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Abstract. A comparison is made of the performance of
the four-dimensional variational data assimilation (4D-Var)
method in an explicit and implicit version of a barotropic
quasi-geostrophic model of the wind-driven double-gyre
ocean circulation. As is well known, implicit methods have
the advantage that relatively large time steps can be taken
with respect to explicit methods, but the computational costs
of each time step is larger. We focus here on two issues: (i)
the computational efficiency in the range of time steps where
the chosen explicit method is still numerically stable and (ii)
the performance of 4D-Var in the implicit model for time
steps out of reach for the explicit model. For the same time
step1t and the same number of pointsn per assimilation
interval, the analyses in the implicit model is always more
accurate than that in the explicit model. Due to this prop-
erty the use of 4D-Var combined with the implicit model can
be computationally more efficient than its use in the explicit
model.

1 Introduction

The four-dimensional variational data assimilation method,
4D-Var, is now widely applied in meteorology and phys-
ical oceanography. It is a method in which information
that is present in observations is combined with the evolu-
tion determined by a particular ocean, atmosphere or climate
model. The 4D-Var method is routinely applied at ECMWF
in weather forecasting (Rabier et al., 2000; Mahfouf and Ra-
bier, 2000; Klinker et al., 2000). In operational oceanogra-
phy, for example within the French Mercator project (Weaver
et al., 2003; Vialard et al., 2003), the use of observations
to initialize ocean circulation models results in better fore-
casts. The Estimating the Circulation and Climate of the
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Ocean (ECCO) consortium applied 4D-Var to estimate the
ocean state using WOCE data and NCEP reanalysis of the
surface fluxes (Stammer et al., 2000, 2002a,b, 2003). The
LSG model (Hamburg Large Scale Geostrophic Model) was
used together with 4D-Var byWenzel et al.(2001) to study
the annual cycle of the global ocean circulation. The 4D-Var
method was also used for paleonutrient data analysis of the
glacial Atlantic (Winguth et al., 2000). In the 4D-Var ap-
proach, a cost function is minimized by varying the initial
condition or the forcing of the model. Parameters control-
ling the solution can also be varied, for example diffusivities
(Stammer, 2005) or eddy stresses (Ferreira et al., 2005). The
cost function measures the distance between the data and a
state vector at a sequence of times. The so-called analysis
is that state which minimizes the cost function and the mini-
mization procedure requires the evaluation of the gradient of
the cost function. In general, this gradient is calculated by us-
ing both a forward and an adjoint model. Although there are
now compilers which generate actual computer code of an
adjoint model given the code of the forward model (Giering
and Kaminski, 1998), the formulation of an adjoint model is
in most cases a nontrivial and time-consuming process. With
the increase in the length of data sets, data-assimilation be-
comes feasible to better simulate phenomena with a longer
time scale, such as interannual variations of the Gulf Stream
path or even decadal variability in the North Atlantic. For
these type of computations, the implementation of 4D-Var
methods in explicit models have the drawback that the time
step is restricted by the explicit time stepping scheme. Even
if one uses monthly averaged data, the time step of the ocean
model has to be small (smaller than an hour at reasonable
resolution) to carry out the assimilation. Such long term
data assimilation problems motivate to search for alterna-
tive 4D-Var implementations in which relatively large time
steps can be taken. By tackling problems associated with
the stability and successive bifurcations of large-scale ocean
flows, fully-implicit ocean models have been developed over
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the last decade. For example, implicit quasi-geostrophic
and shallow-water models of the wind-driven ocean circu-
lation have been used to investigate the bifurcation behavior
of the double-gyre circulation (Dijkstra and Katsman, 1997;
Schmeits and Dijkstra, 2000). A hierarchy of fully-implicit
models of the thermohaline ocean circulation has helped clar-
ify the role of different equilibria in the hysteresis behavior
of the global ocean circulation (Dijkstra et al., 2004). The
immediate advantage of these methods is that much larger
time steps can be taken than with explicit methods. A few
years ago 4D-Var was implemented in fully implicit mod-
els (Terwisscha van Scheltinga and Dijkstra, 2005). In this
implementation, the adjoint model is easily derived from the
implicit time-stepping scheme, and the choice of the time
step is not limited by numerical stability but by accuracy. In
this paper, we compare the performance of the implemen-
tation of 4D-Var in an implicit version (abbreviated below
with i4D-Var) of a barotropic quasi-geostrophic model of the
double-gyre wind-driven circulation with 4D-Var applied to
an explicit version (abbreviated below withe4D-Var) of the
same model. The aim of the comparison is to investigate
whether implicit methods provide useful alternatives in prob-
lems where variational data-assimilation techniques are used.

2 Model and methods

In the first subsection below (Sect. 2.1), we provide the
model of the wind-driven ocean circulation which is used in
this study. Next, we provide a basic overview of the 4D-Var
method (Sect. 2.2) such that the differences between the im-
plementation of 4D-Var in the implicit and explicit versions
of the ocean model in Sect. 2.3 can be explained more easily.

2.1 Barotropic wind-driven ocean flows

Consider a rectangular ocean basin of sizeL×L having a
constant depthD. The basin is situated on a midlatitudeβ-
plane with a central latitudeθ0=45◦ N and Coriolis param-
eterf0=2�sinθ0, where� is the rotation rate of the Earth.
The meridional variation of the Coriolis parameter at the lat-
itude θ0 is indicated byβ0. The densityρ of the water is
constant and the flow is forced at the surface through a wind-
stress vectorT=τ0[τ

x(x, y), τ y(x, y)]. The governing equa-
tions are non-dimensionalized using a horizontal length scale
L, a vertical length scaleD, a horizontal velocity scaleU ,
the advective time scaleL/U and a characteristic amplitude
of the wind-stress vector,τ0. The effect of deformations of
theocean-atmosphere interface on the flow is neglected.

The dimensionless barotropic quasi-geostrophic model of
the flow for the vorticityζ and the geostrophic streamfunc-
tionψ is (Pedlosky, 1987)

[ ∂
∂t

+ u
∂

∂x
+ v

∂

∂y

]
[ζ + βy] = Re−1

∇
2ζ + ατ

(∂τ y
∂x

−
∂τ x

∂y

)
, (1a)

ζ = ∇
2ψ, (1b)

where the dimensionless horizontal velocities are given by
u=−∂ψ/∂y andv=∂ψ/∂x. The parameters in Eq. (1a) are
the Reynolds numberRe, the planetary vorticity gradient pa-
rameterβ and the wind-stress forcing strengthατ . These
parameters are defined as:

Re =
UL

AH
; β =

β0L
2

U
; ατ =

τ0L

ρDU2
(2)

whereg is the gravitational acceleration andAH is the lat-
eral friction coefficient. We assume no-slip conditions on the
east-west boundaries and slip on the north-south boundaries.
The boundary conditions are therefore given by

x = 0, x = 1 : ψ =
∂ψ

∂x
= 0, (3a)

y = 0, y = 1 : ψ = ζ = 0. (3b)

The wind-stress forcing is prescribed as renewcommand3b3a

τ x(x, y) =
−1

2π
cos 2πy, (4b)

τ y(x, y) = 0, (4b)

and the zonal wind stress is symmetric with respect to the
mid-axis of the basin (the standard double-gyre case). When
the horizontal velocity scale is based on a Sverdrup balance
of the flow, i.e.,

U =
τ0

ρDβ0L
, (5)

it follows that ατ=β and two free parameters result (Ped-
losky, 1987), for example the dimensionless boundary layer
thicknessesδ2

I=1/β andδ3
M=1/(βRe). A standard set of pa-

rameter values has been chosen (Table1) that are similar to
those inDijkstra and Katsman(1997) and for these parame-
ters,ατ=β=2.8×103.

For the parameters as in Table1, Dijkstra and Katsman
(1997) showed that different flow regimes exist whenRe
is varied. ForRe<30, the quasi-geostrophic model has
one unique stable steady state. The streamfunctionψ of
this steady state is anti-symmetric with respect to the mid-
axis of the basin and a solution forRe=20 is shown in
Fig. 1a. Two asymmetric stable steady-state solutions, one
with a downward jet-displacement (the jet-down solution
shown in Fig.1b) and the jet-up solution (Fig.1c), exist
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Table 1. Standard values of the parameters for the barotropic quasi-
geostrophic ocean model.

Parameter Value

L 1.0×106 m
U 7.1×10−3 ms−1

D 7.0×102 m
β0 2.010−11 (ms)−1

f0 1.0×10−4 s−1

g 9.8 ms−2

ρ 1.0×103 kgm−3

τ0 1.0×10−1 Pa

for 30<Re<52. NearRe=52 both asymmetric states be-
come unstable due to the occurrence of Hopf bifurcations;
for 52<Re<74 stable periodic orbits exist. The solutions
become quasi-periodic forRe>74 and irregular for higher
values ofRe; the route to chaos is through a homoclinic or-
bit (Simonnet et al., 2005).

2.2 The 4D-Var method

The incremental formulation of the 4D-Var method as de-
scribed inCourtier et al.(1994) is used and the notation is
adapted fromIde et al.(1997). Letw be the state vector con-
sisting of model variables that are to be estimated by com-
bining model dynamics and observations. Ifwb is the back-
ground state andδw is the increment on the background state,
then we want to determineδw such that the resulting statew
defined by

w = wb + δw (6)

is “close” to observations. In the 4D-Var approach, the
analysiswa is defined as the state vector which minimizes
both the distance to the backgroundwb(t0) and to the
time-sequence of observationsyi, i=1, · · ·, n in the interval
t0≤ti≤tn. Hence, this defines a cost functionJ as (Courtier
et al., 1994):

J (δw) = δwTB−1δw +

n∑
i=0

dTi R−1
i d i, (7)

where the departuresd i are defined as:

d i = yi −HiM(ti, t0)(w
b(t0))− HiM(ti, t0)δw(t0). (8)

The matricesB and Ri in Eq. (7) are the covariances of
the background and the observation errors. The operator
M(ti, t0) in Eq. (8) represents the evolution operator, such
that

w(ti) = M(ti, t0)(w(t0)), (9)

andHi in Eq. (8) is the observation operator. The lineariza-
tion of the operatorsM(ti, t0) andHi around the background

(a)

(b)

(c)

Fig. 1. Streamfunctionψ of (a) the anti-symmetric steady state for
Re=20, (b) the jet-down steady state forRe=50 and(c) the jet-up
steady state forRe=50. The contour values are scaled with respect
to a maximum ofψ=2.2 for (a), which represents a transport of
5.5 Sv; and a maximum ofψ=1.1 for (b, c), which represents a
transport of 10.9 Sv. The contour interval is 0.2.
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(a)

(b)

Fig. 2. Sketch of the 4D-Var method, where an assimilation in-
terval has been divided into three subintervals.(a) ‖H(wb(ti)‖2
and‖H(wa(ti)‖2, theL2-norm of the projection of the background
wb(ti) (solid) and analysiswa(ti) (dashes) on the observations
space; theL2-norm of the observationsmathbfyi (crosses) and the
optimal incrementsδwa (arrows). (b) the initial (solid) and final
(dashed) value of the cost function.

state are denoted byM(ti, t0) andHi , respectively. Ifδwa is
defined as the solution of the optimization problem

δwa = min
δw

J (δw), (10)

then the analysis is given by

wa(t0) = wb(t0)+ δwa . (11)

To solve the optimization problem Eq. (10) on each subinter-
val, the gradient of the cost functionJ in Eq. (7), i.e.,

∇J (δw) = 2w−1δw −

n∑
i=0

MT (ti, t0)HT
i R−1

i d i, (12)

has to be calculated.
To clarify the terminology used below, an illustration

of the 4D-Var method has been provided in Fig.2a. In
this figure, the observations (crosses) are shown on an ex-
ample assimilation intervalt1≤ti≤t12. This interval has
been divided into three subintervals, each with four points
(n=4). For every interval the background trajectorywb(ti)

(solid), the optimal incrementδwa (arrows) and the anal-
ysis wa(ti) (dashed) are shown. The background on the
first interval is given. For the other intervals, the back-
ground is calculated from the analysis on the previous in-
terval:wb(tn+1)=M(tn+1, tn)(w

a(tn)). On each interval the
minimization problem Eq. (10) is solved. Due to the depen-
dence of the cost function on the background, the increment
and the observations, the initial and the final value of the cost
function will vary over the subintervals (Fig.2b).

2.3 Explicit and implicit implementations

The equations Eq. (1a) and boundary conditions Eq. (3a)
are spatially discretized using a control-volume method on
an equidistantN×M grid. For the explicit integration the
second-order Adams-Bashforth time discretization is used
in which the first step, for each assimilation interval, is an
Euler step. In this explicit implementation (e4D-Var) the
cost function is first computed by forward evolution over the
time interval. The gradient is then evaluated by integrating
the adjoint model, with evolutionMT (ti, ti−1) and forcing
HT
i R−1

i di , backwards in time. For the implicit integration
of the model the second-order Crank-Nicholson scheme is
used. When this method is used with 4D-Var,Terwisscha van
Scheltinga and Dijkstra(2005) showed that the construction
of the adjoint model is straightforward since the transpose of
the tangent linear modelMT (ti, ti−1) is implicitly available
from the Newton-Raphson method used to solve the nonlin-
ear systems arising from the Crank-Nicholson method. In the
implicit implementation (i4D-Var) the cost function in 4D-
Var is evaluated by forward evolution over the assimilation
interval while simultaneously storing the implicitly available
information onMT . The gradient is then evaluated by a
backward iteration using the storedMT . Note that for each
backward integration, linear systems have to be solved (Ter-
wisscha van Scheltinga and Dijkstra, 2005); we solve these
linear systems with a relative accuracy ofεi=10−6. Due
to the different integration methods in the explicit and im-
plicit schemes, the cost function will also be evaluated differ-
ently. This difference depends on the accuracy and stability
of the methods involved and therefore depends on the time
step used. In all computations below a 60×40 grid was used
which was shown to give sufficient accuracy in the solutions
computed (Dijkstra and Katsman, 1997). Each linear sys-
tem (arising from the Newton-Raphson method) ini4D-Var
was solved using the BiCGSTAB method ofVan der Vorst
(1989) with an incomplete LU factorization as a precondi-
tioner. For practical implementation of the minimization
of the cost function, a NAG-library routine (E04DGF) was
used. This method uses a preconditioned conjugate gradi-
ent method with a “limited” memory quasi-Newton method
to calculate the search direction (Gill and Murray, 1979;
Gill et al., 1981). A minimum has been found if the fol-
lowing conditions on the convergence of the iterate, cost
function and gradient areall satisfied given the optimality
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toleranceεm:

Jk−1 − Jk < εm(1 + |Jk|), (13a)

‖δwk−1 − δwk‖ < ε
1/2
m (1 + ‖δwk‖), (13b)

‖∇Jk‖ ≤ ε
1/3
m (1 + |Jk|), (13c)

wherek is the iteration index. For the optimality tolerance in
E04DGF, a value ofεm=10−5 was chosen.

3 Comparison betweeni4D-Var and e4D-Var

In this section, we will compare the performance ofi4D-Var
and e4D-Var using the barotropic quasi-geostrophic ocean
model. The specific set-up is described in Sect. 3.1 and re-
sults for a standard case, with a fixed time step1t and a fixed
number of points per assimilation intervaln, in Sect. 3.2.
The changes in performance when1t andn are varied are
presented in Sects. 3.3 and 3.4, respectively and in Sect. 3.5
the overall computational efficiency of 4D-Var in the implicit
and explicit model is compared.

3.1 Specific case

For a value ofRe far into the irregular regime (Re=120),
results of a 40 year time integration are shown in Fig.3a.
The quantity19 on the vertical axis in Fig.3a is a measure
of the asymmetry of the streamfunctionψ with respect to the
mid axis of the basin and it is defined as:

19 =
max(ψ)+ min(ψ)

max(ψ,−ψ)
. (14)

A positive value of 19 indicates a downward jet-
displacement, while a negative value of19 indicates an up-
ward jet-displacement. In these computations, a time step of
1t=15 min was used for both the implicit and the explicit
integration of the model. Both methods give near identical
results such that the curves in Fig.3a are indistinguishable.

The unstable jet-up steady state forRe=120 was chosen as
the initial state att=0. Although the flow stays close to the
initial state for the first few years, the behavior becomes ir-
regular in time with frequent changes between upward and
downward jet-displacement. For the comparison between
the two 4D-Var implementations, we have derived the “ob-
servations” from the 1200 h window after 10 years of inte-
gration; the value of19 of these “observations” is plotted
in Fig. 3b. Although the computed trajectories were nearly
indistinguishable, for consistency thei4D-Var observations
were taken from the implicit time-integration, while fore4D-
Var they were taken from the explicit time-integration. The
1200 hour interval of observations is broken into subinter-
vals, each withn points. On each of the subintervals, the
minimization problem Eq. (10) is solved with the initial con-
dition as control variables (cf. Fig.2). For the covariances
matrices, we have chosen (for simplicity) thatB=Ri=I for

(a)

(b)

Fig. 3. The asymmetry19 of the streamfunction for:(a) a time-
integration of 40 years, starting from a unstable jet-up steady state;
and(b) a 1200 h window after year 10 in (a); the latter values serve
as the observations.

i=1, · · ·, n. The identity operator was chosen for the obser-
vation operator (H = I ), which means that we use all the ob-
servations of the streamfunction. As initial background state
we have chosen the unstable jet-up steady state atRe=120;
this is the starting point of the time-series shown in Fig.3a.
For each interval the first guess of the minimization was
taken asδw=0.

3.2 Accuracy

First we consider the behavior of both implementations for
a time step1t=2 h andn=2 (two points per interval). The
initial value of the cost function (solid) before minimization
and the final value of the cost function after minimization
(dashed) are fore4D-Var shown in Fig.4a and fori4D-Var
in Fig. 4b. Both methods show a rapid decrease in the initial
and final value of the cost function for the first few inter-
vals, after which both values becomes constant. The rapid
decrease is caused by the large difference at the beginning
between the observation (which initially has19≥0) and the
background state (which initially has19≤0). As a result
of this difference, both methods make large improvements in
the background state until it becomes close to the observa-
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(a)

(b)

(c)

(d)

Fig. 4. Results for1t=2 h and 2 points per interval.(a) Initial value
(solid) and final value (dashed) of the cost function for each mini-
mization as evaluated bye4D-Var. (b) Initial value (solid) and final
value (dashed) of the cost function for each minimization as eval-
uated byi4D-Var. (c) Initial value (solid) and final value (dashed)
of theL2 norm of the gradient of the cost function for each mini-
mization as evaluated bye4D-Var. (d) Initial value (solid) and final
value (dashed) of theL2 norm of the gradient of the cost function
for each minimization as evaluated byi4D-Var.

tions and only a small correction on the background is nec-
essary. The difference in the value of the cost function (both
initial and final) between both methods is about one order
of magnitude, with the implicit method having the smallest
value of the cost function. This is due to the different eval-
uation of the cost function: fore4D-Var, the term involving
the tangent linear model in (8) is evaluated at the beginning
of each time interval, while ini4D-Var, both begin and end
points of the interval are used. The initial and final value of
theL2 norm of the gradient∇J are shown fore4D-Var and
i4D-Var in Fig.4c and d, respectively. Again there is a sharp
decrease initially followed by stabilization afterwards. The
initial value of the norm of∇J is of the same order for both
methods but there is a large difference in the magnitude of
the final values. This is due to a difference in the evaluation
of the gradient: fori4D-Var, the evaluation of the gradient
requires 2n linear systems to be solved which is done using
an iterative scheme with an accuracyεi=10−6. As a result,
theL2 norm of the gradient cannot become smaller thanεi
for i4D-Var. Since fore4D-Var no systems have to be solved,
the norm of the gradient can be several orders of magnitude
smaller.

An indication of the computational cost for both 4D-Var
implementations is provided in Fig.5a. Here the CPU time
(tcomp) needed for a minimization over one assimilation in-
terval is plotted for1t=2 h andn=2 for bothi4D-Var (solid)
ande4D-Var (dashed). Thei4D-Var method is on average a
factor 1.5 more expensive in computational time thane4D-
Var. There are, however, several peaks where the difference
is more than a factor 2.5 or higher. For both implementa-
tions, the cost function Eq. (7) is minimized using an iter-
ative scheme, with the optimality toleranceεm=10−5. The
conditions on the convergence of the iterate, cost function
and gradient are more difficult to satisfy fori4D-Var, since
the accuracy of the gradient is limited by the tolerance of
the iterative linear solver (εi=10−6). Hence, more iterations
are needed fori4D-Var than fore4D-Var in the optimization
procedure. Time integration is also more expensive fori4D-
Var, since two linear systems have to be solved for each time
step: one during evaluation of the cost function and one dur-
ing evaluation of the gradient. Both factors makei4D-Var
more expensive thane4D-Var.

To summarize the results for the chosen time-step and the
number of points per interval: both implementations are ca-
pable of finding an accurate analysis.i4D-Var appears more
accurate thane4D-Var for this value ofn and1t , but it is
also more expensive.

3.3 Effect of1t

We use the same setup as in the previous section using the
same 1200 h observations but now successively increase the
magnitude of the time step, while keepingn=2. The initial
and final value of the cost function are shown for1t=2 h,
1t=4 h, 1t=8 h and1t=16 h in Fig. 6a–d, respectively.
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(a)

(b)

(c)

Fig. 5. The processor timetcomp needed for the minimization of
cost functionJ for each assimilation interval (see Fig.2). The value
of tcomp is plotted at the beginning of the intervals.(a) for 1t=2 h
andn=2. (b) for1t=16 h andn=2. (c) for1t=2 h andn=16. The
solid curves represent the results fromi4D-Var. The dashed curves
represent the results frome4D-Var.

The latter value of1t is close to the limiting time step (based
on the CFL criterion) of the explicit scheme of1t≈17 h. In
each figure panel, the top two curves are calculated bye4D-
Var, while the bottom two are calculated byi4D-Var. For
all intervals, the values of the cost function (both initial and
final) as calculated bye4D-Var are larger than those calcu-
lated byi4D-Var. For the first intervals, the same behavior is
observed for both implementations: a rapid decrease of the
cost function (both initial and final) and a decrease of the cost
function during minimization. After the rapid decrease, the
value of the cost function stabilizes.

For i4D-Var, the curves are comparable for each time step,
although there is a small increase in the value of both the

(a)

(b)

(c)

(d)

Fig. 6. Value of the initial (solid) and final (dashed) value of the cost
function for several values of the time step andn=2. (a) 1t=2 h.
(b) 1t=4 h. (c) 1t=8 h. (d) 1t=16 h. Curves marked with rect-
angles denote results ofe4D-Var. Curves without rectangles denote
results ofi4D-Var.

initial and final value of the cost function after the sharp de-
crease. Fore4D-Var, however, the value at which the cost

www.nonlin-processes-geophys.net/14/763/2007/ Nonlin. Processes Geophys., 14, 763–776, 2007
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(a)

(b)

(c)

(d)

Fig. 7. The difference between the observation and the analysis
after minimization of the cost function for several values of the time
step. (a) 1t=2 h. (b) 1t=4 h. (c) 1t=8 h. (d) 1t=16 h. The
solid curves represent the results fromi4D-Var. The dotted curves
represent the results frome4D-Var.

function stabilizes increases with increasing1t , for example
by 4 orders of magnitude from1t=2 h to1t=16 h. This is

due to larger error propagation in the explicit scheme used
in e4D-var for large1t . As a result, the evaluation of both
the cost function and the gradient becomes less accurate.
The same behavior can therefore be seen in theL2 norm of
the difference between analysis and observations, shown in
Fig. 7 for different1t . For both implementations, there is
again an increase in the equilibrium value of this norm with
1t but the rate of increase is not as large as for the cost func-
tion (Fig. 6). Hence, for increasing1t the quality of the
analysis decreases.

For 1t=16 h andn=2, the CPU time per minimization
is shown in Fig.5b; againi4D-Var is more expensive than
e4D-Var. The difference is on average a factor 2. This is a
small increase compared to that found for1t=2 h andn=2
(Fig. 5a).

3.4 Effect ofn

Again using the same set-up as above, we now fix1t=2 h
and vary the number of points per intervaln=2,4,8 and
n=16, i.e. the number of observations per subinterval within
the 1200 h assimilation interval (cf. Fig.2). In Fig. 8, the
initial and final value of the cost function are plotted for both
implementations. Again the two top curves are the results
for e4D-Var, while the bottom two curves are fori4D-Var. In
each panel we see a decrease of the cost function in the first
few intervals followed by a stabilization. After this decrease
there is a difference in behavior:i4D-Var is still able to im-
prove the cost function, whilee4D-Var fails to provide any
improvement. The values of the cost function fore4D-Var
are one order of magnitude larger than those fori4D-Var for
n=2 and this difference increases to six orders of magnitude
for n=16. For both implementations, the equilibrium values
of the cost function increase withn. The rate of increase is
one order of magnitude fromn=8 to n=16 for i4D-Var, but
this is relatively small compared to that ofe4D-Var.

In Fig. 9, theL2 norm of the difference between the anal-
ysis and the observations is shown for each of value ofn

(as used in Fig.8). For i4D-Var, this difference decreases in
the first interval and then fluctuates around a constant value.
With increasingn the results ofi4D-Var do not change much,
apart from a small decrease of the size of the fluctuation and
a small increase of the equilibrium value. Fore4D-Var, how-
ever, the equilibrium value does not remain constant with in-
creasingn but it slowly increases with time. In Fig9b, there
is a window in which theL2 norm strongly fluctuates. To a
lesser extent, this is also seen in Fig.9c but it is absent in
Fig. 9d. This window of fluctuations corresponds to a series
of observations where the solution changes from jet-down to
jet-up and back (Fig.3b).

The difference between the results ofe4D-Var andi4D-Var
can be explained as follows. With increasingn, more integra-
tions for the evaluation of the cost function and its gradient
have to be performed. When the number of points per inter-
val isn+1, the total number of time steps taken for the eval-

Nonlin. Processes Geophys., 14, 763–776, 2007 www.nonlin-processes-geophys.net/14/763/2007/



A. D. Terwisscha van Scheltinga and H. A. Dijkstra: A comparison of the performance of 4D-Var 771

(a)

(b)

(c)

(d)

Fig. 8. Value of the initial (solid) and final (dashes) value of the
cost function for differentn. (a) n=2. (b) n=4. (c) n=8. (d) n=16.
Curves with rectangles denote results ofe4D-Var. Curves without
rectangles denote results ofi4D-Var.

uation of cost function isn. In e4D-Var, the evaluation of the
gradient requires 2n steps;n for the forward integration and
n for the backward integration with the adjoint model. As

(a)

(b)

(c)

(d)

Fig. 9. The difference between the observation and the analysis after
minimization of the cost function for differentn. (a) n=2. (b) n=4.
(c) n=8. (d) n=16. The solid curves represent the results from
i4D-Var. The dotted curves represent the results frome4D-Var.

a direct result, the cumulative numerical error made in the
integration increases. From Fig.8 it appears thate4D-Var
is less accurate thani4D-Var with the samen and the qual-
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Table 2. The average accuracy of the analysis
E=‖yi−H(w

a(ti))‖2 and total processor time6tcomp used
for several combinations of the interval lengthn and time-step1t
and for both explicit and implicit models. For three casestcomp
is compared for the implicit and explicit method over the whole
interval in Fig.5; the superscripts a, b and c refer to the subpanels
in Fig. 5.

n 1t [h] E 6tcomp [s] E 6tcomp [s]
(implicit) (implicit) (explicit) (explicit)

2 2 0.0650 4925a 0.1323 2638a

4 2 0.0653 7819 0.2622 7970
8 2 0.0663 10976 0.5190 7299
16 2 0.0782 14570c 0.9819 4868c

2 4 0.1299 3440 0.2684 1347
4 4 0.1306 4553 0.5265 3046
8 4 0.1362 7088 1.0679 4241
16 4 0.1957 9019 2.0794 2918
2 8 0.2598 1678 0.5515 703
4 8 0.2626 2858 1.0695 1045
8 8 0.2989 4909 2.1996 1232
16 8 0.6143 8875 4.0994 1974
2 16 0.5200 1029b 1.1537 349b

4 16 0.5381 1942 2.1787 377
8 16 0.7654 4884 7.3980 548
16 16 2.2575 9237 8.8472 439

ity of the analysis ofe4D-Var decreases faster (Fig.9) with
increasingn compared toi4D-Var. For1t=2 h andn=16,
the CPU time per minimization is plotted in Fig.5c showing
that i4D-Var is again more expensive thane4D-Var. After
the first few intervals, the minimization scheme terminates
after one iteration fore4D-Var since the NAG routine cannot
find a direction where the residue is decreased, while condi-
tions on the convergence are not satisfied. The minimization
method is unable to find a converged minimum from the ini-
tial guess (the initial increment) and the last value provided
by the NAG routine is taken as the minimum. This leads
to the lack of improvement in the cost function as seen in
Figs.8b–d.

3.5 Overall computational efficiency

In the previous results we saw thati4D-Var was more accu-
rate thane4D-Var but also more expensive. For evaluating
whether implicit methods provide a useful alternative for the
range of1t smaller than the maximum value possible with
the explicit method, one is interested in a comparison of the
total processor time6tcomp needed to obtain a certain aver-
age accuracy in the analysis over the whole time interval. As
a measure of this average accuracy, we take the quantityE
defined as

E=‖yi −H(wa(ti))‖2 (15)

Here the overbar indicates average of‖yi−H(w
a(ti))‖2

taken over all the analyseswa(ti) found while assimilating

the observations in the 1200 hour window, using an interval
lengthn and a time-step1t . The total CPU time6tcomp
is the sum of the CPU times needed for each minimization
along this interval. In Table2, values of6tcomp andE are
shown for several combinations ofn and1t and for both
explicit and implicit models. The values in Table2 provide
an indication of the computational costs for both methods
to produce an analysis with a certain average accuracy. For
example withe4D-Var, a value ofE=0.13 is achieved for
a value ofn=2 and1t=2 h at a computational cost of 2623
seconds. We also see thati4D-Var is more accurate thane4D-
Var for the same value ofn and1t but that it is about twice as
expensive. To obtain about the same accuracy (E=0.13) with
i4D-Var, we can use a larger time step and more points per
interval (1t=2 andn=4) and for this casei4D-Var is only a
factor 1.3 (3440/2638) more expensive thane4D-Var.

The values in Table2 indicate that fori4D-Var,E does not
increase much withn for constant1t . Only for1t=16 there
is a large increase forn=16, which is due to the relatively
large weight of the initial adjustment. Fori4D-Var, the total
computational time increases approximately linearly withn.
Fore4D-VarE always increases withn due to cumulative er-
rors in the time-stepping. For the same1t , E for e4D-Var
is always larger than that fori4D-Var. The total processor
time for e4D-Var varies non-monotonically with increasing
n. This is because for largen and1t the minimization ter-
minates unsuccessfully due to inaccuracies in the integration
method. From Table2, we also see that for the particular
model used here,i4D-Var can be more efficient thane4D-
Var even in the range of values of1t below the CFL limit.
For example, if a value ofE=0.52 is desired, we could use
n=2 and1t=16 h fori4D-Var which would cost 1029 s. For
the samen, we would have to use a1t=4 h withe4D-Var to
obtain approximately the same value ofE , which would cost
1347 s.

4 Performance ofi4D-Var

In this section, we will investigate the performance ofi4D-
Var for a time step1t=24 h, which is larger than the max-
imum time step possible for the Adams-Bashforth scheme
and hence (for this time step)e4D-var does not work. As
the target problems fori4D-Var are those where variability
is on relatively long time scales or equilibrium behavior oc-
curs, we consider flow regimes in the barotropic ocean model
where steady states exist. We usen=5 in all computations
below and will investigate two cases: (i) a model mismatch,
(ii) a solution mismatch and (iii) the effect of observational
noise. The aim of (i) is to investigate whether the method
finds an analysis close to the observations, using a ‘badly
tuned’ model. We consider the regimeRe<30 where we
know that there is an unique solution for which the barotropic
streamfunction is anti-symmetric (cf. Fig.1a). As ‘observa-
tions’, we take a daily sequence of the steady-state solution
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of the model forRe=25. The background model is initial-
ized with the steady-state solution atRe=20 and also run for
Re=20. With i4D-Var approach, we assimilate observations
obtained at one value ofRe within the model which is run
with a “wrong” value forRe. The initial increments for each
assimilation interval are taken equal to zero and the observa-
tion error covariance matricesRi, i=1, · · ·,n are taken equal
to the identity matrixI . A large decrease between the initial
and final values of the cost function (Fig.10a) and theL2
norm of the gradient (Fig.10b) occurs. After the first four
intervals, the value of the cost function stabilizes and the as-
similation method cannot improve the analysis anymore. The
difference between the observations and the analysis also sta-
bilizes after a few intervals (Fig.10c). This stabilization at
a relatively large error is due to the fact that the background
model has an unique steady solution atRe=20. Therefore,
it is not possible to find an analysis that perfectly fits the ob-
servations (forRe=25), since the observations are derived
from a different steady solution. Although the ‘wrong’ back-
ground model will not allow a perfect fit,i4D-Var finds an
analysis which improves the solution of the “badly tuned”
model to be closer to the observations.

Next, we consider how 4D-Var performs under case (ii) of
a solution mismatch. As discussed earlier, for 30<Re<52,
the barotropic ocean model has two stable steady solutions
(cf. Fig. 1b, c). ForRe=50, which is in this multiple equi-
libria regime, we synthesize “observations” from the jet-
up solution in Fig.1b, while we initialize the background
model with the jet-down solution in Fig.1c. The aim is
to test whether the assimilation method is able to find the
correct stable equilibrium, while being initialized with the
“wrong one”. The initial increment for each interval is again
taken equal to be zero and again the covariance matrices
Ri, i=1, · · ·,n are taken to be the identity matrixI . For each
interval, there is a large difference between the initial and
final value of the cost function (Fig.11a) and theL2 norm
of its gradient (Fig.11b). A decrease of the initial and fi-
nal values for each successive interval occurs, indicating that
the analysis converges towards the observations. In Fig.11c,
the norm of the difference between the observations and the
analysis converges towards zero. This indicates thati4D-Var
is able to find an analysis which is a perfect fit to the obser-
vations in this case.

Finally, we consider case (iii) for which noise is added to
the observations. The steady stateψ for Re=25 is perturbed
by adding noise to obtain the “observations”

yi = ψ +Ni(0,max|ψ |I), (16)

where the maximum is taken over all the gridpoints and each
Ni(µ,C) is a Gaussian distribution, whereµ is the mean
andC the covariance matrix. The model is run (with a time-
step of 24 h) atRe=25 and initialized with the steady-state
solutionψ . For every assimilation interval, the initial incre-
ment is taken equal to zero and the observation error covari-

(a)

(b)

(c)

Fig. 10. The solution mismatch case forRe=50. In this case,
the “observations” are from Fig.1c while the model is initialized
with the solution in Fig.1b. (a) Initial value (solid) and final value
(dashed) of the cost function.(b) Initial value (solid) and final value
(dashed) of the norm of the gradient.(c) Norms of the difference
between the data and the model (solid) without assimilation and the
data and the analysis (dashed) after assimilation.

ance matrix is taken as the covariance of the noise, i.e. for
i=1, ..., n,

Ri = max|ψ | I . (17)

The results in Fig.12 indicate that there is a large difference
between the initial and the final values of the cost function
(Fig. 12a) and the norm of the gradient (Fig.12b). The rea-
son for the increase of the initial value of the cost function
after the first interval is that the analysis found for the each
assimilation interval is not a solution of the model equations.
The background termHiM(ti, t0)(wb(t0)) in (8) therefore
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(a)

(b)

(c)

Fig. 11. The solution mismatch case forRe=50. In this case,
the ‘observations’ are from Fig.1c while the model is initialized
with the solution in Fig.1b. (a) Initial value (solid) and final value
(dashed) of the cost function.(b) Initial value (solid) and final value
(dashed) of the norm of the gradient.(c) Norms of the difference
between the data and the model (solid) without assimilation and the
data and the analysis (dashed) after assimilation.

increases after the first interval. From the norm of the dif-
ference between the observations and the model solutions
before and after assimilation (Fig.12c), it is seen that the
analysis is much closer to the observations than the model
solutions were before assimilation. The analysis at the begin-
ning of the interval differs from the background state. Since
the background model is used as a strong constraint, it will
pull the analysis at the other points from the observations to-
wards the background state. This influence becomes stronger
towards the end of the interval and will result in an increase
in the difference between the observations and the analysis
(Fig. 12c).

(a)

(b)

(c)

Fig. 12. Identical-twin experiment with Gaussian noise forRe=25.
(a) Initial value (solid) and final value (dashed) of the cost func-
tion. (b) Initial value (solid) and final value (dashed) of the norm
of the gradient.(c) Norms of the difference between the data and
the model (solid) without assimilation and the data and the analysis
(dashed) after assimilation.

5 Conclusions

Results were presented of a comparison between the perfor-
mance of 4D-Var in an explicit (Adams-Bashforth) and an
implicit (Crank-Nicholson) version of a nonlinear barotropic
quasi-geostrophic ocean model for which ‘observations’
were derived from solutions of this model. Several flow
regimes of the model, depending on the Reynolds number
Re, were considered. At high values ofRe, the flow is highly
irregular and is associated with rapid transitions between jet-
up and jet-down flows. In this irregular flow regime, both
4D-Var implementations are capable of producing accurate
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analyses given the observations. Increasing the size of the
time step1t , or the number of points per intervaln, leads
to reduced quality of the analysis fore4D-Var when com-
pared toi4D-Var. This result is due to cumulative numer-
ical inaccuracies which occur in the explicit time-stepping
scheme. Apart from that, even with the same1t andn, the
analyses fromi4D-Var are more accurate due to the more ac-
curate evaluation of the cost function. It was demonstrated
(cf. Table 2) that i4D-Var can be a more efficient method
(smaller total computational time) thane4D-Var since it is
more accurate at larger time steps. At smaller values ofRe

stable steady states exist in the model and the flows display
near-equilibrium behavior. In this regime,i4D-Var offers the
possibility to use time steps much larger than those possible
for e4D-Var. We showed thati4D-Var is capable of finding
an accurate analysis when the background model is “badly
tuned”. Furthermore, in a regime of multiple steady-state so-
lutions, i4D-Var is capable of finding an analysis which is
a near perfect fit to the “correct” equilibrium, when initial-
ized with the “wrong” one. Also for “noisy” observations,
i4D-Var performs well andTerwisscha van Scheltinga and
Dijkstra (2005) found thati4D-Var is also capable of accu-
rately estimating multiple parameter values. Together with
the fact that no explicit adjoint has to be constructed,i4D-Var
can be an attractive alternative for data-assimilation prob-
lems in which flows are changing much more slowly than
on a time scale comparable to the maximum time step al-
lowed by numerical stability in explicit models. We admit,
however, that the development of implicit methods for large
scale ocean models is still in its infancy. The model prob-
lem chosen here, with the idealized observations and iden-
tity observation and covariance matrices, is orders of mag-
nitude simpler than most ocean models used in operational
oceanography. Two concerns to the operational applicability
of the i4D-Var approach may come to mind: (i) the implicit
model may be as difficult to construct as the adjoint model,
and (ii) the computational costs and storage requirements be-
come prohibitively expensive for systems with a larger num-
ber of degrees of freedom. A discussion of both concerns
for further development ofi4D-Var towards its application to
real world situations is therefore warranted. Concerning (i),
our experience with the development of 3D primitive equa-
tion ocean models is that the tangent linear model (or Jaco-
bian matrix) of the set of nonlinear equations arising from an
implicit discretization technique can be computed for com-
plicated ocean model formulations. Our approach is to de-
termine the tangent linear model first locally using the sten-
cil defined by the spatial discretization and then building up
the total matrix elementwise as in a finite element method.
When the local coupling between different unknowns be-
comes complicated, such as the implementation of neutral
physics, that part of the local Jacobian is computed using nu-
merical differentiation. Having developed a 3D global ocean
model this way (Weijer et al., 2003), we think that the Ja-
cobian matrix can be determined for ocean models which

are now used in operational oceanography. With this Jaco-
bian matrix, the gradient of the cost function can be deter-
mined ini4D-Var with the use of in situ transposition (Saad,
1994) of the tangent linear model (as is used here also for the
barotropic quasi-geostrophic model). The issue (ii) is more
complicated. In the Crank-Nicholson method (or any other
implicit time stepping scheme), nonlinear systems of equa-
tions have to be solved with the Newton-Raphson method
(or any quasi-Newton method, such as the adaptive Shaman-
skii method (Weijer et al., 2003)). To do this, efficient lin-
ear system solvers are required. For the barotropic quasi-
geostrophic model as used here, such a solver is easily avail-
able but for more complicated ocean models at higher resolu-
tion, the development of these solvers is a complicated prob-
lem (Dijkstra, 2005). There has been much progress, how-
ever, to develop targeted solvers for primitive equation ocean
models. The recently developed block Gauss-Seidel precon-
ditioner (De Niet et al., 2007) allows to efficiently solve sys-
tems of equations having up to 2 million degrees of freedom
with the GMRES technique (Saad, 1994). These solvers will
also increase the application potential of 4D-Var to implicit
models.
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