigue/non-fatigue, we compared the

results with two studies on human fatigue. In one study, the walking patterns of seventeen sub-

jects were classified as fatigue/non-fatigue induced by a squatting exercise [53]. The accuracy

of the classification model was 96%, which was lower than the accuracy of low-intensity SET

classification model (100%) in the current study but higher than the accuracy of the model

based on all SETs. In another study, fatigue was induced by manual material handling sessions

on thirty participants [54]. The result of the walking fatigue/non-fatigue classifier was 90%,

which was lower than all the three walking models in this study. The mentioned studies were

similar in data collection and analysis to the current study, in which they used IMU for data

measurement and machine learning for data analysis. Therefore, the models reported in this

paper can potentially outperform the classifiers in the human fatigue literature with a compa-

rable study basis.

Assumptions and limitations

It should be mentioned that for simplicity in comparing to levels of SET, we considered the

SETs of eventers and young Friesian horses as “high” intensity. In exercise physiology, these

SETs are submaximal SETs with moderate LA values and not defined as high-intensity levels,

like maximal exercise test reaching maximal LA levels. According to the equine physiology lit-

erature, a high-intensity level SET can induce LA values as high as 32 mmol/l [55]. In general,

Warmblood sport horses (including all the horses in this study) will almost never reach these

high levels of LA as the nature of their disciplines is submaximal. Thus, LA higher than 4

mmol/L is considered as high intensity for Warmblood horses. There were LA value differ-

ences between SETs of different disciplines in this study, hence, we assigned the “high” inten-

sity label to the SET of disciplines with higher LA values and “low” to those with lower LA

values.

The models require at least thirty-three strides from pre/post-SET to output a valid result

since they were developed using the mean and variability of the features extracted from thirty-

three strides rather than single strides. For more flexibility in the classification, the develop-

ment of models capable of classifying single strides should be explored in future studies.
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Conclusion

This study demonstrated that mounting only one IMU on a front limb makes it possible to

monitor the value changes of important biomechanical indicators of fatigue induced by exer-

cise. We presented walking stance duration and trotting limb longitudinal displacement as two

biomechanical fatigue indicators, where most horses tend to increase and decrease respectively

when fatigued. In addition, by building machine learning models on biomechanical parame-

ters as input features, fatigue can be detected with 95% and 83% accuracy during walk and trot.

Using IMUs for sport horses apart from measuring physiological parameters during exer-

cise can provide more objective fatigue detecting tools for riders, trainers, and officials. This

may help prevent excessive fatigue and therefore, reduce injury rates. Implementing the results

of this study in real-time applications can help researchers and equestrians improve the welfare

of horses, enhance training sessions, and identify any level of fatigue. In future studies, the clas-

sification of horse fatigue levels using IMUs will be improved by evaluating and adding more

levels of fatigue.
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30. Jansen F,Van der Krogt J, Van Loon K, Avezzù V, Guarino M, Quanten S, et al. Online detection of an

emotional response of a horse during physical activity. Vet J. 2009 Jul; 181(1): 38–42. https://doi.org/

10.1016/j.tvjl.2009.03.017 PMID: 19375961

31. Cottin F, Barrey E, Lopes P, Billat V. Effect of repeated exercise and recovery on heart rate variability in

elite trotting horses during high intensity interval training. Equine Vet J Suppl. 2006 Aug;(36):204–9.

https://doi.org/10.1111/j.2042-3306.2006.tb05540.x PMID: 17402419

32. Williams JM, Jane M. Electromyography in the Horse: A Useful Technology?. J Equine Vet Sci. 2018

Jan;(60):43–58. https://doi.org/10.1016/j.jevs.2017.02.005

33. Pugliese BR, Carballo CT, Connolly KM, Mazan M, Kirker–Head CA. Effect of Fatigue on Equine Meta-

carpophalangeal Joint Kinematics—A Single Horse Pilot Study. J Equine Vet Sci. 2020 Mar;

86:102849. https://doi.org/10.1016/j.jevs.2019.102849 PMID: 32067670

34. Takahashi Y, Takahashi T, Mukai K, Ohmura H. Effects of Fatigue on Stride features in Thoroughbred

Racehorses During Races. J Equine Vet Sci. 2021 Jun; 101:103447. https://doi.org/10.1016/j.jevs.

2021.103447 PMID: 33993952

35. Barrey E. Methods, applications and limitations of Gait analysis in horses. Vet J. 1999 Jan; 1(157): 7–

22. https://doi.org/10.1053/tvjl.1998.0297 PMID: 10030124

36. Parkes RSV, Weller R, Pfau T, Witte TH. The Effect of Training on Stride Duration in a Cohort of Two-

Year-Old and Three-Year-Old Thoroughbred Racehorses. Animals (Basel). 2019 Jul; 9(7): 466. https://

doi.org/10.3390/ani9070466 PMID: 31336595

37. Darbandi H, Serra Bragança F, van der Zwaag BJ and Voskamp J, Gmel AI, Haraldsdóttir EH, et al.
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46. Burdack J, Horst F, Aragonés D, Eekhoff A, Schöllhorn WI. Fatigue-Related and Timescale-Dependent

Changes in Individual Movement Patterns Identified Using Support Vector Machine. Front Psychol.

2020 Sep 30; 11:551548. https://doi.org/10.3389/fpsyg.2020.551548 PMID: 33101124

47. Estep A, Morrison S, Caswell S, Ambegaonkar J, Cortes N. Differences in pattern of variability for lower

extremity kinematics between walking and running. Gait Posture. 2018 Feb; 60:111–115. https://doi.

org/10.1016/j.gaitpost.2017.11.018 PMID: 29179051

48. Nohelova D, Bizovska L, Vuillerme N, Svoboda Z. Gait Variability and Complexity during Single and

Dual-Task Walking on Different Surfaces in Outdoor Environment. Sensors (Basel). 2021 Jul; 21

(14):4792. https://doi.org/10.3390/s21144792 PMID: 34300532

49. Goldberger J, Roweis S, Hinton G, Salakhutdinov R. Neighbourhood Components Analysis. NIPS’04:

Proceedings of the 17th International Conference on Neural Information Processing Systems. 2004

Dec;513-520.

50. Varma S, Simon R. Bias in Error Estimation When Using Cross-Validation for Model Selection. BMC

Bioinformatics. 2006 Feb; 7(1):91. https://doi.org/10.1186/1471-2105-7-91 PMID: 16504092

51. Abourachid A. A new way of analysing symmetrical and asymmetrical gaits in quadrupeds. C R Biol.

2003; 326(7):625–30. https://doi.org/10.1016/S1631-0691(03)00170-7

52. Johnston C, Gottlieb–Vedi M, Drevemo S, Roepstorff L. The kinematics of loading and fatigue in the

Standardbred trotter. Equine Vet J Suppl. 1999 Jul;(30):249–53. https://doi.org/10.1111/j.2042-3306.

1999.tb05228.x PMID: 10659262

53. Zhang J, Lockhart TE, Soangra R. Classifying lower extremity muscle fatigue during walking using

machine learning and inertial sensors. Ann Biomed Eng. 2014 Mar; 42(3):600–12. https://doi.org/10.

1007/s10439-013-0917-0 PMID: 24081829

54. Baghdadi A, Megahed FM, Esfahani ET, Cavuoto LA. A machine learning approach to detect changes

in gait features following a fatiguing occupational task. Ergonomics. 2018 Aug; 61(8):1116–1129.

https://doi.org/10.1080/00140139.2018.1442936 PMID: 29452575

55. Harris P, Snow DH. The effects of high intensity exercise on the plasma concentration of lactate, potas-

sium and other electrolytes. Equine Vet J. 1988 Mar; 20(2):109–13. https://doi.org/10.1111/j.2042-

3306.1988.tb01470.x PMID: 3371312

PLOS ONE Detecting fatigue of sport horses with biomechanical gait features using inertial sensors

PLOS ONE | https://doi.org/10.1371/journal.pone.0284554 April 14, 2023 19 / 19

https://doi.org/10.3390/s21030798
http://www.ncbi.nlm.nih.gov/pubmed/33530288
https://doi.org/10.3390/s18030850
http://www.ncbi.nlm.nih.gov/pubmed/29534022
https://doi.org/10.1111/eve.12410
https://doi.org/10.3390/s150819302
http://www.ncbi.nlm.nih.gov/pubmed/26258778
https://doi.org/10.1242/jeb.01658
http://www.ncbi.nlm.nih.gov/pubmed/15961737
https://doi.org/10.2460/ajvr.2004.65.741
https://doi.org/10.2460/ajvr.2004.65.741
http://www.ncbi.nlm.nih.gov/pubmed/32129719
https://doi.org/10.1016/j.tvjl.2013.09.034
https://doi.org/10.1016/j.tvjl.2013.09.034
http://www.ncbi.nlm.nih.gov/pubmed/24314716
https://doi.org/10.3389/fpsyg.2020.551548
http://www.ncbi.nlm.nih.gov/pubmed/33101124
https://doi.org/10.1016/j.gaitpost.2017.11.018
https://doi.org/10.1016/j.gaitpost.2017.11.018
http://www.ncbi.nlm.nih.gov/pubmed/29179051
https://doi.org/10.3390/s21144792
http://www.ncbi.nlm.nih.gov/pubmed/34300532
https://doi.org/10.1186/1471-2105-7-91
http://www.ncbi.nlm.nih.gov/pubmed/16504092
https://doi.org/10.1016/S1631-0691(03)00170-7
https://doi.org/10.1111/j.2042-3306.1999.tb05228.x
https://doi.org/10.1111/j.2042-3306.1999.tb05228.x
http://www.ncbi.nlm.nih.gov/pubmed/10659262
https://doi.org/10.1007/s10439-013-0917-0
https://doi.org/10.1007/s10439-013-0917-0
http://www.ncbi.nlm.nih.gov/pubmed/24081829
https://doi.org/10.1080/00140139.2018.1442936
http://www.ncbi.nlm.nih.gov/pubmed/29452575
https://doi.org/10.1111/j.2042-3306.1988.tb01470.x
https://doi.org/10.1111/j.2042-3306.1988.tb01470.x
http://www.ncbi.nlm.nih.gov/pubmed/3371312
https://doi.org/10.1371/journal.pone.0284554

