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With a multiphase transport (AMPT) model we investigate the relation between the magnitude, fluctuations,
and correlations of the initial state spatial anisotropy εn and the final state anisotropic flow coefficients vn in
Au+Au collisions at

√
sNN = 200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for

the observed elliptic flow fluctuations, both are in agreement with the elliptic flow fluctuation measurements from
the STAR collaboration. In addition, the studies based on two- and multiparticle correlations and event-by-event
distributions of the anisotropies suggest that the elliptic-power function is a promising candidate of the underlying
probability density function of the event-by-event distributions of εn as well as vn. Furthermore, the correlations
between different order symmetry planes and harmonics in the initial coordinate space and final state momentum
space are presented. Nonzero values of these correlations have been observed. The comparison between our
calculations and data will, in the future, shed new insight into the nature of the fluctuations of the quark-gluon
plasma produced in heavy ion collisions.

DOI: 10.1103/PhysRevC.93.034909

I. INTRODUCTION

One of the fundamental questions in the phenomenology
of quantum chromodynamics (QCD) is what the properties of
matter are at the extreme densities and temperatures where
quarks and gluons are in a new state of matter, the so-called
quark gluon plasma (QGP). Collisions of high-energy heavy
ions, at the Brookhaven Relativistic Heavy Ion Collider
(RHIC) and the CERN Large Hadron Collider (LHC), allow
us to create and study the properties of such a system in the
laboratory.

The azimuthal anisotropy in particle production is, at these
energies, an observable which provides experimental informa-
tion on the equation of state and the transport properties of the
QGP. This anisotropy is usually characterized by the Fourier
flow coefficients [1],

vn = 〈cos[n(ϕ − �n)〉, or equivalently

vn = 〈einϕe−in�n〉, (1)

where ϕ is the azimuthal angle of the particles, �n is the
nth-order flow plane (or named final state symmetry plane)
angle, and 〈〉 denotes an average over the selected particles
and events.

In the last decade, the elliptic flow v2 [2–8], which is
considered to correspond to the elliptical shape of the spatial
overlap region in the system created in the collisions [9], has
received a lot of experimental and theoretical attention. For a
recent summary see [10–15]. More recently, higher odd and
even anisotropic flow coefficients are found to be also very
important [16]. Hydrodynamic calculations predict that these
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higher harmonics, such as the triangular flow v3, are more
sensitive to the shear viscosity to entropy density ratio η/s
of the QGP than v2 [17]. Furthermore, it is realized that the
correlations between the symmetry planes and flow harmonics
are sensitive to both the initial state and η/s [18–20]. The
combined analysis of both εn and vn distributions for a single
harmonic, and the correlations between different orders of
symmetry planes (direction of the flow vector) and flow
harmonics (magnitude of the flow vector) could yield powerful
constraints on both initial conditions and properties of the
QGP. However, so far the investigation of the above mentioned
combined analysis using a transport model was still lacking.

In this paper, we present the calculations of initial state
anisotropies and final state anisotropic flow in Au+Au colli-
sions at

√
sNN = 200 GeV using the AMPT model [21]. We also

investigate the relation between the magnitude, fluctuations,
and correlations of the initial state spatial eccentricity and final
state anisotropic flow coefficients. In addition, the correlations
between different order symmetry planes and harmonics will
be investigated in both the initial and final state, which will
help us understand how they are modified during the expansion
of the system.

II. A MULTIPHASE TRANSPORT MODEL

A multiphase transport (AMPT) model [21] with a so-
called string melting scenario was used for these studies. The
model consists of four main stages: initial conditions, partonic
interactions, hadronization, and finally hadronic rescattering.

The initial conditions, which include the spatial and
momentum distributions of minijet partons and soft string
excitations, are obtained from the HIJING model [22]. The
strings are converted into partons and the next stage, which
models the interactions between all the partons, is based on ZPC
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[23]. The partonic cascade model ZPC presently includes only
two-body processes with cross sections obtained from pQCD
with screening masses. In ZPC, the default value of the cross
section is 3 mb. The transition from partonic to hadronic matter
is modeled by a simple coalescence model, which combines
two quarks into mesons and three quarks into baryons [24].
Finally, to describe the dynamics of the subsequent hadronic
stage, a hadronic cascade based on the ART model [25] is
used. In this analysis, we used the default input parameters
of AMPT with string melting suggested in Ref. [21]. The
results are presented as a function of centrality, which was
determined by impact parameter b, as used in Refs. [26,27].
The possible effects of the fluctuations of impact parameters
will be discussed in next section.

III. ANALYSIS METHOD AND DEFINITIONS

In this paper the anisotropic flow is calculated using
the two- and multiparticle cumulants method [28,29], which
was widely used at RHIC [30] and at the LHC [6,31]. In
this method, both two- and multiparticle azimuthal correlations
are analytically expressed in terms of a Q vector, which is
defined as

Qn =
M∑
i=1

einϕi , (2)

where M is the multiplicity of the selected particles and ϕ is
their azimuthal angle.

The single-event average two-particle azimuthal correla-
tions can be calculated via

〈2〉 = |Qn|2 − M

M(M − 1)
. (3)

From this the event averaged two-particle correlations, and the
two-particle cumulants can be obtained using

cn{2} ≡ 〈〈2〉〉 =
∑

events(W〈2〉)i〈2〉i∑
events(W〈2〉)i

, (4)

where W〈2〉 is the event weight. To minimize the effect of the
varying multiplicity in certain centrality class determined by
b, we use the number of particle pairs as the event weight
proposed in Ref. [32]

W〈2〉 ≡ M(M − 1). (5)

The anisotropic flow from two-particle cumulants, denoted as
vn{2}, is finally obtained from

vn{2} =
√

cn{2}. (6)

Unfortunately, the vn{2} contains contributions from so-
called nonflow effects, which are additional azimuthal cor-
relations not associated with the common symmetry planes,
e.g., resonance decays, jet fragmentation, and Bose-Einstein
correlations. They can be suppressed by appropriate kinematic
cuts and therefore one can introduce a gap in pseudorapidity
between the particles used in the two-particle Q-cumulant
method [33]. For this we divide the whole event into two
subevents, A and B, which are separated by a pseudorapidity

gap |�η|. This modifies Eq. (3) to

〈2〉�η = QA
n · QB∗

n

MA · MB

, (7)

where QA
n and QB

n are the flow vectors from subevents A
and B, with MA and MB the corresponding multiplicities. The
event weight from Eq. (5) in this case becomes

W〈2〉�η
≡ MA · MB. (8)

Finally, inserting Eqs. (7) and (8) into Eq. (4), the vn from a
two-particle cumulant with a �η gap is given by

vn{2,|�η|} = √〈〈2〉〉�η. (9)

Instead of using kinematic cuts, the collective nature of
anisotropic flow itself can be exploited to suppress nonflow
contributions. Using multiparticle instead of two-particle
cumulants the aforementioned nonflow effects are strongly
suppressed and no additional kinematic cuts are required. The
vn calculated using cumulants are denoted as vn{k}, where
k is 2,4,6 . . . ,m for the m-particle cumulant. Following the
Q-cumulant method [29], the single event average four- and
six-particle correlations can be calculated as

〈4〉 = [ |Qn|4 + |Q2n|2 − 2 · Re(Q2nQ
∗
nQ

∗
n)

− 2[2(M − 2) · |Qn|2 − M(M − 3)] ]/

[M(M − 1)(M − 2)(M − 3)],

〈6〉 = [ |Qn|6 + 9|Q2n|2|Qn|2 − 6 · Re(Q2nQnQ
∗
nQ

∗
nQ

∗
n)

+ 4 · Re(Q3nQ
∗
nQ

∗
nQ

∗
n) − 12 · Re(Q3nQ

∗
2nQ

∗
n)

+ 18(M − 4) · Re(Q2nQ
∗
nQ

∗
n) + 4|Q3n|2

− 9(M − 4)
(∣∣Q4

n

∣∣+|Q2n|2
)+18(M − 2)(M − 5)|Qn|2

− 6M(M − 4)(M − 5) ]/

[M(M − 1)(M − 2)(M − 3)(M − 4)(M − 5)]. (10)

Then the multiparticle cumulants are obtained from

cn{4} = 〈〈4〉〉 − 2 〈〈2〉〉2,
(11)

cn{6} = 〈〈6〉〉 − 9 〈〈2〉〉 · 〈〈4〉〉 + 12 〈〈2〉〉3,

where 〈〈〉〉 denotes the average over all particles over all events.
In the end the vn from four- and six-particle cumulants, denoted
as vn{4} and vn{6}, are obtained using

vn{4} = 4
√− cn{4}, vn{6} = 6

√
cn{6}. (12)

The two- and multiparticle cumulants have different contri-
butions from flow fluctuations. The contribution from flow
fluctuations is positive for the two-particle cumulant and
negative for the multiparticle cumulant [34,35]. When nonflow
effects are negligible for the two-particle cumulant, and if
σvn

� vn, the vn from the cumulants are up to order σ 2
vn

given
by

vn{2}2 ≈ v2
n + σ 2

vn
,

vn{4}2 ≈ v2
n − σ 2

vn
, (13)

vn{6}2 ≈ v2
n − σ 2

vn
,
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where vn and σvn
are the mean and standard deviation of

the vn distributions, respectively. In the special case that
the underlying probability density function (p.d.f.) of vn

is described by a Bessel-Gaussian function, Eq. (13) is an
exact solution, independent of the magnitude of the flow
fluctuations. This shows that for a Bessel-Gaussian p.d.f. all
the multiparticle cumulants will be identical.

It is thought that the development of anisotropic flow is
controlled by the anisotropies in the pressure gradients which
in turn depend on the shape and structure of the initial density
profile. The latter can be characterized, in analogy with the
flow Fourier coefficients and flow angles of Eq. (1), by a set of
harmonic anisotropy coefficients εn and associated symmetry
angles �n of the initial spatial distribution:

εne
in�n ≡ −

∫
r dr dφ rneinφ e(r,φ)∫

r dr dφ rne(r,φ)
(n > 1), (14)

where e(r,φ) is the initial energy density distribution in the
plane transverse to the beam direction. Also these anisotropy
coefficients can be calculated using cumulants and the same
relation between εn and σεn

follows as in Eq. (13), replacing
vn with εn.

IV. RESULTS AND DISCUSSION

The centrality dependence of v2 from the AMPT model
calculations is shown in Fig. 1(a). For the two-particle
cumulant calculations, we plot both v2{2} from Eq. (6) and
v2{2,|�η| > 1} from Eq. (9). It is seen that the v2{2,|�η| > 1}
is compatible with v2{2}, which indicates that short-range
nonflow contributions are very small in AMPT. Figure 1(a)
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FIG. 1. Centrality dependence of (a) v2 and (b) ε2 in Au+Au
collisions at

√
sNN = 200 GeV in AMPT. For the definition of the

symbols see text.

also shows the calculated v2{4} and v2{6}. Because the nonflow
contributions to the integrated flow are very small, the observed
significant difference between v2{2} and v2{4} is from elliptic
flow fluctuations. In addition we observe that there is very good
agreement between v2{4} and v2{6}. This seems to agree with
the expectation that the underlying p.d.f. is a Bessel-Gaussian
function, which predicts v2{4} = v2{6}. However, it is still
important to point out that in fact v2{4} ≈ v2{6} is valid
irrespectively of the details of the underlying model of flow
fluctuations, under the assumption σvn

� vn [32].
From v2{2,|�η| > 1} and v2{4}, we can estimate v2 in

Eq. (13) using

v2{est} =
√

v2{2,|�η| > 1}2 + v2{4}2

2
. (15)

Figure 1(b) shows ε2 as a function of centrality. Here ε2

can be calculated from the initial spatial parton distributions
in the AMPT model. The relative fluctuation of ε2, named σε2 ,
is shown by the green band as the uncertainty of ε2. The ε2{2}
and ε2{4} correspond to the two- and four-particle cumulant
definitions but are evaluated using the initial spatial coordi-
nates. We see that ε2{2}, ε2, and ε2{4} increase monotonically
up to 60% centrality percentile. In contrast, the v2, plotted in
Fig. 1(a), starts to saturate or decrease from 40% centrality
percentile. This difference between the centrality dependence
of v2 and ε2 is generally understood to be because of the fact
that the efficiency of converting the initial eccentricity into final
elliptic flow decreases towards peripheral collisions because
of the decreasing number of reinteractions in a smaller system.

From the calculated anisotropic flow, we can investigate the
relation between the fluctuations in εn and vn. In Fig. 2(a) we
plot the centrality dependence of the elliptic flow fluctuations
σv2 estimated via

σv2 =
√

v2{2,|�η| > 1}2 − v2{4}2

2
. (16)

We find that σv2 increases toward peripheral collisions and
its magnitude is significant compared to the magnitude of v2.
Assuming v2 ∝ ε2 and using Eq. (13), we also have v2{2} ∝
ε2{2} and σv2 ∝ σε2 . Hence, Fig. 2(a) also shows the scaled σε2

calculated as σε2 =
√

(ε2{2}2 − ε2{4}2)/2. It shows that the
eccentricity fluctuations describe the centrality dependence of
the elliptic flow fluctuations quite well, which might indicate
that they are the dominant contribution for the observed elliptic
flow fluctuations.

The estimated relative flow fluctuations, can be calculated
using

Rv2,4
=

√
v2{2,|�η| > 1}2 − v2{4}2

v2{2,|�η| > 1}2 + v2{4}2
≈ σv2

v2
, (17)

and its centrality dependence is shown in Fig. 2(b). The
magnitude of the relative fluctuations ranges from 0.4 to 0.6
in central to mid-peripheral collisions. This shows that the
assumption σv2 � v2 does not hold for these centralities.
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FIG. 2. Centrality dependence of (a) elliptic flow fluctuation
and (b) relative elliptic flow (eccentricity) fluctuations in Au+Au
collisions at 200 GeV in AMPT StringMelting. (a) The full stars
are the estimated elliptic flow fluctuation σv2 and the dashed line
is the relative eccentricity fluctuations scaled by a factor of 0.15;
(b) the estimated relative elliptic flow fluctuation Rv2,4 , and the relative
eccentricity and true eccentricity fluctuation for the AMPT model are
shown using full diamonds, a dashed line, and solid line. In addition,
the measurement from the STAR Collaboration are plotted using full
triangles and the shadow shows its uncertainty [30].

The estimated relative eccentricity fluctuations Rε2,4
can be

calculated analogously to the Rv2,4
:

Rε2,4
=

√
ε2{2}2 − ε2{4}2

ε2{2}2 + ε2{4}2
≈ σε2

ε2
, (18)

and compared to Rv2,4
. This comparison does not depend on

the assumption that the relative fluctuations are small or the
underlying p.d.f. is a Bessel Gaussian. We notice that the Rε2,4

[also plotted in Fig. 2(b)] is compatible with Rv2,4
for central

and mid-central collisions. To test if this is only accidental
we also study the v2 in AMPT with an approximately three
times larger partonic cross section (10 mb). The magnitudes
of both v2{2} and v2{4} increase significantly, however, the
consistency between Rε2,4 and Rv2,4 continues to hold. This
is expected if the relative elliptic flow fluctuations depend
only on the eccentricity fluctuations, which again shows
that eccentricity fluctuations play an important role in the
development of elliptic flow fluctuations in the AMPT model.

In addition, we calculate directly from the initial state of
the AMPT model the true relative eccentricity fluctuations
σε2/ε2 [plotted as the the green solid line in Fig. 2(b)]. The
results are consistent with the estimated relative eccentricity
fluctuations in the 20%–50% centrality percentile, while they

deviate for central and peripheral collisions. Because the
assumption σε2 � ε2 is not satisfied over the whole centrality
range this indicates that for 20%–50% the fluctuations might
be approximately described by a Bessel Gaussian but to
describe the overall event-by-event v2 distributions, we need
to search for a better candidate of the underlying p.d.f. To
see how these fluctuations compare to experimental data we
compare to STAR measurements [30]. The relative elliptic
flow fluctuations measured in Au+Au collisions at 200 GeV
are plotted in Fig. 2(b) and are in very good agreement with
the AMPT model calculations.

Hydrodynamic calculations have shown that in a given
event, the vn is a linear response to the initial anisotropy (vn =
kn εn), for n = 2, 3 [36]. In the discussion above, we found that
the elliptic flow and its fluctuations can be nicely described by
the initial eccentricity together with its fluctuations. To further
constrain the underlying p.d.f. of the vn and εn distributions,
we study the event-by-event distributions of εn, simulated by
AMPT.

In this study, the event-by-event εn distributions are inves-
tigated in the selected centrality classes. To better extract the
information on the underlying p.d.f. of the εn distributions,
several candidate functions are used in this paper. One popular
parametrization of the εn distribution is the Bessel-Gaussian
distributions [37]:

p(εn) = εn

σ 2
I0

(
εnεn

σ 2

)
exp

(
−ε2

0 + ε2
n

2σ 2

)
, (19)

where ε0 is the anisotropy with respect to the reaction plane
and σ is the fluctuation in the spatial anisotropy. It was already
shown in this paper as well as in previous studies [37,38]
that a Bessel-Gaussian distribution nicely describes the ε2

distributions for mid-central collisions. However, it is not
expected to work perfectly in peripheral collisions because of
the lack of a constraint that ε2 < 1 in each event [39]. To fix this
problem, a simple one-parameter power-law distribution [40],

p(εn) = 2α εn

(
1 − ε2

n

)α−1
, (20)

was proposed to parametrize the fluctuation-driven
anisotropies. Here α quantifies the fluctuations.

Recently, a new function, named the “elliptic power”
distribution was proposed in Ref. [39] as

p(εn) = α εn

π

(
1 − ε2

0

)α+ 1
2

∫ 2π

0

(
1 − ε2

n

)α−1
dφ

(1 − ε0 εn cos φ)2α+1
, (21)

where α and ε0 have the same meaning as above. In our paper,
these three candidates of the underlying p.d.f.s are fitted to
the εn distributions in the AMPT model.

Figure 3 shows the ε2 distributions in the centrality range
0%–5%, 30%–40%, and 60%–70% from the AMPT initial
state. We fit the three distributions with the elliptic-power
(solid lines), power-law (dash line), and Bessel-Gaussian
functions (dot-dash line). It is shown that in 0%–5% these
three functions give consistent results and they all fit the ε2

distributions quite well. It is understood that in the case where
ε0 � 1 (small anisotropy from the reaction plane) and where
α > 1 (strong fluctuations), the elliptic power distribution
turns into a Bessel-Gaussian distribution; while with ε0 = 0
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FIG. 3. ε2 distributions in the AMPT initial state.

(anisotropy is solely from fluctuations), the elliptic power
distribution reduces to a power-law distribution. The nice
agreement between the three functions shows that the ε0 must
be very small, which means that the eccentricity is generated
mainly by fluctuations. In 30%–40%, it is clear that only
the elliptic-power function agrees with the ε2 distributions.
For more peripheral collisions, the elliptic-power function
describes the ε2 distributions still quite well, while the Bessel
Gaussian can’t quantitatively reproduce the ε2 distributions.
The power-law function, on the other hand, is not expected to
describe the ε2 distributions in noncentral collisions, because
the eccentricity from the reaction plane (ε0) is missing and for
noncentral collisions ε0 is nonzero and important to describe
the ε2 distributions. Furthermore, we calculate σε2/ε2 from the
elliptic-power function with parameters extracted from the fits
of the ε2 distributions. The result shown in Fig. 2(b) is in nice
agreement with the σε2/ε2 directly from the AMPT initial state.
For describing all the centralities the elliptic-power function
gives the best description of the ε2 distributions. Unfortunately,
the expectation of a 1% difference between the four- and
six-particle cumulants [39] from the elliptic-power function
cannot be tested with the current statistics.

It is shown in hydrodynamic calculations that the higher
harmonic flow coefficients are more sensitive to both the
kinematic viscosity and to the initial geometry and its fluctua-
tions [17]. In the absence of fluctuations v3 is zero because
of symmetry constraints. Figure 4(a) shows the centrality
dependence of v3 obtained for AMPT events from different
analysis methods. If v3 is from event-by-event fluctuations in
the initial spatial density distributions we would expect that
there is no, or only a very small, correlation between both the
reaction plane angle �RP (spanned by the impact parameter
vector and the beam direction) and the angle of the second-
order flow plane �2 with respect to the third-order flow plane
�3. The correlations between �3 and �RP can be studied via

v3{�RP} = 〈〈cos 3(ϕ − �RP)〉〉
= 〈〈cos 3(ϕ − �3) cos 3(�3 − �RP)〉〉
= 〈v3 〈cos 3(�3 − �RP)〉〉. (22)

In Fig. 4(a) we observe that v3{�RP} is consistent with zero.
It indeed shows that there is no correlation (or an extremely
weak correlation) between �3 and �RP in the presented
centrality range. We also see that both the v3{2} and v3{4} are

3v
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0.04
}2Ψ{3

2v

}RPΨ{3v

{2}3v

|>1}ηΔ{2,|3v
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FIG. 4. (a) Centrality dependence of v3 in Au+Au collisions
at 200 GeV from AMPT model calculations. The open stars (red),
triangles (black), circles (gray), diamonds (blue), and crosses (black)
for v3{2}, v3{2,|�η| > 1}, v2

3{�2}, and v3{�RP}, respectively. (b) The
corresponding ε3 as a function of centrality.

nonzero and show only a weak centrality dependence, which
is in qualitative agreement with earlier observations based on
hydrodynamic model calculations [17].

In Fig. 4(b) the corresponding ε3{2}, ε3{4}, and ε3 are
plotted which, in contrast with v3{2} and v3{4}, increase with
increasing centrality by a factor two; this difference might
be from strong viscous damping effects on v3 compared
to v2 [17]. The expectation that ε3{4} = ε3{�RP} = 0 if the
p.d.f. were a Bessel-Gaussian function is not observed in
the 5%–40 % centrality percentile range, as is shown in
Fig. 4.1 Similar nonzero ε3{4} were found for wider centrality
ranges from both MC-Glauber and MC-KLN calculations
[41]. In fact, nonzero values of not only v3{4} but also
v3{6} have been measured in experiments [42]. Compared to
the Bessel-Gaussian distribution, which was the widely used
description of the underlying p.d.f., it shows in Fig. 5 that the
elliptic-power function seems to give an improved description
of σε3/ε3 and agrees with a nonzero value of the multiparticle
cumulants of ε3 and v3.

For completeness, Fig. 6 shows the ε3 distributions in the
centrality range 0%–5%, 30%–40%, and 60%–70% from the
AMPT initial state. Similar to the study of the ε2 distributions,
we fit all the ε3 distributions with the elliptic-power (solid
lines), power-law (dash line), and Bessel-Gaussian functions

1Because of large statistical fluctuations in most central collisions,
ε2

3{4} < 0, we therefore presented
√

−ε2
3{4} in most central collisions

and the arrows show the range from −
√

−ε2
3{4} to

√
−ε2

3{4}.
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FIG. 5. σε3/ε3 distributions in AMPT.

(dot-dash line). It is seen that the Bessel-Gaussian function
reproduces the ε3 fairly well except for peripheral collisions.
Nevertheless, the expectation of a Bessel Gaussian, which
is ε3{4} = ε3{6} = ε3{RP} = 0 (as well as v3{4} = v3{6} =
v3{RP} = 0), does not agree with the nonzero ε3{4} and v3{4}
presented above. The Bessel-Gaussian function is therefore not
a candidate of the underlying p.d.f. of vn and εn. On the other
hand, because triangularity is expected to be solely created by
initial geometry fluctuations, its distributions should be well
reproduced by a single-parameter power-law function [43].
Indeed nice agreements between the fits of the power-law and
the ε3 distributions are observed for the presented centralities.
When testing the two-parameter elliptic-power function, it
turns out, as expected from the nice fit of the power-law
function, that the parameter ε0 (triangularity with respect to the
reaction plane) is very close to 0. The nice descriptions of the ε3

distributions by the power-law function and the elliptic-power
function with parameter ε0 ∼ 0 confirm that the contributions
of the reaction plane to ε3 is very weak (or zero). This also
agrees with our results of v3{RP} = 0, displayed in Fig. 4, and
with the experimental measurements of ALICE [31]. Further-
more, we notice that the true σε3/ε3 from the AMPT initial state
shows a decreasing trend from central to peripheral collisions.
This decreasing trend is captured by the elliptic-power function
quite well, and clearly disagrees with the expectation of a
Bessel-Gaussian type p.d.f., which predicts a constant value
of

√
4/π − 1 for the entire centrality range [10,38]. It is shown

that the elliptic-power function gives a better description
of the ε2 and ε3 distributions simultaneously, matches the
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FIG. 6. ε3 distributions in the AMPT initial state.

multiparticle cumulants observables and the correlations with
respect to the reaction plane, and also matches the experi-
mental measurements [31]. This shows that the elliptic-power
distributions could be a promising candidate of the underlying
p.d.f. of vn (and εn), which helps us to better understand the
initial geometry and its event-by-event fluctuations.

In addition, it is important to understand whether there is
a correlation between different order flow vectors, including
both the flow planes (direction of the flow vector) and the
harmonics (magnitude of the flow vector), and how this
correlation between flow vectors modifies the underlying
p.d.f. One example of the correlation between different flow
planes is the correlation of �2 and �3 measured using a
five-particle cumulant:

v2
3{�2} = 〈cos(2ϕ1 + 2ϕ2 + 2ϕ3 − 3ϕ4 − 3ϕ5)〉

v3
2

, (23)

[32] (also denoted by v23 ≡ v{2,2,2,−3,−3} in Ref. [44]).
Figure 4(a) shows that v2

3{�2} from the AMPT model is
consistent with zero, and because both v2 and v3 are nonzero,
this result proves that there is no correlation between �2 and
�3 in the AMPT calculations.

In addition to the correlations between the second- and
third-order flow planes we can also study the correlations
between the other order flow planes. These studies have
recently gained a lot of attention in the field [20,42,44–46].
It was proposed to measure these correlations using the
multiparticle mixed harmonic correlations [44]:

〈cos(n1ϕ1 + · · · + nkϕk)〉
= 〈vn1 ...vnk

cos(n1�n1 + · · · + nk�nk
)〉. (24)

These new observables have been measured with v2
3{�2} in

ALICE [31] and more detailed studies have been presented in
a recent work [42]. Hydrodynamic calculations [20] predict
that the correlation strength is sensitive to both the initial
conditions and the details of the expansion of the system.
AMPT simulations, which also provide information of the
initial and final states, will help us to understand the role of
these correlations in a cascade model.

Using Eq. (24), we can study the nth and mth order flow plane
correlations in the final state. For example, the correlations
between (�4,�2) and (�6,�3) can be evaluated via

〈cos(4ϕ1 − 2ϕ2 − 2ϕ3)〉 = 〈
v4v

2
2 cos(4�4 − 4�2)

〉
,

〈cos(6ϕ1 − 3ϕ2 − 3ϕ3)〉 = 〈
v6v

2
3〈cos(6�6 − 6�3)

〉
. (25)

As discussed in Ref. [32], these observables can be directly
calculated in terms of a three-particle cumulant:

QC{3}2n,−n,−n = 〈cos[n(2ϕ1 − ϕ2 − ϕ3)]〉
= [Q2nQ

∗
nQ

∗
n − 2 · |Qn|2 − |Q2n|2 + 2M]/

[M(M − 1)(M − 2)]. (26)

For n = 2, we get QC{3}4,−2,−2 which is sensitive to the
correlations between (�4,�2), and analogously for n = 3
which is sensitive to the correlations between (�6,�3).

In AMPT, we can also study correlations between the nth-
and mth-order symmetry planes, in the initial state (�n, �m).
In this model, we can calculate �n assuming that the initial
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FIG. 7. Centrality dependence of the final state QC{3} (top) and
the two-plane correlations in the initial state (bottom) in Au+Au
collisions at 200 GeV by AMPT StringMelting.

spatial energy distribution is proportional to the initial spatial
parton distribution. Thus, we have

�n = 1

n
ATan2

( 〈sin(nφ)〉
〈cos(nφ)〉 + π

)
, (27)

where φ is the azimuthal angle of the initial partons.
For the (�n, �m) correlation, we can use, similar to Eq. (25),

〈cos(4φ1 − 2φ2 − 2φ3)〉 = 〈
ε4ε

2
2 cos(4�4 − 4�2)

〉
,

〈cos(6φ1 − 3φ2 − 3φ3)〉 = 〈
ε6ε

2
3 cos(6�6 − 6�3)

〉
. (28)

If the initial state symmetry plane �n coincides with the flow
plane �n, the initial (�n, �m) correlation and the final (�n,
�m) correlation should show a similar centrality dependence,
and at least should have the same sign.

We see in Fig. 7 (top) that the (�4, �2) correlation has a
positive sign, which increases as the centrality increases. In
contrast, the (�4, �2) correlation is negative and decreases
with increasing centrality, plotted in Fig. 4 (bottom). The
negative initial (�4, �2) correlation and positive final (�4,
�2) correlation observed in the AMPT model are in qual-
itative agreement with viscous hydrodynamic calculations
[20]. There is a clear sign change of the fourth-order and
second-order plane correlation during the collision system
evolution, both in the transport model and in the hydrodynamic
calculations [20]. On the other hand, the sixth-order and
third-order plane correlation has a negative value in the initial
(�6, �3) correlations while it is consistent with 0 within
uncertainty in the final state (�6, �3) correlations. In addition,
we can see in Fig. 4 (top) that there is no clear difference of
the QC{3} from all charged particles (solid symbols) and the

like-sign (LS) particles (open symbols), which indicates that
nonflow contributions to the above observables are small and
the sign change of the plane correlations cannot be explained
by the possible nonflow contributions.

Considering that the initial anisotropy εn and the final
anisotropic flow vn are both positive, the above results can only
be explained if the sign of the genuine correlation, the cosine
component, changes during the evolution of the produced sys-
tem. In fact, hydrodynamic calculations suggest that the final
nth-order flow plane �n might be not only driven by �n, but
might also have contributions from other symmetry plane(s).
The fourth-order harmonic v4 and its associated flow plane �4

are determined by a linear and a quadratic response [47],

v4 e−i 4 �4 = w4 e−i 4 �4 + w4 (22) e
−i 4 �2 , (29)

where w4 describes the linear response, and w4 (22) quantifies
the nonlinear response. This nonlinear response in hydrody-
namic calculations couples v4 to (v2)2 and also couples v6 to v2

3
[47], and clearly both �2 and �4 contribute to �4. Therefore,
these results show that the initial symmetry plane �n and the
flow plane �n do not coincide in the AMPT model. Similar
results were also observed in the previous transport model
calculations using the UrQMD model [48], and confirmed by
hydrodynamic calculations [49]. Thus, the assumption �n =
�n used in the so-called true flow calculations (or symmetry
plane flow) vn{�n} [16,50,51] is not valid. In addition, we
notice that a new method, named the scalar product method
[45], is proposed to measure the flow plane correlations
without contributions of anisotropic flow. However, it is
important to emphasize that this method is based on the
assumption that 〈v2

nv2n〉 = 〈v2
n〉

√
〈v2

2n〉. In fact, the recent
“standard candle” calculations SC(m,n,−m,−n)v [52,53]
have shown that there are strong (anti-)correlations between
event-by-event fluctuations of vn and vm, therefore the equality
〈v2

nv2n〉 = 〈v2
n〉

√
〈v2

2n〉 assumed in the scalar product method
does not hold. Thus, in this paper, we discuss the symmetry
plane correlations using only the mixed harmonic correlations.

Not only the correlations between symmetry planes but also
the correlations between different flow harmonics can be inves-
tigated via the multiparticle correlation technique. The observ-
able SC(m,n,−m,−n)v was proposed as a unique tool to probe
the correlations between different orders of flow harmonics and
by design independent of the symmetry planes [52].

In Fig. 8 (top) we see a clear nonzero value for
both SC(4,2,−4,−2)v (red markers) and SC(3,2,−3,−2)v
(blue markers) in the final state. The positive results of
SC(4,2,−4,−2)v and negative results of SC(3,2,−3,−2)v
are observed for the presented centrality classes. These (anti-
)correlations are more pronounced in peripheral collisions. It
indicates that finding v2 larger than v2 in an event enhances
the probability of finding v4 larger than v4 and, in addition,
the probability of finding v3 smaller than v3 in that event, as
was shown in a previous study [52]. Also we investigate the
correlations of the nth- and mth-order harmonics in the initial
state, calculating

SC(m,n,−m,−n)ε = 〈
ε2
m ε2

n

〉 − 〈
ε2
m

〉〈
ε2
n

〉
. (30)

The result is presented in Fig. 8 (bottom). We see a positive
and increasing trend for SC(4,2,−4,−2)ε while a negative and
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decreasing trend of SC(3,2,−3,−2)ε is observed. They cap-
ture the rough trend of SC(4,2,−4,−2)v and SC(3,2,−3,−2)v
in the final state but cannot quantitatively describe the
centrality dependence. This suggests indeed a correlation
between the initial state SC(m,n,−m,−n)ε and final state
SC(m,n,−m,−n)v , but this might not be the only contribution
to the final state. In addition, the system evolution might also
modify the strength of SC(m,n,−m,−n)v . In a previous study
[52], three configurations of the AMPT model [(a) 3 mb, (b)
10 mb, and (c) 10 mb no rescattering] have been investigated
to better understand the SC(m,n,−m,−n)v calculations. In
general, the configuration of (a) 3 mb generates weaker
partonic interactions during the system evolution compared
to (b) 10 mb. And the hadronic interactions are turned off
for (c) 10 mb no rescattering. The comparisons between these
three configurations shows that the value of SC(m,n,−m,−n)v
depends on both the partonic and the hadronic interactions.
These results suggest that the sign of SC(m,n,−m,−n)v is
determined by the initial state SC(m,n,−m,−n)ε and the
magnitude is modified by the multiple interactions during the
system evolution.

As we discussed above, the elliptic-power function gives
a better description of the p.d.f. of each single harmonic.
However, it is an open question at the moment how the
joint underlying p.d.f. including different order symme-
try planes and harmonics is described and, additionally, if
these correlations between different order symmetry planes
and harmonics modify the single harmonics p.d.f. The
investigations presented here begin to answer these open
questions. Nevertheless, many more measurements between
different order symmetry planes and harmonics are necessary
to reasonably constrain a joint p.d.f., and ultimately lead to
new insights into the nature of the fluctuation of the created
matter in heavy ion collisions.

V. SUMMARY

In this paper we presented the calculations of the initial
and final state anisotropies in Au+Au collisions at

√
sNN =

200 GeV using AMPT simulations. It is found that the elliptic-
power function is the only p.d.f. so far which describes
the event-by-event distributions of the eccentricity as well
as the triangularity, the anisotropic flow from multiparticle
cumulants, and the relative flow fluctuations very well. In
addition, the correlations between different order symmetry
planes and harmonics have been investigated. A different
centrality dependence of these correlations in the initial and
final state was observed within the same framework of a
transport model. This result indicates that both the fluctuations
in the initial geometry and the dynamical evolution of the
medium in the final state plays an important role. It is currently
still unclear how well the underlying joint p.d.f. matches the
experimental data as these predictions still have to be tested
at RHIC and at the LHC. The study presented in this paper
should help us better understand the fluctuations of created
matter in heavy ion experiments.
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[29] A. Bilandžić, R. Snellings, and S. Voloshin, Phys. Rev. C 83,

044913 (2011).
[30] G. Agakishiev et al. (STAR Collaboration), Phys. Rev. C 86,

014904 (2012).
[31] K. Aamodt et al. (ALICE Collaboration), Phys. Rev. Lett. 107,

032301 (2011).
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