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Abstract. A comparison is made of the performance of Ocean (ECCO) consortium applied 4D-Var to estimate the
the four-dimensional variational data assimilation (4D-Var) ocean state using WOCE data and NCEP reanalysis of the
method in an explicit and implicit version of a barotropic surface fluxes tammer et al.200Q 2002agb, 2003. The
quasi-geostrophic model of the wind-driven double-gyre LSG model (Hamburg Large Scale Geostrophic Model) was
ocean circulation. As is well known, implicit methods have used together with 4D-Var bwenzel et al(2007) to study

the advantage that relatively large time steps can be takethe annual cycle of the global ocean circulation. The 4D-Var
with respect to explicit methods, but the computational costsmethod was also used for paleonutrient data analysis of the
of each time step is larger. We focus here on two issues: (iglacial Atlantic Winguth et al, 2000. In the 4D-Var ap-

the computational efficiency in the range of time steps whereproach, a cost function is minimized by varying the initial
the chosen explicit method is still numerically stable and (ii) condition or the forcing of the model. Parameters control-
the performance of 4D-Var in the implicit model for time ling the solution can also be varied, for example diffusivities
steps out of reach for the explicit model. For the same time(Stammey2005 or eddy stresses-€rreira et al.2005. The

step Ar and the same number of poinisper assimilation  cost function measures the distance between the data and a
interval, the analyses in the implicit model is always more state vector at a sequence of times. The so-called analysis
accurate than that in the explicit model. Due to this prop-is that state which minimizes the cost function and the mini-
erty the use of 4D-Var combined with the implicit model can mization procedure requires the evaluation of the gradient of
be computationally more efficient than its use in the explicit the cost function. In general, this gradient is calculated by us-
model. ing both a forward and an adjoint model. Although there are
now compilers which generate actual computer code of an
adjoint model given the code of the forward mod&idring

and Kaminski1998, the formulation of an adjoint model is

in most cases a nontrivial and time-consuming process. With
the increase in the length of data sets, data-assimilation be-
comes feasible to better simulate phenomena with a longer
. : : Y7 ™~ time scale, such as interannual variations of the Gulf Stream
ical oceanography. It is a method in which information

that is present in observations is combined with the evolu-path or even decadal variability in the North Atlantic. For

tion determined by a particular ocean, atmosphere or cIimatéhese type of computations, the implementation of 4D-Var

model. The 4D-Var method is routinely applied at ECMWF methpds n gxphmt models ha_ve. the drawpack that the time
. . . step is restricted by the explicit time stepping scheme. Even
in weather forecastingRabier et al.200Q Mahfouf and Ra-  : )
: . . if one uses monthly averaged data, the time step of the ocean
bier, 200Q Klinker et al, 2000. In operational oceanogra-
o : model has to be small (smaller than an hour at reasonable
phy, for example within the French Mercator projedtgaver

et al, 2003 Vialard et al, 2003, the use of observations resolut|0|j) -to carry out the ass!mllatlon. Such long term
N . . . data assimilation problems motivate to search for alterna-
to initialize ocean circulation models results in better fore-

casts. The Estimating the Circulation and Climate of thetlve 4D-Var implementations n which relatively Iarge time
steps can be taken. By tackling problems associated with

Correspondence taA. D. Terwisscha van Scheltinga the stability and successive bifurcations of large-scale ocean
(a.d.terwisschavanscheltinga@phys.uu.nl) flows, fully-implicit ocean models have been developed over

1 Introduction

The four-dimensional variational data assimilation method,
4D-Var, is now widely applied in meteorology and phys-
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the last decade. For example, implicit quasi-geostrophic
and shallow-water models of the wind-driven ocean circu- _, 3 s 97y 9r*

lation have been used to investigate the bifurcation behaviof3; + 45 + v@][f + Byl = Re VY +ar<¥ - §> (1a)

of the double-gyre circulatiorDjjkstra and Katsmanl 997,

Schmeits and Dijkstrg2000. A hierarchy of fully-implicit

models of the thermohaline ocean circulation has helped clary _ y2,, (1b)

ify the role of different equilibria in the hysteresis behavior

of the global ocean circulatiorDfjkstra et al, 2004. The  Where the dimensionless horizontal velocities are given by
immediate advantage of these methods is that much larger=—0v/3dy andv=39y//dx. The parameters in Eql§ are
time steps can be taken than with explicit methods. A fewthe Reynolds numbeke, the planetary vorticity gradient pa-
years ago 4D-Var was implemented in fully implicit mod- rameterg and the wind-stress forcing strength. These

els (Terwisscha van Scheltinga and Dijkst2005. In this ~ parameters are defined as:
implementation, the adjoint model is easily derived from the 5

e . . . UL BoL oL
implicit time-stepping scheme, and the choice of the timeRe = —; f="; ;= —
step is not limited by numerical stability but by accuracy. In H u pDU
this paper, we compare the performance of the implemenwhereg is the gravitational acceleration angy is the lat-
tation of 4D-Var in an implicit version (abbreviated below eral friction coefficient. We assume no-slip conditions on the
with i4D-Var) of a barotropic quasi-geostrophic model of the east-west boundaries and slip on the north-south boundaries.
double-gyre wind-driven circulation with 4D-Var applied to The boundary conditions are therefore given by

an explicit version (abbreviated below wigdD-Var) of the
same model. The aim of the comparison is to investigate

)

whether implicit methods provide useful alternatives inprob-y =0, x = 1: ¢y = % =0, (3a)
lems where variational data-assimilation techniques are used. dx
2 Model and methods y=0y=1:y=¢=0. (3b)

In the first subsection below (Sect. 2.1), we provide the The wind-stress forcing is prescribed as renewcommand3b3a

model of the wind-driven ocean circulation which is used in -1

this study. Next, we provide a basic overview of the 4D-Var T* (x, y) = 5, COSZry, (4b)
method (Sect. 2.2) such that the differences between the im-

plementation of 4D-Var in the implicit and explicit versions

of the ocean model in Sect. 2.3 can be explained more easily:” (x, y) = 0 (4b)

2.1 Barotropic wind-driven ocean flows and the zonal wind stress is symmetric with respect to the
mid-axis of the basin (the standard double-gyre case). When

Consider a rectangular ocean basin of sizeL having a  the horizontal velocity scale is based on a Sverdrup balance
constant depttD. The basin is situated on a midlatitugle  of the flow, i.e.,
plane with a central latitudéy=45° N and Coriolis param- 70
eter fo=29simp, WhereQ is the rotation rate of the Earth. U = SDfoL’ )
The meridional variation of the Coriolis parameter at the lat-
itude 6 is indicated bygg. The densityp of the water is it follows thate,=pg and two free parameters resuRed-
constant and the flow is forced at the surface through a windlosky, 1987, for example the dimensionless boundary layer
stress vectol' =to[* (x, y), 7" (x, y)]. The governing equa- thicknessed?=1/g ands3,=1/(BRe). A standard set of pa-
tions are non-dimensionalized using a horizontal length scaléameter values has been chosen (Tdblthat are similar to
L, a vertical length scal®, a horizontal velocity scal¢/,  those inDijkstra and Katsmax1997) and for these parame-
the advective time scale/ U and a characteristic amplitude ters,a;=p=2.8x 10°.
of the wind-stress vectory. The effect of deformations of For the parameters as in Talle Dijkstra and Katsman
theocean-atmosphere interface on the flow is neglected. (1997 showed that different flow regimes exist whé

The dimensionless barotropic quasi-geostrophic model ofS varied. ForRe<30, the quasi-geostrophic model has

the flow for the vorticityz and the geostrophic streamfunc- One unique stable steady state. The streamfungioof
tion v is (Pedlosky 1987 this steady state is anti-symmetric with respect to the mid-

axis of the basin and a solution fdte=20 is shown in
Fig. 1a. Two asymmetric stable steady-state solutions, one
with a downward jet-displacement (the jet-down solution
shown in Fig.1b) and the jet-up solution (Fidlc), exist

Nonlin. Processes Geophys., 14, 7636 2007 www.nonlin-processes-geophys.net/14/763/2007/



A. D. Terwisscha van Scheltinga and H. A. Dijkstra: A comparison of the performance of 4D-Var 765

Table 1. Standard values of the parameters for the barotropic quasi- 1.07
geostrophic ocean model.
0.8 b

Parameter Value

L 1.0x10°  m

U 71x103 ms?t

D 7.0x17  m ~

Bo 201011 (msy?t

fo 1.0x1074 s

g 9.8 ms2

0 1.0x108  kgm3

0 1.0x10"1 Ppa

for 30<Re<52. NearRe=52 both asymmetric states be-
come unstable due to the occurrence of Hopf bifurcations;
for 52<Re<74 stable periodic orbits exist. The solutions
become quasi-periodic faRe>74 and irregular for higher
values ofRe; the route to chaos is through a homoclinic or-
bit (Simonnet et a).20095.

2.2 The 4D-Var method

The incremental formulation of the 4D-Var method as de-
scribed inCourtier et al.(1994) is used and the notation is
adapted fromde et al.(1997). Letw be the state vector con-
sisting of model variables that are to be estimated by com-
bining model dynamics and observationswff is the back-
ground state anéw is the increment on the background state,
then we want to determinfav such that the resulting state
defined by x (b)

w=w’+ 5w (6)

is “close” to observations. In the 4D-Var approach, the
analysisw? is defined as the state vector which minimizes
both the distance to the backgroundl(rp) and to the
time-sequence of observatiops i=1, - - -, n in the interval
to<t;<t,. Hence, this defines a cost functidnas Courtier

et al, 19949:

n
J(Sw) =sw' B Mow + Y dIR7d;, 7)
i=0

where the departureg are defined as:

d; = yi — H:M(1;, 1) (w’ (t0)) — HiM (11, 10)dw(10).  (8)

The matricesB and R; in Eq. (7) are the covariances of

the background and the observation errors. The operat0|[_

M(t;, o) in Eq. ) represents the evolution operator, such Re=20, (b) the jet-down steady state fdte=50 and(c) the jet-up

that steady state foRe=50. The contour values are scaled with respect
_ to a maximum ofyy=2.2 for (a), which represents a transport of

t) = M(t,t 1 9

w() (ti, fo) (w (10)), ©) 5.5 Sv; and a maximum of=1.1 for (b, c¢), which represents a

and H; in Eq. @) is the observation operator. The lineariza- transport of 10.9 Sv. The contour interval is 0.2.

tion of the operatord/(1;, ro) and H; around the background

ig. 1. Streamfunction) of (a) the anti-symmetric steady state for
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Fig. 2. Sketch of the 4D-Var method, where an assimilation in-
terval has been divided into three subintervala) ||H(Wh(tl-)||2
and| H (W (z;)]12, the L2-norm of the projection of the background
wP(5;) (solid) and analysisv?(;;) (dashes) on the observations
space; they-norm of the observationsathbfy; (crosses) and the
optimal incrementsw“ (arrows). (b) the initial (solid) and final
(dashed) value of the cost function.

state are denoted M (1;, o) andH;, respectively. Iw“ is
defined as the solution of the optimization problem

Sw® = r‘?':)n J(Sw), (10)

then the analysis is given by
w®(10) = w’ (10) + Sw*. (11)

To solve the optimization problem Ed.Q) on each subinter-
val, the gradient of the cost functiohin Eq. (7), i.e.,

n
VI@w) =2w tsw — Y Mt to)HRd;, (12)
i=0
has to be calculated.

To clarify the terminology used below, an illustration
of the 4D-Var method has been provided in F&a. In

(solid), the optimal incrementw® (arrows) and the anal-
ysis w(t;) (dashed) are shown. The background on the
first interval is given. For the other intervals, the back-
ground is calculated from the analysis on the previous in-
terval: w? (f,4.1)=M (t, 11, t,) (w’(t,)). On each interval the
minimization problem Eq.10) is solved. Due to the depen-
dence of the cost function on the background, the increment
and the observations, the initial and the final value of the cost
function will vary over the subintervals (Figb).

2.3 Explicit and implicit implementations

The equations Eq.1@ and boundary conditions Eq34)

are spatially discretized using a control-volume method on
an equidistantvVx M grid. For the explicit integration the
second-order Adams-Bashforth time discretization is used
in which the first step, for each assimilation interval, is an
Euler step. In this explicit implementatiom4D-Var) the
cost function is first computed by forward evolution over the
time interval. The gradient is then evaluated by integrating
the adjoint model, with evolutioM” (#;, ;1) and forcing
HiTRi_ldi, backwards in time. For the implicit integration
of the model the second-order Crank-Nicholson scheme is
used. When this method is used with 4D-Vegrwisscha van
Scheltinga and Dijkstré2005 showed that the construction
of the adjoint model is straightforward since the transpose of
the tangent linear mod@& 7 (1;, 1;_1) is implicitly available
from the Newton-Raphson method used to solve the nonlin-
ear systems arising from the Crank-Nicholson method. In the
implicit implementation i4D-Var) the cost function in 4D-
Var is evaluated by forward evolution over the assimilation
interval while simultaneously storing the implicitly available
information onM7”. The gradient is then evaluated by a
backward iteration using the stor&t’ . Note that for each
backward integration, linear systems have to be solved (
wisscha van Scheltinga and Dijkst2009; we solve these
linear systems with a relative accuracy =106, Due

to the different integration methods in the explicit and im-
plicit schemes, the cost function will also be evaluated differ-
ently. This difference depends on the accuracy and stability
of the methods involved and therefore depends on the time
step used. In all computations below a6 grid was used
which was shown to give sufficient accuracy in the solutions
computed Dijkstra and Katsmanl1997). Each linear sys-
tem (arising from the Newton-Raphson method)4D-Var
was solved using the BICGSTAB method \&n der Vorst
(1989 with an incomplete LU factorization as a precondi-
tioner. For practical implementation of the minimization
of the cost function, a NAG-library routine (E0O4DGF) was
used. This method uses a preconditioned conjugate gradi-
ent method with a “limited” memory quasi-Newton method

this figure, the observations (crosses) are shown on an exe calculate the search directioi{l and Murray, 1979

ample assimilation interval;<f;<t1o. This interval has

Gill et al,, 1987). A minimum has been found if the fol-

been divided into three subintervals, each with four pointslowing conditions on the convergence of the iterate, cost

(n=4). For every interval the background trajectasf(s;)

Nonlin. Processes Geophys., 14, 7636 2007

function and gradient arall satisfied given the optimality
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tolerance,,: 0.6
Je—1— Jk < e (L4 |Ji)), (13a) 0.4r 1
1/2
I8wi—1 — Swill < € 2L+ [Swil),  (13b) 02t ‘ W |
IV < e+ 1)), (13c) 5 ool | J M R T
< . I I [
wherek is the iteration index. For the optimality tolerance in _02F
E04DGF, a value of,,=10"° was chosen.
—Q0.41 1
. . 706 L L L
3 Comparison betweeri4D-Var and e4D-Var o 0 20 <0 40
In this section, we will compare the performanced4-Var ¢ [years] @
and e4D-Var using the barotropic quasi-geostrophic ocean 0.6
model. The specific set-up is described in Sect. 3.1 and re- 0.4) ,
sults for a standard case, with a fixed time stefand a fixed
number of points per assimilation interva) in Sect. 3.2. 0.2 1
The changes in performance wham andn are varied are > o0 |
presented in Sects. 3.3 and 3.4, respectively and in Sect. 3.5 = '
the overall computational efficiency of 4D-Var in the implicit —0.2F E
and explicit model is compared.
—Q0.41 1
3.1 Specific case 06 ‘ ‘
. . . 0 500 1000 1500
For a value ofRe far into the irregular regimeRe=120), t [hours] b
results of a 40 year time integration are shown in Ba. ()

The quantityA W on the vertical axis in Fig3a is a measure
of the asymmetry of the streamfunctigrwith respectto the  Fig. 3. The asymmetryA W of the streamfunction for(a) a time-
mid axis of the basin and it is defined as: integration of 40 years, starting from a unstable jet-up steady state;
. and(b) a 1200 h window after year 10 in (a); the latter values serve
AV = maxy) + mln(w). (14) as the observations.
max(y, —v)

A positive value of AW indicates a downward jet- ;_1 ..., The identity operator was chosen for the obser-
d|splalcem.ent, while a negative value/o® |r.1d|cates. anup-  yation operatori = 1), which means that we use all the ob-
ward jet-displacement. In these computations, a time step oferyations of the streamfunction. As initial background state
At=15min was used for both the implicit and the explicit ;& have chosen the unstable jet-up steady stakeafl 20;
integration of the model. Both methods give near identicalipis is the starting point of the time-series shown in Ba.

results such that the curves in F8a are indistinguishable.  £qr each interval the first guess of the minimization was
The unstable jet-up steady state Ru=120 was chosenas aken assw=0.

the initial state at=0. Although the flow stays close to the

initial state for the first few years, the behavior becomes ir-3.2  Accuracy

regular in time with frequent changes between upward and

downward jet-displacement. For the comparison betweerfFirst we consider the behavior of both implementations for
the two 4D-Var implementations, we have derived the “ob-a time stepAr=2h andn=2 (two points per interval). The
servations” from the 1200 h window after 10 years of inte- initial value of the cost function (solid) before minimization
gration; the value oA of these “observations” is plotted and the final value of the cost function after minimization
in Fig. 3b. Although the computed trajectories were nearly (dashed) are foe4D-Var shown in Fig4a and fori4D-Var
indistinguishable, for consistency tli¥D-Var observations in Fig. 4b. Both methods show a rapid decrease in the initial
were taken from the implicit time-integration, while fetD- and final value of the cost function for the first few inter-
Var they were taken from the explicit time-integration. The vals, after which both values becomes constant. The rapid
1200 hour interval of observations is broken into subinter-decrease is caused by the large difference at the beginning
vals, each withn points. On each of the subintervals, the between the observation (which initially hasl>0) and the
minimization problem Eq.10) is solved with the initial con-  background state (which initially has ¥ <0). As a result
dition as control variables (cf. Fi@®). For the covariances of this difference, both methods make large improvements in
matrices, we have chosen (for simplicity) tia:R;=I for the background state until it becomes close to the observa-

www.nonlin-processes-geophys.net/14/763/2007/ Nonlin. Processes Geophys., ¥26/8667



768

ligrad Jll,

llgrad Jll,

Fig. 4. Results forAr=2 h and 2 points per intervala) Initial value

1072

107°F

»‘0710:7
»‘0715:7
»‘07205

A. D. Terwisscha van Scheltinga and H. A. Dijkstra: A comparison of the performance of 4D-Var

0 500 1000 1500

t [hours] @)
0 500 1000 1500

t [hours] (b)
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0 500 1000 1500
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tions and only a small correction on the background is nec-
essary. The difference in the value of the cost function (both
initial and final) between both methods is about one order
of magnitude, with the implicit method having the smallest
value of the cost function. This is due to the different eval-
uation of the cost function: foe4D-Var, the term involving
the tangent linear model ir8) is evaluated at the beginning
of each time interval, while im4D-Var, both begin and end
points of the interval are used. The initial and final value of
the L, norm of the gradienVJ are shown foe4D-Var and
i4D-Var in Fig.4c and d, respectively. Again there is a sharp
decrease initially followed by stabilization afterwards. The
initial value of the norm oV J is of the same order for both
methods but there is a large difference in the magnitude of
the final values. This is due to a difference in the evaluation
of the gradient: foli4D-Var, the evaluation of the gradient
requires 2 linear systems to be solved which is done using
an iterative scheme with an accuragy=10%. As a resuilt,
the L, norm of the gradient cannot become smaller than
fori4D-Var. Since foe4D-Var no systems have to be solved,
the norm of the gradient can be several orders of magnitude
smaller.

An indication of the computational cost for both 4D-Var
implementations is provided in Figa. Here the CPU time
(fcomp) Needed for a minimization over one assimilation in-
terval is plotted forAr=2 h andn=2 for bothi4D-Var (solid)
ande4D-Var (dashed). The&lD-Var method is on average a
factor 1.5 more expensive in computational time tiedb-

Var. There are, however, several peaks where the difference
is more than a factor 2.5 or higher. For both implementa-
tions, the cost function Eq7) is minimized using an iter-
ative scheme, with the optimality tolerangg=10"°. The
conditions on the convergence of the iterate, cost function
and gradient are more difficult to satisfy f@¥D-Var, since

the accuracy of the gradient is limited by the tolerance of
the iterative linear solvek(=10-%). Hence, more iterations
are needed fa¥D-Var than foredD-Var in the optimization
procedure. Time integration is also more expensive4br-

Var, since two linear systems have to be solved for each time
step: one during evaluation of the cost function and one dur-
ing evaluation of the gradient. Both factors mak®-Var
more expensive thasiD-Var.

To summarize the results for the chosen time-step and the
number of points per interval: both implementations are ca-
pable of finding an accurate analysi4D-Var appears more
accurate tham4D-Var for this value ofn and Ar, but it is

(solid) and final value (dashed) of the cost function for each mini- &lSO more expensive.

mization as evaluated tB4D-Var. (b) Initial value (solid) and final

value (dashed) of the cost function for each minimization as eval-3-3 Effect ofAz

uated byi4D-Var. (c) Initial value (solid) and final value (dashed)

of the L, norm of the gradient of the cost function for each mini- We use the same setup as in the previous section using the

mization as evaluated tB4D-Var. (d) Initial value (solid) and final
value (dashed) of thé, norm of the gradient of the cost function

for each minimization as evaluated BAD-Var.

Nonlin. Processes Geophys., 14, 7636 2007

same 1200 h observations but now successively increase the
magnitude of the time step, while keeping:2. The initial

and final value of the cost function are shown for=2 h,
At=4h, Ar=8h and Ar=16h in Fig.6a—d, respectively.

www.nonlin-processes-geophys.net/14/763/2007/
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Fig. 5. The processor timeomp needed for the minimization of 1074
cost function/ for each assimilation interval (see FR). The value 10?2 R 7
of tcompis plotted at the beginning of the interva(g) for Ar=2h 10° [ ]
andn=2. (b) for Ar=16 h anth=2. (c) for Ar=2 h and»=16. The L
solid curves represent the results frofD-Var. The dashed curves - 107? h
represent the results froedD-Var. 1 0,4’ ]
107 .
- . g . -8 [ |
The latter value oAt is close to the limiting time step (based 10 ‘ ‘
on the CFL criterion) of the explicit scheme af~17h. In 0 5oot [h W]OOO 1500
each figure panel, the top two curves are calculatee4iny ours (@)

Var, while the bottom two are calculated 4D-Var. For

all intervals, the values of the cost function (both initial and ;. ¢ \sye of the initial (solid) and final (dashed) value of the cost
final) as calculated bg4D-Var are larger than those calcu- function for several values of the time step and2. (a) Ar=2h.
lated byi4D-Var. For the first intervals, the same behavior is (p) A;—ah. (c) Ar=8h. (d) Ar=16h. Curves marked with rect-
observed for both implementations: a rapid decrease of th@ngles denote results e4D-Var. Curves without rectangles denote
cost function (both initial and final) and a decrease of the costesults ofi4D-Var.

function during minimization. After the rapid decrease, the

value of the cost function stabilizes.

Fori4D-Var, the curves are comparable for each time stepjnitial and final value of the cost function after the sharp de-
although there is a small increase in the value of both thecrease. Foe4D-Var, however, the value at which the cost

www.nonlin-processes-geophys.net/14/763/2007/ Nonlin. Processes Geophys., 26/8667
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102 ‘ ‘ due to larger error propagation in the explicit scheme used
] in edD-var for largeAtr. As a result, the evaluation of both
= 10k i the cost function and the gradient becomes less accurate.
= ] The same behavior can therefore be seen inttheorm of
< o2l i the difference between analysis and observations, shown in
T | ] Fig. 7 for different Ar. For both implementations, there is
lg | again an increase in the equilibrium value of this norm with
o At but the rate of increase is not as large as for the cost func-
1078 ‘ ‘ tion (Fig. 6). Hence, for increasing\r the quality of the
0 500 1000 1500 analysis decreases.
t [hours] @) For At=16h andn=2, the CPU time per minimization
102 ‘ ‘ is shown in Fig.5b; againi4D-Var is more expensive than
] edD-Var. The difference is on average a factor 2. This is a
100 i small increase compared to that found for=2 h andn=2
’ (Fig. 5a).
1 072 - l'\,‘,t,\‘.‘,'.‘A\‘,',“‘:s‘f,‘lf,',‘i‘,\‘,',‘.‘..‘.‘, A A A R R AV ARV AT AN -

3.4 Effectofn

[y =H(we ()1,

Again using the same set-up as above, we nowAfix2 h

mfs’ ‘ ‘ | and vary the number of points per intervak2, 4, 8 and
0 500 1000 1500 n=16, i.e. the numbgr of.observations per subipterval within
t [hours] ®) the 1200 h assimilation interval (cf. Fig). In Fig. 8, the

initial and final value of the cost function are plotted for both
implementations. Again the two top curves are the results
for e4D-Var, while the bottom two curves are fidiD-Var. In

each panel we see a decrease of the cost function in the first
few intervals followed by a stabilization. After this decrease
there is a difference in behaviodD-Var is still able to im-
A A | prove the cost function, while4D-Var fails to provide any
improvement. The values of the cost function &D-Var

are one order of magnitude larger than thosa4&r-Var for

[y =H(we(t))I1;

107° ‘ ‘ o X . .
n=2 and this difference increases to six orders of magnitude
0 500 1000 1500 . : L
t [hours] for n=16. For both implementations, the equilibrium values
© of the cost function increase with The rate of increase is

one order of magnitude from=8 to n=16 fori4D-Var, but
this is relatively small compared to that@fD-Var.

In Fig. 9, the L> norm of the difference between the anal-
ysis and the observations is shown for each of valua of
(as used in Fig8). Fori4D-Var, this difference decreases in
the first interval and then fluctuates around a constant value.
With increasing: the results of4D-Var do not change much,
apart from a small decrease of the size of the fluctuation and

Hyi=H(we(t))I1,

107° ‘ ‘ X o
a small increase of the equilibrium value. FedD-Var, how-
0 500 1000 1500 S . o
t [hours] ever, the equilibrium value does not remain constant with in-
@ creasingn but it slowly increases with time. In Figp, there

is a window in which the., norm strongly fluctuates. To a
Fig. 7. The difference between the observation and the analysid€SSer extent, this is also seen in Fig. but it is absent in
after minimization of the cost function for several values of the time Fig. 9d. This window of fluctuations corresponds to a series
step. () At=2h. (b) Ar=4h. (c) Ar=8h. (d) Ar=16h. The  of observations where the solution changes from jet-down to
solid curves represent the results frodd-Var. The dotted curves  jet-up and back (Fig3b).
represent the results froe4D-Var. The difference between the resultedD-Var and4D-Var

can be explained as follows. With increasingnore integra-

tions for the evaluation of the cost function and its gradient
function stabilizes increases with increasiig for example  have to be performed. When the number of points per inter-
by 4 orders of magnitude fromr=2h to Ar=16h. Thisis valisn+1, the total number of time steps taken for the eval-
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Fig. 8. Value of the initial (solid) and final (dashes) value of the Fig. 9. The difference between the observation and the analysis after
minimization of the cost function for different (a) n=2. (b) n=4.

(c) n=8. (d) n=16. The solid curves represent the results from
i4D-Var. The dotted curves represent the results fed®-Var.

cost function for different. (a) n=2. (b) n=4. (c) n=8. (d) n=16.
Curves with rectangles denote resultsedD-Var. Curves without

rectangles denote resultsidD-Var.

uation of cost function ig. In e4D-Var, the evaluation of the
gradient requiresr2steps;: for the forward integration and

www.nonlin-processes-geophys.net/14/763/2007/

a direct result, the cumulative numerical error made in the
integration increases. From Fif.it appears thae4D-Var
n for the backward integration with the adjoint model. As is less accurate thadD-Var with the same: and the qual-
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the observations in the 1200 hour window, using an interval

Table 2. The average accuracy of the analysis ) .
E=lyi—Hw(;))]z and total processor timeSigomp used lengthn and a time-step\s. The total CPU timeXicomp
for several combinations of the interval lengttand time-steprs 1S the sum of the CPU times needed for each minimization

and for both explicit and implicit models. For three casgsnp  @long this interval. In Tabl@, values ofZcomp and€ are
is compared for the implicit and explicit method over the whole shown for several combinations afand Ar and for both
interval in Fig.5; the superscripts a, b and c refer to the subpanelsexplicit and implicit models. The values in Tatfeprovide

in Fig. 5. an indication of the computational costs for both methods
to produce an analysis with a certain average accuracy. For

n  Arfh] € Ztcompls] € Ztcompl[s] example withe4D-Var, a value of£=0.13 is achieved for
(implicity ~ (implicit)  (explicit)y  (explicit) a value ofn=2 andAr=2h at a computational cost of 2623

2 2 0.0650 492% 0.1323 2638 seconds. We also see théD-Var is more accurate thad D-

4 2 0.0653 7819 0.2622 7970 Var for the same value efandAr+ but that it is about twice as

8 2 0.0663 10976 0.5190 7299 expensive. To obtain about the same accuréey((13) with

1 2 0.0782 14570 0.9819 4868 i4D-Var, we can use a larger time step and more points per

2 4 0.1299 3440 0.2684 1347 interval (Ar=2 andrn=4) and for this cas&D-Var is only a

4 4 0.1306 4553 0.5265 3046 factor 1.3 (3440/2638) more expensive tlediD-Var.

8 4 0.1362 7088 1.0679 4241

16 4 0.1957 9019 2.0794 2918 The values in Tabl@ indicate that foi4D-Var, £ does not

2 8 0.2598 1678 0.5515 703 increase much with for constantA¢. Only for Ar=16 there

4 8 0.2626 2858 1.0695 1045 is a large increase for=16, which is due to the relatively

8 8 0.2989 4909 2.1996 1232 large weight of the initial adjustment. FotD-Var, the total

16 8 0.6143 8875 4.0994 1974 computational time increases approximately linearly with

2 16 0.5200 1029 1.1537 348 Fored4D-Var £ always increases with due to cumulative er-

4 16 0.5381 1942 2.1787 377 . ) .

8 16 0.7654 4884 7 3980 548 rors in the time-stepping. F_or the same, & for e4D-Var

16 16 2 2575 9237 8.8472 439 is always larger than that fadD-Var. The total processor

time for e4D-Var varies non-monotonically with increasing
n. This is because for large and Ar the minimization ter-

ity of the analysis of4D-Var decreases faster (Fig). with minates unsuccessfully due to inaccuracies in the integration
increasing: compared ta4D-Var. ForAt=2h andn=16, method. From Tabl@, we also see that for the particular
the CPU time per minimization is plotted in Fic showing ~ Model used herdAD-Var can be more efficient thasdD-
thati4D-Var is again more expensive thaAD-Var. After Var even in the range of values ofr below the CFL limit.
the first few intervals, the minimization scheme terminatesFor example, if a value of =0.52 is desired, we could use
after one iteration foe4D-Var since the NAG routine cannot #=2 andAz=16 h fori4D-Var which would cost 1029 s. For
find a direction where the residue is decreased, while condithe same:, we would have to use ar=4 h with e4D-Var to
tions on the convergence are not satisfied. The minimizatiorPPtain approximately the same valuefgfwhich would cost
method is unable to find a converged minimum from the ini- 1347's.

tial guess (the initial increment) and the last value provided

by the NAG routine is taken as the minimum. This leads ]

to the lack of improvement in the cost function as seen in4 Performance ofi4D-Var

Figs.8b—d. ] ) o ) ]
In this section, we will investigate the performancei4b-

3.5 Overall computational efficiency Var for a time stepAr=24 h, which is larger than the max-
imum time step possible for the Adams-Bashforth scheme
In the previous results we saw thdD-Var was more accu- and hence (for this time steg#D-var does not work. As
rate thane4D-Var but also more expensive. For evaluating the target problems fa#D-Var are those where variability
whether implicit methods provide a useful alternative for theis on relatively long time scales or equilibrium behavior oc-
range ofAr smaller than the maximum value possible with curs, we consider flow regimes in the barotropic ocean model
the explicit method, one is interested in a comparison of thewhere steady states exist. We use5 in all computations
total processor tim&z.omp Needed to obtain a certain aver- below and will investigate two cases: (i) a model mismatch,
age accuracy in the analysis over the whole time interval. Agii) a solution mismatch and (iii) the effect of observational
a measure of this average accuracy, we take the quahtity noise. The aim of (i) is to investigate whether the method
defined as finds an analysis close to the observations, using a ‘badly
tuned’ model. We consider the reginRe<30 where we
E=lyi — Hw(w))ll2 (15) know that there is an unique solutiongfor which the barotropic
Here the overbar indicates average [of;—H (w?(#;))|l2 streamfunction is anti-symmetric (cf. Fifja). As ‘observa-
taken over all the analysag’(#;) found while assimilating tions’, we take a daily sequence of the steady-state solution
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of the model forRe=25. The background model is initial-
ized with the steady-state solution”¢=20 and also run for
Re=20. Withi4D-Var approach, we assimilate observations
obtained at one value dte within the model which is run 107"k
with a “wrong” value forRe. The initial increments for each
assimilation interval are taken equal to zero and the observa-
tion error covariance matricég, i=1, - - -, n are taken equal

to the identity matriX. A large decrease between the initial

10°

1072 F

and final values of the cost function (Figj0a) and theL, 1073
norm of the gradient (FiglGb) occurs. After the first four 0O 2 4 6 8 10 12 14 16 18 20
intervals, the value of the cost function stabilizes and the as- interval

a
similation method cannot improve the analysis anymore. The ©

difference between the observations and the analysis also sta-
bilizes after a few intervals (FidlOc). This stabilization at 10°F 7
a relatively large error is due to the fact that the background
model has an unique steady solutionkat=20. Therefore,
it is not possible to find an analysis that perfectly fits the ob-
servations (forRe=25), since the observations are derived
from a different steady solution. Although the ‘wrong’ back- 107°F N NNy A\ AN
ground model will not allow a perfect fit4AD-Var finds an o
analysis which improves the solution of the “badly tuned” 0 2 4 6 8 10 12 14 16 18 20
model to be closer to the observations. interval

Next, we consider how 4D-Var performs under case (ii) of
a solution mismatch. As discussed earlier, fox3r <52,
the barotropic ocean model has two stable steady solutions
(cf. Fig. 1b, ¢). ForRe=50, which is in this multiple equi-
libria regime, we synthesize “observations” from the jet-
up solution in Fig.1b, while we initialize the background
model with the jet-down solution in Figlc. The aim is
to test whether the assimilation method is able to find the
correct stable equilibrium, while being initialized with the ‘ ‘ ‘ ‘ ‘ ‘ ‘
“wrong one”. The initial increment for each interval is again 0 10 20 30 40 50 60 70 80
taken equal to be zero and again the covariance matrices t [days]
Rj,i=1, - - -, nare taken to be the identity matrix For each
interval, there is a large difference between the initial and
final value of the cost function (Fid.1a) and theL> norm Fig. 10. The solution mismatch case fdte=50. In this case,
of its gradient (Fig.11b). A decrease of the initial and fi- the “observations” are from Fidlc while the model is initialized
nal values for each successive interval occurs, indicating thawith the solution in Figlb. (a) Initial value (solid) and final value
the ana|ysis converges towards the observations. |rﬂ_E@ (dashed) of the cost functio(b) Initial value (SO'Id) and final value
the norm of the difference between the observations and thélashed) of the norm of the gradier{t) Norms of the difference
analysis converges towards zero. This indicatesi#@Var between the data aqd the model (solid) V\_nthou_t assimilation and the
is able to find an analysis which is a perfect fit to the obser—Olata and the analysis (dashed) after assimilation.
vations in this case.

Finally, we consider case (iii) for which noise is added to
the observations. The steady st#téor Re=25 is perturbed
by adding noise to obtain the “observations”

10721 .

llgrad Jll,

(b)

10%F ]

107 YN A/ L NANA P AN

y—H(w*) L, lly—H (w1,

1072

(©

ance matrix is taken as the covariance of the noise, i.e. for
i=1, ..., n,

R; = max|y| 1. a7
yi =¥ + N; (0, max|y|l), (16)

The results in Figl2 indicate that there is a large difference
where the maximum is taken over all the gridpoints and eactbetween the initial and the final values of the cost function
N;(u, C) is a Gaussian distribution, wheye is the mean  (Fig. 12a) and the norm of the gradient (Fig2b). The rea-
andC the covariance matrix. The model is run (with a time- son for the increase of the initial value of the cost function
step of 24 h) aRe=25 and initialized with the steady-state after the first interval is that the analysis found for the each
solutionr. For every assimilation interval, the initial incre- assimilation interval is not a solution of the model equations.
ment is taken equal to zero and the observation error covariThe background ternH; M (1;, to) (w®(10)) in (8) therefore
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Fig. 11. The solution mismatch case fate=50. In this case, Fig. 12.Identical-twin experiment with Gaussian noise fu=25.

the ‘observations’ are from Fidlc while the model is initialized (&) Initial value (solid) and final value (dashed) of the cost func-
with the solution in Figlb. (a) Initial value (solid) and final value tion. (b) Initial value (solid) and final value (dashed) of the norm
(dashed) of the cost functiofb) Initial value (solid) and final value  of the gradient.(c) Norms of the difference between the data and
(dashed) of the norm of the gradier{t) Norms of the difference  the model (solid) without assimilation and the data and the analysis
between the data and the model (solid) without assimilation and th€dashed) after assimilation.

data and the analysis (dashed) after assimilation.

increases after the first interval. From the norm of the dif-5 Conclusions

ference between the observations and the model solutions

before and after assimilation (Fig2c), it is seen that the Results were presented of a comparison between the perfor-
analysis is much closer to the observations than the modemance of 4D-Var in an explicit (Adams-Bashforth) and an
solutions were before assimilation. The analysis at the beginimplicit (Crank-Nicholson) version of a nonlinear barotropic
ning of the interval differs from the background state. Sincequasi-geostrophic ocean model for which ‘observations’
the background model is used as a strong constraint, it willwere derived from solutions of this model. Several flow
pull the analysis at the other points from the observations toregimes of the model, depending on the Reynolds number
wards the background state. This influence becomes strongete, were considered. At high values B, the flow is highly
towards the end of the interval and will result in an increaseirregular and is associated with rapid transitions between jet-
in the difference between the observations and the analysiap and jet-down flows. In this irregular flow regime, both
(Fig. 12c). 4D-Var implementations are capable of producing accurate
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analyses given the observations. Increasing the size of thare now used in operational oceanography. With this Jaco-

time stepAt¢, or the number of points per interval leads  bian matrix, the gradient of the cost function can be deter-

to reduced quality of the analysis fedD-Var when com-  mined ini4D-Var with the use of in situ transpositioSdad

pared toi4D-Var. This result is due to cumulative numer- 19949 of the tangent linear model (as is used here also for the

ical inaccuracies which occur in the explicit time-stepping barotropic quasi-geostrophic model). The issue (ii) is more

scheme. Apart from that, even with the saeandn, the  complicated. In the Crank-Nicholson method (or any other

analyses fronMD-Var are more accurate due to the more ac-implicit time stepping scheme), nonlinear systems of equa-

curate evaluation of the cost function. It was demonstratedions have to be solved with the Newton-Raphson method

(cf. Table 2) thati4D-Var can be a more efficient method (or any quasi-Newton method, such as the adaptive Shaman-

(smaller total computational time) thadD-Var since it is  skii method Weijer et al, 2003). To do this, efficient lin-

more accurate at larger time steps. At smaller valueBeof ear system solvers are required. For the barotropic quasi-

stable steady states exist in the model and the flows displageostrophic model as used here, such a solver is easily avail-

near-equilibrium behavior. In this regimdD-Var offers the  able but for more complicated ocean models at higher resolu-

possibility to use time steps much larger than those possibléion, the development of these solvers is a complicated prob-

for e4D-Var. We showed tha#iD-Var is capable of finding lem (Dijkstra, 2005. There has been much progress, how-

an accurate analysis when the background model is “badlever, to develop targeted solvers for primitive equation ocean

tuned”. Furthermore, in a regime of multiple steady-state soimodels. The recently developed block Gauss-Seidel precon-

lutions, i4D-Var is capable of finding an analysis which is ditioner ©e Niet et al, 2007) allows to efficiently solve sys-

a near perfect fit to the “correct” equilibrium, when initial- tems of equations having up to 2 million degrees of freedom

ized with the “wrong” one. Also for “noisy” observations, with the GMRES techniqueS@ad 1994). These solvers will

i4D-Var performs well andlerwisscha van Scheltinga and also increase the application potential of 4D-Var to implicit

Dijkstra (2009 found thati4D-Var is also capable of accu- models.

rately estimating multiple parameter values. Together with
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