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Shrieking, Shrugging, and the Australian Plan

Hitoshi Omori and Michael De

Abstract We observe that Jc Beall’s shrieking and shrugging strategy gives
us an opportunity to reflect on the Australian plan for negation in FDE, a basic
subclassical logic that is used in Beall’s argument for subclassical logics. An
implication of our observation is applied to a recent defense of the Australian
plan for negation by Francesco Berto and Greg Restall.

Jc Beall advances a simple argument for the subclassical logic known as FDE (see
[2]). Unlike classical logic, FDE allows sentences to be both gappy (i.e., neither true
nor false) and glutty (i.e., both true and false). Beall’s argument in brief is that we
lose nothing—inferentially speaking—by adopting FDE as our logic, and that what
we gain are live theoretical possibilities that would have been excluded by adopting
any logic that fails to accommodate both gaps and gluts.

Suppose that our background logic is FDE and that we wish to exclude the pos-
sibility of gluts for a certain nonlogical predicate P . For instance, if we consider
arithmetic, then we may believe that the predicate ‘is less than’ cannot be both true
and false of the same pair of natural numbers. If our underlying logic is paracon-
sistent, then we have no way in general of excluding the possibility of gluts for such
a predicate. However, we can force that the predicate behave in a nonglutty way by
shrieking it, in the terminology of Beall. To shriek a predicate P in the language of
theory T is to impose the following constraint on T ’s closure relation `T :

9x.P x^:P x/ `T ?,
where ? is true in no model of T .1 To shriek P is to exclude the possibility that
something both satisfy P and its negation.

Similarly, if we wish to exclude the possibility of gaps for P , then we can shrug
the predicate by imposing the following constraint on T ’s closure relation:

> `T 8x.P x_:P x/,
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where > is true in all models of T . To shrug P is to exclude the possibility that
something neither satisfy P nor its negation.

We can shriek and shrug an entire theory by shrieking and shrugging all of its
predicates. For instance, if we think arithmetic is entirely classical, then we can
shriek and shrug it, even if our underlying logic is gappy and glutty. If we think truth
is glutty but not gappy, then we can shrug—but not shriek—the truth predicate in
our preferred theory of truth. We can do this generally with individual predicates or
entire theories. The method of shrieking and shrugging is flexible and allows one to
finely tune which parts of a theory are to behave classically or “semiclassically.”2

The primary aim of this note, however, is cautionary: anyone wanting to employ
the shriek-shrug strategy needs to be careful with their treatment of negation in FDE.
For if contraposition is valid—in the fairly weak form given below—then there is no
way to keep shrieking and shrugging apart—that is, shrieking a predicate will imply
shrugging it, and conversely. The form of contraposition we have in mind is the
following:

(Contra): If A ` B , then :B ` :A.
The following is a derivation showing that shrieking implies shrugging when (Con-
tra) is valid:3

1. 9x.P x^:P x/ `T ? [Shriek]
2. ? `T :> [? `T A for all A since ? is true in no model of T ]
3. 9x.P x^:P x/ `T :> [1, 2]
4. > `T 8x.P x_:P x/ [3, (Contra), de Morgan laws, double neg. elim.]
There are two equivalent semantics for FDE, one known as the American plan

and the other as the Australian plan.4 Both of these semantics validate (Contra) with
respect to the usual base language, but there are important subtle differences between
the semantics when considering extensions of FDE.

It is worth discussing in some detail the validity of (Contra) in the various seman-
tics for FDE. We begin with the American plan, following [2]. An interpretation
� relates sentences to the truth-values truth and falsity without any constraint on the
interpretation such as bivalence, namely, that each sentence must be related to at least
one of the values.5 Now assume :B ° :A. Then, there is an FDE interpretation �

such that :B�1 and not :A�1. Therefore, by the truth conditions for negations, that
is,

1. :A�1 iff A�0,
2. :A�0 iff A�1,

we have that B�0 and not A�0. As noted by Michael Dunn in [5, p. 165], if � is an
FDE interpretation, then there exists its dual, �d , such that, for all formulas A,

� A�d 1 iff not A�0,
� A�d 0 iff not A�1.

Therefore, we have that there is a dual FDE interpretation �d of � such that A�d 1

and not B�d 1, whence A ° B , as desired. Contrapositively, (Contra) is valid on the
American plan.

This is worrisome for anyone wanting to employ the shriek-shrug strategy who
does not want to conflate shrieking with shrugging. However, (Contra) is not “built
into” the semantics on the American plan. As an illustration, let us think of a popular
extension of FDE, namely, LP. With the American plan, we can obtain this extension
by adding an exhaustivity condition to FDE interpretations: for all atoms p, either
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p�1 or p�0. Let us refer to such interpretations as LP interpretations which form a
subclass of the FDE ones. It is easy to see that any LP interpretation validates the
law of excluded middle (LEM), A _ :A, which corresponds to shrieking. However,
relative to LP interpretations, (Contra) fails. Indeed, the dual interpretation—recall
from our discussion just above—is not an LP interpretation but rather a K3 inter-
pretation! This shows that (Contra) is not built into the semantics on the American
plan, in the sense that (Contra) can fail when the logic is extended. This allows one
to keep shrieking and shrugging apart on the American plan.

Let us now move onto the Australian plan. A model M D .W; �; V / consists of a
nonempty set of worlds W , the Routley star � W W ! W such that for all w 2 W ,
w�� D w, and a valuation V W W � Atoms ! ¹0; 1º. The semantic consequence
relation may be defined locally, following the terminology in modal logic: � entails
A locally, written � ˆl A, iff for each model M D .W; �; V / and each state w 2 W

we have that if .M; w/  B for each B 2 � , then .M; w/  A. The truth conditions
for negation on the Australian plan are given in terms of the Routley star:

(Neg): .M; w/  :A if and only if .M; w�/ ± A.

To see that (Contra) holds, suppose :B 6ˆl :A. Then there is a model M such that
.M; w/  :B and .M; w/ ± :A. Therefore, .M; w�/ ± B and .M; w�/  A,
whence A 6ˆl B .

Unlike the American plan, (Contra) is built into the semantics. If we use LP again
as our example, then we can obtain LP interpretations by requiring that, for all states
x, if .M; x�/  p, then .M; x/  p. But the addition of this condition will also
imply that, for all states x, if .M; x��/  p, then .M; x�/  p. From this it follows
that ex contradictione quodlibet (ECQ) is also valid, and, therefore, the resulting
semantics yields classical logic, not LP. Therefore, attempting to extend the logic on
the Australian plan—understood in terms of local consequence—preserves (Contra),
thereby conflating shrieking with shrugging.

(Contra) remains valid if we work with pointed models, but it is not built into the
semantics in the same way that it is on the local Australian plan, as we will explain
shortly. First, to show that (Contra) is valid over pointed models, let us distinguish a
unique state g of each model, now of the form M D .W; g; �; V /, relative to which
truth in a model is defined, as Richard Routley (later Sylvan) and Valerie Routley
(later Plumwood) did in their seminal paper [7]. Let us also define consequence in
the usual way as preservation of truth in such a “pointed model,” denoted by ˆp .
Then (Contra) remains valid. Say � ˆp A iff, for each model M D .W; g; �; V /,
we have that if .M; g/  B for each B 2 � , then .M; g/  A. Now assume
:B 6ˆp :A. Then, there is a pointed model .M; g/ such that .M; g/  :B and
.M; g/ ± :A. Therefore, .M; g�/ ± B and .M; g�/  A. Note now that, in
general, if .M; g/ is a pointed model for FDE, then so is .M; g�/. This is because
none of the truth conditions for the connectives depend on the distinguished point, in
which case .M; g�/ serves as our counterexample to A ˆp B .

However, the “pointed model” version of the semantics does not build in (Contra).
Working again with LP as our example, we can obtain an LP interpretation by adding
the condition that if .M; g�/  p then .M; g/  p. With this additional condition,
LEM is valid, but (Contra) now fails. Note that the move above from .M; g�/  A

but .M; g�/ ± B to the failure of (Contra) now fails because even though .M; g/

is a model for LP, .M; g�/ is not, but it is instead a model for K3. This shows
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that (Contra) is not built into the semantics on the Australian plan semantics with a
distinguished point, and that (Contra) can fail when extending the logic. This allows
one to keep shrieking and shrugging apart on the Australian plan.6

In sum, we considered one American plan and two Australian plan semantics for
FDE and showed that (Contra) is valid with respect to each when we confine our-
selves to the usual base language. However, if we consider extending the logic, for
example, by adding constraints to the interpretation (or by adding additional vocab-
ulary, an option we did not consider), then the three semantics fail to agree on the
validity of (Contra), which is valid only on the Australian plan with local validity
(i.e., without a designated basepoint). The addition of these constraints corresponds
to shrieking and shrugging in an obvious way: LEM (i.e., > ` A _ :A) corresponds
to shrug rules—except that LEM is a logical rather than a nonlogical rule—and ECQ
(i.e., A^:A ` ?) corresponds to shriek rules. Therefore, anyone wishing to employ
the shriek-shrug strategy on the Australian plan should define truth in a model as
truth at a distinguished state.

This cautionary note bears on a recent defense of the Australian plan for negation
by Francesco Berto and Greg Restall in [4].7 There, Berto and Restall employ a local
consequence relation, but this will be less flexible if one wishes to employ the shriek-
shrug strategy within a more general setting. One friendly suggestion, therefore, is
to define truth in a model relative to a distinguished state. One, we think, positive
consequence of doing so is that Berto and Restall’s account of negation will then
be able to accommodate the negations of Strong Kleene logic K3 and the Logic of
Paradox LP in a simple manner, as this is not possible in the original framework
because of (Contra) holding. Since the negation of K3 and LP is a close cousin
of FDE’s—indeed, in one sense it is the very same negation considered in a three-
valued setting—this would seem to be a desirable consequence for anyone defending
the Australian plan.

Notes

1. For simplicity, it is assumed that P is unary.

2. An earlier application of shrieking to the so-called just-true problem can be found in
Beall [1].

3. Proof of the other direction is similar, whence shrieking and shrugging are conflated in
the presence of (Contra).

4. A proof of the equivalence for the propositional language can be found, for example,
in Priest [6, Chapter 8], and it is easy to observe that this carries over to the first-order
language.

5. An equivalent four-valued semantics assigns subsets of the two truth-values to sentences,
construed as the values to which the sentence is related.

6. As a referee rightly points out, on some ways of adding a relevant conditional to the
language, (Contra) remains valid, which spells trouble for the shriek-shrug strategy. So
the point we are making applies to a broader range of logics than just FDE. But since
the failure of (Contra) in a larger context depends on the details of the semantics, and
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since we are primarily interested in the application of this observation to the shriek-shrug
strategy as Beall conceives it, we have confined ourselves to the usual arrow-free base
language of FDE.

7. See also [3] where Berto defends (Contra).
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