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GLOBAL MODEL CATEGORIES AND

TOPOLOGICAL ANDRÉ-QUILLEN COHOMOLOGY

TOBIAS LENZ AND MICHAEL STAHLHAUER

Abstract. We introduce global model categories as a general framework to
capture several phenomena in global equivariant homotopy theory. We then
construct genuine stabilizations of these, generalizing the usual passage from
unstable to stable global homotopy theory. Finally, we define the global topo-
logical André-Quillen cohomology of an ultra-commutative ring spectrum and
express it in terms of a genuine stabilization in our framework in analogy with

the classical non-equivariant description obtained by Basterra and Mandell.
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Introduction

Cohomology theories like topological K-theory and the various flavors of cobor-
dism are among the most fundamental tools of algebraic topology. Many of the
examples one encounters in practice come with additional structure in the form of
multiplications and power operations, and these can often be exploited fruitfully,
as for example in the classical proof that the Hopf maps define non-trivial elements
in the stable homotopy groups of spheres via the Steenrod operations on singular
cohomology. In terms of the representing spectra, these extra algebraic data are
encoded in a highly structured multiplication, making the representing spectra so-
called E∞-ring spectra. In good model categories of diagram spectra like symmetric
or orthogonal spectra [HSS00, MMSS01], such E∞-ring spectra are represented by
strictly commutative algebras, and they can also be conveniently described in the
language of ∞-categories.
G-equivariant cohomology theories, as modelled by genuine G-spectra in the sense

of equivariant stable homotopy theory, are a refinement of cohomology theories to
the context of objects endowed with extra symmetries in the form of an action of a
(finite) group G. Many classical cohomology theories have equivariant analogues,
leading for example to G-equivariant topological K-theory and cobordism.
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When we study highly structured multiplications on these, interesting new struc-
ture arises in the form of norm maps, which can be thought of as twisted multipli-
cations. As a motivating algebraic example, consider an ordinary commutative ring
R with an action by a finite group G and an H-fixed point r ∈ RH for a subgroup
H ⊂ G. Then the norm of r is the product

NG
H(r) =

∏

gH∈G/H

g.r,

which is now a G-fixed point. This yields a multiplicative map NG
H : RH → RG,

and together with inclusions of fixed points as restrictions and similarly defined
additive transfers, this gives rise to the structure of a Tambara functor [Tam93] on
the collection {RH}H⊂G of fixed points of R. More generally, the zeroth homotopy
groups of any genuine G-E∞-ring spectrum naturally admit the structure of a
Tambara functor and in particular come with norm maps. These norms have been
famously exploited in the solution of the Kervaire-invariant-one problem by Hill,
Hopkins, and Ravenel [HHR16], renewing interest in this rich structure.

It turns out that many important equivariant cohomology theories like cobor-
dism and K-theory exist in a uniform fashion for large classes of groups, like all
finite or all compact Lie groups. This is the perspective taken by global homotopy
theory [Sch18, Hau19]. Such global objects come with extra structure in the form of
inflations (restrictions along surjective group homomorphisms), and incorporating
this additional information can allow for easier analysis of equivariant phenomena,
the most prominent example being the recent proof of an equivariant Quillen theo-
rem linking equivariant bordism to formal group laws by Hausmann [Hau22], which
crucially relies on the global perspective.

The correct notion of ‘multiplicative global cohomology theories’ are the ultra-
commutative ring spectra, which are commutative algebras in a suitable model cat-
egory of global spectra. The zeroth homotopy groups of such an ultra-commutative
ring spectrum form a so-called global power functor, the global analogue of a G-
Tambara functor for fixed G, in particular coming with norm maps for any inclusion
H ⊂ G of finite groups. Currently, no purely ∞-categorical description of ultra-
commutative ring spectra is known.

Obstruction theory and topological André-Quillen cohomology. As com-
mutative ring spectra encode such a rich additional structure in their homotopy
groups and represented cohomology, their study has received much attention. How-
ever, the existence of structured multiplications on spectra is a very subtle question:
while many important spectra do come with the structure of an E∞-ring spectrum,
such as the sphere spectrum, Eilenberg-MacLane spectra,K-theory and Thom spec-
tra, or spectra of topological modular forms, some other naturally defined spectra
do not admit such a structured multiplication. The prime examples of this are
Moore spectra, where it has been long known that S/2 does not admit a unital
multiplication in the homotopy category and no S/p can have a structured associa-
tive (i.e. A∞-)multiplication, see [AT65, Theorem 1.1] and [Ang08, Example 3.3].
Similarly, the Brown-Peterson spectrum BP (for any prime p) does not support an
E∞-multiplication [Law18, Sen17].

In order to derive positive results, in some cases obstruction theoretic meth-
ods can be applied, with famous examples being the result of Goerss and Hop-
kins [GH04] that Morava E-theory admits a unique E∞-ring structure, or the
usage of Postnikov towers of commutative ring spectra in order to construct an
E4-multiplication on BP by Basterra and Mandell [BM13]. Both of these results
rely on topological André-Quillen cohomology, a cohomology theory for commuta-
tive ring spectra introduced by Basterra [Bas99] as an adaptation of a cohomology
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theory originally defined by André and Quillen for ordinary commutative rings
[And67, Qui70]. The latter is defined as a derived functor of Kähler differentials,
and a similar approach is used by Basterra for the topological version, using a model
category of spectra in which commutative ring spectra model E∞-ring spectra.

A crucial observation in the construction of classical algebraic André-Quillen
cohomology is that for a fixed commutative ring R, one can identify the category
of R-modules with the category of abelian group objects in augmented R-algebras,
which allows to interpret André-Quillen homology and cohomology as a derived
abelianization procedure. In the topological case, a similar result was obtained by
Basterra and Mandell [BM05], who showed that for a commutative ring spectrum
R, topological André-Quillen cohomology exhibits the category of R-modules as a
stabilization of the category of augmented R-algebras.

Global topological André-Quillen cohomology. Given the wealth of structure
encoded in the multiplication on an ultra-commutative ring spectrum (even com-
pared to a non-equivariant E∞-ring spectrum), a global obstruction theory would
be particularly desirable. As the first step towards this, we adapt the theory of
topological André-Quillen cohomology to the context of global homotopy theory in
this article. In particular, we define the global topological André-Quillen homology
and cohomology of ultra-commutative ring spectra, prove a Hurewicz theorem in
this setting, and construct Postnikov towers for ultra-commutative ring spectra.
As the main result of this paper (see Theorem B below) we then identify global
topological André-Quillen cohomology as a suitable global stabilization in analogy
with the non-equivariant result of Basterra–Mandell, justifying that this is indeed
the ‘correct’ global analogue of classical topological André-Quillen cohomology.

To put this into perspective, recall that any suitably nice model or ∞-category
admits a stabilization [Sch97, Lur18], obtained by inverting the suspension-loop ad-
junction. However, the passage between unstable and stable equivariant or global
homotopy theory is more subtle, related to the existence of transfer maps between
equivariant stable homotopy groups mentioned above. In the equivariant setting,
we can instead concisely express it as a genuine stabilization [GM20, Appendix C]:
the passage from unstable to stable G-equivariant homotopy theory is given by
universally inverting the 1-point compactification SG of the regular real represen-
tation, instead of just the usual sphere S1 (i.e. the 1-point compactification of the
trivial 1-dimensional representation). Sadly, however, this approach can not be
immediately adapted to the global world—for example, a computation by Schwede
shows that only the ordinary non-equivariant spheres are inverted when passing
from unstable to stable global homotopy theory.

Similarly to an idea described by Gepner and Nikolaus [GN15], we solve this issue
in the present paper by looking more generally at G-global homotopy theory in the
sense of [Len20] for all finite groups G, which for the trivial group G = 1 recovers
usual global homotopy theory. In this setting, we then describe the passage from
unstable to stable G-global homotopy theory for all finite groups G simultaneously:
it is given by inverting SG in G-global homotopy theory for all G in a compatible
way (see Theorem A below).

Global model categories. To make this precise, we introduce the notion of a
global model category (Definition 2.10). Roughly speaking, such a global model
category C consists of a category C together with two (suitably nice) Quillen equiv-
alent model structures on the category G-C of G-objects in C , called the projective
and flat model structures, that interact in a prescribed way with restriction along
group homomorphisms, formalizing the behaviour established for unstable and sta-
ble G-global homotopy theory in [Len20]. As our main examples, we introduce and
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study global model categories S of global spaces, Sp of global spectra, MR of
R-modules, and ComR/R of augmented R-algebras for an ultra-commutative ring
spectrum R.

If C is a pointed global model category (i.e. C has a zero object) and G is
finite, the homotopy category Ho(G-C ) comes with an equivariant suspension-loop
adjunction

SG ∧L –: Ho(G-C ) ⇄ Ho(G-C ) :RΩG

(recovering the usual one for pointed global spaces), and we call C (genuinely)
stable if this adjunction is an adjoint equivalence for every G.

With this definition, both the global model category of global spectra and of
R-modules are stable. For a general global model category C on the other hand,
we can construct a global stabilization in the form of a homotopy universal map to
a stable global model category by considering suitable G-global spectrum objects in
C , refining and generalizing the non-equivariant construction of [Sch97]. We then
compute this global stabilization in two key cases:

First, we show that the global stabilization of global spaces is indeed given by
global spectra in this setting:

Theorem A (see Theorem 4.1). The suspension spectrum-loop space adjunction

Σ•
+ : S ⇄ Sp :Ω•

exhibits the global model category Sp of global spectra as global stabilization of the
global model category S of global spaces.

This in particular serves as a sanity check for our framework, but it also allows
us to provide a description of the previously elusive passage between unstable and
stable global homotopy theory in terms of a universal property.

The main application of this theory, however, lies in the calculation of the global
stabilization of the category of augmented R-algebras for an ultra-commutative ring
spectrum R:

Theorem B (see Theorem 6.20 for a precise statement). Let R be a flat ultra-
commutative ring spectrum. Then the global model category MR of R-modules is the
global stabilization of the global model category ComR/R of augmented R-algebras,
and the universal map reduces on homotopy categories to the ‘global abelianization’
functor from the construction of global topological André-Quillen cohomology.

Related work. Another perspective on the relation between unstable and stable
equivariant homotopy theory is provided by parameterized higher category theory in
the sense of Barwick, Dotto, Glasman, Nardin, and Shah [BDG+16, Nar16], which
emphasizes the extra algebraic structure encoded in the additive transfers (or more
precisely the so-called Wirthmüller isomorphisms underlying them) as a form of
‘genuine semiadditivity.’

Using this language, Cnossen, Linskens, and the first author [CLL23] have con-
currently introduced the concept of global ∞-categories. These again come with a
notion of genuine stability (now defined via the aforementioned Wirthmüller iso-
morphisms), and the main result of op. cit. describes a certain explicit global
∞-category of global spectra (again built from G-global spectra for all finite G) as
the genuine stabilization in this sense of an analogous global ∞-category of global
spaces—in fact, global spaces and global spectra admit universal descriptions in
this framework as the free presentable and free presentable genuinely stable global
∞-category, respectively, which immediately implies the above description.

It is not hard to show that any global model category gives rise to a (presentable)
global ∞-category via Dwyer-Kan localization, which for S and Sp precisely re-
covers the aforementioned global ∞-categories of global spaces and global spectra;
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in particular, the two notions of global stabilization agree in this case. However,
while it is natural to expect them to also agree in general, this is not clear a priori;
the first author plans to come back to this question in future work.

Outline. In Section 1 we give a recollection of G-equivariant and G-global homo-
topy theory, in particular describing the rich ‘change of group’-calculus present in
the latter. We then formalize this calculus in Section 2 in the notion of a global
model category.

Section 3 is devoted to the notion of stability for global model categories and
the general construction of global stabilizations. In Section 4 we compute this
stabilization in the case of global spaces, proving Theorem A.

In Section 5 we develop the theory of modules and algebras in stable G-global
homotopy theory, and in particular define corresponding global model categories.
Afterwards, we introduce (G-)global topological André-Quillen cohomology in Sec-
tion 6 and express it via the global stabilization of augmented commutative alge-
bras, proving Theorem B. This proof in turn relies on a hard technical result about
the stabilization of the free-forgetful adjunction between modules and non-unital
commutative algebras (so-called ‘NUCAs’), to which all of Section 7 is devoted.
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Sil Linskens for helpful discussions. The second author would like to thank Stefan
Schwede for his support and supervision.

This article is partially based on work supported by the Swedish Research Coun-
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Bonn, and is an associate member of the Hausdorff Center for Mathematics at the
University of Bonn. Subsections 6.1 and 6.2 are adapted from results contained in
the dissertation of the second author.

1. A reminder on G-equivariant and G-global homotopy theory

Throughout, let G be a finite group. To set the stage, we recall several model
categorical aspects of G-equivariant and G-global homotopy theory.

1.1. G-equivariant homotopy theory. We begin with the classical unstable
equivariant story:

Proposition 1.1. Let F be a family of subgroups of G, i.e. a non-empty collection
of subgroups that is closed under subconjugates. Then there is a unique model
structure on G-SSet in which a map f is a weak equivalence or fibration if and only
if fH is a weak homotopy equivalence or Kan fibration, respectively, of simplicial
sets for all H ∈ F . We call this the F -equivariant model structure and its weak
equivalences the F -weak equivalences. It is simplicial, proper, and combinatorial
with generating cofibrations

{G/H × (∂∆n →֒ ∆n) : H ∈ F , n ≥ 0}

and generating acyclic cofibrations

{G/H × (Λnk →֒ ∆n) : H ∈ F , 0 ≤ k ≤ n}.

Moreover, a map is a cofibration in it if and only if it is levelwise injective and
every simplex not in its image has isotropy in F . Finally, filtered colimits in it are
homotopical.
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Proof. By [Ste16, Example 2.14] we get a cofibrantly generated (hence combinato-
rial) model structure with the above weak equivalences, fibrations, and generating
(acyclic) cofibrations, while Proposition 2.16 of op. cit. provides the characteri-
zation of the cofibrations. The remaining properties are easy to check, also see
[Len20, Proposition 1.1.2] for a complete proof. �

Example 1.2. If we take F = Aℓℓ to be the collection of all subgroups of G, then
we get a model structure with cofibrations the underlying cofibrations of simplicial
sets, while weak equivalences and fibrations are those maps f such that fH is a
weak equivalence or fibration, respectively, for every subgroup H ⊂ G.

We will refer to this model structure simply as the G-equivariant model structure
and to its weak equivalences as G-equivariant weak equivalences.

Example 1.3. Let G,H be finite groups. We write GG,H for the family of graph
subgroups of G × H , i.e. groups of the form ΓK,ϕ := {(k, ϕ(k)) : k ∈ K} for a
subgroup K ⊂ G and a homomorphism ϕ : K → H . Note that K and ϕ are
actually uniquely determined for any graph subgroup, and a subgroup L ⊂ G×H
is a graph subgroup if and only if it intersects H trivially, i.e. L ∩ (1×H) = 1.

We now apply the proposition for F = GG,H to get a graph model structure on
(G×H)-SSet, which in the case H = 1 recovers the previous model structure.
For general H , a map is a cofibration in this model structure if and only if it is
levelwise injective and H acts freely outside the image.

We will also need a variant of the above model structure with more cofibrations:

Proposition 1.4. Let G be a finite group and let F be a family of subgroups.
Then there is a unique model structure on G-SSet with weak equivalences the F-
equivariant weak equivalences and cofibrations the injective cofibrations, i.e. the
underlying cofibrations of simplicial sets. We call this the injective F -equivariant
model structure. It is simplicial, proper, combinatorial with generating cofibrations

{G/H × (∂∆n →֒ ∆n) : H ⊂ G,n ≥ 0},

and filtered colimits in it are homotopical.

Observe that for F = Aℓℓ this recovers the G-equivariant model structure again.

Proof. This is a folklore result; the earliest appearance in the literature (with SSet∗
instead of SSet) we are aware of is [Shi04, Proposition 1.3] where this is already
referred to as a ‘well-known’ model structure. A full proof in our setting can be
found as [Len20, Proposition 1.1.15]. �

We will frequently use the following well-known ‘change of group’ properties of
the above model structures, all of which can also be found in [Len20, 1.1.4]:

Lemma 1.5. Let G be a finite group and let α : H → H ′ be a homomorphism of
finite groups. Then the adjunction

α! := (G× α)! : (G×H)-SSetGG,H
⇄ (G×H

′)-SSetGG,H
: (G× α)∗ =: α∗

is a Quillen adjunction. If α is injective, then also

α∗ := (G× α)∗ : (G×H
′)-SSetGG,H′

⇄ (G×H)-SSetGG,H
: (G× α)∗ =: α∗

is a Quillen adjunction. �

Lemma 1.6. Let α : G → G′ be an injective homomorphism of finite groups and
let H be a finite group. Then

α∗ := (α×H)∗ : (G′
×H)-SSetGG′,H

→ (G×H)-SSetGG,H

is both left and right Quillen. �
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Next, we come to the stable situation, where we will use Hausmann’s model
[Hau17] based on symmetric spectra, which we briefly recall:

Construction 1.7. We write Σ for the SSet∗-enriched category whose objects are
finite sets and with morphism spaces

maps
Σ
(A,B) :=

∨

i : A→B injective

SBri(A).

Composition is given by smashing, i.e. if C is yet another object, then the composi-
tion maps

Σ
(A,B)∧maps

Σ
(B,C) → maps

Σ
(A,C) is given on the wedge summands

corresponding to i : A→ B and j : B → C as

SBri(A) ∧ SCrj(B) ∼= Sj(B)rji(A) ∧ SCrj(B) ∼= SCrji(A) →֒
∨

k : A→C injective

SCrk(A)

where the first isomorphism is induced by j, the second one is the canonical iso-
morphism, and the final map is the inclusion of the summand indexed by ji.

Definition 1.8. A symmetric spectrum (in simplicial sets) is an SSet∗-enriched
functor Σ → SSet∗. We write Spectra for the corresponding category of enriched
functors and enriched natural transformations, which is itself enriched, tensored,
and cotensored over SSet∗ with (co)tensoring defined levelwise.

If G is any group, then we write G-Spectra for the category of G-objects in
Spectra and call its objects G-symmetric spectra or simply (by slight abuse of
language) G-spectra.

Remark 1.9. Symmetric spectra are often instead defined in a ‘coordinatized’ fash-
ion as sequences (Xn)n≥0 of based Σn-simplicial sets together with maps S1∧Xn →
Xn+1 that interact suitably with the actions. For the equivalence to the above def-
inition we refer the reader to [Hau17, 2.4].

We will now construct equivariant model structures on the category of G-spectra.
Just like non-equivariantly, these come in a projective and a flat version, and will
be obtained by Bousfield localizing suitable level model structures:

Proposition 1.10. There is a unique model structure on G-Spectra in which a
map f is a weak equivalence or fibration if and only if f(A) is a GG,ΣA -weak equiva-
lence or fibration, respectively, for every finite set A. We call this the G-equivariant
projective level model structure and its weak equivalences the G-equivariant level
weak equivalences. It is combinatorial with generating cofibrations

{(
G+ ∧Σ(A, –)

)
/H ∧ (∂∆n →֒ ∆n)+ : A finite set, H ∈ GG,ΣA , n ≥ 0

}
.

More precisely, for the above to be a set (as opposed to a proper class), we should
restrict to a set of finite sets hitting all isomorphism classes; in all what follows we
will ignore this and similar technicalities.

Proof. See [Hau17, Corollary 2.26 and discussion afterwards]. �

Proposition 1.11. There is a unique model structure on G-Spectra in which a
map f is a weak equivalence or fibration if and only if f(A) is a weak equivalence or
fibration, respectively, in the injective GG,ΣA-model structure for every finite set A.
We call this the G-equivariant flat level model structure. Its weak equivalences are
precisely the G-equivariant level weak equivalence; moreover, a map is a cofibration
in the flat level model structure on G-Spectra if and only if it is a cofibration in
the flat level model structure on Spectra (i.e. for G = 1); we will refer to these
maps as flat cofibrations.
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Finally, the G-equivariant flat level model structure is combinatorial with gener-
ating cofibrations

{(
G+ ∧Σ(A, –)

)
/H ∧ (∂∆n →֒ ∆n)+ : A finite set, H ⊂ G× ΣA, n ≥ 0

}
.

Proof. The construction of the model structure and the identification of the gen-
erating cofibrations is [Hau17, Corollary 2.25 and discussion afterwards], while the
characterization of the flat cofibrations is Remark 2.20 of op. cit. �

Remark 1.12. We will never need to know how the generating acyclic cofibrations
of the above two model structures look like; the curious reader can find them in
Hausmann’s treatment referred to above.

Definition 1.13. A G-spectrumX is called aG-Ω-spectrum if for everyH ⊂ G and
all finite H-sets A ⊂ B the derived adjoint structure map X(A) → RΩBrAX(B)
is an H-equivariant weak equivalence, where H acts on X , A, and B.

Here we are deriving ΩBrA with respect to the H-equivariant model structure on
H-SSet∗; in particular, if X is fibrant in either of the above level model structures,
then the above is already represented by the ordinary adjoint structure map.

We will also frequently reexpress the above condition as saying that for all finite
H-sets A,C the map X(A) → RΩCX(A∐ C) is a weak equivalence.

Theorem 1.14. The projective G-equivariant level model structure on G-Spectra
admits a Bousfield localization with fibrant objects precisely the projectively level
fibrant G-Ω-spectra. Similarly, the flat G-equivariant level model structure admits a
Bousfield localization with fibrant objects the flatly level fibrant G-Ω-spectra. Both of
these model structures are combinatorial, and they have the same weak equivalences,
which we call the G-equivariant weak equivalences.

Proof. See [Hau17, Theorems 4.7 and 4.8]. �

Remark 1.15. Let us say something about the generating acyclic cofibrations of the
above model structure, see [Hau17, Example 2.37 and discussion after Theorem 4.8]:
for any finite set A, the spectrum Σ(A, –) corepresents evaluation at A by the
enriched Yoneda lemma; similarly SB∧Σ(A∐B, –) corepresentsX 7→ ΩBX(A∐B).
By another application of the Yoneda Lemma we therefore get a map λA,B : SB ∧
Σ(A ∐ B, –) → Σ(A, –) such that maps(λA,B, X) agrees up to conjugation by
natural isomorphisms with the adjoint structure map X(A) → ΩBX(A ∐ B) for
any symmetric spectrum X .

If now H ⊂ G acts on A,B, then λA,B becomes a map of H-spectra (denoted
λH,A,B) with respect to the induced actions, and we factor it as a projective cofibra-
tion κH,A,B followed by a level weak equivalence ρH,A,B. Then a set of generating
acyclic cofibrations is given by taking a set of generating acyclic level cofibrations
and adding the pushout product maps (G+ ∧H κH,A,B) � i for all H ⊂ G, all finite
H-sets A,B (up to isomorphism), and all generating cofibrations i.

Remark 1.16. As a teaser for the things to come, we recall that any combinatorial
simplicial (left) proper model category admits a stabilization [Sch97]. We remark
without proof that on associated ∞-categories this models the universal stabiliza-
tion in the sense of [Lur18, Corollary 1.4.4.5], i.e. the initial example of an adjunc-
tion to a presentable stable ∞-category, or equivalently the result of universally
inverting Σ := S1 ∧ – in the presentable world.

However, while we have a Quillen adjunction Σ∞
+ : G-SSet ⇄ G-Spectra :Ω∞

for either of the above model structures, as already mentioned in the introduction
this does not model the stabilization in the above näıve sense. Rather, this defines
a ‘genuine stabilization’ universally inverting the functor SG ∧ – (in presentable
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∞-categories), where G acts via permuting the smash functors of SG =
∧
G S

1, or
equivalently the functors SA ∧ – for all finite G-sets A, see [GM20, Appendix C] or
[CMNN20, Theorem A.2].

The main disadvantage of the approach via symmetric spectra is that the weak
equivalences are only indirectly defined in terms of specifying the local objects.
However, there is a notion of π∗-isomorphism, which we will now introduce, that
while not accounting for all G-equivariant weak equivalences is at least coarse
enough for many purposes:

Construction 1.17. Let H ⊂ G and let UH be a complete H-set universe, i.e. a
countable H-set into which any other countable H-set embeds equivariantly, and
write s(UH) for the poset of finite H-subsets of UH .

For every G-spectrum X and every k ≥ 0 we then define

πHk (X) = colimA∈s(UH)[S
A∐{1,...,k}, |X(A)|]H∗

where [ , ]H∗ denotes the set of H-equivariant based homotopy classes (for maps of
H-topological spaces) and the transition maps are given by

[SA∐{1,...,k}, |X(A)|]H∗
SBrA∧–
−−−−−→ [SBrA ∧ SA∐{1,...,k}, SBrA ∧ |X(A)|]H∗
∼= [SB∐{1,...,k}, SBrA ∧ |X(A)|]H∗
σ
−→ [SB∐{1,...,k}, |X(B)|]H∗

for all A ⊂ B, where σ denotes the structure map of the symmetric spectrum and
the unlabelled isomorphism is the canonical one. Similarly, for k < 0 we define

πHk (X) = colimA∈s(UH)[S
A, |X(A∐ {1, . . . ,−k})|]H∗

with the analogously defined transition maps.
For every k ∈ Z and H ⊂ G, πHk X is naturally an abelian group [Hau17, Defini-

tion 3.1]; however, we will not need this group structure below.

Definition 1.18. A map f : X → Y of G-spectra is called a (G-equivariant) π∗-
isomorphism if πHk f is an isomorphism for all H ⊂ G and all k ∈ Z.

Remark 1.19. The above homotopy groups are independent of the choice of UH up
to natural, but in general non-canonical isomorphism [Hau17, 3.3]. In particular,
the notion of π∗-isomorphism is independent of any choices.

Theorem 1.20. Every π∗-isomorphism of G-spectra is a G-equivariant weak equiv-
alence.

Proof. See [Hau17, Theorem 3.36] �

Warning 1.21. While restriction along injective homomorphisms preserves all of
the above structure [Hau17, 5.2], the equivariant model structures do not interact
reasonably with restrictions along general homomorphisms, unlike their unstable
siblings. In particular, if α : G→ G′ is not injective, then α∗ will typically not send
G′-equivariant weak equivalences to G-equivariant ones.

One nice property of the G-global theory we will introduce in the following
two subsections is that it comes with homotopically meaningful ‘change of group’
adjunctions (which we will later formalize in the notion of a global model category),
and in particular that restriction along arbitrary homomorphisms will indeed be
homotopical.
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1.2. Unstable G-global homotopy theory. Let G continue to denote a finite
group. We will now recallG-global homotopy theory in the sense of [Len20]; this gen-
eralizes global homotopy theory (for finite groups) in the sense of Schwede [Sch18],
and will be the key tool in this article to express and prove properties of the latter.
Again, we begin with the unstable story:

Construction 1.22. The forgetful functor SSet → Set sending a simplicial set X to
its set of vertices admits a right adjoint E, given explicitly by (EX)n = X1+n with
the evident functoriality in X and with structure maps induced by the canonical
identification X1+n ∼= HomSet([n], X).

Definition 1.23. We write I for the category of finite sets and injective maps, and
we let I denote the simplicial category obtained by applying E to all hom sets.
We write I-SSet for the enriched category of enriched functors I → SSet and call
its objects I-spaces or global spaces. More generally, we write G-I-SSet for the
category of G-objects in I-SSet and call its objects G-I-spaces or G-global spaces.

Proposition 1.24. There is a unique model structure on G-I-SSet in which a
map is a weak equivalence or fibration if and only if f(A) is a weak equivalence or
fibration, respectively, in the GΣA,G-equivariant model structure for every finite set
A. We call this the G-global level model structure and its weak equivalences the
G-global level weak equivalences. This model structure is proper, simplicial, and
combinatorial with generating cofibrations

{I(A, –)×ϕ G× (∂∆n →֒ ∆n) : H ⊂ ΣA, ϕ : H → G,n ≥ 0},

where ×ϕ denotes the quotient of the ordinary product by the diagonal of the right
action of H on I(A, –) via its tautological action on A and the right action on G
via g.h = gϕ(h).

Finally, filtered colimits of G-global level weak equivalences are again G-global
level weak equivalences.

Proof. See [Len20, Proposition 1.4.3]. �

Just like for G-symmetric spectra, we will now Bousfield localize this to get the
model structure we are actually after. However, unlike for G-symmetric spectra, we
can actually explicitly describe both the weak equivalences and the local objects.
We start with the former:

Construction 1.25. Let A be any set, possibly infinite, and let X be an I-simplicial
set. Then we define

X(A) := colim
B⊂A finite

X(B)

with transition maps induced by functoriality of X . This becomes a functor in X
in the obvious way; in particular, if G acts on X , then X(A) becomes naturally a
G-simplicial set.

In addition, the monoid End(A) of self-maps of A acts naturally on the above by
permuting the terms of the colimit. Thus, if A is an H-set and X is a G-I-simplicial
set, then X(A) becomes an (H ×G)-simplicial set.

Definition 1.26. A map f : X → Y of G-I-simplicial sets is called a G-global
weak equivalence if for every finite group H and some (hence any) complete H-set
universe UH the induced map f(UH) is a GH,G-equivariant weak equivalence, or
equivalently (replacing H by a subgroup if necessary) for every ϕ : H → G the map
(ϕ∗f)(UH) is an H-equivariant weak equivalence.

Next, we come to the analogue of the notion of an Ω-spectrum in this setting:
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Definition 1.27. A G-I-simplicial set is called static if for every finite groupH and
all finite faithful H-sets A ⊂ B the map X(A) → X(B) induced by the inclusion is
a GH,G-weak equivalence.

Theorem 1.28. The G-global level model structure on G-I-SSet admits a Bous-
field localization with weak equivalences the G-global weak equivalences. Its fibrant
objects are precisely the level fibrant static G-I-simplicial sets.

This model structure is again combinatorial (with the same generating cofibra-
tions), simplicial, proper, and filtered colimits in it are homotopical.

Proof. See [Len20, Theorem 1.4.30]. �

We will also need the following injective variant of the above model structure:

Theorem 1.29. There is a unique model structure on G-I-SSet with weak equiv-
alences the G-global weak equivalences and cofibrations the injective cofibrations.
We call this the injective G-global model structure. It is combinatorial, simplicial,
proper, and filtered colimits in it are homotopical.

Proof. See [Len20, Theorem 1.4.37]. �

Remark 1.30. The category G-I-SSet of G-objects in Fun(I,SSet) also carries
a G-global level model structure analogous to Proposition 1.24 and this admits a
Bousfield localization with the static objects as local objects such that the resulting
model category is Quillen equivalent to G-I-SSet, see [Len20, Theorem 1.4.31].
However, the weak equivalences of this model structure are somewhat complicated
(similarly to the situation for symmetric spectra), and in particular they cannot
just be checked by evaluation at complete H-set universes. The passage from I to
I is precisely what eliminates this subtlety, which is why the above model will be
more convenient for us.

In addition to these, [Len20, Chapter 1] also studies various models of G-global
homotopy theory based on a certain monoid M and the simplicial monoid EM
obtained via Construction 1.22 from this, that are related to the above via (zig-
zags of) Quillen equivalences.

As promised, the above G-global model structures support a rich ‘change of
group’ calculus:

Proposition 1.31. Let α : G→ G′ be any group homomorphism. Then the restric-
tion α∗ : G′-I-SSet → G-I-SSet is homotopical and we have Quillen adjunctions

α! : G-I-SSetG-global ⇄ G
′-I-SSetG′-global :α

∗

α∗ : G′-I-SSetinjective G′-global ⇄ G-I-SSetinjective G-global :α∗.

Proof. See [Len20, Lemma 1.4.40 and Corollary 1.4.41]. �

Proposition 1.32. Let α : G→ G′ be an injective homomorphism. Then also

α! : G-I-SSetinjective G-global ⇄ G
′-I-SSetinjective G′-global :α

∗

α∗ : G′-I-SSetG′-global ⇄ G-I-SSetG-global :α∗.

are Quillen adjunctions.

Proof. See [Len20, Lemmas 1.4.42 and 1.4.43]. �

As every G-I-simplicial set is injectively cofibrant, the above implies via Ken
Brown’s Lemma that α! is homotopical for injective α. The following generalization
of this (which makes precise that ‘free quotients are homotopical’) will be a key
input in many arguments, see in particular Example 2.13.
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Proposition 1.33. Let α : G→ G′ be any homomorphism and let f : X → Y be a
G-global weak equivalence such that ker(α) acts levelwise freely on X and Y . Then
α!f is a G′-global level weak equivalence.

Proof. We factor f in the G-global model structure as an acyclic cofibration j : X →
Z followed by a fibration p (automatically acyclic). Then α!j is a G′-global weak
equivalence by Proposition 1.31, so it suffices to show that also α!p is a weak
equivalence; we will show that it is even a G′-global level weak equivalence.

To this end, we observe that for any generating cofibration i and every finite set
A the map i(A) is a cofibration in the GΣA,G-equivariant model structure since G
acts freely on I(B,A) ×ϕ G for every finite faithful H-set B and homomorphism
ϕ : H → G. As evaluation at A is cocontinuous, we see that the claim holds more
generally for all cofibrations, and in particular for the above map j. Thus, ker(α)
also acts levelwise freely on Z; the claim therefore follows by applying [Len20,
Proposition 1.1.22] levelwise (with M = ΣA and E = Aℓℓ). �

1.3. Stable G-global homotopy theory. Finally, we come to models of stable G-
global homotopy theory [Len20, Chapter 3]; we restrict ourselves to the basics here
and will recall further constructions and results (in particular monoidal properties
and the tensoring over G-global spaces) later when needed.

1.3.1. Model structures. On the pointset level, our models will again be simply
given by symmetric spectra with a G-action, and we once more start with suitable
level model structures [Len20, Propositions 3.1.20 and 3.1.23]:

Proposition 1.34. There is a unique model structure on G-Spectra in which a
map is a weak equivalence or fibration if and only if f(A) is a GΣA,G-weak equiva-
lence or fibration, respectively, for every A ∈ Σ. We call this the G-global projective
level model structure and its weak equivalences the G-global level weak equivalences.
It is proper, simplicial, combinatorial with generating cofibrations

{Σ(A, –) ∧H G+ ∧ (∂∆n →֒ ∆n)+ : A ∈ Σ, H ∈ GΣA,G, n ≥ 0},

and filtered colimits in it are homotopical. �

Proposition 1.35. There is a unique model structure on G-Spectra in which a
map is a weak equivalence or fibration if and only if f(A) is a weak equivalence
or fibration, respectively, in the injective GΣA,G-model structure. We call this the
G-global flat level model structure; its weak equivalences are precisely the G-global
level weak equivalences and its cofibrations are the flat cofibrations. This model
structure is proper, simplicial, combinatorial with generating cofibrations

{Σ(A, –) ∧H G+ ∧ (∂∆n →֒ ∆n)+ : A ∈ Σ, H ⊂ ΣA ×G,n ≥ 0},

and filtered colimits in it are homotopical. �

Warning 1.36. Beware that the notion of G-global level weak equivalence differs
from the G-equivariant level weak equivalences : the former is a condition on the
H-fixed points for H ∈ GΣA,G for varying A, while the latter is a condition for
H ∈ GG,ΣA .

Definition 1.37. A G-spectrum X is called a G-global Ω-spectrum if for all finite
groups H and all finite faithful H-sets A ⊂ B the derived adjoint structure map

X(A) → RΩBrAX(B)

is a GH,G-weak equivalence.

Again, for a G-spectrum that is fibrant in either of the above level model struc-
tures, the derived adjoint structure map is already modelled by the ordinary one.
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Definition 1.38. A map f in G-Spectra is called a G-global weak equivalence
if ϕ∗f is an H-equivariant weak equivalence for every finite group H and every
homomorphism ϕ : H → G.

Theorem 1.39. The G-global projective level model structure admits a Bousfield
localization with weak equivalences the G-global weak equivalences. We call this the
G-global projective model structure; its fibrant objects are precisely those G-global
Ω-spectra that are fibrant in the G-global projective level model structure.

This model structure is again combinatorial (with the same generating cofibra-
tions as before), simplicial, proper, and filtered colimits in it are homotopical.

Proof. See [Len20, Theorem 3.1.41 and Proposition 3.1.47]. �

Theorem 1.40. The G-global flat level model structure admits a Bousfield local-
ization with weak equivalences the G-global weak equivalences. We call this the G-
global flat model structure; its fibrant objects are precisely those G-global Ω-spectra
that are fibrant in the G-global flat level model structure.

This model structure is again combinatorial (with the same generating cofibra-
tions as before), simplicial, proper, and filtered colimits in it are homotopical.

Proof. See [Len20, Theorem 3.1.40 and Proposition 3.1.47]. �

Remark 1.41. For G = 1 the above two model structures agree and recover Haus-
mann’s global model structure [Hau19, Theorem 2.18].

Again, there is also an injective version of the above model structures:

Theorem 1.42. There is a unique model structure on G-Spectra with weak equiv-
alences the G-global weak equivalences and cofibrations the injective cofibrations.
We call this the G-global injective model structure. It is combinatorial, simplicial,
proper, and filtered colimits in it are homotopical.

Proof. See [Len20, Corollary 3.1.46]. �

1.3.2. Change of group adjunctions. As promised (and unlike their equivariant
counterparts), these model structures behave nicely under changing the group:

Proposition 1.43. Let α : G → G′ be any homomorphism. Then the restriction
α∗ : G′-Spectra → G-Spectra is homotopical and we have Quillen adjunctions

α! : G-SpectraG-gl. proj. ⇄ G
′-SpectraG′-gl. proj. :α

∗

α∗ : G′-SpectraG′-gl. flat ⇄ G-SpectraG-gl. flat :α∗

α∗ : G′-SpectraG′-gl. inj. ⇄ G-SpectraG-gl. inj. :α∗.

Proof. Everything except for the statement about the injective model structures
appears in [Len20, Lemmas 3.1.49 and 3.1.50]. For the final statement, it then only
remains to show that α∗ preserves injective cofibrations, which is immediate from
the definition. �

Proposition 1.44. Let α : G→ G′ be an injective homomorphism. Then we also
have Quillen adjunctions

α∗ : G′-SpectraG′-gl. proj. ⇄ G-SpectraG-gl. proj. :α∗

α! : G-SpectraG-gl. flat ⇄ G
′-SpectraG′-gl. flat :α

∗

α! : G-SpectraG-gl. inj. ⇄ G
′-SpectraG′-gl. inj. :α

∗.
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Proof. The latter two statements are [Len20, Propositions 3.1.52 and 3.1.53]. For
the first statement it then only remains (as α∗ is homotopical) that α∗ sends acyclic
fibrations of the G-global projective (level) model structure to acyclic fibrations in
the G-global projective (level) model structure. Using that acyclic fibrations are
defined levelwise and adjoining, this amounts to saying that

(ΣA × α)∗ : (ΣA ×G
′)-SSetGΣA,G′

→ (ΣA ×G)-SSetGΣA,G

preserves cofibrations for every finite set A. This is immediate from Lemma 1.5. �

Again, suitably free quotients are homotopical in our setting:

Proposition 1.45. Let α : G → G′ be any homomorphism, and let f : X → Y be
a G-global weak equivalence in G-Spectra such that ker(α) acts levelwise freely on
X and Y outside the basepoint. Then α!f is a G′-global weak equivalence.

Proof. See [Len20, Proposition 3.1.54]. �

1.3.3. The smash product. The usual smash product of symmetric spectra gives us a
smash product on G-Spectra by pulling through the G-actions. This is compatible
with the above model structures:

Theorem 1.46. The smash product defines left Quillen bifunctors

G-SpectraG-global flat ×G-SpectraG-global flat → G-SpectraG-global flat

G-SpectraG-global proj. ×G-SpectraG-global flat → G-SpectraG-global proj.

Note that in the second adjunction, indeed only one of the input factors is
equipped with the projective model structure (the corresponding statement where
both factors are equipped with the projective model structures follows immedi-
ately).

Proof. See [Len20, Propositions 3.1.63 and 3.1.64]. �

In particular, smashing with a fixed flat G-spectrum is left Quillen for either
of the above model structures, so it preserves weak equivalences between cofibrant
objects by Ken Brown’s Lemma. The following (easy) G-global analogue of the
equivariant Flatness Theorem [Hau17, Proposition 6.2] strengthens this result:

Proposition 1.47. (1) Let X be any G-spectrum. Then X ∧ – preserves G-
global weak equivalences between flat G-spectra.

(2) Let X be a flat G-spectrum. Then X ∧ – preserves G-global weak equiva-
lences.

Proof. See [Len20, Proposition 3.1.62]. �

1.3.4. Relation to stable equivariant homotopy theory. On the pointset level, G-
global and G-equivariant spectra are the same objects, and every G-global weak
equivalence is in particular a G-equivariant weak equivalence. Thus, the identity of
G-Spectra descends to exhibit the G-equivariant stable homotopy category as a lo-
calization of the G-global one. This localization admits both adjoints (fully faithful
for formal reasons), which has the following model categorical manifestation:

Proposition 1.48. The adjunctions

id : G-SpectraG-equivariant projective ⇄ G-SpectraG-global flat : id

id: G-SpectraG-global flat ⇄ G-SpectraG-equivariant flat : id

are Quillen adjunctions.

Proof. See [Len20, Proposition 3.3.1 and Corollary 3.3.3]. �
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1.3.5. Suspension spectra. Finally, we come to the relation between unstable and
stable G-global homotopy theory:

Construction 1.49. Let X be an I-simplicial set (or an I-simplicial set). We define
a symmetric spectrum Σ•

+X via (Σ•
+X)(A) = SA ∧ X(A)+; if i : A → B is an

injection of finite sets, then the structure map is given by

SBri(A) ∧ (SA ∧X(A)+) ∼= SB ∧X(A)+
SB∧X(i)+
−−−−−−−→ SB ∧X(B)+

where the unlabelled isomorphism is induced by i. This becomes an enriched functor
in X in the obvious way, which we then lift to a functor

(1.1) Σ•
+ : G-I-SSet → G-Spectra

by pulling through the G-actions.

Proposition 1.50. The functor (1.1) admits a simplicial right adjoint Ω•. We
have Quillen adjunctions

Σ•
+ : G-I-SSetG-gl. proj. ⇄ G-SpectraG-gl. proj. :Ω

•

Σ•
+ : G-I-SSetG-gl. inj. ⇄ G-SpectraG-gl. inj. :Ω

•,

and in particular Σ•
+ is homotopical.

Beware that [Len20] uses Ω• for the corresponding right adjoint in I-simplicial
sets instead and introduces more complicated notation for the above right adjoint
in I-simplicial sets. As we will only need the latter, we have decided to change
notation here.

Proof. See [Len20, Corollary 3.2.6 and Remark 3.2.7]. �

Remark 1.51. We briefly remark on the above right adjoint. As a functor from
I-SSet, Σ•

+ has a left adjoint ω• defined via (ω•X)(A) = ΩAX(A) with the ev-
ident functoriality in each variable. The functor Ω• is accordingly obtained by
postcomposing ω• with the right adjoint I-SSet → I-SSet of the forgetful func-
tor, and this as usual gives the right adjoint for general G by pulling through the
action. As the forgetful functor G-I-SSet → G-I-SSet is the left half of a Quillen
equivalence for the projective G-global model structures [Len20, Theorem 1.4.49],
we obtain a natural G-global level weak equivalence between the restriction of

G-Spectra
Ω•

−−→ G-I-SSet
forget
−−−→ G-I-SSet

to projectively fibrant objects and the corresponding restriction of ω•; this is all we
will need about Ω• below.

2. Global model categories

In this section, we introduce the framework of global model categories which will
then in particular allow us later to express the universal property of the passage
from global spaces to global spectra.

2.1. Preglobal model categories. We begin by describing a slightly more general
notion:

Definition 2.1. A preglobal model category consists of a locally presentable cate-
gory C , which is enriched, tensored, and cotensored over SSet, together with two
model structures on the category G-C of G-objects in C for each finite group G,
called the projective and flat G-global model structures, such that the following
conditions are satisfied:
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(1) The projective and the flat G-global model structure have the same weak
equivalences (which we call the G-global weak equivalences) and the adjunc-
tion id : G-Cproj ⇄ G-Cflat : id is a Quillen adjunction (i.e. every projective
cofibration is also a flat cofibration, or equivalently every fibration of the
flat model structure is also a fibration in the projective one).

(2) Both the projective and the flat model structure on G-C are left proper,
combinatorial, and simplicial.

(3) For every homomorphism α : H → G of finite groups the restriction functor
α∗ : G-C → H-C preserves weak equivalences, flat cofibrations, and projec-
tive fibrations. Moreover, if α is injective, then α∗ also preserves projective
cofibrations and flat fibrations.

In particular, α∗ is always left Quillen for the flat model structures and
right Quillen for the projective ones; if α is injective, then α∗ is also right
Quillen for the flat model structures and left Quillen for the projective ones.

Example 2.2. Let C = I-SSet. For every finite group G, we can equip G-I-SSet
with the G-global model structure and the injective G-global model structure as
projective and flat model structures, respectively, and these are left proper, combi-
natorial, and simplicial (Theorems 1.28 and 1.29). Propositions 1.31 and 1.32 then
show that this yields a preglobal model category, which we denote by S and call
the preglobal model category of global spaces.

Example 2.3. Let C = Spectra be the category of symmetric spectra. For every
finite G, we can equip G-Spectra with the projective and injective G-global model
structure. Propositions 1.43 and 1.44 then show that this yields a preglobal model
category Sp, which we call the preglobal model category of global spectra.

Remark 2.4. By the same argument we could have used the flat instead of the
injective model structures to yield another preglobal model category (which is the
motivation for the above terminology). However, for now the above choices will
be more convenient; later, when we consider algebraic structures on global spectra,
we will see a return of the flat model structures (or more precisely their ‘positive’
cousins).

Example 2.5. Let C be a preglobal model category and letG be a finite group. Then
we have a preglobal model category G-C with underlying category G-C and with
the model structures on G′-(G-C ) transported from (G′ ×G)-C along the evident
isomorphism of categories. In particular, specializing to the previous examples we
get preglobal model categories of G-global spaces and of G-global spectra.

Example 2.6. Finally, we introduce a more exotic example. Let F be a global
family, i.e. a non-empty collection of finite groups closed under subquotients (hence
in particular under isomorphisms). We make E := SSet into a preglobal model
category as follows: for every finite group G, we write G ∩ F for the family of
subgroups of G that belong to F , and we equip G-SSet with the (G ∩ F)-model
structure and the injective (G ∩ F)-model structure, respectively.

If now α : G → G′ is any group homomorphism, then α∗ clearly preserves in-
jective cofibrations, and it preserves weak equivalences and projective fibrations as
(α∗X)H = Xα(H) and α(H) is a quotient of H . Moreover, if α is injective, then α∗

also preserves projective cofibrations as for any G′-simplicial set X and any simplex
x the isotropy groups satisfy Isoα∗X(x) = α−1(IsoX(x)), which is isomorphic to a
subgroup of IsoX(x). Finally, α! always preserves injective cofibrations (as quo-
tients by group actions preserve injections of sets), and if α is injective, then this
moreover sends (G∩F)-weak equivalences to (G′∩F)-weak equivalences by [Len20,
Proposition 1.1.18] (for M = 1), so it is left Quillen for the injective equivariant
model structures as claimed.
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We call the resulting preglobal model category E F the preglobal model category
of F-equivariant spaces (the reader is invited to choose for themselves whether E

is an abbreviation for ‘equivariant’ or ‘exotic’).

The simplicial enrichment, tensoring, and cotensoring of C make G-C not only
enriched, tensored, and cotensored over SSet but over all of G-SSet: the tensoring
and cotensoring are just given by equipping the non-equivariant tensoring or coten-
soring with the diagonal and conjugation G-action, and the enrichment is given by
taking the mapping space in C (i.e. without regards to G-actions) and equipping it
with the conjugation G-action. In the same way, we obtain for any finite group H
a functor –× –: (G×H)-SSet×G-C → (G×H)-C generalizing the tensoring.

Lemma 2.7. Let G,H be finite groups. Then the above functors

(G×H)-SSetGG,H
×G-Cproj → (G×H)-Cproj

(G×H)-SSet×G-Cflat → (G×H)-Cflat

are left Quillen bifunctors.
In particular, specializing to H = 1, both the projective and flat model structure

on G-C are enriched in the model categorical sense over G-SSet with the usual
equivariant model structure.

Proof. Let us consider the case of the projective model structures first. By adjoint-
ness, it is enough to show that

G-C op
proj × (G×H)-Cproj → (G×H)-SSetGG,H

(X,Y ) 7→ maps(trivHX,Y )

is a right Quillen bifunctor. By definition of the model structure on the right this
amounts to saying that for every K ⊂ G and ϕ : K → H the functor (X,Y ) 7→
mapsK(i∗X, (i, ϕ)∗Y ) to SSet is a right Quillen bifunctor, where i : K →֒ G is
the inclusion. However, as (i, ϕ)∗ is right Quillen and i∗ is left Quillen for the
projective model structures, this follows at once from the fact that K-Cproj is a
simplicial model category.

For the flat model structures, we observe that trivH : G-Cflat → (G×H)-Cflat is
left Quillen. Replacing G by G×H if necessary, we may therefore assume without
loss of generality that H = 1. However, in this case we are similarly reduced by
adjointness to proving that X,Y 7→ mapsK(X,Y ) is a right Quillen bifunctor for
any subgroup K ⊂ G. This in turns follows again from the fact that the restriction
G-Cflat → K-Cflat is both left and right Quillen and that K-Cflat is simplicial. �

2.2. Global model categories. In order to support a good theory of genuine sta-
bilizations we will need one extra condition in addition to the axioms of a preglobal
model category. To motivate this we first recall:

Lemma 2.8. Let

(2.1)

A B

C D

q

g

p

f

be a pullback square of groups such that p (whence also q) is surjective, and let C

be a complete category. Then the Beck-Chevalley transformation

A-C B-C

C-C D-C

q∗ ⇒

g∗

p∗

f∗
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(i.e. the canonical mate

f∗p∗
η
−→ q∗q

∗f∗p∗ = q∗g
∗p∗p∗

ǫ
−→ q∗g

∗

of the identity transformation) is an isomorphism.

Proof. This is well-known (see e.g. [Joy08, Proposition 11.6] for a result in much
greater generality), but also easy enough to prove directly: if X ∈ B-C , then
f∗p∗X = Xkerp as objects of C , while q∗g

∗X = (g∗X)ker q, and the Beck-Chevalley
transformation is the unique map under X . The claim follows as g(ker q) = ker p
by virtue of (2.1) being a pullback. �

Proposition 2.9. Let C be a preglobal model category. Then the following are
equivalent:

(1) For every pullback square (2.1) of finite groups in which all maps are sur-
jections, the Beck-Chevalley transformation f∗ ◦ Rp∗ ⇒ Rq∗ ◦ g∗ is an
isomorphism in Ho(C-C ).

(2) For every pullback square (2.1) of finite groups and surjections, the Beck-
Chevalley transformation Lg!◦q

∗ ⇒ p∗◦Lf! is an isomorphism in Ho(B-C ).
(3) For every diagram

(2.2) C A B
q g

of finite groups such that ker q ∩ ker g = 1, every fibrant X ∈ B-Cflat, and
some (hence any) fibrant replacement g∗X → Y in A-Cflat the induced map
q∗g

∗X → q∗Y is a C-global weak equivalence.
(4) For every diagram (2.2), every cofibrant X ∈ C-Cproj, and some (hence

any) cofibrant replacement Y → q∗X in A-Cproj the induced map g!Y →
g!q

∗X is a B-global weak equivalence.

Definition 2.10. A preglobal model category satisfying the equivalent conditions
of Proposition 2.9 is called a global model category.

Proof of Proposition 2.9. The equivalence (1) ⇔ (2) follows at once from the fact
that the two maps in question are total mates of each other. We will now show
that (1) ⇔ (3); the argument that (2) ⇔ (4) is then analogous.

For the proof of (3) ⇒ (1) we consider a pullback as in (2.1) and we fix a fibrant
object X ∈ B-Cflat and a fibrant replacement functor ι : id ⇒ P for A-Cflat. By
naturality of ι, we then have a commutative diagram

f∗p∗X q∗q
∗f∗p∗X q∗g

∗p∗p∗X q∗g
∗X

q∗Pq
∗f∗p∗X q∗Pg

∗p∗p∗X q∗Pg
∗X

η

q∗ι

q∗g
∗ǫ

q∗ι q∗ι

q∗Pg
∗ǫ

in C-C . Here the top horizontal composite is an isomorphism by the previous
lemma; moreover, the bottom composite f∗p∗X → q∗Pg

∗X represents the Beck-
Chevalley transformation f∗Rp∗ ⇒ Rq∗g

∗, so this is the map we want to be a
C-global weak equivalence. However, the right hand vertical map is a C-global
weak equivalence by assumption, so the claim follows by 2-out-of-3.

Conversely, for the proof of (1) ⇒ (3) we first observe that the above shows
that for any pullback square (2.1) of surjections and any fibrant X ∈ B-Cflat the
canonical map q∗g

∗X → Rq∗g
∗X is a C-global weak equivalence.

We will now use this to prove the special case of (3) in which both q and g are
surjective: namely, we set D = A/ ker(g) ker(q) and we define p : B → D as the
composite

B
g−1

−−→
∼=

A/ ker(q) ։ A/ ker(g) ker(q) = D
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and analogously we define a surjective homomorphism f : C → D. We now claim
that the commutative square

A B

C D

q

g

p

f

of surjections is a pullback square; with this established, the above observation will
then complete the proof of the special case.

To prove that this is indeed a pullback, first note that (g, q) : A → B ×D C ⊂
B×C is injective as ker(g, q) = ker(g)∩ ker(q) = 1. Thus, it only remains to prove
surjectivity. For this we let (b, c) ∈ B × C with p(b) = f(c); thus, if a ∈ A with
g(a) = b, then fq(a) = pg(a) = p(b) = f(c), so c = q(a)x̄ for some x̄ ∈ ker(f). By
surjectivity of q, we can then write c = q(ax) for some x ∈ q−1(ker(f)) = ker(g); but
we also have g(ax) = g(a)g(x) = b, so ax is the desired preimage of (b, c) ∈ B×DC.

Now we can prove the general case of (3): we factor q as a surjection q′ : A→ C′

followed by an injection i : C′ → C, and we factor g as a surjection g′ : A → B′

followed by an injection j : B′ → B. If now X ∈ B-Cflat is fibrant, then also
j∗X ∈ B′-Cflat is fibrant as j is injective. Thus, if g∗X = (g′)∗j∗X → Y is any
fibrant replacement in A-Cflat, then applying the above special case to j∗X shows
that q′∗g

∗X → q′∗Y is a C′-global weak equivalence. The right hand side is fibrant
in C′-Cflat, and we claim that the left hand side is at least fibrant in C′-Cproj; as
i∗ is right Quillen for the projective model structures by injectivity, Ken Brown’s
Lemma will then show that also the induced map i∗q

′
∗g

∗X → i∗q
′
∗Y is a C-global

weak equivalence, and as this agrees with q∗g
∗X → q∗Y up to conjugation by

isomorphisms, this will then complete the proof of the proposition.
To prove the claim, we note that ker(g′) ∩ ker(q′) = ker(g) ∩ ker(q) = 1, so the

above argument yields a pullback square

A B′

C′ D′

g′

q′ f ′

p′

of finite groups and surjections. Thus, another application of Lemma 2.8 shows
q′∗g

∗X = q′∗(g
′)∗i∗X ∼= (p′)∗f ′

∗i
∗X . However, f ′

∗i
∗X is fibrant in D′-Cflat, hence in

particular in D′-Cproj, so (p′)∗f ′
∗i

∗X is fibrant in C′-Cproj as desired. �

Remark 2.11. The above argument more generally shows that the Beck-Chevalley
transformation f∗Rp∗ ⇒ Rq∗g

∗ is an isomorphism as soon as p (whence also q) is
surjective, and similarly Lg!q

∗ ⇒ p∗Lf! is an isomorphism as soon as f is surjective.
Conversely, in the latter two conditions we could equivalently restrict to the case
that g and q are surjective.

Remark 2.12. The first two formulations above are the ‘morally correct ones,’ and
they correspond to the notions of global continuity and global cocontinuity in pa-
rameterized higher category theory [BDG+16, MW21]. In contrast to that, Con-
dition (3) is the statement we will actually use later (namely, in the proof of The-
orem 3.28), while the final formulation is the one that is easiest to check in our
examples below. Intuitively, we can think of a projectively cofibrant object in
G-C as a flat one for which the G-action is ‘free’ in some sense (cf. for example
Lemma 2.7); the final formulation of the above axiom can then be viewed as a very
abstract incarnation of the slogan that ‘free quotients are homotopical.’
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Example 2.13. Both S and Sp are global model categories: this follows from
Propositions 1.33 and 1.45, respectively: if X ∈ B-C is projectively cofibrant, then
B acts freely on it, hence ker(q) acts freely on g∗X as g is injective when restricted
to ker(q).

Example 2.14. Any shift of a global model category is again a global model category.
This follows immediately from the third formulation.

Non-example 2.15. Let p be a prime and let F be a global family of groups con-
taining Z/p but not Z/p×Z/p, for example the global family of groups of order at
most p. We claim that the preglobal model category E F from Example 2.6 is not
a global model category; in particular, the conditions of the above proposition are
not vacuous.

To this end, we will show that Condition (4) is not satisfied. We setB = C = Z/p
and A = B × C with q and g the respective projections. Then the (B ∩ F)-model
structure is just the Aℓℓ-model structure, and in particular X = ∗ is cofibrant in
it. We now let Y → ∗ = g∗(∗) be a cofibrant replacement in the (A ∩ F)-model
structure, and we claim that q!(Y ) = Y/B has non-connected C-fixed points, so it
is in particularly not weakly equivalent to q!(∗) = ∗.

For this, let us observe that the isotropy Iσ of a simplex σ of Y only depends
on the class [σ] in Y/B (as A is abelian). Moreover, [σ] is C-fixed if and only if
Iσ contains an element of the form (b, 1) with b ∈ B arbitrary. Conversely, for
any b ∈ B there exists a vertex yb of Y with Iyb ∋ (b, 1): namely, (b, 1) generates
a subgroup K ⊂ A isomorphic to Z/p, so Y K is weakly contractible, hence in
particular non-empty.

We now claim that [y0] and [y1] cannot be joined by a sequence of C-fixed edges
in Y/B. For this, let us consider any C-fixed edge [e] with vertices [x], [y]. Then
Ix ⊃ Ie ⊂ Iy. On the other hand, Ie 6= 1 as [e] is C-fixed, while Ix, Iy 6= A as
Y A = ∅ since A /∈ F . Thus, it follows for cardinality reasons that all of the above
inclusions are equalities, and in particular Ix = Iy .

Now assume [y0] and [y1] were actually connected by a sequence of C-fixed
edges. Then it would follow from the above by induction that Iy0 = Iy1 , whence
in particular (0, 1), (1, 1) ∈ Iy0 . However, then Iy0 = A which is impossible by the
same argument as above.

2.3. Global Quillen adjunctions. Finally, let us discuss the appropriate notion
of Quillen adjunctions in this context:

Definition 2.16. Let C ,D be preglobal model categories. A global Quillen ad-
junction F : C ⇄ D : U is a simplicially enriched adjunction F : C ⇄ D : U of
the underlying categories such that for every finite group G the induced adjunction
G-C ⇄ G-D is a Quillen adjunction for both model structures.

We call F ⊣ G a global Quillen equivalence if in addition each G-C ⇄ G-D is
a Quillen equivalence (for the projective or, equivalently, for the flat model struc-
tures).

Example 2.17. The suspension-loop adjunction Σ•
+ : I-SSet ⇄ Spectra : Ω• de-

fines a global Quillen adjunction S ⇄ Sp, see Proposition 1.50.

Lemma 2.18. Let F : C ⇄ D :U be a global Quillen equivalence of preglobal model
categories. Then C is a global model category if and only if D is so.
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Proof. Associated to any pullback square (2.1) of finite groups and surjective maps,
we obtain a coherent cube

Ho(A-C ) Ho(B-C )

Ho(A-D) Ho(B-D)

Ho(C-C ) Ho(D-C )

Ho(C-D) Ho(D-D)

q∗

g∗

p∗
g∗

f∗

q∗

f∗

p∗

where all front-to-back maps are given by RU , the front and back face commute
strictly, and the remaining squares are filled by the natural isomorphisms coming
from the fact that all functors are right Quillen for the projective model structures
and commute strictly on the pointset level.

Passing to canonical mates with respect to the adjunctions q∗ ⊣ Rq∗ and p∗ ⊣
Rp∗ we then get a coherent cube

Ho(A-C ) Ho(B-C )

Ho(A-D) Ho(B-D)

Ho(C-C ) Ho(D-C )

Ho(C-D) Ho(D-D)

Rq∗

g∗

Rp∗

Rq∗

g∗

f∗

f∗

Rp∗

in which the transformations in the top, bottom, left, and right face are isomor-
phisms (the latter two use that RU is an equivalence). Using again that all front-
to-back maps are equivalences, it follows that the natural transformation filling the
front square is an isomorphism if and only if the one filling the back square is so,
which immediately yields the claim. �

3. Global stability

In this section we will introduce a notion of genuine stability for global model
categories and construct universal stabilizations in this setting.

3.1. Pointed (pre)global model categories. As usual, in order to talk about
stability we first have to talk about pointedness:

Definition 3.1. A preglobal model category C is called pointed if the underlying
category C is pointed in the usual sense, i.e. has a zero object.

Remark 3.2. Recall [Hir03, Hir15] that for a model category C the category C∗ of
pointed objects (i.e. the slice ∗/C under our favourite terminal object) carries a
model structure in which a map is a weak equivalence, fibration, or cofibration, if
and only if it is so in C . If C is left proper, right proper, or combinatorial, then so is
C∗, with generating (acyclic) cofibrations in the latter case being given by applying
the left adjoint (–)+ = (–)∐∗ : C → C∗ to a set of generating (acyclic) cofibrations
of C . Moreover, if C is simplicial, then C∗ is enriched as a model category over
SSet∗ (hence in particular over SSet) by taking the basepoints of the mapping
spaces to be the zero maps, while the tensoring K ∧X is induced by the tensoring
K × X in C over SSet by collapsing ∗ × X ∐K × ∗. Analogously, we again get
– ∧ –: (G×H)-SSet∗ ×G-C∗ → (G×H)-C∗.
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If now F : C ⇄ D : U is a Quillen adjunction, then U lifts to U∗ : D∗ → C∗

(as it preserves terminal objects); F does not necessarily lift directly, but we get
C∗ → F (∗)/D , which we can postcompose with pushforward along the unique
map F (∗) → ∗ to get a functor F∗ : C∗ → D∗ left adjoint to U∗. As fibrations and
weak equivalences are defined in the underlying categories, we immediately see that
F∗ ⊣ U∗ is a Quillen adjunction again.

In particular, given a preglobal model category C we can make the category
C∗ into a preglobal model category C ∗ this way, coming with a global Quillen
adjunction (–)+ : C ⇄ C ∗ : forget. If C is actually a global model category, then

so is C ∗ (see the third formulation in Proposition 2.9). Moreover, if

(3.1) F : C ⇄ D :U

is a global Quillen adjunction, then F∗ ⊣ U∗ defines a global Quillen adjunction
F ∗ ⊣ U∗.

Lemma 3.3. If (3.1) is a global Quillen equivalence, then so is the induced global
Quillen adjunction F ∗ ⊣ U∗.

Proof. We prove more generally that for any Quillen equivalence L : A ⇄ B :R of
left proper model categories the induced Quillen adjunction L∗ ⊣ R∗ is a Quillen
equivalence. This is well-known, and can also be deduced with a bit of work from
[Rez02, Proposition 2.7], but we do not know of an explicit reference in the litera-
ture, so we provide a direct argument.

For this, we first observe that R∗ still reflects weak equivalences between fibrant
objects (as everything is defined in underlying categories), i.e. its right derived
functor is conservative. To complete the proof it suffices that for every cofibration
∗ → X and some (hence any) fibrant replacement L∗(∗ → X) → Z the induced
map X → R∗L∗(∗ → X) → RZ in C is a weak equivalence.

For this, we pick a cofibrant replacementQ→ ∗. Factoring the induced mapQ→
∗ → X as a cofibration followed by a weak equivalence we then get a commutative
diagram

(3.2)

Q Y

∗ X

in which both vertical maps are weak equivalences. In particular, this is a homotopy
pushout, i.e. (as Q → Y is a cofibration), the induced map Y/Q → X is a weak
equivalence of cofibrant objects in A∗. It therefore suffices to prove the claim for
Y/Q instead of X , i.e. we may assume without loss of generality that (3.2) is an
honest pushout. We then consider the diagram

LQ LY

L∗ LX

∗ L∗X

where the upper half is the image of (3.2) under L (whence a pushout) and the
lower half is the pushout defining L∗(∗ → X); in particular, also the total rectangle
is a pushout. As L(Q → Y ) is a cofibration (L being left Quillen) and the left
hand vertical map is a weak equivalence, we conclude that the right hand vertical
composite LY → L∗(∗ → X) is a weak equivalence because D is left proper. Thus,
if L∗(∗ → X) → Z is any fibrant replacement (in C∗), then the composite LY → Z
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is a fibrant replacement (in C ). We conclude that the composite Y → RLY → RZ
represents the derived unit of L ⊣ R (as Y is cofibrant), so it is a weak equivalence.
The claim follows by 2-out-of-3 as the composite X → Y → RZ represents the
derived unit for L∗ ⊣ R∗. �

Finally, arguing as in Remark 3.2, we deduce from Lemma 2.7:

Corollary 3.4. Let G,H be finite groups and let C be a pointed preglobal model
category. Then the smash product defines left Quillen bifunctors

(
(G×H)-SSet∗

)
GG,H

×G-Cproj → (G×H)-Cproj

(G×H)-SSet∗ ×G-Cflat → (G×H)-Cflat.

In particular, both the projective and flat model structure on G-C are enriched as
model categories over G-SSet∗. �

3.2. Genuine stability. Recall from Remark 1.16 that the passage from G-spaces
to G-spectra can be understood as inverting smashing with the spheres SA for all
finite G-sets A. While we cannot apply this directly to the passage from global
spaces to global spectra in that way (as smashing with SA for a non-trivial G-set A
does not make sense directly), smashing with SA makes sense for G-global spaces,
and following an idea of [GN15] (or more generally the philosophy of parameterized
higher category theory) we can then try to characterize the passage from unstable
to stable global homotopy theory by looking more generally at what happens in
G-global homotopy theory for all G simultaneously:

Definition 3.5. A global model category C is called genuinely stable (or simply
stable) if it is pointed and the Quillen adjunction SA ∧ –: G-C ⇄ G-C : ΩA is a
Quillen equivalence for every finite group G and every finite G-set A (for the flat
or, equivalently, the projective model structures).

Note that specializing to A = ∗ with trivial G-action shows that each G-C is in
particular stable in the usual sense.

Proposition 3.6. The global model category Sp from Example 2.3 is stable.

Proof. The usual smash product of symmetric spectra defines a left Quillen bifunc-
tor

(3.3) G-SpectraG-equiv. proj. ×G-SpectraG-gl. flat → G-SpectraG-gl. flat

by Theorem 1.46 together with Proposition 1.48, making the G-global flat model
structure tensored over the G-equivariant projective one.

If now A is any finite G-set, then Σ∞SA is cofibrant in the G-equivariant projec-
tive model structure, so Σ∞SA ∧L – agrees with the left derived functor of SA ∧ –;
it therefore suffices to show that Σ∞SA ∧L – is an autoequivalence of the G-global
stable homotopy category. But by [Hau17, Proposition 4.9] the analogous functor
is an autoequivalence of the G-equivariant stable homotopy category, so we get a
projectively cofibrant G-equivariant spectrum D together with a zig-zag of weak
equivalences of projectively cofibrant objects between D∧Σ∞SA and S. As (3.3) is
a left Quillen bifunctor, this then shows that D∧L– is the desired quasi-inverse. �

Remark 3.7. In the above argument we crucially use that Σ∞SA is actually cofi-
brant in the equivariant projective model structure (and not just flat); in particular,
(3.3) is not left Quillen for the G-equivariant flat model structure. On the other
hand, we could have just as well used the G-global projective model structure in-
stead of the flat one everywhere.

Lemma 3.8. Let F : C ⇄ D :U be a global Quillen equivalence of pointed global
model categories. Then C is stable if and only if D is so.
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Proof. Let G be a finite group and A a finite G-set. As F is a simplicial and hence
also SSet∗-enriched left adjoint, there is a (canonical) isomorphism filling

G-C G-C

G-D G-D ,

F

SA∧–

F

SA∧–

and as all participating functors are left Quillen (say, for the projective model
structures), this induces an isomorphism L(SA ∧ –) ◦ LF ∼= LF ◦ L(SA ∧ –) of left
derived functors. The claim follows by 2-out-of-3. �

Remark 3.9. Let C be a stable global model category and let G be a finite group.
Then the shift G-C is again stable: if G′ is any finite group and A is a finite G′-set,
then viewing it as a (G′ ×G)-set with trivial G-action shows that the left Quillen
functor SA ∧ –: G′-G-C → G′-G-C is a Quillen equivalence.

3.3. Spectrification. Non-equivariantly, the universal stabilization of a suitably
nice simplicial model category C can be computed by spectrum objects in C . In
this subsection, we introduce a refinement of this construction to our framework;
the universal property will then be established in the next subsection.

Construction 3.10. Let C be a pointed preglobal model category. We write Sp(C )
for the category of SSet∗-enriched functors Σ → C . A map f in Sp(C ) is called a
global level weak equivalence if f(A) is a weak equivalence in ΣA-C for every finite
set A. Moreover, f is called a projective global level fibration or flat global level
fibration if each f(A) is a fibration in the projective ΣA-global model structure or
flat ΣA-global model structure, respectively.

More generally, if C is an arbitrary preglobal model category, then we define
Sp(C ) := Sp(C ∗).

Proposition 3.11. Assume C is pointed. The global level weak equivalences and
global projective (flat) level fibrations are part of a simplicial, combinatorial, and
left proper model structure on Sp(C ). We call this the global projective (flat) level
model structure. A possible set of generating cofibrations is given by

{Σ(A, –) ∧ΣA i : A ∈ Σ, i ∈ IΣA}

where I denotes a set of generating cofibrations of the projective (flat) model struc-
ture on ΣA-C , and similarly a set of generating acyclic cofibrations is given by

{Σ(A, –) ∧ΣA j : A ∈ Σ, j ∈ JΣA}

for sets JΣA of generating acyclic cofibrations of the respective model structure on
ΣA-C .

Here Σ(A, –)∧ΣA f is the map obtained from the levelwise tensoring over SSet∗
by dividing out the diagonal ΣA-action.

Remark 3.12. Replacing C by C ∗ we immediately get an analogous statement for
unpointed C , with generating (acyclic) cofibrations now of the form Σ(A, –)∧ΣA f+
for generating (acyclic) cofibrations f of ΣA-C .

For the proof of the proposition we will use the following easy criterion, cf. [Sch18,
Proposition C.23] or [Hau17, Definition 2.21]:

Lemma 3.13. Let I be a small SSet∗-enriched category, and let C be a locally
presentable category enriched over SSet∗. Assume we are given for each X ∈ I a
combinatorial model structure on End(X)-C (the category of enriched functors from
the full SSet∗-subcategory spanned by X to C ) with generating cofibrations IX and
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generating acyclic cofibrations JX , such that the following ‘consistency condition’
is satisfied: for every Y ∈ I, any relative {I(X,Y ) ∧End(X) j : X ∈ I, j ∈ JX}-cell
complex is a weak equivalence in End(Y )-C .

Then there is a unique model structure on the category I-C of enriched functors
I → C in which a map f is a weak equivalence if and only if f(X) is a weak
equivalence or fibration, respectively, in the given model structure on End(X)-C
for all X ∈ I. This model structure is combinatorial with generating cofibrations

{I(X, –) ∧End(X) i : X ∈ I, i ∈ IX}

and generating acyclic cofibrations

{I(X, –) ∧End(X) j : X ∈ I, j ∈ JX}.

Proof. The forgetful functor I-C →
∏
X∈I

End(X)-C has a left adjoint given by
F :=

∐
X∈I

I(X, –) ∧End(X) prX . We will verify the conditions of the Crans-Kan
Transfer Criterion [Hir03, Theorem 11.3.2] for this adjunction, which will then
provide the desired model structure and show that it is cofibrantly generated (hence
combinatorial) with the above sets of generating (acyclic) cofibrations. By local
presentability, every set permits the small object argument, so we only have to
show that every relative F (J)-cell complex is a weak equivalence where J is a set of
generating acyclic cofibrations of the right hand side. But for the standard choice
of generating acyclic cofibrations this precisely amounts to the above consistency
condition. �

Proof of Proposition 3.11. Let us consider the case of the flat model structures first.
To verify the above consistency condition, it suffices to show that for all finite sets
A ⊂ B the map Σ(A,B) ∧ΣA –: ΣA-Cflat → ΣB-Cflat is left Quillen. To this end,
we observe that we can identify Σ(A,B) with (ΣB)+ ∧ΣBrA SBrA as simplicial
sets with left ΣB- and right ΣA-action, see [Hau17, proof of Proposition 2.24], so
Σ(A,B) ∧ΣA – factors as the composite

ΣA-Cflat
SBrA∧–
−−−−−→ (ΣA × ΣBrA)-Cflat

k!−→ ΣB-Cflat

where k : ΣA×ΣBrA → ΣB is the evident embedding. As k is injective, the second
arrow is left Quillen, and so is the first one by Corollary 3.4.

The consistency condition for the projective model structure follows immediately
from the one for the flat model structure as it has fewer cofibrations and the same
weak equivalences, proving the existence of the projective level model structure.

As (acyclic) fibrations and the cotensoring on Sp(C ) are simply defined levelwise,
we immediately see that these model structures are again simplicial. Similarly, for
left properness it is enough to observe that all generating cofibrations of either
model structure are levelwise flat cofibrations (as Σ(A,B) ∧ΣA – is left Quillen for
the flat model structures by the above), so that every cofibration in Sp(C ) is in
particular a levelwise flat cofibration. �

Applying this to the shifts G-C of C (Example 2.5) gives us two left proper,
simplicial, and combinatorial model structures on G-Sp(C ) that we call the G-global
projective level model structure and G-global flat level model structure. Their weak
equivalences and fibrations are those maps f such that f(A) is a weak equivalence
or fibration, respectively, in the corresponding model structure on (G× ΣA)-C for
every A ∈ Σ.

In contrast to this, the cofibrations are not just simply defined levelwise, but
rather in terms of a left lifting property. Nevertheless we can say something about
the individual levels of the above cofibrations; we begin with the flat case where we
have already noticed in the above proof:
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Corollary 3.14. Let f be a cofibration in G-Sp(C )flat and let B be a finite set.
Then f(B) is a cofibration in (G× ΣB)-Cflat. �

In the projective case we get a slightly weaker statement:

Lemma 3.15. Let i be a projective cofibration in G-Sp(C ). Then i(B) is a cofi-
bration in G-Cproj for every finite G-set B.

Proof. It is enough to prove this for the generating cofibrations. But for any finite
set A and any (G× ΣA)-global projective cofibration i

(Σ(A, –) ∧ΣA i)(B) = (Σ(A,B) ∧ i)/ΣA

and Σ(A,B) ∧ i is a (G × ΣA)-global projective cofibration by Corollary 3.4; the
claim follows as quotients preserve projective cofibrations. �

Lemma 3.16. The projective and flat G-global level model structures define a pre-
global model category Sp(C )level. If C is actually a global model category, then so

is Sp(C )level.

Proof. We may assume without loss of generality that C is pointed.
By the above, both model structures are simplicial, combinatorial, and left

proper. Moreover, it is clear that they have the same weak equivalences and that
every (generating) projective cofibration is also a flat cofibration. Thus, it only
remains to verify the change-of-group properties.

For this let α : G → G′ be any group homomorphism. Then the restriction
(α × id)∗ : (G′ × ΣA)-C → (G × ΣA)-C preserves weak equivalences and pro-
jective fibrations. Thus, α∗ : G′-Sp(C ) → G-Sp(C ) preserves level weak equiva-
lences as well as projective level fibrations. Moreover, if α is injective, then each
(α × id)∗ : (G′ × ΣA)-C → (G × ΣA)-C also preserves flat fibrations, so that α∗

preserves flat level fibrations.
Similarly, one shows that α∗ : G-Sp(C ) → G′-Sp(C ) preserves acyclic flat level

fibrations for any α, so that α∗ preserves flat level cofibrations, and that α∗ also
preserves acyclic projective level fibrations if α is injective, so that α∗ preserves
projective level cofibrations in this case.

Altogether we have shown that Sp(C ) is a preglobal model category. Now as-
sume C is actually a global model category, let g : A → B and q : A → C be
homomorphisms with ker g ∩ ker q = 1, let X ∈ B-Sp(C )flat level be fibrant, and
let i : g∗X → Y be a fibrant replacement in A-Sp(C )flat level; we have to show that
q∗(i) is a C-global level weak equivalence. But for any finite set D, X(D) is fi-
brant in (B ×ΣD)-Cflat and i(D) is a fibrant replacement in (A×ΣD)-Cflat. Thus,
(g∗i)(D) = (g×ΣD)∗(i(D)) is a (C ×ΣD)-global weak equivalence as C is a global
model category and ker(g × id) ∩ ker(q × id) = 1, whence g∗i is a G-global level
weak equivalence as desired. �

Lemma 3.17. Let F : C ⇄ D :U be a global Quillen adjunction. Then also

Sp(F ) : Sp(C )level ⇄ Sp(D)level :Sp(U)

is a global Quillen adjunction. If F ⊣ G is a global Quillen equivalence, then so is
Sp(F ) ⊣ Sp(U).

Proof. By Lemma 3.3, we may assume without loss of generality that C and D

are pointed. Passing to shifts it further suffices to prove that Sp(F ) ⊣ Sp(U) is
a Quillen adjunction for both level model structures and a Quillen equivalence if
F ⊣ U is a global Quillen equivalence.

For the first statement it is enough to observe that Sp(U) preserves (acyclic)
fibrations in either model structure as they are simply defined levelwise.
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For the second statement, it suffices to prove that this is a Quillen equivalence
for the flat model structures. But indeed, if X ∈ Sp(C )flat is flat, then X(A) is
flat for every A by Corollary 3.14; similarly, if FX → Y is a fibrant replacement,
then each FX(A) → Y (A) is a fibrant replacement in ΣA-Cflat. Now the composite
X → UFX → UY represents the derived unit for X by definition, but at the same
time each X(A) → UY (A) represents the derived unit for ΣA-F ⊣ ΣA-U by the
above, so it is a ΣA-global weak equivalence by assumption. Analogously one shows
that also the derived counit is a global level weak equivalence, finishing the proof
of the lemma. �

As before, we now want to restrict to a suitable notion of Ω-spectra via Bousfield
localization.

Definition 3.18. Let C be a preglobal model category. An object X ∈ Sp(C )
is called a global Ω-spectrum if for every finite group H , every finite H-set A and
every finite H-set B the derived adjoint structure map

(3.4) X(A) → RΩBX(A∐B)

is an H-global weak equivalence.

Here we are deriving ΩB with respect to the H-global projective model structure;
in particular, if X is fibrant in either of the above level model structures, then (3.4)
is already represented by the ordinary adjoint structure map. Note that there are
no faithfulness assumptions on A and B here.

Again we can apply this to the shifts of C byG; we will refer to the corresponding
objects of G-Sp(C ) as G-global Ω-spectra.

Remark 3.19. In the definition of a G-global Ω-spectrum we can equivalently ask
for the adjoint structure map X(A) → RΩBX(A∐B) to be a (G×H)-global weak
equivalence for all finite (G×H)-sets A,B (instead of just for H-sets). Namely, we
can simply replace H by G ×H in the above and then restrict along the diagonal
G×H → G×H ×G.

In order to construct the corresponding Bousfield localizations we need some
additional notation:

Construction 3.20. As already used in the description of the generating (acyclic)
cofibrations, performing the tensoring over SSet∗ levelwise gives us a bifunctor

(3.5) – ∧ –: Spectra × C → Sp(C ),

which preserves colimits in each variable separately. In particular, X∧– has a right
adjoint F (X, –): Sp(C ) → C for every spectrum X . From this, we get bifunctors

– ∧ –: G-Spectra×G-C → G-Sp(C )(3.6)

F : G-Spectraop ×G-Sp(C ) → G-C(3.7)

by pulling through the G-actions everywhere.

Lemma 3.21. The smash product (3.6) is a left Quillen bifunctor with respect to
the G-equivariant projective level model structure on G-Spectra and the projective
G-global (level) model structures elsewhere. Dually, (3.7) is a right Quillen bifunctor
for these model structures.

Proof. Again, we may assume C to be pointed. By adjunction, it will be enough
to show that the functor

G-C op
proj. ×G-Sp(C )proj. level → G-SpectraG-equiv. proj. level
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given by taking mapping spaces levelwise is a right Quillen bifunctor. As also the
weak equivalences and fibrations are defined levelwise, it suffices to show that

maps: G-C op
proj. × (G× ΣA)-Cproj. →

(
(G×ΣA)-SSet∗

)
GG,ΣA

-equiv.

is a right Quillen bifunctor for every finite set A. By another adjointness argument,
this then follows from Corollary 3.4. �

Proposition 3.22. The G-global projective level model structure on G-Sp(C ) ad-
mits a Bousfield localization whose fibrant objects are precisely the G-globally pro-
jectively level fibrant G-global Ω-spectra. We call the resulting model structure the
G-global projective model structure. It is again left proper, combinatorial, and
simplicial.

Proof. As before we may assume that C is pointed, and replacing C by G-C if
necessary, it suffices to prove this for G = 1.

As Sp(C )proj. level is left proper, combinatorial, and simplicial, it will be enough
by the localization machinery of [Lur09, Proposition A.3.7.3] to give a set S of
cofibrations such that a fibrant X ∈ Sp(C )proj. level is a global Ω-spectrum if and
only if for every f ∈ S the restriction maps(f,X) is an acyclic Kan fibration.

For this we recall from Remark 1.15 for any finite group H and any finite H-
sets A,B the map λH,A,B : SB ∧Σ(A ∐B, –) → Σ(A, –) corepresenting X(A)H →
(ΩBX(A∐B))H and its factorization λH,A,B = ρH,A,BκH,A,B into anH-equivariant
projective cofibration followed by a level weak equivalence. Moreover, let us pick
for each finite group H a set IH of generating cofibrations of H-Cproj. We now
claim that the set

(3.8) S := {κH,A,B �H i : H,A,B, i ∈ IH}

of (balanced) pushout products, where H runs through all finite groups and A and
B through finite H-sets, has the desired properties.

To this end we first observe that each ordinary pushout product κH,A,B � i is
a cofibration in H-Sp(C )proj. level by Lemma 3.21, so that κH,A,B �H i is indeed a
projective cofibration in Sp(C ) as Sp(C )level is a preglobal model category. Now
by adjointness maps(κH,A,B �H i,X) is an acyclic Kan fibration if and only if the
map F (κH,A,B, trivH X) has the right lifting property in H-C against all maps of
the form i � (∂∆n →֒ ∆n)+. Letting i vary, we conclude (as on the one hand H-C
is tensored over SSet and as on the other the pushout product with (∂∆0 → ∆0)+
gives back the original map up to isomorphism) that maps(κH,A,B �H i,X) is an
acyclic Kan fibration for all i ∈ IH if and only if F (κH,A,B, trivH X) is an acyclic
fibration in H-Cproj. On the other hand, F (κH,A,B, trivH X) is always a fibration
because F is a right Quillen bifunctor (Lemma 3.21 again) and X was assumed
to be projectively level fibrant (so that trivH X is H-globally projectively level
fibrant). Thus, maps(κH,A,B �H i,X) is an acyclic fibration for all i if and only
if F (κH,A,B, trivH X) is a weak equivalence in H-C . However, ρH,A,B is an H-
equivariant level weak equivalence between projectively cofibrant H-equivariant
spectra (as κH,A,B is a cofibration and the source and target of λH,A,B were cofi-
brant), so Ken Brown’s Lemma shows that F (ρH,A,B, trivH X) is an H-global weak
equivalence. Thus, F (λH,A,B , trivH X) is an H-global weak equivalence if and only
if F (κH,A,B, trivH X) is so. Since F (λH,A,B, trivH X) is conjugate to the adjoint
structure map X(A) → ΩBX(A∐B), the claim follows. �

Remark 3.23. We also explicitly describe the set of maps used to obtain the G-
global projective model structure by localization in the above proof. Considering
the shift G-C , we see that this is given as

(3.9) SG := {κH,A,B �H i : H finite group, A,B finite H-sets, i ∈ IG×H}.
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Corollary 3.24. For any finite group G, there is a unique model structure on
G-Sp(C ) whose cofibrations are the G-global flat level cofibrations and whose weak
equivalences are the G-global weak equivalences. This model structure is simplicial,
combinatorial, and left proper. Moreover, its fibrant objects are precisely the G-
global Ω-spectra that are fibrant in the G-global flat level model structure.

Proof. Again, we may assume that C is pointed and G = 1. As every global
projective level cofibration is also a global flat level cofibration, we can localize
the global flat level model structure at the maps (3.8); as every fibration in the
global flat level model structure is also a fibration in the global projective level
model structure, the above argument then shows that a level fibrant spectrum is
fibrant in this new model structure if and only if it is a global Ω-spectrum. It only
remains to show that the weak equivalences of this model structure are again the
global weak equivalences. But by abstract nonsense about Bousfield localizations,
a map f in Sp(C ) is a weak equivalence in this global flat model structure if and
only if [f,X ] is bijective for every global Ω-spectrum, where [ , ] denotes the hom
set in the localization of Sp(C ) at the global level weak equivalences. As the same
characterization applies to the global projective model structure, the claim follows
immediately. �

Warning 3.25. It might be tempting to assume that the generating acyclic cofi-
brations of the above G-global model structures are given by adding the set SG
from (3.9) to the generating acyclic cofibrations of the level model structure, anal-
ogously to the equivariant situation (Remark 1.15). We warn the reader however
that while all of these are clearly acyclic cofibrations, it is not clear whether they
generate, and more generally the localization machinery employed above does not
provide any control about the generating acyclic cofibrations. In fact, the explicit
identification of the generating acyclic cofibrations in the equivariant case referred
to above crucially relies on right properness of the level model structure, which is
not assumed in our setting.

Despite these words of warning, the following result will often allow us to pretend
that the generating acyclic cofibrations are of the above form:

Proposition 3.26. Let G be a finite group and let D be a left proper simplicial
model category with a simplicial Quillen adjunction F : G-Sp(C )proj. level ⇄ D :U .
Then the following are equivalent:

(1) F is left Quillen as a functor G-Sp(C )proj → D .
(2) F sends the maps in SG to weak equivalences.
(3) U sends fibrant objects to G-global Ω-spectra.

The analogous statement for the flat G-global (level) model structure also holds.

The proof will in turn rely on the following general result:

Lemma 3.27. Let F : C ⇄ D :U be a simplicial adjunction of left proper simplicial
model categories. Then F ⊣ U is a Quillen adjunction if and only if F preserves
cofibrations and U preserves fibrant objects.

Proof. See [Lur09, Corollary A.3.7.2]. �

Proof of Proposition 3.26. The equivalence (1) ⇔ (3) is an instance of the above
lemma, while for (1) ⇒ (2) it suffices to observe that the maps in SG are acyclic
cofibrations. Thus, it only remains to prove (2) ⇒ (3).

For this, let X be fibrant and let f ∈ SG. Then maps(f, UX) agrees by enriched
adjointness up to conjugation with maps(Ff,X), so it is an acyclic fibration as Ff
is an acyclic cofibration and X was assumed to be fibrant. But UX is level fibrant,
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so letting f vary this implies by the proof of Proposition 3.22 that UX is a G-global
Ω-spectrum as desired. �

Theorem 3.28. Let C be a global model category. Then the projective and flat G-
global model structures on G-Sp(C ) assemble into a global model category Sp(C ).

Proof. Again, we may assume that C is pointed. We have already seen that all of
these model structures are left proper and combinatorial. Moreover, the projective
and the flat G-global model structure have the same weak equivalences (namely,
the G-global weak equivalences), and every projective cofibration is also a flat one
by Lemma 3.16.

For the functoriality properties, let α : G → G′ be any homomorphism. Then
α! ⊣ α∗ is a Quillen adjunction for the projective level model structures, hence
in particular with respect to the projective level model structure on G-Sp(C ) and
the actual projective model structure on G′-Sp(C ). By Proposition 3.26 it will
therefore suffice to prove that α∗ sends any fibrant X ∈ G′-Sp(C )proj to a G-global
Ω-spectrum. Indeed, as we already know that α∗X is projectively level fibrant, this
amount to saying that the adjoint structure map

(α∗X)(A) → ΩB(α∗X)(A ∐B)

is a (G×H)-global weak equivalence for all finite H-sets A,B. However, this map
agrees with the restriction of the adjoint structure map along α × id : G × H →
G′ ×H ; as (α × id)∗ is homotopical, the claim follows.

Next, we will show that α∗ ⊣ α∗ is a Quillen adjunction for the flat model
structures; arguing as above, this amounts to saying that if X ∈ G-Sp(C )flat is
fibrant, then α∗(X)(A) → ΩB(α∗X)(A∐B) is a (G′ ×H)-global weak equivalence
for all finite H-sets A,B. This is where we will need that C is a global (and not
just a preglobal) model category: namely, we pick functorial fibrant replacements
in (G×H)-Cflat to get a commutative diagram

X(A) ΩBX(A∐B)

Y1 Y2.

∼

∼

∼

Here the top arrow is a (G×H)-global weak equivalence by assumption on X , while
the vertical arrows are so by construction; thus, also the lower horizontal arrow is
a weak equivalence by 2-out-of-3. We want to show that applying (α × id)∗ sends
the top arrow to a (G′×H)-global weak equivalence, for which it is then enough to
show by another application of 2-out-of-3 that it sends all the remaining arrows to
(G′×H)-global weak equivalences. For the lower horizontal arrow this is simply an
instance of Ken Brown’s Lemma. We will now show that also the left hand vertical
arrow is sent to a (G′ × H)-global weak equivalence; the argument for the right
hand vertical arrow will then be analogous.

For this, we observe that X(A) is fibrant in (G × ΣA)-Cflat by definition of the
G-global flat model structure. Thus, if ρ : H → ΣA classifies the H-action on A
and we define g := (id × ρ) : G ×H → G × ΣA, q := (α × id) : G ×H → G′ ×H ,
then we precisely want to show that q∗ sends the fibrant replacement g∗X(A) → Y1
in (G×H)-Cflat to a weak equivalence. However, as ker g = 1 × (ker ρ) has trivial
intersection with (kerα)× 1 = ker q, this is simply an instance of what it means for
a preglobal model category to be global.

As α∗ is left Quillen for the flat global model structures, it in particular sends
acyclic cofibrations to G-global weak equivalences. However, any acyclic fibration in
the G′-global flat model structure is in particular a G′-global level weak equivalence,
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and as Sp(C )level is a preglobal model category, it follows that α∗ sends these to
G-global (level) weak equivalences. Thus, α∗ is actually homotopical.

Now assume that α is injective. Then α∗ is left Quillen for the projective model
structures as it preserves projective (level) cofibrations by Lemma 3.16 and is ho-
motopical by the above. Moreover, α! ⊣ α

∗ is a Quillen adjunction for the flat level
model structures and α∗ sends fibrant objects to G-global Ω-spectra by the above,
so α! ⊣ α

∗ is also a Quillen adjunction for the flat model structures.
Finally, let g : A→ C and q : A→ B be homomorphisms with ker(g)∩ker(q) = 1,

let X be fibrant in C-Sp(C )flat, and let ι : g∗X → Y be a fibrant replacement in
A-Sp(C )flat; we have to show that q∗ι is a B-global weak equivalence. However,
by the above g∗X is an A-global Ω-spectrum, so ι is actually an A-global level
weak equivalence. The claim therefore follows from Sp(C )level being a global model
category. �

The above spectrification construction is compatible with global Quillen adjunc-
tions and global Quillen equivalences:

Proposition 3.29. Let F : C ⇄ D : U be a global Quillen adjunction of global
model categories. Then Sp(F ) : Sp(C ) ⇄ Sp(D) :Sp(U) is a global Quillen adjunc-
tion. If F ⊣ U is a global Quillen equivalence, then so is Sp(F ) ⊣ Sp(U).

Proof. By Lemma 3.3 we may assume that C and D are pointed. Moreover, it
suffices as usual to show that Sp(F ) : Sp(C ) ⇄ Sp(D) :Sp(U) is a Quillen adjunc-
tion in the usual sense for the projective and flat model structures, and a Quillen
equivalence (say, for the flat ones) if F ⊣ U is a global Quillen equivalence.

For the first statement, we observe that this holds for the level model structures
by Lemma 3.17, so that it suffices that the right adjoint sends projectively fibrant
objects to global Ω-spectra, which is a direct consequence of Ken Brown’s Lemma.

For the second statement, we let Y ∈ Sp(D)flat fibrant and X → GY a cofibrant
replacement in the global flat level model structure. Then FX → FUY → Y
represents the derived counit LFRUY → Y for the global flat model structure, but
also for the global flat level model structure; thus, it is a global weak equivalence
by Lemma 3.17.

The proof that also the derived unit is an isomorphism is more involved. The
crucial observation for this is the following:

Claim. Let W ∈ Sp(C ) be a flat global Ω-spectrum. Then Sp(F )(W ) is again a
global Ω-spectrum.

Proof. LetH be a finite group. As F ⊣ U is an SSet∗-enriched adjunction, there are
natural comparison isomorphismsK∧F (X) → F (K∧X) for allK ∈ H-SSet∗, X ∈
H-C . Specializing to K = SB for some finite H-set B and using that all functors
in sight are left Quillen for the flat model structures, these derive to isomorphisms
SB ∧L LF (X) → LF (SB ∧L X) in the homotopy category. Passing to canonical
mates gives us a natural comparison map LFRΩBX → RΩBLF (X) which is again
an isomorphism as LF is assumed to be an equivalence. Plugging in the definitions,
this comparison map is represented for an X that is cofibrant in the flat model
structure and fibrant in the projective one by

(3.10) F (Y )
F (π)
−−−→ F (ΩBX) → ΩBF (X)

ΩBι
−−→ ΩBZ

where π : Y → ΩBX is a cofibrant replacement in the flat model structure, the unla-
belled arrow is the comparison map coming from the enrichment, and ι : F (X) → Z
is a fibrant replacement (say, in the flat model structure); in particular, the com-
posite (3.10) is an H-global weak equivalence.
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With this at hand, we can now prove the claim. As Sp(F ) is left Quillen with
respect to the flat level model structures, we may assume without loss of generality
thatW is also fibrant in the flat level model structure. Let now H be a finite group,
and let A,B be finite H-sets; we have to show that the composite

(3.11) F (W (A))
σ̃
−→ ΩBF (W (A ∐B))

ΩBι
−−→ ΩBZ

is an H-global weak equivalence, where the first map is the ordinary adjoint struc-
ture map and ι is a fibrant replacement F (W (A∐B)) → Z in H-Cflat. For this we
pick a factorization

W (A) Y ΩBW (A ∐B)κ π
∼

in H-Cflat of σ̃ into a cofibration κ followed by a weak equivalence π; note that κ
is actually an acyclic cofibration by 2-out-of-3 and that Y is cofibrant as W (A) is,
so that π is a cofibrant replacement. Then we have a commutative diagram

ΩBF (W (A ∐B)) ΩBZ

F (W (A)) F (ΩBW (A ∐B))

F (Y )

ΩBι

F (σ̃)

F (κ)

σ̃

F (π)

in which F (κ) is a weak equivalence as F is left Quillen, while the composite
F (Y ) → ΩBZ agrees with (3.10) for X := W (A ∐ B) ∈ H-C , so it is a weak
equivalence by the above. Thus, also the top composite (3.11) is a weak equivalence
by 2-out-of-3, finishing the proof of the claim. △

It suffices now to show that the derived unit X → RULFX is an isomorphism
whenever X is a flat global Ω-spectrum. But indeed, this is represented by the
composite X → UFX → UY where FX → Y is a fibrant replacement in the
global projective model structure. By the claim, FX is a global Ω-spectrum, so
this is actually a level fibrant replacement; thus, this composite also represents
the derived unit for the corresponding level model structures and the claim follows
again from Lemma 3.17. �

Finally, let us show that the above construction actually fulfills its purpose:

Theorem 3.30. Let C be a global model category. Then Sp(C ) is stable.

For the proof of the theorem, we may as usual assume without loss of generality
that C is pointed. We now want to proceed in the same way as for Sp (see
Proposition 3.6 above), so we first need to introduce a suitable smash product with
G-equivariant symmetric spectra:

Construction 3.31. Let us write ∧ for the essentially unique SSet∗-enriched functor
Spectra×Sp(C ) → Sp(C ) that preserves tensors and colimits in each variable and
such that Σ(A, –)∧ (Σ(B, –)∧X) = Σ(A∐B, –)∧X with the evident functoriality
in A,B ∈ Σ and X ∈ C . For any finite group G, we then obtain a pairing

(3.12) – ∧ –: G-Spectra×G-Sp(C ) → G-Sp(C )

by pulling through the G-actions.

There is then a unique way to extend the evident isomorphisms

Σ(∅, –) ∧ (Σ(B, –) ∧X) = Σ(∅∐B, –) ∧X ∼= Σ(B, –) ∧X



GLOBAL MODEL CATEGORIES AND TOP. ANDRÉ-QUILLEN COHOMOLOGY 33

and

(Σ(A, –) ∧Σ(B, –)) ∧ (Σ(C, –) ∧X) = Σ((A ∐B)∐ C, –) ∧X

∼= Σ(A ∐ (B ∐ C), –) ∧X

= Σ(A, –) ∧ (Σ(B, –) ∧ (Σ(C, –) ∧X))

to make G-Sp(C ) tensored over G-Spectra. Since all adjoints exist by local pre-
sentability, G-Sp(C ) is then also enriched and cotensored overG-Spectra; the next
proposition can therefore be reformulated as saying that G-Sp(C )proj is enriched in
the model categorical sense over G-SpectraG-equiv. proj..

Proposition 3.32. The pairing (3.12) is a left Quillen bifunctor with respect to the
G-equivariant projective model structure on G-Spectra and the G-global projective
model structure on G-Sp(C ).

For the proof we will need:

Lemma 3.33. Let A be any finite G-set. Then the shift shA : G-Sp(C ) → G-Sp(C )
is right Quillen for the G-global projective model structures.

Proof. As before, it suffices to show that shA is right Quillen for the corresponding
level model structures and that it sends fibrant objects to G-global Ω-spectra.

For the first statement, we simply note that evB ◦ shA : G-Sp(C ) → (G×ΣB)-C
factors as the composition

G-Sp(C )proj. lev.
evA∐B−−−−→(G×ΣA∐B)-Cproj

res
−−→(G×ΣA×ΣB)-Cproj

ϕ∗

−−→(G×ΣB)-Cproj

where ϕ is defined via ϕ(g, σ) = (g, g.–, σ), and each of these is right Quillen by
definition.

Finally, if X is fibrant, then shAX is level fibrant by the above, hence shAX
will be a G-global Ω-spectrum if and only if X(A ∐ B) → ΩCX(A ∐ B ∐ C) is a
(G×H)-global weak equivalence for all finite H-sets B,C. This follows easily from
Remark 3.19 (letting H act trivially on A and G act trivially on B,C). �

Proof of Proposition 3.32. Let us first prove the analogous statement where we
equip G-Spectra with the G-equivariant projective level model structure. Adjoin-
ing over, it will be enough here to show that

G-Sp(C )op ×G-Sp(C ) → G-Spectra

X,Y 7→
(
A 7→ maps(X, shA Y )

)

(with the evident functoriality in A,X, Y ) is a right Quillen bifunctor. As all
structure in sight is defined levelwise, this amounts to saying that (X,Y ) 7→

maps(X, shA Y ) is a right Quillen bifunctor to (G×ΣA)-SSet∗ with the GG,ΣA-
model structure. However, as Sp(C ) is a global model category, trivΣA : G-Sp(C ) →
(G× ΣA)-Sp(C ) is right Quillen for the projective model structures, and so is the

endofunctor shA of (G × ΣA)-Sp(C ) (where G acts trivially on A and ΣA acts
tautologically) by the previous lemma. Thus, the claim follows from Corollary 3.4
applied to the global model category Sp(C ).

For the original statement, all that remains now is to show that the pushout
product of any standard generating acyclic cofibration j of G-SpectraG-equiv. proj.

with any generating cofibration i of G-Sp(C ) is again a G-global weak equivalence.
However, if j is even a level weak equivalence, this follows from the above, while
the other generating acyclic cofibrations are precisely the maps (G+ ∧H κH,A,B) �

k for subgroups H ⊂ G, finite H-sets A,B, and (generating) cofibrations k of
G-Sp(SSet)G-equiv. proj., see Remark 1.15. The pushout product (G+ ∧H κH,A,B �

k) � i can then be identified with κH,A,B �H (G+ ∧ (k � i)) where H acts on the
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second factor via its right action on G. By the above, k � i is a (level) cofibration;
by construction of the G-global projective model structure it therefore only remains
to show that

G+ ∧ –: G-Sp(C ) → (G×H)-Sp(C )

(where G acts diagonally and H acts from the right) is left Quillen for the projective
(level) model structures. However, as Sp(C ) is a (pre)global model category and G
is cofibrant in (G×H)-SSetGG,H

(H acting freely from the right), this is simply

an instance of Corollary 3.4 again. �

Proof of Theorem 3.30. This follows from Proposition 3.32 in the same way as in
the proof of Proposition 3.6. �

3.4. The universal property of spectrification. Throughout, let C and D

be global model categories. We begin by explaining in which sense the above
construction Sp is idempotent:

Lemma 3.34. Assume C is pointed. Then we have a global Quillen adjunction

(3.13) Σ∞ := S ∧ –: C ⇄ Sp(C ) :Ω∞ := ev∅.

Proof. It is clear from the definitions that Ω∞ is right Quillen (already for the level
model structures). �

Corollary 3.35. Let C be any global model category. Then we have a global Quillen
adjunction

Σ∞
+ := S ∧ (–)+ : C ⇄ Sp(C ) :Ω∞ := ev∅. �

Theorem 3.36. Let C be a global model category. Then C is stable if and only if
it is pointed and the global Quillen adjunction (3.13) is a global Quillen equivalence.

Proof. Stability is preserved under global Quillen equivalences (Lemma 3.8), so ‘⇐’
follows from Theorem 3.30. By the usual shifting argument it now suffices to show
that Σ∞ : C ⇄ Sp(C ) :Ω∞ is a Quillen equivalence whenever C is stable.

For this we first observe that LΣ∞ takes values in global Ω-spectra. Namely,
if X ∈ Cflat is cofibrant, then the ordinary structure maps SB ∧ (Σ∞X)(A) →
(Σ∞X)(A∐B) are isomorphisms for all finite groups H and finite H-sets A and B.
However, (Σ∞X)(A) = SA ∧ X is cofibrant in the flat H-global model structure,
so we can identify this with the derived map SB ∧L (Σ∞X)(A) → (Σ∞X)(A∐B).
By stability, the adjoint map (Σ∞X)(A) → RΩB(Σ∞X)(A ∐ B) is then also an
H-global weak equivalence as desired.

It follows immediately that for every cofibrant X ∈ Cflat the ordinary unit X →
Ω∞Σ∞X already represents the derived unit. As the former is an isomorphism,
the derived unit is a global weak equivalence.

To complete the proof, it is now enough to show that Ω∞ reflects weak equiva-
lences between global Ω-spectra. But indeed, if f : X → Y is a map of global Ω-
spectra such that f(∅) is a global weak equivalence, then RΩAf(A) is a ΣA-global
weak equivalence as it is conjugate to f(∅) (equipped with the trivial ΣA-action).
Thus, f(A) must be a ΣA-global weak equivalence as ΩA : ΣA-C → ΣA-C is part
of a Quillen equivalence (say, for the flat model structures). �

Definition 3.37. A global Quillen adjunction C ⇄ D is called a global stabilization
if D is stable and the induced global Quillen adjunction Sp(C ) ⇄ Sp(D) is a global
Quillen equivalence.

Theorem 3.38. Let C be any global model category. Then Σ∞
+ : C ⇄ Sp(C ) :Ω∞

is a global stabilization.
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Proof. We have already shown in Theorem 3.30 that Sp(C ) is stable. Replacing C

by G-C as usual, it then only remains that Sp(Σ∞
+ ) : Sp(C ) ⇄ Sp(Sp(C )) : Sp(Ω∞)

is a Quillen equivalence. Comparing the right adjoints we immediately see that this
agrees with Sp(Σ∞) : Sp(C ∗) ⇄ Sp(Sp(C ∗)) : Sp(Ω

∞), so we may further assume
that C is pointed.

For the proof, we identify the SSet∗-category Sp(Sp(C )) with the category of
SSet∗-enriched functors Σ⊗Σ → C where Σ⊗Σ denotes the SSet∗-category with
objects the pairs (A,B) of finite sets and with mapping spaces

mapsΣ⊗Σ((A,B), (A′, B′)) = mapsΣ(A,A
′) ∧mapsΣ(B,B

′)

with the evident composition. We take the convention that the first factor of
Σ ⊗ Σ corresponds to the ‘outer Sp’, so Sp(Ω∞) corresponds to restriction along
the inclusion i1 : Σ → Σ⊗Σ, A 7→ (A,∅). On the other hand, restricting along the
other inclusion i2 : Σ → Σ⊗Σ corresponds to the Quillen equivalence Ω∞.

We now write Π: Σ⊗Σ → Σ for the usual symmetric monoidal structure (used
to construct the smash product of spectra), given on objects by (A,B) 7→ A∐B. By
restricting, this gives rise to a simplicial functor Π∗ : Sp(C ) → Sp(Sp(C )), which
admits a simplicial left adjoint Π! by enriched Kan extension.

Claim. The simplicial adjunction Π! ⊣ Π∗ is a Quillen adjunction with respect to
the projective model structures.

Proof. Let us consider the case of the level model structures first, which amounts to
saying that Sp(C ) → ΣA-Sp(C ), X 7→ (Π∗X)(A) is right Quillen for the projective
model structures everywhere. However, this can be identified with the composition

Sp(C )proj
trivΣA−−−−→ ΣA-Sp(C )proj

shA

−−→ ΣA-Sp(C )proj

of which the first functor is right Quillen as Sp(C ) is a global model category while
the second one is so by Lemma 3.33.

It then only remains to show that if X is fibrant in the global projective model
structure on Sp(C ), then Π∗X is a global Ω-spectrum, i.e. for every finite group H

and every finite H-sets A,B, the map shAX → ΩB shA∐B X is an H-global weak
equivalence. But indeed, this is even an H-global level weak equivalence: if C is
any finite set, then after evaluating at C this is simply the adjoint structure map
X(C ∐A) → ΩB(C ∐A∐B), which is an (H ×ΣC)-global weak equivalence since
X was assumed to be a global Ω-spectrum (letting ΣC act trivially on A and B
while H acts trivially on C). △

The unitality isomorphisms of the symmetric monoidal structure on Σ now give
us isomorphisms Ω∞ ◦ Π∗ ∼= id ∼= Sp(Ω∞) ◦ Π∗. As all functors are right Quillen,
this induces isomorphisms RΩ∞◦RΠ∗ ∼= id ∼= RSp(Ω∞)◦RΠ∗ of derived functors.
In particular, as RΩ∞ is an equivalence (Theorems 3.30 and 3.36), also RΠ∗ is an
equivalence by 2-out-of-3, and hence so is RSp(Ω∞) by the same argument. �

Remark 3.39. Write GLOBMOD for the opposite of the large category of global
model categories and global right Quillen functors, localized with respect to the
global Quillen equivalences. Then Proposition 3.29 implies that Sp descends to an
endofunctorQ ofGLOBMOD. Moreover the global Quillen adjunctions Σ∞

+ ⊣ Ω∞

induce a natural transformation η : id ⇒ Q.1

1Here it comes in handy that we defined the underlying 1-category to consist of right Quillen
functors: Ω∞ = ev∅ is strictly natural while Σ∞

+ is only pseudonatural. However, the approach

via left Quillen functors or by encoding both adjoints at the same time could also be made to
work, as it is not hard to show using a cocylinder argument that isomorphic functors become equal
after localizing at the global Quillen equivalences in either case.
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By Theorems 3.30 and 3.36, the map ηQC is an isomorphism in GLOBMOD
for every C ; similarly, Theorem 3.38 above shows that QηC is an isomorphism.
Thus, it follows by abstract nonsense that Q is a Bousfield localization onto its
essential image (i.e. the stable global model categories) with unit given by η. Put
differently, for any global model category C , Ω∞ : Sp(C ) → C (or more generally
the right adjoint in any global stabilization in the sense of Definition 3.37) is the
homotopy universal example of a global right Quillen functor from a stable global
model category, and dually for the left adjoints.

4. The stabilization of global spaces

In this section we will prove:

Theorem 4.1. The global Quillen adjunction

(4.1) Σ•
+ : S ⇄ Sp :Ω•

from Example 2.17 is a global stabilization.

This can be seen as a sanity check for our framework, but it also allows us to
describe the passage from unstable to stable global homotopy theory via a universal
property: (4.1) is the homotopy-universal example of a global Quillen adjunction
from S to a stable global model category.

For the proof, we will compare Sp to the global stabilization constructed in the
previous section. This will require some preparations:

Construction 4.2. We define a functor ∆∗ : Sp(S ) → Spectra as follows: if X is
a spectrum in pointed I-simplicial sets, then ∆∗X(A) = X(A)(A) with structure
maps

SBri(A) ∧X(A)(A)
σ
−→ X(B)(A)

X(B)(i)
−−−−−→ X(B)(B)

for every injection i : A→ B and with the evident enriched functoriality in X .
By the enriched Yoneda Lemma, ∆∗ admits an enriched left adjoint ∆! which is

characterized up to unique enriched isomorphism by the condition that it preserves
colimits and tensors and satisfies ∆!Σ(A, –) = Σ(A, –) ∧ I(A, –)+ with the evident
functoriality in A. Writing simplices of Σ(A,B) for B ∈ Σ as equivalence classes
[i, σ] of an injection i : A → B and a simplex σ of SBri(A), the unit of Σ(A, –) is
then given in degree B by Σ(A,B) → Σ(A,B) ∧ I(A,B)+, [i, σ] 7→ [i, σ] ∧ i.

By enriched Kan extension, ∆∗ moreover admits a simplicial right adjoint ∆∗.

Our actual goal now is to prove:

Theorem 4.3. For any finite group G the simplicial adjunction

(4.2) ∆! : G-SpectraG-global projective ⇄ G-Sp(S )G-global projective :∆
∗

is a Quillen equivalence.

The proof will occupy the remainder of this section; for now, let us already
remark how it implies Theorem 4.1:

Proof of Theorem 4.1. We already know that Σ•
+ ⊣ Ω• is a global Quillen adjunc-

tion and that Sp is stable (Proposition 3.6). Thus, it only remains to show that
G-Sp(Ω•) derives to an equivalence of homotopy categories for every finite G. To
this end, we consider the diagram

(4.3)

G-Sp(Sp)proj. G-gl. G-Spectraproj. G-gl.

G-Sp(S )proj. G-gl.

G-Sp(Ω•)

Ω∞

∆∗
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of right Quillen functors. This does not commute strictly, but after restricting to
fibrant objects, Remark 1.51 shows that the lower composite is given up to natural
G-global (level) weak equivalence by sending a G-bispectrum X to the spectrum
δ(X) given by A 7→ ΩAX(A)(A) with the evident functoriality. We moreover
have a natural map σ : Ω∞X → δ(X) given in degree A by the map X(∅)(A) →
ΩAX(A)(A) induced by the adjunct structure map. If X is fibrant, then each
X(∅) → ΩAX(A) is a (G × ΣA)-global weak equivalence of fibrant objects in the
projective (G × ΣA)-global model structure, hence a (G × ΣA)-global level weak
equivalence. In particular, after evaluating at A, this is a GΣA,G×ΣA-equivariant
weak equivalence, hence a GΣA,G-equivariant weak equivalence with respect to the
diagonal ΣA-action. Thus, σ is a G-global (level) weak equivalence for every fibrant
X . Altogether, we therefore have an isomorphism RΩ∞ ∼= R(G-Sp(Ω•)) ◦R∆∗ of
right derived functors.

However, the top arrow in (4.3) induces an equivalence of homotopy categories
by stability of Sp (Proposition 3.6), and so does ∆∗ by the previous theorem. The
claim now follows from 2-out-of-3. �

It remains to prove Theorem 4.3.

Lemma 4.4. The simplicial adjunction (4.2) is a Quillen adjunction.

Proof. We will first show that ∆∗ preserves (acyclic) level fibrations. Indeed, if
f : X → Y is any map in G-Sp(S ), then (∆∗f)(A) = f(A)(A). If now f is a
G-global (acyclic) level fibration, then f(A) is a (G×ΣA)-global (acyclic) fibration,
hence in particular a (G × ΣA)-global (acyclic) level fibration, so that f(A)(A) is
an (acyclic) GΣA,G×ΣA -equivariant fibration. As before, it is then in particular a
GΣA,G-equivariant (acyclic) fibration with respect to the diagonal action, i.e. ∆∗f
is an (acyclic) level fibration as desired.

To complete the proof, it now only remains to show that ∆∗ sends fibrant objects
to G-global Ω-spectra. But indeed, if X is fibrant and A,B are finite H-sets, then
X(A) → ΩBX(A ∐ B) is a (G ×H)-global weak equivalence between projectively
fibrant (G ×H)-global spaces, hence a (G ×H)-global level weak equivalence. In
particular, (∆∗X)(A) = X(A)(A) → ΩBX(A ∐ B)(A) is a GΣA,G×H-equivariant
weak equivalence. Thus, if A is faithful, then this is a GH,G×H -weak equivalence by
Lemma 1.6 and whence a GH,G-equivariant weak equivalence with respect to the
diagonal action.

Now the adjoint structure map of ∆∗X factors as

X(A)(A)
σ̃(A)
−−−→ ΩBX(A∐B)(A)

ΩBX(A∐B)(incl)
−−−−−−−−−−−→ ΩBX(A ∐B)(A ∐B);

if H acts faithfully on A, then the first map is a GH,G-equivariant weak equivalence
by the above, and so is the second one by the same computation as X(A∐B) is a
fibrant (G×H)-I-space. �

Lemma 4.5. The functor ∆∗ : G-Sp(S )G-global proj. → G-SpectraG-global proj. re-
flects G-global weak equivalences between fibrant objects, i.e. its right derived functor
R∆∗ is conservative.

Proof. Let f : X → Y be a map of fibrant objects such that ∆∗f is a G-global weak
equivalence. As ∆∗ is right Quillen, ∆∗X and ∆∗Y are fibrant, so ∆∗f is even a G-
global level weak equivalence, i.e. f(A)(A) is a GH,G-equivariant weak equivalence
of (G×H)-simplicial sets for every finite group H and any finite faithful H-set A.
We want to show that f(A) is already a (G × ΣA)-global level weak equivalence,
i.e. that for every finite set B the map f(A)(B) is a GΣB ,G×ΣA-equivariant weak
equivalence, or put differently that for every finite group H acting arbitrarily on A
and faithfully on B the map f(A)(B) is a GH,G-equivariant weak equivalence.
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For this we consider the commutative diagram

X(A)(B) ΩBX(A ∐B)(B) ΩB(∆∗X)(A ∐B)

Y (A)(B) ΩBY (A ∐B)(B) ΩB(∆∗Y )(A ∐B)

σ̃

f(A)(B) ΩBf(A∐B)(B)

ΩBX(A∐B)(incl)

ΩB(∆∗f)(A∐B)

σ̃ ΩBX(A∐B)(incl)

As H acts faitfully on A ∐ B, the right hand vertical map is a GH,G-equivariant
weak equivalence by the above. Moreover, as X(A) → ΩBX(A∐B) is a (G×H)-
global weak equivalence of fibrant objects and H acts faithfully on B, the top left
horizontal map is a GH,G-weak equivalence, and so is the lower left horizontal map
by the same argument. Finally, X(A∐B) is a fibrant (G×H)-I-space, so that the
top right horizontal map is a GH,G-equivariant weak equivalence, and likewise for
the lower right horizontal map. The claim now follows by 2-out-of-3. �

We now want to prove the following strengthening of the above lemma:

Proposition 4.6. The functor ∆∗ creates G-global weak equivalences.

For the proof, it will be crucial to understand the behaviour of ∆∗ on generating
(acyclic) cofibrations, and more generally on maps of the form Σ(A, –) ∧ΣA f for
maps f in (G×ΣA)-I-SSet∗. For this we recall the following standard construc-
tion:

Construction 4.7. Let X be a spectrum and let Y be a pointed I-simplicial set.
Then we write X ⊗ Y for the spectrum with (X ⊗ Y )(A) = X(A) ∧ Y (A) and
structure maps

SBri(A)∧ (X⊗Y )(A) = SBrA∧X(A)∧Y (A)
σ∧Y (i)
−−−−→ X(B)∧Y (B) = (X⊗Y )(B)

for every injection i : A → B. This becomes a functor Spectra × I-SSet∗ →
Spectra in the evident way, which we as usual promote to

(4.4) –⊗ –: G-Spectra×G-I-SSet∗ → G-Spectra.

Put differently we have for any G-spectrum X and any G-I-simplicial set Y
an equality X ⊗ Y = ∆∗(X ∧ Y ) for the levelwise smash product G-Spectra ×
G-I-SSet∗ → G-Sp(S ∗) = G-Sp(S ), and likewise for maps.

Proposition 4.8. The tensor product (4.4) preserves G-global weak equivalences
in each variable.

Proof. Let X be a G-spectrum and let g : Y → Y ′ be a G-global weak equivalence
in G-I-SSet∗. We will show that X⊗g is even a π∗-isomorphism, for which we let
ϕ : H → G be any homomorphism. Then the effect of ϕ∗(X ⊗ g) = (ϕ∗X)⊗ (ϕ∗g)
on πH∗ agrees up to conjugation by isomorphisms with the one of ϕ∗X ∧ (ϕ∗g)(UH),
see [Len20, Lemma 3.2.11]. But (ϕ∗g)(UH) is an H-equivariant weak equivalence,
so ϕ∗X ∧ (ϕ∗g)(UH) is even an H-equivariant level weak equivalence, in particular
a π∗-isomorphism. This completes the proof that the tensor product preserves
G-global weak equivalences in the second variable.

On the other hand, let f : X → X ′ be a G-global weak equivalence of G-global
spectra and let Y be any G-global space; we want to show that f ⊗ Y is a G-global
weak equivalence. Arguing precisely as above, we see that – ⊗ Y preserves π∗-
isomorphisms, so we may assume without loss of generality that f is a map between
flat G-spectra. Under this assumption, [Len20, Proposition 3.2.14] provides us with
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a commutative diagram

X ∧ Σ•Y X ⊗ Y

X ′ ∧ Σ•Y X ′ ⊗ Y

ψ

∼

f∧Σ•Y f⊗Y

ψ

∼

in which the horizontal maps are π∗-isomorphisms (in particular G-global weak
equivalences). By Proposition 1.47 the left hand vertical arrow is a G-global weak
equivalence, so the claim follows by 2-out-of-3. �

Proof of Proposition 4.6. By Lemma 4.5, it suffices to prove that ∆∗ is homotopical.
We already know that ∆∗ preserves acyclic fibrations, so it only remains to show
that it also sends acyclic cofibrations to weak equivalences. To this end, we will
show that ∆∗ is in fact also left Quillen as a functor to G-Spectrainjective G-global.

Let us first prove that ∆∗ is left Quillen as a functor G-Sp(S )proj. G-global level →
G-Spectrainj. G-global. Indeed, it clearly sends generating cofibrations to injective
cofibrations, so we only need to show that it sends generating acyclic cofibra-
tions to weak equivalences. Such a generating acyclic cofibration is now of the
form Σ(A, –) ∧ΣA j+ for some A ∈ Σ and j a (generating) acyclic cofibration in
(G×ΣA)-I-SSet. Then

(4.5) ∆∗(Σ(A, –) ∧ΣA j+) = (Σ(A, –)⊗ j+)/ΣA;

but Σ(A, –) ⊗ j+ is a (G × ΣA)-global weak equivalence by Proposition 4.8, and
ΣA acts freely on Σ(A, –), so Proposition 1.45 shows that the quotient (4.5) is
a G-global weak equivalence. This completes the argument for the level model
structure.

For the actual claim, it suffices now by Proposition 3.26 to show that ∆∗ sends
the maps in the set SG from (3.9) to weak equivalences, i.e. the maps κH,A,B �H i+
for finite groups H , finite H-sets A,B, and generating cofibrations i : X → Y of
the projective model structure on (G×H)-I-SSet∗.

For this, we will pick the generating cofibrations as in Theorem 1.28 (so that they
are maps between cofibrant objects), and we will show that f := ∆∗(κH,A,B�i+) is a
(G×H)-global weak equivalence; the claim will then follow from Proposition 1.45
again as f is an injective cofibration and H acts levelwise freely on projectively
cofibrant (G×H)-global spaces.

To show that f is a (G ×H)-global weak equivalence, write S, T for the source
and target of κH,A,B and consider the image

S ⊗X+ S ⊗ Y+

T ⊗X+ P

T ⊗ Y+

p

κH,A,B⊗X+

S⊗i+

κH,A,B⊗Y+

T⊗i+

f

under ∆∗ of the diagram defining κH,A,B � i+. Now κH,A,B is an H-equivariant
weak equivalence of H-equivariantly projectively cofibrant H-spectra, whence an
H-global weak equivalence by Proposition 1.48 and thus a (G × H)-global weak
equivalence with respect to the trivial G-actions. Proposition 4.8 therefore shows
that κH,A,B ⊗X+ and κH,A,B ⊗ Y+ are (G×H)-global weak equivalences. But on
the other hand κH,A,B ⊗X+ is also an injective cofibration by direct inspection, so
the pushout S⊗Y+ → P is again a (G×H)-global weak equivalence. We conclude
by 2-out-of-3 that also f is a (G×H)-global weak equivalence, which then completes
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the proof that ∆∗(κH,A,B �H i+) is a G-global weak equivalence and hence the proof
of the proposition. �

Proposition 4.9. Let H be a finite group, let A be a finite faithful H-set, and let
ϕ : H → G be any homomorphism. Then the unit

η : Σ(A, –) ∧ϕ G+ → ∆∗∆!(Σ(A, –) ∧ϕ G+)

is a G-global weak equivalence.

Proof. By design, η is induced by the ‘diagonal’ map Σ(A, –) → Σ(A, –)⊗I(A, –)+;
in particular, it has a left inverse induced by the unique map p : I(A, –) → ∗. By
2-out-of-3 it therefore suffices to show that (Σ(A, –)⊗p+)∧ϕG+ = ϕ!(Σ(A, –)⊗p+)
is a G-global weak equivalence.

For this we note that p is anH-global weak equivalence, whence so isΣ(A, –)⊗p+
by Proposition 4.8. By faithfulness, H acts freely on Σ(A, –) outside the basepoint,
so the claim follows again from Proposition 1.45. �

Proof of Theorem 4.3. As R∆∗ is conservative (Lemma 4.5), it is enough to show
that the derived unit is an isomorphism in the homotopy category. As ∆∗ is ho-
motopical (Proposition 4.6), this amounts to saying that the ordinary unit X →
∆∗∆!X is a G-global weak equivalence for every projectively cofibrant G-global
spectrum X .

This is a standard cell induction argument: namely, ∆! is left Quillen while ∆∗

is a left adjoint sending cofibrations to injective cofibrations, so that it is enough to
prove the claim for the sources and targets of the standard generating cofibrations,
see e.g. [Len20, Lemma 1.2.64]. However, these are of the form Σ(A, –)∧ϕG+∧K+

for some simplicial set K; as the tensoring over SSet is homotopical and the unit
is compatible with the tensoring (∆! ⊣ ∆∗ being a simplicial adjunction), the claim
therefore follows from the previous proposition. �

5. Global brave new algebra

We now turn our attention to multiplicative structures in stable G-global ho-
motopy theory, generalizing results for G = 1 by Schwede [Sch18, Chapter 5] and
Hausmann [Hau19, Section 3].

5.1. Positive model structures. Already in the non-equivariant setting, the
study of commutative ring spectra from a model categorical perspective requires
one to introduce suitable ‘positive’ model structures. This subsection is devoted to
the construction of positive flat and projective G-global model structures; however,
as most of this is entirely parallel to the construction of the usual G-global model
structures [Len20, 3.1], we will be somewhat terse here.

Proposition 5.1. There is a unique model structure on G-Spectra in which a map
f is a weak equivalence or fibration if and only if f(A) is a GΣA,G-weak equivalence
or fibration, respectively, for every non-empty finite set A. We call this the positive
G-global projective level model structure and its weak equivalences the positive G-
global level weak equivalences. It is combinatorial with generating cofibrations

(5.1) {Σ(A, –) ∧ϕ G+ ∧ (∂∆n →֒ ∆n)+ : A 6= ∅, H ⊂ ΣA, ϕ : H → G,n ≥ 0},

simplicial, proper, and filtered colimits in it are homotopical.

Proof. To see that the model structure exists and is cofibrantly generated (hence
combinatorial) with the above generating cofibrations it suffices to check the ‘con-
sistency condition’ of [Sch18, Proposition C.23] for the GΣA,G-model structure on
(G×ΣA)-SSet∗ for A 6= ∅ and the model structure on (G×Σ∅∅∅)-SSet∗ in
which only isomorphisms are cofibrations. However, it is clear that for A 6= ∅ each
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Σ(A,B)∧ΣA – sends the usual generating acyclic cofibrations of (G×ΣA)-SSet∗
to injective cofibrations and weak equivalences (also see [Len20, proof of Proposi-
tion 3.1.20]) and even to isomorphisms for A = ∅.

Right properness, the statement about filtered colimits, and the Pullback Power
Axiom for simplicial model categories follow immediately as all relevant construc-
tions and notions are levelwise. Finally, all (generating) cofibrations are injective
cofibrations, so left properness follows in the same way. �

Similarly one gets:

Proposition 5.2. There is a unique model structure on G-Spectra in which a
map f is a weak equivalence or fibration if and only if f(A) is a weak equivalence
or fibration, respectively, in the injective GΣA,G-model structure for every A 6= ∅.
We call this the positive flat G-global level model structure; its weak equivalences
are again the G-global positive level weak equivalences. Moreover, it is combinatorial
with generating cofibrations

(5.2) {(Σ(A, –) ∧G+)/H ∧ (∂∆n →֒ ∆n)+ : A 6= ∅, H ⊂ ΣA ×G,n ≥ 0},

simplicial, proper, and filtered colimits in it are homotopical. �

Remark 5.3. The above generating cofibrations agree with the generating cofibra-
tions of Hausmann’s G-equivariant positive flat model structure from [Hau17, dis-
cussion after Proposition 2.28]. In particular, the above cofibrations are indepen-
dent of the group G and agree with what Hausmann calls positive flat cofibrations,
cf. Remark 2.20 of op. cit.

For later use we record the following relationship to the usual projective and flat
cofibrations:

Lemma 5.4. Let f : X → Y be a map in G-Spectra. Then:

(1) f is a positive flat cofibration if and only if it is a flat cofibration and f(∅)
is an isomorphism.

(2) f is a positive G-global projective cofibration if and only if it is a G-global
projective cofibration and f(∅) is an isomorphism.

Proof. This is immediate from the characterization of cofibrations in terms of latch-
ing maps given in [Sch18, Proposition C.23]. �

Definition 5.5. A G-spectrum X is called a positive G-global Ω-spectrum if for
every finite group H , any non-empty finite faithful H-set A, and every finite H-set
B the adjoint structure map

X(A) → RΩBX(A∐B)

is a GH,G-weak equivalence.

As before, if X is fibrant in either of the above positive level model structures,
then this is represented by the ordinary adjoint structure map.

Proposition 5.6. There is a unique model structure on G-Spectra whose cofibra-
tions are the positive G-global projective cofibrations and whose weak equivalences
are the usual G-global weak equivalences. We call this the positive G-global projec-
tive model structure. Its fibrant objects are precisely the positively projectively level
fibrant positive G-global Ω-spectra.

Moreover, it is again combinatorial with generating cofibrations (5.1), simplicial,
proper, and filtered colimits in it are homotopical.
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Proof. We will first construct a Bousfield localization with the above fibrant ob-
jects. For this we recall the maps λH,A,B : SB ∧ Σ(A ∐ B, –) → Σ(A, –) from
Remark 1.15 for finite groups H and finite H-sets A,B. Varying over all homomor-
phisms ϕ : H → G from finite groups to H and restricting A to non-empty faithful
H-sets, the maps ϕ!λH,A,B are then maps between cofibrant objects of the positive
G-global projective level model structure corepresenting ϕ-fixed points of the ad-
joint structure maps. Factoring each of them as a cofibration κϕ,A,B followed by a
G-global positive level weak equivalence, [Lur09, Proposition A.3.7.3] applied to the
set of all κϕ,A,B’s then gives a Bousfield localization with the above fibrant objects,
and this is automatically again combinatorial, left proper, simplicial, and filtered
colimits in it are homotopical (see [Len20, Lemma A.2.4] for the final statement).

We now claim that the weak equivalences agree with the G-global weak equiva-
lences. For this we first observe that the identity constitutes a Quillen adjunction
G-Spectrapositive G-global proj. ⇄ G-SpectraG-global proj. by Lemma 3.27 as the left
adjoint preserves cofibrations and the right adjoint preserves fibrant objects. On
the other hand, a simple cofinality argument shows that positive G-global level
weak equivalences are π∗-isomorphisms, hence in particular G-global weak equiva-
lences, so every weak equivalence in the above model structure is a G-global weak
equivalence.

Conversely, let f : X → Y be a G-global weak equivalence; we want to show that
it is a weak equivalence in the above model structure. Using the previous direction
and functorial factorizations in the above model structure, we reduce by 2-out-of-3
to the case that X and Y are fibrant in the above sense, i.e. they are positive G-
global Ω-spectra and positively projectively level fibrant. Then the natural maps
X → Ω shX,Y → Ω shY are positive G-global level weak equivalences, and Ω sh f
is aG-global weak equivalence ofG-global Ω-spectra, hence in particular a (positive)
G-global level weak equivalence. Thus, another application of 2-out-of-3 shows that
also f is a positive G-global level weak equivalence, hence in particular a weak
equivalence in the above model structure as claimed.

Finally, we observe that despite its definition right properness is independent of
the class of fibrations [Rez02, Proposition 2.5], so right properness of the positive
G-global projective model structure follows from right properness of the usual G-
global projective model structure. �

Proposition 5.7. There is a unique model structure on G-Spectra whose cofi-
brations are the positive flat cofibrations and whose weak equivalences are the usual
G-global weak equivalences. We call this the positive flat G-global model structure.
Its fibrant objects are precisely those positive G-global Ω-spectra that are fibrant in
the positive flat G-global level model structure.

Moreover, this model structure is again combinatorial with generating cofibra-
tions (5.2), simplicial, proper, and filtered colimits in it are homotopical.

Proof. Arguing precisely as before we get a model structure with the desired cofi-
brations and fibrant objects. By abstract nonsense about Bousfield localizations, a
map f is a weak equivalence in this model structure or the one from the previous
proposition if and only if [f, T ] is bijective for every positive G-global Ω-spectrum
T , where [ , ] denotes hom sets in the localization at the positive G-global level
weak equivalences. In particular, its weak equivalences agree with the ones from
the previous proposition, i.e. with the G-global weak equivalences.

Finally, all the remaining properties are established precisely as in the previous
proposition. �

Remark 5.8. For G = 1 the above two model structures again agree, and they
recover Hausmann’s positive global model structure [Hau19, Theorem 2.18].
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Remark 5.9. We will never need to know explicitly how the generating acyclic
cofibrations in the above model structures look like. However, we record for later use
that the generating cofibrations (5.2) are maps between cofibrant objects, so [Bar10,
Corollary 2.7] shows that we can also find a set of generating acyclic cofibrations
for the positive G-global flat model structure consisting of maps between cofibrant
objects.

Next, we come to functoriality properties:

Lemma 5.10. Let α : H → G be any homomorphism. Then we have Quillen
adjunctions

α! : H-Spectrapos. H-global proj. ⇄ G-Spectrapos. G-global proj. :α
∗

α∗ : G-Spectrapos. G-global flat ⇄ H-Spectrapos. H-global flat :α∗.

Proof. For the first statement, we first observe that this holds for the corresponding
level model structures as a consequence of Lemma 1.5. For the actual model struc-
tures at hand it suffices then to observe that α∗ sends fibrant objects to positive
H-global Ω-spectrum by direct inspection.

For the second statement, it is clear that α∗ preserves positive flat cofibrations
and sends G-global weak equivalences to H-global weak equivalences. �

Lemma 5.11. Let α : H → G be injective. Then we also have Quillen adjunctions

α! : H-Spectrapos. H-global flat ⇄ G-Spectrapos. G-global flat :α
∗

α∗ : G-Spectrapos. G-global proj. ⇄ H-Spectrapos. H-global proj. :α∗.

Proof. For the first statement we observe that α! sends generating cofibrations to
generating cofibrations by direct inspection and that it is homotopical by Proposi-
tion 1.44.

For the second statement, the corresponding statement for level model structures
follows from the fact that α∗ sends GΣA,G-cofibrations to GΣA,H -cofibrations by
Lemma 1.5. The actual claim then follows as α∗ is homotopical. �

Arguing as for the usual model structures we then conclude from the above:

Corollary 5.12. The positive G-global projective and flat model structures for
varying G make Spectra into a global model category Sp+. �

On the other hand we have straight from the definition of cofibrations and weak
equivalences:

Corollary 5.13. The identity defines a global Quillen equivalence Sp+ ⇄ Sp. �

Finally let us record how the smash product behaves with respect to the above
model structures:

Corollary 5.14. The smash product G-Spectra ×G-Spectra → G-Spectra is
a left Quillen bifunctor in each of the following cases:

(1) the G-global positive flat model structure and the G-global flat model struc-
ture on the source, and the G-global positive flat model structure on the
target

(2) the G-global positive flat model structure and the G-global projective model
structure on the source, and the G-global positive projective model structure
on the target

(3) the G-global positive projective model structure and the G-global flat model
structure on the source, and the G-global positive projective model structure
on the target.
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Proof. For the ordinary projective and flat model structures this is Theorem 1.46.
The claims now follow from this via Lemma 5.4 and the natural isomorphism (X ∧
Y )(∅) ∼= X(∅) ∧ Y (∅) for all symmetric spectra X,Y . �

5.2. Smash powers and norms. Next, we come to homotopical properties of
smash powers.

Construction 5.15. Let X be a G-spectrum and let n ≥ 1. Then the n-fold smash
power X∧n carries n commuting G-actions as well as a Σn-action (by permuting
the factors). Together these assemble into a natural action of the wreath product
Σn ≀G = Σn ⋉Gn, lifting (–)∧n to a functor G-Spectra → (Σn ≀G)-Spectra.

Construction 5.16. Let H ⊂ G be finite groups and set n := |G/H |. Then any
choice of rightH-coset representatives g1, . . . , gn defines an injective homomorphism
ι : G → Σn ≀ H as follows: ι(g) = (σ(g);h1(g), . . . , hn(g)) with ggi = gσ(g)(i)hi(g).
The composite

(5.3) NG
H : H-Spectra

(–)∧n

−−−→ (Σn ≀H)-Spectra
ι∗
−→ G-Spectra

is then called the (Hill-Hopkins-Ravenel) norm.

For our purposes, the key result on the equivariant behaviour of the norm will
be the following:

Theorem 5.17. The composite (5.3) sends H-equivariant weak equivalences be-
tween flat H-spectra to G-equivariant weak equivalences (of flat G-spectra).

Proof. This is the special case N = 1 of [Hau17, Theorem 6.8]. �

We now want to consider the smash powers and norms from a G-global perspec-
tive. Here we will prove the following stronger result:

Theorem 5.18. Let f : X → Y be a G-global weak equivalence and assume X and
Y are flat. Then f∧n is a (Σn ≀G)-global weak equivalence.

Restricting along the above homomorphism ι this immediately implies:

Corollary 5.19. Let H ⊂ G be finite groups. Then NG
H : H-Spectra → G-Spectra

sends H-global weak equivalences of flat H-spectra to G-global weak equivalences (of
flat G-spectra). �

Proof of Theorem 5.18. Let f : X → Y be a G-global weak equivalence of flat G-
spectra. As a first step, we will show that f∧n is a (Σn ≀ G)-equivariant weak
equivalence. For this, the key observation will be that while the norm is defined
in terms of the smash power, in the global setting we can also go the other way
round, cf. [Sch18, Remark 5.1.7-(iv)]. Namely, write K ⊂ Σn ≀G for the subgroup of
those (σ; g1, . . . , gn) with σ(1) = 1, which comes with a projection homomorphism
π : K → G, π(σ; g1, . . . , gn) = g1. If we now fix for each i = 1, . . . , n a permutation
σi with σi(1) = i, then the (σi; 1, . . . , 1) form a system of coset representatives of
(Σn ≀G)/K, and one easily checks from the definitions that the resulting homomor-
phism ι : Σn ≀G→ Σn ≀K is of the form

(σ; g1, . . . , gn) 7→ (σ; (?; g1, ?, . . . ), (?; g2, ?, . . . ), . . . )

where ‘?’ denotes an entry we don’t care about.

Now π∗f is aK-equivariant weak equivalence by assumption on f , soNΣn≀G
K (π∗f)

is a (Σn ≀G)-equivariant weak equivalence by Theorem 5.17. But by the above de-
scription of ι, this agrees with f∧n as map of (Σn ≀G)-spectra, completing the proof
of the claim.

Now let ϕ : H → Σn ≀ G be any map. We have to show that ϕ∗(f∧n) is an
H-equivariant weak equivalence. For this we view f as a map of (G ×H)-spectra
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via the trivial H-action. Applying the above with G replaced by G×H then shows
that f∧n is a Σn ≀ (G×H)-equivariant weak equivalence where all copies of H act
trivially. The claim now follows by restricting along the injective homomorphism

H
(ϕ,id)
−−−−→ (Σn ≀G)×H

δ
−→ Σn ≀ (G×H)

with δ given by δ(σ; g1, . . . , gn;h) = (σ; (g1, h), . . . , (gn, h)). �

Finally, we come to the key property of the positive model structures that will
allow us to establish model structures on commutative algebras below:

Lemma 5.20. Let X be a positive flat spectrum and let n ≥ 1. Then the Σn-action
on X∧n is levelwise free outside the basepoint.

Proof. This is a special case of [Har14, Proposition 7.7*-(a)]. �

Corollary 5.21. Let f : X → Y be a G-global weak equivalence and assume X and
Y are positively flat. Then f∧n/Σn is a G-global weak equivalence again.

Proof. By Theorem 5.18, f∧n is a (Σn ≀G)-global weak equivalence, hence in par-
ticular a (Σn ×G)-global weak equivalence. The claim follows as Σn acts freely on
both source and target by the previous lemma. �

5.3. Global model categories of modules. Throughout, let G be a finite group.
We now introduce the key objects of study for the rest of this paper:

Definition 5.22. A G-global ultra-commutative ring spectrum is a commutative
monoid R (for the smash product) in G-Spectra. We write:

(1) UComG = G-UCom for the category of commutative monoids

(2) ModGR (or simply ModR if G is clear from the context) for the category
of modules in G-Spectra over the commutative monoid R.

(3) UComG
R for the category ofR-algebras (i.e. commutative monoids inModGR

for the relative smash product, which is canonically isomorphic to the slice
R/UComG).

Proposition 5.23. Let R be a G-global ultra-commutative ring spectrum. Then the
positive projective and positive flat G-global model structure on G-Spectra transfer
along the free-forgetful adjunction

R ∧ –: G-Spectra ⇄ ModR :U.

This model structure is proper, simplicial, and combinatorial with generating cofi-
brations R ∧ I and generating acyclic cofibrations R ∧ J for sets of generating
(acyclic) cofibrations I, J of the positive projective/flat G-global model structure.
Moreover, filtered colimits in it are homotopical.

Proof. For the existence of the model structure, we verify the assumptions of the
Crans-Kan Transfer Criterion. By local presentability, every set admits the small
object argument, so it only remains to show that for some (hence any) set J of gen-
erating acyclic cofibrations of G-SpectraG-global flat the forgetful functor U sends
relative (R ∧ J)-cell complexes to weak equivalences. However, U is also a left ad-
joint, so it suffices to show that it sends maps in R∧J to acyclic cofibrations in the
injective G-global model structure. Taking J to consist of maps between cofibrant
objects (see Remark 5.9), this is immediate from Proposition 1.47.

The model structure is clearly combinatorial with the above generating (acyclic)
cofibrations, right proper, and simplicial, and filtered colimits in it are homotopical.
To see that it is also left proper it suffices to observe that U is also left Quillen as a
functor into the injective G-global model structure on G-Spectra by the above, so
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that the claim follows from left properness of G-SpectraG-global injective via [Len20,
Lemma A.2.15]. �

Remark 5.24. The corresponding statement for the usual projective and flat model
structures hold as well (by the same argument); however, for us the above ver-
sion will be more convenient as we later want to relate the above to categories of
commutative algebras.

Construction 5.25. Let H be a finite group. Identifying H-ModGR with the cat-
egory of modules in (H ×G)-Spectra (with H acting trivially on R), we get

positive projective and flat model structures on H-ModGR, which are equivalently
transferred from (H ×G)-Spectra along the evident forgetful functor.

Lemma 5.26. The above make ModGR into a global model category M
G
R.

Proof. We already observed that all of these model structures are combinatorial,
simplicial, and (left) proper. To complete the proof that this defines a preglobal
model category it is then enough to note that α∗ commutes with both U and R∧ –
for any α : H → H ′, so that α∗ commutes with U by passing to mates; thus, all the
functoriality properties follow from the corresponding statements for Sp+.

Similarly, the fact that M
G
R is a global model category follows from the corre-

sponding result for G-Sp+ using the third formulation in Proposition 2.9. �

Corollary 5.27. The global model category M
G
R is stable.

Proof. Let H be a finite group and A a finite H-set. Then SA ∧ – commutes with
the forgetful functor U, so it is homotopical. Thus, also the (total or equivalently
left) derived functors commute. Similarly, ΩA commutes with U, and as both are
right Quillen their right derived functors also commute (via the mate of the above
equivalence). The claim now follows immediately from the corresponding statement
for G-Sp (Proposition 3.6) as Ho(U) is conservative. �

Lemma 5.28. Let G be a finite group and let R be a flat G-global ultra-commutative
ring spectrum. Then we have global Quillen adjunctions

R ∧ –: G-Sp+ ⇄ M
G
R :U and U : M

G
R ⇄ G-Sp+ :F (R, –)

Moreover, both R ∧ – and U are homotopical.

Proof. By definition, U preserves weak equivalences as well as fibrations in either
model structure; in particular, it is right Quillen. Moreover, it sends generating
cofibrations to cofibrations by Proposition 5.14, so it is also left Quillen. Finally,
also R ∧ – is homotopical by the Flatness Theorem (Proposition 1.47). �

As ModRG is a stable model category, its homotopy category is naturally a tri-
angulated category. For later use, we record a t-structure on this as well as its
interaction with the smash product. To define this, we have to recall the true
homotopy groups (as opposed to the näıve ones considered before) of a G-global
spectrum:

Construction 5.29. Let X be a G-global spectrum, let ϕ : H → G be a homomor-
phism from a finite group H , and let k ∈ Z. We define the true k-th ϕ-equivariant
homotopy group as

π̂ϕk (X) := [Σ•+k
+ I(H, –)×ϕ G,X ],

where [ , ] denotes the hom set in the G-global stable homotopy category; note that
π̂ϕk (X) carries a natural abelian group structure by additivity of the latter, and
that distinguished triangles induce long exact sequences in π̂ϕ∗ by general nonsense
about triangulated categories.



GLOBAL MODEL CATEGORIES AND TOP. ANDRÉ-QUILLEN COHOMOLOGY 47

We moreover write π̂k(X) for the collection of all ϕ-equivariant homotopy groups
for varying ϕ, together with all natural maps between them. For G = 1, this struc-
ture can be explicitly described as a global (Mackey) functor [Sch22, Remark 6.5];
we will never need an explicit description for non-trivial G.

Remark 5.30. The true ϕ-equivariant homotopy groups ofX can be equivalently de-
scribed as the true H-equivariant homotopy groups of the H-equivariant spectrum
ϕ∗X , see [Len20, Corollary 3.3.4].

Proposition 5.31. Let R be a G-global ultra-commutative ring spectrum.

(1) The triangulated category Ho(ModGR) is compactly generated with gener-
ators R ∧ Σ•

+

(
I(A, –) ×ϕ G

)
for finite sets A, subgroups H ⊂ ΣA, and

homomorphisms ϕ : H → G.
(2) Assume that R is connective, i.e. for every k < 0 the true homotopy groups

π̂kR (of the underlying G-global spectrum) are trivial. Then Ho(ModGR)
carries a t-structure with

• connective part the connective R-modules
• coconnective part those R-modules X that are coconnective in the
sense that π̂kX = 0 for all k > 0.

(3) In this case, the derived smash product restricts to functors

– ∧L

R –: Ho(ModGR)≥m ×Ho(ModGR)≥n → Ho(ModGR)≥m+n

for all m,n ∈ Z.

Proof. We first consider the special case that R = S, i.e. the case of G-global spec-
tra. In this setting, the first two statements are part of [CLL23, Theorem 7.1.12].
For the final statement we reduce (as –∧L – is naturally exact in each variable and
in particular preserves suspension) first to the case m = n = 0 and then to the
case of the above generators. By flatness we can then simply compute the derived
smash product in terms of the non-derived one. A simple Yoneda argument now
shows Σ•

+I(A, –) ∧ Σ•
+I(B, –)

∼= Σ•
+I(A ∐B, –) naturally in A and B, so

(
Σ•

+I(A, –)×ϕ G
)
∧
(
Σ•

+I(B, –)×ψ G
)
∼= Σ•

+

(
I(A ∐B)× (G×G)

)
/(H ×K)

(where H ⊂ ΣA,K ⊂ ΣB are the sources of ϕ and ψ, respectively), which is clearly
connective again.

Now we treat the general case. For this we first note that we have an exact
adjunction

(5.4) R ∧L –: Ho(G-SpectraG-global) ⇄ Ho(ModGR) :U

with conservative right adjoint by construction, so the R∧Σ•
+I(A, –)×ϕG are a set

of generators (here we secretly used Proposition 1.47 to identify R∧LΣ•
+I(A, –)×ϕG

with the underived smash product). We now observe that coproducts of G-global
spectra are homotopical [Len20, Lemma 3.1.43] and that U preserves them on the

pointset level; it follows that also coproducts in ModGR are homotopical, and that
the right adjoint in (5.4) preserves coproducts, so that its left adjoint preserves
compact objects. This completes the proof of the first statement.

For the second statement, we use the above together with [ATLS03, Theo-

rem A.1] to obtain a t-structure on Ho(ModGR) whose connective part is the
smallest subcategory closed under coproducts, suspensions, and extensions con-
taining the R ∧ Σ•

+I(A, –) ×ϕ G’s; we claim that this is the t-structure described
above. To see this, we first observe that an R-module X is coconnective in this
t-structure if and only if [ΣT,X ] = 0 for all T ∈ Ho(ModGR)≥0. Specializing to

T = R∧Σ•+k
+ I(A, –)×ϕG and using the adjunction isomorphisms shows that X is

then coconnective in the above sense. Conversely, for fixed X the class of objects
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T such that [ΣkT,X ] = 0 for all k > 0 is easily seen to be closed under coproducts,
suspension, and extensions (using the long exact sequence for the last statement),

so if X has trivial positive homotopy groups, then X ∈ Ho(ModGR)≤0.
To identify the connective part, we first observe that the exact coproduct pre-

serving functor U : Ho(ModGR) → Ho(G-Spectra) sends the chosen generators to
connective objects (as R is connective and the smash product of connective spectra

is connective by the above); thus, Ho(ModGR)≥0 is contained in the preimage un-

der U of Ho(G-Spectra)≥0, i.e. all objects of Ho(ModGR)≥0 are connective in the
above sense. Conversely, if X is connective then we have a distinguished triangle

X≥0 → X → X≤−1 → ΣX≥0

with X≥0 ∈ Ho(ModGR)≥0 and X≤−1 ∈ Ho(ModGR)≤−1 by the axioms of a t-
structure. Then X≥0 is connective by the above and hence so is X≤−1 by the long
exact sequence. But on the other hand, X≤−1 has vanishing non-negative homotopy
groups by the above identification of the coconnective part, so X≤−1 = 0 and hence

X ∼= X≥0 ∈ Ho(ModGR)≥0 as claimed.
Finally, for the compatibility of the smash product with the t-structure we reduce

as above to proving that (R∧Σ•
+I(A, –)×ϕG)∧R (R∧Σ•

+I(B, –)×ϕG) is connective.
But this is isomorphic to R ∧ (Σ•

+I(A, –) ×ϕ G) ∧ (Σ•
+I(A, –) ×ψ G), so the claim

follows from the special case R = S considered above (and Proposition 1.47). �

As a consequence of Corollary 5.27, the suspension spectrum-loop space adjunc-
tion defines a global Quillen equivalence between M

G
R and its stabilization Sp(MG

R),
so the latter contains no new homotopy theoretic information. Nevertheless, the
concrete model will be useful later for comparisons to other stabilizations, and we
close this discussion by understanding its weak equivalences a bit better.

Lemma 5.32. Let R be a G-global ultra-commutative ring spectrum. Then the
G-global weak equivalences in Sp(MG

R) are closed under pushouts along injective
cofibrations (i.e. levelwise injections) as well as under arbitrary filtered colimits.

Proof. For the first statement, let i : X → Y be an injective cofibration, and let
f : X → Z be a G-global weak equivalence. We factor f (say, in the projective
model structure) as an acyclic cofibration k followed by an acyclic fibration p; in
particular, p is a G-global level weak equivalence. Then we have an iterated pushout
square

X H Z

Y K P

i

p

f

k

∼

p

p
∼

j

ℓ q

in which ℓ is an acyclic cofibration (as a pushout of an acyclic cofibration) and j is
again an injective cofibration. Thus, applying left properness of the injective model
structure levelwise we see that q is a G-global (level) weak equivalence; the claim
follows as qℓ is a pushout of f = pk along i.

The second statement follows similarly from the corresponding statement for
ModGR, also see [Len20, Lemma A.2.4]. �

Lemma 5.33. Let R be a flat G-global ultra-commutative ring spectrum. Then
both adjoints in the Quillen adjunction

Sp(R ∧ –): Sp(G-Sp+) ⇄ Sp(MG
R) :Sp(U)
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are homotopical. Moreover, the projective model structure on Sp(MR
G) is transferred

from the projective model structure on Sp(G-Sp+) along the above adjunction, and
likewise for the flat model structures.

Beware that in general stabilization does not commute with transferring model
structures!

Proof. By Lemma 5.28 both functors are left Quillen (for either model structure),
in particular they send flat acyclic cofibrations to weak equivalences. Moreover,
both Sp(U) and Sp(R ∧ –) preserve level weak equivalences as U and R ∧ – are ho-
motopical by the aforementioned lemma. Factoring an arbitrary weak equivalence
into a flat cofibration followed by a level weak equivalence we see that both functors
are in fact homotopical.

Now let f : X → Y be a map in Sp(MG
R) such that Sp(U)(f) is a weak equiv-

alence; we have to show that f is a weak equivalence. As Sp(U) is homotopical,
we may assume by 2-out-of-3 that f is a map of fibrant objects. But then also
Sp(U)(f) is a map of fibrant objects, whence a level weak equivalence, so that also
f is a (level) weak equivalence.

Finally, to prove that the projective and flat model structures on Sp(MG
R) are

transferred along the above adjunction, we will first show that the transferred model
structures exist, and then prove that they agree with the given ones.

For the existence, it suffices by local presentability that Sp(R ∧ –)(J)-cell com-
plexes are sent by Sp(U) to weak equivalences, where J is our favourite set of
generating acyclic cofibrations. But as Sp(U) is left Quillen we only have to show
that Sp(U) sends maps in Sp(R ∧ –)(J) to acyclic cofibrations, which follows at
once since also Sp(R ∧ –) is left Quillen.

Now we simply observe that the transferred model structure has the correct
acyclic fibrations (obviously) as well as weak equivalences (by the above), so it
agrees with the given model structure as claimed. �

Remark 5.34. The second half of the lemma holds true more generally for all (not
necessarily flat) G-global ultra-commutative R; however, we will only need the
above version, which is slightly easier to prove.

5.4. Global model categories of algebras. Next, we turn to model structures
on UComG and more generally on categories of R-algebras for G-global ultra-
commutative ring spectra R. These model structures can be constructed using the
monoid axiom of [SS00] and the commutative monoid axiom of [Whi17]. We recall
the relevant results and then show that these axioms are satisfied for the projective
and flat G-global model structures.

Construction 5.35. Let (C ,⊗,1) be a cocomplete closed symmetric monoidal cate-
gory. For any object X in C , we denote by PmX = X⊗m/Σm the m-th symmetric
power of X . We consider a generalization of the pushout product

f � g : A⊗ Y ∐A⊗B X ⊗B → X ⊗ Y

of two morphisms f : A→ X and g : B → Y :
Let f : A→ X be a morphism in C , and m ≥ 1. We consider the poset category

P({1, . . . ,m}) and the hypercube-shaped diagram

W (f) : P({1, . . . ,m}) → C ,

S 7→W1(f, S)⊗ . . .⊗Wm(f, S),

where

Wk(f, S) =

{
A if k /∈ S,

X if k ∈ S.
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To an inclusion i : S →֒ T , the functor W (f) assigns the morphism W (f, i) =
W1(f, i)⊗ . . .⊗Wm(f, i), where

Wk(f, i) =

{
id if k /∈ T r S,

f if k ∈ T r S.

This diagram defines a morphism

f�m : Qm := colimP({1,...,m})r{1,...,m}W (f) → X⊗m =W (f, {1, . . . ,m}).

This morphism is Σm-equivariant for the actions induced by the permutation action
of Σm on {1, . . . ,m}, and hence induces a map

(5.5) f�m/Σm : Qm/Σm → P
mX = X⊗m/Σm.

on coinvariants.

Definition 5.36. Let (C ,⊗,1) be a symmetric monoidal model category. We say
that C satisfies the

(1) monoid axiom if every
(
{acyclic cofibrations} ⊗ C

)
-cellular map is a weak

equivalence.
(2) commutative monoid axiom if for any acyclic cofibration f : X → Y and

any n ≥ 0, the map f�n/Σn is an acyclic cofibration.
(3) strong commutative monoid axiom if for any cofibration or acyclic cofibra-

tion f : X → Y and any n ≥ 0, the map f�n/Σn is a cofibration or an
acyclic cofibration, respectively.

Proposition 5.37. Let (C ,⊗,1) be a combinatorial symmetric monoidal model
category satisfying the monoid axiom and commutative monoid axiom, and let R
be a commutative monoid in C . Then:

(1) the category ModR of R-modules inherits a model structure from C , trans-
ferred along the adjunction

C ModR .
R⊗–

U

(2) the category CAlgR of commutative R-algebras inherits a model structure
from C , transferred along the free-forgetful adjunction

C CAlgR .
R⊗P:=R⊗

∐
n≥0 P

n

U

(3) the category NUCAR of non-unital commutative R-algebras (i.e. R-modules
M equipped with an associative and commutative multiplication M∧RM →
M) inherits a model structure from C , transferred along the free-forgetful
adjunction

C NUCAR .
R⊗P

>0:=R⊗
∐

n>0 P
n

U

Proof. The first assertion is part of [SS00, Theorem 4.1], the second of [Whi17,
Theorem 3.2, Remark 3.3] and the last of [Sta22, Theorem B.2.6]. �

Remark 5.38. We comment on the proof of the result for non-unital commutative
algebras in [Sta22]. As for the other results, the main step is an analysis of certain
pushouts in the category of non-unital commutative algebras. For simplicity, we
restrict to R = 1. Explicitly, for a symmetric monoidal model category (C ,⊗,1),
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we consider morphisms h : K → L and p : K → X in C , where X is a non-unital
commutative algebra, and we analyze the pushout

(5.6)
P>0K P>0L

X P

P
>0h

p̃

f

in the category NUCA of non-unital commutative algebras. For the proof of Propo-
sition 5.37, we need to check that if h is an acyclic cofibration, then the pushout
morphism f : X → P is a weak equivalence. We show this by defining a filtration

X = P0
f1
−→ P1

f2
−→ . . .→ colimn≥0 Pn = P.

Here, the Pn are iteratively defined via pushouts

(Qn+1/Σn+1) ∐X ⊗ (Qn+1/Σn+1) Pn+1L∐X ⊗ Pn+1L

Pn Pn+1.

h�n+1/Σn+1∐X⊗h�n+1/Σn+1

tn+1 Tn+1

fn+1

We will never need to know how the vertical maps are defined precisely; informally,
tn is given by mapping all entries in K to X via p and multiplying all resulting
terms from X together, whereas all entries in L are collected into P0<∗≤nL.

We will also need the following criterion for left properness:

Proposition 5.39. Let C be a combinatorial symmetric monoidal model cate-
gory satisfying the monoid axiom and strong commutative monoid axiom. Then
the transferred model structure on CAlg is left proper provided all of the following
conditions are satisfied:

(1) C is left proper and filtered colimits in it are homotopical.
(2) There exists a set of generating cofibrations for C consisting of maps be-

tween cofibrant objects.
(3) For any X ∈ C and any cofibration i, pushouts along X ⊗ i are homotopy

pushouts.
(4) For any cofibrant X, the functor X ⊗ – is homotopical.

Proof. This is a special case of [Whi17, Theorem 4.17], also see [Len20, Theo-
rem 2.1.34] for the reduction to White’s result. �

Let us now specialize this to algebraic structures on G-global spectra:

Proposition 5.40. Let G be a finite group. Then the positive projective and posi-
tive flat G-global model structures on G-Spectra are symmetric monoidal. More-
over, they satisfy both the monoid axiom as well as the strong commutative monoid
axiom.

Proof. The pushout product axiom is immediate from Corollary 5.14. Moreover, if
p : S+ → S is a cofibrant replacement in either of these model structures, and X
is any G-spectrum, then X ∧ p is a G-global weak equivalence by flatness of S and
Proposition 1.47. Thus, both model structures are symmetric monoidal.

For the monoid axiom, we simply observe once more that for any G-global spec-
trum R and any acyclic cofibration (say, in the positive flat model structure) j the
map R ∧ j is a G-global weak equivalence and an injective cofibration.

If now f is a positive flat cofibration then f�n is a positive flat cofibration simply
by monoidality, also see [Hau17, Remark 6.9]; the strong commutative monoid ax-
iom for positive flat cofibrations follows as (–)/Σn preserves positive flat cofibrations
(since trivΣn clearly preserves acyclic fibrations).
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In the projective case we explicitly compute that for a generating cofibration
f = Σ(A, –) ∧H G+ ∧ (∂∆m →֒ ∆m) with H acting faithfully on A 6= ∅ the map
f�n/Σn agrees up to isomorphism with

(5.7) Σ(n×A, –) ∧Σn≀H Gn+ ∧ (∂∆m →֒ ∆m)�n+

where Σn ≀ H acts on n × A via (σ, h•).(i, a) 7→ (σ(i), hi.a), which is faithful as
A 6= ∅ and H acts faithfully. Now (∂∆m →֒ ∆m)�n+ is a cofibration of simplicial

sets and G acts freely on Gn, so Gn+ ∧ (∂∆m →֒ ∆m)�n+ is a GΣn≀H,G-cofibration,
whence (5.7) is a projective cofibration again.

Finally, for the (strong) commutative monoid axiom for acyclic cofibrations,
we note that we can as before pick sets of generating acyclic cofibrations con-
sisting of maps between positively flat G-spectra. It therefore suffices by [GG16,
Corollaries 10 and 23] that for any G-global weak equivalence f of positively flat
G-spectra also f∧n/Σn is a weak equivalence, which is precisely the content of
Corollary 5.21. �

Corollary 5.41. Let G be a finite group and let R be a G-global ultra-commutative
ring spectrum. Then the positive projective and flat G-global model structures on
ModGR transfer along the free-forgetful adjunction P : ModGR ⇄ UComG

R :U. The
resulting model structures are again combinatorial, proper, simplicial, and filtered
colimits in it are homotopical.

Proof. Identifying UComG
R with the slice R/UComG, it suffices to consider the

case R = S. Thus, the existence of the model structure follows from White’s
criterion (Proposition 5.37) and the previous proposition.

As the model structure is transferred from G-Spectra, we immediately see that
it is combinatorial, right proper, simplicial, and that filtered colimits in it are
homotopical. It remains to check left properness, for which we will verify the
assumptions of Proposition 5.39:

We know from Propositions 5.6 and 5.7 that both positive model structures
on G-Spectra are left proper, that filtered colimits in them are homotpical, and
moreover the standard generating cofibrations are maps of cofibrant objects. As
already observed above, for any X and any (generating) cofibration i, X ∧ i is an
injective cofibration, so pushouts along it are homotopy pushouts. Finally, if X
is cofibrant in either of the two model structures, then X ∧ – is homotopical by
Proposition 1.47. �

Again, we more generally get positive projective and flat model structures on
H-UComG

R for all finite groups H .

Lemma 5.42. These make UComG
R into a global model category ComG

R, and the

free-forgetful adjunction defines a global Quillen adjunction P : M
G
R ⇄ ComG

R :U.

Proof. For the first statement one argues precisely as for M
G
R (Lemma 5.26). The

second statement is clear. �

Definition 5.43. LetR be aG-global ultra-commutative ring spectrum, considered
as a commutative algebra over itself in the obvious way. An augmented commutative
R-algebra is an object of the slice UComG

R/R, i.e. a commutative R-algebra A
together with an R-algebra homomorphism ǫ : A→ R (note that ǫ is automatically
a retraction of the unit R → A by unitality).

Remark 5.44. Arguing as in Remark 3.2, UComG
R/R carries a left proper simplicial

combinatorial model structure in which a map is a weak equivalence, fibration, or
cofibration, if and only if it is so in the positive projective model structure on
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UComG
R. Analogously, we get a positive flat model structure and via the usual

identifications these make UComG
R/R into a global model category ComG

R/R.

Definition 5.45. Let R be a G-global ultra-commutative ring spectrum. We de-
note the category of non-unital commutative R-algebras by NUCAG

R.

Corollary 5.46. Let G be a finite group and let R be a G-global ultra-commutative
ring spectrum. Then the positive projective and flat G-global model structures on
ModGR transfer along the free-forgetful adjunction P>0 : ModGR ⇄ NUCAG

R : U.
The resulting model structures are again combinatorial, proper, simplicial, and fil-
tered colimits in them are homotopical.

Proof. All statements except for left properness follow as in the case of ordinary
commutative algebras (Corollary 5.41). For left properness, on the other hand, we

observe that the (non-full) inclusion UComG
R →֒ NUCAG

R admits a left adjoint K
given by X 7→ (R →֒ R ∨X) with the unique multiplication extending the one on
X . Then K preserves (generating) cofibrations by direct inspection, and it is homo-
topical by [Len20, Lemma 3.1.43]. Finally, it also reflects weak equivalences as on
the level of underlying G-spectra X is naturally a retract of R∨X = K(X). Thus,

left properness of NUCAG
R follows from left properness of UComG

R by [Len20,
Lemma A.2.15]. �

Again, we get more generally positive projective and flat model structures on
H-NUCAG

R for all finite groups H .

Lemma 5.47. These make NUCAG
R into a global model category N

G
R, and the

free-forgetful adjunction defines a global Quillen adjunction P>0 : M
G
R ⇄ N

G
R :U.

Proof. For the first statement one argues precisely as for M
G
R, while the second

statement is clear from the definitions. �

6. Global topological André-Quillen cohomology2

In this section, we introduce G-global versions of topological André-Quillen co-
homology. The classical non-equivariant cohomology theory was introduced by
Basterra in [Bas99] as a cohomology theory for (augmented) commutative S-algebras.
The algebraic predecessor homology theory, as defined by André and Quillen [And67,
Qui70], is defined as a derived functor of Kähler differentials which in turn may
be constructed as the module of indecomposables of the augmentation ideal of
an augmented algebra. Both Basterra’s construction of topological André-Quillen
(co)homology as well as our G-global version below mimic this construction.

6.1. The cotangent complex in general model categories. Our construction
works in a general abstract setting: throughout, we fix a combinatorial and stable
symmetric monoidal model category C satisfying the monoid axiom and commuta-
tive monoid axiom, such that finite coproducts in C are homotopical; the examples
the reader should keep in mind and to which we will later specialize are the positive
G-global model structures on G-Spectra constructed in Section 5.

Definition 6.1. Let R be a commutative monoid in C , and let S be an augmented
R-algebra, with augmentation ǫ : S → R. Then we define the augmentation ideal

2The contents of the first two subsections of this section are an adapted version of part of the
thesis of the second author [Sta22, Chapter 2].
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I(S) of S as the strict pullback

I(S) S

∗ R

y
ǫ

in the category ModR of R-modules.

This inherits the structure of a non-unital R-algebra from S, yielding a func-
tor I : CAlgR /R → NUCAR. There also is a unitalization functor in the other
direction, given as

K : NUCAR → CAlgR /R, J 7→ R ∐ J.

This object is equipped with a multiplication using the multiplications on R and J
as well as the R-module structure on J .

Additionally, we define a functor taking a non-unital commutative algebra to its
module of indecomposables.

Definition 6.2. Let R be a commutative monoid in C , and J be a non-unital
commutative R-algebra with multiplication map µ : J ⊗R J → J . Then we define
the module of indecomposables Q(J) of J as the strict pushout

J ⊗R J J

∗ Q(J)

µ

p

in ModR.

This defines a functor Q : NUCAR → ModR. In the other direction, we can
equip an R-module with the zero multiplication to obtain a functor

Z : ModR → NUCAR .

Proposition 6.3. The functors

CAlgR /R NUCAR ModR
I

K Q

Z

define two Quillen adjunctions for the induced model structures from Section 5.4,
with left adjoints the top arrows. The Quillen adjunction K ⊣ I is a Quillen
equivalence. Moreover, the functors K and Z are homotopical.

Proof. The fact that the two pairs of functors are adjoint can be seen from explicitly
considering the unit and counit. For the first adjunction, the unit is given by the
square

J R ∐ J

∗ R

incl

pr

and the counit by (η, incl) : R∐ I(A) → A, where η : R → A is the unit map for the
algebra A. For the second adjunction, the unit is given by the projection J → Q(J)
from the defining pushout, considered as a map of non-unital commutative monoids
for the zero multiplication on Q(J). The counit is defined by the square

M ⊗RM M

∗ M

∗

id
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for any R-module M , where the top morphism is the zero map.
The first adjunction then is a Quillen adjunction, since K preserves both cofi-

brations and acyclic cofibrations of non-unital commutative algebras. For this,
it suffices to check the generating (acyclic) cofibrations, which are of the form
R⊗ P>0f for f a generating (acyclic) cofibration of C . These morphisms are sent
by K to R ⊗ Pf , which are precisely the generating (acyclic) cofibrations for the
model structure on the category of augmented algebras. We conclude that K is left
Quillen and hence the first adjunction is a Quillen adjunction. Furthermore, since
coproducts are homotopical in C , also K is homotopical.

For the second adjunction, we observe that the right adjoint Z is the identity
on underlying objects and morphisms. Since for both the model category of non-
unital algebras and modules, the fibrations and weak equivalences are defined on
underlying objects, we see that Z is right Quillen and homotopical.

Finally, we need to check that K ⊣ I is a Quillen equivalence. We check the
following criterion from [Hov99, Definition 1.3.12]: Let J ∈ NUCAR be a cofibrant
non-unital commutative R-algebra and S ∈ CAlgR /R be a fibrant augmented
algebra. Then we have to show that a morphism f : KJ → S is a weak equivalence
if and only if its adjoint f̃ : J → IS is a weak equivalence. Since S is fibrant, the
augmentation ǫ : S → R is a fibration in C , and hence the defining diagram

I(S) S

∗ R

incl

ǫ

is a homotopy pullback square in C . The map η : R → A defines a section to ǫ, so
the distinguished triangle

I(S)
incl
−−→ S

ǫ
−→ R → ΣI(S)

in Ho(C ) splits and the counit (η, incl) is a weak equivalence. Moreover, since f̃ is

a retract of R∐ f̃ and R∐ (–) is homotopical, one is a weak equivalence if and only

if the other is one. In total, since we have the relation f = (η, i) ◦ (R ∐ f̃), we see
that K ⊣ I is a Quillen equivalence. �

We also have a base-change adjunction

(6.1) CAlgR /S CAlgS /S
S⊗R–

forget

for any R-algebra S. Since the forgetful functor is the identity on underlying objects
and morphisms, it is right Quillen, so also this adjunction is a Quillen adjunction.

Definition 6.4. Let R be a commutative monoid in C and let S be a commutative
R-algebra. Then we define the abelianization functor as the composite

AbS/R : Ho(CAlgR /S)
S⊗L

R–
−−−−→ Ho(CAlgS /S)

RI
−−→ Ho(NUCAS)

LQ
−−→ Ho(ModS).

Remark 6.5. The name abelianization for the above construction originates in alge-
bra, where it is an observation going back to Beck [Bec03] that abelian group objects
in the category of augmented algebras over a commutative ring R are equivalently
R-modules, with the equivalence given by square-zero extensions in one direction
and the augmentation ideal in the other. One then observes that Kähler differentials
define a left adjoint functor to the inclusion of abelian group objects, interpreted
as modules, into all augmented algebras.

In our context of G-global homotopy theory, we show in Theorem 6.20 that
AbR/R = LQRI can be interpreted as a global stabilization.
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Proposition 6.6. Let R be a commutative monoid in C and S be a commutative
R-algebra. The functors

Ho(CAlgR /S) Ho(ModS)
AbS/R

LK◦RZ

are adjoint, with abelianization being the left adjoint.

Proof. We use the Quillen adjunctions from Proposition 6.3 and (6.1) to calculate
for an S-module M and an R-algebra T with augmentation to S:

Ho(ModS)(AbS/R(T ),M) ∼= Ho(NUCAS)((RI)(S ⊗L

R T ), (RZ)(M))

∼= Ho(CAlgS /S)((LK)(RI)(S ⊗L

R T ), (LK)(RZ)(M))

∼= Ho(CAlgR /S)(T, (LK)(RZ)(M)). �

Using these adjunctions, we now define the cotangent complex:

Definition 6.7. Let R be a commutative monoid in C and S be an R-algebra.
The cotangent complex of S over R is defined as the object

ΩS/R = AbS/R(S) = (LQ)(RI)(S ⊗L

R S)

in Ho(ModS).

For any square

R R′

S S′

in the model category CAlg, we obtain an induced morphism on cotangent com-
plexes ΩS/R → ΩS′/R′ as S-modules. This arises from the universal property of
pushouts and pullbacks.

For any commutative R-algebra S, we also obtain a universal derivation

(6.2) dS/R : S → ΩS/R

by composing the unit S → S ∐ ΩS/R = (KZ)(AbS/R(S)) of the adjunction in
Proposition 6.6 with the projection to ΩS/R.

This cotangent complex behaves just as in the classical case of commutative
algebras, in that is comes with a transitivity exact sequence and a base-change
formula. These properties allow us to consider the cotangent complex as defining
a cohomology theory for augmented commutative algebras. In order to establish
these properties, we first need to consider how the augmentation ideal and inde-
composables behave under base changes.

Lemma 6.8. Let R be a commutative monoid in C , let S be a commutative R-
algebra, and let T be an augmented commutative R-algebra. Then the commutative
square

(6.3)

IR(T )⊗R S T ⊗R S

∗ S

induces a morphism

RIR(T )⊗
L

R S → RIS(T ⊗L

R S),

which is an isomorphism in the homotopy category of non-unital commutative S-
algebras.
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Proof. The square (6.3) induces a natural transformation IR(–)⊗RS ⇒ IS(–⊗RS)
by considering pullbacks. Here, the functor (–) ⊗R S can be left derived, and
the functors I can be right derived. We thus consider the double category of
model categories and left and right derivable functors. In this context, [Shu11,
Theorem 7.6] shows that taking homotopy categories and derived functors is a
double pseudofunctor. In particular, the natural transformation above induces a
transformation

RIR(–)⊗
L

R S ⇒ RIS(– ⊗
L

R S)

as desired.
Since I is a Quillen equivalence with inverse K, we can show that this trans-

formation is a natural isomorphism in the homotopy category by considering its
mate

LKS(–⊗
L

R S) ⇒ LKR(–)⊗
L

R S.

This transformation is induced from the natural isomorphism S ∐ (– ⊗R S) ∼=
(R ∐ –)⊗R S of left Quillen functors, and hence is a natural isomorphism. �

Lemma 6.9. Let R be a commutative monoid in C , let S be a commutative R-
algebra and J be a non-unital commutative R-algebra. Then the commutative square

(6.4)

(J ⊗R J)⊗R S J ⊗R S

∗ QR(J)⊗R S

induces a morphism

LQS(J ⊗L

R S) → LQR(T )⊗
L

R S,

which is an isomorphism in the homotopy category of S-modules.

Proof. As both the functors labelled Q and the base change (–) ⊗R S are left
Quillen functors, the desired morphism can be obtained from the natural mor-
phism QS(J ⊗L

R S) → QR(J) ⊗
L

R S induced on pushouts by the diagram (6.4),
by considering cofibrant replacements. Moreover, as (–) ⊗R S is a left adjoint, it
preserves pushouts, which implies that this morphism is an isomorphism. �

Lemma 6.10. Let R be a commutative monoid in C and let S and T be commu-
tative R-algebras with a map S → T of commutative R-algebras. Assume moreover
that C is left proper or that S is cofibrant as a commutative monoid. Then a
homotopy cofiber of S ⊗L

R T → T ⊗L

R T in CAlgT /T is given by T ⊗L

S T .

Proof. This statement may be shown by considering cofibrant replacements. In
order to calculate S ⊗L

R T , we consider a cofibrant replacement ΓRS → S of S as
a commutative R-algebra. Moreover, in order to calculate T ⊗L

R T , we decompose
the morphism ΓRS → S → T into a cofibration followed by a weak equivalence as
ΓRS → ΓRT → T .

We now take the homotopy cofiber of

ΓRS ⊗R T → ΓRT ⊗R T.

This morphism arises from applying the left Quillen functor –⊗R T : CAlgR /T →
CAlgT /T to the cofibration ΓRS → ΓRT between cofibrant objects, so it is itself
a cofibration between cofibrant objects. Hence, its homotopy cofiber is represented
by the 1-categorical cofiber, which can be calculated as

(ΓRT ⊗R T )⊗ΓRS⊗RT T
∼= (ΓRT ⊗ΓRS ΓRS ⊗R T )⊗ΓRS⊗RT T

∼= ΓRT ⊗ΓRS T.

We now need to compare this with ΓST ⊗ST , where ΓST is a cofibrant replacement
of T as a commutative S-algebra. For this, it suffices to establish a weak equivalence
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ΓRT ⊗ΓRSS → ΓST of commutative S-algebras. As both ΓRT ⊗ΓRS S and ΓST are
cofibrant S-algebras (since –⊗ΓRS S is left Quillen and by definition, respectively),
the left Quillen functor –⊗S T then preserves this weak equivalence.

In order to establish this weak equivalence, we consider the diagram

ΓRS S ΓST

ΓRT ⊗ΓRS S

ΓRT T.

≃

≃

≃

Here, S → ΓST → T is the factorization of S → T into a cofibration followed by
an acyclic fibration provided by the cofibrant replacement ΓST . As ΓRS → ΓRT
is a cofibration, so is S → ΓRT ⊗ΓRS S and the diagonal dashed morphisms exist
by the lifting property. Moreover, since either the categories in question are left
proper or S is cofibrant, we conclude that the morphism ΓRT → ΓRT ⊗ΓRS S is a
weak equivalence. Hence we indeed have a weak equivalence ΓRT ⊗ΓRS S → ΓST
as desired by the 2-out-of-3 property. �

From this cofiber calculation, we deduce the transitivity sequence for the cotan-
gent complex.

Theorem 6.11. Let R → S → T be a sequence of commutative monoids in C .
Moreover, assume that either C is left proper or that S is cofibrant. Then the
sequence

ΩS/R ⊗L

S T → ΩT/R → ΩT/S ,

induced from functoriality of Ω, admits the structure of a homotopy cofiber sequence
of T -modules.

Proof. We consider the morphism S⊗L

RT → T ⊗L

RT of T -algebras augmented to T .
By Lemma 6.10, the homotopy cofiber of this morphism in CAlgT /T is given by
T ⊗L

S T . Since I is a Quillen equivalence and Q is left Quillen, applying LQT ◦RIT
to the resulting homotopy cofiber sequence yields a homotopy cofiber sequence of
T -modules. This takes the form

LQT (RIT (S ⊗L

R T )) → LQT (RIT (T ⊗L

R T )) → LQT (RIT (T ⊗L

S T )).

The last two terms are by definition the cotangent complexes ΩT/R and ΩT/S . We

thus only have to identify the first term as ΩS/R ⊗L

S T .

For this, we observe that S ⊗L

R T
∼= (S ⊗L

R S)⊗
L

S T and use Lemmas 6.8 and 6.9
to calculate

LQT (RIT (S ⊗L

R T ))
∼= LQT (RIT ((S ⊗L

R S)⊗
L

S T ))

∼= LQT (RIS(S ⊗L

R S)⊗
L

S T )

∼= LQS(RIS(S ⊗L

R S))⊗
L

S T

∼= ΩS/R ⊗L

S T.

In total, we obtain the desired homotopy cofiber sequence. �

Moreover, we also get base change and additivity results.

Proposition 6.12. Let R be a commutative monoid in C and S and T be two
commutative R-algebras. Then there are natural isomorphisms

ΩS⊗L

RT/T
∼= ΩS/R ⊗L

R T and

ΩS⊗L

RT/R
∼= (ΩS/R ⊗L

R T )∐ (S ⊗L

R ΩT/R).
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Proof. For the first assertion, we calculate

ΩS⊗L

RT/T
∼= LQS⊗L

RT
(RIS⊗L

RT
((S ⊗L

R T )⊗
L

T (S ⊗L

R T )))

∼= LQS⊗L

RT
(RIS⊗L

RT
((S ⊗L

R S)⊗
L

S (S ⊗L

R T )))

∼= LQS⊗L

RT
(RIS(S ⊗L

R S)⊗
L

S (S ⊗L

R T ))

∼= LQS(RIS(S ⊗L

R S))⊗
L

S (S ⊗L

R T )

∼= ΩS/R ⊗L

R T.

The second assertion follows from observing that the transitivity cofiber sequences
for R→ S → S⊗L

RT and R → T → S⊗L

RT fit together to define splittings for each
other, and applying the first assertion to the resulting cotangent complexes. �

6.2. Topological André-Quillen cohomology of G-global ring spectra. By
Proposition 5.40, the positive G-global model structures on G-Spectra are sym-
metric monoidal and satisfy the monoid and strong commutative monoid axiom;
moreover, coproducts in them are homotopical by [Len20, Lemma 3.1.43]. We can
therefore specialize the above discussion to this setting, yielding:

Definition 6.13. Let R be a G-global ultra-commutative ring spectrum and S be
an R-algebra. The cotangent complex of S over R is defined as

ΩS/R = (LQ)(RI)(S ∧L

R S).

This is an S-module, and the homology and cohomology theories represented by
it are called (G-global) topological André-Quillen (co)homology. Explicitly, for an
S-moduleM , topological André-Quillen (co)homology of S over R with coefficients
in M is defined as

TAQ
∗
(S,R;M) = π̂∗(ΩS/R ∧L

S M)

TAQ∗(S,R;M) = π̂−∗(RF (ΩS/R,M)).

Here, F denotes the usual function spectrum, carrying the structure of an S-module.

As a consequence of Theorem 6.11 and Proposition 6.12, we obtain a transitivity
sequence and base change for these. We explicitly state the transitivity sequence
in homotopy groups.

Corollary 6.14. Let R → S → T be morphisms of G-global ultra-commutative
ring spectra, and let M be a T -module. Then there are long exact sequences

· · · → TAQ
n+1

(T, S;M) → TAQ
n
(S,R;M) → TAQ

n
(T,R;M) → TAQ

n
(T, S;M) → · · ·

and

· · · → TAQn(T, S;M) → TAQn(T,R;M) → TAQn(S,R;M) → TAQn+1(T, S;M) → · · ·

induced from the cofibre sequence from Theorem 6.11. �

We now present two applications of the above theory to the study of G-global
ultra-commutative ring spectra. The first is a Hurewicz theorem, which says that
vanishing of the (relative) André-Quillen homology detects equivalences of G-global
ultra-commutative ring spectra. The other application is a construction of Post-
nikov towers for global ultra-commutative ring spectra, with k-invariants in global
topological André-Quillen cohomology. These applications are analogous to the
usage of topological André-Quillen homology in [Bas99, Chapter 8], but the proofs
are simplified by the use of t-structures.

Both of these results need a connectivity hypothesis, and the first step is to
consider how the indecomposables functor Q interacts with connectivity.
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Lemma 6.15. Let R be a connective G-global ultra-commutative ring spectrum
and J be a cofibrant non-unital commutative R-algebra. Suppose moreover that J
is n-connected for n ≥ 0. Then also Q(J) is n-connected, and the adjunction unit
q : J → Q(J) induces an isomorphism on π̂k for n+ 1 ≤ k < 2n.

Proof. The module of indecomposables is defined via the cofiber sequence

J ∧R J → J
η
−→ Q(J)

of R-modules. Here, J is n-connected by assumption, while J ∧R J is (2n − 1)-
connected by Proposition 5.31; the claim follows from the long exact sequence. �

Theorem 6.16 (Hurewicz theorem). Let R be a connective G-global ultra-commuta-
tive ring spectrum and let S be a connective commutative R-algebra such that the
unit map η : R → S is an n-equivalence for n ≥ 1. Then ΩS/R is n-connected, and
the universal derivation dS/R : S → ΩS/R factors through the cone C(η), where it
induces an isomorphism π̂n+1(C(η))

∼= π̂n+1(ΩS/R).

Proof. After cofibrant replacement, we may assume that S is a cofibrant commu-
tative R-algebra. We consider the diagram

R S C(η)

S S ∧R S S ∧R C(η).

η

η ι

The first line of the diagram is a cofiber sequence by definition, and the second
line arises from it by applying S ∧R –. Since S is cofibrant, this again is a cofiber
sequence. The vertical morphisms are the inclusions as the right factors. By Propo-
sition 6.3, the counit

S ∨RI(S ∧R S) → S ∧R S

is an equivalence, and thus by comparing cofibers we obtain S ∧R C(η) ∼= RI(S ∧R
S). We now consider the composition

C(η)
ι
−→ S ∧R C(η) ∼= RI(S ∧R S)

q
−→ ΩS/R,

where the last map is an instance of the unit map J → LQ(J) considered in
Lemma 6.15, for the non-unital algebra J = S ∧R C(η) ∼= RI(S ∧R S). Since η is
n-connected, so is C(η). As S is connective, also S∧RC(η) is n-connected, and the
morphism ι is an isomorphism on π̂k for k ≤ n+ 1. By Lemma 6.15, also q induces
an isomorphism on π̂k for k ≤ n+ 1, and this finishes the proof.
Unravelling the definition of the morphism C(η) → ΩS/R considered here, we ob-
serve that it is indeed induced by the universal derivation dS/R : S → ΩS/R, using
that this map vanishes on the image of R in S. �

Corollary 6.17. Let R be a connective G-global ultra-commutative ring spectrum
and S be a connective R-algebra such that ΩS/R ≃ 0. Then the unit map η : R → S
is an equivalence.

Proof. Suppose η is not an equivalence, and let π̂k(C(η)) be the first non-trivial
homotopy group of the cone. Then also π̂k(ΩS/R) 6= 0 by Theorem 6.16, in contra-
diction to triviality of the cotangent complex. �

Hence, we see that topological André-Quillen cohomology detects equivalences
of connective G-global ultra-commutative ring spectra.

Next, we construct Postnikov towers for global ultra-commutative ring spectra.
For this, we explain how elements of the topological André-Quillen cohomology
parametrize extensions of algebras.
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Construction 6.18. Let R be a G-global ultra-commutative ring spectrum, S be a
commutative R-algebra and M be an S-module. By the definition of topological
André-Quillen cohomology, we have the identification

TAQne (S,R;M) ∼= Ho(ModGS )(ΩS/R,Σ
nM) ∼= Ho(UComG

R/S)(S, S ∨ ΣnM)

where e : 1 → G is the trivial homomorphism. In particular, for a given class k ∈
TAQne (S,R;M), we may interpret it as a morphism S → S ∨ΣnM of commutative
R-algebras over S. We form the homotopy pullback

S[k] S

S S ∨ ΣnM

ι

k

in R-algebras and call it the extension of S by k. Here, the right vertical map is
the inclusion of S as the first wedge summand.

Topological André-Quillen cohomology can be related to usual cohomology rep-
resented by a G-global spectrum by the universal derivation dS/R : S → ΩS/R con-

structed in (6.2). Precomposition with this derivation takes a map k̃ : ΩS/R → ΣnM

representing an element in TAQne (S,R;M) to the map k̃ ◦ dS/R : S → ΣnM . By
the definition of the universal derivation, this agrees (in the homotopy category)
with the composition

pr ◦ k : S → S ∨ ΣnM → ΣnM,

where k is the adjoint to k̃ under the adjunction between square-zero extensions
and Kähler differentials.

Using this translation, we observe that S[k] is also the homotopy pullback in the
total square

S[k] S ∗

S S ∨ ΣnM ΣnM

ι

k pr

and hence the homotopy fiber of k̃ ◦ dS/R in the category of R-modules.

If X is any ultra-commutative ring spectrum, then its zeroth homotopy groups
π̂0X come with additional norm maps, defined via the multiplication on smash
powers, giving them the structure of a so-called global power functor [Sch18, Defi-
nition 5.1.6]. In the next theorem, we will need that conversely any global power
functor F gives rise to an ultra-commutative Eilenberg-MacLane spectrum HF ,
i.e. an ultra-commutative global ring spectrum with π̂0(HF )

∼= F as global power
functors and π̂k(HF ) = 0 for k 6= 0, see [Sch18, Theorem 5.4.14]. As the corre-
sponding result in G-global homotopy theory for general G has not been established
yet, this means we have to restrict to G = 1 here; however, once the correspond-
ing theory of Eilenberg-MacLane spectra is set up, the same result will hold for
arbitrary G, with the same proof.

Theorem 6.19. Let R be a connective global ultra-commutative ring spectrum.
Then there is a sequence R0, R1, . . . of commutative R-algebras together with maps
Rn+1 → Rn of R-algebras and classes kn ∈ TAQn+1

e (Rn, R;Hπ̂n+1(R)), such that
the following properties are satisfied:

(1) R0
∼= Hπ̂0(R) and Rn+1

∼= Rn[kn],
(2) π̂k(Rn) = 0 for k > n,
(3) the unit maps ηn : R → Rn are (n+ 1)-equivalences.
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Proof. We define R0 = Hπ̂0(R) as an Eilenberg-MacLane spectrum for the global
power functor π̂0(R). This is a global ultra-commutative ring spectrum, and it
comes with a morphism η0 : R → Hπ̂0(R) of ultra-commutative ring spectra induc-
ing an isomorphism on π̂0 (see the remark before [Sch18, Theorem 5.4.14]). Hence
R0 is a possible first stage of the Postnikov tower.

Now suppose that we have constructed the tower up to level n. In particular,
we have a morphism ηn : R → Rn of ultra-commutative ring spectra that is an
(n + 1)-equivalence, and π̂n+2(Rn) = π̂n+1(Rn) = 0. The Hurewicz theorem 6.16
shows that thus ΩRn/R is (n+1)-connected and π̂n+2(ΩRn/R)

∼= π̂n+1(R). This iso-

morphism defines a morphism k̃n : ΩRn/R → Σn+2Hπ̂n+1(R) of R-modules, which

corresponds to an element kn ∈ TAQn+1
e (Rn, R;Hπ̂n+1(R)).

Using this element and Construction 6.18, we define Rn+1 = Rn[kn]. This comes
with a map Rn+1 → Rn of R-algebras. Furthermore, as an R-module, the algebra
Rn+1 is the homotopy fiber of the map

Rn
dRn/R
−−−−→ ΩRn/R

k̃n−→ Σn+2Hπ̂n+1(R).

Hence the morphism ηn+1 : R → Rn+1 is indeed an (n+2)-equivalence and all higher
homotopy groups of Rn+1 vanish. Thus, the theorem follows by induction. �

6.3. (Co)Homology as a stabilization. We now explain how G-global topolog-
ical André-Quillen cohomology can be interpreted as a global stabilization:

Theorem 6.20. Let R be a flat G-global ultra-commutative ring spectrum. Then
all the global Quillen adjunctions

(6.5) MR Sp(MR) Sp(N R) Sp(ComR/R)
Σ∞

Ω∞ Sp(Z)

Sp(Q) Sp(K)

Sp(I)

are global Quillen equivalences. In particular, the composite

MR
Z
−−→ N R

I−1

−−→ ComR/R

in GLOBMOD (which on homotopy categories gives the right adjoint to AbR/R)
is the universal map from a stable global model category to ComR/R.

For the proof, the main step is to show that another stabilization of a global
Quillen adjunction is an equivalence, namely the free-forgetful adjunction for non-
unital commutative R-algebras:

Theorem 6.21. In the above situation, the global Quillen adjunction

(6.6) Sp(MR) Sp(N R)
Sp(P>0)

Sp(U)

is a global Quillen equivalence.

The proof of this requires a substantial amount of work, and we devote all of
Section 7 to it. For now, let us use it to deduce Theorem 6.20:

Proof of Theorem 6.20. Since K ⊣ I is a global Quillen equivalence, so is the glob-
ally stabilized adjunction Sp(K) ⊣ Sp(I) by Proposition 3.29. Moreover, the global

model category MR is globally stable (Corollary 5.27), so the stabilization adjunc-
tion

MR Sp(MR)
Σ∞

Ω∞

is a global Quillen equivalence by Theorem 3.36.
Finally, we have to consider how the adjunction Q ⊣ Z behaves upon stabiliza-

tion. For this, we use that by Theorem 6.21 the adjunction (6.6) is a global Quillen
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equivalence. We now observe that the composite Q ◦ P>0 : MR → N R → MR

of left Quillen functors is naturally isomorphic to the identity. Thus, the same is
true after stabilization, and also the associated composite of left derived functors
is naturally isomorphic to the identity. Hence, Q ⊣ Z induces a global Quillen
equivalence after stabilization by 2-out-of-3, finishing the proof. �

7. The stabilization of global NUCAs

7.1. Computing the stabilization. This section is devoted to the proof of The-
orem 6.21. We begin by recasting the left adjoint Sp(P>0) into a more convenient
form:

Construction 7.1. Let X,Y ∈ Sp(Sp). We define X ⋄ Y as the bispectrum with

(X ⋄Y )(B) = X(B)∧Y (B) (where the right hand side is the usual Day convolution
smash product on Spectra) and structure maps

SA ∧ (X ⋄ Y )(B) = SA ∧X(B) ∧ Y (B)
δ
−→ SA ∧X(B) ∧ SA ∧ Y (B)

σ∧σ
−−−→ X(A∐B) ∧ Y (A ∐B) = (X ⋄ Y )(A ∐B)

where the first map is induced by the diagonal SA → SA ∧ SA. This becomes a
functor in the obvious way.

If G acts on X and H acts on Y , then G ×H acts on X ⋄ Y via functoriality;
if G = H , we will typically equip X ⋄ Y with the diagonal G-action, yielding a
bifunctor on G-Sp(Sp) = Sp(G-Sp).

Finally, let X ∈ G-Sp(Sp) and let n ≥ 1. Then we obtain n commuting G-
actions on the n-fold ⋄-product X⋄n, which together with the Σn-action via per-
muting the factors assemble into a (Σn ≀ G)-action. We will also frequently view
X⋄n as an object in (Σn ×G)-Sp(Sp) via the diagonal G-action.

More generally, if R is a (G-)global ultra-commutative ring spectrum, then we

define ⋄R as the pointwise smash product over R, yielding functors Sp(MG
R) ×

Sp(MG
R) → Sp(MG

R).

Remark 7.2. For later use we record that the same construction can be applied
more generally in the categories Fun(Σ,Spectra) and Fun(Σ,ModGR) of all SSet-

enriched (as opposed to SSet∗-enriched) functors Σ → Spectra or Σ → ModGR,
respectively. For these larger categories, ⋄ and ⋄R are the tensor product of a
symmetric monoidal structure with unit the constant functor at S or R, respectively
(while unitality fails in Sp(Sp) and Sp(MG

R)).

If now X ∈ Sp(Sp), then comparing right adjoints yields a natural isomor-

phism Sp(P>0
R )Sp(R∧–)(X) ∼= Sp(R∧–)Sp(P>0

S
)(X) = Sp(R∧–)

(∨
n≥1X

⋄n/Σn
)
.

Non-equivariantly, Basterra and Mandell [BM05, Theorem 2.8] proved that the
summands indexed by n > 1 vanish (for suitably cofibrant X), and this is the key
non-formal ingredient used to compare spectra of R-NUCAs with R-modules (The-
orem 3.7 of op. cit.). Similarly, the following G-global comparison will be the key
computational ingredient to the proof of our Theorem 6.21:

Theorem 7.3. (1) Let X,Y ∈ G-Sp(Sp) levelwise flat. Then X ⋄ Y is G-
globally weakly equivalent to 0.

(2) Let X ∈ G-Sp(Sp) levelwise positively flat. Then X⋄n/Σn is G-globally
weakly equivalent to 0 for every n > 1.

(3) If i : X → Y is a levelwise positive flat cofibration, then i�n/Σn : Q
n/Σn →

Y ⋄n/Σn is a levelwise positive flat cofibration and a G-global weak equiva-
lence for every n > 1. In particular, if Y is levelwise positively flat, then
Qn/Σn is G-globally weakly equivalent to 0.
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The proof will be given below after some preparations; for now, let us use it to
deduce the theorem:

Proof of Theorem 6.21. Fix a finite group H . We have to show that H-Sp(P>0) ⊣
H-Sp(U) is a Quillen equivalence for the flat model structures. Replacing G by
G×H (and letting H act trivially on R), we may assume without loss of generality
that H = 1.

Claim. The positive flat global model structure on Sp(MG
R) transfers to Sp(N G

R)
along Sp(P>0) ⊣ Sp(U).

Proof. As the positive flat global model structure on Sp(MG
R) is in turn transferred

from Sp(G-Sp+) (Lemma 5.33) it suffices to consider the composite adjunction

Sp(R ∧ P
>0
S

) : Sp(G-Sp+) ⇄ Sp(N G
R) :Sp(U).

By local presentability, we only have to show that every Sp(R ∧ P
>0
S

)(J)-cell com-

plex is sent by Sp(U) to a G-global weak equivalence, where J is our favourite set
of generating acyclic cofibrations of G-Sp(Sp).

For this, we consider a pushout square

Sp(R ∧ P
>0)(A) Sp(R ∧ P

>0)(B)

X Y

Sp(R∧P
>0)(j)

k

in Sp(N G
R) with j ∈ J . We want to express Sp(U)(k) as a transfinite composition of

weak equivalences, for which we note that we can identify the 1-category Sp(N G
R)

over Sp(Sp) with non-unital commutative monoids in Sp(MG
R) with respect to the

non-unital symmetric product ⋄R. While we cannot literally apply Remark 5.38
in this setting (for lack of unitality), we can do this inside the larger category

Fun(Σ,ModGR), which (as spectrum objects are closed inside SSet-enriched func-
tors under all colimits) then factors k as a map in G-Sp(Sp) into a transfinite
composition of maps kn fitting into pushout squares

Sp(R ∧ –)(Qn/Σn ∨X ⋄Qn/Σn) Sp(R ∧ –)(L⋄n/Σn ∨X ⋄ L⋄n/Σn)

· ·

Sp(R∧–)(j�n/Σn∨X⋄j�n/Σn)

kn

in G-Sp(Sp). Appealing to Theorem 7.3 above, the top map is a map between
weakly contractible objects, hence a weak equivalence, and moreover a levelwise
positive flat cofibration (in particular an injective cofibration). Thus, also kn is a

weak equivalence, and hence so is Sp(U)(k) since filtered colimits in Sp(MG
R) are

homotopical (Lemma 5.32). As Sp(U) preserves filtered colimits, it then follows
by the same argument that also any transfinite compositions of maps of the above
form are sent to G-global weak equivalences as desired. △

We now observe that the transferred model structure and the global model
structure on Sp(N G

R) have the same acyclic fibrations (namely, those maps f
for which each f(A) is a fibration in the positive flat (G × ΣA)-global model
structure on (G × ΣA)-Sp(Sp

+)) and the same fibrant objects (namely, those X
for which each X(A) is (G × ΣA)-globally positively flatly fibrant and for which
X(A) → ΩBX(A ∐ B) is a (G ×H)-global weak equivalence of NUCAs or equiv-
alently of spectra for all H-sets A,B). Thus, the two model structures actually

agree, and in particular we see that Sp(U) : Sp(N G
R) → Sp(MG

R) preserves and
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reflects weak equivalences. To complete the proof, it suffices now to show that the
ordinary unit X → Sp(UP>0)(X) is a weak equivalence for every cofibrant X .

This is again a standard cell induction argument [Len20, Corollary 1.2.65] using
Theorem 7.3: we let H denote the class of all objects for which the above is
a weak equivalence. If Y is a levelwise positively flat G-bispectrum and X =
Sp(R ∧ –)(Y ), then the unit for X agrees up to isomorphism with the inclusion
of the first summand of

∨
n≥1 Sp(R ∧ –)(Y ⋄n/Σn), so it is a weak equivalence by

Theorem 7.3, i.e. Sp(R ∧ –)(Y ) ∈ H ; in particular, H contains the initial object
0 as well as all sources and targets of the usual generating cofibrations I. However,
H is closed under pushouts along cofibrations (as the right Quillen functor Sp(U)
sends these to homotopy pushouts by stability and left properness) as well as filtered
colimits (as these are homotopical by Lemma 5.32 and preserved by Sp(U)), so
H more generally contains all I-cell complexes, whence all cofibrant objects by
Quillen’s Retract Argument. �

7.2. The levelwise smash product is trivial. In this subsection we will com-
plete the proof of Theorem 6.21 by proving Theorem 7.3.

7.2.1. The case of ordinary spectra. For this, we first consider the analogues of
Construction 7.1 and Theorem 7.3 for ordinary G-spectra:

Construction 7.4. Let X,Y be spectra. We define X ⋄ Y as the spectrum with
(X⋄Y )(B) = X(B)∧Y (B) (smash product of pointed simplicial sets) and structure
maps

SA ∧ (X ⋄ Y )(B) = SA ∧X(B) ∧ Y (B)
δ
−→ SA ∧X(B) ∧ SA ∧ Y (B)

σ∧σ
−−−→ X(A∐B) ∧ Y (A ∐B) = (X ⋄ Y )(A ∐B)

where the first map is induced by the diagonal SA → SA ∧ SA. This becomes a
functor in the obvious way.

If X and Y are G-spectra, then we equip X ⋄ Y with the induced action. Given
any n ≥ 1, we view X⋄n as a (Σn ≀G)- or (Σn ×G)-spectrum.

Proposition 7.5. Let X,Y be G-spectra.

(1) X ⋄ Y is G-globally weakly contractible.
(2) Let n > 1. Then X⋄n is (Σn ≀G)-globally weakly contractible.

Proof. We will prove the second statement, the proof of the first one being similar
but easier. We will show that it is even π∗-isomorphic to 0, for which we will need
the following easy geometric input:

Claim. Let H be a finite group and let F,A be finite H-sets such that F is non-
empty and free while |A| > 1. Then the diagonal embedding δ : SF → SA×F of
H-topological spaces is H-equivariantly based nullhomotopic.

Proof. The map δ is the 1-point compactification of the diagonal map δ : R[F ] →
R[A × F ]. Now the H-fixed points of the source have dimension |F/H | while the
H-fixed points of the target have dimension |(A × F )/H | = |A| · |F/H | > |F/H |
where the first equality uses freeness of F . In particular, there exists an H-fixed
point p ∈ R[A× F ] outside the diagonal. But then

(0, 1]× R[F ] → R[A× F ]

(t, x) 7→ p+ t−1(δ(x) − p)

is H-equivariant and one easily checks that this extends to an equivariant based
homotopy from the map constant at∞ to the diagonal embedding SF → SA×F . △
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Fix now a finite group H and a homomorphism ϕ : H → Σn ≀ G; we will show
that πϕ0 (X

⋄n) = 0, the argument in other dimensions being analogous but requiring
slightly more notation. For this we pick an exhaustive sequence B0 ⊂ B1 ⊂ · · · ⊂
UH of our favourite complete H-set universe UH such that each Bk+1rBk contains
a free H-orbit. Then

πϕ0 (X
⋄n) = colimB∈s(UH)[S

B, |ϕ∗(X⋄n)(B)|]H∗
∼= colimk[S

Bk , |ϕ∗(X⋄n)(Bk)|]
H
∗

by cofinality. But on the other hand, if F ⊂ Bk+1 r Bk is a free H-orbit, then
the transition map [SBk , |ϕ∗(X⋄n)(Bk)|]

H
∗ → [SBk+1 , |ϕ∗(X⋄n)(Bk+1)|]

H
∗ factors

by definition through

[SF∧SBk , SF∧|ϕ∗(X⋄n)(Bk)|]
H
∗

δ∧|ϕ∗(X⋄n)(Bk)|
−−−−−−−−−−−→ [SF∧SBk , S(prΣn

◦ϕ)∗n×F∧|ϕ∗(X⋄n)(Bk)|]
H
∗

which is null by the claim. �

Beware that Theorem 7.3 does not follow simply by applying the proposition
levelwise; in particular, takingX = Y = Σ∞S in the first item we have (X⋄Y )(A) ∼=
Σ2·AS, so X ⋄ Y is not globally level equivalent to 0. Instead, the reduction will
require further preparation.

7.2.2. The external smash product. We begin by introducing yet another smash
product:

Construction 7.6. Let X,Y ∈ Spectra. Then we define the external smash product
X ∧̂Y ∈ Sp(Spectra) as the bispectrum with (X ∧̂ Y )(A)(B) = X(A)∧ Y (B) and
with the evident structure maps, i.e. (X ∧̂Y )(A) = X(A)∧Y and (X ∧̂Y )(–)(B) =
X ∧ Y (B) as spectra. Again, we extend this to G-spectra by pulling through the
G-action.

Note that the above agrees with the functor – ∧ –: Spectra × C → Sp(C )
considered in Subsection 3.3, specialized to C = Spectra. However, in our setting
using ‘∧’ again would be highly ambiguous, which is why we introduced the above
notation.

Theorem 7.7. Let G be any finite group. Then the external smash product

– ∧̂ –: G-SpectraG-global ×G-SpectraG-global → G-Sp(Sp)G-global

is homotopical in both variables.

The statement for the second variable is actually quite easy:

Lemma 7.8. Let X be a G-spectrum and let f be a G-global weak equivalence of
G-spectra. Then X ∧̂ f is a G-global weak equivalence in G-Sp(Sp).

Proof. If A is any finite set, then f is a (G × ΣA)-global weak equivalence (with
respect to the trivial ΣA-actions), and hence so is X(A) ∧ f . Thus, X ∧̂ f is even
a G-global level weak equivalence. �

The proof that the external smash product is also homotopical in the first variable
is much harder. We begin with some further closure properties of the G-global weak
equivalences of G-Sp(Sp) similar to Lemma 5.32:

Lemma 7.9. Let f : X → Y be a G-global weak equivalence in G-Sp(Sp) and let
α : G→ G′ be a homomorphism of finite groups. Assume that ker(α) acts levelwise
freely outside the basepoint on X and Y . Then α!f is a G′-global weak equivalence.
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Proof. Employing functorial factorizations in the G-global projective level model
structure we obtain a commutative diagram

X ′ Y ′

X Y

∼

f ′

∼

f

such that the vertical maps are G-global level weak equivalences and X ′, Y ′ are
projectively cofibrant. Then f ′ is a G-global weak equivalence by 2-out-of-3, and
hence α!f

′ is a G′-global weak equivalence by Ken Brown’s Lemma. By another
application of 2-out-of-3, it will then be enough to show that α! sends the vertical
maps to G′-global weak equivalences. However, G (and hence in particular kerα)
acts levelwise freely outside the basepoint on X ′ and Y ′ by [Len20, Remark 3.1.22]
together with Lemma 3.15 (for the trivial G-action on the indexing set), whence
the claim follows from Proposition 1.45. �

Moreover, one proves in the same way:

Lemma 7.10. The levelwise smash product

(G-SSet∗)G-equivariant ×G-Sp(Sp)G-global → G-Sp(Sp)G-global

is homotopical in each variable. �

Proof of Theorem 7.7. Write H for the class of G-global spectra X such that –∧̂X
is homotopical. Our goal is to show that H consists of all objects, which will be
done in several steps.

Step 1. For every Y ∈ G-I-SSet∗ we have Σ•Y ∈ H .
Plugging in the definitions, we have for every G-global spectrum T and all finite
sets A,B a natural isomorphism

(T ∧̂ Σ•Y )(A)(B) = T (A) ∧ SB ∧ Y (B) ∼= SB ∧ T (A) ∧ Y (B)

=
(
G-Sp(Σ•)(T ⊗̂ Y )

)
(A)(B)

where ⊗̂ denotes the ‘external tensor product’ of aG-spectrum with aG-I-simplicial
set, i.e. the G-spectrum object in I-SSet∗ given by (T ⊗̂Y )(A)(B) = T (A)∧Y (B)
with the obvious functoriality. Letting A and B vary, one then easily checks that
the above induces a natural isomorphism T ∧̂ Σ•Y ∼= G-Sp(Σ•)(T ⊗̂ Y ). However,
G-Sp(Σ•) is left Quillen (say, for the projective model structures) and preserves G-
global level weak equivalences (Proposition 1.50), so it is in fact fully homotopical.
Thus, it will be enough to show that – ⊗̂ Y sends G-global weak equivalences of
G-spectra to G-global weak equivalences in G-Sp(S ). However, by Proposition 4.6
the latter are detected by the diagonal restriction ∆∗, and ∆∗(– ⊗̂ Y ) = – ⊗ Y
preserves G-global weak equivalences of G-spectra by Proposition 4.8.

Step 2. For every Y ∈ G-I-SSet∗ we have Σ•Y ∈ H .
By Lemma 7.8 and 2-out-of-3, H is closed under G-global weak equivalences. But
[Len20, Theorem 1.4.31 and Proposition 3.2.2] yield a G-global weak equivalence
Σ•Y ≃ Σ•(I ×I Y ) for some pointed G-I-simplicial set I ×I Y , so the claim follows
from the previous step.

Step 3. For every finite G-set A and every K ∈ G-SSet∗, Σ(A, –) ∧K ∈ H .
The endofunctor SA ∧ – of G-Sp(Sp) is homotopical (by the previous lemma) and
part of a Quillen equivalence (by stability), so it reflects weak equivalences. Thus, it
suffices to show that SA∧(f ∧̂Σ(A, –)∧K) is a G-global weak equivalence for every
G-global weak equivalence f . However, this is conjugate to f ∧̂

(
SA∧Σ(A, –)

)
∧K,
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and by a simple Yoneda argument SA ∧Σ(A, –) ∼= Σ•
+I(A, –) naturally in A (hence

G-equivariantly). Thus, the claim follows from the previous step.

Step 4. Let H be a finite group, ϕ : H → G a homomorphism, and A a finite faithful
H-set. Then Σ(A, –) ∧ϕ G+ ∧K ∈ H for every pointed G-simplicial set K.
Applying the previous step with G replaced by G × H shows that the functor
– ∧̂ Σ(A, –) ∧ G+ ∧ K sends G-global weak equivalences to (G × H)-global weak
equivalences, where H acts on A in the given way, on G from the right via ϕ,
and trivially everywhere else. However, as A is faithful, H acts freely on Σ(A,B)
outside the basepoint for every finite set B. Thus, Lemma 7.9 immediately implies
that (– ∧̂Σ(A, –) ∧G+ ∧K)/H ∼= – ∧̂Σ(A, –) ∧ϕ G+ ∧K is homotopical.

Step 5. Every projectively cofibrant G-global spectrum is contained in H .
Fix a G-global weak equivalence f : T → U , which induces a natural transformation
T ∧̂ – ⇒ U ∧̂ –. We want to show that this is a weak equivalence on all projec-
tively cofibrant objects. This is again a standard cell induction argument [Len20,
Lemma 1.2.64]: by the previous step the claim is true for the sources and targets
of the standard generating cofibrations, and moreover for any G-spectrum V the
functor V ∧̂– preserves colimits as well as injective cofibrations; the claim therefore
follows from Lemma 5.32.

Step 6. All G-global spectra belong to H .
Every G-global spectrum is weakly equivalent to a projectively cofibrant one. The
claim therefore follows from the previous step together with Lemma 7.8. �

7.2.3. Proof of triviality. Using this, we can prove a key special case of Theorem 7.3:

Proposition 7.11. Let A be any finite set, let X be a positively flat (G × ΣA)-
spectrum, and let n > 1. Then (Σ(A, –) ∧̂ΣA X)⋄n/Σn is G-globally weakly con-
tractible.

Proof. Reordering factors we have

(Σ(A, –) ∧̂X)⋄n(B)(C) ∼= Σ(A,B)∧n ∧X∧n(C)

inducing a G× (Σn ≀ ΣA)-equivariant isomorphism of bispectra (Σ(A, –) ∧̂X)⋄n ∼=
Σ(A, –)⋄n ∧̂X∧n. By Proposition 7.5, Σ(A, –)⋄n is Σn ≀(G×ΣA)- and hence also G×
(Σn≀ΣA)-globally weakly contractible, so Theorem 7.7 shows thatΣ(A, –)⋄n∧̂X∧n is
G×(Σn≀ΣA)-globally weakly contractible. Now ΣnA acts levelwise freely on this (as it
already does so on Σ(A, –)∧n), whence Lemma 7.9 shows that (Σ(A, –) ∧̂ΣAX)⋄n ∼=
Σ(A, –)⋄n ∧̂Σn

A
X∧n is (G×Σn)-globally weakly contractible. But Σ(A, –) ∧̂ΣA X is

levelwise positively flat, so the Σn-action on its n-th ⋄-power is free by Lemma 5.20,
and the proposition follows by another application of Lemma 7.9. �

In the same way one shows:

Proposition 7.12. Let A,B be finite sets, let X be a flat (G×ΣA)-spectrum, and
Y a flat (G×ΣB)-spectrum. Then (Σ(A, –) ∧̂ΣA X)⋄ (Σ(B, –) ∧̂ΣB Y ) is G-globally
weakly contractible. �

From this we can immediately easily deduce the following slight strenghtening
of the first part of Theorem 7.3:

Proposition 7.13. Let X,Y ∈ G-Sp(Sp) and assume at least one of them is
levelwise flat. Then X ⋄ Y is G-globally weakly contractible.

Proof. We first observe the following closure properties:

Claim. For any (levelwise) flat X ∈ G-Sp(Sp) the class of objects Y for which
X ⋄ Y is weakly contractible is closed under (a) filtered colimits and (b) pushouts
along levelwise flat cofibrations.
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Proof. We will prove the second statement, the argument for the first one being
similar. Consider a pushout in G-Sp(Sp) as on the left

A B

C D
p

i X ⋄A X ⋄B

X ⋄ C X ⋄D
p

X⋄i

such that i is levelwise flat. Applying X ⋄ – to this yield a pushout as on the right
(as X ⋄ – is cocontinuous), and X ⋄ i is a levelwise flat cofibration (in particular an
injective cofibration). Thus, if X ⋄A,X ⋄B,X ⋄D are weakly contractible then so
is X ⋄D by Lemma 5.32. △

Using this, the previous proposition immediately proves the special case that Y
is flat and X = Σ(A, –) ∧̂ΣA Z for some flat Z. But for any flat Y , the class of X
for which X ⋄ Y is weakly contractible is again closed under filtered colimits and
pushouts along flat cofibrations (by symmetry), proving the case that both X and
Y are flat. As for any levelwise flat Z both – ⋄ Z and Z ⋄ – preserve G-global level
weak equivalences, the claim now follows by cofibrant replacement. �

Proof of Theorem 7.3. The first statement is a special case of the previous propo-
sition. For the second statement, we observe that the class of levelwise positively
flat X ∈ G-Sp(Sp) such that X⋄n/Σn is G-globally weakly contractible contains
0 and is closed under filtered colimits. To complete the proof it is then enough to
show that it is also closed under pushouts along generating cofibrations, for which
we more generally consider any pushout

(7.1)

Σ(A, –) ∧̂ΣA X Σ(A, –) ∧̂ΣA Y

Z P

Σ(A,–)∧̂ΣA
i

j

p

such that i : X → Y is a positive flat cofibration of (G × ΣA)-spectra and Z is
levelwise positively flat with Z⋄n/Σn ≃ 0 for all n > 1; we will prove that also
P ⋄n/Σn ≃ 0 for all n > 1. For this, we apply [GG16, Theorem 22] (to the larger
category of all SSet-enriched functors) yielding factorizations

Z⋄n/Σn = Qn0 → Qn1 → · · · → Qnn−1 → Qnn = P ⋄n/Σn

of j⋄n/Σn for all n such that we have for k < n− 1 a pushout

(7.2)

Z⋄(n−k)/Σn−k ⋄Q
k
k−1 Z⋄(n−k)/Σn−k ⋄ P

⋄k/Σk

Qnk Qnk+1

Z⋄(n−k)/Σn−k⋄j
�k/Σk

p

(where for k = 0 the empty ⋄-power has to be interpreted as a formal unit) while
Qnn−1 → Qnn recovers j�n/Σn.

Claim. For all 0 ≤ k < n the map Qnk → Qnk+1 is a levelwise flat cofibration.

Proof. For k = n− 1 this is an instance of the strong commutative monoid axiom
for the (say, non-equivariant) positive flat model structure on symmetric spectra.

For k < n− 1, on the other hand, we observe that the top arrow in the pushout
square (7.2) is a positive levelwise flat cofibration by the above special case and
levelwise flatness of Z⋄(n−k)/Σn−k. The claim follows immediately. △
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By (ordinary) stability, it therefore suffices to show that the 1-categorical cofiber
of Qnk → Qnk+1 is trivial for all 0 ≤ k < n. However by the aforementioned

[GG16, Theorem 22], this cofiber is isomorphic to Z⋄(n−k)/Σn−k ⋄ cofib(j)⋄k/Σk.
For 0 < k < n this is G-globally weakly contractible by Proposition 7.13, while for
k = 0 this is G-globally weakly contractible by assumption on Z. Finally, if k = n,
then we observe that cofib(j) ∼= Σ(A, –) ∧̂ΣA cofib(i) because of the pushout (7.1);
as cofib(i) is levelwise positive flat, the claim now follows from Proposition 7.11.

Finally, for the third statement, we simply argue as before to see that for any lev-
elwise positive flat cofibration i the pushout product i�n/Σn is again a levelwise pos-
itive flat cofibration, and that its (1-categorical) cofiber agrees with cofib(i)⋄n/Σn,
which is G-globally weakly contractible by the second statement. �
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[Bas99] Maria Basterra, André-Quillen cohomology of commutative S-algebras, J. Pure Appl.
Algebra 144 (1999), no. 2, 111–143.

[BDG+16] Clark Barwick, Emanuele Dotto, Saul Glasman, Denis Nardin, and Jay Shah,
Parametrized higher category theory and higher algebra: Exposé I – Elements of
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