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A B S T R A C T   

Introduction: Radiofrequency electromagnetic fields originate from a variety of wireless communication sources 
operating near and far from the body, making it challenging to quantify daily absorbed dose. In the framework of 
the prospective cohort SCAMP (Study of Cognition, Adolescents and Mobile Phones), we aimed to characterize 
RF-EMF dose over a 2-year period. 
Methods: The SCAMP cohort included 6605 children from greater London, UK at baseline (age 12.1 years; 
2014–2016) and 5194 at follow-up (age 14.2; 2016–2018). We estimated the daily dose of RF-EMF to eight 
tissues including the whole body and whole brain, using dosimetric algorithms for the specific absorption rate 
transfer into the body. We considered RF-EMF dose from 12 common usage scenarios such as mobile phone calls 
or data transmission. We evaluated the association between sociodemographic factors (gender, ethnicity, phone 
ownership and socio-economic status), and the dose change between baseline and follow-up. 
Results: Whole body dose was estimated at an average of 170 mJ/kg/day at baseline and 178 mJ/kg/day at 
follow-up. Among the eight tissues considered, the right temporal lobe received the highest daily dose (baseline 
1150 mJ/kg/day, follow-up 1520 mJ/kg/day). Estimated daily dose [mJ/kg/day] increased between baseline 
and follow-up for head and brain related tissues, but remained stable for the whole body and heart. Doses 
estimated at baseline and follow-up showed low correlation among the 3384 children who completed both as-
sessments. Asian ethnicity (compared to white) and owning a bar phone or no phone (as opposed to a smart-
phone) were associated with lower estimated whole-body and whole-brain RF-EMF dose, while black ethnicity, a 
moderate/low socio-economic status (compared to high), and increasing age (at baseline) were associated with 
higher estimated RF-EMF dose. 

Abbreviations: ANOVA, Analysis of variance; DECT, Digital Enhanced Cordless Telecommunications; IEM, Integrated Exposure Model; RF-EMF, radio-frequency 
electromagnetic fields; SAR, Specific Absorbtion Rate; SCAMP, Study of Cognition, Adolescents and Mobile Phones; SES, Socio-economic status; UMTS, Universal 
Mobile Telecommunication System; VoLTE, Voice over LTE (Long-Term Evolution). 
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Conclusion: This study describes the first longitudinal exposure assessment for children in a critical period of 
development. Dose estimations will be used in further epidemiological analyses for the SCAMP study.   

1. Introduction 

Generation Z, typically defined as those born between 1997 and 
2010, is growing up surrounded by mobile communication technologies. 
They use mobile phones, tablets and laptops both in their education and 
during leisure time, and this has impacted their lives in many ways. 
Concern about exposure to radiofrequency electromagnetic fields (RF- 
EMF) is largely focused on this age group because 1) their brain is still 
developing (Kheifets, 2005; Feychting, 2005); 2) they are and will be 
using these devices a lot into the future (Sudan, 2016) and will thus have 
a high lifetime cumulative exposure compared to previous generations; 
and 3) their brain typically experiences higher exposures than adults 
under the same exposure conditions because of skull morphology 
(Christ, 2010). Children, adolescents and young adults have therefore 
been targeted as the study population of several major research projects 
on exposure measurements. 

So far, findings from previous studies regarding the relationship 
between RF-EMF exposure and cognitive function (in children and 
adults) have been inconsistent (Thomas, 2010; Birks, 2018; Cabré-Riera, 
2021; Ishihara, 2020; Foerster, 2018). Most previous research is cross- 
sectional and thus the possibility of reverse causality remains: is the 
change in cognitive performance a result of exposure, or the other way 
around? It is also difficult to disentangle any health effects caused by RF- 
EMF of wireless communication devices from other consequences of 
device use, such as sleep displacement (Foerster, 2019; Mireku, 2019), 
reduced physical activity (Pereira, 2020) and cognitive training (Chetty- 
Mhlanga, 2020). Therefore, a better understanding of RF exposure and 
e-media use is necessary for understanding health effects, particularly in 
children and adolescents. 

The SCAMP cohort (Study of Cognition, Adolescents and Mobile 
Phones) is a prospective cohort study in 6905 adolescents from greater 
London, UK, which investigates the cognitive and behavioural outcomes 
of the use of mobile communication technologies (Toledano, 2019). 
SCAMP specifically aims to disentangle to what extent any associations 
are due to RF-EMF emitted by mobile phones specifically, by the totality 
of RF-EMF exposures incurred from communication devices, or due to 
behavioural and usage related reasons (irrespective of RF-EMF expo-
sure) (Toledano, 2019). Thus, adequate characterisation of RF-EMF 
exposure is a key aspect of this study. 

While personal measurements of RF-EMF give a quantitative and 
relatively complete, but short-term indication of the exposure (Eeftens, 
2018; Jalilian, 2019), they are short-term assessments only and are not a 
practicable solution for larger groups. Such measurements are appro-
priate to quantify electric fields for quasi-homogeneous RF-EMF from 
sources operating far from the body (i.e. RF-EMF exposure from envi-
ronmental sources such as mobile phone base stations or WiFi access 
points) but do not adequately take into account RF-EMF arising from 
personal usage of devices operating close to the body, which has been 
shown to account for the major part of RF-EMF exposure (Roser, 2015; 
van Wel, 2021). For these so-called near-field sources, dosimetric ap-
proaches are needed to quantify the specific absorption rate (SAR in W/ 
kg tissue weight) by considering the coupling between transmitter and 
the body. 

A combined metric for the RF-EMF dose from near and far-field 
sources, defined as the cumulative SAR (in J/kg/day) was first intro-
duced as part of two Swiss studies (Roser, 2015; Lauer, 2013), and was 
further developed within the GERoNiMo study (Generalised EMF 
Research using Novel Methods – an integrated approach: from research 
to risk assessment and support to risk management) (van Wel, 2021; 
Liorni, 2020) and applied by more recent studies (Cabré-Riera, 2021; 

Foerster, 2018; Cabré-Riera, 2020). This RF-EMF dose model combines 
dose contributions from both near-field and far-field sources based on 
specific transfer algorithms (Liorni, 2020), and considers body charac-
teristics as well as typical common usage scenarios, which might affect 
the position of the source in relation to the body (e.g. making a phone 
call with the phone next to the head versus in hands-free mode) (van 
Wel, 2021). 

The objective of this study is to apply the RF-EMF dose model within 
the SCAMP cohort to specific tissues and the whole body at two different 
time points at baseline (age of children approximately 12 years), and at 
follow-up (around age 14 years). The results of the dose modelling are 
described according to the relevance of various contributors to different 
tissues and organs, the longitudinal development of the estimated dose 
between baseline and follow-up, and by phone ownership and socio- 
demographic factors (sex, socio-economic status, ethnicity, age). 

2. Methods 

2.1. Study population, sociodemographic factors 

The SCAMP study approached secondary schools across greater 
London, of which 39 schools finally took part in the study (Toledano, 
2019). Baseline data collection was conducted in Year 7 between 
November 2014 and July 2016 and the follow up was conducted 
approximately two years later, in Year 9/10. Extensive public engage-
ment and involvement work was conducted to minimize attrition, spe-
cifically for traditionally underrepresented groups (Bruton, 2020). 
During the same periods as the baseline and follow-up school assess-
ments, a subset of the children from 12 out of 39 schools additionally 
took part in the “Bio-Zone” assessments (Toledano, 2019; Shen, 2021): 
face-to-face individual examinations by cohort staff (non-invasive bio-
logical samples and anthropometric measurements). Table 1 lists the 
data derived from each of the five specific assessments relevant for the 
RF-EMF dose modelling specifically. 

2.2. Integrated exposure model estimating daily RF dose 

We used the “Integrated Exposure Model” (IEM) dose model, pub-
lished by van Wel et al. (van Wel, 2021) and Liorni et al. (Liorni, 2020), 
to estimate daily RF-EMF dose in millijoules per kilogram per day (mJ/ 
kg/day). The IEM was designed to include a diversity of current and 
near-future sources of RF-EMF (van Wel, 2021), based on specific ab-
sorption rate transfer algorithms (SAR) developed by Liorni et al. 
(Liorni, 2020). Personal exposure to individual sources of RF-EMF may 
be quantified by the absorbed power averaged over a certain mass or 
volume, using the specific absorption rate (SAR). The SAR depends on 
characteristics of persons and tissues, and properties of the RF-EMF 
source, which are both considered by the transfer algorithm. The IEM 
estimates the integrated daily dose for to 64 different anatomical sites 
(hereafter called “tissues”), including the whole body, different organs 
(e.g. brain, heart), as well as specific brain regions. We present here the 
results for eight of 64 tissues, relevant for the SCAMP study context: the 
temporal lobes (left and right), the midbrain, heart, the right and left 
brain halves, the whole brain and the whole body. This model requires 
several different inputs: personal information, use scenarios, technical 
settings of the devices, and far-field contributions from environmental 
sources. 
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2.3. Personal information 

For our estimates, we considered the following personal information. 
Sex, age, height and weight of the child is an input to determine the body 
type used in the transfer function of the model and to estimate the 
weight of the various organs and tissues for which predictions are being 
made. These data were typically available from assessments, A3 and A4 
(see Table 1). If missing, we filled these in with data from assessments 
A1 and A2, and lastly from A5 (see Online Supplement Table 1). Ques-
tionnaires A1 and A2 included a question about handedness (whether 
the child was left- or right-handed). We assumed that they held their 
phone in their dominant hand 80% of the time, and in their non- 
dominant hand 20% of the time (Langer, 2017). For children who did 
not indicate a preference, we assumed they used their phone 50% for 
each side. The dose model further required the input whether the main 
mobile phone of each subject was a smartphone or a bar/flip phone. 
Phone ownership was assessed at both A1 and A2, whether the children 
owned a phone and whether or not this was a smartphone. 

2.4. Use scenarios 

Use scenarios (hereafter called “scenarios”) refers to the use of 
different devices (e.g. phones, tablets, laptops) in different positions (e. 
g. held next to the head, on the lap) during different exposure situations 
related to the use-specific to activity (e.g. a video call on WiFi or a 
mobile network call on the UMTS network). Children were asked via 
questionnaire to estimate the duration of mobile device use when chil-
dren were in Year 7 (see Table 1: A1) and in Years 9–10 (see Table 1: 
A2). 

Out of 28 scenarios defined in the dose model, we used 12 scenarios, 
compatible with the data available from the questionnaires. Briefly, the 
RF-EMF dose model required an estimate of the duration of the activ-
ities: 1 mobile phone calls near the head on the 2G network; 2) mobile 
phone calles near the head on the 3G/4G network; 3) use of a DECT 
phone near the head; 4) phone calls while wearing a headset; 5) phone 
data use; 6) phone use in front of the eyes (e.g. video calls while holding 
the phone when watching the screen); 7) phone use in hands-free mode 
(e.g. video calls while the phone is on a horizontal surface in front); 8) 
laptop use; 9) exposure from the phone in standby mode while it is worn 
on the body (e.g. in pocket); 10) tablet use; and 11) exposure from WiFi 
routers; 12) far field exposure. Each of these scenarios further required 
the specification of a power output for the device used in the scenario in 

that specific position. These values were adopted from previous appli-
cations of this model (van Wel, 2021; Cabré-Riera, 2020; Birks, 2021). 

2.5. Technical settings related to scenarios 

Several technical settings describe the behaviour of the mobile phone 
in the network such as proportion of 2G and 3G calls or the frequency 
band for transmission. These were not assessed at an individual level and 
were therefore chosen to be the same across the entire cohort, for both 
baseline and follow-up. We assumed that the proportion of time the 
phone is used to call at low (800–900 MHz) and at high frequencies 
(1800–2100 MHz) were assumed to be 0.36 and 0.64 respectively, in 
accordance with previous studies (van Wel, 2021; Liorni, 2020) and the 
RF-EMF default. We assumed that approximately one third of the calls 
happened on 2G, 3G and 4G (VoLTE; voice over LTE) and assumed that 
4G calls result in the same average SAR as 3G (Joshi, 2017). Each device 
used in the different use scenarios (see next paragraph) was allocated a 
typical output power as described in Online Supplement Table 2, and as 
done in previous studies (van Wel, 2021; Liorni, 2020). 

2.6. Far-field RF from environmental sources 

Exposure from far field sources including mobile phone base stations 
and broadcast transmitters was estimated from personal measurements 
collected in a subset of 148 children from the SCAMP cohort between 
December 2015 and November 2018 (Schmutz, 2022). Following a 
protocol from several earlier studies (Eeftens, 2018; Roser, 2017), 
children were asked to carry an ExpoM-RF personal radiofrequency 
exposimeter (Fields At Work, Zurich, Switzerland (Fields at Work, 2021) 
for at least 24 h, while behaving as usual and using their phone and any 
other devices as usual. Meanwhile, they kept track of the duration of 
time they spent in five main activities: at home, at school, travelling, 
outside and miscellaneous, using a diary app on a study-provided 
smartphone which was locked in flight mode. The activity diary was 
verified by GPS coordinates and corrected where necessary by the study 
team (Schmutz, 2022). The ExpoM-RF measures 16 frequency bands 
commonly used by wireless communication and broadcasting services in 
the range of 87.5 to 5875 MHz and logs a measurement every 4 s. 

We summarized the children’s exposures at home, at school and 
overall, by taking the geometric mean of the children’s personal time- 
weighted geometric means (n = 148) for each of the 16 frequency 
bands measured by the ExpoM-RF. We considered the resulting far-field 

Table 1 
Data relevant to the dose modeling as captured at each assessment.   

Assessment Location of 
assessment 

Median age at 
assessment 

Main information relevant to dose modeling N 

A1 Baseline school assessment (November 2014 – 
July 2016) 

School 12.1 years (IQR: 
11.8–12.3) 

Electronic device use: mobile phone, cordless phone, cordless phone, 
laptop, tablet, game console, and internet use both at school and at 
home. 
Anthropometric information: height, weight, sex, handedness 
Demographics: socio-economic status (parental education, profession) 
Environmental: duration and mode of travelling to school 

6605 

A2 Follow-up school assessment (November 2016 – 
July 2018) 

School 14.3 years (IQR: 
13.9–14.6) 

Electronic device use: mobile phone, cordless phone, cordless phone, 
laptop, tablet, game console, and internet use both at school and at 
home. 
Anthropometric information: height, weight, sex, handedness 
Demographics: socio-economic status (parental education, profession) 
Environmental: duration and mode of travelling to school 

5194 

A3 Baseline biological samples collection (SCAMP 
“Bio-Zone”; March 2015 – July 2016) a 

School 12.4 years (IQR: 
12.1–12.6) 

Anthropometric measurements: height, weight, sex. 1705 

A4 Follow-up biological samples collection (SCAMP 
“Bio-Zone”; November 2016 – July 2018) a 

School 14.4 years (IQR: 
14.0–14.6) 

Anthropometric measurements: height, weight, sex. 1338 

A5 Parental online home questionnaire (November 
2014 – October 2018) 

Home 12.1 years (IQR: 
11.8–12.4) 

Electronic device use: mobile phone ownership, internet use, WiFi 
availability, cordless phone and the location of its base station 
Anthropometric information: height, weight 
Demographics: socio-economic status (education, profession) 

772  

a Only 2270 children from 12 out of 39 schools were invited to this supplementary assessment (Toledano, 2019; Shen, 2021). 
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exposure was representative of the average reported activity duration 
for this subset of SCAMP children: 14.1 h at home, 5.7 h at school, 0.8 h 
outside, 1.1 h in transport and 2.3 h in miscellaneous other environ-
ments. Since the ExpoM-RF device is unable to discriminate between 
different sources of RF-EMF (e.g. if the carrier was using their own 
mobile phone, or sitting on the bus next to another user), it also 
measured uplink from the participants’ phones. The “own use” contri-
bution was estimated to account for 93% of total uplink in personal 
measurements (Struchen, 2016). Hence, the personal measurement 
uplink band contribution was reduced to 7% to eliminate the double 
count of own phone use in the model, and reflect the environmental 
contribution only. 

2.7. Sociodemographic factors 

Sociodemographic factors were collected from different question-
naire assessments: sex was reported by the children themselves in A1, 
and socio-economic status (SES) and parental education were collected 
from the parental assessment A5. 

2.8. Statistical analysis 

All analyses were performed using R version 4.0.3 (R Core Team and 
R, 2020). We analysed:  

1. The extent to which each of the scenarios contributed to the daily 
total RF-EMF dose to each of these eight tissues, and calculated 
mean, median and 5th and 95th percentiles of the total dose to each 
of these eight organs.  

2. The increase in estimated daily dose in mJ/kg/day at follow-up (as 
compared to baseline) for the subset of children whose dose we were 
able to model at both time points. We evaluated this as a mixed 
model (R package “lme4”) with random intercepts for personal ID.  

3. For the same subset of children whose dose we modelled at both time 
points, we calculated the correlation R2 of estimated dose between 
baseline and follow-up.  

4. The contribution of each of the 12 exposure scenarios to the total 
dose, both in absolute [mJ/kg/day] and relative (% of the total) 
terms. 

5. Differences in estimated dose by sex, ethnicity, SES, phone owner-
ship (smartphone, barphone or no phone) and age. Separately 
baseline and follow-up, we used a multivariable generalized linear 
regression model, evaluating the association between log(dose) and 
mutual associations of each of the variables mentioned above. In 
addition, for those participants for whom a dose estimate was 
available at both time points, we modelled if the change between 
baseline and follow-up (calculated as follow-up minus baseline, for 
the respective tissues) is related to these same factors. This Δ dose 
can be negative (i.e. indicating a dose decrease between baseline and 
follow-up), and therefore change is modelled as an absolute dose 
increment of 1000 mJ/kg/day (logging negative values is not 
possible). 

3. Results 

We were able to perform dose-modelling calculations for 6152 out of 
6605 participants for baseline (93.1%) and for 5045 out of 5194 par-
ticipants for follow-up (97.1%) (Online Supplement, Fig. 1). As detailed 
in a previous publication (Shen, 2022), loss of follow-up was mainly due 
to schools dropping out for follow-up assessment and logistical issues 
with school timetables, and therefore, loss to follow-up was assumed to 
be at random. Dose estimates were available at both time points for 3384 
children. Inability to run the dose model was due to missing input data: 
participants not reporting the duration of phone calls (baseline n = 65; 
follow-up n = 43), DECT calls (n = 68; n = 48), phone data use (n = 64; 
n = 43), tablet use (n = 265; n = 108), laptop use (n = 264; n = 106) and 

WiFi use (n = 58; n = 0) for baseline and follow-up respectively. Many 
participants had missing usage data for several of the above. 

3.1. Study population characteristics 

Children included in baseline dose modelling had a median age of 
12.1 years, while those included in the follow-up two years later were a 
median of 14.2 years old (Table 2). The distributions of sex, socio- 
economic status and ethnicity were very similar for children included 
in baseline and follow-up questionnaires and in the group for which we 
could model dose at both time points (Table 2). Smartphone ownership 
increased from 73.7% at baseline to 90.1% at follow-up and duration of 
phone calls, WiFi internet use and mobile network internet use increased 
accordingly. Duration of calls using DECT phones remained the same. 
Duration of tablet use decreased, while duration of laptop use increased 
between baseline and follow-up. 

3.2. Modelled daily RF dose to brain tissue 

Mean and median (P5-P95) model-estimated daily dose is shown in 
Fig. 1 for both baseline and follow-up. Of the eight tissues analysed, 
mean total dose was estimated to be highest to the right temporal lobe 
for both baseline (1150 mJ/kg/day) and follow-up (1520 mJ/kg/day), 
followed by the left temporal lobe. Estimated daily dose was lower at 
baseline than at follow-up for all tissues except the heart (p < 0.001). 
Differences were small for heart and whole body dose, which were 
estimated at an average of 37.0 mJ/kg/day and 170 mJ/kg/day at 
baseline and 31.1 mJ/kg/day and 178 mJ/kg/day at follow-up. Mean 
estimated whole brain dose was on average 347 mJ/kg/day at baseline 
and 442 mJ/kg/day at follow-up. 

3.3. Longitudinal development of RF-EMF dose over time 

We note that the populations at baseline (n = 6152) and follow-up (n 
= 5045), displayed in Fig. 1, were partly different, and a direct com-
parison is best made based on the 3384 adolescents for whom dose 
modelling was successful at both baseline and follow-up to avoid 
possible selection bias. Table 3 shows the estimated increase of daily 
modelled dose to each tissue at follow-up (compared to baseline), for 
this select group. 

Fig. 2 shows the correlation between daily dose calculated at base-
line and at follow-up for the 3384 children whose dose could be esti-
mated at both time points. A low, but significant positive correlation was 
observed between dose estimated at these different time points for all 
tissues, with highest Pearson correlation for whole-body dose (R = 0.36) 
and lowest for heart (R = 0.25). 

3.4. Contributions of RF-EMF scenarios to the total dose 

Fig. 3 shows the mean absolute and relative contributions of the 
twelve scenarios to the total dose for each of the eight tissues, and in 
addition, the median (and 5th and 95th percentiles) are presented in 
Online Supplement Tables 3A to 3D. Mobile phone calls on the 2G 
network are the predominant contributor to the total dose for all six 
head and brain-related tissues, contributing on average 55.1% to 66.0% 
for baseline and 61.7% to 74.0% for follow-up. Contributions to whole 
body dose were quite diverse, and –for baseline and follow-up 
respectively– were predominantly made up of mobile network calls on 
the 2G network (16.8% and 17.3%), contributions from WiFi devices (e. 
g. router, game console and smart TV; 22.6% and 23.8%), mobile phone 
data use (18.0% and 25.8%) and tablet use (16.6% and 9.2%). Dose to 
the heart was in general much lower, and predominantly originated 
from mobile phone data (45.1% and 62.8%) and tablet use (44.5% and 
24.6%) for baseline and follow-up, but here we note that these relatively 
low results are because the model does not specify a SAR transfer 
function for devices which were used near the head (e.g. mobile phones) 
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Table 2 
Study population characteristics and duration of mobile communication technologies at baseline and follow-up.  

a Children for whom both baseline and follow-up dose modelling were successful (N = 3384). 
b We compare time-varying factors, for the changes within the group of children for whom both baseline and follow-up dose modelling were successful (n = 3384). 
c The categories moderate SES and low SES were combined because the latter category would be very small otherwise. 
d Fisher’s exact test (R package “stats”). 
e ANOVA (R package “tableone”). 
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or for far field. 
Differences between the baseline and follow-up were generally 

small, but at follow-up, a slightly higher percentage of the total dose to 
all tissues originated from mobile phone related scenarios: notably 
mobile network calls on the 2G network and mobile phone data use. 
Meanwhile, there was a decrease in both absolute and relative dose 
contributions originating from DECT phones and tablets between base-
line and follow-up. 

3.5. Associations between socio-demographic factors and modelled daily 
RF dose 

Table 4 shows the associations between whole body and whole brain 
dose and sex, ethnicity, socio-economic status, smartphone ownership 
and age, for both baseline and follow-up. Associations for the six other 
tissues (brain left, brain right, heart, midbrain, temporal left and tem-
poral right) can be found in Online Supplement 4. 

On average, boys had a slightly higher whole body dose than girls for 

baseline, but this reversed in the follow-up. Boys experienced a lower 
dose to the brain than girls did, and this difference became larger be-
tween baseline and follow-up, due to a smaller increase in dose in boys. 
In terms of ethnicity, black children had the highest whole body and 
whole brain dose at baseline and follow-up, while Asian children had the 
lowest. The associations with SES tended towards a slightly higher dose 
for “Other” (including both the moderate SES and low SES categories) as 
opposed to “High” NSSEC-5 children for whole body and whole brain 
dose, both at baseline and follow-up, where NSSEC-5 is the National 
Statistics Socioeconomic Classification using 5 levels (Rose and Pevalin, 
2010). Bar phone ownership resulted in a substantially lower dose for 
both whole body and whole brain than smartphone ownership (the 
reference), because of lower use, and this difference was even more 
pronounced for whole body than for whole brain. Having no phone at all 
was associated with an even lower whole body dose of on average 
around 40% and 42% (baseline and follow-up, respectively) that of 
smartphone owners, and a whole brain dose which was only 14% and 
14% of that of smartphone owners. Large increases in estimated both 
whole brain and whole body dose occurred in children who did not have 
a smartphone at baseline, but acquired one at follow-up (n = 733). 
Children who had a smartphone at baseline rarely gave it up at follow-up 
(n = 104), but unsurprisingly, this was associated with a large reduction 
in estimated dose, most notably for whole brain. Even though the age 
range within the baseline and follow-up assessments was limited, 
because all children were recruited from the same school year, body and 
whole brain dose were still found to increase significantly with age at 
baseline. This age-gradient was no longer present at follow-up. 

4. Discussion 

This study describes the results of a comprehensive RF-EMF dose 
model for the participants of the SCAMP cohort at both baseline and 

Fig. 1. Mean and median (P5-P95) daily dose of RF-EMF in mJ/kg/day for baseline (n = 6152) and follow-up (n = 5045) for each of eight specific tissues as modelled 
by the dose model. 

Table 3 
Increase of daily modelled dose at follow-up (as compared to baseline) for each 
tissue (n = 3384).  

Tissue Increase at follow-up [mJ/kg/day] (95% confidence interval) a 

Brain left 77.14 (53.18, 101.09) 
Brain right 129.98 (94.85, 165.12) 
Heart − 3.57 (-5.16, − 1.99) 
Midbrain 72.25 (52.75, 91.74) 
Temporal left 192.3 (127.98, 256.62) 
Temporal right 379.95 (274.72, 485.18) 
Whole body 18.05 (12.54, 23.57) 
Whole brain 104.47 (77.21, 131.74)  

a Results of a mixed model with random intercept for each participant. 
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follow-up, which will be used in further epidemiological analyses for the 
SCAMP study. We found that phone calls on the 2G network contribute 
most of the total daily dose at both the baseline and follow-up time 
points in exposure to the head and brain-related tissues. 

4.1. Comparison to other studies 

Median whole body (111 mJ/kg/day at baseline; 137 mJ/kg/day at 
follow-up) and whole brain dose (155 mJ/kg/day; 188 mJ/kg/day at 
follow-up) in our sample were in the same range as previously observed 
in Spanish and Dutch children aged 9–12 years (whole body: 84 mJ/kg/ 
day; whole brain: 82 mJ/kg/day) (Birks, 2021) using the same inte-
grated exposure model. They were also similar to the doses observed for 
Spanish and Swiss adolescents aged 14 to 18 years (whole body: 42 mJ/ 
kg/day and whole brain: 330 mJ/kg/day) (Birks, 2021) and adults from 
four European countries (whole body: 184 mJ/kg/day, whole brain: 
204 mJ/kg/day). Differences mostly reflect different patterns of mobile 
phone call duration. 

Over the course of our study, dose contributions from environmental 
sources and use of devices, which are typical for communal use, such as 
DECT phones and WiFi routers, and tablets did not change much. In 
contrast, an increase with age in mobile phone use for data transmission 
and calling resulted in higher corresponding contributions to the dose 
estimates at follow-up compared to baseline: a pattern which was also 
observed in previous studies (Birks, 2021). Similar to our study, previous 
research has also found that females and older children report longer 
call duration (Langer, 2017; Birks, 2021), more data usage (Birks, 2021) 
and generally higher doses of RF-EMF to the head and brain (Birks, 
2021). Smartphone ownership (versus owning a bar phone or no phone 
at all) was the predominant determinant of estimated dose both at 
baseline and follow-up. Unsurprisingly, the acquisition or giving up of a 
smartphone was a strong determinant of the change in estimated dose 
between baseline and follow-up. 

The low correlation between estimated dose at baseline and at 
follow-up suggests that dose estimates have a limited longevity, and may 

not be representative for a child’s typical (long-term) exposure situation. 
This may indicate that over a period of two years, usage and behaviour 
with regard to use of mobile communication technologies changes a lot 
in this age group, which is indeed known as a transition from childhood 
to adolescence. 

4.2. Strengths and limitations 

This is the first study to present repeated estimates of modelled RF 
dose in a large number of children prospectively, allowing for a longi-
tudinal change analysis. Compared to a previous cohort study (Roser, 
2015) the SAR transfer algorithms have been updated in response to 
technological development and dosimetric research and have been 
expanded to 64 specific tissues and organs within the body (Liorni, 
2020). We presented results for eight tissues most relevant for the 
SCAMP study. However, we note that no SAR transfer function was 
available for dose to the heart for devices which were used near the head 
(e.g. mobile phones) or for far field. This explains the relatively low (and 
likely underestimated) total absolute dose to the heart as compared to 
other organs, estimated, as well as a different distribution. 

A particular asset of the RF-EMF dose model is the combination of 
near-field (usage and behaviour-related) and far-field (environmental, e. 
g. mobile phone base stations, WiFi access points, broadcast towers) 
sources, allowing us to consider exposure resulting from a total of 12 
common exposure scenarios. This allows for a targeted assessment of 
dose to organs of interest to serve the analysis of the health outcomes of 
interest in subsequent epidemiological analyses. 

The RF-EMF dose model considers source specific attributes (source 
type, output power, operating frequency), personal characteristics (body 
mass, weight), and the specific exposure scenario (position relative to 
the body, type of use, duration of use). These elements allow for more 
precise dose estimation and insight into the contribution of different 
usage scenarios to the total RF-EMF dose received, compared to studies 
which merely assess RF-EMF dose from mobile phone calls (e.g. by 
questionnaire) or geographic proximity to stationary environmental 

Fig. 2. Correlation between estimated RF-EMF dose at baseline and follow-up by tissue, for the subgroup of 3384 children whose doses could be estimated at both 
time points. The blue lines mark contour lines of a 2D density estimation of the point cloud. The dashed line marks the y = x line. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 
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sources (e.g. by spatial modelling base station exposure). Eventually, 
this approach will be a good basis for differentiation between potential 
health effects related to (biophysical) exposure to RF-EMF (e.g. tinnitus, 
migraine, headache, sleep quality and fatigue (Röösli, 2021), in contrast 
to indirect effects related to e-media usage such as sleep deprivation, 
addiction, reduced physical activity, blue light etc. To date, mobile 
phone calls contribute substantially to all dose measures whereas other 
types of e-media use are less relevant, in particular for the RF-EMF dose 
to the head. However, with switching off 2G and a trend of network 
densification and corresponding lower output power of mobile phones, 
the RF-EMF dose contribution from own devices may decrease in the 
future, and contributions from far field sources may become more 
relevant (Mazloum, 2019). In our study, we used the averaged personal 
measurements from a subset of participants, but could not obtain data 
from the whole cohort, which is a limitation. This assumption would 
have resulted in some Berkson error, but since the far field contribution 
is on average a minor contribution to the total, we do not expect this to 
lead to a major decrease in study power. Given the future network 
trends, it will thus be crucial to put more effort into the individual es-
timates of far field RF-EMF sources, which eventually enables the 
disentanglement of RF-EMF exposure and usage for epidemiological 
research. 

In this application within the SCAMP study, we considered a large 
sample size and gathered detailed information on many aspects of 

mobile technology use at an individual level. Repeated RF-EMF dose 
modelling will enable a longitudinal epidemiological analysis of po-
tential associations with health-related endpoints, which have also been 
collected at multiple time points. 

It needs to be emphasized that the RF-EMF dose model relies heavily 
on detailed input data, which (apart from the far-field dose contribution) 
is based on self-reporting of technology usage and related behaviour, 
also in previous applications (van Wel, 2021; Cabré-Riera, 2020; Birks, 
2021). Such self-reported information is subject to uncertainty. Self- 
reported mobile phone use was validated for a subset of 350 SCAMP 
children at baseline using operator data (Mireku, 2018). Self-reported 
usage was able to distinguish between high and low use (Mireku, 
2018), also in other studies (Langer, 2017). Nevertheless, children 
overestimated their call duration in 45.1% and 59.2% of cases on 
weekdays and weekend respectively, while only 16.0% and 11.4% 
underestimated their call duration (Mireku, 2018). We acknowledge 
that the estimated dose due to phone calls may therefore have been 
overestimated in this cohort. Conversely, self-reported mobile data use 
cannot easily be validated with operator data, because participants tend 
to report time spent surfing, whereas operators record quantity of data 
transferred. Therefore, there is little consensus and a lack of validation 
for the validity of the duration of self-reported data use (Goedhart, 
2015). Moreover, the output power of devices depends strongly on the 
type of data use and the network quality (Joshi, 2017; Mazloum, 2019; 

Fig. 3. Estimated dose to RF-EMF at baseline (n = 6152) (A, B) and follow-up (n = 5045) (C, D), shown as average absolute dose [mJ/kg/day] for all participants (A, 
C) and as the average percentage of the total for all participants (B, D). 
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Persson, 2012). Thus, duration of use alone may not be the most 
appropriate metric for RF-EMF dose modelling (Calderón, 2022). Simi-
larly, we are not aware of any studies that validate self-reported tablet or 
laptop use, but doubt that this would be feasible to monitor objectively 
at a large scale, and therefore think that self-reported use is the best 
possible approximation of use that is feasible to obtain for large study 
populations. Given all these uncertainties, there is a possibility that the 
low correlation between RF-EMF dose estimates at baseline and follow- 
up may not only reflect dynamic changes in individual usage behaviour 
but also inaccuracies when estimating the own usage of various RF-EMF 
sources. 

Since the RF-EMF dose model has been developed after the SCAMP 
study questionnaire, some model inputs were not considered in the 
questionnaire and we used default values instead. For example: the 
model offers the possibility to define the duration of smart watch and 
body area network use, whether people hold their smartphone in front of 
their face or on top of their belly while surfing the internet. Even if such 
detailed information had been included in the questionnaire, informa-
tion might be highly uncertain. Unfortunately, the dose model does not 
include specific scenarios for gaming, using a video console or watching 
smart TV while these activities are common in the young age group. We 
had assessed these activities as WiFi exposure, since to the best of our 
knowledge, no data have been published on the RF-EMF exposure dur-
ing such activities. 

A more critical issue for dose estimation is the type of mobile phone 
network. The RF-EMF dose model puts the output power of calling on a 
mobile phone on the 2G and 3G networks at 89.7 mW and 0.45 mW 
respectively, which is a large difference and explains the relative 
importance of the 2G calls for total dose. The model does not include a 
scenario for 4G, but we assumed the emitted radiation to be equal to that 
of 3G (Joshi, 2017). We did not have information on proportion of 2G/ 
3G/4G use in the cohort (5G was still not relevant at the time of data 
collection), and assumed that 2G, 3G and 4G were each used 

approximately one third of the time for both baseline and follow-up, but 
this assumption could not be validated. Considering the importance of 
2G in dose modelling, any change of this ratio within the two years 
would have noticeable impact on the dose estimate. Thus, we cannot 
rule out that decrease in 2G use over the study period may have over-
compensated the increased usage, which would mean that the RF-EMF 
dose would have actually decreased over time. However, such data or 
literature are not publicly accessible. Lack of such technical data and 
rapid technological development is an important challenge for RF-EMF 
exposure assessment. With 5G being introduced and dynamic changes of 
output power of communication devices in response to network 
changes, the RF-EMF dose will soon need an upgrade to enable the more 
specific exposures resulting from Voice over LTE and 5G technology 
(Joshi, 2020). 

5. Conclusion 

This study in a large sample of adolescents confirms that mobile 
phone use is the main contributor to daily RF-EMF dose for the whole 
body and various brain regions. The correlation between individual dose 
estimates within two years was relatively low, likely reflecting both 
dynamic changes in mobile device usage in this age group, as well as 
uncertainty when estimating own wireless communication use. This 
calls for repeated exposure assessment in longitudinal studies on RF- 
EMF. 
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Table 4 
Determinants of whole body and whole brain dose, for baseline, follow-up, and change between baseline and follow-up.     

Baseline (n = 6152) Follow-up (n = 5045) Change (n = 3384) 

Tissue a Determinant  Ratio (95% CI) b P-value Ratio (95% CI) b P-value Ratio (95% CI) b P-value 
Whole body Sex c Male 1.07 (1.02–1.13) 0.01 0.94 (0.90–0.99) 0.02 0.98 (0.96–0.99) <0.001 

Ethnicity d Black 1.38 (1.27–1.49) <0.001 1.26 (1.17–1.36) <0.001 0.98 (0.96–0.99) 0.01 
Asian 0.95 (0.89–1.01) 0.11 1.00 (0.94–1.07) 0.94 1.00 (0.99–1.02) 0.67 
Mixed 1.18 (1.08–1.28) <0.001 1.12 (1.03–1.22) 0.01 0.99 (0.98–1.01) 0.58 
Other/N.I. 1.05 (0.92–1.21) 0.48 1.05 (0.91–1.21) 0.47 1.00 (0.97–1.03) 0.86 

SES e Other 1.13 (1.07–1.19) <0.001 1.11 (1.05–1.17) <0.001 1.01 (1.00–1.02) 0.17 
Smartphone ownership f Barphone 0.58 (0.53–0.64) <0.001 0.61 (0.51–0.74) <0.001   

No phone 0.40 (0.37–0.43) <0.001 0.42 (0.38–0.46) <0.001   
Got a smartphone     1.06 (1.05–1.08) <0.001 
Gave up smartphone     0.95 (0.91–0.98) <0.001 

Age g Age 1.15 (1.08–1.23) <0.001 0.97 (0.92–1.02) 0.26 1.02 (1.00–1.03) 0.01 
Whole brain Sex c Male 0.90 (0.85–0.95) <0.001 0.86 (0.80–0.92) <0.001 0.98 (0.93–1.04) 0.53 

Ethnicity d Black 1.38 (1.27–1.51) <0.001 1.38 (1.24–1.53) <0.001 1.09 (1.00–1.19) 0.05 
Asian 0.91 (0.84–0.97) 0.01 0.91 (0.84–0.99) 0.04 0.98 (0.92–1.05) 0.63 
Mixed 1.18 (1.07–1.30) <0.001 0.99 (0.89–1.11) 0.88 0.95 (0.87–1.04) 0.26 
Other/N.I. 1.07 (0.92–1.25) 0.37 1.12 (0.93–1.35) 0.23 1.06 (0.91–1.23) 0.44 

SES e Other 1.11 (1.04–1.17) <0.001 1.14 (1.06–1.22) <0.001 1.00 (0.95–1.06) 0.91 
Smartphone ownership f Barphone 0.75 (0.68–0.83) <0.001 0.88 (0.68–1.14) 0.33   

No phone 0.14 (0.13–0.16) <0.001 0.14 (0.12–0.15) <0.001   
Got a smartphone     1.24 (1.16–1.33) <0.001 
Gave up smartphone     0.72 (0.61–0.85) <0.001 

Age g Age 1.14 (1.06–1.23) <0.001 1.05 (0.98–1.12) 0.17 1.12 (1.04–1.21) <0.001  

a For tissues whole body and whole brain only, for other tissues see online supplement 4. 
b Based on a generalized linear model evaluating log(dose) as a function of the determinants (for baseline and follow-up) and change between baseline and follow-up 

(calculated as follow-up minus baseline, for the respective tissues) as Δ dose for an increment of 1000 mJ/kg/day. 
c Female was the reference. 
d White was the reference. 
e High SES was the reference, “other” includes both moderate and low SES. 
f Having a smartphone was the reference for baseline and follow-up, whereas “no change” was the reference and most common situation (n = 2247) for the change 

analyses, as opposed to getting a smartphone (n = 733), or giving it up (n = 104) between baseline and follow-up. 
g Ratio defined for a 1-year increment in age, where age is regarded as Δ age between baseline and follow-up, for the change analyses. 
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