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1. Results

1.1. The main result

The main result of this article is concerned with the following question. For simplicity, in this article 
manifold means manifold without boundary. Let (M, ω) be a symplectic manifold. For every F ∈ C∞(M)
we denote by XF the Hamiltonian vector field generated by F , which is determined by the condition 
ω(XF , ·) = dF . We denote by C∞

c

(
[0, 1] × M

)
the set of compactly supported real-valued functions on 

[0, 1] ×M . For every H ∈ C∞
c

(
[0, 1] ×M

)
we denote Ht := H(t, ·) and by ϕH = (ϕt

H)t∈[0,1] the Hamiltonian 
flow of H w.r.t. ω. We define the compactly supported Hamiltonian group of (M, ω) and the Hofer norms
on the sets of functions and the Hamiltonian group by

Hamc(M) := Hamc(M,ω) :=
{
ϕ1
H

∣∣H ∈ C∞
c

(
[0, 1] ×M

)}
,

‖| · ‖| := ‖| · ‖|Mc : C∞
c

(
[0, 1] ×M

)
→ R,

‖|H‖| :=
1∫

0

(
max
M

Ht − min
M

Ht

)
dt, (1)

‖ · ‖Mc := ‖ · ‖M,ω
c : Hamc(M) → R,

‖ϕ‖Mc := inf
{
‖|H‖|

∣∣H ∈ C∞
c

(
[0, 1] ×M

)
: ϕ1

H = ϕ
}
.

Let U ⊆ M be an open subset. Consider the natural inclusion

Hamc(U) � ϕ �→ ϕ̃ ∈ Hamc(M), ϕ̃(x) :=
{

ϕ(x), if x ∈ U,

x, otherwise,
(2)

Question. How much does this map fail to be an isometry with respect to the Hofer norms for U and M?

The main result of this article is the following theorem, which implies that the answer to this question 
is “a lot”, if U is small compared to M in a suitable sense. To state this result, for a > 0, we denote by 
B2(a), B2(a) ⊆ R2 the open and closed balls of radius 

√
a/π, around 0. We denote by ωst the standard 

symplectic form on R2n.

Theorem 1 (relative Hofer estimate). For every ϕ ∈ Hamc(U) we have

‖ϕ̃‖Mc ≤ inf
(

2a + ‖ϕ‖Uc
N

)
, (3)

where a ∈ (0, ∞) and N ∈ N := {1, 2, . . .} run over all numbers for which there exists a symplectic manifold 
(M ′, ω′) and a symplectic embedding

ψ : B2(Na) ×M ′ → M

(with respect to ωst ⊕ ω′ and ω), satisfying

U ⊆ ψ(B2(a) ×M ′).

The weaker version of estimate (3) with the additive constant 2a replaced by 2Na and a factor of 2 in 
front of the second term can be deduced from the argument in the proof of the recent result by Polterovich 
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and Shelukhin [18, Theorem C] on p. 19.1 The interest of Theorem 1 lies in the facts that the additive 
constant 2a does not depend on N and there is no extra factor of 2.

The estimate (3) is often asymptotically sharp as the Hofer norm of ϕ on U tends to infinity. See 
Corollaries 2 and 4 below. On top of this, the additive constant is often sharp up to a factor of 2. See 
Corollary 5 and Proposition 6. This improves the result of J.-C. Sikorav for R2n [20, Proposition, p. 62] by 
a factor of 8.

The strategy of proof of Theorem 1 is to adapt a version of Sikorav’s method that was used by M. Bran-
denbursky and Kędra in [2] to estimate the autonomous norm. This version of the method uses an algebraic 
identity of D. Burago, S. Ivanov, and L. Polterovich [1].

To show our estimate, for a given Hamiltonian H that generates ϕ we choose a compact subset K of 
M , such that [0, 1] ×K contains the support of H. The trick is to choose a Hamiltonian diffeomorphism ψ
with Hofer norm less than a, such that the sets ψi(K), i = 0, . . . , N − 1, are disjoint. We now cut ϕ into 
time-pieces, which we transport to the regions ψi(K). The resulting Hamiltonian diffeomorphism differs 
from ϕ̃ by some commutator with ψ. The estimate (3) follows from this and the fact that H can be chosen 
in such a way that

c− ≤ H ≤ c− + c, (4)

where c−, c are constants, with c arbitrarily close to the Hofer norm of ϕ.
To show this fact, we choose a Hamiltonian for ϕ whose Hofer norm is close to that of ϕ. We reparametrize 

the Hamiltonian in such a way that at each time its oscillation is less than c. The idea is now to shift the 
Hamiltonian by the product of a suitable function of time and some cut-off function on M , in such a way 
that the resulting Hamiltonian satisfies (4).

1.2. Application to the asymptotic Hofer-Lipschitz constant

Theorem 1 has the following direct application. Let (M, ω) be a symplectic manifold and U an open 
subset of M . We define the asymptotic Hofer-Lipschitz constant of (M, U, ω) to be

Lip∞(M,U) := Lip∞(M,U, ω) := (5)

lim
C→∞

sup
{
‖ϕ̃‖Mc
‖ϕ‖Uc

∣∣∣ϕ ∈ Hamc(U) : ‖ϕ‖Uc > C

}
.

(Here our convention is that sup ∅ := 0.) This number can be understood as the asymptotic (for large 
distances) Lipschitz constant of the inclusion (2), with respect to the Hofer distances for U and M . It is the 
simplest interesting quantity comparing the two Hofer geometries, if M is closed. (Compare to Subsection 
5.1.)

Corollary 2 (upper bound on the asymptotic Hofer-Lipschitz constant). Assume that there exists a > 0, 
N ∈ N ∪ {∞}, and a symplectic manifold (M ′, ω′), such that, defining c := Na, we have

1 This is a consequence of the following (in-)equalities, which are stated in the proof of [18, Theorem C] on p. 19 (with the setting 
and notation of that article):

dHofer
(
ϕlt

f , ϕt
f1

· . . . · ϕt
fl

)
≤ C ≤ 2

(
dHofer(ϕ1, id) + . . . + dHofer(ϕl, id)

)
,

ϕt
f1

· . . . · ϕt
fl

= ϕt
F , |F |C0 = 1.

The extra factor 2 in front of the second term in (3) comes from the fact that a generating Hamilton function may be both positive 
and negative. In the situation of [18, Theorem C] this factor disappears, since the generating Hamilton function f is positive.



4 M. Khanevsky, F. Ziltener / Differential Geometry and its Applications 85 (2022) 101947
M = B2(c) ×M ′, ω = ωst ⊕ ω′, U = B2(a) ×M ′, (6)

where for c = ∞ we define B2(c) := R2. Then we have

Lip∞(M,U) ≤ 1
N

= a

c
. (7)

Proof. This follows immediately from Theorem 1. �
In particular, we have Lip∞(M, U) = 0, if N = ∞. Extending the estimate (7) to a general triple 

(M, ω, U) consisting of a finite volume symplectic manifold and an open subset, one may guess that the 
inequality

Lip∞(M,U) ≤ C

∫
U
ωn∫

M
ωn

holds for such a triple, where C is a constant depending only on the dimension 2n of M . This guess is 
false. Hence the hypothesis that M, ω and U are products, cannot be dropped. This is a consequence of the 
following example.

Example (big asymptotic Hofer-Lipschitz constant). Let (M, ω) be a two-dimensional symplectic manifold 
and U ⊆ M an open neighbourhood of some non-contractible embedded circle in M . Then the equality

Lip∞(M,U) = 1

holds. See Proposition 12 in Subsection 5.2, which also provides another example, in which the above equality 
holds.

The next result provides a sufficient criterion under which the estimate (7) is sharp. We call ω aspherical
if ∫

S2

u∗ω = 0, ∀u ∈ C∞(S2,M). (8)

In this case we call the pair (M, ω) symplectically aspherical. We denote 2n := dimM .

Proposition 3 (lower bound on the asymptotic Hofer-Lipschitz constant). The inequality

Lip∞(M,U) ≥
∫
U
ωn∫

M
ωn

(9)

holds if one of the following conditions is satisfied:

(a) The form ω is exact and the symplectic volume of M is finite.
(b) The manifold M is closed, ω is aspherical, and U is displaceable in a Hamiltonian way.

In the case (a) the proof of this result is based on the fact that in this situation the Calabi invariant 
descends to the Hamiltonian group. In the case (b) the proof of this result is based on an argument by 
Y. Ostrover used in the proof of [16, Theorem 1.1]. Its key ingredient is a result of M. Schwarz about action 
selectors (spectral invariants). We will deduce the following corollary from Proposition 3.
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Corollary 4 (lower bound on the asymptotic Hofer-Lipschitz constant). Assume that there exist numbers 
a > 0 and c ≥ 2a, and a closed symplectically aspherical symplectic manifold (M ′, ω′), such that (6) holds. 
Then we have

Lip∞(M,U) ≥ a

c
. (10)

It follows that under the hypotheses of this corollary, the inequality (7) is sharp.

Remark. In the case (b) the proof of Proposition 3 given below can be extended to the more general settings 
of [12, Theorems 1.1 and 1.3], which provide conditions under which the (asymptotic) spectral invariants 
descend to Ham(M).

1.3. Application to the relative Hofer diameter

Another immediate consequence of Theorem 1 is the following. Let (M, ω) be a symplectic manifold and 
U an open subset of M . We define the (extension) relative Hofer diameter of U in M to be

Diam(U,M) := Diam(U,M,ω) := sup
{
‖ϕ̃‖Mc

∣∣ϕ ∈ Hamc(U)
}
. (11)

This is the diameter of the distance function induced by the composition of the canonical extension homo-
morphism Hamc(U) → Hamc(M) with the Hofer norm, see Subsection 5.3.

Corollary 5 (upper bound on the relative Hofer diameter). Assume that there exists a symplectic manifold 
(M ′, ω′) and a number a > 0, such that

(M,U, ω) =
(
R2 ×M ′, B2(a) ×M ′, ωst ⊕ ω′).

Then we have

Diam(U,M) ≤ 2a.

Proof. This follows immediately from Theorem 1. �
In the case in which (M ′, ω′) =

(
R2n−2, ωst

)
for some n ∈ N J.-C. Sikorav proved this estimate with the 

right hand side replaced by 16a, see [20, Proposition, p. 62].2

Remark. The absolute Hofer diameter Diam(M, M) has been calculated for many symplectic manifolds. In 
all known examples it is infinite. For an overview and references, see [11].

The next result provides sufficient conditions under which Corollary 5 is sharp up to a factor of 2. Let 
(M, ω) be a symplectic manifold. We call a symplectic manifold (M, ω) (geometrically) bounded if there 
exist an almost complex structure J on M and a complete Riemannian metric g such that the following 
conditions hold:

• The sectional curvature of g is bounded and infx∈M ιgx > 0, where ιgx denotes the injectivity radius of g
at the point x ∈ M .

2 [20, Proposition, p. 62] states that for every bounded subset B of R2n and every Hamiltonian isotopy ϕ with support in B we 
have ‖ϕ1‖M

c ≤ 8‖ψ‖M
c , where ψ ranges over all compactly supported Hamiltonian diffeomorphisms of R2n, such that B and ψ(B)

are separated by some hyperplane. However, the proof only shows the estimate with a factor 16 instead of 8. See also [7, Theorem 
10, Section 5.6], where the mistake is corrected.
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• There exists a constant C ∈ (0, ∞) such that

|ω(v, w)| ≤ C|v| |w|, ω(v, Jv) ≥ C−1|v|2,

for all v, w ∈ TxM and x ∈ M . Here |v| :=
√

g(v, v).

Proposition 6 (lower bound on the relative Hofer diameter). Assume that there exist (M ′, ω′) and a as in 
Corollary 5. Suppose also that (M ′, ω′) is symplectically aspherical and geometrically bounded, and there 
exists a nonempty closed symplectic manifold (X, σ), such that

n := 1
2
(
dimM ′ − dimX − 2

)
≥ 0, B2(2a) × (B2(a))n ×X ⊆ M ′.

Then we have

Diam(U,M) ≥ a. (12)

The proof of this result is based on a leafwise fixed point theorem for coisotropic submanifolds proved by 
the second author in [22].

1.4. Organization of the article and notation

In Section 2 we prove our main result, Theorem 1. In Section 3 we prove the lower bounds on the 
asymptotic Hofer-Lipschitz constant stated in Proposition 3 and Corollary 4. In Section 4 we prove the 
lower bound on the relative Hofer diameter stated in Proposition 6. Section 5 contains some remarks and 
examples. In the appendix we prove Proposition 11, which is used in the proof of Proposition 3.

In the rest of this article we will use the abbreviated notation

‖ · ‖ := ‖ · ‖Mc : Hamc(M) → R.

1.5. Acknowledgements

We thank Felix Schlenk for making us aware that the Hofer-Lipschitz constant defined in formula (60)
below satisfies Lip(M,U) ≥ 1. We are grateful to Leonid Polterovich for sharing Proposition 12 (under the 
assumption (b)) with us. Finally, we would like to thank Dusa McDuff for valuable feedback and Peter 
Spaeth for useful discussions.

2. Proof of Theorem 1 (relative Hofer estimate)

For the proof of Theorem 1 we need the following. Let (M, ω) be a symplectic manifold, U an open subset 
of M with compact closure, and ϕ a Hamiltonian diffeomorphism on M that is generated by a function 
with support in [0, 1] × U .

Lemma 7 (pinching the generating Hamiltonian). For every real number c > ‖ϕ|U‖ there exists a real number 
c− and a smooth function H : [0, 1] × M → R that has compact support and Hamiltonianly generates ϕ, 
such that

c− ≤ H ≤ c− + c (on [0, 1] ×M). (13)
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In order to prove this lemma we choose a Hamiltonian for ϕ whose Hofer norm is close to that of ϕ. We 
reparametrize the Hamiltonian in such a way that at each time its oscillation is less than c. The idea is now 
to shift the Hamiltonian by the product of a suitable function of time and some cut-off function on M . We 
need the following.

Lemma 8. Let c ∈ (0, ∞) and f ∈ C
(
[0, 1], [0, ∞)

)
, such that 

∫ 1
0 f(t)dt < c. There exists a function τ ∈

C∞([0, 1], [0, 1]
)
, such that

τ ′ > 0, (14)

τ(s) = s, ∀s ∈ {0, 1}, (15)

f ◦ τ(s)τ ′(s) < c, ∀s ∈ [0, 1]. (16)

Proof of Lemma 8. By approximating f from above with some smooth positive function, we may assume 
without loss of generality that f > 0 and f is smooth. We define

σ(t) :=
∫ t

0 f(t′)dt′∫ 1
0 f(t′)dt′

. (17)

This is an orientation preserving diffeomorphism of [0, 1]. We define

τ := σ−1 : [0, 1] → [0, 1].

This map satisfies (14), (15). Furthermore, for every s ∈ [0, 1], we have

f ◦ τ(s)τ ′(s) = f ◦ τ(s)
∫ 1
0 f(t′)dt′

f ◦ τ(s) < c,

where in the last step we used our hypothesis. Hence (16) holds. This proves Lemma 8. �
Proof of Lemma 7. Since U has compact closure, by the smooth version of Urysohn’s lemma there exists a 
smooth function ρ : M → [0, 1] that has compact support and equals 1 on U . By our hypothesis c > ‖ϕ|U‖
there exists a smooth function H̃ : [0, 1] ×M → R that satisfies

ϕ1
H̃

= ϕ, (18)

and has support in [0, 1] ×U and Hofer norm less than c. The functions t �→ min H̃t, max H̃t are continuous. 
Therefore, by Lemma 8 with

f(t) := max H̃t − min H̃t

there exists a function τ is in the statement of that lemma. We define

Ĥ : [0, 1] ×M → R, Ĥ(s, x) := τ ′(s)H̃
(
τ(s), x

)
.

By (14), (16) this function satisfies the inequality

max Ĥs − min Ĥs < c, ∀s ∈ [0, 1].

We choose a smooth function g : [0, 1] → R, such that
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max Ĥs − c < g(s) < min Ĥs, ∀s ∈ [0, 1]. (19)

We define

c− :=
1∫

0

g(s)ds, G : [0, 1] ×M → R, Gs := (−g(s) + c−)ρ, H := Ĥ + G.

To see that the function H satisfies (13), recall that Ĥ vanishes outside of [0, 1] × U , and ρ equals 1 on U
and takes values in [0, 1]. The inequality c− ≤ H follows from these facts and the inequality g(s) < min Ĥs

in (19). The inequality H ≤ c− + c follows from these facts and the inequality max Ĥs − c < g(s) in (19). 
(This inequality implies that c + c− > max Ĥs ≥ 0 and therefore, Gs ≤ (c + c−)ρ ≤ c + c−.) Hence H
satisfies (13).

For every s ∈ [0, 1] the derivative dĤs has support inside of U , and the derivative dGs has support outside 
of U . It follows that for every s ∈ [0, 1], we have

ϕs
H = ϕs

G ◦ ϕs
Ĥ
.

Since 
∫ 1
0
(
− g(s) + c−

)
ds = 0, we have ϕ1

G = id. It follows that ϕ1
H = ϕ1

Ĥ
= ϕ, where we used (18). Hence 

H has the desired properties. This proves Lemma 7. �
Proof of Theorem 1. Without loss of generality we may assume that there exist a ∈ (0, ∞), N ∈ N, and a 
symplectic manifold (M ′, ω′), such that

M = B2(Na) ×M ′, (20)

ω = ωst ⊕ ω′,

U = B2(a) ×M ′. (21)

Let ϕ ∈ Hamc(U) and

c > ‖ϕ‖

be a real number. We choose a function H ′ ∈ C∞
c

(
[0, 1] × U

)
, such that

ϕ1
H′ = ϕ, ‖|H ′‖| < c.

We choose an open subset V ⊆ M whose closure is compact and contained in U , such that [0, 1] ×V contains 
the support of H ′. By Lemma 7 with M, U replaced by U, V , there exists a real number c−, a compact 
subset K of U , and a smooth function H : [0, 1] × U → R that has support contained in [0, 1] ×K, such 
that

ϕ1
H = ϕ

and the inequalities (13) holds. We define H̃ : [0, 1] ×M → R to be equal to H on [0, 1] × U and 0 outside 
of this set.

An elementary argument using (20), (21), shows that there exists ψ ∈ Hamc(M), such that

‖ψ‖ < a, (22)

K,ψ(K), . . . , ψN−1(K) are (pairwise) disjoint, (23)
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where ψi := ψ ◦ · · · ◦ ψ (i factors). We abbreviate

ϕi := ϕ
i
N

H̃
, ϕi,j := ψjϕiψ

−j , ∀i, j ∈ {0, . . . , N − 1}.

We define

χ := ϕN−1,0ϕN−2,1 · · ·ϕ1,N−2, (24)

where for simplicity we leave out the composition signs. We define F : [0, 1] ×M → R by

F (t, x) :=

⎧⎨⎩
H t+N−i−1

N
◦ ψ−i(x)

N
, on ψi(K), ∀i ∈ {0, . . . , N − 1},

0, otherwise.
(25)

We denote by ϕ̃ : M → M the map given by ϕ on U and the identity outside U .

Claim 1. We have

ϕ̃ = ϕ1
Fχψχ

−1ψ−1. (26)

Proof of Claim 1. We have

ψχ−1ψ−1 = ψψN−2ϕ−1
1 ψ2−NψN−3ϕ−1

2 ψ3−N · · ·ϕ−1
N−1ψ

−1

= ψN−1ϕ−1
1 ψ1−NψN−2ϕ−1

2 ψ2−N · · ·ψϕ−1
N−1ψ

−1

= ϕ−1
1,N−1 · · ·ϕ−1

N−1,1. (27)

Since ϕi equals the identity outside K, it follows from (23) that ϕi,j and ϕi′,j′ commute, if j �= j′. Combining 
this with (27), (24), it follows that

χψχ−1ψ−1 =

⎧⎪⎨⎪⎩
ϕN−1,0 on K,

ϕN−i−1,iϕ
−1
N−i,i on ψi(K), ∀i ∈ {1, . . . , N − 1},

id otherwise.

Using (25), equality (26) follows. This proves Claim 1. �
Using Claim 1, we have

‖ϕ̃‖ ≤ ‖ϕ1
F ‖ + ‖χψχ−1‖ + ‖ψ−1‖. (28)

By the inequalities (13) we have

maxF − minF ≤ c

N

and therefore

‖ϕ1
F ‖ ≤ c

N
.

Combining this with (28), the equalities
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‖χψχ−1‖ = ‖ψ‖, ‖ψ−1‖ = ‖ψ‖,

and (22), it follows that

‖ϕ̃‖ <
c

N
+ 2a.

Since this holds for all c > ‖ϕ‖, the desired inequality (3) follows. This proves Theorem 1. �
Remark. The idea of writing ϕ̃ as in (26) comes from [2, proof of the theorem on p. 64], in which a 
given Hamiltonian diffeomorphism of R2n is written as a product of autonomous pieces. The identity (26)
corresponds to the algebraic identity provided by the proof of [1, Lemma 2.4].

3. Proofs of Proposition 3 and Corollary 4 (lower bound on the asymptotic Hofer-Lipschitz constant)

In this section we prove Proposition 3 and Corollary 4. To treat the case (a) in Proposition 3, we need 
the following. Let (M, ω) be an exact symplectic manifold.3 We denote 2n := dimM and define the Calabi 
homomorphism for (M, ω) to be the map

Cal := Cal(M,ω) : Hamc(M) → R, Cal(ϕ) :=
1∫

0

⎛⎝∫
M

Htω
n

⎞⎠ dt, (29)

where H ∈ C∞
c

(
[0, 1] × M

)
is an arbitrary function, whose Hamiltonian time-1 flow equals ϕ. This map 

is well-defined, i.e., it does not depend on the choice of H. This follows from the definition of the Calabi 
homomorphism on Hamc(M) as in [14, (10.3.2), p. 407], and from [14, Lemma 10.3.4, p. 408], which links 
that definition with the above definition of Cal. In the proof of Proposition 3 in the case (a) we will use the 
following remark.

Remark 9. Let M be a (smooth) manifold, Ω a volume form on M , and F : M → R a continuous function, 
such that 0 ∈ F (M). Then the following inequality holds:(

sup
M

F − inf
M

F

)∫
M

Ω ≥
∫
M

F Ω.

Proof of Proposition 3 in the case (a). Let ϕ ∈ Hamc(M). Let c ∈
(
‖ϕ‖, ∞

)
. We choose H ∈ C∞

c

(
[0, 1] ×

M
)
, such that ϕ1

H = ϕ and c ≥ ‖ |H‖ |. For every measurable subset X ⊆ M we write |X| :=
∫
X
ωn. We have

c ≥‖|H‖|

=
1∫

0

(
max
M

Ht − min
M

Ht

)
dt

≥ 1
|M |

1∫
0

⎛⎝∫
M

Htω
n

⎞⎠ dt

(using Remark 9 and our hypothesis that |M | is finite)

3 Together with our standing assumption that M has no boundary, this implies that each connected component of M is noncom-
pact.
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=Cal(ϕ)
|M | .

Since c > ‖ϕ‖ is arbitrary, it follows that

‖ϕ‖ ≥ Cal(ϕ)
|M | . (30)

Let now C ∈ [1, ∞). We choose a function H ∈ C∞(U, [0, C]
)

with compact support, such that∫
U

Hωn ≥ (C − 1)|U |. (31)

We denote ϕ := ϕ1
H and by ϕ̃ : M → M the map given by ϕ on U and the identity outside U . We have

‖ϕ̃‖ ≥ Cal(ϕ̃)
|M | (by (30))

=

∫
U

Hωn

|M | (by (29))

≥ (C − 1) |U |
|M | (using (31)) (32)

Since 0 ≤ H ≤ C (on U), we have

‖ϕ‖ ≤ ‖|H‖| ≤ C.

Combining this with (32), it follows that

‖ϕ̃‖
‖ϕ‖ ≥ C − 1

C

|U |
|M | .

Using that C is arbitrarily big, the inequality ‖ϕ‖ ≥ ‖ϕ̃‖, and again (32), it follows that

Lip∞(M,U) ≥ |U |
|M | .

This proves Proposition 3 in the case (a). �
To prove Proposition 3 in the case (b), we will now adapt the proof of [16, Theorem 1.1], which is based 

on a result of M. Schwarz.
Let (M, ω) be a symplectically aspherical symplectic manifold (i.e., (8) holds) and H ∈ C∞([0, 1] ×M

)
. 

We define the action spectrum of H as follows. We denote by D ⊆ C the closed unit disk, and define the 
set of contractible H-periodic points to be

P◦(H) :=
{
x0 ∈ M

∣∣ ∃u ∈ C∞(D,M) : ϕt
H(x0) = u(e2πit), ∀t ∈ [0, 1]

}
.

We define the H-twisted symplectic action of x0 ∈ P◦(H) to be

AH(x0) := −
∫

u∗ω −
1∫
H
(
t, ϕt

H(x0)
)
dt, (33)
D 0
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where u ∈ C∞(D, M) is any map satisfying ϕt
H(x0) = u(e2πit), for every t ∈ [0, 1]. It follows from asphericity 

of ω that this number does not depend on the choice of u and hence is well-defined. We define the action 
spectrum of H to be

ΣH := AH(P◦(H)) ⊆ R.

The proof of Proposition 3 in the case (b) is based on the following result, which is a consequence of an 
argument of M. Schwarz.

Proposition 10 (lower bound on Hofer-norm). Assume that M is closed and connected, and that ω is as-
pherical. Then for every H ∈ C∞([0, 1] ×M

)
we have

‖ϕ1
H‖ ≥ min ΣH +

∫ 1
0
(∫

M
Htω

n
)
dt∫

M
ωn

. (34)

Remark. By [19, Proposition 3.7] the action spectrum ΣH is compact. It follows that the minimum min ΣF

exists. Hence the right hand side of (34) makes sense.

We call F ∈ C∞([0, 1] ×M
)

mean normalized (w.r.t. ω) if∫
M

Ftω
n = 0, ∀t ∈ [0, 1]. (35)

We denote

H :=
{
F ∈ C∞([0, 1] ×M

) ∣∣∣∣F is mean normalized
}
.

Proof of Proposition 10. It follows from [13, Theorem 12.4.4] and [12, Proposition 3.1(i)] that there exists 
a map

c : H → R,

such that for every F ∈ H, we have

c(F ) ∈ ΣF , (36)

‖ϕ1
F ‖ ≥ c(F ). (37)

Namely, in the notation of [13, Theorem 12.4.4] the spectral invariant c(F ) := ρ(ϕ̃F ; 1) satisfies (36) by [13, 
Theorem 12.4.4, (Spectrality)] and the inequality

‖|F‖| ≥ c(F ), ∀F ∈ H, (38)

by [13, Theorem 12.4.4, (Continuity), (12.4.5)]. Here we used the definition (1) and the assumptions that 
M is closed and ω is aspherical, and therefore strongly semi-positive and rational on π2(M) (conditions [13, 
(8.5.1), (12.4.1)]). Using again our hypothesis that ω is aspherical, it follows from [12, Proposition 3.1(i)]
that for all F, F ′ ∈ H satisfying ϕ1

F = ϕ1
F ′ we have c(F ) = c(F ′). (This means that the spectral invariant 

c descends from the universal cover of Ham(M) to Ham(M).) Combining this with (38), inequality (37)
follows.
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Let now H ∈ C∞([0, 1] ×M
)
. We define

f : [0, 1] → R, f(t) :=
∫
M

Htω
n∫

M
ωn

,

and F : [0, 1] ×M → R by Ft(x) := F (t, x) := Ht(x) − f(t). By straight-forward arguments this function is 
mean normalized, generates ϕ1

H , and satisfies

ΣF = ΣH +
1∫

0

f(t)dt.

Inequality (34) follows from this and (36), (37). This proves Proposition 10. �
In the proof of Proposition 3 in the case (b) we will also use the following result, which is due to 

Y. Ostrover. Let (M, ω) be a symplectic manifold and H, H ′ ∈ C∞
c ([0, 1] × M). We denote by H#H ′ :

[0, 1] ×M → R the time-concatenation of H and H ′, given by

(H#H ′)t :=
{

2H2t, if t ∈ [0, 1
2 ],

2H ′2t−1
, if t ∈ (1

2 , 1].

Proposition 11 (action for concatenated Hamiltonian). Assume that Ht, H ′
t = 0 for t in some neighbourhood 

of {0, 1}, and defining X :=
⋃

t∈[0,1] suppHt,4 we have

ϕ1
H′(X) ∩X = ∅. (39)

Then the following holds:

(i)

P◦(H#H ′) = P◦(H ′). (40)

(ii) If ω is aspherical then we have

AH#H′(x0) = AH′(x0), ∀x0 ∈ P◦(H ′). (41)

This result follows from the proof of [16, Proposition 2.2]. For the convenience of the reader we prove it 
on page 25.

Proof of Proposition 3 in the case (b). Without loss of generality, we may assume that M is connected and 
U �= ∅. For every measurable subset X ⊆ M we write |X| :=

∫
X
ωn. Let C > 0 and

c < c0 := |U |
|M | (42)

be a positive constant. We denote by ϕ̃ : M → M the map given by ϕ on U and the identity outside U .

4 Here supp denotes the support of a function.
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Claim 1. There exists ϕ ∈ Hamc(U) such that

‖ϕ̃‖ ≥ max{C, c‖ϕ‖}. (43)

Proof of Claim 1. By hypothesis there exists a function F ∈ C∞([0, 1] ×M
)

such that

ϕ1
F (U) ∩ U = ∅. (44)

Reparametrizing F , we may assume that Ft = 0 for t in some neighbourhood of {0, 1}. Furthermore, 
replacing Ft by Ft −

∫
M

Ftω
n/|M |, we may assume that F is mean normalized, i.e., it satisfies (35). We 

choose a compact subset K ⊆ U such that

|K|
|M | > c. (45)

Furthermore, we choose a smooth function H0 : U → [0, 1] with compact support, such that

H0|K = 1. (46)

We define

t0 := max

⎧⎪⎪⎨⎪⎪⎩
‖|F‖| − min ΣF

|K|
|M | − c

,
C

c

⎫⎪⎪⎬⎪⎪⎭ . (47)

It follows from (45) that t0 < ∞. We define

ϕ := ϕ1
t0H0

.

Claim 2. This map satisfies inequality (43).

Proof of Claim 2. We choose a function f ∈ C∞([0, 1], [0, 1]
)

such that f = i in a neighbourhood of i, for 
i = 0, 1. We define

H : [0, 1] ×M → R, Ht(x) :=
{

f ′(t)t0H0(x), if x ∈ U,

0, otherwise.
(48)

We have

ϕ1
H = ϕ̃. (49)

Using (44), the fact that the support of H0 is contained in U , and asphericity of ω, the hypotheses of 
Proposition 11 with H ′ := F are satisfied. Hence applying this proposition, it follows that

ΣH#F = ΣF . (50)

Applying Proposition 10, we have

‖ϕ1
H#F ‖ ≥ min ΣH#F +

1∫
0

⎛⎝∫
M

(H#F )tωn

⎞⎠ dt

. (51)
|M |
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Using the triangle inequality and the fact ‖ϕ1
F ‖ ≤ ‖ |F‖ |, we have

‖ϕ1
H‖ ≥ ‖ϕ1

H#F ‖ − ‖|F‖|. (52)

We have

1∫
0

⎛⎝∫
M

(H#F )tωn

⎞⎠ dt =
1∫

0

⎛⎝∫
M

Htω
n

⎞⎠ dt +
1∫

0

⎛⎝∫
M

Ftω
n

⎞⎠ dt

≥ t0|K| + 0 (using (48), (46), (35)), (53)

‖ϕ̃‖ = ‖ϕ1
H‖ (using (49))

≥ min ΣH#F − ‖|F‖| + t0
|K|
|M | (using (52), (51), (53))

≥ ct0 (using (50), (47)). (54)

Using again (47), it follows that

‖ϕ̃‖ ≥ C. (55)

Condition (46), the fact K �= ∅, and the inequality H0 ≤ 1 imply that maxU H0 = 1. Since H0 has compact 
support and satisfies H0 ≥ 0, we have minU H0 = 0. Using (48), the fact f(i) = i, for i = 0, 1, and the 
Fundamental Theorem of Calculus, it follows that

‖|H|[0,1]×U‖| = t0.

Since ϕ = ϕ1
H|[0,1]×U

, it follows that

‖ϕ‖ ≤ t0.

Combining this with (54) and (55), inequality (43) follows. This proves Claim 2 and hence Claim 1. �
We choose a map ϕ as in Claim 1. The fact ‖ϕ‖ ≥ ‖ϕ̃‖ and inequality (43) imply that ‖ϕ‖ ≥ C. Inequality 

(43) also implies that ‖ϕ̃‖/‖ϕ‖ ≥ c. It follows that

Lip∞(M,U) ≥ c.

Since c < c0 (as defined in (42)) is arbitrary, the estimate (9) follows. This completes the proof of Proposi-
tion 3 in the case (b). �
Proof of Corollary 4. We choose an area form σ on the two-torus T 2 such that 

∫
T2 σ = c, and a symplectic 

embedding ψ : B2(c) → T 2. Let ε > 0. We define

(M,U, ω) :=
(
T 2 ×M ′, ψ(B2(a− ε)) ×M ′, σ ⊕ ω′).

Then the hypotheses of Proposition 3 are satisfied. (That the subset U ⊆ M is displaceable in a Hamiltonian 
way, follows from our hypothesis c ≥ 2a and the fact that every open two-dimensional ball of area less than 
a is displaceable inside every ball of area 2a.) Therefore, applying this theorem, it follows that
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Lip∞(M,U) ≥
∫
U
ωn∫

M
ωn

=
(a− ε)

∫
M ′ ω

′n′

c
∫
M ′ ω′n′ ,

where 2n′ := dimM ′. Since ε > 0 is arbitrary, the claimed inequality (10) follows. This proves Corol-
lary 4. �
4. Proof of Proposition 6 (lower bound on the relative Hofer diameter)

In the proof of Proposition 6 we will use the following definition. Let (M, ω) be a symplectic manifold 
and N ⊆ M a coisotropic submanifold. We define the action spectrum and the minimal area of (M, ω, N)
as

S(M,ω,N) :=⎧⎨⎩
∫
D

u∗ω

∣∣∣∣u ∈ C∞(D,M) : ∃ isotropic leaf F ⊆ N : u(S1) ⊆ F

⎫⎬⎭ ,

A(M,ω,N) := inf
(
S(M,ω,N) ∩ (0,∞)

)
∈ [0,∞].

Furthermore, for n ∈ N and a > 0 we denote by S2n−1(a) ⊆ R2n the sphere of radius 
√
a/π, around 0.

Proof of Proposition 6. Let ε > 0. We define

N := S1(a− ε) × S1(a− ε) × S2n−1(a− ε) ×X.

This is a closed and regular coisotropic submanifold of U . We choose a map ϕ0 ∈ Hamc(B2(2a)) such that

ϕ0(S1(a− ε)) ∩ S1(a− ε) = ∅. (56)

(That there exists such a map follows the fact that every open two-dimensional ball of area less than a
is displaceable inside every ball of area 2a.) Since N is compact, by a cutoff argument there exists a map 
ϕ ∈ Hamc(U) such that ϕ =

(
idR2 ×ϕ0 × id(B2(a))n×X

)
on N . (See for example [21, Lemma 35].) It follows 

from (56) that

ϕ(N) ∩N = ∅. (57)

We define V := R2 ×B2(2a) × (B2(a))n ×X. It follows from the proof of [22, Proposition 1.3]

S
(
W,ωst, S

2m−1(b)
)

= bZ (58)

for every m ∈ N, b ∈ (0, ∞), and open subset W of R2m containing B
2m(b). Since by hypothesis, ω′ is 

aspherical, the same holds for σ. Combining this with [21, Lemma 30], it follows that

S
(
X,σ,X

)
= {0}.

Using (58) and [21, Remark 31], it follows that

A
(
V, ω|V , N

)
= a− ε. (59)

Using again that ω′ is aspherical and [21, Lemma 33], we have
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A(M,ω,N) = A
(
V, ω|V , N

)
.

We denote by ϕ̃ : M → M the map given by ϕ on U and the identity outside U . Combining this with (59)
and using (57) and geometric boundedness of (M ′, ω′), it follows from [22, Theorem 1] that ‖ϕ̃‖ ≥ a − ε. 
Since ε > 0 is arbitrary, it follows that

‖ϕ̃‖ ≥ a.

The inequality (12) follows from this. This proves Proposition 6. �
5. Remarks on Hofer-Lipschitz constants and Corollary 2, examples with big asymptotic Hofer-Lipschitz 
constant, remarks on the relative Hofer diameter

5.1. Hofer-Lipschitz constants

Let (M, ω) be a symplectic manifold and U ⊆ M an open subset. Instead of Lip∞(M, U) (as defined in 
(5)), consider the Hofer-Lipschitz constant of (M, U, ω), which we define as

Lip(M,U) := Lip(M,U, ω) := sup
{
‖ϕ̃‖Mc
‖ϕ‖Uc

∣∣∣∣ id �= ϕ ∈ Hamc(U)
}
. (60)

This is the Lipschitz constant of the natural inclusion (2) w.r.t. the Hofer norms for U and M . By [8, 
Theorem 1.1] every ϕ ∈ Hamc(U) other than id has positive Hofer norm. Hence this definition makes sense. 
However, if M is closed and U �= ∅ then

Lip(M,U) = 1, (61)

hence this number is uninteresting. To see that (61) holds, note that without loss of generality, we may 
assume that M is connected. By definition, we have Lip(M, U) ≤ 1. Furthermore,5 let H ∈ C∞

c (U) be a 
non-constant function. We define H̃ : M → R by H̃(x) := H(x), if x ∈ U , and H̃(x) := 0, otherwise. It 
follows from [10, Theorem 1.6(i) and the definition of a ν-geodesic on p. 203] that there exists t0 > 0, such 
that

‖ϕt0
H̃
‖Mc = t0

(
max
M

H̃ − min
M

H̃
)
.

The right hand side is bounded below by ‖ϕt0
H‖Uc . It follows that Lip(M, U) ≥ 1, and therefore, equality 

(61) holds.

5.2. Corollary 2 (upper bound on the asymptotic Hofer-Lipschitz constant)

In view of the estimate (7), it is natural to ask the following question.

Question. Does there exist a constant C > 0, such that for every symplectic manifold (M, ω) of finite volume 
and every open subset U ⊆ M , the estimate

Lip∞(M,U) ≤ C

∫
U
ωn∫

M
ωn

(62)

5 We were made aware of the following argument by F. Schlenk.
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holds, where 2n := dimM?

The answer is negative, even if we allow the constant C to depend on the symplectic manifold. This 
follows from the next result, which in the case (a) is based on a technique by F. Lalonde and D. McDuff [9, 
proof of Lemma 5.7, p. 64], and in case (b) is due to L. Polterovich (private communication).

Proposition 12 (big asymptotic Hofer-Lipschitz constant). The equality

Lip∞(M,U) = 1 (63)

holds if (M, ω, U) is given by one of the following:

(a) (M, ω) is a two-dimensional symplectic manifold and U ⊆ M an open neighbourhood of some non-
contractible embedded circle in M .

(b) M is the complex projective space CPn for some n ∈ N, ω the Fubini-Studi form, and U ⊆ M an open 
neighbourhood of the real projective space RPn (embedded in CPn in the standard way).

Remarks.

• Since we may choose U to have arbitrary small volume in these examples, it follows that the bound (62)
does not hold.

• The equality (63) means that there are arbitrarily Hofer-large Hamiltonian diffeomorphisms on U whose 
Hofer norm does almost not shrink when trivially extending the diffeomorphism to M . This equality is 
optimal, since Lip∞(M, U) is always bounded above by 1.

• The set U in these examples is non-displaceable, since the same holds for the circle and RPn, respec-
tively. Hence the statement of Proposition 3 continues to hold for some non-symplectically-aspherical 
symplectic manifolds and some small non-displaceable subsets U .

In the proof of Proposition 12 in the case (a) we will use the following standard fact.

Lemma 13 (fundamental group of surface). If a connected real surface M is not diffeomorphic to the real 
projective space RP2 then its fundamental group is torsionfree.

Proof of Proposition 12 in the case (a). Let (M, ω, U) be as in (a). In order to prove equality (63), it suffices 
to prove the inequality

Lip∞(M,U) ≥ 1. (64)

We choose a noncontractible embedded circle L in M that is contained in U . We also choose a universal 
cover π : M̃ → M . We equip M̃ with the symplectic form ω̃ := π∗ω. Let C ∈ [4, ∞).

Claim 1.

(i) The total area of ω̃ is infinite.
(ii) There exists a function H ∈ C∞(M, [0, C]

)
with compact support contained in U , and compact subman-

ifolds6 K̃± of M̃ that are symplectomorphic to B
2(C−3), such that the following holds. If ϕ̃ : M̃ → M̃

is a continuous lift of ϕ1
H in the sense that π ◦ ϕ̃ = ϕ1

H ◦ π, then ϕ̃ displaces K̃+ or K̃−.

6 with boundary.
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Proof of Claim 1. We equip R × R and (R/Z) × R with the canonical symplectic forms. By Weinstein’s 
Lagrangian neighbourhood theorem there exist a ∈ (0, ∞), an open neighbourhood V of L that is contained 
in U , and a symplectomorphism ψ : (R/Z) × (−a, a) → V , such that ψ

(
(R/Z) × {0}

)
= L.

We denote by π′ : R × (−a, a) → (R/Z) × (−a, a) the canonical projection. We choose a map ψ̃ ∈
C∞(R × (−a, a), M̃

)
satisfying

π ◦ ψ̃ = ψ ◦ π′. (65)

By our hypothesis that L is noncontractible, the condition ψ
(
(R/Z) ×{0}

)
= L, and Lemma 13, the map ψ̃

is injective and therefore a symplectic embedding. It follows that the image of ψ̃ has infinite area. Statement 
(i) follows.

To prove (ii), we choose a function f ∈ C∞((−a, a), [0, C]
)

with compact support, such that

f(p) = C|p|
a

on
(
−a

C − 1
C

,− a

C

)
∪
(
a

C
, a

C − 1
C

)
. (66)

We denote by pr : (R/Z) × (−a, a) → (−a, a) the canonical projection. We define the function H : M → R

by

H :=
{

f ◦ pr ◦ψ−1 on V,

0 otherwise.
(67)

We denote

U+ :=
(

0, C
a

)
×
(
a

C
, a

C − 1
C

)
, U− := −U+ =

{
− (q, p)

∣∣ (q, p) ∈ U+}, (68)

and choose a compact submanifold

K± ⊆ U± (69)

that is symplectomorphic to B
2(C − 3). We define

K̃± := ψ̃(K±). (70)

Since ψ̃ is a symplectic embedding, K̃± is symplectomorphic to B
2(C − 3).

Let ϕ̃ : M̃ → M̃ be a continuous lift of ϕ1
H . For every c ∈ R we define the shift map sc : R × (−a, a) →

R × (−a, a) by sc(q, p) := (q + c, p). We denote by pr′ : R × (−a, a) → (−a, a). It follows from the equality 
π ◦ ϕ̃ = ϕ1

H ◦ π and (65), (67) that there exists an integer N , such that7

ψ̃−1 ◦ ϕ̃ ◦ ψ̃ = sN ◦ ϕ1
f◦pr′ .

Using (66), (68), (69), (70), it follows that ϕ̃ displaces K̃+ or K̃−. This proves (ii) and completes the proof 
of Claim 1. �

We choose H and K̃± as in part (ii) of this claim. Let F ∈ C∞
c

(
[0, 1] ×M

)
be such that

ϕ1
F = ϕ1

H .

7 This follows from the fact that ϕ̃ and ϕ1
f◦pr′ are continuous lifts of the same map, namely ϕ1

H , modulo conjugation by ψ̃.
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The time-1 flow of F ◦ π is well-defined on M̃ and lifts the flow ϕ1
F = ϕ1

H . Therefore, by the conclusion of 
part (ii) of Claim 1 the map ϕ1

F◦π displaces K̃+ or K̃−.
Since M admits a noncontractible embedded circle (namely L), it is not diffeomorphic to S2. Using that 

M is orientable, it follows that its universal cover is diffeomorphic to R2. Using Claim 1(i) and a result of 
R. Greene and K. Shiohama [6, Theorem 1],8 it follows that (M̃, ̃ω) is symplectomorphic to R2 with the 
standard form. Therefore (M̃, ̃ω) is geometrically bounded.

Since K̃± is symplectomorphic to B
2(C − 3) and ϕ1

F◦π displaces K̃+ or K̃−, the sharp energy-Gromov-
width inequality9 therefore implies that

‖|F ◦ π‖| ≥ C − 3.

Since ‖ |F‖ | = ‖ |F ◦ π‖ |, it follows that

‖ϕ1
H‖ ≥ C − 3.

Since 0 ≤ H ≤ C, we have

∥∥ϕ1
H|U

∥∥ ≤ ‖|H|U‖| ≤ C.

(The flow ϕ1
H|U

is well-defined on U , since H has support contained in U .) Since C ≥ 4 is arbitrary, the 
inequality (64) follows. This proves Proposition 12 in the case (a). �
Remarks.

• The above proof technique is based on the proof of [9, Lemma 5.7, p. 64].
• In the above proof the time-t flow of F ◦ π need not lift ϕt

H for a general t ∈ [0, 1]. Therefore, in 
Claim 1(ii) we may not assume that ϕ̃ is the time-1 map of a continuous lift of the flow of H (for all 
times).

• In the proof of Claim 1(ii) the flow ϕ1
f◦pr′ moves K+ in positive q-direction and K− in negative q-

direction. Since the map ϕ̃ differs from this flow by a shift in q-direction (and conjugation by ψ̃), ϕ̃ may 
displace only one of the sets K̃±, not necessarily both.

In the proof of Proposition 12 in the case (b) with n ≥ 2 we will use the following. For every topological 
space X, abelian group A, and integer k we denote by Hk(X; A) the k-th homology of X with coefficients 
in A.

Lemma 14 (map on homology induced by inclusion of real projective space). For every n ∈ N and k ∈{
0, . . . , �n

2 �
}

the map

H2k
(
RPn;Z/2Z

)
→ H2k

(
CPn;Z/2Z

)
(71)

induced by the canonical inclusion RPn → CPn does not vanish.

8 This result is based on Moser isotopy.
9 See e.g. [21, Corollary 3].
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Proof of Lemma 14. We denote by [·] : Cn+1 \ {0} → CPn the canonical projection. We denote by 0 the 
origin in Cn−2k and define

X :=
{
[x,0]

∣∣x ∈ R2k+1 \ 0
}

Y :=
{[

z0, z1, iz1, . . . , zk, izk, zk+1, zk+2, . . . , zn−k

] ∣∣
(z0, . . . , zn−k) ∈ Cn−k+1 \ 0

}
.

These sets are closed real submanifolds of CPn10 Denoting by 0 the origin in Cn, we have

X ∩ Y = {[1,0]}.

This intersection is transverse, as follows from a calculation in standard charts. It follows that X represents 
a nonzero Z/2Z-homology class. Since it is the image of the submanifold RP2k of RPn under the canonical 
inclusion RPn → CPn, the statement of Lemma 14 follows. �
Proof of Proposition 12 in the case (b). Let (M, ω, U) be as in (b). We denote L := RPn ⊆ CPn, respec-
tively. Let C ∈ (0, ∞). We choose a function H ∈ C∞

c (U) such that∫
U

Hωn = 0, −1 ≤ H ≤ C, H = C on L.

It follows that

‖ϕ1
H‖ ≤ ‖|H‖| = max

M
H − min

M
H ≤ C + 1. (72)

(Recall that we use the abbreviated notation

‖ · ‖ := ‖ · ‖Uc : Hamc(U) → R.)

Claim 1. If n = 1 then we have11

‖ϕ̃1
H‖ ≥ C − π. (73)

Otherwise we have

‖ϕ̃1
H‖ ≥ C. (74)

Since C > 0 is arbitrary, the inequality (64) and therefore the equality (63) follow from this claim and 
(72).

Proof of Claim 1. Consider the case in which n = 1. The submanifold L = RP1 of CP1 is a stem in the 
sense of the definition on p. 775 in [5]. Therefore, by [5, Theorems 1.8 and 1.4], L is stably non-displaceable. 
By [17, 7.2.A] the fundamental group of Ham(CP1)12 is isomorphic to Z2, and its nontrivial element γ is 
induced by the 1-turn rotation, where we view CP1 as the sphere S2. This element has norm ν(γ) (defined as 

10 They are diffeomorphic to RP2k and CPn−k, respectively.
11 Here the tilde is defined as in (2).
12 Ham(M) denotes the group of Hamiltonian diffeomorphisms of M , which agrees with Hamc(M) if M is closed.
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in [17, Definition 7.3.A]) equal to π. Hence inequality (73) follows from [17, Theorem 7.4.A], using Definition 
7.3.A in that book and the facts 

∫
U
Hωn = 0 and H = C on L.

Consider now the case in which n ≥ 2. To see that (74) holds, we denote by

μ : Ham(CPn) → R

the Floer homological Calabi quasi-morphism of CPn associated with the fundamental class [CPn]. See [3, 
Sections 3.4 and 4.3].13 By [3, Corollary 3.6] μ satisfies the bound

‖ϕ‖ ≥ |μ(ϕ)|∫
CPn ωn

, ∀ϕ ∈ Ham(CPn). (75)

We define

ζ : C∞(CPn) → R, ζ(F ) :=
∫
CPn Fωn − μ(ϕ1

F )∫
CPn ωn

. (76)

Real projective space RPn is a closed monotone Lagrangian submanifold of CPn with minimal Maslov 
number NRPn equal to n + 1. This follows from [15, Examples. (i), p. 954]. Since n ≥ 2, by Lemma 14 the 
map (71) does not vanish for k = 1. Since 2 > dim(RPn) + 1 − NRPn = 0, this means that RPn satisfies 
the Albers condition, as defined in [5, p. 785]. Therefore, by [5, Theorem 1.17] RPn is [CPn]-heavy.14 We 
define H̃ : CPn → R by H̃(x) := H(x), if x ∈ U , and H̃(x) := 0, otherwise. Since RPn is [CPn]-heavy and 
H̃ = C on RPn, it follows that

ζ(H̃) ≥ C.

Combining this with the equality 
∫
H̃ωn = 0 and the definition (76) of ζ, we obtain

−
μ(ϕ1

H̃
)∫

CPn ωn
≥ C.

Combining this with the bound (75), inequality (74) follows. This proves Claim 1. �
This completes the proof of inequality (64) and hence of equality (63). This proves Proposition 12 in the 

case (b). �
Remarks.

• The above proof was suggested to us by L. Polterovich (private communication).
• The map ζ defined in (76), is a symplectic quasi-state. See [4], definition (4) on p. 84 and the discussion 

afterwards.

13 The construction of the map μ as in [3, Sections 3.4 and 4.3] involves a unity of a factor in a splitting of QHev(M), the 
even-dimensional quantum homology. (See [3, p. 1654].) Since QHev(CPn) is a field, [CPn] is indeed such a unity.
14 Heavyness is defined in [5, Definition 1.3, p. 779]. For the convenience of the reader we recall this definition here. Let (M, ω)
be a closed symplectic manifold for which the spectral invariants are well defined and enjoy the standard list of properties given 
by [13, Theorem 12.4.4]. We denote by QH•(M, ω) the (even-degree part of the) quantum homology of (M, ω) as in [5, Subsection 
1.3.2, p. 778]. Let a ∈ QH•(M, ω) be a nonzero idempotent and H ∈ C∞([0, 1] × M, R

)
be a Hamiltonian that is 1-periodic in 

time. We denote by c(a, H) the spectral invariant of (a, H), as in [13, (12.4.3), p. 508]. We define the functional ζa : C∞(M) → R

by ζa(H) := liml→∞
c(a,lH)

l . We call a closed subset X of M a-heavy if ζa(H) ≥ infX H, for every H ∈ C∞(M).
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5.3. Relative Hofer diameter

In this subsection we explain the remark made after (11). The diameter of a pseudo-distance function d
on a set X is by definition the number

diam(d) := sup
{
d(x, y)

∣∣x, y ∈ X
}
.

Let (M, ω) be a symplectic manifold and U ⊆ M an open subset. We can view Diam(U, M) (defined in (11)) 
as such a diameter, as follows. Let G be a group. By a semi-norm on G we mean a map ‖ · ‖ : G → [0, ∞]
such that

‖1‖ = 0,

‖g−1‖ = ‖g‖,
‖gh‖ ≤ ‖g‖ + ‖h‖,

for every g, h ∈ G. We call the last of these conditions the triangle inequality. We call ‖ · ‖ a norm if it is 
also nondegenerate, i.e., for every g ∈ G it satisfies

‖g‖ = 0=⇒g = 1.

Every semi-norm ‖ · ‖ on G gives rise to a pseudo-distance function d(‖ · ‖) on G via

d(‖ · ‖)(g, h) := ‖g−1h‖.

The diameter of d(‖ · ‖) is given by

diam(d(‖ · ‖)) = sup
g∈G

‖g‖.

Consider now the canonical extension homomorphism E : Hamc(U) → Hamc(M) given by (2). The map 
‖ · ‖Mc ◦ E : Hamc(U) → [0, ∞) is a norm. (Nondegeneracy follows from Theorem 1.1 in the article [8] of 
D. McDuff and F. Lalonde.) The relative Hofer-diameter of U in M is given by the diameter of the distance 
function induced by this norm,

Diam(U,M) = diam
(
d
(
‖ · ‖Mc ◦ E

))
.

Appendix A. Proof of Proposition 11 (action for concatenated Hamiltonian)

For the proof of Proposition 11, we need the following. Let (M, ω) be a symplectic manifold. For a 
function H ∈ C∞

c ([0, 1] ×M) and x0 ∈ M we denote

DH
x0

:=
{
u ∈ C∞(D,M)

∣∣u(e2πit) = ϕt
H(x0), ∀t ∈ [0, 1]

}
. (77)

Lemma 15 (concatenated Hamiltonian and symplectic action). Let H, H ′ ∈ C∞
c

(
[0, 1] × M

)
be such that 

Ht, H ′
t = 0 for t in some neighbourhood of {0, 1}, and defining X :=

⋃
t∈[0,1] suppHt, condition (39) is 

satisfied. For every x0 ∈ M there exists a bijection

Φ : DH′

x0
→ DH#H′

x0
, (78)

such that
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∫
D

Φ(u′)∗ω =
∫
D

u′∗ω, ∀u′ ∈ DH′

x0
. (79)

Proof of Lemma 15. We define the map Φ as follows. By hypothesis, there exists ε > 0 such that Ht, H ′
t = 0

for t ∈ [0, 2ε] ∪ [1 − 2ε, 1]. We choose a diffeomorphism ϕ : D → D such that

ϕ(e2πit) = e2πi(2t−1), ∀t ∈
[
1
2 + ε, 1 − ε

]
. (80)

Assume that u′ ∈ DH′
x0

. We define

v := Φ(u′) := u′ ◦ ϕ : D → M. (81)

Claim 1. We have v ∈ DH#H′
x0

.

Proof of Claim 1. Since u′(e2πit) = ϕt
H′(x0), for all t ∈ [0, 1], and H ′

t = 0 for t ∈ [0, 2ε] ∪ [1 − 2ε, 1], we have

u′(e2πit) = ϕt
H′(x0) = x0, ∀t ∈ [0, 2ε] ∪

[
1 − 2ε, 1

]
. (82)

It follows from (80) that

ϕ(e2πit) ∈
{
e2πit′ ∣∣ t′ ∈ [0, 2ε] ∪

[
1 − 2ε, 1

]}
, ∀t ∈

[
0, 1

2 + ε

]
∪
[
1 − ε, 1

]
.

Combining this with (81), (82), it follows that

v(e2πit) = x0, ∀t ∈
[
0, 1

2 + ε

]
∪ [1 − ε, 1]. (83)

The equalities ϕ1
H′(x0) = u′(e2πi = 1) = ϕ0

H′(x0) = x0 and (39) imply that

x0 /∈ X =
⋃

t∈[0,1]

suppHt.

It follows that

ϕt
H(x0) = x0, ∀t ∈ [0, 1].

Combining this with (83) and using the definition of H#H ′, it follows that

v(e2πit) = ϕ2t
H(x0) = ϕt

H#H′(x0), ∀t ∈
[
0, 1

2

]
. (84)

Combining (82), (83), we have

v(e2πit) = ϕ2t−1
H′ (x0) = ϕt

H#H′(x0), ∀t ∈
[
1
2 ,

1
2 + ε

]
∪ [1 − ε, 1]. (85)

Finally, it follows from (80), (81) and the fact u′ ∈ DH′
x0

, that

v(e2πit) = ϕ2t−1
H′ (x0) = ϕt

H#H′(x0), ∀t ∈
[
1
2 + ε, 1 − ε

]
.

Combining this with (85), (84), it follows that v ∈ DH#H′
x . This proves Claim 1. �

0
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A similar argument shows that

v ◦ ϕ−1 ∈ DH′

x0
, ∀v ∈ DH#H′

x0
.

It follows that the map Φ is a bijection.
Equality (79) follows from (81), using that ϕ is orientation preserving. This proves Lemma 15. �

Proof of Proposition 11. Statement (i) follows from Lemma 15. We prove statement (ii). Assume that ω is 
aspherical, and that x0 ∈ P◦(H ′). It follows from the definition of H#H ′ that

1∫
0

(H#H ′)t ◦ ϕt
H#H′(x0)dt =

1∫
0

Ht ◦ ϕt
H(x0)dt +

1∫
0

H ′
t ◦ ϕt

H′(x0)dt. (86)

Furthermore, it follows from (39) that

x0 /∈ X =
⋃

t∈[0,1]

suppHt. (87)

This implies that ϕt
H(x0) = x0, for every t ∈ [0, 1]. Hence, using (87) again, it follows that

Ht ◦ ϕt
H(x0) = 0, ∀t ∈ [0, 1]. (88)

We choose a map Φ as in Lemma 15 and a map u′ ∈ DH′
x0

. (defined as in (77)). The claimed equality (41)
is a consequence of (33), (86), (88), (79). This proves (ii) and completes the proof of Proposition 11. �
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