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Abstract—Effective processing of video input is essential for
the recognition of temporally varying events such as human
actions. Motivated by the often distinctive temporal character-
istics of actions in either horizontal or vertical direction, we
introduce a novel convolution block for CNN architectures with
video input. Our proposed Fractioned Adjacent Spatial and
Temporal (FAST) 3D convolutions are a natural decomposition
of a regular 3D convolution. Each convolution block consist of
three sequential convolution operations: a 2D spatial convolution
followed by spatio-temporal convolutions in the horizontal and
vertical direction, respectively. Additionally, we introduce a FAST
variant that treats horizontal and vertical motion in parallel.
Experiments on benchmark action recognition datasets UCF-101
and HMDB-51 with ResNet architectures demonstrate consistent
increased performance of FAST 3D convolution blocks over
traditional 3D convolutions. The lower validation loss indicates
better generalization, especially for deeper networks. We also
evaluate the performance of CNN architectures with similar
memory requirements, based either on Two-stream networks
or with 3D convolution blocks. DenseNet-121 with FAST 3D
convolutions was shown to perform best, giving further evidence
of the merits of the decoupled spatio-temporal convolutions.

Index Terms—3D Convolutions, space-time, action recognition,
decoupled

I. INTRODUCTION

The recognition of human actions in videos remains a

challenging task. The current state-of-the-art is obtained using

approaches based on convolutional neural networks (CNNs).

A large number of increasingly complex network architectures

have been introduced to deal with the complexity and variation

of the visual performance of human actions in videos [12],

[30].
Independent from the network architecture, each CNN needs

to process the visual input effectively. For static images, 2D

convolutions focus on salient spatial patterns. But human

actions are characterized by movement over time. To this end,

researchers have turned their attention to the spatio-temporal

modeling of actions from video. One line of approach that

started with Two-stream networks [28] considers movement

modeled as optical flow. The spatial (image) and temporal

(optical flow) input is processed independently, which hinders

the modeling of characteristic spatio-temporal patterns such as

an upwards moving arm.
Alternatively, 3D convolutions [15] operate on the spatial

and temporal dimensions jointly. This enables the modeling of

(a) XY (b) XT (c) YT

Fig. 1. Characteristic spatio-temporal motion patterns Example sequences
with motion patterns in the vertical (YT) and horizontal (XT) spatio-temporal
domains. Black lines in the first frame indicate where the slices have been
made over time.

specific spatio-temporal patterns such as a change in direction

of the hand when waving. The modeling of these character-

istics requires a large number of parameters in each 3D con-

volution filter. These parameters are estimated from relevant

video data. In contrast to the high number of data samples

in image datasets such as ImageNet [6], video-based datasets

for specific tasks such as action recognition are composed

of significantly less data. UCF-101 [29] and HMDB-51 [19]

are common benchmarks for video action recognition models,

but only include a moderate number of classes and examples.

The recent ActivityNet [11] and Kinetics [18] datasets contain

more data, but the number of available examples of each action

remains limited, typically in the order of 200-600 videos per

class.

On a large number of different CNN architectures and

datasets, 3D convolutions generally outperform 2D convolu-

tions by a clear margin. This comes at a cost of estimating

more parameters for 3D kernels. This increases the risk of

overfitting. This is especially true because of the specificity of

the patterns that can be modeled with a 3D convolution. There-

fore, we argue that spatio-temporal convolutions of video data

with fewer parameters is beneficial for the current availability

of training data per action class. We observe that the motion

in most actions is relatively simple, and can be described
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Fig. 2. FAST 3D convolution Example of a cubic input volume, with the
spatial convolution in the XY plane, and two spatio-temporal convolutions in
the XT and YT planes.

well in terms of horizontal and vertical movement (see Fig-

ure 1). We therefore propose Fractioned Adjacent Spatial and

Temporal (FAST) 3D convolutions, a novel 3D convolution

block. Specifically, we divide 3D convolution kernels into a

single spatial 2D kernel responsible for discovering descriptive

appearance features and two additional, orthogonal, spatio-

temporal kernels that focus on distinctive motion patterns in

horizontal and vertical direction respectively.

FAST 3D convolutions have several advantages. By splitting

the filters, the number of parameters for each convolution

operation is reduced so we can construct deeper networks

with similar memory requirements as with regular 3D con-

volutions. Also, the number of non-linearities in the model

is triple the amount of that of the original 3D convolutions.

Both these advantages allow us to model complex spatio-

temporal patterns. We demonstrate improved performance of

FAST 3D convolutions over regular 3D convolutions. Finally,

the decomposition of 3D convolutional operations decreases

overfitting. We show on benchmark datasets that validation

loss is reduced, demonstrating that features are learned more

efficiently by the model.

In the next section, we discuss related work on action recog-

nition from video. We then introduce the FAST 3D convolution

blocks in Section III-B. Our evaluations on benchmark datasets

with various network structures appears in Section IV. We

conclude with promising directions of further research.

II. RELATED WORK

Initial progress in human action recognition has been

achieved using low-level handcrafted features including His-

tograms of Oriented Gradients (HOG), Histograms of Oriented

Flow (HOF), Motion Boundary Histograms (MBH) [35] and

SIFT [21]. Feature representations at the frame or sequence

level were aggregated into bag-of-words or Fisher vector

representations [9], [24] and classified as action classes. To

deal with correlations between low-level image features in

space, mid-level representations such as Poselets [2] and

Deformable Part Models (DPM, [8]) have been introduced.

These representations focused on the shape and movement of

the human body.

While these methods have seen an increased sophistication

and performance on benchmark datasets, their handcrafted na-

ture leaves room for improvement. In contrast, Convolutional

Neural Networks (CNNs) perform feature extraction using

convolutional filters in a hierarchical fashion. This provides

more flexibility and allows for the extraction of a large range

of low- and mid-level patterns. The use of CNNs has been

extended to video by considering sequences of frames as

input [17]. This approach allows for the modeling of temporal

patterns typical for human actions.

An alternative approach to model temporal characteristics is

to use optical flow as input in addition to images. Two-stream

networks [28] provided the basis for other works including

Temporal Segment Networks (TSN, [36]), Temporal Linear

Encoding (TLE, [7]) and spatio-temporal Regional CNNs

[22], [25], [27], [37]. While these works can model spatio-

temporal patterns in videos, optical flow might not be the most

effective and efficient way of dealing with the temporal nature

of actions. Moreover, the two sources of input are largely

processed independently.

Another approach to extract spatio-temporal patterns is

to extend 2D image convolutions to 3D video convolutions

[1], [15]. Tran et al. [32] were the first to demonstrate this

approach in a deep architecture. Others have also proposed a

combination of 3D convolutions and 2D convolutions in order

give more weight to the spatial aspect of action recognition

[39]. More recently, Carreira and Zisserman [3] have achieved

state-of-the-art performance by combining 3D convolutions

in a two-stream network. They pre-trained their I3D network

using increasingly complex data. In a last step, they use the

comprehensive Kinetics dataset to fine-tune the parameters of

their network.

The number of parameters required for each 3D convolu-

tional filter is relatively large. Deep architectures that use 3D

convolution blocks tend to overfit because too many param-

eters need to be estimated from a limited amount of training

data. Even with the increasing availability of training data, a

decomposition of the 3D convolution filters decreases the risk

of overfitting. A similar observation was made for 2D, where

convolution kernels that considered the three color channels

where split into sequential spatial and color convolutions [16].

This not only reduces the number of parameters to train, but

also reduces the discrepancy between training and validation

loss.

For 3D, there have been several approaches to decompose

the convolution filters. Tran et al. [33] decomposed (t× w ×
h, with t the number of frames and w and h the width and

height of the filter, respectively) 3D convolutions into spatial

(1 × w × h) and temporal (t × 1 × 1) filters. The temporal
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filters model the variation of pixel values over time. Qiu et al.
[26] experimented with this and other decomposed convolution

blocks, and added residual connections.

We argue that purely temporal filters will not be able

to model motion boundaries. Our work is motivated by the

observation that many motions have distinctive characteristics

in horizontal and vertical directions (see Figure 1 for an

example). We therefore propose Fractioned Adjacent Spatial

and Temporal (FAST) 3D convolutions, a decomposition of

3D convolutions into a spatial, and horizontal motion and

a vertical motion part. For the motion parts, we use two

orthogonal 2D convolutions that essentially treat a local part

of a video as XT (horizontal) and Y T (vertical) slices,

reminiscent of early work by Niyogi et al. [23].

We evaluate the performance of the novel FAST convolution

block in a number of popular architectures and on well-known

action recognition benchmark datasets UCF-101 and HMDB-

51. While there is room for improvement in the absolute

performance by using more sophisticated network structures

(e.g., [5], [10], [13], [14], [31]), pre-training on larger datasets

(e.g. [3]) and increasing batch sizes (e.g. [4]), we consistently

report increased classification performance, while at the same

time observe lower validation losses. This suggests that we can

effectively and efficiently learn characteristic spatio-temporal

patterns, with increasing generalization abilities of the trained

networks.

III. FAST 3D CONVOLUTION BLOCKS

In this section we briefly describe 3D convolutions and

recently introduced variations. We then provide a detailed

description of the proposed FAST 3D convolutions. We also

introduce an alternative split-FAST block in which the tempo-

ral convolutions are performed in separate pathways.

A. 3D convolutions and variants

We consider an input video, denoted as a spatio-temporal

volume X with size F ×H ×W ×D, made up of a temporal

dimension with F frames and two spatial dimensions of height

H and width W in pixels. D corresponds to the depth of each

pixel, typically the network input’s number color channels or

activation maps in intermediate layers. At each layer i of the

network, the input volume Xi is processed with ni kernels. For

clarity of presentation, we omit the indexing on the layer i and

the kernel j, 1 ≤ j ≤ ni. Each kernel K is a four-dimensional

tensor K ∈ R
f×h×w×d, with f , h, w and d the size of the

kernel in the temporal, horizontal and vertical spatial and depth

dimension, respectively. For a 3D convolution of video volume

X with kernel K, activation map Y becomes:

Y = K ⊗X (1)

a) (2+1)D convolutions: Instead of processing an in-

put video with a four-dimensional kernel, Tran et al. [33]

separate the kernel into a three-dimensional spatial kernel

Ks ∈ R
1×h×w×d and a temporal tensor Kt ∈ R

f×1×1×d. Ks

essentially operates as a 2D convolution, whereas Kt looks

at the change in pixel intensity over time. See Figure 3(b).

Convolutions with the two kernels is performed subsequently:

Y = Kt ⊗ (Ks ⊗X) (2)

This method, termed (2+1)D, doubles the number of non-

linearities and can therefore increase the complexity of the

feature mapping. The decoupling of the four-dimensional

kernel for 3D convolutions into a three-dimensional and a

one-dimensional kernel results in an overall lower number of

parameters that need to be estimated and updated for each

convolution block. The memory required for activation maps

during training is somewhat larger than that of normal 3D

convolutions because the number of activation maps stored

and updated by the system per layer doubles.

b) Pseudo convolutions: Variations of 3D convolutions

have also included the use of different configurations in

terms of order and connections of the convolutions. These

convolution blocks have been termed Pseudo Convolutions,

or P3D [26]. Specifically, three different variants have been

introduced. P3D-A is similar to (2+1)D convolutions, but

with a skip connection. Instead of processing the spatial and

temporal convolutions in sequence, P3D-B processes them in

parallel, see Figure 3(c). The outputs are then accumulated:

Y = (Kt ⊗X)⊕ (Ks ⊗X) (3)

The main advantage of P3D-B over P3D-A is the structural

diversity of the architecture. This corresponds to the network

focusing on the most informative dimension in each level of

the feature extractor. Finally, P3D-C includes two residual

connections: one for the spatial convolution block and one

for the temporal block. P3D-C can be seen as a compromise

of P3D-A and P3D-B.

For both (2+1)D convolutions and Pseudo convolutions, the

temporal convolutions look at changes in the pixel intensity

only in the first layers of the CNN. For deeper layers, an in-

creasingly large area is taken into account. Still, characteristic

spatio-temporal patterns cannot be modeled because the kernel

is only one-dimensional.

B. FAST 3D convolutions

We introduce a novel convolution block: Fractioned Ad-
jacent Spatial Temporal (FAST) Convolutions. This block is

motivated by the desire to decompose the four-dimensional

3D convolution kernel, but to also maintain the ability to

model spatio-temporal patterns explicitly. The decomposition

should lead to less overfitting, especially on smaller training

datasets. The explicit modeling of motion is of particular

interest in human action recognition, where many classes

are characterized by distinct spatio-temporal patterns (see

Figure 1).

The FAST 3D convolutions block is a combination of

three convolutions (see Figure 2), performed sequentially (see

Figure 3(d)). Essentially, we split motion into a horizontal

and a vertical component. In contrast to (2+1)D convolutions,

we do not only model pixel changes over time but consider
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3 x 3 x 3

ReLU

ReLU

(a) 3D

1 x 3 x 3

3 x 1 x 1

ReLU

ReLU

ReLU

(b) (2+1)D

3 x 1 x 1 1 x 3 x 3

ReLU

ReLUReLU +

(c) P3D-B

1 x 3 x 3

3 x 3 x 1

3 x 1 x 3

ReLU

ReLU

ReLU

ReLU

(d) FAST

3 x 3 x 1 3 x 1 x 3

1 x 3 x 3

ReLU

ReLUReLU

ReLU

+

(e) split-FAST

Fig. 3. Convolution blocks Design overviews of various convolution blocks, color coded for convolution type: 3D (purple), spatial 2D (magenta), 1D temporal
(dark blue) and 2D spatio-temporal (light blue). The depth of the input (i.e., the number of color channels) is omitted for clarity.

the temporal dimension jointly with either the horizontal or

vertical dimension. We thus apply the convolutions in the

XT plane and YT plane of a video volume. This allows us

to capitalize on specific horizontal and vertical movements,

performed within a limited spatial context. The two spatio-

temporal convolution operations are complementary to each

other, as they decompose movement in a vertical and horizon-

tal fashion. More complex motions can be modeled by both

operations jointly.

We denote the kernels for the horizontal and vertical spatio-

temporal convolutions as KXT and KY T , respectively. In

addition to these two spatio-temporal convolutions XT and YT,

we use a spatial kernel KXY which is a regular 2D kernel. This

is in line with the spatial kernel used in (2+1)D convolutions.

FAST 3D convolutions are thus operationalized as:

Y = KY T ⊗ (
KXT ⊗ (KXY ⊗X)

)
(4)

The frame-level filter (XY) iterates spatially in each frame,

extracting visual characteristics of the scene. The horizontal

(XT) and vertical (YT) spatio-temporal kernels iterate through

time with the frame’s width and height as the auxiliary

dimension, respectively.

1) Temporally decoupled connections: Additionally, we

introduce a variant of FAST 3D convolutions with indirect

connections between the two spatio-temporal convolutions,

schematically shown in Figure 3(e). Thus, after the convolution

with the spatial filter, the horizontal XT and vertical YT

convolutions are performed in parallel and the output is then

accumulated. We denote this architecture as split-FAST as the

sequence of temporal convolutions is split into two pathways.

Our intuition behind creating two pathways for the tem-

poral operations is that some movements are characterized

predominantly by one of the two operations. For example,

in a jumping or push-up motion, distinctive patterns are more

likely to be found in the vertical direction. In contrast, we

expect that the responses of the XT convolution are much

less meaningful. For mainly horizontal movements such as

walking or running, we expect the opposite effect. By choosing

the most fitting temporal convolution, the model progressively

learns the type of movement that each input includes as the

most fitting kernels are chosen.

IV. EXPERIMENTAL RESULTS

In this section, we compare our proposed FAST 3D convo-

lutional blocks to 3D and (2+1)D convolutions in a ResNet-

34 [10] architecture (Section IV-B). We focus on human

action recognition and present results on UCF-101 [29], a

publicly available human action recognition dataset. We then

investigate how stable the improvements over 3D convolutions

are when the network depth increases (Section IV-C). We

also present additional results on HMDB-51 [19], a second

well-known human action recognition dataset. Finally, we

compare our results to a number of popular, state-of-the-art

implementations (Section IV-D).

The main contribution of this paper is the introduction of

a novel convolution block for videos. In this evaluation, our

focus is on assessing the merits of this block over previously

introduced convolution blocks. Our proposed method is gen-

eral in the sense that it can be used in a wide range of network

architectures, as we demonstrate in this section. Importantly,

we do not attempt to achieve state-of-the-art performance.

Compared to the architectures that we evaluate on, more com-

plex deep networks and sophisticated (pre)training methods

have been proposed in literature. We note that these state-of-

the-art networks could benefit from our proposed FAST 3D

and split-FAST 3D convolution blocks.

A. Experiment settings

a) Datasets: We evaluate on the UCF-101 and HMDB-

51 datasets. Both are standard action recognition benchmark

datasets. We have chosen these datasets because they have
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(a) 3D (b) (2+1)D (c) FAST (d) split-FAST (e) Combined

Fig. 4. Training and validation loss for (a) 3D, (b) (2+1)D, (c) FAST and (d) split-FAST, obtained on UCF-101 using ResNet-34. The validation losses for
these convolution blocks are combined in (e). The first 15 epochs are omitted to increase the visibility of the final loss values. The classification performances
for these models appear in Table I.

been widely reported on and their nature and challenges are

broadly understood. Compared to ActivityNet and Kinetics,

both UCF-101 and HMDB-51‘are modest in size, but contain

the same type of variations in terms of viewpoint, clutter,

action performance and image quality. UCF-101 contains

13,320 videos in 101 classes, HMDB-51 consists of 6,849

clips distributed over 51 classes.

b) Implementation: For our evaluation of convolution

blocks (Section IV-B), we focus on ResNet models because

they are well-understood and provide decent performance for

their limited complexity. We also present results for the FAST

3D convolution block in a range of other architectures in

Section IV-D.

For efficient training, we select 24 frames from each video

and resize the frames to a format with a size of 224 × 224.

The 24 selected frames cover a 2 second window halfway

the duration of the sequence. In this volume, we select every

second frame. Inputs are normalized to single-float point

precision. All experiments are performed with two NVIDIA

Tesla P100 GPUs. For the experiments we used a SGD with

0.9 momentum and with a learning rate that uses warm-up

restarts [20] every 5 epochs and ranges between a maximum

value of 2e-3 and a minimum of 4e-5, with the maximum

value halved at the end of each cycle. We use a Dropout rate of

0.5 for experiments with DenseNet-121. For all implemented

methods, we used the parameters reported in the respective

papers. The only exception is the batch size, which we set

to 8 because of limited available memory. All networks are

initialized with weights from ImageNet. For 3D convolutions,

we inflated the 2D kernels to 3D, similar to [3].

Method Accuracy Speed Depth Params GB

3D 81.14 5.40 137 40.60M 11.32

(2+1) D 81.75 4.60 147 25.84M 13.35

FAST 83.82 4.26 157 43.48M 12.06
split-FAST 85.36 4.26 157 43.48M 12.06
FAST (XT only) 82.88 4.88 147 32.89M 13.35
FAST (YT only) 83.18 4.83 147 32.89M 13.35

TABLE I
COMPARISON BETWEEN CONVOLUTION BLOCKS, USED IN A RESNET-34

ON UCF-101. SPEED IS MEASURED IN CLIPS PER SECOND AND DEPTH

CORRESPONDS TO THE TOTAL NUMBER OF LAYERS.

B. Block comparisons
Table I summarizes the performance of different convolution

blocks in a ResNet-34 architecture, trained and evaluated on

UCF-101. All networks were trained for the same number

of epochs with the same learning rate. Data were fed to the

network by four workers so the time required for loading the

data was the same.
When comparing the convolution blocks, we see that both

FAST variants and (2+1)D convolutions outperform 3D con-

volutions in terms of accuracy. While (2+1)D convolutions

show a modest improvement of 0.61%, FAST and split-

FAST outperform the original 3D convolutions by 2.68% and

4.22%, respectively. These results indicate that the modeling

of temporal characteristics in terms of changes in pixel values

using a 3×1×1 temporal kernel leaves room for improvement.

Clearly, the description of motion in terms of two orthogonal

spatio-temporal directions is beneficial for the modeling of

human actions. For our given setting, FAST 3D convolutions

demonstrate an improvement of 2.07% over (2+1)D convolu-

tions.
For kernels of size 3 in spatial or temporal dimension,

the three 2D kernels used in FAST and split-FAST require

slightly more parameters than the single 3D kernel used in

3D convolutions. In comparison, the 3×1×1 temporal kernel

used in (2+1)D convolutions is significantly smaller than 3D

and both FAST 3D convolutions. The successive convolutions

in both (2+1)D and both FAST 3D convolution blocks increase

the depth of the network. Consequently, these blocks have

the potential to model more non-linearities in their mapping.

As a drawback, the successive convolution operations also

increase the memory required to store intermediate activation

maps. In addition, in terms of training speed, both (2+1)D and

FAST convolutions require more time to learn per batch as the

networks are deeper and more updates per pass are required.
In Table 4, we show the training and validation losses

for 3D, (2+1)D and the two FAST 3D convolutions. While

differences in validation loss between the convolution blocks

are modest, FAST and split-FAST consistently have lower final

losses. This is an indication of less overfitting. It is also an

important contribution given the larger number of parameters

in the FAST 3D convolution blocks. Apparently, the motion

patterns that are modeled in the spatio-temporal XT and YT

convolutions are meaningful and generalize to unseen data.
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(a) Validation loss (b) Accuracy

Fig. 5. Validation loss and accuracy for a Resnet-34 on UCF-101. The first
15 epochs are omitted.

a) XT and YT convolutions in FAST: In order to analyze

the importance of the two spatio-temporal kernels in FAST 3D

convolutions, we also evaluated the performance when one of

the kernels was omitted. To this end, we replaced one of the

2D spatio-temporal kernels with the 3×1×1 temporal kernel

used in (2+1)D convolutions, but applied in the dimension

that we omitted. Specifically, in the XT-only model, we used

changes in pixel values along the vertical spatial dimension.

For the YT-only model, we only considered pixel changes in

the horizontal dimension.

From Table I, it becomes clear that both blocks with an

omitted 2D kernel produce sub-par results compared to FAST

3D convolutions. This indicates that important spatio-patterns

are missing if one of the two dimensions is not considered (see

Figure 5). Since we can model at least spatio-temporal patterns

in one direction, both models outperform (2+1)D convolutions,

by 1.13% and 1.43% for Fast 3D with XT-only and YT-only

spatio-temporal kernels, respectively. Again, this demonstrates

that characteristic motion patterns are ignored when simply

looking at changes in pixel values over time.

It appears that vertical motion is more important than

horizontal motion. This might be because many of the videos

in UCF-101 contain predominantly horizontal panning motion

to keep the subject of interest in the center of the view.

This might cause horizontal movement to be more related to

the camera movement, rather than with specific actions. Still,

even individual dimensions contribute to the improvement of

the model. The fact that both temporal features together lead

to the highest score, is an indication that there is partially

complementary information in both directions.

b) FAST and split-FAST: The decoupled split-FAST 3D

convolution block outperforms 3D convolutions by 4.22%

and FAST 3D convolutions with three sequential convolution

operations by 1.54%. This higher performance suggests that

the temporal kernels do not only learn vertical and horizontal

movement explicitly, but also more complex movements such

as those shown in Figure 1. Since the split-FAST approach

further groups actions of small clip segments based on their

overall movement across frames, it can more efficiently in-

terpret the type of movement from the vertical and hori-

zontal separation. From Figure 4, it follows that decoupling

the two spatio-temporal convolution operations improves the

generalization capabilities of the architecture, judging from

the slightly smaller divergence between training and validation

losses.

(a) Validation loss - UCF-101 (b) Accuracy - UCF-101

(c) Validation loss - HMDB-51 (d) Accuracy - HMDB-51

Fig. 6. Validation loss and accuracy for DenseNet-121 on UCF-101 (top
row) and HMDB-51 (bottom row). The first 15 epochs are omitted.

C. Revisiting network architectures with 3D and FAST 3D
convolutions

We now investigate whether FAST 3D convolutions still

perform better when the CNN architecture depth increases. To

this end, we use ResNet-34, -50 and -101 [10] and DenseNet-

121 [14] architectures and replace the 2D convolution blocks

either by 3D convolutions or FAST 3D convolutions. In

addition to training and testing on UCF-101, we also use

HMDB-51. The smaller size of this dataset in combination

with the increasing depth of the network architectures allows

us to investigate the risk of overfitting.

Table II summarizes the results of our tests. As expected,

performance increases with the depth of the networks in

general. In addition, FAST 3D convolutions consistently out-

perform 3D convolutions in every tested network and on

both datasets. For networks with 34 and 50 layers, FAST

3D convolution blocks present an improvement of 0.2% and

1.84% respectively on UCF-101, and 0.78% and 0.41% on

HMDB-51. For ResNet-101, the divergence between the two

blocks increases to 2.62% and 1.48% for the two datasets,

respectively. There is a direct correlation between the overall

depth of the architecture and the performance difference be-

tween the two blocks. It appears that deeper layers of networks

that focus on high level spatio-temporal features benefit from

the separation into two spatio-temporal convolutions.

The densely connected and deeper DenseNet-121 architec-

ture provides better results for both 3D and FAST 3D con-

volution blocks, on average 5.75%-7.39% better than ResNet-

101. We also find that in this network, the improvements of
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FAST 3D over regular 3D convolutions are 0.6% and 3.26%

for UCF-101 and HMDB-51, respectively. This difference is

more modest but might be explained by the limited number of

epochs. In Figure 6(a) and (c), it can be seen that the validation

loss is still decreasing for both tested datasets. In Figure 6(b)

and (d), it becomes clear that this also affects the validation

accuracy, which might be even higher.

Method
UCF-101 HMDB-51

3D FAST-3D 3D FAST-3D

ResNet-34 81.14 83.82 39.68 40.16
ResNet-50 81.68 84.62 45.44 45.95
ResNet-101 82.17 84.79 46.53 48.01
DenseNet-121 88.93 89.53 52.14 55.40

TABLE II
INCREASINGLY DEEP CNN ARCHITECTURES WITH EITHER 3D OR FAST
3D CONVOLUTION BLOCKS, TRAINED AND TESTED ON EITHER UCF-101

OR HMDB-51. THE PROPOSED FAST 3D CONVOLUTIONS CONSISTENTLY

OUTPERFORM 3D CONVOLUTIONS IN EVERY TESTED ARCHITECTURE.

D. Network comparisons

To understand the overall performance of our introduced

FAST 3D convolution block, we compare its performance to

CNN architectures that are based on a separate treatment of

spatial 2D convolutions and optical flow, and based on 3D

convolutions. For the former category, we compare against the

Two-stream approach [28], based on two VGG-16 networks

for RGB and optical flow inputs, respectively. Long-Short-

Term-Memory (LSTM) networks have been used for the fusion

of the spatial and temporal information from the two streams

[38] (Two-stream + LSTM). Finally, we evaluate the perfor-

mance of Temporal Segment Networks [36], where videos are

divided into three segments with each of their predicted classes

fused to obtain a final score. We also compare against several

CNN architectures based on 3D convolutions, including the

C3D network [32]. We further investigate different architec-

tures of the proposed Pseudo 3D convolutions (P3D, [26])

and (2+1)D Resnet-152 [33] that incorporate 1× 3× 3 spatial

kernels and 3× 1× 1 temporal kernels. Lastly, we replicate a

spatial I3D network [3]. The memory requirements of other,

more recent, networks with higher reported scores on both

UCF-101 and HMDB-51 prevent us from testing these models.

All models have been trained and tested on their respective

datasets, and on the same machine. Differences between

reported numbers in literature are largely due to the batch

size, which we fixed to 8 for all models. This allows for a

fair comparison. Typically, performance will go up once large

batch sizes can be processed.

The performance of all tested architectures is summarized

in Table III. Several conclusions can be drawn from these

results. First, the effective modeling of temporal characteristics

is important. There is clear performance gain of LSTM fusion

and TSN over the regular Two-stream results. This is primarily

because the Two-stream approach is limited by processing the

spatial features in a per-frame fashion, and only considers

temporal information between subsequent frames. In contrast,

Method UCF-101 HMDB-51

2D CNNs with Two-stream approach

Two-stream [28] 73.0 40.5
Two-stream + LSTM [38] 82.6 47.1
TSN [36] 85.7 54.6

3D CNNs

C3D [34] 44.9 43.9
P3D [26] 83.2 45.1
(2+1)D ResNet152 [33] 85.7 45.8
RGB-I3D [3] 86.4 53.2

2D CNNs converted to FAST 3D convolutions

ResNet-50 84.6 45.9
ResNet-101 84.7 48.0
DenseNet-121 89.5 55.4

TABLE III
ACCURACY RATES OF CNN MODELS TRAINED ON UCF-101 AND

HMDB-51 DATASETS, DIVIDED INTO ARCHITECTURES THAT USE 2D
SPATIAL AND TEMPORAL INFORMATION IN SEPARATE PROCESSES

(TWO-STREAM APPROACH), 3D CONVOLUTIONS AND THE PROPOSED

FAST 3D CONVOLUTIONS ARE REPLACEMENTS OF 2D CONVOLUTIONS.

3D convolutions are trained over small spatio-temporal slices

and thus consider the temporal nature to a larger extent.

DenseNet-121 with FAST 3D convolutions is the best

performing tested architecture for both UCF-101 and HMDB-

51. Due to the larger number of skip connections in DenseNet,

in every pass both low-level and high level spatio-temporal

features are learned. It is clear that the decoupling of the 3D

spatio-temporal input into orthogonal spatio-temporal inputs

benefits from this. It is expected that the use of split-FAST

could further increase the performance.

V. CONCLUSION

We have introduced FAST 3D convolutions, a novel con-

volution block that combines a 2D spatial convolution with

two orthogonal spatio-temporal convolutions. The block is

motivated by the often characteristic horizontal and vertical

motion of human actions. In experiments on UCF-101 and

HMDB-51, the novel FAST 3D convolutions consistently

outperform 3D convolutions on ResNets with several depths

and DenseNet-121. We also presented a split-FAST block with

both motion directions in separate pathways, which increased

performance even further. The novel blocks generalize some-

what better, judging from the slightly lower validation loss.

In a comparison with CNN architectures with similar mem-

ory requirements, DenseNet-121 with FAST 3D convolutions

scored best.

Future experiments should additionally consider recently

introduced large action recognition datasets such as Kinetics

[18] and ActivityNet [11]. The FAST 3D convolution block

can be used in many CNN architectures. Adoption of the block

in state-of-the-art network architectures such as Squeeze-and-

Excitation Networks [13] and Neural Architecture Search

Networks [40] appears a promising direction to address human

action recognition tasks.
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