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Abstract
The sextic plane curves that are invariant under the stan-
dard action of the icosahedral group on the projective
planemake up a pencil of genus ten curves (spanned by a
sum of six lines and three times a conic). This pencil was
first considered in a note by R. M. Winger in 1925 and is
nowadays named after him. The second author recently
gave this a modern treatment and proved among other
things that it contains essentially every smooth genus
ten curve with icosahedral symmetry. We here show
that the Jacobian of such a curve contains the tensor
product of an elliptic curve with a certain integral rep-
resentation of the icosahedral group. We find that the
elliptic curve comes with a distinguished point of order
3, which proves that the monodromy on this part of
the homology is the full congruence subgroup Γ1(3) ⊂

SL2(ℤ) and subsequently identify the base of the pencil
with the associated modular curve. We also observe that
the Winger pencil “accounts” for the deformation of the
Jacobian of Bring’s curve as a principal abelian fourfold
with an action of the icosahedral group.

MSC 2020
Primary: 14D05, 14H10, 14H40

1 INTRODUCTION

The Winger family is the family of genus 10 curves endowed with faithful action of icosahedral
group I (which is isomorphic to the alternating group 5, see Remark 1.2 below) introduced
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1352 LOOIJENGA and ZI

in [7]. The second author showed in [8] that the moduli stack of genus 10 curves endowed with
faithful action of the icosahedral groupI has two connected components that are exchanged by
an outer automorphism ofI . Each connected component is given by a pencil, classically known
as theWinger pencil. That pencil has four singular fibers, one of which is a conic with multiplicity
3 that is after a base change replaceable by a smooth genus ten curvewith an automorphism group
that strictly contains the copy of I , whereas the remaining three curves, a sum of six lines, an
irreducible curve with ten nodes, and an irreducible curve with six nodes are all stable.
It was there also proved that if 𝐶 is a smooth member of this pencil, then in the ℂI -module

𝐻1(𝐶; ℂ) only two types of irreducible representations appear, one of which is given by the
restriction to I of the reflection representation of the symmetric group 5. This reflection rep-
resentation, which we denote by 𝑉, is of dimension 4 and appears in 𝐻1(𝐶; ℂ) with multiplicity
two. It has a natural integral model 𝑉𝑜 (which we describe in 2.2) for which the isogeny lattice
HomℤI (𝑉𝑜,𝐻1(𝐶)) is free abelian of rank 2. This defines a summand 𝜌𝑉 of themonodromywhich
takes its values in the special linear group of HomℤI (𝑉𝑜,𝐻1(𝐶)) (so that is a copy of SL2(ℤ)).
The Hodge decomposition of 𝐻1(𝐶) determines one of HomℤI (𝑉𝑜,𝐻1(𝐶)) with (1,0)-part and
(0,1)-part both of dimension one and thus we have associated with 𝐶 an elliptic curve.
The monodromy representation 𝜌𝑉 has the remarkable property that it is nontrivial around 3

(of the 4) singular fibers only and is of finite order (namely 3) near one of them. This observation
is subsumed by our main theorem below. In it appears the congruence subgroup Γ1(3) of integral

matrices (𝑎 𝑏

𝑐 𝑑
) ∈ SL2(ℤ)with 𝑐 ≡ 0 (mod 3). This group has index 8 in SL2(ℤ) and since it does

not contain −1, its image in PSL2(ℤ) = SL2(ℤ)∕{±1} has index 4. The associated modular curve
𝑋1(3) ∶= Γ1(3)∖ℍ is known to have exactly one orbifold point of order three and is completed by
two cusps, one of width 1 and the other of width 3. (If 𝑑 is a positive integer and Γ a subgroup
of SL2(ℤ), then a cusp of width 𝑑 of Γ is a primitive conjugacy class of Γ that is contained in the

SL2(ℤ)-conjugacy class of (1 𝑑

0 1
) ∈ SL2(ℤ).)

Theorem 1.1. The image of 𝜌𝑉 is conjugate to the congruence subgroup Γ1(3). Via the above
construction, the periodmap becomes an isomorphism of the base of theWinger pencil onto the com-
pletion of the modular curve 𝑋1(3). Under this isomorphism, the point defining the triple conic goes
to the orbifold point, the point representing the irreducible curve with six nodes (whose normalization
is Bring’s curve) to another point of 𝑋1(3), the point defining the six lines to the cusp of width 3 and
the irreducible curve with ten nodes to the cusp of width 1.

Let us elaborate on the appearance of Bring’s curve. First, recall that this is a curve of genus four
that comes endowed with a faithful action of the full symmetric group 5 and is unique for that
property. Its canonical embedding (in a hyperplane of ℙ4) is given as the common zero set of the
first three symmetric functions in five variables. As explained in Remark 3.6 of [8], it contains an
5-orbit of size 24 that decomposes into twoI -orbits of size 12, each of which further decomposes
in a I -invariant manner into six pairs (as an I -set this is isomorphic to the set of vertices of a
regular icosahedron which indeed make up six antipodal pairs). If we take such an I -orbit and
identify the points of each of its six pairs, thenwe get the stable genus ten curve that appears in the
Winger pencil. Since the part of the Jacobian that we consider here survives in the normalization
of this curve (so in Brings’s curve), our period map ignores its six double points.
This can also be expressed as follows: Bring’s curve has no deformations as a 5-curve, not

even as a I -curve. However, the associated stable genus ten curve admits a smoothing which
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1353

makes the Jacobian of Bring’s curve deform as a factor of the Jacobians of a stable family of genus
ten curves with I -symmetry. Thus the Winger pencil also provides a fitting coda to a story that
began with the observation of Riera and Rodríguez [4] that despite the rigid nature of Bring’s
curve, its Jacobian deforms in a one-parameter family of principally polarized abelian varieties
with I -action. Let us also mention here that Gonzáles-Aguilera and Rodríguez [3] determined
the Jacobian of Bring’s curve as a product of four elliptic curves, all isogenous to each other, which
subsequently was made more precise by Braden–Northover [1].
A central role in the proof is played by a combinatorial model of a genus ten curve with I -

action. It is obtained by taking a regular dodecahedron that is truncated in aI -invariant manner
by removing at each vertex a small triangular neighborhood (so that we get ten antipodal pairs
of triangles as boundary components) and subsequently identifying opposite boundary triangles
by means the antipodal involution. The resulting surface is oriented and of genus ten and comes
with a piecewise euclidean structure that is I -invariant. This gives rise to a I -invariant confor-
mal, and hence complex structure. We thus obtain a family of Riemann surfaces with I -action
depending on one real parameter (namely the ratio of the length of an edge of a truncation and
the length of an edge of the dodecahedron). We analyse what happens when this ratio tends to its
infimum (0) or its maximum (1). Both represent stable degenerations and remarkably this suffices
for computing the part of the monodromy 𝜌𝑉 .
After we posted the first version of this paper, Harry Braden drew our attention to a 1995 paper

by R. H. Dye [2], in which theWinger pencil appears (as the display labeled (15) on page 100). Dye,
who was apparently not aware of the work of Winger, points out that this pencil has a member
whose normalization is Bring’s curve.

Remark 1.2. In this paper, we fix an oriented euclidean 3-space 𝐼ℝ and a regular dodecahedron
𝐷 ⊂ 𝐼ℝ centered at the origin. The group of isometries of 𝐷 contains the antipodal involution
(denoted here by 𝜄) which reverses orientation. So ifI ⊂ SO(𝐼ℝ) stands for the group orientation
preserving isometries of 𝐷, thenI × {1, 𝜄} is the full group of isometries of 𝐷.
The group I is isomorphic to5. In fact, the collection K of inscribed cubes of 𝐷 consists of

five elements andI induces the full group of even permutations ofK , so that by numbering its
elements we obtain an isomorphismI ≅ 5. But in this paper, it is the groupI rather than5

which comes up naturally and as there is for us no good reason to number the elements ofK , we
will express our results in terms of I instead of5.

2 PRELIMINARIES

2.1 Isotypical decomposition of a symplectic module over a group
algebra

We begin with a brief review of the basic theory, referring to [5] for more details. Let 𝐺 be a finite
group and 𝑘 a field of characteristic zero which is one of the following: a fixed number field, ℝ or
ℂ. Let 𝜒(𝑘𝐺) be the set of irreducible characters of 𝑘𝐺. It is a set of 𝑘-valued class functions on 𝐺

whose elements are invariant under the Galois group Gal(𝑘∕𝑘).
For 𝜆 ∈ 𝜒(𝑘𝐺), we denote by 𝑉𝜆 an irreducible 𝑘𝐺-module that represents it. By the Schur

Lemma, the ring End𝑘𝐺(𝑉𝜆) is a division algebra. Denote by 𝐷𝜆 its opposite so that we can regard
𝑉𝜆 as a left 𝑘𝐺-module and as a right 𝐷𝜆-module.
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1354 LOOIJENGA and ZI

Assume now that 𝑘 is totally real. Then each 𝑉𝜆 admits a positive definite 𝐺-invariant inner
product 𝑠𝜆 ∶ 𝑉𝜆 × 𝑉𝜆 → 𝑘 and then the division algebra 𝐷𝜆 comes with a natural anti-involution
𝜎 → 𝜎∗ characterized by 𝑠𝜆(𝑣𝜎, 𝑣′) = 𝑠𝜆(𝑣, 𝑣

′𝜎∗).
For a finitely generated 𝑘𝐺-module 𝐻 and 𝜆 ∈ 𝜒(𝑘𝐺), the right 𝐷𝜆-module on 𝑉𝜆 structure

determines a left𝐷𝜆-module structure onHom𝑘𝐺(𝑉𝜆,𝐻) given as (𝑑𝑢)(𝑣) ∶= 𝑢(𝑣𝑑)where 𝑑 ∈ 𝐷𝜆

and 𝑣 ∈ 𝑉𝜆. This makes the natural map

⊕𝜆∈𝜒(𝑘𝐺)𝑉𝜆 ⊗𝐷𝜆
Hom𝑘𝐺(𝑉𝜆,𝐻) → 𝐻

𝑣 ⊗𝐷𝜆
𝑢 ∈ 𝑉𝜆 ⊗𝐷𝜆

Hom𝑘𝐺(𝑉𝜆,𝐻) ↦ 𝑢(𝑣)

an isomorphism of 𝑘𝐺-modules. This is called the isotypical decomposition of𝐻 and the image of
𝑉𝜆 ⊗𝐷𝜆

Hom𝑘𝐺(𝑉𝜆,𝐻) in 𝐻 is called the isotypical summand associated with 𝜆. Any 𝑘𝐺-linear
automorphism of 𝐻 will preserve this 𝐺-isotypical decomposition and acts on each isotypical
summand𝑉𝜆 ⊗𝐷𝜆

Hom𝑘𝐺(𝑉𝜆,𝐻) through a𝐷𝜆-linear transformation on the second tensor factor.
This identifies End𝑘𝐺(𝐻) with Π𝜆∈𝜒(𝐺) End𝐷𝜆

(Hom𝑘𝐺(𝑉𝜆,𝐻)).
Let us suppose further that our 𝑘𝐺-module 𝐻 is endowed with a nondegenerate 𝐺-invariant

symplectic form (𝑎, 𝑏) ∈ 𝐻 × 𝐻 ↦ ⟨𝑎, 𝑏⟩ ∈ 𝑘 (e.g., when𝐻 is𝐻1(𝐶, 𝑘) for some smooth complex-
projective curve 𝐶 and the symplectic form being the intersection product). The discussion above
shows that the 𝐺-centralizer Sp(𝐻)𝐺 of Sp(𝐻) decomposes as

Sp(𝐻)𝐺 = Π𝜆∈𝜒(𝐺) Sp(𝑉𝜆 ⊗𝐷𝜆
Hom𝑘𝐺(𝑉𝜆,𝐻))𝐺.

For a fixed character 𝜆 ∈ 𝜒(𝑘𝐺) and fixed 𝑢, 𝑢′ ∈ 𝑉𝜆 ⊗𝐷𝜆
Hom𝑘𝐺(𝑉𝜆,𝐻), the map (𝑣, 𝑣′) ∈ 𝑉𝜆 ×

𝑉𝜆 ↦ ⟨𝑢(𝑣), 𝑢′(𝑣′)⟩ ∈ 𝑘 is a 𝐺-invariant bilinear form on 𝑉𝜆. Since 𝑠𝜆 is a nondegenerate, 𝐺-
invariant symmetric bilinear form on 𝑉𝜆, this implies that there exists a unique ℎ𝜆(𝑢, 𝑢′) ∈ 𝐷𝜆

such that ⟨𝑢(𝑣), 𝑢′(𝑣′)⟩ = 𝑠𝜆(𝑣ℎ𝜆(𝑢, 𝑢′), 𝑣′) for all 𝑣, 𝑣′ ∈ 𝑉𝜆. We then observe that

ℎ𝜆(𝑑𝑢, 𝑢′) = 𝑑ℎ𝜆(𝑢, 𝑢′), 𝑑 ∈ 𝐷𝜆

ℎ𝜆(𝑢, 𝑢′) = −ℎ𝜆(𝑢
′, 𝑢)∗

Hence, the pairing (ℎ, ∗) defines a 𝐷𝜆-valued skew-Hermitian form on the 𝐷𝜆-module 𝑉𝜆 ⊗𝐷𝜆

Hom𝑘𝐺(𝑉𝜆,𝐻). We thus get an identification

Sp(𝑉𝜆 ⊗𝐷𝜆
Hom𝑘𝐺(𝑉𝜆,𝐻))𝐺 ≅ 𝑈𝐷𝜆

(Hom𝑘𝐺(𝑉𝜆,𝐻))

where 𝑈𝐷𝜆
(Hom𝑘𝐺(𝑉𝜆,𝐻)) consists of the 𝐷𝜆-linear automorphisms of Hom𝑘𝐺(𝑉𝜆,𝐻) that

preserve the skew-Hermitian form above.

2.2 Integral representation

Suppose 𝑅 is a domain and 𝐾 its field of fractions. Given a finite dimensional (not necessarily
commutative) 𝐾-algebra 𝐴, then an 𝑅-order in 𝐴 is a subalgebra Λ ⊂ 𝐴 that spans 𝐴 over 𝐾 and
is as an 𝑅-submodule is finitely generated. If we are given a left 𝐴-module 𝑀 that is of finite
dimension over𝐾, then anΛ-lattice in𝑀 is finitely generated torsion-freeΛ-submodule of𝑀 that
spans𝑀 over 𝐾. Here, are some examples for 𝐺 = I that will play a special role in this paper.
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1355

Example 2.1. Consider the case 𝑅 = ℤ (so that 𝐾 = ℚ). Then the integral group ring ℤI is a
ℤ-order in ℚI . This is the case that will concern us most.

Example 2.2 (The integral form of 𝑉). As agreed earlier, we regard I as the subgroup of even
permutations of the 5-element setK . The reflection representation 𝑉 ofI is the quotient of ℂK

modulo its main diagonal. We get an integral form 𝑉𝑜 by taking ℤK instead so that we have a
short exact sequence

0 → ℤ → ℤK → 𝑉𝑜 → 0 (1)

of ℤI -modules. If we endow ℤK with the natural inner product for which the natural basis
(identified with K ) is orthonormal, then this identifies ℤK with its dual and the dual of this
exact sequence

0 → 𝑉∨
𝑜 → ℤK

sum
@@@@→ ℤ → 0 (2)

is still exact. Here, 𝑉∨
𝑜 is the set of vectors with coefficient sum zero. This is just the root lattice

of type 𝐴4 whose roots are differences of distinct basis vectors with I realized as the orientation
preserving part of its Weyl group.

Example 2.3 (The integral form of𝑊). The irreducible representation𝑊 ofI of dimension 5 has
an integral form𝑊0 defined as follows. Consider the collectionL of pairs of opposite faces of the
dodecahedron (or equivalently, the axes of the order 5 rotations in I ). This set has 6 elements.
The group I acts transitively on L , the stabilizer of each element being a dihedral group of
order 10. This makes ℤL a ℤI -module that contains the diagonal spanned by

∑
𝑙∈L 𝑙 as a trivial

submodule (we here identify each 𝑙 ∈ L with its characteristic function in ℤL ). We define𝑊𝑜 to
be the quotient, so that the following sequence of ℤI -modules is exact

0 → ℤ → ℤL → 𝑊𝑜 → 0. (3)

We endow ℤL with the I -invariant symmetric bilinear form which makes L an orthonormal
base. This form identifies ℤL with its dual as a ℤI -modules. So the dual of the exact sequence
above is

0 → 𝑊∨
𝑜 → ℤL

sum
@@@@→ ℤ → 0, (4)

where𝑊∨
𝑜 is the set of vectors in ℤL whose coefficient sum is zero. Note that𝑊∨

𝑜 is generated by
differences of distinct basis vectors; these have self-product 2 and are the roots of a root system of
type 𝐴5.

Example 2.4 (The integral form of 𝐸). Let 𝐼ℝ be the ambient Euclidean vector space of 𝐷. We
view this as a ℝI -module. It is irreducible, even its complexification 𝐼 is an irreducible ℂI -
module, but I is not definable over ℚ. If 𝐼′ is obtained from 𝐼 by precomposing the I -action
with an outer automorphism of I , then 𝐸 ∶= 𝐼 ⊕ 𝐼′ is as a representation is naturally defined
over ℚ, for a character computation shows that we can take 𝐸ℚ ∶= ∧2𝑉ℚ. This representation
is even irreducible over ℚ, for the splitting requires that we pass to the extension ℚ(

√
5). Indeed,
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1356 LOOIJENGA and ZI

𝐸
ℚ(

√
5)

∶= 𝐸ℚ ⊗ℚ ℚ(
√

5) splits into two three-dimensional irreducible components that represent

𝐼 and 𝐼′ and its associated division algebra is the field ℚ(
√

5). So we can take 𝐸𝑜 ∶= ∧2𝑉𝑜 as an
integral form of 𝐸. The exact sequence (1) gives a surjective map ∧2ℤK → ∧2𝑉𝑜 whose kernel is
identified with ℤK ∧ (

∑
𝑖∈K 𝑒𝑖), so that we have the exact sequence of ℤI -modules

0 → 𝑉𝑜 → ∧2ℤK → 𝐸𝑜 → 0, 𝐸𝑜 ∶= ∧2𝑉𝑜. (5)

Proposition 2.5. The ℤI -modules 𝑉𝑜, ∧2ℤK , 𝐸𝑜 = ∧2𝑉𝑜, 𝑊𝑜, and ∧2𝑊𝑜 are all principal, that
is, generated over ℤI by one element.

Proof. It is clear that the ℤI -module 𝑉𝑜 resp. 𝑊𝑜 is generated by any base element of ℤK resp.
ℤL . The ℤI -module ∧2ℤK is generated by any element of the form 𝑎 ∧ 𝑏 where 𝑎 and 𝑏 are
distinct elements of the standard basis of ℤK . The proof for ∧2𝑉𝑜 and ∧2𝑊𝑜 is similar. □

It was shown in [8] that for a smooth member 𝐶 of the Winger pencil, its space of holomor-
phic forms 𝐻0(𝐶, 𝜔𝐶) is as a ℂI -module isomorphic to 𝑉 ⊕ 𝐼 ⊕ 𝐼′ = 𝑉 ⊕ 𝐸. This implies that
𝐻1(𝐶; ℂ) is isomorphic to 𝑉⊕2 ⊕ 𝐸⊕2. Since both 𝑉 and 𝐸 are complexifications of irreducible
ℚI -modules 𝑉ℚ resp. 𝐸ℚ (which are therefore self-dual), it follows that the canonical isotypical
decomposition for𝐻1(𝐶;ℚ) is

𝐻1(𝐶;ℚ) ≅ (𝑉ℚ ⊗ HomℚI (𝑉ℚ,𝐻1(𝐶,ℚ))) ⊕ (𝐸ℚ ⊗ HomℚI (𝐸ℚ,𝐻1(𝐶,ℚ)) (6)

with dimℚ HomℚI (𝑉ℚ,𝐻1(𝐶,ℚ)) = 2 and dim
ℚ(

√
5)

HomℚI (𝐸ℚ,𝐻1(𝐶,ℚ)) = 2. We will here
focus on the monodromy representation on the first summand.

3 A GEOMETRICMODEL OF A GENUS TEN CURVEWITH
ICOSAHEDRAL ACTION

Recall that the Winger pencil is defined as a hypersurface by the following equation in the
projective variety ℙ(𝐼) × B ≅ ℙ2 × ℙ1

g3
2 + 𝑡g6 = 0 (7)

Here, 𝑡 ∈ B is a parameter, g3
2
and g6 are two generators of ℂ[𝐼]I

6
where g2 is a polynomial of

degree two representing a smooth conic and g6 is a polynomial of degree 6 representing the union
of six lines. In this following section, we introduce a geometric model for a smooth fiber 𝐶 and
describe two stable degenerations in terms of it. We will exploit the fact that the Winger pencil
comes with a natural real structure, which in terms of our modular interpretation is the map
that replaces the given complex structure by the conjugate complex structure (so complex mul-
tiplication by

√
−1 in a tangent space becomes multiplication by −

√
−1). This indeed defines

an anti-holomorphic automorphism of the pencil (acting on both its base and its total space and
commuting with the projection). This action is also evident from the explicit form of the pencil
(which has real coefficients). In particular, it takes the coordinate 𝑡 of the base B for the Winger
pencil to 𝑡. Recall that all the singular members of the pencil appear for real values of 𝑡: for 𝑡 = 0
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1357

F IGURE 1 Removing in a5-invariant manner a small regular triangle centered at each vertex of
dodecahedron and identifying opposite points on the boundary.

we have a triple conic, for 𝑡 = 27∕5 an irreducible curve with six nodes, for 𝑡 = ∞ a union of six
lines without triple point and for 𝑡 = −1 an irreducible curve with 6 nodes.
Let Σ̂ be obtained from the dodecahedron 𝐷 by removing in aI -invariant manner a small reg-

ular triangle centered at each vertex of 𝐷 so that the faces of Σ̂ are oriented solid 10-gons (in other
words it is a truncated regular dodecahedron without triangular faces). The set of such faces has
12-elements and comes with an antipodal involution. The group permutes these faces transitively
and preserves their natural orientations. The boundary of each face consists of two types of edges.
We call the ones coming from the edges of 𝐷 1-cells of edge type. They are 30 in number. They are
not naturally oriented since for every such edge there is rotational symmetry of order two which
reverses its orientation. But if it is given as a boundary edge of a face, then it acquires one.
We now identify opposite points on the boundary of Σ̂ and thus obtain a closed, combinatorial

Σ. The antipodal involution is orientation reversing on the boundary of Σ̂ and this makes that Σ
is oriented. Since Σ has 12 faces, 60 edges and 30 vertices, its Euler’s characteristic is −18, and
hence the genus is 10. It comes endowed with an action of I (see Figure 1) which respects the
cellular decomposition: the set of 0-cells are represented as antipodal pairs of 0-cells of Σ̂ and are
naturally indexed by (unordered) antipodal pairs of oriented edges of 𝐷. The 2-cells are of course
bijectively indexed by the faces of 𝐷 and are canonically oriented. The 1-cells come in two types:
those that lie on edge of 𝐷 (hence called edge type) and those that come from the boundary of Σ̂
(hence called truncation type).
The set Cedge(Σ) of oriented 1-cells of Σ of edge type is in bijective correspondence with the set

C1(𝐷) of oriented edges of the dodecahedron 𝐷. This bijection is not justI -equivariant, but also
compatible with orientation reversal. The set Ctrc(Σ) of oriented 1-cells of Σ of truncation type are
also bijectively indexed by C1(𝐷), but here orientation reversal is induced by the antipodal map.
The following proposition is now clear.
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1358 LOOIJENGA and ZI

Proposition 3.1. The action ofI on the cells of Σ is as follows:

(1) the action of I on the set C0(Σ) of 0-cells of Σ is transitive, each 0-cell having a stabilizer cyclic
of order 2,

(2) the set C1(Σ) of oriented 1-cells of Σ consists of two regularI -orbits Ctrc(Σ) and Cedge(Σ),
(3) the action ofI on the setC +

2
(Σ) of canonically oriented 2-cells is transitive, the stabilizer of each

such cell being cyclic of order 5.

An oriented 1-cell of Σ is part of a unique loop consisting of oriented cells of the same type. Let
us analyse this in some detail.
A loop of truncation type consists of three oriented 1-cells of that type and each oriented 1-cell

of truncation type appears in a unique such loop. They are bijectively indexed by the set C0(𝐷) of
vertices of 𝐷: every vertex 𝑥 is at the center of a solid triangle whose interior has been removed to
form Σ and the boundary of this triangle with its counterclockwise orientation is a sum 𝛿𝑥 of three
oriented 1-cells of truncation type. We have 𝛿𝜄𝑥 = −𝛿𝑥. We will call the closed loops constructed
in this way loops of truncation type. We have 20 such closed loops (10 if we ignore orientation)
and the I -action permutes them transitively. Hence, the I -stabilizer of one such closed loop is
cyclic of order 3. We will denote this set of twenty 1-cycles by Δtrc.
A loop of edge type is the sum of oriented 1-cell of that type plus its image under −𝜄. These are

bijectively indexed by the set C1(𝐷) with orientation reversal induced by the antipodal map. We
denote this labeling 𝑦 ∈ C1(𝐷) ↦ 𝛿𝑦 . Note that then 𝛿𝜄𝑦 = −𝛿𝑦 and 𝛿−𝑦 = −𝛿𝑦 . The set of such
1-cycles, that we shall denote by Δedge, is anI -orbit of 30 elements (theI -stabilizer of one such
loop is of order two).

Remark 3.2. If we remove the loops of truncation type, then the result is the interior of Σ̃, which
is topologically a sphere with 20 punctures. This implies that their classes [𝛿𝑦] ∈ 𝐻1(Σ) span a
sublattice 𝐿trc ⊂ 𝐻1(Σ) that is Lagrangian with respect to the intersection pairing: if we select a
system of representatives 𝑅 ⊂ C0(𝐷) for the action of the antipodal involution acting on C0(𝐷),
then the ten element set {[𝛿𝑥]}𝑥∈𝑅 is a basis for 𝐿trc and spans a maximal isotropic subgroup of
𝐻1(Σ). We can extend this to a basis of 𝐻1(Σ) as follows: choose for each 𝑥 ∈ 𝑅 a path �̃�𝑥 on Σ̃

from a point 𝑥′ of the component of 𝜕Σ̃which has 𝑥 as its center to its antipode 𝜄𝑥′ on Σ̃. Then the
image 𝛾𝑥 of �̃�𝑥 in Σ is a loop whose homology class [𝛾𝑥] ∈ 𝐻1(Σ) has the property that ⟨[𝛾𝑥], 𝛿𝑥′⟩
is zero for 𝑥′ ∈ 𝑅 unless 𝑥′ = 𝑥 in which case it is 1. If we let 𝑥 run over 𝑅, then the twenty 1-cycles
𝛿𝑥 and 𝛾𝑥 map to a basis of𝐻1(Σ) (which need not be symplectic).

The following is straightforward to check.

Lemma 3.3. The intersection numbers of these 1-cycles are as follows: any two loops of the same type
have intersection number zero and if 𝑥 ∈ C0(𝐷) and 𝑦 ∈ C1(𝐷), then ⟨𝛿𝑥, 𝛿𝑦⟩ = 0 unless 𝑥 lies on 𝑦

or on 𝜄𝑦, in which case ⟨𝛿𝑥, 𝛿𝑦)⟩ ∈ {±1} with the plus sign appearing if and only if 𝑥 is the end point
of 𝑦 or the initial point of 𝜄𝑥.

3.1 Degenerations of 𝚺

We will describe two degenerations of the combinatorial genus ten surface Σ with I -action that
have Δtrc resp. Δedge as their set of vanishing cycles.

 14697750, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12713 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1359

We begin with giving a one-parameter family piecewise Euclidean structures on Σ̂. For this, we
assume that the length of a 1-cell of edge type of 𝐷 is 𝜏 > 0 and the length of a 1-cell of truncation
type is 1 − 𝜏 > 0. It is then clear that this determines Σ̂ as a metric space, the metric being piece-
wise Euclidean and invariant under both I and the antipodal involution. Such a metric defines
a conformal structure 𝐽𝜏, a priori only defined on Σminus its vertices, but one that is well-known
to extend across them. The given orientation makes this then a I -invariant complex structure.
Taking the opposite orientation will give us the complex conjugate complex structure −𝐽𝜏. This
shows that (Σ, 𝐽𝜏) is defined over ℝ.
If we let 𝜏 tend to 1, then the length of a closed loop of truncation type tends to 0 and we get

a piecewise flat metric on the singular surface Σtrc that is obtained from Σ by contracting each
truncation cycle to a point. Note that this singular surface is also got by identifying the opposite
vertices of the regular dodecahedron 𝐷. The metric makes this a singular irreducible I -curve
with six nodes, isomorphic with 𝐶27

5

. Similarly, if we let 𝜏 tend to 0, the length of a closed loop of
edge type tends to 0 andwe get a piecewise flatmetric on the singular surfaceΣedge that is obtained
from Σ by contracting each edge type cycle to a point. In this case, Σedge minus its singular points
consist of six 5-punctured spheres (each obtained by gluing two regular pentagons along their
boundary and subsequently removing the vertices) which with the complex structure becomes
isomorphic to 𝐶∞, the union of six lines.
We sum this up with the following proposition.

Proposition 3.4. The Riemann surface (Σ, 𝐽𝜏) is the set of complex points of a complex real alge-
braic curve. It has genus 10 and comes with a faithfulI -action, hence is isomorphic to a member of
the Winger pencil. We thus have defined a continuous map 𝛾 ∶ [0, 1] → B which traverses the real
interval [∞, 27

5
] and which maps (0,1) to B◦ (and so lands in the locus where 𝑡 is real and > 27

5
),

such that the pull-back of the Winger pencil yields the family constructed above. The degenerations
of Σ into Σedge resp. Σtrc have Δedge resp. Δtrc as their sets of vanishing cycles.

We are not claiming here that 𝛾 is a homeomorphism onto its image, although that is likely to
be true (we expect the derivative of 𝛾 to be nonzero on (0,1), where it is indeed differentiable).

3.2 Cellular homology

The cellular decomposition of Σ enables us to compute its homology as that of the combinatorial
chain complex

This is a complex ofℤI -moduleswith themiddle termdecomposing as𝐶edge ⊕ 𝐶trc. In particular,
𝑍𝑖 ∶= ker(𝜕𝑖) by 𝑍𝑖 and 𝐵𝑖−1 ∶= im(𝜕𝑖) are also ℤI -modules. Lemma 3.1 tells us what they are:
let 𝑧 be a face of the dodecahedron 𝐷 (hence canonically oriented) and let 𝑦 ∈ C1(𝐷) be an edge
of 𝑧 endowed with its counterclockwise orientation.We thenmay note here that the groupI acts
simply transitively on such pairs 𝑦 < 𝑧. It is clear that 𝑧 determines an oriented face of Σ, and
hence an element of 𝐶2. As we have seen, 𝑦 determines an element of Cedge and an element of
Ctrc. Then
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1360 LOOIJENGA and ZI

F IGURE 2 Red vertices belong to 𝐸 and are sources; blue vertices belong to 𝜄𝐸 and are sinks.

(1) 𝐶0 ≅ ℤI ∕(ℎ0 − 1)ℤI with a generator represented by 𝑦 and ℎ0 ∈ I sending 𝑦 to 𝜄𝑦,
(2) 𝐶trc ≅ ℤI ∕(ℎ0 + 1)ℤI with 𝑦 and ℎ0 as above,
(3) 𝐶edge ≅ ℤI ∕(ℎ1 + 1)ℤI with a generator represented by 𝑦 and ℎ1 ∈ I sending 𝑦 to −𝑦,
(4) 𝐶2 ≅ ℤI ∕(ℎ2 − 1)ℤI with a generator represented by 𝑧 and ℎ2 ∈ I inducing a counter

clockwise rotation over 2𝜋∕5 in 𝑧

If we apply the left exact functor HomℤI (𝑉𝑜, −) to the exact sequence

(8)

then get the exact sequence

(9)

We will now define two elements ofHomℤI (𝑉𝑜, 𝑍1): one that takes values in 𝑍trc and is denoted
𝑢trc and the other taking values in 𝑍edge and is denoted 𝑢edge. We will subsequently prove that
they generate HomℤI (𝑉𝑜, 𝑍1).
Recall that the dodecahedron 𝐷 has five inscribed cubes, meaning that the eight vertices of

such a cube are also vertices of the dodecahedron and that we denoted the set of such cubes by
K . Every vertex of 𝐷 appears in exactly two inscribed cubes.
Let us fix one such a cube 𝑒 ∈ K (as in Figure 2). The corresponding generator of ℤK (which

we also denote by 𝑒) has an image in 𝑉𝑜 that we shall denote by 𝑒. The set of (eight) vertices of 𝑒
decomposes into two disjoint 4-element subsets 𝐸 and its antipode 𝜄𝐸 such that no two elements
of 𝐸 span an edge of the cube. Both 𝐸 and 𝜄𝐸 are orbits of the I -stabilizer of the cube. The I -
stabilizer of 𝐸 is of order 12 (it is the group of even permutations of 𝐸) so that 𝐸 has exactly five
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1361

I -translates. We put

𝛿𝐸
trc ∶=

∑
𝑥∈𝐸

𝛿𝑥

This is a 4 term sum of elements of Δtrc and a 12 term sum of elements of Ctrc. TheI -orbit of 𝛿𝐸
trc

has 5 elements. Hence, the sum of the elements of this orbit has 60 terms with each oriented cell
of truncation type appearing and so this sum must be zero. It follows that 𝛿𝐸

trc generates a ℤI -
submodule of type 𝑉𝑜, and hence defines an equivariant homomorphism 𝑢trc ∶ 𝑉𝑜 → 𝑍trc with
𝑢trc(𝑒) = 𝛿𝐸

trc.
Each vertex 𝑥 of the dodecahedron𝐷 determines 3 oriented edges of𝐷 (namely those that have

𝑥 as initial point) and each such oriented edge defines an element of Δedge (a loop on Σ of edge
type). We take the sum of these three and then also sum over 𝐸 and denote the resulting sum of
12 elements of Δedge by 𝛿𝐸

edge, so

𝛿𝐸
edge ∶=

∑
𝑥∈𝐸

∑
{𝑦∈C1(𝐷)∶𝑖𝑛(𝑦)=𝑥}

𝛿𝑦 =
∑
𝑥∈𝐸

∑
{𝑦∈C1(Σ)∶𝑖𝑛(𝑦)=𝑥}

𝑦 −
∑
𝑥∈𝜄𝐸

∑
{𝑦∈C1(Σ)∶𝑖𝑛(𝑦)=𝑥}

𝑦,

where 𝑖𝑛(𝑦) stands for the initial point of the oriented edge 𝑦. It is clear that the I -orbit of 𝛿𝐸
edge

has size 5. Hence, the sum of the elements of this orbit has 120 terms with each oriented cell of
edge type appearing twice and so must be zero. Then the ℤI -submodule generated by 𝛿𝐸

edge is of
type 𝑉𝑜 so that we get an equivariant homomorphism 𝑢edge ∶ 𝑉𝑜 → 𝑍edge with 𝑢edge(𝑒) = 𝛿𝐸

edge.
The main result of this section is:

Proposition 3.5. In the exact sequence (9) the term HomℤI (𝑉𝑜, 𝐵1) is trivial, HomℤI (𝑉𝑜, 𝑍1) is
the free abelian group generated by 𝑢trc and 𝑢edge and the cokernel of 𝑝∗ is cyclic of order 3, to be
precise, the image of 𝑢edge in HomℤI (𝑉𝑜,𝐻1(Σ)) is divisible by 3, so that HomℤI (𝑉𝑜,𝐻1(Σ, ℤ)) is
the free abelian group generated by the images 𝑢trc and

1

3
𝑢edge.

Remark 3.6. We can phrase this in terms of a topological Jacobians as follows. By definition, the
topological Jacobian 𝐽(Σ) of Σ is the real torus 𝐻1(Σ, ℝ∕ℤ). The name is justified, because as is
well known, a complex structure on Σ puts such a structure on 𝐽(Σ) for which it then becomes the
Jacobian of the resulting Riemann surface. The above proposition suggests that we consider the
homomorphism of real two-dimensional tori

𝐽(𝑉𝑜, Σ) ∶= HomℤI (𝑉𝑜, 𝑍1 ⊗ ℝ∕ℤ) → HomℤI (𝑉𝑜,𝐻1(Σ, ℝ∕ℤ)) =∶ 𝐽(𝑉𝑜, Σ).

Proposition 3.5 tells us that this is a covering of degree 3 whose kernel is generated by the
image of 1

3
𝑢edge in 𝐽(𝑉𝑜, Σ) (a point of order 3). We shall see that the natural homomorphism

𝑉𝑜 ⊗ HomℤI (𝑉𝑜,𝐻1(Σ)) → 𝐻1(Σ) has torsion free cokernel. This implies that the natural map
of real tori 𝑉𝑜 ⊗ 𝐽(𝑉𝑜, Σ) → 𝐽(Σ) is injective with image of the torus defined by the reflection rep-
resentation𝑉. AI -invariant complex structure on Σ turns into 𝐽(Σ) a Jacobian on whichI -acts.
Thus𝑉𝑜 ⊗ 𝐽(𝑉𝑜, Σ) inherits aI -invariant complex structure, so that we also get a complex struc-
ture on 𝐽(𝑉𝑜, Σ), making it an elliptic curve. Since 𝐽(𝑉𝑜, Σ) → 𝐽(𝑉𝑜, Σ) is a covering of degree 3,
this makes 𝐽(𝑉𝑜, Σ) an elliptic curve that comes with a point of order 3.
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1362 LOOIJENGA and ZI

Before we prove Proposition 3.5, we list the intersection numbers of 𝑢edge(𝑒) resp. 𝑢trc(𝑒) with
the elements of Δedge and Δtrc. Knowing these numbers will also be important for computing the
local monodromies.

Lemma 3.7. Let 𝐸, 𝑢edge and 𝑢trc be as defined above, Δedge and Δtrc as defined in the last section.
Then the class [𝑢edge(𝑒)] resp. [𝑢trc(𝑒)] has zero intersection number with the elements of Δedge resp.
Δtrc, whereas for 𝑥 ∈ C0(𝐷) resp. 𝑦 ∈ C1(𝐷),

⟨[𝑢edge(𝑒)], [𝛿𝑥]⟩ =

⎧⎪⎨⎪⎩
3 if 𝑥 ∈ 𝐸,

−3, if 𝑥 ∈ 𝜄𝐸,

0 otherwise.
⟨[𝑢trc(𝑒)], [𝛿𝑦]⟩ =

⎧⎪⎨⎪⎩
−1 if 𝑖𝑛(𝑦) ∈ 𝐸,

1, if 𝑖𝑛(𝑦) ∈ 𝜄𝐸,

0 otherwise.

Proof. This is clear from the definitions (see also Figure 2). □

In order to show that [𝑢edge(𝑒)] ∈ 𝐻1(Σ) is divisible by 3, we need:

Lemma 3.8. The corresponding 1-chain on 𝐷

�̃�𝐸
edge ∶=

∑
𝑥∈𝐸

∑
{𝑦∈C1(𝐷)∶𝑖𝑛(𝑦)=𝑥}

𝑦 −
∑
𝑥∈𝜄𝐸

∑
{𝑦∈C1(𝐷)∶𝑖𝑛(𝑦)=𝑥}

𝑦

is a boundarymodulo 3. In fact, slightly more is true: if we are given a face 𝑧𝑜 of𝐷 andwrite𝐷(𝑧𝑜) for
the complement of the interior of 𝑧𝑜 ∪ 𝜄𝑧𝑜 in𝐷, then �̃�𝐸

edge is still a boundarymodulo 3 when regarded
as a chain on 𝐷(𝑧𝑜).

Proof. It follows from the definition of �̃�𝐸
edge that its boundary is equal to 3𝜄𝐸 − 3𝐸 (viewed as

an element of 𝐶0(𝐷)) and so �̃�𝐸
edge is a cycle modulo 3. Since 𝐻1(𝐷; ℤ∕3) = 0, this must be a

boundary modulo 3. This already implies that �̃�𝐸
edge ≡

∑
𝑧∈C2(𝐷) 𝑛𝑧𝜕𝑧 (mod 3𝑍1(𝐷)) for certain

𝑛𝑧 ∈ ℤ. Since 𝜄∗ takes �̃�𝐸
edge to �̃�𝜄𝐸

edge = −�̃�𝐸
edge and 𝜄∗𝑧 = −𝜄𝑧, we can arrange that opposite faces

have equal coefficients: just replace 𝑛𝑧 by an integer 𝑛′
𝑧 satisfying 2𝑛′

𝑧 ≡ 𝑛𝑧 + 𝑛𝜄𝑧 (mod 3). In par-
ticular, 𝑛𝑧𝑜

= 𝑛𝜄𝑧𝑜
. Since the sum of all the (naturally oriented) faces of 𝐷 has zero boundary, we

are free to subtract 𝑛𝑧0
times that sum. This will make the coefficients of 𝑧𝑜 and 𝜄𝑧𝑜 zero. So �̃�𝐸

edge
is a boundary modulo 3 on 𝐷(𝑧𝑜). □

Corollary 3.9. The image of 𝑢edge(𝑒) in𝐻1(Σ) is divisible by 3.

Proof. Let ∪𝑥∈𝑅{[𝛿𝑥], [𝛾𝑥]} be a basis of 𝐻1(Σ) as in Remark 3.2. Since the intersection pairing
is unimodular, it suffices to show that the intersection number of [(𝑢edge(𝑒))] which every basis
element is divisible by 3. For the [𝛿𝑥] this follows from Lemma 3.7 above. We check this for 𝛾𝑥,
that is, we show that the intersection number of 𝛾𝑥 with 𝛿𝐸

edge is divisible by 3. Recall that 𝛾𝑥 is
the image of a path �̃�𝑥 on Σ̃ that connects an antipodal pair of points with the initial point �̃�𝑥(0)

on the boundary component of Σ̃ whose center is 𝑥. Choose a face 𝑤 of 𝐷 which contains 𝑥, but
such that the corresponding face �̃� of Σ̃ does not �̃�𝑥(0). We can then arrange that �̃�𝑥 avoids the
interior of �̃� ∪ 𝜄�̃� so that the image of �̃�𝑥 in𝐷 lies in𝐷(𝑤).We can also arrange that �̃�𝑥 is in general
position with respect to the cellular decomposition of Σ̃ in the sense that it avoids the vertices and
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1363

TABLE 1 Character table of ℂI [𝑐2]

Conjugacy class (1) (12)(34) (123) (12345) (12354)
12 0 0 2 2

is transversal to the edges. The intersection number ⟨[�̃�𝑥], [𝛿
𝐸
edge]⟩ can then be computed on𝐷(𝑤):

we need to sumover intersection numbers of the image of �̃�𝑥 in𝐷(𝑤)with �̃�𝐸
edge (regarded as chain

on𝐷(𝑤)). But by Lemma 3.8, �̃�𝐸
edge is on𝐷(𝑤) a boundary modulo 3, and hence ⟨[�̃�𝑥], [𝛿

𝐸
edge]⟩will

be divisible by 3. □

Proof of the Proposition 3.5. The assertion that HomℤI (𝑉𝑜, 𝐵1) is trivial follows if we show
that 𝑉 does not appear in 𝐶2 ⊗ ℂ. The latter is the complexified permutation representation of
I on the set of faces of 𝐷 whose character is found to be as in Table 1. This shows that the
representation is isomorphic toℂ ⊕ 𝑊 ⊕ 𝐼 ⊕ 𝐼′, where𝑊 is the five-dimensional irreducible rep-
resentation. In particular, 𝑉𝑜 does not occur in 𝐵1. So by the exact sequence (9), the natural map
HomℤI (𝑉𝑜, 𝑍1) → HomℤI (𝑉𝑜,𝐻1(Σ)) is injective. Since we know that HomℤI (𝑉,𝐻1(Σ; ℂ)) is
of dimension 2, it follows that HomℤI (𝑉𝑜,𝐻1(Σ)) has rank 2.
It is a priori clear that HomℤI (𝑉𝑜, 𝑍trc) ⊕ HomℤI (𝑉𝑜, 𝑍edge) ⊂ HomℤI (𝑉𝑜, 𝑍1). Our con-

struction makes it plain that these summands are generated by 𝑢trc resp. 𝑢edge. By Lemma 3.9,
the image [𝑢edge] of 𝑢edge in Hom(𝑉𝑜,𝐻1(Σ)) is divisible by 3. On the other hand, [𝑢edge] and
[𝑢trc] will span Hom(𝑉,𝐻1(Σ; ℂ)) over ℂ and so any element of Hom(𝑉𝑜,𝐻1(Σ; )) is of the
form 𝑎[𝑢edge(𝑒)] + 𝑏[𝑢trc(𝑒)] for certain constants 𝑎, 𝑏 ∈ ℂ. Lemma 3.7 shows that [𝑢edge(𝑒)] resp.
[𝑢trc(𝑒)] have intersection product 3 resp. 1 with some homology class, and hence 𝑎 ∈ 1

3
ℤ and

𝑏 ∈ ℤ. It follows that Hom(𝑉𝑜,𝐻1(Σ)) is freely generated by 1

3
[𝑢edge] and [𝑢trc] □

4 THE LOCALMONODROMY

Recall that on Σwe defined a family of complex structures 𝐽𝜏 with 𝜏 ∈ (0, 1)which defined a path
𝛾 ∶ (0, 1) → B◦ in the base of theWinger pencil traversing the positive interval (∞, 27

5
). This path

had a continuous extension to [0,1] that gave rise to the stable degenerations Σedge (for 𝛾(0) = ∞

and Σtrc (for 𝛾(1) = 27

5
)). We will determine the monodromies of these degenerations. For this, it

is convenient to regard 𝛾|(0, 1) as a base point forB◦ (we here recall that if 𝑋 is a space, then any
map from a contractible space to𝑋 can serve as its base point) and denote the fundamental group
of B◦ with this base point by 𝜋. So this will then be part of the monodromy representation of 𝜋
on𝐻1(Σ).
If we replace the curve 𝐶 in (6) by Σ, we obtain a canonical decomposition

𝐻1(Σ;ℚ) ≅ (𝑉ℚ ⊗ HomℚI (𝑉ℚ,𝐻1(Σ, ℚ)) ⊕ (𝐸ℚ ⊗ HomℚI (𝐸ℚ,𝐻1(Σ, ℚ)) (10)

Since the monodromy action will preserve this decomposition, we have a monodromy represen-
tation of 𝜋 on both HomℚI (𝑉ℚ,𝐻1(Σ; ℚ)) and HomℚI (𝐸ℚ,𝐻1(Σ; ℚ)). We will focus on the first
type and in particular on an integral version of it, namely HomℤI (𝑉𝑜,𝐻1(Σ)). We will denote
that representation simply by 𝜌𝑉𝑜

. In Subsection 2.1, we observed (in a much more general set-
ting) that the symplectic form on 𝐻1(Σ;ℚ) and the inner product on 𝑉ℚ give rise to a symplectic
form onHomℚI (𝑉ℚ,𝐻1(Σ; ℚ)). Since this space is of dimension two and the inner product on𝑉ℚ
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1364 LOOIJENGA and ZI

is unique up to a positive scalar, such a form determines a little more than an orientation. Indeed,
by Proposition 3.5

𝑈edge ∶= 1

3
[𝑢edge], 𝑈trc ∶= [𝑢trc]

is a basis of HomℤI (𝑉𝑜,𝐻1(Σ)) and we can do a rescaling such that 𝑈edge ⋅ 𝑈trc = 1. So then 𝜌𝑉𝑜

takes its values in Sp1(ℤ) ≅ SL(2, ℤ).
In the following section, we determine 𝜌𝑉𝑜

for the degenerations Σtrc and Σedge and do a local
discussion for the other degenerations. In the subsequent section, we give a complete description
of 𝜌𝑉𝑜

.
If 𝐶𝑠 is (singular) member of theWinger pencil and𝑈 ⊂ B a small disk-like neighborhood of 𝑠

(so that 𝐶𝑠 ⊂ W𝑈 is a homotopy equivalence), then for any 𝑡 ∈ 𝑈 − {𝑠} the natural map𝐻1(𝐶𝑡) →

𝐻1(W𝑈) ≅ 𝐻1(𝐶𝑠) is onto. So if 𝐿 denotes the kernel, then we get the short exact sequence

0 → 𝐿 → 𝐻1(𝐶𝑡) → 𝐻1(𝐶𝑠) → 0 (11)

In case 𝐶𝑠 has only nodal singularities, 𝐿 is an I -invariant isotropic sublattice.

4.1 The monodromies of the degenerations of 𝚺

In this section, we will determine the local monodromies at the end points of 𝛾.
Let us denote the dual intersection graph of Σedge by𝐺edge. There is a natural homotopy class of

mapsΣedge → 𝐺edge which induces an isomorphism𝐻1(Σedge) → 𝐻1(𝐺edge). Recall that𝐻1(𝐺edge)

is free of rank 10, so that the kernel 𝐿edge of 𝐻1(Σ) → 𝐻1(Σedge) is in fact a primitive Lagrangian
sublattice. The intersection product then identifies 𝐿edge with the dual of𝐻1(𝐺edge) so that we get
the short exact sequence

(12)

The monodromy transformation 𝜌edge ∶ 𝐻1(Σ) → 𝐻1(Σ) preserves the exact sequence (12) and
acts non-trivially only on the middle term. It is given by the Picard–Lefschetz formula:

𝜌edge(ℎ) = ℎ +
∑

𝑙∈△edge∕{±1}

⟨ℎ, 𝑙⟩𝑙, (13)

where△edge denotes the set of vanishing cycles in𝐻1(Σ) defined by the degeneration (this set is
invariant under multiplication with −1).
Likewise at the other end: if𝐺trc is the dual intersection graph ofΣtrc, then the kernel of𝐻1(Σ) →

𝐻1(Σtrc) ≅ 𝐻1(𝐺trc) is the primitive Lagrangian sublattice 𝐿trc we introduced earlier and we get a
similar short exact sequence and a similar description of the associated monodromy 𝜌trc in terms
of Δtrc.
Theorems 4.1 and 4.4 will give the local monodromy in each case and give an interesting

property of exact sequence (12). By Proposition 3.5, the ℤ-module HomℤI (𝑉𝑜,𝐻1(Σ)) is freely
generated by 𝑈edge and 𝑈trc and so it is natural to express the monodromies 𝜌edge and 𝜌trc in
terms of these generators.
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1365

Theorem 4.1. The monodromy 𝜌trc fixes 𝑈trc and takes 𝑈edge to 𝑈edge + 𝑈trc and the monodromy
𝜌edge fixes𝑈edge and takes𝑈trc to𝑈trc − 3𝑈edge.

Corollary 4.2. Let 𝛼 be a counterclockwise loop inB◦ which only contains the punctures∞ and 27

5
in its interior and is based at some point on the image of 𝛾, so that it goes first around ∞ and then
around 27

5
. If [𝛼] denotes its image in 𝜋, then 𝜌𝑉𝑜

[𝛼] = 𝜌edge𝜌trc takes 𝑈trc to −2𝑈edge + 𝑈trc and
𝑈trc to −3𝑈edge + 𝑈trc, and hence is of order 3.

Before we prove this theorem, we establish some properties of the Lagrangian lattices.
Recall thatK is a five element-set of inscribed cubes of𝐷 so thatI becomes the group of even

permutations ofK . Any vertex of𝐷 is contained in precisely two such cubes, and the orientation
orders this pair (the opposite vertex gives the oppositely ordered pair). In this way, we produce a
ℤI -linear map 𝐿trc → ∧2ℤK . This is in fact an isomorphism because every ordered pair of dis-
tinct inscribed cubes is associatedwith a vertex.Wewill therefore identify these twoℤI -modules.
Note that under this isomorphism Δtrc is identified with the collection of 20 vectors 𝑒 ∧ 𝑒′, with
(𝑒, 𝑒′) distinct elements of K .
The short exact sequence (11) becomes the following short exact sequence of ℤI -modules

(14)

Here, 𝑗trc is the obvious map. Let us apply the left exact functor HomℤI (𝑉𝑜, ⋅) to the short exact
sequence (14) and combine it with the exact sequence (8)

(15)

By Proposition 3.5, the vertical arrow HomℤI (𝑉𝑜, 𝑍1) → HomℤI (𝑉𝑜,𝐻1(Σ)) is injective.
The dual intersection graph 𝐺edge has six vertices and every two vertices are joined by an edge.

Hence, in this case we get the complete graph with six vertices, that is, a graph of type 𝐾6. Let
𝑛 ∶ Σ̂edge → Σedge be the normalization map.
The set of connected components of Σ̂edge has 6 elements and I acts on it by permutations.

There is a (unique) I -equivariant bijection of this set onto the set L introduced in Example 2.3
and we will identify the two. So now each 𝑙 ∈ L can be thought of as the connected component
of Σ̂edge. Recall that we there defined a surjection ∧2(ℤL ) → ∧2𝑊𝑜 with kernel (

∑
𝑙∈L 𝑙) ∧ ℤL ≅

𝑊𝑜 making the following sequence of ℤI -modules is exact

0 → 𝑊𝑜 → ∧2ℤL → ∧2𝑊𝑜 → 0 (16)

By taking the dual of this exact sequence, we get a sequence that is still exact

0 → (∧2𝑊𝑜)
∨ → (∧2ℤL )∨ → 𝑊∨

𝑜 → 0 (17)
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1366 LOOIJENGA and ZI

Lemma 4.3. The natural homotopy class of maps Σedge → 𝐺edge induces an isomorphism on 𝐻1

and themap that assigns to the ordered distinct pair (𝑙, 𝑙′) inL the 1-cocycle on𝐺edge spanned by the
vertices defined by 𝑙 and 𝑙′ induces an I -equivariant isomorphism ∧2𝑊0 ≅ 𝐻1(𝐺edge). If we recall
that 𝐻1(𝐺edge) is naturally identified with the vanishing homology of the degeneration Σ into Σedge,
then this isomorphism identifies the setΔtrc of vanishing cycles with the set of unordered distinct pairs
inL .
Dually, 𝐿∨

edge = 𝐻1(Σedge) is as a ℤI -module isomorphic to ∧2𝑊∨
𝑜 .

Proof. We have already observed that Σedge → 𝐺edge induces an isomorphism on 𝐻1. Let us now
recall how𝐻1(𝐺) = 𝑍1(𝐺)∕𝐵1(𝐺) is computed for any finite graph𝐺: the group of 1-cocycles𝑍1(𝐺)

has as its generators the oriented edges (with the understanding that orientation reversal gives the
opposite orientation) and the coboundary map assigns to a vertex the sum of the oriented edges
which have that vertex as their source. If we do this for 𝐺edge, which is the complete graph on
the setL , we see that 𝐶0(𝐺edge) = ℤL = 𝑊, 𝑍1(𝐺edge) = ∧2ℤL = ∧2𝑊 and the coboundary 𝛿 ∶

𝐶0(𝐺edge) = 𝑍1(𝐺edge) is the map that assigns to 𝑙 ∈ L the sum
∑

𝑙′≠𝑙 𝑙
′ ∧ 𝑙 = (

∑
𝑙′ 𝑙

′) ∧ 𝑙. Hence,
𝐻1(𝐺edge) = ∧2𝑊𝑜. The assertion regarding the vanishing cycles is clear.
The universal coefficient theorem implies that 𝐻1(𝐺edge) is naturally identified with the dual

of ∧2𝑊𝑜. This is easily seen to be ∧2𝑊∨
𝑜 . □

From this Lemma, the short exact sequence (12) becomes the following sequence of
ℤI -modules.

(18)

Note that ∧2𝑊𝑜 has a single generator as a ℤI -module, for example, 𝑙 ∧ 𝑙′ with 𝑙, 𝑙′ distinct. We
have an I -isomorphism 𝜄edge ∶ ∧2𝑊𝑜 → 𝑍1 which sends 𝑙 ∧ 𝑙′ to the element in 𝑉edge with the
same stabilizer. Let us apply the left exact functor HomℤI (𝑉𝑜, ⋅) to the short exact sequence (18)
and combine it with the exact sequence (8)

(19)

As in Proposition 3.5 the vertical arrow HomℤI (𝑉𝑜, 𝑍1) → HomℤI (𝑉𝑜,𝐻1(Σ)) is injective.

Proof of Theorem 4.1. We proved that HomℤI (𝑉𝑜,𝐻1(Σ)) is freely generated by 1

3
𝑢edge and 𝑢trc

as ℤ-module in Proposition 3.5. By the above description, their images lie 𝐿edge resp. 𝐿trc. Hence,
𝜌edge resp. 𝜌trc leaves 𝑢edge resp. 𝑢trc invariant.
According to the Picard–Lefschetz formula

𝜌trc(
1

3
𝑢edge)(𝑒) − 1

3
𝑢edge(𝑒) =

∑
𝛿∈Δtrc∕{±1}

1

3
⟨[𝑢edge(𝑒)], 𝛿⟩𝛿 =

∑
𝑥∈C0(𝐷)∕{𝜄}

1

3
⟨[𝑢edge(𝑒)], 𝛿𝑥⟩𝛿𝑥.

 14697750, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12713 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1367

If 𝑥 ∈ C0(𝐷), then by Lemma 3.7, 1

3
⟨[𝑢edge(𝑒)], 𝛿𝑥⟩ equals 1 when 𝛿 lies in 𝑥 ∈ 𝐸,−1when 𝑥 ∈ 𝜄𝐸

and zero otherwise. So the sum on the right hand side is 1

3

∑
𝑥∈𝐸 𝛿𝑥 = 𝑢trc(𝑒5). This gives the

asserted matrix representation.
Similarly, we have

𝜌edge(𝑢trc(𝑒)) − 𝑢trc(𝑒) =
∑

𝛿∈Δedge∕{±1}

⟨[𝑢trc(𝑒)], 𝛿⟩𝛿 =
∑

𝑦∈C1(𝐷)∕{𝜄}

⟨[𝑢trc(𝑒)], 𝛿𝑦⟩𝛿𝑦.

Then Lemma 3.7 implies that ⟨[𝑢trc(𝑒)], 𝛿𝑦⟩ equals −1 when 𝑖𝑛(𝑦) ∈ 𝐸, 1 when 𝑖𝑛(𝑦) ∈ 𝜄𝐸 and
zero otherwise. Hence, the right hand side is−𝑢edge(𝑒) = −3. 1

3
𝑢edge(𝑒). Thematrix representation

follows. □

A short exact sequence (12) may not split as ℤI -module. However, in these two cases we also
have the following interesting result.

Theorem 4.4. Let 𝐿 stand for 𝐿edge or 𝐿trc. Then the natural map 𝜙 ∶ HomℤI (𝑉𝑜,𝐻1(Σ)) →

HomℤI (𝑉𝑜, 𝐿) is onto so that the exact sequences (15) and (19) split to give an exact sequence

0 → HomℤI (𝑉𝑜, 𝐿) → HomℤI (𝑉𝑜,𝐻1(Σ, ℤ)) → HomℤI (𝑉𝑜, 𝐿
∨) → 0.

Proof. This sequence is indeed exact after tensoring with ℂ. Since the middle term is the free
abelian group generated by 𝑢trc and

1

3
𝑢edge, we can write any 𝑢′ ∈ HomℤI (𝑉𝑜, 𝐿

∨) as a complex
multiple (𝜆 ∈ ℂ, say) of the image of 𝑢trc in HomℤI (𝑉𝑜, 𝐿

∨
edge) (when 𝐿 = 𝐿edge) resp. of

1

3
𝑢edge

in HomℤI (𝑉𝑜, 𝐿
∨
trc) (when 𝐿 = 𝐿trc). The theorem amounts to the assertion that then 𝜆 ∈ ℤ.

Lemma 3.7 shows that ‘taking the intersection product with 𝑢trc(𝑒) resp.
1

3
𝑢edge(𝑒)’ defines a linear

form on 𝐿edge resp. 𝐿trc that takes the value 1. Hence, 𝜆 ∈ ℤ. □

4.2 The local monodromy near irreducible curve with 6 nodes

For the parameter 𝑠 = −1 in B, the associated curve 𝐶−1 is irreducible with 6 nodes and its
normalization �̂�−1 is irreducible of genus 4. It is the unique smooth non-hyperelliptic I -curve
of genus 4 which is called the Bring’s curve (see chapter 5 of [6]). Its dual intersection graph
𝐺𝑠 has only one vertex and six edges with the vertex marked with 4. In this case, the kernel 𝐿
in the exact sequence (11) is generated by 6 elements and is a ℤI -module a copy of 𝐸. Since
HomℤI (𝑉𝑜, 𝐸) = 0 it follows thatHomℤI (𝑉𝑜, ⋅) applied to the exact sequence (11) gives the exact
sequence

0 → HomℤI (𝑉𝑜,𝐻1(𝐶𝑡)) → HomℤI (𝑉𝑜,𝐻1(𝐶−1)) → Ext1
ℤI (𝑉𝑜, 𝐿)

Since the map HomℤI (𝑉𝑜,𝐻1(𝐶𝑡)) → HomℤI (𝑉𝑜,𝐻1(𝐶−1)) is invariant under the monodromy
action, we find

Theorem 4.5. The monodromy of the degeneration at 𝐶1 acts trivially onHomℤI (𝑉𝑜,𝐻1(𝐶𝑡)).

 14697750, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12713 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1368 LOOIJENGA and ZI

This completely determines the monodromy representation 𝜌𝑉𝑜
:

Corollary 4.6. In terms of the basis (𝑈edge, 𝑈trc) ofHomℤI (𝑉𝑜,𝐻1(𝐶−1)) themonodromy 𝜌𝑉𝑜
takes

the simple loops around∞ and 27

5
to

𝜌edge =

(
1 −3

0 1

)
resp. 𝜌trc =

(
1 0

1 1

)
,

is trivial around the puncture 𝑠 = −1, and hence is given around the puncture 𝑠 = 0 by

𝜌0 ∶= (𝜌trc𝜌edge)
−1 =

(
−2 3

−1 1

)
.

In particular, 𝜌0 is of order 3. The image of 𝜌𝑉𝑜
preserves the sublattice 3𝑈edge + 𝑈trc, in other words,

it takes its values in the subgroup Γ1(3) of matrices (
𝑎 𝑏

𝑐 𝑑
) ∈ SL(2, ℤ) with 𝑏 ∈ 3ℤ and 𝑎 ≡ 𝑑 ≡ 1

(mod 3).

Remark 4.7. If we replace our ordered basis by (𝑈trc, −𝑈edge), then in the description of Γ1(3) the
condition 𝑏 ∈ 3ℤ becomes 𝑐 ∈ 3ℤ, which gives the more customary definition Γ1(3).

4.3 The local monodromy near the triple conic

By way of a check on our computations, we now also give a geometric proof of the fact that the
monodromy around 𝑠 = 0 is of order three. Remember that 𝐶0 is the unstable curve 3𝐾, where 𝐾

is a I -invariant (smooth) conic. Let 𝑈 ⊂ B be an open disk centered at 𝑠 = 0 of radius < 27∕5.
We proved in [8] that by doing a base change over 𝑈 of order 3 (with Galois group 𝜇3), given
by 𝑡 ∈ �̂� ↦ 𝑡 = 𝑡3 ∈ 𝑈, the pull-back of W𝑈∕�̂� can be modified over the central fiber 𝐶0 only
to make it a smooth family �̂��̂�∕�̂� which still retains the 𝜇3-action. The central fiber is then a
smooth curve �̂�0 with an action of I × 𝜇3 whose 𝜇3-orbit space gives 𝐾. This implies that the
monodromy of the original family around 0 (which is a priori only given as an isotopy class of
diffeomorphisms of a nearby smooth fiber) can be represented by the action of a generator 𝜙 ∈ 𝜇3

on �̂�0 (which indeed commutes with the I -action on 𝐶0).

Corollary 4.8. Let 𝑡 ∈ 𝑈 − {0}. Themonodromy automorphism acts on𝐻1(�̂�0; ℂ)with eigenvalues
of order 3 only. In particular, it acts onHomℤI (𝑉𝑜,𝐻2(�̂�0)) with order 3.

Proof. The subspace of 𝐻1(�̂�0; ℂ) on which 𝜙 acts as the identity maps isomorphically onto
𝐻1(𝐶0; ℂ) = 𝐻1(𝐾; ℂ) = 0, and hence 𝜙 has eigenvalues of order 3 only. □

5 GLOBALMONODROMY AND THE PERIODMAP: PROOF OF
THEOREM 1.1

We first show that 𝜌edge and 𝜌trc generate all of Γ1(3). This is in fact known, but let us outline a
proof nevertheless. Let us first observe that the natural map SL(2, ℤ) → SL(2, 𝔽3) is onto and that
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1369

Γ1(3) is the preimage of the subgroup of SL(2, 𝔽3) which fixes the second basis vector of 𝔽2
3
. Since

the SL(2, 𝔽3)-orbit of that vector consists of all nonzero elements of 𝔽2
3
, its index is 8.

Now, recall that SL(2, ℤ) is generated by

𝑇 ∶=

(
1 1

0 1

)
and 𝑆 ∶=

(
0 1

−1 0

)
,

and that a set of defining relations is 𝑆4 = (𝑆𝑇)6 = 1 and 𝑆2𝑇 = 𝑇𝑆2. The element 𝑆2 represents−1

and generates the kernel of the projection SL(2, ℤ)∕{±1} → PSL(2, ℤ). So this gives also a presen-
tation of PSL(2, ℤ): if 𝑆 resp. 𝑇 denotes their images in PSL(2, ℤ), then a set of defining relations
for PSL(2, ℤ) becomes 𝑆

2
= (𝑆 𝑇)3 = 1.

Note that 𝜌edge = 𝑇−3 and 𝜌trc = 𝑆𝑇−1𝑆−1 and so our monodromy group Γ is the subgroup of
SL(2, ℤ) generated by 𝑇3 (which defines a cusp of width 3) and 𝑇′ ∶= 𝑆𝑇𝑆−1 (which defines a
cusp of width 1).

Proposition 5.1. The index of Γ in SL(2, ℤ) is 8 so that Γ = Γ1(3). In fact the left cosets of Γ in
SL(2, ℤ) are represented by by {1, 𝑇, 𝑇−1, 𝑆} ∪ {1, 𝑇, 𝑇−1, 𝑆}𝑆2.

Proof. Since 𝑆2 = −1 is central, it suffices to show that the corresponding statement holds for the
subgroup Γ in PSL(2, ℤ) generated by 𝑇 and 𝑇

′
= 𝑆 𝑇 𝑆

−1
: we then must show that {1, 𝑇, 𝑇

−1
, 𝑆}

represent its left cosets. In other words, we must show that this set is invariant under left
multiplication by 𝑇 or 𝑆. This follows from the identities

𝑇 𝑆 = 𝑆 𝑇
′
∈ 𝑆 Γ,

𝑆 𝑇 = (𝑆 𝑇)−2 = 𝑇
−1

𝑆
−1

𝑇
−1

𝑆
−1

= 𝑇
−1

𝑆𝑇
−1

𝑆 = 𝑇
−1

𝑇
′−1

∈ 𝑇
−1

Γ, and
𝑆 𝑇

−1
= (𝑇 𝑆)−1 = 𝑇 𝑆 𝑇 𝑆 = 𝑇 𝑇

′
∈ 𝑇 Γ. □

For what follows, we need a few facts regarding Γ1(3). Let us, as is customary, write 𝑋1(3) for
Γ1(3)∖H . This is a modular curve 𝑋1(3) which classifies elliptic curves endowed with a point of
order 3. Then 𝑋1(3) is completed to a smooth projective curve 𝑌1(3) by filling in a finite number
cusps. These are by definition the orbits of Γ1(3) in ℙ1(ℚ) and in this case they consist of two
elements and make 𝑌1(3) isomorphic to ℙ1 (one with cusp width 3 and the other with cusp width
1). The action of Γ1(3) onH is free except for one orbitO : that orbit consists of the points having
a stabilizer of order 3. This accounts for an orbifold point 𝑜 of 𝑋1(3) of order 3.
Let B̃◦ → B◦ be theΓ-cover. So given 𝑡 ∈ B◦, then a point 𝑡 of B̃◦ over 𝑡 can be represented by a

path 𝛽 ∶ [0, 1] → B◦with 𝛽(0) on the real interval ( 27

5
,∞) and 𝛽(1) = 𝑡. Such a path can be used to

transport the basis (𝑈edge, 𝑈trc) ofHomℤI (𝑉𝑜,𝐻1(Σ)) to a basis ofHomℤI (𝑉𝑜,𝐻1(𝐶𝑡)). It follows
from the definitions that another such path defines the same basis of HomℤI (𝑉𝑜,𝐻

1(𝐶𝑡)) if and
only if it defines the same point 𝑡 of B̃◦ over 𝑡. We therefore denote that basis (𝑈edge(𝑡), 𝑈trc(𝑡)).
The discussion in Subsection 2.1 shows (in a much more general setting) that the symplectic

form on𝐻1(𝐶𝑡; ℚ) and the inner product on𝑉ℚ determine a symplectic form on the isogeny space
HomℤI (𝑉ℚ,𝐻1(𝐶𝑡; ℚ)). Let us endow 𝑉0 with the trivial Hodge structure of bidegree (0,0). This
is polarized by the ℚ-valued inner product that we described in Example 2.2. Then the Hodge
structure on 𝐻1(𝐶𝑡) polarized by the intersection form then determines a Hodge structure on
HomℤI (𝑉𝑜,𝐻

1(𝐶𝑡)) with as only nonzero Hodge numbers ℎ1,0 = ℎ0,1 = 1 and polarized by the
standard symplectic form. Its basis (𝑈edge(𝑡), 𝑈trc(𝑡)) defines a point in the upper half plane H

 14697750, 2023, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12713 by U

trecht U
niversity L

ibrary, W
iley O

nline L
ibrary on [12/04/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1370 LOOIJENGA and ZI

F IGURE 3 Left: Fundamental Domain of Γ1(3); Right: Picture of B. In the quotient, the boundary is
identified by reflection with respect to the imaginary axis. The cusp at∞ has width 1 and represents the
irreducible curve with ten nodes, the cusp at 0 has width 3 and represents the sum of six lines and 3+

√
3𝑖

6

represents the triple conic.

as follows: the complex vector spaceHomℂI (𝑉,𝐻1,0(𝐶))) = HomℂI (𝑉,𝐻0(𝐶,Ω𝐶))) is of dimen-
sion one and if 𝜔 is a generator, then this point is given by 𝜔(𝑈trc(𝑡))∕𝜔(𝑈edge(𝑡)) ∈ H . We thus
obtain a Γ-equivariant holomorphic map

P̃◦
𝑉 ∶ B̃◦ → H .

LetB+ be obtained fromB by filling in the point 0 that represents the triple conic and−1 that
represents the irreducible curve with six nodes, so thatB+ = ℙ1 − {27

5
,∞}. Since themonodromy

of the Winger pencil around 𝑡 = 0 has order 3, the Γ-covering B̃◦ → B◦ extends to a Γ-covering
B̃+ → B+ that has ramification index 3 over 0. Then the map P̃◦

𝑉
extends to a Γ-equivariant

map

P̃+
𝑉

∶ B̃+ → H ,

which therefore induces a holomorphic map

P+
𝑉

∶ B+ → 𝑋1(3).

As is well known, the fact that the periodmap has regular singularities implies that this map lives
in the algebraic category. Hence, it extends (uniquely) to a morphism (see Figure 3) between the
completions of source and target:

P𝑉 ∶ B → 𝑌1(3).
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MONODROMY AND PERIODMAP OF THEWINGER PENCIL 1371

The main result of this section is the following, which can be understood as a strong Torelli
theorem for our family. It is a reformulation of Theorem 1.1.

Theorem 5.2. The map P𝑉 is an isomorphism that takes the point 𝑡 = 0 represented by the triple
conic to the unique orbifold point of 𝑋1(3) of degree 3, whereas the points 𝑡 = ∞ and 𝑡 = 27

5
are

mapped to the cusps of width 3 and 1 respectively.

Proof. The map P𝑉 ∶ B → 𝑌1(3) is a nonconstant map between connected complete complex
curves, and hence it must be surjective and of finite degree. We must show that the degree (that
we shall denote by 𝑑) is 1. The P𝑉-preimages of the two cusps of 𝑌1(3) must be { 27

5
,∞} so that

we will have a total ramification over each cusp. Both B and 𝑌1(3) are copies of ℙ1 and so have
Euler characteristic 2. The Riemann–Hurwitz formula then implies that there cannot be any fur-
ther ramification, for these two ramification points already bring down the Euler characteristic
of the total space to the desired number: 2𝑑 − (𝑑 − 1) − (𝑑 − 1) = 2. This implies that P+

𝑉
is a

local isomorphism.
We claim thatP−1

𝑉
(𝑜) = 0. This will imply the theorem, for it then follows that 𝑑 = 1.

It is clear thatP𝑉(0) = 𝑜. On the other hand, the composite map B̃◦
P̃+

𝑉
@@@@→ H → 𝑋1(3) is equal

to the composite map B̃◦ → B◦ → 𝑋1(3) and since both B̃◦ → B andB◦ → 𝑋1(3) are local iso-
morphisms, so is B̃◦ → H → 𝑋1(3). AsH → 𝑋1(3) ramifies over 𝑜, it follows that this composite
must land in 𝑋1(3) − {𝑜}. Hence,P+

𝑉
(B◦) ⊂ 𝑋1(3) − {𝑜}. □

Remark 5.3. The preceding theorem does not follow from the usual Torelli theorem since it only
concerns the𝑉𝑜-part of the cohomology. There is a similar period map for the 𝐸𝑜-part of the mon-
odromy. The corresponding monodromy group will land in an arithmetic subgroup of a group
isomorphic to SL(2, ℚ(

√
5)) and the period map will land in a Hilbert modular surface asso-

ciated with this group. If we combine this with the above theorem, we then find a map from
𝑋1(3) to this Hilbert modular surface. Note that the point representing Bring’s curve is mapped
to a cusp point of the Hilbert modular surface and so this cannot be a morphism of Shimura
varieties.
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