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Abstract
In an attempt to explore further the Madelung fluid-like representation of quantum 
mechanics, we derive the small perturbation equations of the fluid with respect to its 
basic states. The latter are obtained from the Madelung transform of the Schrödinger 
equation eigenstates. The fundamental eigenstates of de Broglie monochromatic 
matter waves are then shown to be mapped into the simple basic states of a fluid 
with constant density and velocity, where the latter is the de Broglie group veloc-
ity. The normal modes with respect to these basic states are derived and found to 
also satisfy the de Broglie dispersion relation. Despite being dispersive waves, their 
propagation mechanism is equivalent to that of sound waves in a classical ideal adi-
abatic gas. We discuss the physical interpretation of these results.

Keywords  De Broglie matter waves · Madelung fluid · Normal modes

1  Introduction

The hydrodynamic-like form of the Schrödinger equation has been suggested 
by Madelung [1] in 1927, less than a year after Schrödinger published his cel-
ebrated equation [2]. In this paper Madelung also showed that the eigenstates 
of the Schrödinger equation (hereafter SE) can be mapped into the steady states 
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(denoted as basic states) of the, now called, Madelung fluid. One of the most 
basic analysis of a fluid system is to find the normal mode solutions with respect 
to its basic states. These are the small amplitude wave-like perturbations superim-
posed on the basic states. Generally, the normal mode solutions form a complete 
set, hence any perturbation can be written as a linear combination of these normal 
modes. For instance, in the mid-latitudinal atmosphere, the large-scale basic state 
is the jet stream and the normal modes are the Rossby waves, whose interaction 
with the jet shapes the onset of weather systems [3]. Despite the ample literature 
on various physical and mathematical aspects of the Madelung fluid (e.g., Ref.   
[4] for a recent publication and a rich reference list therein), it seems that such 
a standard normal mode analysis has not been performed on the Madelung fluid.

Different basic states of flow accommodate different normal modes. The sim-
plest basic states usually provide the natural normal modes of the flow which 
describe the fundamental propagation mechanism within the flow. For instance, 
in classical compressible adiabatic flows, the natural normal modes are sound 
waves - compressible non-dispersive pressure waves. These are most easily 
obtained when assuming an unbounded basic state with a constant density �0 
which is either at rest or moves with a constant speed u0 (accounting for a Dop-
pler shift in the sound waves’ dispersion relation) [5]. For different basic states, 
e.g., in the presence of an external potential like gravity, physical boundaries or 
more complex velocity profiles, other set of normal modes emerge. Nevertheless, 
their underlying dynamics can be often explained by the fundamental propagation 
mechanism of sound waves.

This motivates us to provide an equivalent analysis of the natural normal 
modes of the Madelung fluid. Toward this end we first (in Sec.  2) summarize 
Madelung’s derivation of his fluid equations and then show how the eigenstates 
solutions of SE are mapped into the basic states of the Madelung flow. Next (in 
Sec.  3) we derive the small perturbation equations with respect to these basic 
states. Then (in Sec. 4) we consider the fundamental eigenstate solutions of the 
de Broglie monochromatic matter waves. We show that they are mapped into the 
Madelung basic states of constant density and velocity, where the latter is the 
de Broglie waves’ group velocity. Next, we derive their normal modes and show 
that they satisfy as well de Broglie dispersion relation. In Sec. 5 we analyze the 
normal modes propagation mechanism and show that they can be regarded as dis-
persive longitudinal pressure sound-like waves. In Sec. 6 we develop the normal 
modes wave energy-momentum relation and close in Sec.  7 by discussing our 
results.

2 � Basic States of the Madelung Fluid

Madelung [1] showed that when writing the wave function Ψ in its polar form:

(1)Ψ(x, t) =
√
�(x, t)eiS(x,t)∕ℏ ,
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the Schrödinger equation (using standard notation):

can be decomposed into two equations describing a fluid. The probability density 
function �(x, t) , to find a quantum particle with mass m at position x and time t, is 
interpreted now as the density of a fluid whose hydrodynamic velocity is propor-
tional to the gradient of the phase:

(where hereafter the tilde superscript denotes a quantity divided by m). The real part 
of SE becomes the continuity equation of a compressible fluid:

and its imaginary part becomes the time-dependent Bernoulli equation of a baro-
tropic flow (which can be regarded as a hydrodynamic Hamilton-Jacobi equation 
[6]):

Here K̃ =
1

2
u
2 is the fluid kinetic energy density, Q is the quantum potential (also 

known as the Bohm potential [7]):

where V is an external scalar potential. For a classical barotropic fluid Q̃ plays the 
role of its enthalpy in equation (5), while in the Madelung fluid its interpretation 
is more complex [6, 8]. Madelung assumed a simply connected domain so that the 
flow vorticity is zero ( � ≡ ∇ × u = ∇ × (∇S̃) = 0 ), applied the nabla operator on 
equation (5) and used the identity ∇K̃ ≡ u ⋅ ∇u − � × u = u ⋅ ∇u , which is the non-
linear advection term, to obtain the irrotational Euler fluid momentum equation:

Basic states of the Madelung fluids are time-independent (steady states) solutions 
(�, u) = (�0(x), u0(x)) . They satisfy the anelastic continuity version of equation (4):

and yield K̃0 and Q̃0 to be time independent as well. Therefore for a time-inde-
pendent external potential V, the RHS of equation (7) vanishes and the combina-
tion (K̃0 + Q̃0 + Ṽ) becomes a constant, denoted in fluid dynamics as the Bernoulli 
potential:

(2)i�
𝜕Ψ

𝜕t
= ĤΨ =

[
−
�2

2m
∇2 + V(x, t)

]
Ψ ,

(3)u(x, t) ≡ ∇S̃

(4)
��

�t
= −∇ ⋅ (�u) ,

(5)𝜕S̃

𝜕t
= −(K̃ + Q̃ + Ṽ) .

(6)Q̃ = −
(

�

2m

)2[
∇2 ln 𝜌 +

1

2
(∇ ln 𝜌)2

]
,

(7)
𝜕u

𝜕t
= −u ⋅ ∇u − ∇(Q̃ + Ṽ) = −∇(K̃ + Q̃ + Ṽ) .

(8)∇ ⋅ (�0u0) = 0 ,
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Consequently S̃0 = −Be0 t + F0(x) , where F0 is the velocity potential of u0 . Made-
lung noted that these basic state solutions are the mapped eigenstates of the time-
independent Schrödinger equation:

3 � Small Perturbation Equations for the Madelung Fluid

We now consider a basic state of the Madelung fluid (�0(x), u0(x)) , that is being per-
turbed by (��(x, t), u�(x, t)) , so that the total density and velocity fields are given by:

Linear combinations in the Madelung flow fields do not imply linear combinations 
in the wave function (Ψ ≠ Ψ0 + Ψ�) . Writing u� = ∇S̃�(x, t) , the wave function asso-
ciated with equation (11) reads:

This should not come as a surprise because the polar form equation (1) of Ψ yields 
a nonlinear relation between its squared amplitude � and its phase S (and hence u ). 
This is the reason why the linear SE is mapped into a nonlinear fluid system. Conse-
quently, linear combinations of the flow fields should not be mapped back into linear 
combinations of the wave function.

Next we follow the standard small perturbation linearization procedure applied in 
fluid dynamics, assuming the perturbations are small in comparison with the basic 
state: O

(
𝜌�∕𝜌0

)
= O

(
∣ u� ∣ ∕ ∣ u0 ∣

)
= 𝜖 ≪ 1 , and omitting all O(�2) terms from the 

equations [5]. Substitute (�, u) in the continuity equation (4), subtract the basic steady 
state (8) and the nonlinear O(�2) terms, we obtain the linearized Madelung continuity 
equation:

(where hereafter we use the common assumption of smoothness – that if a variable 
is small so are its spatial derivatives). To obtain the linearized momentum equation 
we first write ln � = ln �0 + ln

(
1 +

��

�0

)
≈ ln �0 +

��

�0
 , and next write write 

Q̃ = Q̃0 + Q̃� , where the expression for Q̃0 is the same as in the RHS of equation (6) 
when �0 is replaced by � . Hereafter we drop the tilde superscripts, unless they are 
required for clarity. For Q′ we obtain after linearization:

(9)K̃0 + Q̃0 + Ṽ = −
𝜕S̃0

𝜕t
= Be0 = const .

(10)EΦ0 = ĤΦ0 ; Ψ0 = Φ0(x)e
−iEt∕� ; Φ0 =

√
𝜌0e

imF0∕� ; Be0 = Ẽ .

(11)� = �0 + �� , u = u0 + u
� .

(12)Ψ =

⎡⎢⎢⎣

��
1 +

𝜌�

𝜌0

�
eiS

�∕�
⎤⎥⎥⎦
Ψ0 ≠ √

𝜌0e
iS0∕� +

√
𝜌�eiS̃

�∕� .

(13)
���

�t
= −∇ ⋅ (�0u

� + ��u0)
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After subtracting the basic state solution and the nonlinear small terms from equa-
tion (7), the linearized Madelung momentum equation reads:

Hence, given a basic state of the Madelung fluid (�0, u0) , mapped from a SE eigen-
state, equation-set (13) and (15) describe the evolution of their perturbed fields 
(��, u�).

4 � de Broglie Matter Waves as Both Basic States and Normal Modes 
of the Madelung Fluid

Consider the most fundamental eigenstate solution of SE - the monochromatic de 
Broglie matter wave, representing a free particle with momentum ℏk and unspeci-
fied position:

where �dB denotes the de Broglie frequency, k is the wavenumber vector and k is its 
magnitude. Writing S0 = ℏ(k ⋅ x − �dBt) ⇒ u0 = ∇S̃0 =

�

m
k = c

dB
g

 , which is the de 
Broglie group velocity. Thus, for a given wavenumber, the de Broglie plane wave 
solution of SE is mapped into a basic state of the Madelung fluid whose density and 
velocity (�0 , u0) are both constant in both time and space. The anelastic equation (8) 
is trivially satisfied and since Q0 vanishes and V is zero for a free particle, (9) yields:

Perturbing this basic state by (�� ,u�) and defining the linearized Lagrangian (mate-
rial) derivative as D

Dt
≡ (

�

�t
+ �� ⋅ ∇

)
 , the linearized continuity and momentum 

equations (13, 15) read:

where

(14)Q� = −
(

ℏ

2m

)2
[
∇2

(
��

�0

)
+ ∇ ln �0 ⋅ ∇

(
��

�0

)]
.

(15)�u�

�t
= −∇(u0 ⋅ u

� + Q�) .

(16)EΨ0 = −
ℏ2

2m
∇2Ψ0 ⇒ Ψ0 =

√
�0e

i(k⋅x−�dBt) ;E = ℏ�dB =
(ℏk)2

2m
,

(17)K0 =
1

2
u
2

0
=

1

2
c
2

g
=

1

2

(
�k

m

)2

= �𝜔̃dB = Ẽ = Be0 .

(18)
D

Dt

(
��

�0

)
= −∇ ⋅ u

� ,

(19)
D

Dt
u
� = ∇

[(
ℏ

2m

)2

∇2

(
��

�0

)]
= −

1

�0
∇p� ,
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can be regarded as the pressure perturbation in the Madelung fluid [8]. Equations 
(18)-(19) are then identical to the linearized equations of a classical ideal adiaba-
tic compressible gas, except that the pressure p ∝ �� (where � = Cp∕Cv is the ratio 
between its isobaric and isochoric heat capacities). Applying then D

Dt
 on Eq. (18) and 

using Eq. (19) we obtain:

Consider now the normal mode plane wave solutions: (𝜌� , u�) = (𝜌̂ , û)ei(k⋅x−𝜔t) , so 
that D

Dt
⇒ i(−� + k ⋅ u0) and ∇2

⇒ −k2 . Substituting back in Eq. (21), we obtain the 
normal mode dispersion relation:

where cdB
p

=
ℏk

2m
=

1

2
c
dB
g

 is the de Broglie phase speed. Hence, the normal modes sat-
isfy the two solutions for waves propagating in the same or opposite direction as u0 , 
respectively:

5 � Propagation Mechanism of the de Broglie Normal Modes

For an ideal adiabatic compressible gas, 
(
p�∕p0

)
= �

(
��∕�0

)
 , yielding p� = ��c2

s
 , 

where cs =
√
�RT0 is the magnitude of the non-dispersive speed of sound (and R is 

the ideal gas constant) [9]. From (20) we see that for the de Broglie normal modes 
p� = ��(cdB

p
)2 , hence, as suggested by [8], cdB

p
 plays the role of a dispersive quantum 

speed of sound.
Rewriting the dispersion relation (22) as: � = (�0 + k ⋅ cp) , where �0 = k ⋅ u0 , is 

the Doppler shift and cp = ±cdB
p

 is the intrinsic phase velocity of the wave, relative 
to the basic state flow, (19-20) yield the normal mode structure:

The longitudinal propagation mechanism of these waves are illustrated in Fig. 1. For 
positive direction of propagation relative to the basic flow ( cp = +cdB

p
 ), (u�, p�, ��) , 

are all in phase (24), see Fig. 1a. The wave propagation mechanism is such that the 
pressure gradient force accelerates/decelerates the velocity perturbation in con-
cert with the velocity convergence/divergence that increases/decreases the density 
and hence the pressure perturbation. As the pressure and density perturbations are 
always in phase, for cp = −cdB

p
 , the same mechanism is obtained when the veloc-

ity perturbation is in anti-phase with the density and the pressure perturbations, 

(20)p� = −
(

ℏ

2m

)2

∇2��

(21)D2

Dt2
�� = ∇2p� = −

(
ℏ

2m

)2

∇4�� .

(22)� = k ⋅ (u0 ± c
dB
p
) = k ⋅ (cdB

g
± c

dB
p
) ,

(23)ℏ�1 = 3ℏ�dB ; ℏ�2 = ℏ�dB .

(24)u
� =

��

�0
cp =

p�

�0c
2
p

cp .
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see Fig. 1b. The de Broglie modes are dispersive since the pressure perturbation is 
proportional to the negative of the second spatial derivative of the density. Conse-
quently, the generation of a density perturbation leads to a pressure perturbation that 
is amplified by the square of the wavenumber, see Fig. 1c. In contrast, for non-dis-
persive sound waves in ideal gas, the pressure and the density perturbations are pro-
portional to each other by a constant ( RT0 ) which is independent of the wavenumber.

Recalling that u� = ∇S̃� , the superposition of the basic states Eq. (16) and the two 
normal modes yields the wave function whose amplitude and phase read:

where 𝜖1,2 ≡ 𝜖1,2∕𝜖0.

(25)� = �0
[
1 + �1 cos(k ⋅ x − 3�dBt) + �2 cos(kx − �dBt)

]
,

(26)
S

ℏ
= (kx − �dBt) +

1

2

[
�1 sin(kx − �dBt) + �2 sin(kx − �dBt)

]
,

Fig. 1   de Broglie wave propagation mechanism: a positive (rightward) and b negative (leftward) propa-
gation. In each case, the situations at time t = 0 and t = T∕4 (where T = 2�∕�dB denotes time period) are 
shown. c The dispersive nature of the wave leads to a pressure perturbation, which is amplified by the 
square of the wavenumber. Note that the wavy structure of the velocity field is indicated by the alternat-
ing horizontal arrows
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6 � Energy‑Momentum Relations for de Broglie Normal Modes

SE conserves the energy expectation value [10]:

where d∀ denotes an infinitesimal volume element. As been shown by Ref.  [6], the 
quantum potential Q, which is not a positive definite quantity, can be written as:

where I can be regarded as the positive definite internal energy of the flow and p is 
the pressure. Assuming the density and its derivatives vanish at the domain bounda-
ries, then ∫ pd∀ = 0 and the Hamiltonian can be written as well as:

For the superposition of a basic state and a small perturbation of the form of (11), 
K =

1

2
(u0 + u

�)2 = K0 + u0 ⋅ u
� + K� , where K0 =

1

2
u
2

0
 and K� =

1

2
u
�2 . Keeping 

terms in the Hamiltonian up to second order of the perturbations, then for periodic 
perturbations we obtain:

Similarly, for the internal energy I = I0 +
(

ℏ

2m

)2

∇ ln �0∇
��

�0
+ I� , where 

I0 =
1

2

(
ℏ

2m
∇ ln �0

)2

 and I� = 1

2

(
ℏ

2m
∇

��

�0

)2

 , so that:

Assuming ∫ ��Vd∀ = 0 , we can write the Hamiltonian as:

where the last term in the integrand of ⟨H′⟩ vanishes when the density basic state �0 
is constant.

(27)⟨H⟩ = ∫ �(K + Q + V)d∀ .

(28)Q = I +
p

�
; I =

1

2

(
ℏ

2m
∇ ln �

)2

; p = −
(

ℏ

2m

)2

∇2� ,

(29)⟨H⟩ = ∫ �(K + I + V)d∀ .

(30)

⟨K⟩ = ∫ (�0 + ��)(K0 + u0 ⋅ u
� + K�)d∀ = ∫ (�0K0 + ��u0 ⋅ u

� + �0K
�)d∀ .

(31)⟨I⟩ = ∫
�
�0I0 +

1

2

�
ℏ

2m

�2

∇ ln �0∇

�
��

�0

�2

+ �0I
�

�
d∀ .

⟨H⟩ = ⟨H0⟩ +
�
H�

�
,

⟨H0⟩ = ∫ �0(K0 + I0 + V)d∀ ;

(32)
⟨
H�

⟩
= ∫

[
�0(K

� + I�) +

(
��u0 ⋅ u

� +
1

2

(
ℏ

2m

)2

∇ ln �0∇

(
��

�0

)2
)]

d∀ ,
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In the absence of an external potential V, SE conserves as well the momentum 
expectation value of the vector [10]:

where for small periodic perturbations:

In fluid dynamics 
⟨
P
′
⟩
 and ⟨H′⟩ are denoted by (the somewhat confusing name of) 

pseudo-momentum and pseudo-energy respectively and they represent the small 
perturbation contribution to the momentum and energy of the flow [11]. As the 
basic state is assumed constant both the pseudo-momentum and pseudo-energy are 
independently conserved. Furthermore, for the case where the basic state flow u0 is 
also constant, Eqs. (32) and (34) indicate that:

where E′ is the positive definite fluctuation (eddy) energy perturbation. Hence in the 
simple case where both �0 and u0 are constant ⟨E′⟩ is as well a constant of motion of 
the small perturbation dynamics.

For the de Broglie normal modes Eq.  (24) indicates that the eddy energy is 
equipartitioned between its kinetic and internal energy:

Furthermore, Eq. (24) as well that:

Hence Eq. (37) obeys the general wave relations of which the wave pseudo-momen-
tum is proportional to the intrinsic phase speed and flows in the same direction of 
the intrinsic phase velocity (relative to the basic state flow). The latter is evident 
from Fig. 1. When the correlation between the density and the wave velocity pertur-
bations is positive, as in Fig. 1a (negative, as in Fig. 1b), the longitudinal propaga-
tion mechanism yields positive (negative) phase speed of the modes. Moreover, it 
obeys as well the general relation in which the scalar product between the pseudo-
momentum and its intrinsic phase speed (yielding a positive scalar) is equal to the 
total eddy energy of the wave [12]. Using Eq.  (35) we obtain further the familiar 
relation between the wave pseudo-energy and the product between the phase speed, 
viewed from a frame of rest, and the pseudo-momentum:

(33)⟨P⟩ = ∫ �ud∀ ,

(34)⟨P⟩ = ⟨P0⟩ +
�
P
�
�
= ∫ �0u0d∀ + ∫ ��u�d∀ .

(35)
⟨
H�

⟩
=
⟨
E�
⟩
+ u0 ⋅

⟨
P
�
⟩
,

⟨
E�
⟩
= ∫ �0(K

� + I�)d∀ ,

(36)

⟨
K�

⟩
=
⟨
I�
⟩
=

1

4

(
𝜌̂

𝜌0

)2(
cdB
p

)2

⇒

⟨
E�
⟩
=

1

2

(
𝜌̂

𝜌0

)2(
cdB
p

)2

=

(
𝜌̂

2𝜌0

)2

�𝜔̃dB .

(37)
⟨
P
�
⟩
=

1

2

(
𝜌̂

𝜌0

)2

cp = ±
1

2

(
𝜌̂

𝜌0

)2

c
dB
p

⇒

⟨
E�
⟩
= �� ⋅

⟨
P
�
⟩
.
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7 � Discussion

The Madelung transformation of the Schrödinger equation into the equations of an 
irrotational compressible fluid provides an alternative semi-classical perspective on 
quantum phenomena. For instance, quantum tunneling, described by the Madelung 
fluid, has a straightforward interpretation—the pressure gradient force of the fluid 
balances the gradient of the external potential barrier, so that the sum of the kinetic 
and internal energy of the fluid remains unchanged when crossing the barrier [13]. 
This, together with other examples [14–16], suggest that it seems worthwhile to con-
sider quantum phenomena from the Madelung fluid angle by implementing standard 
analytical tools of classical fluid dynamics.

As in every nonlinear dynamical system, the first step of the analysis is to find the 
equilibrium fixed points of the system. These are the basic states of the flow, which 
for the Madelung fluid are the eigenstates of the Schrödinger equation. We find it 
neat that the energy eigenvalues are mapped into the constant values of the Bernoulli 
potential of the Madelung basic states. The next step is analyzing the behavior of 
the system in the vicinity of the fixed points. These are described by the linearized 
small perturbation equations with respect to the basic states. The following step of 
the standard analysis is to span the small perturbations into their normal mode solu-
tions and analyze their physical properties. These include their dispersion relation 
and physical structure as well as their propagation mechanism. Generally, in classi-
cal fluids, normal modes may be unstable and grow on the expense of the basic state 
energy. A necessary condition for that to happen is that both of the small amplitude 
conserved quantities of pseudo-energy and pseudo-momentum are zero (interest-
ingly, these conditions for classical fluids were first formulated in the PhD thesis of 
Heisenberg, supervised by Sommerfeld [17]). The perturbations in the Madelung 
fluids however are stable by definition as they are composed of a superposition of 
stable eigenstates of the Schrödinger equation. Hence these two constant of motion 
of small perturbation dynamics cannot vanish simultaneously in the Madelung fluid.

The simplest and usually most fundamental normal modes are the ones obtained 
with respect to the simplest non-trivial basic states. In classical fluids the latter are 
usually represented by uniform constant density and velocity, in the absence of 
imposed boundaries and external potentials. It is elegant that the de Broglie non-rel-
ativistic monochromatic matter waves, representing quantum particles whose posi-
tions are unspecified but whose velocities are the wave group velocities, are mapped 
into Madelung basic states whose densities are uniform and whose constant veloci-
ties are equal to the ones of the particles. Nonetheless, from the Schrödinger equa-
tion itself we cannot come up with a mechanistic explanation for the propagation of 
these matter waves whose phase velocity is equal to half of their group velocity. To 
give a counter example, for surface gravity waves in deep water it is the other way 
around - their group velocity is equal to half of their phase velocity. There we can 
come up with a mechanistic explanation for the wave propagation in terms of the 

(38)
⟨
H�

⟩
=
⟨
E�
⟩
+ u0 ⋅

⟨
P
�
⟩
= (cp + u0) ⋅

⟨
P
�
⟩
.



1 3

Foundations of Physics           (2023) 53:35 	 Page 11 of 12     35 

interplay between the horizontal pressure gradient force accelerating/decelerating 
water columns and the convergence/divergence of these water columns whose eleva-
tion differences determine, in turn, the changes in the pressure gradient force [5].

It is interesting that when performing the normal modes analysis with respect to 
these basic states we find that the normal modes themselves obey the same disper-
sion relation as the de Broglie matter waves. Their propagation mechanism can then 
be explained as longitudinal dispersive pressure waves, which can be regarded as 
dispersive sound-like waves, as suggested heuristically by [8]. In distinction to non 
dispersive sound waves in classical adiabatic compressible fluids, their dispersive 
properties result from the fact that the pressure perturbation in the Madelung fluid 
is proportional to minus the Laplacian of the density perturbation (rather than the 
density perturbation itself, as in classical adiabatic fluids). Hence, the fundamental 
de Broglie matter waves are “imprinted” in the Madelung fluid. Their particle repre-
sentation yields its basic states whereas its wave dynamics yields its normal modes.

For future work we intend to map eigenstate solutions of the Schrödinger equa-
tion (such as in the presence of parabolic, rectangular barrier and square well poten-
tials) to their corresponding Madelung basic states and then analyze their normal 
modes, respectively. We expect that such analyses will provide new insight on these 
familiar fundamental problems.
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