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Adaptive immunity is an important layer of defence against infection

Across the tree of life, many strategies exist to protect organisms against infection with
pathogens like harmful bacteria and viruses. These defence strategies together form the
immune system, which consists of several lines of defence. A first obstacle is formed by
mechanical barriers like the skin and chemical barriers such as the gastric acid that causes
the low pH in the stomach. Pathogens passing these barriers get often cleared by the second
layer of protection: the innate immune system that functions through the action of many
specialised cells, including macrophages, neutrophils, and natural killer cells. The third
line of defence, the adaptive immune system, is specific to vertebrates, like humans and
mice. This complex system of billions of specialised B cells and T cells has the task to
distinguish between self and foreign proteins. When a protein, or a short protein fragment
called a peptide, binds to a specific B cell or T cell, it is called an antigen. An important
task of the adaptive immune system is to ‘remember’ antigens after the first exposure.
This memory allows the host to be prepared against recurrent infection with the same or a
similar pathogen. In this thesis we focus on the repertoire of T cells in humans and mice.

The T cells, that play a major role in adaptive immunity, have a T-cell receptor (TCR)
with which they can bind to a specific set of antigens. The antigens that T cells can bind to
are peptides, which are presented in the context of the Major Histocompatibility Complex
(MHC) proteins on the cell surface. Once a naive T cell binds such a peptide/MHC complex
on an antigen-presenting cell with sufficient affinity, it can be activated. This activation
induces clonal expansion, which means that the cell starts dividing, by which the number
of T cells with that TCR quickly increases. These cells mainly employ effector functions,
which vary across T-cell subsets. The cytotoxic T cells, that express the CD8 protein on
their cell surface, function by killing infected cells, which limits further spreading of the
pathogen. The main task of helper T cells, that express the CD4 protein on the cell surface,
is to stimulate the action of other immune cells, such as B cells. While most expanded T
cells die after pathogen clearance, a subpopulation of specific cells remains. These cells
adopt a memory T-cell phenotype and enable a quicker response upon repeated exposure
to the same antigen. Thus, the memory of the adaptive immune system relies on activation
and expansion of cells with a receptor that makes them specific for certain antigens.

In order to prevent large infection by a virus or bacteria, the adaptive immune system
should respond to most harmful foreign antigens. At the same time, a response against
proteins from the host’s body can be detrimental, as this may lead to autoimmunity. Thus,
the T cells in the body need to be very specific, each binding only a small set of the total
diversity of possible antigens (Borghans et al., 1999). In addition, as there are many different
foreign antigens, there should be a wide diversity of cells, each with such a specific receptor.
In the case of T cells, their TCR is very specific and is generated by a process called V(D)J
recombination (Hayday et al., 1985). This process happens in the thymus and generates the
α and β chains, or the γ and δ chains, that form the TCR of αβ and γδ T cells, respectively.
Here, we focus on the TCRs of the αβ T cells, comprising the vast majority of the T-cell
pool in humans (Roden et al., 2008) and mice (Castillo-González et al., 2021).
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Generation and selection of the TCR repertoire in the thymus

The α chain of the αβ TCR is composed of several parts, specifically the Variable (V) and
Joining (J) gene segments and the constant (C) region. The TRA gene locus contains an
array of many V and J segments. During recombination, the activity of the recombination
activating gene proteins RAG1 and RAG2 fuses one such V segment to a J segment. Diversity
not only arises due to the many combinations of V and J segments, but also by deletions
that can occur at both sides of the junction where the segments are joined, and the non-
templated (N) nucleotides that can be inserted at the junction. The enzyme involved
in the insertion of N nucleotides is terminal deoxynucleotidyl transferase (TdT), which
is downregulated during early development in humans (Benedict et al., 2000) and mice
(Gregoire et al., 1979). The steps of the VJ recombination process are stochastic and yield
a rearranged TRA gene that is made up of the V gene segment, potentially a stretch of
random N nucleotides, the J gene segment, and the C region, which together code for the
TCR α chain. The β chain of the αβ TCR is generated in a similar process, but typically
involves VDJ recombination, as the TRB gene locus contains an additional Diversity (D)
gene segment that is recombined between the V and J segments. So, in the β chain there
are two junctions at which nucleotides can be deleted and/or N nucleotides can be inserted.
Thus, the TCR specificity of αβ T cells follows from a stochastic recombination process that
happens in the thymus before they enter the periphery.

Since there are many combinations of V, D, and J segments, many ways in which the
random deletions and insertions can affect the junctions, and many combinations of α
and β chains, the potential αβ-TCR diversity is extremely high. Theoretical estimates of
this number are in the order of 1061 (Mora and Walczak, 2018), which vastly outnumbers
the 1012 T cells in a human body (Jenkins et al., 2010; Trepel, 1974). Hence, only a small
subset of the potential TCR diversity can be produced during the lifetime of an individual.
It should be noted that the deletions and N-nucleotides at the junctions often lead to a
frameshift, after which the sequence encoded by the V and J segments are no longer in
frame, or lead to premature stop codons. The resulting TCR would not be functional in such
cases. Cells in which this happens may still generate a functional TCR, as they can undergo
V(D)J-recombination on both chromosomes containing the TRA and TRB gene loci. Allelic
exclusion mechanisms exist to prevent the recombination of two functional TCR β chains
in a single cell (Khor and Sleckman, 2002). These mechanisms are less complete for the
TCR α chain, although additional mechanisms result in phenotypic allelic exclusion (Alam
and Gascoigne, 1998; Gascoigne and Alam, 1999; Niederberger et al., 2003), such that most
T cells in the periphery have a single TCR that makes them specific to antigen (Brady et al.,
2010).

TCRs that are generated during V(D)J-recombination may strongly bind to peptides
derived from self-proteins and would thus potentially result in autoimmunity. This problem
is accounted for during positive and negative selection in the thymus. Shortly, the TCRs of
newly generated T cells are tested based on their affinity for self-peptide/MHC complexes.
During this positive selection step, the cells that get selected by binding peptides presented
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by MHC class I and II become CD8 and CD4 T cells, respectively. If the TCR does not have
sufficient affinity to any of these presented self-peptides, they do not get a survival signal
and ‘die by neglect’. Afterwards, the negative selection process eliminates those T cells that
bind self-peptide/MHC complexes with too high affinity. A subset of the CD4 cells, that
binds self-peptides with high affinity but survives negative selection, adopts a regulatory T
cell phenotype that is characterised by expression of the forkhead box P3 (FOXP3) protein.
Regulatory T cells suppress effector T cells to maintain tolerance to self-antigens, and
prevent autoimmune disease. In short, the selection process in the thymus selects for TCRs
that bind peptides presented in the context of the host’s MHC with the right affinity and
determines the lineage choice of the newly generated T cells.

The MHC genes are among the most polymorphic in humans and mice (Roy et al.,
1989; Trowsdale and Knight, 2013). This means that the subset of the TCRs that can
survive thymic selection is different for nearly every individual, unless they are genetically
identical such as identical twins or inbred mice. The MHC diversity, the small fraction
of the potential TCR diversity that is stochastically produced during a lifetime, and the
infection history all contribute to the unique composition of T cells and their TCRs in an
individual. The collection of TCRs in an individual is called the TCR repertoire and can
function as a personal ‘immune fingerprint’ (Dupic et al., 2021) that reflects the production,
selection, and expansion of T cells in that individual. The insights from characterising
the TCR repertoire can thus be of great value to address outstanding questions in T-cell
immunology.
TCR sequencing quantitatively characterises the TCR repertoire in a sample

High-throughput sequencing (HTS) is nowadays the most common method for detailed
and quantitative characterisation of the TCR repertoire in a sample of cells of interest (Rosati
et al., 2017). These techniques have the advantage that the full nucleotide sequence coding
for the TCR α and/or β chain can be identified. The complementarity-determining region
3 (CDR3) of these chains is of special interest, as this part covers the V(D)J junctions, which
is the most variable domain of the TCR. This means that the CDR3 is most informative
about the TCR’s specificity, as this region comes into close contact with the antigen (Garcia
and Adams, 2005). Alternative methods to assess the TCR repertoire include staining of
T cells with monoclonal antibodies, that specifically bind one or more V segments, or by
spectratyping, which provides insight into the CDR3-length distribution of the TCRs in
the sample. The advances in HTS techniques, especially in the last decade, now enable
detailed characterisation of the TCR repertoire of thousands or even millions of cells in a
single experiment.

Several methods exist to perform sequencing of the TCR repertoire. Experiments vary
for example in starting material, amplification methods and the number of cells that are
analysed together. Which method is ideal for a given experiment depends on the research
question, and specifically to which extent the TCR information of individual cells needs to be
determined. The most detailed characterisation of T cells is achieved by single-cell immune
profiling. These techniques generally label the genetic material of a single cell, such that all
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information can be traced back to the level of individual cells after sequencing. This allows
for paired identification of the TCR α and β chains of a T cell, and it is even possible to
also measure the gene expression and cell surface protein levels of these individual cells. A
disadvantage of single-cell sequencing techniques is the relatively low number of cells that
can be analysed in an experiment, such that most of the TCR diversity remains unnoticed
(Rosati et al., 2017).

Bulk sequencing methods are an affordable alternative to study the TCR repertoire
of larger populations of cells, although they provide a lower level of detail than single-
cell profiling. The most relevant difference with respect to the TCR identification is that
although both the α and β chain of the TCR can be sequenced, the pairing between each
TCR α and β chain remains unknown. The genetic material that is analysed in a bulk HTS
experiment can be either the genomic DNA or the RNA coding for the TCR chains. The
specific amplification of the DNA coding for the TCR α and β chain requires a multiplex
polymerase chain reaction (PCR), which uses a diverse panel of primers binding to the
diverse V and J segments (Rosati et al., 2017). Multiplex PCR methods can also be used when
RNA is used as starting material, but in general have the disadvantage that they are subject
to amplification biases. This means that the V segments with more efficient amplification
become over-represented in the resulting products (Benichou et al., 2012). Such biases
change the relative abundances compared to the original distribution of cells. An alternative
approach overcoming this issue is the use of rapid amplification of 5’ complementary DNA
ends (5’RACE), that use RNA samples as a starting material (Mamedov et al., 2013). Most
TCR sequencing data analysed in this thesis is acquired using this method. Hence, we
provide a short overview of the experimental steps that are necessary to sequence the TCR
repertoire from a population of cells using the 5’RACE method (Rosati et al., 2017; Heather
et al., 2018; Oakes et al., 2017).

A typical TCR repertoire HTS experiment starts with isolation of the cells of interest,
usually from a blood sample. These could be general peripheral blood mononuclear cells
(PBMCs) but also a specific subpopulation, such as the naive CD8 T cells that are sorted
based on subset-specific cell surface markers. Cells are lysed and the 5’RACE method is used
for reverse transcription, to obtain a complementary DNA (cDNA) molecule that covers the
entire variable region of the TCR sequence. At this stage, a unique molecular identifier (UMI)
is incorporated into the sequence. This UMI consists of typically 12 random nucleotides,
such that each cDNA molecule is labelled with a genetic barcode. The UMIs are used to trace
multiple reads in the eventual sequencing data back to individual cDNA molecules, as they
uniquely identify the cDNA molecules prior to amplification. The barcoded cDNA molecules
are amplified by a second PCR, and sequencing adaptors are ligated to allow for sequencing
of these amplicons. Sequencing is usually done on an Illumina platform that performs
sequencing by synthesis with fluorescently labelled nucleotides. This process typically
generates millions of sequence reads that should cover enough of the TCR V(D)J region to
identify the full nucleotide sequence of the TCR α or β chain. Thus, the sequencing data
allows for quantitative characterisation of the TCR repertoire.
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TCR repertoire analysis is required to translate data into T-cell immunology

insights

Although TCR sequence data contains a wealth of information, its interpretation poses a
bioinformatic challenge. It is inevitable the sequence reads contain errors that arose during
the PCR amplification and/or sequencing. Thus, small differences in the hypervariable
CDR3 region between various reads may arise from truly different TCR sequences, but also
from the same TCR sequences in which errors were introduced, or a combination of both.
Dedicated TCR-analysis pipelines are designed to overcome this challenge of discriminating
between true and error-based TCR diversity. When sequencing UMI-labelled amplicons, the
UMI sequences greatly assist such error correction. Typically, reads sharing one particular
UMI sequence cover the TCR information of a single cDNA molecule. Since most errors
are introduced during the later cycles of the PCR and the sequencing reaction, the base
call supported by the largest number of reads is often the true nucleotide at each position
(Heather et al., 2018; Oakes et al., 2017). Thus, generating consensus sequences from
the reads that share their UMI sequence allows for elimination of many errors in the
sequencing data. In addition, since reads that share their UMI sequence are collapsed
to a single consensus sequence, the biases introduced by (unequal) PCR amplification are
accounted for. However, note that UMIs can also accumulate errors in their sequence (see
also Chapter 2).

The various tools that can be used to analyse and error-correct TCR sequencing data
vary in their exact algorithms, but generally consist of three major steps. First, as described
above, the generation of consensus sequences by merging reads that share their UMI
sequence. Second, identification of the V and J gene segments that are used in each of
those consensus sequences and subsequently the nucleotide sequence of the CDR3. These
three elements together determine the entire variable part of the TCR sequence. The
third step involves the comparison of the identified TCR sequences to each other and
performing error-correction by merging unexpectedly similar sequences. The resulting
output generally consists of a table with each identified TCR sequence expressed in terms
of V and J segments and the CDR3 sequence, together with its abundance in the data. The
abundance corresponds to the number of reads the TCR was identified in, or the number of
distinct UMIs the TCRs was identified with in the case of barcoded sequencing libraries.

Three different TCR analysis pipelines are used in this thesis. In the case of MiGEC and
MiXCR (Bolotin et al., 2015), MiGEC is used to extract UMI sequences from sequence reads
and generate UMI-based consensus sequences. The coverage of these consensus sequences
determines which of them will be accepted, meaning that sequences with support of only a
few reads are discarded. MiXCR is then used to identify and error-correct the TCR sequences
in this data, to an extent that the user can determine by changing specific parameters.
Another pipeline, RecoverTCR (RTCR) (Gerritsen et al., 2016), takes along all (UMI-based
consensus) sequences, and estimates the error rate in a data set from the alignment to
the V and J gene segment sequences. This data-driven error rate is then used to perform
various clustering steps to correct the expected errors in the CDR3 region. Decombinator
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(Thomas et al., 2013) also performs the general steps, but in a different order. It starts with
identification (decombining) of V and J segments in individual reads, as well as the CDR3.
The reads are then collapsed based on the corresponding UMI sequence, allowing for error
correction. Thus, although the main steps of various TCR analysis pipelines are similar,
the output will differ due to the differences in selection and correction of the reads.

The resulting data can be analysed in many ways, depending on the research question.
Basic analyses involve the relative usage of certain V and J segments, or distribution of
CDR3 lengths. Note that such analyses are analogous to the older methods of staining with
V segment-specific antibodies and spectratyping but provide a higher resolution and more
details about the TCR sequences with certain characteristics. The abundance of the TCR
sequences in the data set provides information about the distribution of the TCR α and β

chains among the cells in the sample. These distributions give insight into the occurrence
of cells sharing one or both of their TCR chains, which are often referred to as clones or
clonotypes. For example, one can estimate the distribution of clonal sizes in the T-cell pool,
and related to this, the diversity of the TCR repertoire. Importantly, a typical sample used
for HTS only comprises about 106 cells from the total 1012 T cells in a human body. This
means that small biases in the sample, introduced during the experiment or processing
of the data, can have major effects when extrapolated to a pool level. For example, when
RNA is used as the starting material for sequencing, single cells may contribute multiple
molecules that are each labelled with a distinct UMI (Rosati et al., 2017). As a result, different
TCR expression levels between cells, and the stochastic sampling of the RNA molecules
from the cells, can easily affect the relative frequency of TCR chains in the data. Thus, the
interpretation of TCR abundance in sequencing data requires careful analysis.

Although the V(D)J-recombination mechanism generating the TCR diversity is well
studied, one cannot reliably infer the recombination scenario from the TCR chain sequence
(Marcou et al., 2018; Murugan et al., 2012). For example, there are many different
combinations of deletions and N additions that together generate the exact same sequence.
To still obtain insight into the probabilities involved in these stochastic processes, one can
use probabilistic modelling to infer recombination models using tools like IGoR (Marcou
et al., 2018) and OLGA (Sethna et al., 2019). The abundance of most TCR chains in data is
affected by their probability to result from V(D)J recombination, but also by selection in the
thymus and the periphery (Elhanati et al., 2014; Sethna et al., 2020). The recombination
models are therefore trained on the non-functional sequences that contain a frameshift or
a premature stop codon. Such TCR sequences do not code for a productive TCR chain but
can still be present if the locus on the other chromosome codes for a TCR that allowed the
cell to pass selection. The non-functional TCR sequence is not affecting the selection of the
T cell and can thus be used for training of the recombination model, without biases due to
selection (Marcou et al., 2018). The resulting models can be used to calculate the generation
probability for any given TCR sequence, which quantifies how likely this sequence is
the result of V(D)J recombination. TCR sequences differ many orders of magnitude in
their generation probability, for example since the insertion of a specific long stretch of N
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additions is a scenario that is unlikely to happen repeatedly. The trained recombination
models are to a large extent similar between people, implying that the generation probability
of a given TCR sequence is similar between different individuals. Interestingly, this explains
to a large extent the observation of ‘public’ sequences: TCR chain sequences that are more
shared between individuals than others appear to be strongly enriched for high generation
probabilities (Elhanati et al., 2018). This example shows that models can help to interpret
and extrapolate the findings of TCR repertoire sequencing.
About this thesis

The general aim of the studies described in this thesis is to answer biological questions
using analyses of TCR repertoire sequencing data. In Chapter 2 we devise various models
for the distribution of TCR clone sizes in the human naive T cell pool. We characterise the
repertoire of TCR α and β chains by HTS of various cell subsets. Comparing the model
predictions with the experimental outcomes, we find solid evidence for the presence of
very large TCRαβ clones in the naive T cell repertoire. These large naive T-cell clones are
only partly explained by their generation probability. Chapter 3 aims to identify sequence
characteristics of such abundant naive T cell clones. We find that the D segment is missing
in a substantial fraction of the abundant TCR β sequences in the naive T cell repertoire of
young individuals. Such sequences appear to be mostly generated before birth, to persist
over a human lifetime, and, as a result, to be excessively shared between individuals.
Chapter 4 is a short report on quantifying the effects of age on the TCR repertoire. We
present example analyses and discuss potential pitfalls of assessing ageing effects on the
TCR repertoire. Chapter 5 describes a pilot study on using TCR sequencing to follow
the T-cell response upon pneumococcal conjugate vaccination. We define quantitative
requirements to classify T-cell expansions but detect these in only a minority of the donors.
Our analysis suggests that the vaccine-induced T-cell response is small and/or very broad,
and highlights experimental requirements to characterise such responses in future studies.

A key limitation of the studies in humans introduced above is the limited number of
cells that can be analysed compared to the total size of the T-cell pool. As a result, many
of the TCR chains that make up the diversity of the TCR repertoire will be missed in any
analysis. Bulk sequencing methods also do not uncover the full TCR diversity present in an
individual as the information on the pairing of α and β chains is not obtained. In Chapter
6 we overcome both limitations by studying the TCR repertoire of one-TCRa mice that
have a strongly reduced receptor diversity. This allows us to study the nearly complete TCR
diversity, and compare the repertoire among individual lymph nodes and mice, revealing a
spatial organisation of the TCR repertoire. Chapter 7 concludes the thesis by discussing
the main findings and highlighting some promising avenues for future work.
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Abstract

The clone size distribution of the human naive T-cell receptor (TCR) repertoire is an
important determinant of adaptive immunity. We estimated the abundance of TCR
sequences in samples of naive T cells from blood using an accurate quantitative sequencing
protocol. We observe most TCR sequences only once, consistent with the enormous
diversity of the repertoire. However, a substantial number of sequences were observed
multiple times. We detect abundant TCR sequences even after exclusion of methodological
confounders such as sort contamination, and multiple mRNA sampling from the same
cell. By combining experimental data with predictions from models we describe two
mechanisms contributing to TCR sequence abundance. TCRα abundant sequences can
be primarily attributed to many identical recombination events in different cells, while
abundant TCRβ sequences are primarily derived from large clones, which make up a small
percentage of the naive repertoire, and could be established early in the development of the
T-cell repertoire.

Introduction

The human adaptive immune system employs a vast number (> 1011 (Clark et al., 1999))
of T lymphocytes, to detect and control pathogens. Most T cells express a single T-cell
receptor (TCR) variant, which binds antigen in the form of a short peptide presented by the
Major Histocompatibility Complex (pMHC) (Davis and Bjorkman, 1988). The TCR has to
be specific to distinguish between self- and non-self-pMHC, but due to the large number
of possible foreign antigens (> 209) a specific TCR is nevertheless expected to bind many
different pMHC (i.e., cross-reactivity) (Mason, 1998; Sewell, 2012). The actual diversity
of the TCR repertoire is unknown, but with improved sequencing techniques, estimates
have risen by orders of magnitude from 106 (Arstila et al., 1999), 107 (Robins et al., 2009),
to over 108 (Qi et al., 2014).

Generation of αβ TCRs occurs in the thymus, where thymocytes randomly rearrange
and imprecisely recombine gene segments to create a complete receptor (Nikolich-Žugich
et al., 2004). This heterodimer is generated by random recombination of Variable, Diversity,
and Joining (V, D and J) segments for TCRβ, and V and J segments for TCRα sequences
(Davis and Bjorkman, 1988). Most variability arises due to random nucleotide insertions
and deletions where the segments are joined (Murugan et al., 2012). Recent estimates of
the potential number of TCRs produced by this V(D)J-recombination process range from >
1020 (Zarnitsyna et al., 2013) to 1061 (Mora and Walczak, 2018), which vastly outnumbers
the number of distinct TCRs present in a human body. After generation of the TCR, T cells
undergo positive and negative selection, which selects those T cells that have sufficient, but
not too high, affinity for any self-pMHC (McDonald et al., 2015). About 3-5% of thymocytes
survive selection (Merkenschlager et al., 1997) and enter the periphery as T cells that have
not yet encountered foreign cognate antigen, i.e., as naive T cells.
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The thymic output of new T cells decreases because of thymic involution, making
peripheral division of existing cells the main source of naive T cells from early adulthood
onwards in humans (den Braber et al., 2012; Kumar et al., 2018). In the periphery, naive T
cells compete for cytokines, such as IL-7, and need to interact with self-pMHC to survive
(Tanchot et al., 1997; Takada and Jameson, 2009; Jenkins et al., 2009). Competition between
T-cell specificities may reduce repertoire diversity when cells with some TCRs outcompete
others (de Boer and Perelson, 1994), resulting in differences in TCR frequencies, and
heterogeneous naive T-cell clone sizes. Experimental evidence for large heterogeneity in
division and survival rates within the naive T-cell pool has been shown in mice (Hogan
et al., 2015; Rane et al., 2018; Reynaldi et al., 2019). Such experiments are not feasible in
humans, but mathematical modelling has been used to assess how fitness differences
between T-cell clones may affect the frequency of clones in the naive repertoire (Stirk
et al., 2008, 2010; Hapuarachchi et al., 2013; Lythe et al., 2016; Desponds et al., 2016, 2021;
Dowling and Hodgkin, 2009; Johnson et al., 2012).

Measuring the distribution of TCRα and TCRβ sequences in samples of naive T cells can
inform us about the clone-size distribution of the naive T-cell repertoire. Previous studies
have reported large heterogeneity in the frequency of TCRβ sequences in naive repertoires
from mice (Quigley et al., 2010) and humans (Robins et al., 2009; Venturi et al., 2011; Qi
et al., 2014; Pogorelyy et al., 2017). One important factor shaping the abundance of TCR
sequences is their likelihood to be produced during VDJ-recombination. Rearrangements
with less N-insertions, for example, tend to be more commonly observed (Robins et al.,
2009, 2010; Venturi et al., 2011; Pogorelyy et al., 2017). To study this in more detail, the Mora
and Walczak groups developed probabilistic models that predict the generation probability
of any specific TCRα or TCRβ sequence (Murugan et al., 2012; Marcou et al., 2018). They
showed that these sequences (σ) differ by several orders of magnitude in their probability
P(σ) of being produced by V(D)J recombination in the thymus. Differential generation
probabilities do not only impact the abundance of TCRα and TCRβ sequences within an
individual, but also contribute to sharing among individuals (Robins et al., 2010; Quigley
et al., 2010; Venturi et al., 2011; Qi et al., 2014; Pogorelyy et al., 2017; Elhanati et al., 2018).
Hence, it is essential to take the likelihood of generating a sequence into account when
interpreting sequencing data of immune repertoires.

In this study, we characterise the frequency distribution of TCRα and TCRβ sequences
in the naive repertoire. We analyse published and new experimental data on both the TCR
α and β chain, and combine a quantitative unique molecular identifier (UMI)-based TCR
sequencing pipeline with mathematical modelling to consider carefully the contributions
of different mechanisms that may lead to observed abundant TCRα and TCRβ sequences
in the naive repertoire. Such mechanisms include experimental confounders, such as the
purity of the cell populations and repeated sampling of mRNA from the same cell, and
diverse biological processes including distinguishing carefully between repeat generation
of identical sequences in different cells, and large naive T-cell clones. We show that all these
processes are likely to contribute to the observed abundance profile of TCR sequences in
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samples of naive repertoires. In particular, even after all other mechanisms are accounted
for, we find evidence for naive T-cell clone size heterogeneity. Specifically, the results are
compatible with an underlying power-law distribution of naive T-cell clone sizes (Desponds
et al., 2016), or more generally by models in which 1-5% of naive T cells represent large
clones of 105 - 106 cells. Preferential expansion of some clonotypes, perhaps those occurring
early in development of adaptive immunity, therefore plays an important role in shaping
the naive T-cell repertoire.

Results

We analysed the frequency distribution of TCR sequences in the naive T-cell compartment,
using TCRα and TCRβ sequences published in (Oakes et al., 2017). In brief, peripheral
blood mononuclear cells (PBMCs) from two adult volunteers were FACS-sorted into naive
(CD27+CD45RAhigh) and various memory CD4+ and CD8+ populations. TCRα and TCRβ

mRNA was reverse transcribed to cDNA molecules to which unique molecular identifiers
(UMIs) were attached, followed by PCR-amplification and high-throughput sequencing
(HTS) on an Illumina MiSeq platform. We refer to this as experiment 1 below (further details
in Materials and Methods). Sequence reads were processed using a customised version of
the Decombinator pipeline (Thomas et al., 2013), with an improved error correction on
UMIs to more reliably estimate the frequency of nucleotide TCRα and TCRβ sequences in
the samples (Figure 2.6). Additionally, we used the RTCR pipeline (Gerritsen et al., 2016)
for comparison. The different memory populations were combined for the purpose of the
analysis presented below.
Abundant TCR sequences are frequently shared between naive and memory

populations, and are enriched for high VDJ recombination probabilities

Within the naive T-cell repertoires, the vast majority of TCRα and TCRβ sequences were
observed only once, and most frequencies fall within the range from 1 to 5 (Figure 2.1A). As
expected, in the memory repertoires, which contain clonally expanded T cells, much more
abundant sequences were present, with a substantial number of α and β chains observed
more than 1000 times (Figure 2.1A). The few sequences observed with a frequency higher
than 5 in the naive samples were shared in most cases (94.6%) with the corresponding
memory subset from the same individual. We examined whether this overlap might arise
from imperfect sorting of the T-cell populations, despite the tight non-overlapping sort
gates applied (see (Oakes et al., 2017)). A prediction of such sorting contamination is that
the abundance of the shared TCR sequences in the naive and memory repertoires should be
proportional. Such a linear relationship could be observed clearly for CD8+ TCRα and TCRβ
sequences (Figure 2.1A), especially for memory abundances greater than 1000. Correlation
measurements suggested that the amount of contamination for CD8+ T cells was 0.1 - 1.5%.
As expected, no correlation was observed between the abundance of TCR sequences shared
between naive and memory populations of different donors (Figure 2.1B).
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We next examined the relationship between VDJ recombination probabilities and the

overlap between naive and memory repertoires. Using the V(D)J-recombination model
(Marcou et al., 2018), we predicted the generation probabilities P(σ) of all TCRα and TCRβ
sequences in our datasets. As expected, we observed a wide range of P(σ) values, which
were several orders of magnitude higher for TCRα sequences than TCRβ, due to additional
recombination of the D segment. The generation probability distributions of sequences
derived from naive and memory T cells were indistinguishable (Figure 2.1C, blue and red,
respectively). Thus, our data provide no evidence that the V(D)J-recombination process
preferentially produces sequences chains that are more likely to enter the memory pool
during an immune response. However, TCRα sequences shared between memory and the
corresponding naive samples, were strikingly enriched for high P(σ) (Figure 2.1C, green).
This enrichment is much less evident for TCRβ sequences. The enrichment for sequences
with high P(σ) in the population of shared memory/naive TCRα is not compatible with
overlap derived from contamination during cell sorting, but rather suggests that the sharing
may also arise from T cells which use the same TCRα because of identical VJ recombination
events in different T cells. It is important to stress that, since such different T cells are
highly unlikely to also share TCRβ sequences, the clonotype, and hence specificity of the T
cells in the naive and memory compartments may well be different, despite sharing TCRα
sequences.

As a control, we also analysed overlap between the naive sample from one volunteer and
the memory sample from the other. In this case, sort contamination of naive repertoires
by memory T cells is excluded and a shared sequence can only result from independent
identical recombination events, from distinct T-cell clones. For CD4+ cells, we find that
Figure 2.1 (preceding page) – Frequencies and generation probabilities of TCRα and TCRβ

sequences from memory and naive T cells. A. Frequency of TCRα and TCRβ sequences in
naive versus total frequency in memory repertoires sampled from the same volunteer. Symbol
sizes represent number of sequences with these frequencies and colour represents their median
generation probability P(σ), as determined using IGoR (Marcou et al., 2018). The c value is the slope of
linear regression on sequences with a memory count > 100 and indicates the estimated probability
that a given TCR sequence from a memory cell appears in the naive sample. B. As A., but comparing
frequency in naive sample from one volunteer with frequency inmemory from the other volunteer. C.
Distributions of generation probabilities (log10) for TCR α and β sequences from CD4+ and CD8+ from
two volunteers. Blue dashed: naive, red solid: memory, green long-dashed: overlap (i.e., sequences
observed in both naive and memory within a volunteer), purple dashed: overlap between volunteers
(i.e., sequences observed in the naive subset of Volunteer 1 and a memory subset of Volunteer
2, or vice versa). The total number of sequences for each group are indicated in corresponding
colours. D. The median P(σ) is shown for each observed frequency class (log2 bins) of sequences
exclusively observed in naive (blue squares) or memory T-cell (red diamonds) samples. P(σ) of the
overlapping chains is shown in green for reference (irrespective of frequency). Symbol sizes indicate
numbers of sequences for each frequency class. Error bars represent the 25% and 75% quartiles,
solid lines indicate linear regression between observed frequency and P(σ), weighted by the number
of sequences with that frequency.
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the number of TCRα sequences shared between naive and memory is similar between and
within volunteers, and that the P(σ) distribution is nearly identical (Figure 2.1C, purple). For
CD8+ cells, the number of sequences shared within an individual is somewhat larger than
between individuals, compatible with some degree of sort contamination in this population
as discussed above. The small number of TCRβ sequences shared between individuals also
had a relatively high P(σ), although considerably smaller than for TCRα.

In summary, although contamination with abundant memory T cells may make a
small contribution to the TCR sequences which are found in both naive and memory for
CD8+ cells, multiple identical recombinations arising from high P(σ) values is the dominant
mechanism leading to overlap in the TCRα repertoires. Nevertheless, in order to stringently
exclude any possible contribution of contamination, we included an analysis which excluded
all the shared sequences from the further investigations of the relationship between TCR
sequence abundance and P(σ) (Figure 2.1D).

The abundances of sequences in all naive repertoires were correlated to P(σ) (Figure 2.1D,
blue). The median P(σ) of the α chains that were observed at least three times was about
154-fold higher than for those that have only been observed once (p < 10−15, Wilcoxon test).
The enrichment for high P(σ) in more abundant TCR sequences was weaker for TCRβ (∼2.5-
fold, p < 0.01, Wilcoxon test), but still stronger than for memory subsets (1.65- and 1.03-fold
for TCRα and TCRβ, respectively, p < 10−15 and p = 0.27). In line with this, the number
of N-additions tended to be lower for TCRα and TCRβ sequences abundant in the naive
samples (Figure S2.1). These correlations suggest that multiple identical recombination
events which occur during formation of the naive T-cell repertoire in the thymus due to
high generation probabilities, contributes to the observation of abundant TCR sequences.
This is especially evident for TCRα, where the probabilities of producing a given sequence
is higher because of the absence of a D region. However, abundant TCR sequences with
low P(σ) are also observed, especially for TCRβ, leaving open the possibility of large naive
T-cell clones.
Frequently observed TCR sequences cannot be attributed only to multiple

RNA molecules per cell

T cells contain on average in the order of 100 molecules of TCRα and 300 molecules of TCRβ
mRNA (Oakes et al., 2017). Because the TCR sequencing pipeline is not 100% efficient, only
a small proportion of these molecules are actually sequenced, but the possibility remains
that TCR sequences observed multiple times may be due to repeat sampling from the
same cell. Because the variance of this number remains undetermined, it is difficult to
computationally determine the contribution of this multiple sampling to the data. Instead,
we performed an additional experiment (referred to as experiment 2) in which we sorted
naive T cells from an additional volunteer, and split the naive T cells into three subsamples
before mRNA extraction. We then carried out library preparations and sequenced TCRα

and TCRβ sequences from each subsample independently. In this experiment, sequences
observed in more than one subsample must have been derived from different cells, and
cannot be a result of sequencing multiple mRNA molecules from a single cell. Repeated
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Figure 2.2 – Subsampling naive T cells confirms that frequently observed TCRα but not TCRβ

sequences have high generation probabilities. A. The number of TCRα and TCRβ sequences
observed in 1, 2 or 3 subsamples (experiment 2). The grey background bars show the results
after removing all sequences that were also observed in the corresponding memory samples. B.
Generation probabilities P(σ) (log10) of TCRα and TCRβ sequences observed in 1, 2 or 3 subsamples.
C.Minimal number of N-additions of TCRα and TCRβ sequences observed in 1, 2 or 3 subsamples.
D. Number of V- and J-deletions of TCRα and TCRβ sequences observed in 1, 2 or 3 subsamples. The
plot shows median (black horizontal line), interquartile range (filled bar) and the range from the bar
up to 1.5 times the interquartile range (black vertical range, outliers not shown).
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sequences must therefore derive from different cells, and represent abundant sequences.
In total 16913 (3.4%) TCRα sequences, and 5744 (0.61%) TCRβ sequences, were

observed in more than one subsample (Figure 2.2A), confirming the existence of a
substantial number of frequent TCR α and β chains in the full naive repertoire. In order to
exclude any contribution from sort contamination, we also plot the data after removing
all TCR sequences found in both memory and naive repertoires (Figure 2.2A, grey bars).
A substantial number of α and β chains were still found in multiple subsamples. In order
to estimate the impact of multiple sampling on the observed abundances we randomly
permuted the TCR sequences between subsamples, and reanalysed the distributions (see
Materials and Methods). We estimated that ∼ 25% of α and > 75% of β chains with an
abundance of greater than 1 in an individual sample may arise from sampling multiple RNA
molecules from single cells. The impact is strongest on TCR sequences observed twice (see
Figure S2.3). Thus multiple mRNA sampling is an important confounder of estimating TCR
sequence abundances in individual repertoires, especially for TCRβ.

Having ruled out the contribution of multiple mRNA sampling experimentally, we
examined the relationship between TCR sequence abundance and P(σ) in this new data set.
The TCRα chains present in more than one naive subsample are dominated by sequences
with high P(σ). The median generation probability of TCRα sequences observed in two
and three subsamples was 56- and 165-fold higher, respectively, than those observed
only once (Figure 2.2B). The relationship for TCRβ sequences was remarkably different,
however. While TCRβ sequences observed in two subsamples are mildly enriched for high
generation probabilities, those observed in three subsamples have hardly any enrichment
for high P(σ) (Figure 2.2B). Instead, their generation probabilities tend to be lower than
those of the sequences observed in two subsamples, and more similar to the generation
probabilities of TCRβ sequences seen in only one subsample. We obtained similar results
when measuring the number of N-additions and VJ-deletions in the rearrangements:
abundant α chains (with incidence 2 or 3) tend be closer to germline rearrangements,
while this was only the case for β chains with incidence 2, and not for the most abundant
β chains with incidence 3 (Figure 2.2C&D). These trends were observed both with and
without removing the sequences that were also observed in memory (Figure 2.2, grey
versus coloured bars) and when processing the data with RTCR (Figure S2.5).

We further explored whether the more abundant sequences were also more “public”
(found in the repertoires of multiple individuals), which would be predicted if they are
more likely products of V(D)J-recombination. We measured the degree of sharing between
those TCR sequences observed in 1, 2, or 3 naive subsamples, and the TCRα and TCRβ

repertoires of unfractionated blood samples collected from 28 healthy donors. Both TCRα
and TCRβ sequences observed in two or three subsamples were found to be significantly
more often shared with this independent cohort than those observed once (Figure S2.4A).
The most frequent TCRα sequences, which were seen in three subsamples, showed the
highest sharing degree, consistent with their strongest enrichment for high generation
probabilities. The relatively small number of most frequent TCRβ sequences (i.e., those
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observed in three subsamples), did not show increased inter-individual sharing compared
to the TCRβ sequences observed in two subsamples. Additional comparison with publicly
available TCRβ data from a large cohort (Emerson et al., 2017) showed that the most
frequently observed β chains, which were observed in all three subsets in experiment
2, were less public than sequences observed in two subsamples (Figure S2.4B). The
seemingly paradoxical finding that the most abundant TCRβ sequences (observed in all
three subsamples) have lower P(σ), and are less public than those found twice, is explored
in more detail below.
Computational models of TCR repertoire generation suggest the presence of

a small proportion of large T-cell clones in the naive repertoire

In order to more rigorously test our ideas about the frequency distribution of clonotypes
in the naive T-cell repertoire, we explored a number of possible computational models of
repertoire generation and sampling, and compared model prediction with the experimental
data discussed above. The first simplest scenario we considered was a neutral model
of repertoire formation, similar to Hubbell’s Neutral Community Model (Hubbell, 2001)
(Figure 2.3A, details in Materials and Methods). The model assumes that there is no selective
advantage of one TCR over another, and therefore the TCR of a naive T cell does not affect its
lifespan or division rate. Consider a pool of N naive T cells, from which cells are removed by
cell death or by priming with antigen, leading to differentiation into a memory population.
A fraction θ of these cells is replaced by thymic production of new clones and the remaining
fraction 1−θ gets replaced by division of cells present in the pool. When simulating the naive
T-cell pool with this model, the clone-size distribution approaches a “steady state” (not
shown). We use this steady-state distribution, for which we have an analytical expression
to predict the size of clones in the naive T-cell pool. As the contribution of thymic output
decreases during ageing (Steinmann et al., 1985), we evaluated the model for a wide range
of values for θ. The clone-size distribution which emerges from the neutral model is
approximately geometric for clone sizes larger than the introduction size c (Figure 2.3B).
We compared this basic model to models in which we impose other distributions on the
underlying clonotype abundances (model details in Materials and Methods). We specifically
focused on heavy-tailed distributions such as log-normal and power-law distributions,
which have previously been associated with T-cell repertoires (Desponds et al., 2016).
The shape of each of these distributions is controlled by a single parameter (as shown in
Figure 2.3B), allowing us to compare distributions with different degrees of heterogeneity.
In all cases, we normalised the clone-size distribution such that the total number of cells N
is constant. Since we had separate experimental data for CD4+ and CD8+ cells, we considered
CD4+ and CD8+ cells separately, setting NCD4 = 7.5×1010, and NCD8 = 2.5×1010.

From all model clone-size distributions we simulate 3 subsamples, so as to compare
with the data from the second experiment described above. Each sampled TCR is assigned
a TCRα and a TCRβ sequence that were generated with IGoR (Marcou et al., 2018). Previous
studies showed that α and β chains with higher generation probabilities tend to have a
higher probability to survive selection (Elhanati et al., 2014). Therefore, we train a simple
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Figure 2.3 – Schematic representation of theneutralmodel and various clone-size distributions.

A. Schematic representation of the dynamics of the neutral model for the naive T-cell pool. Each
event starts with removal of one randomly selected cell from the pool, followed by peripheral division
of another cell (with probability 1−θ), or a chance for thymic production (probability θ). After c of
these thymus events, a clone of c cells is generated and added to the peripheral pool, reflecting
the divisions of T cells before entering the periphery. B. Schematic representations of the various
clone-size distributions that were used to predict the naive repertoire. The green, orange and blue
coloured lines depict three parameter choices for each distribution, resulting in a low, medium and
high mean clone size, respectively.

P(σ)-dependent selection model on the data from the single naive T-cell samples shown
in Figure 2.1. First, we assume that productively rearranged chains have an overall 1/3
probability to survive thymic selection. Then we bias the probability for bins of sequences
based on their P(σ), such that the resulting set of α and β chains has the same generation
probability distribution as in the experimental repertoire data (Materials and Methods).
The models also incorporate the expected number of cells that contribute at least one mRNA
molecule. This parameter is also learnt from the data, by setting the number of cells that
contributed mRNA such that the predicted diversity of a subsample matches the observed
diversity. Taken together, the subsamples we take from the various model clone-size
distributions are such that they match the generation probabilities and diversity of the
experimental subsamples as closely as possible. We compare the number and median P(σ)
of the TCR sequences that are predicted to occur in only one, in two or in three subsamples,
with the equivalent experimental data from experiment 2 above (Figure 2.4).

We consider first the neutral model (Figure 2.4A&C). For the α chain, a wide range
of thymic output rates predict the number of chains occurring in 1, 2 and 3 subsamples
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reasonably well (Figure 2.4A). The model does not predict the median P(σ) of TCRα found
in 2 and 3 subsamples well, although qualitatively the model does predict the increasing
P(σ) with increasing abundance (Figure 2.4C). For the β chains, there is no range of thymic
output rates for which the model correctly predicts the number of sequences observed in
2 and 3 subsamples. Moreover, the observation that incidence 2 chains have higher P(σ)
than incidence 3 chains was not predicted for any value of θ (Figure 2.4C). Thus, although
the neutral model captures some features of the observed TCRα sequence abundances, it
cannot account for observed TCRβ distributions. A similarly poor match between observed
and predicted data is observed for log-normal clonotype model (Figure 2.3B) distributions
(not shown).

In contrast, there is a much better fit between observed and predicted data is
obtained when the model clonotype frequencies are modelled by a power-law distribution
(Figure 2.4B and D). Like the distributions discussed above, in the parameter range where
clone-size heterogeneity is limited (i.e., a steep slope), a power-law distribution predicts
both the number of TCRα sequences found in 2 and 3 samples, and their larger median P(σ).
The number of TCRβ sequences is also predicted well if the slope is close to 2.3 (Figure 2.4B).
Remarkably, for this slope the median P(σ) of TCRβ sequences found in two samples is
higher than the median P(σ) of TCRβ sequences found in three samples (Figure 2.4D).
Intuitively, we can understand this observation as reflecting the properties of power-law
distributions, combined with the lower generation probabilities of TCRβ. Identical TCRβ

recombinations occur frequently enough to make a detectable contribution to the TCR
sequences observed in two samples, but not to those detected in three samples. Therefore,
a significant proportion of TCRβ sequences observed twice are in fact derived from two or
more different naive T-cell clones. In contrast, TCR sequences observed three times (or
more) must be derived from large naive T-cell clones. Abundant TCRα sequences arise both
from large clones and summation of identical TCRα from multiple smaller clones, but due
to their higher generation probabilities, the latter dominates the P(σ) for TCRα sequences

Figure 2.4 (preceding page) – Predictions of the neutral, power-law and two-population model

compared with HTS data. A. Number of TCRα and TCRβ sequences which are predicted to be
shared between 1 (red), 2 (blue) and 3 (green) subsamples as a function of the thymic output rate θ

for the neutral model. B. As A., but as a function of the slope of the power-law distribution. C. The
median generation probability P(σ) of TCRα and TCRβ sequences predicted by the neutral model.
Dashed lines depict the mean of 10 model prediction repeats, shaded area indicates the standard
deviation, solid lines show observed results in HTS data. D. As C., but as a function of the slope of
the power-law distribution. E. Graphical representation of parameter sweep results for prediction of
CD4+ and CD8+ repertoires from αβ clone-size distributions following a mixture model consisting of
singleton clones and a small fraction of large clones. The colour represents goodness of fit, with dark
green being better predictions for number of sequences per incidence in samples. Empty circles
indicate parameter combinations resulting in qualitatively correctly predicted P(σ), i.e., 3 > 2 > 1 for
TCRα and 2 > 1 for TCRβ and 2 > 3 for TCRβ. Filled circles indicate parameter combinations with the
smallest distance to the incidence data and a correct P(σ) prediction.
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found twice and three times. Finally, we note that although TCR sequence abundance in the
single samples from experiment 1 is likely to incorporate multiple mRNA from single cells,
the power-law distribution also predicts abundances in the single samples of experiment 1
reasonably well (Figure S2.6).

The vast majority of TCR sequences in samples of naive T cells are observed only once,
and hence we cannot infer anything about their frequency in the whole repertoire, except
that it is likely to be below a given abundance threshold. Therefore, we explored whether a
more generalised model, which does not make any assumptions about the distribution of
the low abundance T cells, would predict our experimental data as well as the power-law
model. In this simple mixture model we generate a population in which the majority of cells
are present only once, and a minority are present many times. We scanned the parameter
space of this model, varying both the proportion of cells in each population, and the size of
the larger population. The prediction of the model for each parameter pair was compared
to the experimental data from experiment 2, both for the number of TCRs (combining α

and β sequences) observed in one, two or three subsamples, and for the median P(σ) of
these TCR sequences. The best agreement between model and data was observed when
1-5% of the cells were derived from abundant T-cell clones (between 105 and 106 cells in
the whole repertoire) (Figure 2.4E).
Abundant T-cell sequences are enriched for zero insertions and for antigen-

association

In human prenatal thymocytes, the enzyme terminal deoxynucleotidyl transferase (TdT)
is not expressed, leading to the production of TCR sequences with zero insertions of N-
nucleotides. Pogorelyy and colleagues showed that enrichment of zero insertion TCR
sequences can be used to detect fetal clones even in adults, and that their contribution
to the overall repertoire decays slowly with age (Pogorelyy et al., 2017). Interestingly, the
proportion of zero-insertion sequences was strongly enhanced in those sequences observed
more than once in the three subsamples examined in experiment 2 (Figure 2.5A). The
interpretation of this finding is not straightforward, since zero-insertion TCR sequences
have higher median generation probabilities, and this is also a property of abundant
sequences as discussed above. Nevertheless, the data are compatible with a model in
which the large clones observed in the repertoire are generated preferentially during early
prenatal development of the naive T-cell repertoire.

We next examined if the abundant sequences in our data showed characteristics of
semi-invariant NKT and MAIT cell populations. Classical NKT cells are characterised by
an invariant TRAV24-TRAJ18 α chain and β chains with TRBV11 (Dellabona et al., 1994).
MAIT cells are enriched for TCRα rearrangements of TRAV1-2 with TRAJ33, TRAJ12 and
TRAJ20 (Reantragoon et al., 2013), and TCRβ sequences predominantly using TRBV20 and
TRBV6 (Lepore et al., 2014). Since our HTS data does not contain information on αβ pairing,
we studied both chains separately. A substantial fraction of the observed TCRβ sequences
matches the characteristics of MAIT cells, and to a lesser extent NKT cells (Figure 2.5B&C).
For both cell types, however, this fraction does not show a clear relation to incidence, and
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Figure 2.5 – Characterisation of abundant TCRα and TCRβ sequences. A. The fraction of
rearrangements with zerominimal N-additions for sequences observed in 1, 2 or 3 naive subsamples.
Data are shown without (coloured bars) and with cleaning of overlap with memory (grey bars). B.
Fraction of TCRα and TCRβ sequences with V(J) usage characteristic of NKT cells (TRAV24-TRAJ18 for
TCRα; TRBV11 for TCRβ). C. Fraction of TCRα and TCRβ sequences with V(J) usage characteristic of
MAIT cells (TRAV1-2 with TRAJ33, TRAJ12 or TRAJ20 for TCRα; TRBV20 or TRBV6 for TCRβ). D. Fraction
of sequences having at least one match (CDR3 amino acid sequence as well as V and J annotation)
with the VDJdb (Shugay et al., 2017).
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does not suggest enrichment for MAIT or NKT cells among abundant sequences. The most
abundant TCRα sequences are enriched for NKT sequences, but these still account for only
a small fraction of the total (0.3% and 1.7% for CD4+ and CD8+, respectively, Figure 2.5B).
Hence, we conclude that only a small fraction of the abundant sequences are derived from
clones with a MAIT or NKT cell phenotype.

Finally we analysed whether the abundant TCR sequences in the naive population could
be detected in a database of TCR sequences with known antigen specificity (Shugay et al.,
2017). Interestingly, there was a striking enrichment of TCR sequences with known antigen-
specific annotation within the high abundance TCRα sequences observed in more than
one subsample from experiment 2, and to a lesser extent for TCRβ sequences (Figure 2.5C).
Interpretation is again not straightforward, because the high generation probabilities of
the abundantly observed chains could lead to these sequences being over-represented in
the database (ascertainment bias). Additionally, the observation may also reflect the fact
that the naive T-cell populations we sequenced contained some antigen-experienced T
cells with a naive phenotype (Pulko et al., 2016). Finally, the observation is also compatible
with the hypothesis that TCR recombination has evolved to preferentially generate TCRs
specific to common pathogens like CMV or EBV (as discussed in (Thomas and Crawford,
2019)).

Discussion

The diversity and clone size distribution of the naive T-cell repertoire has been the subject
of considerable debate, fuelled by the difficulty of obtaining more than a very small
sample of the total repertoire, and by a variety of other technical considerations which we
address in this study. We use a quantitative UMI-based sequencing protocol, and careful
error correction to analyse the naive and memory repertoires from three healthy human
volunteers. We convincingly demonstrate that a small proportion of the TCR sequences are
present more than once in a sample of naive T cells from blood, corresponding to expected
frequencies greater than 1 in 105. This number of abundant TCRα sequences is higher than
the number of TCRβ sequences.

We carefully considered different mechanisms that could give rise to these abundant
TCR sequences. We examined the contribution of potential contamination of the naive
population with abundant T cells from the memory compartment during the sorting
process, but the extent of such contamination was small (for CD8+ cells) or not detectable
(for CD4+ cells). Furthermore, exclusion of all TCR sequences which occurred in both
memory and naive populations did not alter the subsequent conclusions of the analysis.
We also considered the possibility that abundant TCR sequences were observed due to
sampling multiple mRNA molecules from the same cell. In order to exclude this possibility,
we carried out an experiment where we divided up a sample of sorted naive T cells into three
subsamples prior to lysis, and sequencing. In this experimental paradigm, TCR sequences
found in more than one subsample must arise from different T cells. We observed that repeat
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sampling of mRNA from the same T cell did indeed occur, and might account for as much
as 75% of the high abundance TCRβ sequences (for which there are more mRNA molecules
per cell, (Oakes et al., 2017)), and as much as 25% of the TCRα sequences. However, this
effect was mostly restricted to TCR sequences observed twice, and made little contribution
to TCR sequences observed three or more times.

Having excluded methodological causes of high abundance TCR sequences, we
examined two biological mechanisms which could explain the data. The first of the
mechanisms we consider is that abundant sequences derive from identical TCRα and
TCRβ rearrangements occurring in multiple cells. In this model, abundance arises not from
multiple sampling from the same large clone of T cells, but from summation over many
different clones of T cells, each of which share a α or β chain. The second mechanism is
that the naive repertoire clone size distribution is not uniform, but contains many small
and some large clones. We combine computational models with experimental data to
provide evidence that both mechanisms are required to explain the observed data. The
first mechanism dominates the repertoire of TCRα, and is likely to contribute to the
majority of observed abundant sequences. Interestingly, the model suggests that those
TCRαwhich have the highest probability of generation are produced hundreds of thousands,
or even millions of times within an individual, and must therefore be produced extremely
frequently in the thymus. In contrast, the first mechanism has a smaller impact on the
TCRβ repertoire, and abundant TCRβ sequences are more likely to arise from large clones
in the naive repertoire.

The experimental limitations of sampling small volume of blood which contains only a
tiny proportion of the total repertoire has dramatic effects on the observed TCR frequency
distribution. One can use the analytical solution of the neutral model (Materials and
Methods) with thymic introduction size c = 1 to illustrate this extreme sampling effect:
F̂i ≈ Fi( s

θ
)i, where F̂i and Fi are the number of clones present with i cells in the sample,

and in the pool, respectively, and s is the fraction of the repertoire that was sampled (here
s ∼ 10−6). Since s/θ is of order 10-5 and this is raised to the ith power, even very large TCR
clones become rare in such a sample. Because of this, it is difficult to be definitive about the
exact underlying T-cell clone frequency distribution which gives rise to the abundant TCR
sequences we observe. The data are certainly compatible with a power-law distribution, as
has been suggested previously (Desponds et al., 2016). But many distributions made up
of a mixture of rare clones and a small proportion (1-5%) of large clones (105 - 106) are
compatible with the data we observe.

The demonstration of large clones in the naive repertoire raises the question of
what determines the different sizes of different clonotypes. The neutral model already
excludes repeated thymic production as explanation for large clones, because the combined
probability of repeated αβ-clone production is very low (Dupic et al., 2019). We confirmed
that the abundant TCR sequences were not strongly enriched for sequences characteristic
of iNKT and MAIT cells (Figure 2.5B&C). An alternative explanation is that the large clones
may actually be antigen-experienced, but with a naive phenotype such as memory stem
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T cells (Gattinoni et al., 2011; Lugli et al., 2013b,a; Marraco et al., 2015; Pulko et al., 2016).
However, a number of alternative explanations for this enrichment exist, as discussed above.
Furthermore, antigen-experienced T cells should be present in the memory populations,
and large clones could still be observed even after removal of all cells which occur in both
memory and naive populations. So, although we cannot exclude that some of the frequent
TCR sequences may be derived from T cells that are not truly naive, we believe the data
argue for the existence of truly naive large clones.

We speculate that the most likely mechanism for large clones is preferential
growth/survival of some clones, presumably due to preferential selection on self-
peptide/MHC (Rudd et al., 2011; Lythe et al., 2016). Intriguingly, the abundant TCR
sequences we observed were enriched for sequences without N-insertions, a characteristic
of TCRs produced prenatally (Pogorelyy et al., 2017). The large clones may therefore be
established very early in the development of T-cell adaptive immunity, before homeostasis
of the immune system is achieved and when more rapid division and clonal expansion may
be favoured.

In conclusion, our study highlights the huge impact of subsampling on correct
interpretation of TCR repertoire data. It provides evidence for two different mechanisms
which give rise to abundant TCR sequences in the naive human repertoire. The first
mechanism, driven by multiple identical recombination events, is frequently overlooked
in the analysis of T-cell repertoires, but has important implications in interpretation of
observed sharing between different T-cell subpopulations of an individual, and between
individuals (public TCR sequences). The second mechanism suggests that the TCR sequence
plays a critical role in naive T-cell homeostasis. Further experiments will be required to
fully elucidate the cellular and molecular mechanisms which underlie the heterogeneity of
the naive T-cell repertoire.

Materials and Methods

Cell sorting and sequencing

Sequence reads came from T cells extracted from blood samples of three healthy volunteers,
between 30 and 40 years old. Using CD27 and CD45RA markers, FACS-sorting was
performed, identifying naive (CD27+CD45RA+), CM (central memory, CD27+CD45RA-),
EM (effector memory, CD27-CD45RA-) and EMRA (effector memory RA, CD27-CD45RA+)
cells. Barcoded TCRα and TCRβ cDNA libraries were obtained by reverse transcription
of RNA molecules coding for either the α or β chain, respectively, followed by single
strand DNA ligation to attach unique molecular identifiers (UMIs) of 12 nucleotides.
These were PCR-amplified and sequenced using the Illumina MiSeq platform. For full
description of the sequencing procedure, we refer to (Oakes et al., 2017) and (Uddin
et al., 2019). The raw sequence files are available on the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) as experiment SRP109035.
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Figure 2.6 – Improved UMI correction leads to more reliable estimation of sequence

frequencies. A. Distribution of Hamming Distances of UMIs within TCRβ sequences (naive CD4+
sample of volunteer 1) before correction (red), after default correction (blue) and after improved
correction (green), in comparison with the distribution of UMIs between sequences (black dashed).
B. Distributions of the same TCRβ sequences after the different correction strategies. Frequently
observed TCRβ sequences remain at the same frequency after correction, whereas the frequency
of other sequences tends to be overestimated due to mutated UMIs, which is compensated for by
improved UMI correction.

Sequence analysis

We used the Decombinator pipeline (Thomas et al., 2013) (Version 3.1) to demultiplex,
annotate, and error-correct the raw sequencing reads. Our reads contain UMIs of 12 base
pairs that can be used to identify which TCRα or TCRβ sequences are derived from the
same cDNA molecule. Decombinator performs error correction on sequences by collapsing
those that are similar and are associated with the same UMI. The pipeline also error corrects
UMIs, collapsing those UMIs that are associated with the same TCRα or TCRβ sequence
and differ from each other by 2 or fewer sequence edits (i.e., the default barcode threshold).
This error correction assumes it is unlikely for any sequence, irrespective of its frequency,
to contain two UMIs that are nearly identical, concluding the UMIs are different because of
PCR or sequencing errors.

We improved this by setting the barcode threshold to 0 and replacing it by an UMI
error correction algorithm that takes the number of UMIs into account. Consider a TCRα

or TCRβ sequence supported by i different UMIs, i.e., with frequency i. The Hamming
distance, H, between two random UMIs of 12 base pairs can be represented by a binomial
random variable, H ∼B(n, p), where n = 12 and p = 3

4 (assuming uniform frequencies of the
4 different bases). There are ( i

2
) distinct comparisons between the i UMIs, and assuming

that every comparison is independent, the expected distribution of Hamming distances is
ni(h)= ( i

2
)
P(H = h). To determine whether two UMIs are unexpectedly similar, we define a

threshold distance that depends on the frequency of their TCRα or TCRβ sequence (i):
Dα =max({d :

d∑
h=1

ni(h)≤α}) . (2.1)
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Our algorithm corrects UMIs for a given sequence as follows: From d = 1 to d = Dα, for

all UMI pairs with H ≤ d, add the read count of the less frequent UMI to the more frequent
UMI and remove the former. We applied this algorithm to every TCRα and TCRβ sequence
in our HTS data using α= 0.05. The effects of this correction method are shown in Figure 2.6.
After the improved correction, the distribution of Hamming Distances within and between
distinct TCRα and TCRβ sequences is very similar, indicating that most erroneous UMIs
have been removed. Our improved correction decreases the estimated frequency of many
sequences at low frequencies, which indicates that many TCRα and TCRβ sequences that
were observed two or three times, are actually singletons for which the UMI was mutated
once or a few times. In the example given in Figure 2.6, the number of sequences that were
observed more than once decreased with 66% by our improved correction (from 11491 to
3855), whereas the default correction estimated 9342 (only 19% reduction) of the sequences
to have more than 1 true UMI.

Because our analysis focuses on the naive T-cell repertoire, we combined the different
memory populations by adding the abundance of identical TCR sequences (V and J
annotation as well as CDR3 nucleotide sequence) in the corresponding CM, EM and EMRA
samples. We included for analysis the sequences that were reported as functional by
Decombinator and had non-zero P(σ). We also processed the HTS reads with RTCR
(Gerritsen et al., 2016) (Version 0.4.3). This pipeline determines a sample-based error
rate and uses this rate to perform clustering on reads. Compared to Decombinator, RTCR
estimates our reads to contain more PCR and sequencing errors and therefore tends to
be more conservative in terms of reported diversity. Because RTCR reports fewer distinct
rearrangements per sample, the overlap between samples (i.e., the number of chains with
incidence 2 and 3) is lower than in Decombinator output. For each of the main-text figures,
a supplemental RTCR-based version is provided. Although the quantitative results are
not identical, the RTCR results qualitatively match those of the Decombinator output,
confirming that our results are not algorithm-dependent.
Subsampling to exclude inflated abundance through multiple RNA

contributions by single cells

An important step in our analysis is the additional experiment in which the naive cells
were split into three parts before mRNA extraction. The probability for a naive cell to be
sampled from the pool is very low (< 10-5), but once a cell has been sampled it may likely
contribute multiple RNA molecules. These would then be sequenced with different UMIs,
inflating the abundance we measure in a sample. Hence, we use subsampling to avoid
the noise on TCRα and TCRβ abundance introduced by variable TCR expression between
cells. To quantify the possible effect of single cells contributing multiple RNA molecules,
we performed a permutation test. We computationally joined the sequences observed in
the three independently sequenced replicates, adding the abundance (as measured by
UMIs) in each of the three subsamples together. We then randomly assigned the UMIs
of these sequences to one of three artificial portions and again scored the incidence of all
TCRα and TCRβ sequences. In this setting, RNAs contributed by single cells in a single
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sample, can be distributed over multiple permuted samples. This was done 10 times for
each set of sequences and we found that permutation led to a large increase in the number
of sequences occurring in multiple samples (Figure S2.3A). We quantified the number of
abundant chains, by counting sequences observed in multiple samples.

When multiple RNA molecules from a single cell can contribute a UMI (i.e., in the
permuted set and within a single sample), the number of abundant sequences is greatly
overestimated. About 25% of abundant α chains in this setting is actually due to inflated
counts. For β chains the effect is much larger, with over 75% of abundance due to RNA
content. This difference is consistent with our previous finding that T cells contain in the
order of 300 TCRB and 100 TCRA RNA molecules per cell (Oakes et al., 2017). Moreover,
the lower P(σ)values of β chains readily explains that there are fewer true duplets and
triplets than for α chains. Subsampling appears to be very important when obtaining our
most surprising result that P(σ) values are enriched for β chains with incidence 2, but not
incidence 3. After permutation, most duplets are due to RNA content and therefore no
longer enriched for high P(σ) (Figure S2.3B). These results highlight the importance of
our additional step of taking a single blood sample, dividing it into three portions and then
analysing all three subsamples separately.
Sharing of TCRα and TCRβ sequences

We sequenced TCRα and TCRβ from whole blood samples taken from 28 healthy
volunteers. The study was carried out in accordance with the recommendations of
the UK Research Ethics Committee with written informed consent of all subjects. All
subjects gave written informed consent in accordance with the Declaration of Helsinki.
The protocol was approved by the University College London Hospital Ethics Committee
06/Q0502/92. The raw sequence files are available on the Sequence Read Archive
(https://www.ncbi.nlm.nih.gov/sra) as experiments SRP045430 and SRP151125. In order to
measure how public the individual sets of sequences were, we measured their degree of
sharing between our naive samples and these whole blood repertoires.

As shown in Figure 2.2, we have three sets of sequences, those with incidence 1, 2 and 3.
For each set, we measured which fraction is also found in the 28 independent whole blood
samples, which delivers 28 estimates of sharing. More precisely, we counted the number
of shared TCRα and TCRβ sequences between the sets of sequences observed in two and
three naive subsamples, and compared these to sharing with an equal size sample of naive
sequences which were only observed in one subsample. Since the number of sequences
which occurred more than once was much smaller than the number of sequences which
only occurred once, we subsampled the set of unique sequences 10 times. The results
are shown as the number of shared TCRα or TCRβ for each whole blood repertoire, as
a proportion of their number of sequences in the samples being tested (Figure S2.4A).
In order to study the sharing of the β chains in our data with higher resolution, we also
analysed overlap of the sets of sequences with the TCRβ data from a large cohort of 786
people published in (Emerson et al., 2017) (Figure S2.4B).
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Neutral model for dynamics of naive T cells

To model naive T-cell dynamics in the absence of peripheral selection, we developed a
model that is similar to the Neutral Community Model (NCM) of Hubbell (Hubbell, 2001).
Naive T cells, viewed through an ecological lens, are individuals, and all naive T cells sharing
the same TCRα and TCRβ sequence are part of the same species (αβ-clone). Neutrality,
as defined by Hubbell, means that all species have the same per capita probability of
birth (peripheral division) and death. When considering the model, we ignore the very
small chance that an existing αβ-clone is produced again by the thymus. Hence, in our
simulations we assume that the thymus produces T-cell clones that are unique and novel.

Consider a pool of N naive T cells belonging to clones, each consisting of i cells, which
changes by thymic production, cell division and cells leaving the naive pool (as a result
of cell death or activation). During each event, one randomly selected cell exits the pool,
causing the corresponding clone to decrease in size from i to i−1 cells. With probability 1−θ,
another randomly selected cell will divide, causing the corresponding clone to increase its
size from i to i+1 cells. Alternatively, with probability θ, thymic production can occur: every
c events in which no peripheral division occurred, the thymus will release c cells of a newly
produced clone. So, the pool size N only fluctuates by c cells, and because N ≫ c, the total
number of cells stays almost constant during the entire simulation. The per capita birth rate
((1−θ)/N) and death rate (1/N) are equal for all T-cell clones, which makes this a neutral
model. In this discrete-time model, exit and production are coupled, but its dynamics can
be approximated by a continuous-time model, in which thymic production, cell division,
and deaths are uncoupled Poisson processes. This is illustrated by the following Markov
chain, in which the states are clone sizes and the rates show the probabilities of clones
moving to another state:

Figure 2.7 –Markov chain representation of the neutral model with thymic introduction size

c.

This Markov process describes the dynamics of the clone-size distribution F, i.e., the
total number of clones Fi consisting of i cells. After many birth and death events, individual
clones still change in clone size over time, but the clone-size distribution approaches
equilibrium. At this steady state, the rate at which new clones enter the naive pool, θ/c,
equals the rate at which clones leave the pool, i.e., F1(1/N). Hence, in equilibrium, the
number of singletons, clones with only one cell, approaches F1 = θN/c. The total rate at
which the cells of clones with i cells divide and die depends on the total number of cells
belonging to Fi clones: iFi. For clone sizes up to c cells, the rate at which the cells of the
Fi clones die, (iFi/N), balances the division the cells of Fi−1 clones ((i−1)Fi−1(1−θ)/N) and
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the rate at which new clones enter the pool (θ/c). The analytical solution to this recurrence
relation iFi/N = (i−1)Fi−1(1−θ)/N +θ/c is:

Fi = N −N(1−θ)i

ic
, for 1≤ i ≤ c . (2.2)

For states with i > c, only birth and death of cells need to balance between states i−1 and i
(as there is no net flux from clones introduced by the thymus): iFi/N = (i−1)Fi−1(1−θ)/N.
This recurrence relation has the following analytical solution:

Fi = cFc(1−θ)i−c

i
, for c ≤ i ≤ N . (2.3)

When predicting the full clone-size distribution, we use Equation 2.2 and Equation 2.3 to
calculate the steady-state distribution. The total number of all distinct clones (i.e., the
richness) in the steady-state repertoire is simply the sum over all their frequencies Fi,
R =∑∞

i=1 Fi, which has a simple closed-form solution for c = 1,
R =

∞∑
i=1

Fi = θN lnθ
θ−1

for c = 1 . (2.4)
The Simpson’s diversity of the steady state repertoire also has a simple form,

S = 1/
∞∑

i=1
Fi

(
i
N

)2
= 2θN

2+ (c−1)θ
, (2.5)

which equals F1 = θN for c = 1, and is a saturated function of θ if c > 1.
We consider the sampling process of a small fraction s from a naive T-cell pool of N

cells, which clones follow the distribution F in Equation 2.2 and Equation 2.3. Assuming
the naive pool is large and well-mixed, the number of T cells, X , sampled from the j cells
belonging to a particular clone, can be approximately represented by a binomial random
variable, X j ∼B(n = j, p = s). The expected clone-size distribution of the sample, F̂, is then
given by

F̂i =
N∑
j=i

F jP(X j = i) . (2.6)
The strong distortion of sampling from clone-size distributions can be illustrated using
the analytical solution of Equation 2.6 for the neutral model for c = 1:

F̂i = Fi

(
s

s+ (1− s)θ

)i
. (2.7)

Since s is typically very small, this equation can be simplified to F̂i ≈ Fi( s
θ
)i (as s ≪ θ), which

clearly shows that even very abundant clones will become rare or absent in a small sample.
Clone-size distributions of the naive T-cell pools

Since our data contains separate data on both CD4+ and CD8+ T cells, we predicted the
clone-size distributions of both subsets separately. To account for the larger CD4+ pool
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(Wertheimer et al., 2014; Westera et al., 2015), we set its pool size N = 7.5×1010 cells, while
we used N = 2.5×1010 for the naive CD8+ pool.

When analysing the neutral model, we used its steady-state distribution (Equation 2.2
and Equation 2.3). Since the β chain rearranges first, followed by a few divisions before
rearrangement of the α chain (Gonçalves et al., 2017), we use c = 100 for TCRβ and c = 10
for TCRα. We also used various phenomenological clone-size distributions that are not
based on a mechanistic model. To allow for exploration of a wide range of distributions, we
chose mathematical functions which form can be changed by a single parameter, such as
the slope of the power-law distribution.

The power-law distribution with form Fi = F1 × i−k shows a straight line on a log-
log plot. Since all Fi are written as a function of F1, the total number of cells N =
F1(1+2×2−k +3×3−k + ...)= F1

∑∞
i=1 i1−k. This sum is convergent for k > 2 and gives

Fi = Ni−k

ζ(k−1)
, for k > 2 (2.8)

for the power-law clone-size distribution, in which ζ is the Riemann zeta function.
We also studied repertoires with log-normal distributions of clone-sizes by drawing

from a normal distribution and raising 10 to the power of these numbers for clone sizes.
For this we used varying µ and σ = µ/10. These distributions yielded results that were
qualitatively similar to those from the neutral model (not shown). For the simple mixture
model (Figure 2.4E), we defined two populations of clones: (1) singletons (clones of just
one cell that can only contribute to high TCRα or TCRβ abundances by sharing a chain
with many other clones) and (2) large clones of equal size. We varied the fractions of both
populations as well as the size of the large clones to find which fraction of the cells in
the naive repertoire is expected to belong to large clones. A similar analysis, combining
the aforementioned distribution following from the neutral model with a log-normal
distribution for the population of large clones, produced very similar results (not shown).
In silico samples frommodelled clone-size distributions

To compare the clone-size distributions with the HTS data of the blood samples, we
generated TCRα and TCRβ repertoires using IGoR (Marcou et al., 2018). We generated
108 TCRα and TCRβ sequences using IGoR’s default recombination model and parameters.
We selected the rearrangements which CDR3 nucleotide sequence consisted of a multiple of
3 nucleotides (in frame) and did not contain in-frame stop codons, in line with the inclusion
criteria of productive rearrangements in our HTS samples (∼ 28%). Next, we calculated
generation probabilities P(σ) for all these rearrangements. This may seem a detour, but this
is needed as many different scenarios can lead to the same TCRα or TCRβ rearrangement.

Only a small percentage of thymocytes that undergo rearrangements in the thymus will
eventually be exported as a naive T cell. This is due to out-of-frame rearrangements, but
also as a result of both positive and negative selection. Moreover, the generation probability
distributions of pre- and post-selection TCRα and TCRβ repertoires are markedly different
(Elhanati et al., 2014). To account for these observations, we train a P(σ)-dependent
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selection model to account for the effects of thymic selection on our IGoR-produced TCRα
and TCRβ sequences. Note that this selection method is based on single chains rather than
on αβ-TCRs. This is because recombination of β and α chains occurs at different points in
T-cell differentiation. The first step in selection, after formation of the β chain, is based
on correct folding and expression, using a pre-α pseudochain for pairing. If the T cell
survives this step, it undergoes multiple rounds of divisions, by which its β chain can pair
with many different α chains. The second step is positive and negative selection based on
MHC-peptide interactions, which is likely to operate on a joint αβ pair. It is unknown how
much each of these two steps contributes to the overall selection process.

For TCRβ selection, we reason that selection on pairing with the invariant pre-α chain
acts exclusively on the level of single β chains, and once the T cell survives this first step, it
is expected to survive with at least one of the many α chains it can pair with during the
second step. The absence of strong structural constraints on αβ pairing supports this idea
(Tanno et al., 2020). Additionally, the large P(σ) shift between pre- and post-selection
TCRβ repertoires is indicative of selection acting on the level of single β chains (i.e., the
probability for a β chain to be selected is largely irrespective of the α chain). For α chains
this shift is less pronounced, and a newly generated α chain only pairs with a single β chain.
We therefore also tested the effect of an alternative selection model in which a given α

chain survives selection with a given probability for repeated production events, reflecting
different selection outcomes when pairing with different β chains. This approach decreases
the average frequency of α chains in the post-selection repertoire (since in this case they
will on average survive only in a fraction of selection events, instead of our default all-or-
nothing model). This did not affect our results in a qualitative manner and we proceeded
with selection on the level of single chains for both TCRα and TCRβ.

We use each of the HTS data sets from the single sample experiment (shown in
Figure 2.1) to calculate the relative enrichment or depletion of 100 log10 P(σ) bins (ranging
from -50 to 0) compared to 100 equally sized samples of the IGoR output, for TCRα and
TCRβ separately. If the HTS data contained few rearrangements for a given bin, we joined
adjacent bins in such a way that the bin-specific selection factor was always based on at
least 1% of the experimental observations (Figure 2.8). This approach yielded P(σ)-specific
selection factors fP(σ) ranging from 0.6 to 1.15 (i.e., our data suggests that sequences with a
preferable P(σ) are about 2 times as likely to be selected as those in the least preferable P(σ)
domain). We assumed an overall selection factor of 1/3, meaning that one out of 3 productive
TCRα or TCRβ rearrangements would survive selection. We then allowed sequences to be
part of the post-selection repertoire with probability

pselected = fP(σ)/3 (2.9)
and stored the outcome to make a consistent decision when multiple copies of the same
TCRα or TCRβ sequence were present in the pre-selection repertoire. This approach yielded
a post-selection repertoires with P(σ) distributions similar to the single sample HTS data.
Other values for the overall selection probability, ranging from 1/10 to 1, were also tested,
but yielded similar qualitative results (not shown).



2

40 | Chapter 2

A

0.00

0.05

0.10

0.15

0.20

−30 −20 −10 0

Generation probability (log10)

D
en

si
ty

B

0.6

0.8

1.0

1.2

−30 −20 −10 0

Generation probability (log10)

S
el

ec
tio

n 
fa

ct
or

Figure 2.8 – Pre- and post-selection P(σ) densities and P(σ)-dependent selection factors for

α and β chains. A. Relative frequency of generation probabilities of TCRα (red) and TCRβ (blue)
sequences in the combined HTS data (solid) and IGoR output (dashed). B. The bin-specific selection
factors fP(σ) are determined by division of the density of a given bin in the HTS data by the density
in the pre-selection IGoR output. A value of 1 means that a sequence with this P(σ) has an average
probability to be selected in the thymus, whereas lower values indicate stronger selection and higher
values weaker selection (i.e., a higher probability to pass selection).

We could have assigned all clones in the clone-size distribution an α and β chain with
this approach. However, since only a very small part of the repertoire is sampled, we chose
to only assign an identity to those clones present in the samples. Hence, we started with
predicting the presence of all clones, as a function of their size, in each of the samples. The
probability that a clone with i cells is represented by at least one cell in a sample of n cells
from a pool of N cells is

pi = 1− (1− i
N

)n (2.10)
Given Fi, which is the number of clones in the pool with clone size i, the number of these
clones present in the sample of n cells can be approximately represented by a binomial
random variable, X i ∼ B(n = Fi, p = pi). We evaluate this for the entire clone-size distribution
F. N and F are known from the model but one cannot directly determine the number of
sampled cells n. This is because individual cells may contribute multiple mRNA molecules
and many cells may have been present in the FACS-sorted sample without contributing
mRNA to the eventual sequenced fraction. Therefore, we learn the sample size by assigning
α or β to sampled clones and choosing n such that the predicted diversity (i.e., number of
distinct chains) matches the experimental observations. We took the number of distinct
TCRα or TCRβ sequences as lower bound for the sample size, since in this model individual
cells are assumed to express one functional α or β chain. The total number of cells reported
by the FACS-sorter was used as upper bound. We also checked the implications of the
observation that some T cells contain two functional α and/or β chains, but this did not
qualitatively change our results (not shown).

Thus, we adjusted the generation probability distribution by training a P(σ)-dependent
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selection model on independent HTS data and based the sample size on the corresponding
subsamples. Hence, the predicted individual subsamples reflect the experimental
observations in terms of diversity and generation probabilities. We use the chains occurring
in multiple samples (i.e., those with incidence 2 and 3) to assess the agreement between
model predictions and the HTS data. We repeated the sampling process and assignment of α
and β chains 10 times for each model-parameter combination to account for the stochastic
nature of sampling and V(D)J recombination.

Author contributions

P.C.d.G. - Conceptualisation, Formal analysis, Visualisation, Methodology, Writing - original
draft, Writing - review and editing; T.O. - Validation, Investigation, Writing - review and
editing, Experimentation - T cell sorting and receptor sequencing; B.G. - Conceptualisation,
Software, Formal analysis, Visualisation, Methodology, Writing - original draft, Writing

- review and editing; M.I. - Software, Formal analysis; J.M.H. - Software, Methodology,
Writing - review and editing; R.H. - Formal analysis, Writing - review and editing; B.C. -
Conceptualisation, Supervision, Writing - review and editing; R.J.d.B - Conceptualisation,
Supervision, Writing - review and editing.

Acknowledgements

We thank Laurens Krah for mathematical advice and helpful discussions. This work
was supported by The Netherlands Organization for Scientific Research (NWO) Graduate
Program 022.005.023 (to P.C.d.G.), the VIRGO consortium, which is funded by the
Netherlands Genomics Initiative and by the Dutch government (FES0908) (to B.G.), by a
grant to B.C. from Unilever PLC and supported by the National Institute for Health Research
UCL Hospitals Biomedical Research. J.M.H. was supported by an MRC studentship.



2

42 | Chapter 2

Supplemental Figures

Volunteer 1 Volunteer 2

C
D

4
 α

C
D

4
 β

C
D

8
 α

C
D

8
 β

1 8 64 512 4096 1 8 64 512 4096

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Frequency in sample

M
in

im
a
l 
n
u
m

b
e
r 

o
f 
N

−
in

s
e
rt

io
n
s

Supplementary Figure S2.1 – TCRα and TCRβ sequences abundant in naive tend to have less

N-insertions. For each sequence σ in our dataset of single samples, the minimal number of
N-insertions was determined by the length of the CDR3 nucleotide sequence not matching germline
TRAV and TRAJ (for TCRα), or TRBV, TRBD and TRBJ (for TCRβ). The median insertion length is
shown for each observed frequency class (log2 bins) in naive (blue squares) and memory T-cell
(red diamonds) samples. Insertion length of the overlapping TCR sequences is shown in green
for reference (irrespective of frequency). Symbol sizes indicate numbers of sequences for each
frequency class. Error bars represent the 25% and 75% quartiles.
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Supplementary Figure S2.2 – Similar to Figure 2.1, but for HTS data processed with RTCR. A.

Frequency in of TCRα and TCRβ sequences in naive versus total frequency in memory samples of
the same volunteer. B. As A., but comparing frequency in naive sample from one volunteer with
frequency in memory from the other volunteer. C. Distributions of generation probabilities (log10)
for TCR α and β sequences from CD4+ and CD8+ from two volunteers. D. The median P(σ) is shown
for each observed frequency class (log2 bins) of sequences exclusively observed in naive (blue
squares) or memory T-cell (red diamonds) samples. P(σ) of the overlapping chains is shown in green
for reference (irrespective of frequency). Further details are provided in the legend of Figure 2.1.
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Supplementary Figure S2.3 – Permutation of subsampling experiment. A. Number of chains
observed in 1, 2 or 3 subsamples (red) and after redistributing the sequences over the samples
(blue). For the permutation test, mean values of 10 iterations are shown, with error bars indicating 1
standard deviation. The fold-change between data and permutation is indicated on top of the bars.
B. Generation probabilities of the sequences in A, as determined with IGoR (Marcou et al., 2018).
The plot shows median (black horizontal line), interquartile range (filled bar) and the range from the
bar up to 1.5 times the interquartile range (black vertical range, outliers not shown).
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Supplementary Figure S2.4 – Observed frequency predicts sharing for TCRα but not TCRβ

sequences. A. We compared the occurrence of TCRα and TCRβ sequences observed in two or
three subsamples (incidence 2 or 3, respectively), and equal-size samples of sequences observed in
one subsample (incidence 1), in unfractionated blood samples collected from 28 healthy donors.
Symbols depict the number of shared TCRα or TCRβ sequences for each whole blood repertoire, as a
proportion of the total number in the samples being tested (the latter is indicated at the bottom). The
boxplot depicts the median value and 25th and 75th percentiles. Shared fractions were compared
by Wilcoxon-Mann-Whitney test, **: p < 0.01, n.s.: not significant (p > 0.05). B. Fraction of each set
of sequences from A that was observed in at least 1% of the samples from a large cohort of 786
individuals (Emerson et al., 2017). Error bars show the standard deviation for the multiple sets of
sequences with incidence 1. A smaller fraction of the most frequently observed β chains (incidence
3) are shared than those with incidence 2, which is in line with the P(σ) observations using IGoR.
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Supplementary Figure S2.5 – Similar to Figure 2.2, but for HTS data processed with RTCR. A.

The number of TCRα and TCRβ sequences observed in 1, 2 or 3 subsamples. The grey background
bars show the results after removing all sequences that were also observed in the corresponding
memory samples. B. Generation probabilities P(σ) (log10) of TCRα and TCRβ sequences observed in
1, 2 or 3 subsamples. C.Minimal number of N-additions of TCRα and TCRβ sequences observed in 1,
2 or 3 subsamples. D. Number of V- and J-deletions of TCRα and TCRβ sequences observed in 1, 2 or
3 subsamples. The plot shows median (black horizontal line), interquartile range (filled bar) and the
range from the bar up to 1.5 times the interquartile range (black vertical range, outliers not shown).
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Supplementary Figure S2.6 – Prediction of power-law model (exponent 2.3) for single sample

data. Red lines indicate abundance of TCRα and TCRβ sequences, both without (top) and with
cleaning of overlap with memory (bottom). Blue lines represent model prediction for the abundance
of α and β chains (blue dashed line, error bars indicate standard deviation over 10 simulations,
note the different predictions between the volunteers due to different sample sizes). Sequences
represented with 10 or more UMIs are grouped ("10+"). Due to the impact of sampling multiple
RNAs from the same cell, the predictions under-predict the number of doublets, especially for β
chains. Apart from this, the model fits well to the “uncleaned” data in most cases, but the cleaned
data under-represents abundant clones, suggesting that several clones shared between memory
and naive represent genuine abundant naive clones. The only exception is for CD4+ TCRβ, where we
observe much fewer large clones than the model predicts.
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Supplementary Figure S2.7 – Similar to Figure 2.4, but for HTS data from which TCRα and TCRβ

sequences were removed that also occurred in the corresponding memory samples.
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Supplementary Figure S2.8 – Similar to Figure 2.4, but for HTS data processed with RTCR.
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Supplementary Figure S2.9 – Similar to Figure 2.5, but for HTS data processed with RTCR. A.

The fraction of rearrangements with zero minimal N-additions for sequences observed in 1, 2 or
3 naive subsamples. Data are shown without (coloured bars) and with cleaning of overlap with
memory (grey bars). B. Fraction of TCRα and TCRβ sequences with V(J) usage characteristic of NKT
cells (TRAV24-TRAJ18 for TCRα; TRBV11 for TCRβ). C. Fraction of TCRα and TCRβ sequences with
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Abstract

T cells play an important role in adaptive immunity. An enormous clonal diversity of T-
cells with a different specificity, encoded by the T-cell receptor (TCR), protect the body
against infection. Most TCRβ chains are generated from a V-, D-, and J-segment during
recombination in the thymus. Although complete absence of the D-segment is not easily
detectable from sequencing data, we find convincing evidence for a substantial proportion of
TCRβ rearrangements lacking a D-segment. Additionally, sequences without a D-segment
are more likely to be abundant within individuals and/or shared between individuals. Our
analysis indicates that such sequences are preferentially generated during fetal development
and persist within the elderly. Summarizing, TCRβ rearrangements without a D-segment
are not uncommon, and tend to allow for TCRβ chains with a high abundance in the naive
repertoire.

Introduction

The adaptive immune system relies on large and diverse repertoires of B- and T-
lymphocytes. When encountering antigen, cognate lymphocytes start proliferating to
clear the pathogen. Many of the cells die after clearance, but others are maintained and
form a memory that can be recalled after repeated antigen exposure. The specificity of αβ
T-cells is determined by the α and β chain of the T-cell receptor (TCR). These are generated
by recombination of variable (V), diversity (D) and joining (J) regions for the TCRβ and
V and J for the TCRα chain. During V(D)J-recombination in the thymus, one variant of
each of these segments is recombined in a semi-random manner, with deletions and non-
templated additions occurring at the junction(s). The combination of the generated β

and α chains of the TCR yield an enormous potential diversity (> 1020 (Zarnitsyna et al.,
2013; Mora and Walczak, 2018)), of which only a small subset is realised in the actual TCR
repertoire with a diversity estimated to be around 108 (Qi et al., 2014).

The recombination process is guided by recombination signal sequences (RSSs)
flanking the V, D and J segments. The RSSs contain spacers of 12 or 23 base pairs (bp), and
two gene segments can only be recombined when they have different spacer lengths, a
principle that is known as the 12/23 rule. In the TCRB locus, the 3’ ends of V and D segments
have 23-bp spacer RSSs, while the 5’ end of D and J segments have 12-bp spacer RSSs.
Following the 12/23 rule, it is therefore possible to have direct V-to-J rearrangements, not
including a D-segment. Ma et al. studied TCRβ sequencing data in which no D-segment
could be identified and estimated that this occurs in about 0.7% of rearrangements in
humans (Ma et al., 2016). Previous studies in human cell lines and mice reported V-to-J
rearrangements to be rare due to the so called ‘beyond 12/23 restriction’ (Bassing et al.,
2000; Tillman et al., 2003). Another scenario that would lead to the complete absence of the
D-segment is a large number of deletions, which may happen before and/or after Terminal
deoxynucleotidyl transferase (TdT)-mediated N-additions. It is not possible to uniquely
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infer the underlying mechanism from TCR sequencing data as different recombination
scenarios lead to identical TCRβ rearrangements (Venturi et al., 2011). Moreover, the
measured fraction of V-J rearrangements also critically depends on the method used for
estimating which nucleotides are derived from the D-segment.

When sequencing TCR α or β chains from samples of T cells, large differences in
frequency are observed, even within samples of naive T cells (Quigley et al., 2010; Venturi
et al., 2011; Qi et al., 2014; Pogorelyy et al., 2017). Several factors contributing to abundance
have been identified in previous studies. TCR chains differ orders of magnitude in their
likelihood to be generated, i.e., their generation probability, which can be estimated
using generative models (Murugan et al., 2012; Marcou et al., 2018; Sethna et al., 2019).
The generation probabilities of TCRα chains correlate well with abundance in the naive
repertoire (de Greef et al., 2020), which implies that early or repeated generation of single
TCR chains contributes to their abundance. Another factor that contributes to abundance
of TCR chains is generation before birth, when N-additions are less likely inserted due to
down-regulation of TdT. Such TCR sequences have limited diversity, and were shown to
maintain high abundance for decades, while being excessively shared among individuals
(Pogorelyy et al., 2017). It should be noted that abundant α or β chains do not provide direct
evidence for the existence of large αβ clones in the naive compartment, as one α-chain
may pair with many different β-chains (and vice versa) (de Greef et al., 2020). Still, αβ
clones could become large as a result of increased division rates in the periphery (Gaimann
et al., 2020), which may be due to TCR interactions with self-peptide MHC complexes.

Here we study characteristics of TCRβ sequences that are abundant in the naive T-
cell compartment. We find that TCRβ rearrangements without a D-segment are a likely
outcome of V(D)J-recombination, but not easily identified. TCRβ chains that are abundant
among naive T cells are strongly enriched for having no D-segment. We performed a
meta-analysis of TCRβ sequence data, providing evidence for fetal origin of many of such
sequences, which may explain why they are shared between so many individuals. Together,
this shows that absence of a D-segment is not uncommon in TCRβ rearrangements and
that it is an import factor explaining TCRβ abundance in the naive repertoire.

Results

The naive T-cell repertoire contains abundant TCR sequences that lack glycine

in their CDR3

The naive T-cell repertoire consists of a huge clonal diversity, of which just a small
fraction can be observed in a typical sample of cells. In addition, when RNA is used to
sequence the TCRβ chains in T cells, differential TCR expression levels may overestimate
the measured abundance of a given T-cell clone (de Greef et al., 2020). We therefore re-
analyse the data from (Qi et al., 2014), who sequenced the TCRβ repertoires of memory
and naive T-cells from young and aged healthy individuals using five replicates per subset.
Measuring the number of samples a given TCRβ appears in, i.e. the incidence, classifies the
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abundance of sequences without biases due to multiple RNA contributions by single cells.
We processed the subsamples independently using RTCR (Gerritsen et al., 2016), which
performs clustering of likely erroneous sequences using sample-specific estimates of error
rates, while maintaining as much as possible of the diversity.

In line with the results presented in Qi et al., we find that the vast majority of the
sequences in the naive T-cell samples appears only in a single subsample, underlining the
enormous diversity of the naive repertoire. However, there is also a substantial proportion
of TCRβ sequences that are found in two or more subsamples of naive T-cells (Figure 3.1A).
The median fraction of sequences with an incidence > 1 was 8.0 times higher in aged than
in young individuals, confirming the earlier finding that naive T-cell diversity is lost with
age (Qi et al., 2014). We reasoned that some, and in particular the more abundant sequences
may be derived from missorted memory T-cell clones. Therefore, we also analysed the
effect of discarding all sequences that were also observed in at least one of the corresponding
memory samples. Although this correction did remove a larger fraction of the abundant
sequences than of those with incidence 1, the incidence of most abundant rearrangements
remained unchanged (Figure 3.1A). This confirms that the naive T-cell receptor repertoire
of both young and aged individuals contains abundant TCRβ sequences (de Greef et al.,
2020).

TCRβ sequences differ several orders of magnitude in their probability of being
generated during V(D)J-recombination. To investigate to what extent this relates to
abundance in the naive T-cell repertoire, we estimated generation probabilities of the
sequences using OLGA (Sethna et al., 2019). The average generation probability of
infrequent TCRβ sequences (observed in a single subsample) was very similar among
all individuals. The abundant TCRβ sequences, however, were enriched for having a
high generation probability in young individuals, albeit to a different extent (Figure 3.1B).
This confirms that the likelihood of TCRβ generation, which could reflect repeated
thymus production, plays a role in the abundance of TCRβ sequences within the naive
repertoire of young adults. Samples from aged individuals, that have much lower
(Westera et al., 2015) or even no thymus T-cell production (Thome et al., 2016), contained
many more abundant sequences, but showed a much smaller enrichment of high
generation probability (Figure 3.1B). These results remained qualitatively similar after
cleaning potential contamination by removing sequences overlapping with the memory
compartment (dashed lines in Figure 3.1B). Together, these results indicate that likelihood
of V(D)J-recombination affects TCRβ abundance in young individuals, and that this effect
dilutes with age.

One of the main determinants of the generation probability is the number of N-
additions in the rearrangement, since a specific long stretch of N-additions is not a likely
outcome of the V(D)J-recombination process. Hence, the observation that abundant
sequences in young individuals tend to have high generation probability predicts that
they may have shorter CDR3 lengths. Indeed, when we analysed the number of CDR3
amino acids as a function of abundance, we observed on average shorter CDR3s among
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Figure 3.1 – Features of abundant sequences in the naive T-cell repertoire of young and aged

individuals. A. Fraction of TCRβ sequences occurring in one or multiple subsamples (i.e., incidence).
The vertical axis is log-scaled with 0 added at the bottom. The solid lines and closed symbols are
based on all productive sequences, the dashed lines with open symbols show results after removing
sequences that were also present in the corresponding sample(s) of memory T cells. Colours and
symbols represent the individuals in the Qi et al. dataset and are used consistently in the other
figures. B. Geometric mean of the TCRβ sequence generation probabilities, as a function of their
abundance. The most abundant sequences, i.e., those shared across 3-5 subsamples, are grouped
together due to the relatively small number of observations. C. Mean number of amino acids in
the CDR3s of TCRβ sequences, as a function of their incidence. D. Fraction of TCRβ sequences
without detectable N-additions, i.e., which CDR3 nucleotide sequence can be fully aligned to the
identified germline V-, (D-,) and J-segments. E.Mean amino acid frequencies among CDR3s of non-
abundant (incidence 1) versus abundant (incidence > 1) TCRβ sequences. The amino acid frequency
of each CDR3 is calculated as the CDR3 amino acid counts divided by its total length, to account
for differential CDR3 lengths. The grey dashed line represents the identity line, and the amino acid
identity is shown for those that exceed a relative frequency of 0.05 in any sample. Colours represent
the amino acids, plot symbols indicate individuals, the latter being consistent with the other figures.
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abundant TCRβ sequences, as compared to the sequences found in only a single subsample
(Figure 3.1C). Another factor that is related to N-additions and is reported to play a role in
abundance is the generation of TCR sequences before birth (Pogorelyy et al., 2017). The
enzyme inserting N-additions (TdT) is downregulated during early ontogeny, making
rearrangements without N-additions much more likely during early fetal development.
The absence of N-additions cannot be proven for a given rearrangement, as many different
recombination scenarios, with and without N-additions, lead to the same TCRβ nucleotide
sequence. To still obtain a proxy for the relation between absence of N-additions and
abundance, we counted the sequences that are consistent with having no N-additions
(i.e., their full CDR3 nucleotide sequence can be mapped to the identified V-, (D-,) and
J-segments. Among the TCRβ sequences from young individuals, we found that this was
much more common for the abundant sequences than for the sequences with incidence 1
(Figure 3.1D). In aged individuals, both the effects on CDR3 length and absence of detectable
N-additions were considerably less pronounced (Figure 3.1C&D).

As the TCRβ sequences are coding for TCR-specificity, we translated them to obtain
CDR3 amino acid sequences. We compared the relative amino acid usage in the CDR3 of
abundant TCRβ sequences with those observed in only a single subsample (Figure 3.1E).
In the samples taken from the aged individuals, we found no relation between amino acid
usage and abundance (the points in Figure 3.1E are very close to the diagonal). For the
samples from young individuals, however, there were considerable differences between
abundant and other TCRβ sequences, especially among the more commonly used amino
acids (Figure 3.1E and Figure S3.1A). Within the CDR3s of abundant sequences, there
was an over-representation of serine, phenylalanine and cysteine. These amino acids
are particularly found at both ends of the CDR3, because they are encoded by either all
germline V-segments (S and C) or J-segments (F). The observed enrichment of germline-
encoded amino acids is thus to be expected given the observation that CDR3s of abundant
TCRβ sequences tend to be shorter (Figure 3.1C). Glycine, in contrast, is rarely encoded by
germline V- and/or J-segments. While being the fourth most common acids in CDR3s, it
was consistently underrepresented within the abundant sequences of the young individuals,
as compared to their sequences with incidence 1. By focusing the analysis on the middle
five amino acids of the CDR3, which are most likely to contact the peptide epitope, we
also found fewer glycine residues in abundant sequences from young individuals (p < 0.01,
Wilcoxon signed-rank test; Figure S3.1B). Although glycine residues in the CDR3 could
also arise from N-additions, they are generally encoded by the guanine-rich parts of the
germline D-segments (Figure 3.2A). Hence, the under-representation of glycine among
the CDR3s of abundant TCRβ sequences may reflect the absence of nucleotides derived
from the D-segment.
Many abundant TCRβ sequences are V-J rearrangements without a D-segment

We therefore investigated if abundant TCRβ rearrangements in young individuals indeed
contain fewer nucleotides that are encoded by the D-segment. It is not straightforward to
analyse the D-segment length, as there is no way to reliably tell from the CDR3 sequence
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Figure 3.2 – TCRβ sequences occur without a D-segment and are enriched among abundant

sequences. A. Nucleotide sequences with amino acid translation in the three reading frames of
the human TRBD alleles, as listed in IMGT (Lefranc, 2001). B. Comparison between inferred and
true lengths of D-segments in an in silico repertoire of 107 productive rearrangements generated
using IGoR (Marcou et al., 2018). The proportion of true D-segment lengths is plotted as a function
of the inferred D-segment length, which is the maximum region in the non-V/J encoded part of the
CDR3 nucleotide sequence matching any D-allele. The bar graph segments are coloured by true
D-segment length, with inserted numbers indicating identical true and inferred values. C. Mean
inferred D-segment length as a function of incidence in the naive repertoires of young individuals
(colours matching Figure 3.1). D. Fraction of sequences with an inferred D-segment length of 0
nucleotides as a function of incidence. E. Fraction of sequences with an inferred D-segment length
of 2 or fewer nucleotides, most of which likely representing rearrangements without a D-segment. F.
Population-based estimate on the fraction of sequences without a D-segment (see Supplement).
The expected value is shown with closed symbols, the vertical bars indicate the confidence range
(standard deviation).
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which nucleotides originated from V/D/J-segments and which from non-templated
additions. We thus removed the nucleotides at the 3’ and 5’ end of the CDR3 that perfectly
matched the germline sequence of the annotated TRBV and TRBJ sequence, respectively.
The longest match of the remaining sequence with any of the TRBD alleles was taken
as a conservative proxy for the D-segment length. We observed a negative relation with
incidence in our samples, i.e., sequences shared between samples had on average fewer
nucleotides matching a D-segment (Figure 3.2C). This indicates that D-deletions may have
a positive effect on the abundance in the naive T-cell repertoire.

As described above, there is no method to accurately measure the D-segment length of
any given TCRβ rearrangement. We evaluated the performance of our conservative method
by applying it to an in silico repertoire generated with IGoR (Marcou et al., 2018). This tool
allows one to generate TCRβ sequences with probabilities for gene choices, deletions and
additions that are trained on sequence data. The advantage of such generated sequences is
that the true D-segment length is known for each recombination scenario. Overall, only
38% of the predictions of our conservative method was correct, which was mainly due to
an overestimation of the D-segment length, especially for short D-segments (Figure 3.2B).
Intuitively these results can be understood because any N-addition will match at least one
nucleotide in any of the TRBD alleles. This means that it is very unlikely to observe the
complete absence of the D-segment, implying that potential absence of D-segments in
TCRβ sequences is likely overlooked.

We further studied the role of potential D-segment absence on the abundance of TCRβ
sequences in the naive T-cell repertoires of young individuals. We started with a very
strict threshold, by counting the number of rearrangements with an inferred D-segment
length of 0 nucleotides. Note that this requirement only includes sequences in which
neither N-additions nor a D-segment is identified. Overall, this feature was very rare in
our samples (< 0.1%), but much more common among sequences with higher abundance
in the naive repertoire (Figure 3.2D). We also counted the number of sequences with 2 or
fewer nucleotides matching a D-segment, accounting for the observation that the majority
of rearrangements with an inferred D-length of 1 or 2 nucleotides in the in silico repertoire
does not have a D-segment (Figure 3.2B). Such sequences were found much more often
and made up an even larger fraction of the abundant sequences (Figure 3.2E).

In addition to the classification of individual sequences, we established a quantitative
method to make a population-based estimate on the fraction of sequences without D-
segment. We first split the in silico repertoire into sequences with and without detectable
N-additions. For both sets, we calculated the probability of D-segment absence as a
function of the inferred D-segment length, using the known true D-segment length of
each of these sequences (Figure S3.2A). We then weighted our D-length measurements by
these probabilities to estimate the fraction of sequences without D-segment in the TCRβ

sequencing data (Supplemental Information). In general, about 10% of the sequences was
estimated to not have a D-segment, but this fraction was much higher among the abundant
sequences (Figure 3.2F). Together, both methods confirm that there is a substantial fraction
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of the TCRβ repertoire of naive T cells that does not contain a D-segment.
TCRβ sequences without a D-segment are abundant, functional, and public

The abundant TCRβ sequences in the naive repertoire are enriched for having high
generation probabilities (Figure 3.1B), short CDR3s (Figure 3.1C) and no N-additions
(Figure 3.1D), but also for having no D-segment (Figure 3.2D-F). We investigated the relative
contribution of these factors in more detail by studying TCRβ sequences that were abundant
(i.e., those that were shared between subsamples). Generation probabilities appeared to be
highest for abundant TCRβ sequences without a D-segment (Figure S3.3A). This reveals that
the recombination model, of which individual probabilities were trained on large samples
of TCR sequencing data, predicts that (almost) complete absence of the D-segment is likely
to occur during TCRβ rearrangement. Importantly, the fraction of TCRβ sequences without
detectable N-additions is enriched among the abundant sequences with few or without
detectable D-segment nucleotides (Figure 3.3A). All sequences with an inferred D-segment
length of 0 nucleotides cannot have N-additions, as any detectable N-addition would be
counted as at least one TRBD-derived nucleotide. This means that multiple sequence
features, characteristic of abundant TCRβ sequences, are not independent of each other.
Hence, these factors may be confounding the analysis of how D-segment absence impacts
abundance in the naive repertoire.

To discriminate between the effect of each of these factors, we focused on the sequences
in which no N-additions could be identified. We calculated which fraction of these sequences
with an inferred D-segment length of 0 nucleotides was abundant, i.e., shared between
subsamples of naive T cells. This fraction was relatively consistent between individuals
and between CD4+ and CD8+ samples (∼15% and ∼19%, respectively; Figure 3.3B). The
sequences without detectable N-additions but most likely with D-segment (i.e., > 2
nucleotides inferred D-segment length) were not nearly as often abundant (Figure 3.3B).
From this set, we also selected sequences with similar generation probabilities, CDR3
lengths or both, to control for a confounding role of these factors. Still, these sequences
were much less often abundant than those sequences without a D-segment (Figure 3.3B).
So, in addition to absence of N-additions, high generation probabilities and short CDR3s,
absence of a D-segment is on its own an important factor affecting the abundance of TCRβ
sequences in the naive repertoire.

The ubiquity of TCRβ rearrangements in the naive repertoire lacking a D-segment
raises the question if such receptors are functional. We therefore assessed their presence
in the memory samples from the same dataset and correlated this with incidence among
these samples. The fraction of sequences with an inferred D-segment length of 0 or ≤
2 nucleotides appeared similar between naive and memory samples (Figure S3.2B-E),
suggesting that absence of the D-segment does not affect the probability of participating
in an immune response. The strong relation with incidence that was observed for the naive
samples, was however absent for samples of memory T cells. We performed a similar D-
segment inference method on the human entries in the VDJdb of reported antigen-specific
TCR amino acid sequences (Shugay et al., 2017) and found over 1% of sequences to not have
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Figure 3.3 – TCRβ sequences without a D-segment are more often abundant and shared

between individuals. A. Fraction of TCRβ sequences without detectable N-additions, as a function
of the incidence and the number of inferred D-segment nucleotides. B. Fraction of sequences
occurring in multiple subsamples of naive T cells, among the sequences in which no N-additions are
identified. Sequences with an inferred D-segment length of 0 nucleotides are compared to other
sequenceswith an inferredD-segment length ofmore than 2 nucleotides, which indicates presence of
a D-segment. The other points show results after selecting sequences that have a similar distribution
of generation probabilities (Pgen), CDR3 lengths or both as the sequences without a D-segment (see
Supplement). Closed symbols show mean of 100 iterations, total range is indicated with vertical bars.
C&D. Estimated fraction of sequences without N-additions or without a D-segment, as a function of
publicity. Publicity values are measured as the number of samples the TCRβ nucleotide sequence
appears in and are binned such that every data point is based on at least 500 TCRβ sequences and
shown as a weighted average. Top: fraction of sequences in which no N-additions are identified.
Bottom: estimated fraction of sequences without a D-segment among TCRβ sequences with or
without detectable N-additions (green and purple, respectively) or all sequences together (red). The
expected values are shown as a line, with the vertical bars indicating the confidence range (standard
deviation). Data from Britanova et al. (C, 73 individuals), and Emerson et al. (D, 666 individuals).
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D-matching amino acids. Interestingly, common pathogens, like InfluenzaA, EBV, and CMV
seem to evoke more responses lacking a D-segment than HIV-1, a more rare pathogen that
is typically encountered later in life (Fisher’s exact test, p = 0.002, Figure S3.3B). Together,
these results indicate that TCRβ sequences without a D-segment are not functionally
impaired.

The observation that absence of the D-segment causes TCRβ sequences to be abundant
within individuals, predicts that such sequences may also be more often shared between
individuals. We tested this by analysing inter-individual sharing of productive TCRβ

sequences from two published TCRβ datasets of 73 (Britanova et al., 2016) and 666
(Emerson et al., 2017) individuals. In both cohorts, the fraction of sequences without
detectable N-additions was much higher among the sequences that were shared between
many individuals (Figure 3.3C&D; top). As explained above, this could act as a possible
confounder, which we took into account by separately estimating the absence of D-
segments among sequences with and without N-additions. In both sets, and also in general,
there was a striking relation between publicity and the inferred absence of the D-segment
(Figure 3.3C&D; bottom). While absence of the D-segment was not very common among
private sequences (∼ 10%), this was the case for > 40% of the most public sequences.
Together, this confirms that TCRβ sequences without a D-segment are not only abundant
within the naive repertoire, but also more likely shared between individuals.
TCRβ sequences without a D-segment are preferentially generated before

birth and still present at old age

We wondered why especially TCRβ sequences without a D-segment are abundant in the
naive repertoire of young individuals. An explanation could be that they were generated
prenatally, when clonal competition may be less restrictive. To test this idea, we studied the
samples previously described by (Carey et al., 2017). They sorted CD8+ naive T cells from
samples of cord blood from extremely preterm and term neonates and peripheral blood
from infants and adults. For these samples, it is even more important to take the effect of
N-additions into account, as the enzyme inserting N-additions (TdT) is down-regulated
during early ontogeny. In line with this, we found the largest fraction of sequences without
N-additions among the preterm cord blood samples (Figure 3.4A; top). This was much lower
for the term cord blood samples, indicating that TdT-downregulation already stops long
before birth. In the peripheral blood of infants and adults, we found only ∼2% sequences
without detectable N-additions. We then analysed the inferred D-segment lengths like
before and found that the fraction of sequences without D-segment was highest among
the preterm cord blood samples (Figure 3.4A; bottom). Interestingly, this was mostly the
case due to the sequences that lacked both N-additions and a D-segment (Figure 3.4A; dark
purple). This indicates that generation of sequences without N-additions and without a
D-segment is most likely during early fetal development and that these rapidly dilute, even
before birth.

We tested the persistence of sequences without a D-segment by correlating the
estimated fraction of sequences lacking a D-segment with age in the Britanova et al. dataset
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Figure 3.4 – TCRβs without a D-segment are preferentially generated before birth. A. Absence
of N-additions and D-segment in samples of naive CD8+ T cells from cord blood (CB) and peripheral
blood (PB), as described in (Carey et al., 2017). Top: Fraction of the sequences without detectable
N-additions (purple). The estimated fraction of sequences without a D-segment among sequences
with and without N-additions is indicated in dark green and dark purple, respectively. Bottom: Total
estimated fraction of sequences without a D-segment, with error bars indicating the confidence
range (standard deviation). The p-values are determined with the Mann-Whitney U test. B. Absence
of N-additions and D-segment, measured in samples of unsorted T cells from cord blood (CB) or
peripheral blood, as a function of the individual’s age. Due to the large number of sequences per
individual, the confidence range (standard deviation) in the bottom panel is too small to be visible.
Data from (Britanova et al., 2014).
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(Britanova et al., 2016), which includes 8 cord blood samples. It should be noted that these
samples contained PBMCs that were not sorted to only include naive T cells. We found an
increased fraction of sequences without N-additions in the cord blood samples, in line with
the previous results (Figure 3.4B). The estimated fraction of sequences without D-segment,
which takes this confounding factor into account, was only slightly higher in cord blood
samples compared to the peripheral blood samples (Figure 3.4B; p = 0.049, Mann-Whitney
U test). This corresponds to the previous observation that the over-representation of
sequences without D-segment is mostly limited to the very preterm cord blood samples
(Figure 3.4A). Interestingly, we noted that the fraction of sequences without N-additions
and also the fraction of sequences without D-segment do not decrease in the elderly of >
80 years (Figure 3.4B). Since there is not much thymic production of new T-cell clones
at old age, this indicates that TCRβ sequences without a D-segment may persist longer
than other sequences. Together, these results suggest that TCRβ sequences without a
D-segment are preferentially generated prenatally, dilute before and after birth, but are
maintained until very old age.

Discussion

Here we analysed TCRβ sequencing data from naive, memory and unsorted repertoires
to identify sequence characteristics that correlate with abundance. We first confirm that
abundant TCRβ sequences in naive T-cell samples of young individuals are characterised by
high generation probabilities, short CDR3s and absence of N-additions (Robins et al., 2010;
Venturi et al., 2011; Pogorelyy et al., 2017; de Greef et al., 2020). In the aged individuals, there
are more abundant sequences, which are less often characterised by these factors. This may
be partly explained by the decreased thymus production in the elderly, but also indicates
that some T-cell clones are preferentially selected in the periphery due to other factors.
In young individuals, where the latter mechanism likely plays a smaller role, we found a
relative depletion of glycine in abundant naive TCRβ sequences, indicating a role of the D-
segment in abundance. Although it is not possible to reliably measure the number of CDR3
nucleotides originating from the D-segment, we used a conservative method and evaluated
its performance on an in silico repertoire. The D-segment length inference of individual
sequences is not very reliable, but by splitting the data, the quantitative population-based
estimates show a substantial population of TCRβ sequences with complete absence of the D-
segment in the naive T-cell repertoire. We show that such sequences tend to be much more
often abundant in the repertoire and, as a result, more often shared between individuals
than other TCRβ sequences.

From our sequencing data, we cannot infer the recombination scenario by which
sequences without a D-segment were generated. Following the 12/23 rule, direct V-to-J
recombination is possible during TCRβ rearrangement, although several studies reported
this to be rare due to the beyond 12/23 restriction. Still, such a scenario cannot be excluded
given the enormous number of TCRβ rearrangement events during a human lifetime.



3

64 | Chapter 3
Alternatively, a large number of deletions at the 3’ and/or 5’ end could remove all D-segment
nucleotides. A possible scenario is that N-additions ‘protect’ the D-segment against
excessive deletion. The TdT enzyme, that is responsible for inserting N-additions during
V(D)J-rearrangement, is downregulated during early ontogeny (Pogorelyy et al., 2017),
which could make complete deletion of the D-segment more likely, and would explain the
large fraction of sequences without a D-segment in the cord blood samples from extremely
preterm neonates. As a result, complete deletion of the D-segment would become less likely
once TdT is activated, causing the rapid dilution of TCRβ rearrangements without a D-
segment even before birth. By this time, the TdT-independently generated clones may have
undergone multiple rounds of division, increasing their abundance in the naive repertoire
(Gaimann et al., 2020), which may be one of the reasons why such rearrangements persist
over a human lifetime and even tend to increase in relative frequency in the elderly.

Although our main goal was to describe which sequence characteristics explain
abundance in the naive T-cell repertoire, the memory T-cell samples also contain TCRβ

sequences without a D-segment. The abundance in the memory repertoire is not affected
by absence of the D-segment, however. Abundant TCRβ sequences in the memory
compartment likely reflect large clonal expansions rather than the more subtle differences
within the naive repertoire. Still, the existence of sequences without a D-segment in
samples of memory T cells indicates that such rearrangements are functional and participate
in immune responses. Moreover, we find that about 1% of the reported TCRβ sequences
specific for common pathogens does not have any D-matching amino acid in the CDR3
(Figure S3.3B). The observation that this percentage is higher for common viral pathogens
than for the more rare HIV-1 makes it tempting to speculate about the effect of age at which
individuals get exposed to the pathogen. Most people get exposed to common pathogens
at young age, when a relatively large fraction of naive T cells originates from prenatally
generated clones. Exposure to HIV-1 is much more likely when these sequences are strongly
diluted already. If this were the case, it would explain the higher generation probabilities of
TCRs specific for common antigens without needing to invoke the previously suggested
evolution of the recombination machinery towards TCRs specific for common pathogens
(Thomas and Crawford, 2019).

Together, our study highlights absence of the D-segment as an important determinant
for TCRβ abundance in the naive T-cell repertoire. Many of them are likely generated
long before birth, when TdT is still down-regulated. Such sequences are often shared and
present at very old age, indicating that the TCR repertoire maintains TCRβ chains that
resemble TCRα chains.

Materials and Methods

All sequencing data described in this study was collected in previous studies and
downloaded from the NCBI and Adaptive Biotechnologies servers. Raw sequencing data
was processed using RTCR (Gerritsen et al., 2016). All analyses were restricted to productive
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rearrangements, and individual sequences were defined by the combination of V gene, CDR3
nucleotide sequence, and J gene. The D-segment length was inferred as the maximum
match of the inferred inter-V-J sequence with any of the TRBD alleles. Detailed information
on all analyses is given in the Supplemental Information.
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Supplemental information

Data sources

The dataset by Qi et al. (Qi et al., 2014) was obtained from dbGaP found at
https://www.ncbi.nlm.nih.gov/projects/gap/cgi- bin/study.cgi?study_id=phs000787.v1.p1
through dbGaP study accession number PRJNA258304. These data (project “Immuno-
senescence: Immunity in the Young and Aged”) were provided by Jorg Goronzy on behalf of
his collaborators at PAVIR and Stanford University. In this study, five replicates with each 106
cells per aliquot of naive and memory CD4 T cells were collected. For CD8 T cells, 0.25 × 106
T cells were collected per replicate, except for the naive CD8 T cells from young individuals,
from which 106 cells per aliquot were analysed. The TCRβ repertoire sequence data of
666 individuals was downloaded from the Adaptive Biotechnologies website (originally
published as (Emerson et al., 2017)). The data of cord blood and peripheral blood TCRβ

repertoires (Carey et al., 2017) were downloaded from the same website. The results
presented in Figure 3.3C and Figure 3.4B are based on data from (Britanova et al., 2016)
downloaded from the NCBI SRA archive Bioproject accession PRJNA316572.
Sequence analysis

After pairing reads with Paired-End reAd mergeR (PEAR) (Zhang et al., 2014), the reads
from Qi et al. were processed using Recover TCR (RTCR) (Gerritsen et al., 2016). Each sample
of naive or memory cells was split into five subsamples that were sequenced separately.
RTCR estimates a per-sample error rate to account for the inevitable inaccuracies that occur
during PCR and sequencing errors. To prevent the occurrence of high-incidence reads
by the error-correction clustering algorithm, we processed each subsample separately.
When running RTCR, we did not perform Unique Molecular Identifier (UMI)-guided error
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correction. This was because the incorporated UMI sequences were composed of only 4
nucleotides. Thus there are only 256 unique combinations possible, which does not allow
for collapsing of PCR duplicates into reliable consensus sequences. As we did not use within-
sample read counts, but only used the incidence in multiple samples as a measure for
abundance, our results should not be influenced much by uneven PCR amplification. After
error-correction, reads were filtered following default RTCR settings, i.e., if V and J were
in-frame and the CDR3 did not contain in-frame stop codons or ambiguous bases. TCRβ

sequences were defined by the combination of CDR3 nucleotide sequence, TRBV gene and
TRBJ gene.

The data by Britanova et al. was processed with RTCR using the barcode files given
at https://github.com/ mikessh/aging-study. First, UMIs were extracted in forward and
reverse reads using the Checkout algorithm of RTCR. UMI-guided consensus sequences
were generated using the umi_group_ec algorithm, which were processed with the main
pipeline of RTCR using default settings.

The data from Emerson et al. was already processed. TCRβ sequences were extracted
from the column "rearrangement", V and J genes from the columns "v_gene" and "j_gene",
respectively. Out-of-frame sequences, those with an unresolved V or J gene or containing
an in-frame stop codon, were filtered out and not used for analysis. Publicity was measured
as the number of samples that contained the combination of CDR3 nucleotide sequence, V
gene and J gene.

For analysis of the Carey et al. data, TCRβ CDR3 nucleotide sequences were taken from
the column "cdr3_rearrangement", V and J genes from the columns "v_gene" and "j_gene",
respectively. Out-of-frame sequences, those with an unresolved V or J gene or containing
an in-frame stop codon, were filtered out and not used for analysis.
Inference of D-segment length

Many different recombination scenarios can lead to the exact same sequence, e.g., after
deletion of nucleotides they can be added again as N addition. As these differences are not
visible in the sequence, it is impossible to uniquely tell which nucleotides are encoded by
V, D or J segment, and which by N additions. To still estimate the number of nucleotides
originating from the D segment, we started with a conservative approach, by taking the
CDR3 nucleotide sequence and matching the nucleotides at the 5’ end to the germline
sequence of the identified V gene segment. The first mismatch position is assumed to
be the end of the V-segment, although technically this mismatch could also occur due
to e.g. a sequencing error. The same procedure is followed by matching the 3’ end of the
remaining sequence to the identified J gene segment. Any remaining nucleotides could
be a mixture of a D gene segment, N additions and P additions. We inferred the length of
the D segment by taking the longest exact match of any of the three germline TRBD allele
sequences (as listed in IMGT (Lefranc, 2001): TRBD1*01: GGGACAGGGGGC; TRBD2*01:
GGGACTAGCGGGGGGG; TRBD2*02: GGGACTAGCGGGAGGG) with the inter-V-J sequence.

To evaluate the performance of the D-segment length inference method, we generated
108 TCRβ sequences using the default generation model of IGoR without sequencing errors.
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We randomly selected 107 sequences that were productive, i.e. in-frame and not containing
a stop codon, and which V- and J-segments were in the RTCR germline reference set (e.g.,
excluding pseudogenes). For each sequence, we inferred the D-segment length as described
above. We compared this to the true D-segment length, by subtracting d_5_del and d_3_del
(if positive) from the total length of the selected D segment. The agreement between true
and inferred D-segment lengths is shown in Figure 3.2B.

We also split the in silico repertoire of Figure 3.2B based on the presence of detectable
N additions, i.e., nucleotides in the inferred inter-VJ sequence that did not match any of
the TRBD allele sequences (Figure S3.2A). This improves the performance of our inference
method, e.g. since there are no sequences with N additions and an inferred D-segment
length of 0 nucleotides, as at least one N addition would be counted as derived from the
D segment. The probability for a sequence in the in silico repertoire to not contain a D
segment, given its inferred D-segment length and the presence/absence of detectable N
additions, is shown in red in Figure S3.2A. We used these probabilities to obtain a population-
based estimate on the fraction of rearrangements without D segment in the sequencing
data: the expected value was calculated by weighing the inferred number of D-segment-
derived nucleotides with these probabilities. We also determined the confidence range on
this estimate by re-sampling 100 times with these probabilities, reporting the standard
deviation on the estimated fraction of sequences without a D segment (e.g., in Figure 3.2F
and Figure 3.3C&D).
Controlling for confounders

Various measures correlate with abundance and are not independent of each other (e.g.,
absence of N additions and inference of 0 D-derived nucleotides). In Figure 3.3B we therefore
analyse the subset of sequences that has no detectable N additions. Those with an inferred
D-segment length of 0 nucleotides (Set A) are compared with sequences with more than 2
nucleotides inferred D-segment length but also no detectable N additions (Set B). When
controlling for generation probabilities, CDR3 lengths or both, we selected sequences from
Set B that were matching the characteristics of the sequences in Set A. This was possible
for on average 96.2% of the sequences of Set A (range: 95.2-97.3%) and was done 100 times.
We also performed a logistic regression analysis on all data, predicting the probability
to be abundant as a function of generation probability (log10), CDR3 length, presence of
detectable N additions and presence of D-derived nucleotides, the latter both with the
threshold of 0 and 2 nucleotides. The results of this analysis are summarised in Table S3.1
and confirm the effect of D-segment absence on abundance in the naive repertoire.
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Supplementary Table S3.1 – Logistic regression analysis

Inferred D-segment

length = 0 nt

Inferred D-segment

length <= 2 nt

β (SE) β (SE)

Generation

probability (log10)
0.345 (0.004) 0.341 (0.004)

CDR3 length (nt) -0.045 (0.004) -0.001 (0.004)

No N additions 1.679 (0.017) 1.673 (0.017)

No D-segment 1.118 (0.039) 0.796 (0.016)
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Supplementary Figure S3.1 – Supplemental to Figure 3.1. A. Enrichment of relative CDR3
amino acid values as a function of their proportion among sequences with incidence 1 (log-scaled).
Enrichment is calculated by dividing the relative usage among sequences with incidence 1 by the
relative usage among sequences with incidence > 1. Each colour represents a different individual,
matching the colours in the main text figures. The positive slopes of the linear regression lines
indicate that common amino acids tend to be enriched in abundant sequences. B. The mean
proportion of glycine residues among the centre 5 amino acids of the CDR3 from TCRβ sequences
with incidence 1 or higher. The solid lines and closed symbols are based on all productive sequences,
the dashed lines with open symbols show results after removing sequences that were also present
in the corresponding sample(s) of memory T cells.
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Supplementary Figure S3.2 – Supplemental to Figure 3.2. A. Comparison between inferred and
true lengths of D segments in an in silico repertoire of 107 productive rearrangements generated
using IGoR (Marcou et al., 2018), like in Figure 3.2B. Sequences are split based on presence (left) or
absence (right) of detectable N additions. The proportion of true D-segment lengths is plotted as a
function of the inferred D-segment length, which is the maximum region in the non-V/J encoded part
of the CDR3 nucleotide sequence matching any D-allele. The bar graph segments are coloured by
true D-segment length, with inserted numbers indicating identical true and inferred values. The red
bars show the true fraction of rearrangements without a D segment (i.e., having a D-segment length
of 0 nucleotides), as a function of the inferred D-segment length. Note that there are no sequences
with N additions and an inferred D-segment length of 0 nucleotides, as at least one N addition
would be counted as derived from the D segment. B.Mean inferred D-segment length as a function
of incidence in the memory repertoires of young individuals (colours matching Figure 3.11). C.
Fraction of sequences with an inferred D-segment length of 0 nucleotides as a function of incidence
among memory samples. D. Fraction of sequences with an inferred D-segment length of 2 or fewer
nucleotides, most of which likely representing rearrangements without a D segment. E. Population-
based estimate on the fraction of sequences without a D segment. The expected value is shown
with closed symbols, the vertical bars indicate the confidence range (standard deviation), which is
very small due to the large number of observations.
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Supplementary Figure S3.3 – Supplemental to Figure 3.3. A.Median TCRβ generation probabilities
as a function of the incidence and the inferred D-segment length. B. Inference of the D-segment
length on CDR3 amino acid sequences in the VDJdb, retrieved on 8 January 2021 (Shugay et al., 2017).
Like for nucleotide sequences, we assigned matching CDR3 amino acids to the translated germline
V and J sequences. In the remaining amino acids, we used the maximum match with any of the
reading frames of translated TRBD alleles (Figure 3.2A) as a proxy for the number of D-encoded
amino acids in the CDR3. Shown are the fractions of unique sequences having 0 D-encoded amino
acids among all human TCRβ records (left), and those specific for the viral epitope species with at
least 1000 unique V-CDR3-J combinations (right). P-values are determined with Fisher’s exact test.
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Abstract

T-cell receptor (TCR) repertoire sequencing data provides quantitative insight into the
distribution of T-cell clones. The diversity of the TCR repertoire in humans tends do
decrease with age, which may be a key determinant explaining immune senescence in
older individuals. To address this, we first analyse how the diversity of a potential T-cell
response against an unseen pathogen changes with age. Next, we discuss the complications
with interpreting the outcomes of such an analysis. Specifically, the changes in T-cell
subset sizes confound analyses of TCR diversity, and typical sample sizes do not easily allow
for a robust quantification of this diversity. Thus, explaining immune senescence as a result
of decreasing TCR diversity is far from straightforward and requires a detailed, robust, and
quantitative analysis.

Introduction

The human TCR repertoire has a unique composition that results from thymic production
and selection, as well as exposure to antigens in the periphery. The extreme diversity of
TCR sequences makes comparison of the TCR repertoire between individuals a challenging
task. In addition, the Human Leukocyte Antigens (HLAs) are highly polymorphic in the
human population, implying that a TCR may bind different antigens in other individuals.
A measure that summarises the entirety of a TCR repertoire is its diversity. In ecological
studies, diversity is often measured considering the richness, which is defined as the
total number of species in a system, and the evenness, which quantifies to which extent
these species differ among each other in frequency (Chao et al., 2020). In a TCR repertoire
context, the species are the distinct TCR sequences, and their diversity can be estimated
using high-throughput TCR sequencing.

The generation of new T-cell clones decreases with age, to an extent that naive T-cell
production by the thymus is diminished (Westera et al., 2015) or even absent (Thome et al.,
2016) in older individuals. This decreasing source of new diversity may lead to reduced
T-cell immunity since TCR diversity is a key feature of a functional T-cell pool. The scenario
that the TCR repertoire lacks T-cells that are specific for a given foreign antigen has been
described as ‘holes in the repertoire’ (Yager et al., 2008). Such an absence of required T-cell
specificities may be the result of reduced TCR richness, illustrating the need for accurate
estimates of this richness. Here we present an intuitive analysis in which we estimate
how many T-cell clones would be recruited against an unseen pathogen. This case study
provides quantitative insights into the potential losses of responses with age, but also
highlights key caveats of such an analysis. We discuss important challenges of estimating
TCR diversity based on sequencing data of sampled T cells. These insights will help to refine
future experiments and analyses to better compare the TCR diversity between sampled
repertoires.
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Results and Discussion

The estimated richness of a putative response and the total repertoire

decreases with age

A reduced TCR repertoire diversity, leading to a failure to mount a T-cell response, should
be reflected in a strongly reduced number of TCR sequences specific for a given pathogen.
We tested this by using the VDJdb, which is a database that lists TCR sequences that are
found to be specific for certain epitopes (Shugay et al., 2017). We checked the occurrence of
such sequences specific for a particular pathogen across a large cohort of individuals up to
an age of about 70 years (Emerson et al., 2017). Since the vast majority of the population in
Western countries is HIV-negative, HIV-1 will be an unseen pathogen to most individuals
in this dataset. So, the number of TCRβ sequences specific for an HIV-1 epitope serves as a
proxy for a putative T-cell response against a pathogen without previous exposure. This is
important, as both the VDJdb and the TCR repertoires in this dataset will be enriched for
specificities towards common pathogens. We counted the number of matches between the
HIV-1 entries in the VDJdb and the TCRβ repertoires that were size-normalised to exclude
heterogeneous sample sizes as a confounding factor (see Methods). Interestingly, although
the data only covers a tiny portion of each total T-cell repertoire, we found such sequences
in all individuals, across the entire age range (Figure 4.1A).
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1Figure 4.1 – The richness of unsorted T-cell repertoires tends to decrease with age and CMV.

A. Total number of distinct TCRβ nucleotide sequences from (Emerson et al., 2017) that match the
VDJdb (Shugay et al., 2017) as being specific for an HIV-1 epitope in CMV-positive (red boxes) and
CMV-negative (blue circles) individuals. TCRβ sequences are counted as a match with the database if
their CDR3 amino acid sequence as well as their V- and J-gene families are identical. Differences
in sample size are normalised for by randomly sampling a 100 000 templates from each complete
sample (see Methods). B. Total number of distinct TCRβ nucleotide sequences among 100 000
unsorted T cells. Linear regression lines are shown for CMV-positive (red) and CMV-negative (blue)
individuals.



4

74 | Chapter 4
The richness of the putative HIV-1 response varies considerably between donors, even of

the same age. This reflects a large individual heterogeneity, for example due to different HLA
compositions within the cohort. A linear regression analysis, with age as the independent
variable, showed that the number of putative HIV-1-responsive clones tends to decline,
both with age and CMV-infection (Figure 4.1A). This implies that the number of responding
clones tends to decrease with age, and that at an age of 60 years about a quarter of the
diversity found in children is lost. The data also suggest that CMV-infection reduces the
number of HIV-1-responsive clones, probably due to the repertoire being skewed towards
a limited number of expanded CMV-specific T-cell clones. Note that the TCRα chain was
not sequenced but also determines the TCR specificity, and that being reported as binding
to epitopes may be restricted to HLA alleles that are absent in many donors. Our analysis
thus does not exactly quantify the T-cell response against HIV-1 epitopes. However, the
decrease in reported TCR hits is expected to reflect an actual decrease in richness of the
T-cell response against an unseen pathogen. To place these pathogen-specific results into
a more general context, we also quantified the overall changes in repertoire richness with
age. In line with previous studies (Britanova et al., 2014; Krishna et al., 2020; Qi et al., 2014;
Yoshida et al., 2017), we found a moderate decline in richness per normalised number of
sequences with both age and CMV-infection (Figure 4.1B).
TCR repertoires are dominated by naive T cells in young and bymemory T cells

in older individuals

Importantly, the TCRβ dataset we used consists of sequences that were observed in a
peripheral blood sample, that was not sorted to only contain a specific T-cell subpopulation.
Naive T-cell frequencies are a major determinant of TCR repertoire richness because
encounter with antigen leads to proliferation, and the resulting effector and/or memory
clones will mostly persist at a higher frequency than the initial frequency of the naive T-cell
clone. It is important to make a distinction between the number of naive T cells per unit
of blood, and the percentage of naive T cells among other subsets. For example, when the
memory compartment grows with age, the naive T-cell diversity does not have to decrease
if its total pool size remains stable, while the percentage of naive T cells would decrease. In
line with this, Wertheimer et al. reported that the percentage of naive T-cells decreases
significantly with age, while the absolute number of naive CD4 T cells per µl of blood is
rather similar between young and older individuals, if they are CMV-negative (Wertheimer
et al., 2014).

We consulted various studies reporting the number of naive T cells per volume of blood
to estimate how the naive T-cell pool size changes with age (Figure 4.2A). The reported
counts vary widely between individuals and different studies. Part of this variation may be
explained by the different markers that are used to sort the naive sub-population from blood,
some being more stringent than others. The studies mostly agree on the observation that
naive CD8 T-cell numbers in blood decrease strongly with age (Figure 4.2A; right), implying
that the total number of naive CD8 T cells is much smaller in older than in young individuals.
However, some of the naive CD8 T cells may have undergone phenotypic changes without



4

Comparing TCR diversity between sampled repertoires | 75

having responded to foreign antigen, for example becoming virtual memory cells. The
effects of age on the naive CD4 T-cell numbers in blood are less pronounced (Figure 4.2A;
left), suggesting that the absolute size of the naive CD4 T-cell pool does not change
dramatically with age, while the relative frequency of naive CD4 T cells may decrease
substantially.

To assess to which extent the observed changes in richness as described above may
reflect relative changes in subset sizes, we defined a simple subset classifier. We split each
TCR repertoire into a putative naive and effector/memory fraction (see Methods). We
again plotted the size-normalised richness of each repertoire, like in Figure 4.1B, but now
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1Figure 4.2 – The observed T-cell diversity largely depends on the relative frequency of naive

T cells. A. Estimated number of naive CD4 and CD8 T cells per µl of blood as reported in three
studies. Solid lines show the results of a regression analysis (Wertheimer et al., 2014), the dashed
line indicates the median values of a young and aged age group (Westera et al., 2015), and the dotted
lines connect the median values per age group, with the error bars indicating the reported standard
deviation (Chidrawar et al., 2009). B. Size-normalised richness (similar to Figure 4.1B) after splitting
the TCRβ repertoires into a ‘naive’ and ‘effector/memory’ fraction (see Methods). Linear regression
lines are shown for CMV-positive (red) and CMV-negative (blue) individuals.



4

76 | Chapter 4
separately for the two inferred subpopulations (Figure 4.2B). The absence of a decrease
in TCR repertoire richness in both compartments suggests that the diversity of each
subpopulation may be rather stable with age. Although the separation between naive and
effector/memory will be far from perfect with this approach, it reveals a key determinant of
any TCR diversity analysis. By a relative increase of expanded subpopulations, the richness
of an unsorted repertoire will decrease, while the richness of the individual subpopulations
can remain stable. This means that it is crucial to analyse such subpopulations separately
to allow for conclusions on diversity loss within for example the naive T-cell compartment.
The total richness of the naive T cell repertoire can only be estimated by

combining multiple subsamples

To assess the changes in naive TCR repertoire richness with age we re-analysed the TCRβ
sequencing data studied before in (Qi et al., 2014). They estimated the richness of naive
and memory populations from four young (20-35y) and five aged (70-85y) individuals.
Importantly, the cells were split into multiple subsamples before mRNA extraction, enabling
the use of the Chao2 estimator to impute the richness of each total T-cell pool. They
estimated naive TCRβ repertoire richness in the order of 107 to 108, with a two- to fivefold
richness decrease in older healthy donors when compared to the young individuals (Qi
et al., 2014). We revisited this naive T-cell data by performing additional analyses on the
changes with age. First, we estimated the relative contribution of sequence reads by single
cells and used this to impute the distribution of cells from the read counts in each sample
(see Methods). We then plotted the measured and extrapolated richness using rarefaction
curves to account for differences in sampling depth (Figure 4.3). In line with the results in
Figure 4.2B, the TCR richness of a given number of naive T cells is very similar between
the age groups, especially for lower numbers of cells (Figure 4.3A). At a depth of 50 000
cells, which was reached in all subsamples, the maximum richness difference between any
sample pair was only 13% for naive CD8 T cells, and less than 5% for CD4. Although the
curves diverge somewhat more at a higher depth, the observed differences in measured
richness between the age groups remain rather limited.

Since typical samples of T cells only comprise a minor fraction of the entire T-cell
repertoire, it can be useful to extrapolate the richness to the level of the entire T-cell pool.
The non-parametric Chao1 estimator accounts for the unobserved diversity, based on
the number of TCR sequences observed once and twice in a sample (Chao et al., 2009).
For each subsample, the total richness estimate using the Chao1 estimator typically
exceeds the observed richness by orders of magnitude (Figure 4.3B). Notably, although
multiple estimates of the naive TCR repertoire richness in a single individual can be quite
heterogeneous, the estimated TCR richness is clearly distinct between both age groups. In
addition, the rarefaction curves are mostly flat at the highest sampling depth, suggesting
that the richness estimate is quite robust. We also integrated the information from multiple
subsamples using the Chao2 estimator (Figure 4.3C). The Chao2 estimates are based on
occurrence in one or multiple samples rather than on the abundance in an individual sample
(Chao et al., 2009). The estimates did not saturate completely at the current sampling depth
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1Figure 4.3 –Naive TCRβ richness in young and aged individuals as a function of sample size and

number. A-C. Rarefaction curves for the observed TCRβ richness (A) and estimated total richness
using the Chao1 (B) and Chao2 (C) estimators. Shown are results based on CD4 (left) and CD8
(right) naive T-cell repertoires from young (solid lines) and aged individuals (dashed lines). The
colours indicate individual donors, and the horizontal axis depicts the inferred number of cells (see
Methods). The rarefaction curve of the Chao2 estimator runs until the sampling depth of the smallest
subsample of each individual. D. Estimated total TCRβ richness using the Chao2 estimator based on
50 000 inferred ‘cells’ from all (5) or a subset of the subsamples. Shown are the loess regression
lines with colours and line style as in A-C, with the symbols showing individual Chao2 estimates for
repertoires of young (circles) and aged (triangles) individuals.



4

78 | Chapter 4
but were clearly distinct between the age groups, in line with the previous analyses (Qi et al.,
2014). In comparison with the Chao1 estimates, we arrived at much higher estimates for
the total repertoire richness using the Chao2 estimator. This may indicate that the inferred
cell abundance in individual samples is far from perfect, casting doubt on the accuracy of
the Chao1 estimates in Figure 4.3B. The total richness predicted using the Chao2 estimator
appeared surprisingly consistent when based on a subset of the subsamples at a given
sampling depth (Figure 4.3D). So, the estimated richness based on multiple subsamples
allows to discriminate between the naive TCR repertoires of young and aged individuals,
even at a very limited coverage of the entire TCR diversity.
Towards a robust comparison of diversity between sampled TCR repertoires

Here we analysed the observed and extrapolated richness of multiple existing TCR repertoire
sequencing datasets. While identifying ‘holes in the repertoire’ using TCR sequencing
may be an attractive idea, the extremely limited coverage of typical samples weakens the
outcomes of such an analysis. While estimating the richness of specific T-cell responses
is problematic, even estimating the total richness of a diverse T-cell repertoire appears
far from straightforward. Differences in richness and evenness may reflect differences
in subset frequency rather than true differences in richness within a given T-cell pool.
Addressing the changes in diversity during healthy ageing requires sequencing the TCR
repertoire of multiple samples from sorted T-cell populations. It remains to be determined
to which extent the observed or estimated TCR diversity can functionally explain or predict
clinical outcomes in health and disease. This report illustrates that careful experiments
and analyses are necessary to obtain robust signals from sampled immune repertoires.

Methods

TCRβ sequencing data

The processed TCRβ repertoires that were used for the analysis presented in Figure 4.1
and Figure 4.2, originally published in (Emerson et al., 2017), were downloaded from the
Adaptive Biotechnologies website. We only used the repertoires of donors with a known
age and CMV-infection status, for which ‘counting method v2’ was applied. To eliminate
the heterogeneity in sample size in Figure 4.1, we used the 482 repertoires with a template
count of at least 100 000, and down-sampled these without replacement to contain 100 000
templates. The TCR richness was quantified in these size-normalised repertoires, based
on the combination of the identified V-gene, J-gene, and CDR3 nucleotide sequence. The
dataset that was used for the analysis presented in Figure 4.3, originally published in (Qi et al.,
2014), was obtained from dbGaP found at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
bin/study.cgi?study_id=phs000787.v1.p1 through dbGaP study accession number
PRJNA258304. These data (project “Immunosenescence: Immunity in the Young and
Aged”) were provided by Jorg Goronzy on behalf of his collaborators at PAVIR and Stanford
University. In this study, five replicates with each 106 cells per aliquot of naive and memory
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CD4 T cells were collected. For CD8 T cells, 0.25 × 106 T cells were collected per replicate,
except for the naive CD8 T cells from young individuals, from which 106 cells per aliquot
were used for sequencing. The sequencing data was processed using RTCR (Gerritsen et al.,
2016) as described before (de Greef and de Boer, 2021).
Inference of a T-cell response against an unseen pathogen

The VDJdb (Shugay et al., 2017) was downloaded from https://vdjdb.cdr3.net on 15 December
2022, by selecting human TRB sequences that were found to be specific for epitopes derived
from HIV-1, with a confidence score of at least 1. When matching the size-normalised
sequencing data with this database, we required the translated CDR3 sequence, as well as
the V- and J-gene families to be identical.
Reported naive T-cell counts

We searched the literature for studies reporting naive CD4 and CD8 T-cell counts as a
function of age. We only selected studies in which individuals were stratified by CMV-status.
We used the regression formulas presented in Table S1 in (Wertheimer et al., 2014), the
median ages and T-cell counts for both age groups reported in Tables 1 and 2 in (Westera
et al., 2015), and the median T-cell counts plus standard deviation for the age groups
reported in Tables 2 and 3 in (Chidrawar et al., 2009).
Computational classification of total TCR repertoires into naive and

effector/memory subpopulations

The dataset reported in (Emerson et al., 2017) is based on unsorted T-cell repertoires. To
address the potential changes in richness for the underlying T-cell subpopulations, we
performed a TCR sequences by subset. We separated TCR sequences that are expected
to be derived from naive T cells from those that were expected to be derived from
effector/memory T cells. Specifically, we assumed the percentage of naive T cells in these
samples to decrease from 90% at birth to 50% at 20 years of age (2 percent point decrease
per year), and a further decrease of 0.25 percent point per year. We used the same selection
criteria described above and inferred the total number of naive and effector/memory T cells
in these samples. For the 420 TCR repertoires in which both numbers exceeded 100 000
cells (which in total thus contained at least 200 000 cells), we sorted the TCR repertoire
by TCR sequence frequency. The least abundant sequences were classified as naive, until
their relative frequency was equal to the estimated fraction of naive T cells. The remaining,
more abundant, sequences were classified as being derived from effector/memory cells.
Both fractions were down-sampled without replacement to a template count of 100 000
to eliminate the heterogeneity in sample size. The richness of each down-sampled TCR
repertoire is shown in Figure 4.2B.
Inference of T-cell distributions frommRNA-based read distributions

The sequencing data obtained in (Qi et al., 2014) is based on PCR-amplified TCRβ mRNA
transcripts from samples containing variable numbers of cells. The TCR frequencies in
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the data will thus be affected by differences in cell count, TCRβ expression level and
amplification efficiency. These factors may influence the estimated richness in each of the
samples, complicating reliable comparison between samples. To reduce the effect of these
factors we inferred a distribution of cells from the distribution of reads in each sample. We
reasoned that the majority of the TCR sequences observed in only one subsample will be
derived from a single T cell. This allowed us to infer the distribution of how many reads
are contributed by each single cell, for each subsample individually. Importantly, this
distribution only describes the cells that contributed any TCR read, since cells without
any contribution remain unnoticed. Using the average of the inferred number of reads
that was derived from each contributing cell, we estimated how many cells contributed all
reads together in each sample. Reassuringly, the subsamples containing naive CD8 T cells
from aged individuals, that were known to contain fewer cells than the other samples, also
contained fewer cells according to our TCR repertoire-driven estimate. We then assigned
TCR sequences that were supported by a single read to single cells, since these reads cannot
be contributed by multiple cells. The remaining TCR sequences were then assigned to
inferred ‘cells’ based on the estimated read-contribution distribution, starting from the
TCR sequence supported by the largest number of reads. This resulted in a table of TCR
sequences, each supported by an inferred number of cells that was smaller than or equal to
the observed number of reads supporting that TCR sequence (see example table below). The
analyses presented in Figure 4.3 are based on these inferred distributions of cells instead
of the potentially more biased frequency of reads. Rarefaction curves were obtained by
sampling without replacement from these inferred TCR repertoires.

TCRβ sequence Observed number of reads Inferred number of ‘cells’

V J CDR3 Subsample 1 . . . Subsample 5 Subsample 1 . . . Subsample 5

7-9 2-7 TGTGCCA. . .GTACTTC 0 . . . 20 0 . . . 2

7-9 2-3 TGTGCCA. . .GTATTTT 10 . . . 7 1 . . . 1

20-1 2-7 TGCTGTA. . .GTACTTC 0 . . . 2 0 . . . 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

20-1 2-7 TGCGGTG. . .GTACTTC 1 . . . 0 1 . . . 0

9 1-1 TGTGCCA. . . TTTCTTT 38 . . . 25 5 . . . 3

7-9 2-3 TGTGCCA. . .GTATTTT 0 . . . 20 0 . . . 3
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Abstract

T cells recognise pathogens by their highly specific T-cell receptor (TCR), which can
bind small fragments of an antigen presented on the Major Histocompatibility Complex
(MHC). Antigens that are provided through vaccination cause specific T cells to respond by
expanding and forming specific memory to combat a future infection. Quantification of
this T-cell response could improve vaccine monitoring or identify individuals with reduced
ability to respond to a vaccination. In this proof-of-concept study we use longitudinal
sequencing of the TCRβ repertoire to quantify the response in the CD4 memory T-cell
pool upon pneumococcal conjugate vaccination. This comes with several challenges owing
to the enormous size and diversity of the T-cell pool, the limited frequency of vaccine-
specific TCRs in the total repertoire, and the variation in sample size and quality. We
defined quantitative requirements to classify T-cell expansions and identified critical
parameters that aid in reliable analysis of the data. In the context of pneumococcal conjugate
vaccination, we were able to detect robust T-cell expansions in a minority of the donors,
which suggests that the T-cell response against the conjugate in the pneumococcal vaccine
is small and/or very broad. These results indicate that there is still a long way to go
before TCR sequencing can be reliably used as a personal biomarker for vaccine-induced
protection. Nevertheless, this study highlights the importance of having multiple samples
containing sufficient T-cell numbers, which will support future studies that characterise
T-cell responses using longitudinal TCR sequencing.

Introduction

Vaccination has proven to be a safe and effective method for immunisation, limiting
the spread of numerous infectious diseases. Exposure of a pathogen or its subunits
to the adaptive immune system provides immunity that can potentially last a lifetime.
Neutralising antibody titres typically serve as a correlate of protection in an individual
(Katzelnick et al., 2016; Khoury et al., 2021; Tsang et al., 2014) but do not cover the immunity
provided by T cells, which is often crucial to prevent infection (Pizzolla et al., 2017; Wilkinson
et al., 2012). Quantitative characterisation of the T-cell response induced by vaccination
thus has the potential to provide an important additional measure of protection in an
individual (Fink, 2019). T cells recognise antigens by their highly specific T-cell receptor
(TCR) presented as peptides on the Major Histocompatibility Complex (pMHC). Activation
through the TCR is followed by clonal expansion and maintenance at increased frequencies
as memory T cells, resulting in an enhanced immune response at a next encounter with
a similar pathogen. In the context of vaccination, providing an antigen induces a T-cell
response. The TCR repertoire dynamics reflecting this response can be followed using
high-throughput TCR repertoire sequencing (Dykema et al., 2022; Fink, 2019; Miyasaka
et al., 2019; Pogorelyy et al., 2018; Sycheva et al., 2018).

Previous studies have used TCR repertoire sequencing to characterise the T-cell
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response after yellow fever vaccination (YFV) (DeWitt et al., 2015; Pogorelyy et al.,
2018). This live-attenuated virus vaccine induces a large CD8+ T-cell response, which
could be quantified by measuring T-cell expansion and contraction after vaccination by
longitudinally sequencing the TCR repertoire. This allowed the identification of YFV-
specific TCR sequences, which occupied up to 8% of the total CD8+ T-cell repertoire two
weeks after vaccination (Pogorelyy et al., 2018). Other vaccine-induced T-cell responses
have been characterised by sequencing the TCR repertoire of cells that were sorted for
binding known influenza epitopes (Dash et al., 2017; Glanville et al., 2017). For many other
vaccines, however, the epitopes that induce a T-cell response remain unknown. In those
cases, following vaccine-specific T-cell clones requires characterisation of the total TCR
repertoire. It remains to be determined whether or not TCR sequencing of the overall T-cell
repertoire can serve as a suitable biomarker to quantify T-cell responses induced by such
vaccinations.

In the present proof-of-concept study we aimed to identify specific expansion of T-cell
clones in the CD4 memory T-cell pool after pneumococcal vaccination. Although this
vaccine mainly induces pneumococcal serotype-specific antibodies, T cells are activated by
the CRM197 conjugate, a carrier protein which is a non-toxic mutant of diphtheria toxin.
The activated CD4 T cells provide additional help to B cells to produce specific antibodies
(Sterrett et al., 2020). As CRM197 is also the main antigen of the diphtheria vaccine given
in early childhood, the vaccine is anticipated to boost existing T-cell memory. However,
the height of the T-cell response may be lower compared to the T-cell response against
YFV and immunodominant epitopes are less well described. We performed longitudinal
TCR sequencing of the CD4 memory T-cell pool before and after pneumococcal conjugate
vaccination. By taking replicate samples we defined quantitative requirements to classify
expansions and we identified critical parameters that aid in reliable analysis of the data.
The absence of detected robust T-cell expansions in many of the vaccinated individuals
illustrates the challenges of using TCR sequencing to quantify specific T-cell responses
after vaccination. We conclude that the T-cell response induced by the conjugate in the
pneumococcal vaccine is often too small or too diverse to allow for reliable quantification
using TCR sequencing. Finally, our analysis identified specific requirements for monitoring
T-cell responses using longitudinal TCR sequence data.

Results

Study design

We tested the application of TCRβ sequencing using samples from a human cohort that was
part of a vaccination study with Prevanar 13, a conjugated vaccine targeting 13 pneumococcal
strains. Blood samples were taken from 13 adult individuals before vaccination (day 0) and
at day 7, day 28, and between 4 to 8 months after vaccination (Table S5.1, Figure 5.1A). The
antibody response was quantified by measuring diphtheria-specific IgG antibodies, which
showed a clear response in 10 out of 13 individuals (Figure 5.1B). Typically, they showed IgG
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1Figure 5.1 – Study overview and measured antibody response. A. Schematic overview of the
vaccination and sampling time course. Individuals were vaccinated at day 0, blood samples were
drawn before vaccination (day 0) and at three follow-up time points. B.Quantification of the antibody
response to the diphtheria toxin. Values above 0.1 IU/ml are considered protective. Solid lines
indicate older individuals (over 65 years of age).

levels that were considered protective already before vaccination, which increased about
an order of magnitude at day 7 and/or day 28.
The T-cell response can be characterised using longitudinal TCR repertoire

sequencing

The presence of a clear antibody response after vaccination in most individuals suggests
effective T-cell help, most likely provided by CD4 memory T cells. We characterised
this T-cell response by isolating and combining three subsets of CD4 memory T cells
(CD27+CD45RO+, CD27-CD45RO+, and CD27-CD45RO-). The cells were split in two
portions, yielding sorted populations containing in the order of 105 CD4 memory T cells
per subsample, per time point per individual (Figure S5.1A). mRNA was extracted from the
cells in each sample for TCRβ cDNA library preparation (see Methods). The libraries were
barcoded with Unique Molecular Identifiers (UMIs) to overcome biases in PCR amplification
and to allow for error correction of the sequence reads.

Without prior knowledge which TCRs are induced by the conjugate of the pneumococcal
vaccine, we relied on detection of expansion of TCRβ chains upon vaccination. One would
expect the frequency of specific TCRβs to have increased at day 7 and/or 28 with respect to
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1Figure 5.2 – Classification of expansion between time points for TCRβ repertoires of example

donor 292. A. Relative frequency of TCRβ sequences found at day 0 and/or day 28 in samples taken
from donor 292. Sequences observed at only one of the two time points are plotted as open symbols,
at half the frequency corresponding to a single UMI in the sample they were not present. The dashed
line is the diagonal, representing equal frequencies between both samples. B. Fold-change in TCRβ
frequencies at day 28 versus day 0. The dashed line indicates a general fold-change threshold
of 32x, as was used in (Pogorelyy et al., 2018). C. Fold-change in TCRβ frequencies between the
two replicate samples taken at day 0 from donor 292. The dashed line represents the combined
threshold for quantification of expansion (see Methods). Red dots represent sequences that meet
both requirements to be classified as expanded. In this case, comparing two samples from the same
TCR repertoire, only a single sequence was classified as expanded (false-positive). D-F. Similar to C,
but now quantifying the fold-change between different time points. Replicate samples from each
time point are joined, after which expansion at day 7 (D), day 28 (E), and month 4-8 (F) is quantified
versus day 0.

the pre-vaccination sample and potentially to be lower in the samples of the last time point.
We thus measured the frequency of TCRβ sequences post-vaccination and compared these
to the corresponding pre-vaccination frequencies (Figure 5.2A). TCRβ frequencies appeared
highly correlated between time points, confirming the persistence of many T-cell clones at
similar frequency during the study period. We quantified the fold-change of each observed
TCRβ sequence between pre-vaccination and post-vaccination time points, revealing the
highest fold changes for the least abundant sequences (Figure 5.2B). Naturally these small
clones give the strongest signal, as the fold-change results from dividing by a small pre-
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vaccination frequency. As a result, applying a general fold-change threshold to classify TCR
sequences as being expanded would focus the analysis on those sequences of which the
dynamics are estimated with the highest uncertainty (red points in Figure 5.2B). A similar
pattern even occurs when comparing two replicates from the same time point (Figure 5.2C),
although these are samples containing cells from the exact same TCR repertoire.

As an alternative to a generic fold-change threshold, we used the many replicates within
our dataset to estimate the effects of sampling noise during the generation, sequencing,
and annotation of the TCRβ libraries (see Methods). We identified two requirements that
together identify expanded TCRβs in our dataset: (1) a fold-change of at least 1.5, and
(2) an absolute TCRβ-UMI count exceeding the relative pre-vaccination frequency by at
least 30 UMIs. These thresholds were calibrated by balancing specificity, removing false-
positive ‘expansions’ between samples from the same time point, and sensitivity, to allow
for detection of expanded clones between time points (Figure S5.2). The combination
of these requirements provides a fold-change threshold that is dependent on the pre-
vaccination frequency and the sizes of the samples that are being compared. We classified
few false-positive ‘expansions’ between samples from the same time point (red point
in Figure 5.2C), and a variable number of expanded TCRβs at the three post-vaccination
time points (Figure 5.2D-F). To reduce the number of comparisons, while increasing the
size of the samples being compared, we pooled replicates from the same time point when
classifying expansion between time points before and after vaccination.
Most repertoires allow for detection of few TCRβs that expand upon

vaccination

We quantified TCRβ expansion after vaccination in each donor by applying the
two requirements defined above when making pairwise comparisons between TCRβ

frequencies at pre-vaccination and the corresponding post-vaccination time points. In
donor 203, for which we retrieved the largest number of TCRβ sequences (Figure S5.1B),
this allowed us to identify > 100 TCRβ sequences that expanded at day 7 and/or day 28
after vaccination (Figure 5.3A). These sequences together increased from about 5% of the
repertoire to over 13% at the peak (day 7), followed by a decline to about 8% of the CD4
memory pool by day 28 and month 4-8 after vaccination (Figure 5.3B – blue dashed line).
The expansion of these sequences was reflected by a decrease in the size-normalised TCRβ
diversity in the samples at day 7 post vaccination (blue dashed lines in Figure S5.3D-F).
Strikingly, there was only little overlap between the TCRβs classified as expanded at day 7
and at day 28. In addition, while showing the largest number of expanded TCRβ sequences,
donor 203 did not show a Diphtheria-specific IgG response after vaccination (blue dashed
line in Figure 5.1B). These two observations together raise the question whether the detected
expansions in this donor truly reflect the dynamics of a T-cell response induced by the
vaccine. As we rely on the dynamics of the overall CD4 memory T-cell repertoire, we cannot
exclude the possibility that these expansions may have been caused by other ongoing
immune responses. A potential scenario is a response against CMV, as this donor turned out
the one of the two CMV-positive individuals in our study (Table S5.1). Thus, although our
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findings suggest that longitudinal TCRβ sequencing can be used to detect T-cell clones that
change in abundance after vaccination, they are not guaranteed to be specifically activated
by the vaccine.

When investigating the smaller samples of the other donors we were unable to detect
responses of a similar magnitude as in donor 203 using the same classification method.
In all but one donor we detected TCRβ expansions at day 7 and/or day 28, although the
expansions were again rarely detected at consecutive time points (Figure 5.3A). Donors
1 and 311 showed the largest number of expanded TCRβ sequences at day 7, while most
expansions for donors 17 and 292 were detected at day 28 post vaccination. Our study did
not involve TCRβ sequencing of individuals that did not receive the vaccination, which
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would have allowed us to estimate how many of the observed expansions are induced by
the vaccination. To still validate our findings to some extent, we performed a permutation
analysis by switching the order of the time points in each comparison. The number of
expanded TCRβs often did not exceed the number of ‘expansions’ after permutation,
which in fact reflect contractions of a similar magnitude, for example by non-specific
dilution (Figure 5.3A - grey bars). This indicates that many of the detected expansions
may have occurred independently of the vaccination. The total proportion of expanded
TCRβs varied considerably between individuals, mostly owing to the different number
of detected expansions for each donor (Figure 5.3B). The largest contraction of expanded
TCRβs happened between day 7 and day 28 post-vaccination in most individuals, most
clearly pronounced in donors 1 and 203. Notably, detecting TCRβ expansions by making
comparisons between individual replicates of different time points yielded similar numbers
of expanded TCRβ sequences (Figure S5.4A). Thus, in most donors we only detected a
few TCRβs that expanded upon vaccination at a single time point when compared to their
pre-vaccination frequency.
The sample size dominates the number of detected TCRβ expansions

The large differences that we observed in the number of expanded TCRβs between donor 203
and the other donors could be caused by a biological effect, but also by technical variation,
e.g., the number of identified TCRβ sequences. In order to distinguish between biological
variation regarding the vaccination response in different donors, and sources of technical
variation between samples, we computationally down-sampled the TCR repertoires from
donor 203 to the sample sizes of the corresponding samples from the other donors. In
each of these down-sampled sets we could still detect expansions, but the number of
identified TCRβ expansions was at least a 5-fold lower for each down-sampled repertoire
(Figure S5.4B). This emphasises that the total number of identified TCRβ sequences
is a critical parameter for longitudinal characterisation of T-cell dynamics and a large
determinant for the ability to detect expansions. This analysis also suggests that we could
have identified even more TCRβ expansions in the other donors than in donor 203, if their
sample sizes would have been as large as those of donor 203 (Figure S5.4B).

While the analysis so far focused on the identification of individual TCRβ sequences
that expand upon vaccination, we also checked if we could detect more general signatures of
TCR repertoire dynamics after vaccination. We quantified the changes in overall diversity of
the TCRβ repertoire using various estimates (see Methods). The overall repertoire diversity
varied considerably, but not consistently, between donors and time points (Figure S5.3A-C).
Since the diversity measures are strongly affected by the sample size, we also normalised the
estimates by down-sampling each repertoire to the same number of UMIs (Figure S5.33D-
F). Even after size-normalisation, we observed increases as well as decreases in TCRβ upon
vaccination. So, although the expansion of specific TCRβ sequences could be reflected in
a decreased diversity after vaccination, we did not detect such dynamics consistently in
most the donors. An alternative scenario that has been proposed is that the recruitment of
(naive) vaccine-specific clones could increase the estimated diversity (Miyasaka et al., 2019),



5

Using TCR sequencing to follow the vaccination response | 89

perhaps reducing our ability to detect consistent diversity dynamics between vaccinated
individuals.

Another approach to follow the dynamics of many T-cell clones together is by
quantifying the changes in TCRβ V-gene usage. The observation that TRBV usage varies
considerably between samples, both from the same and from different time points
(Figure S5.5) confirms that sampling effects have a profound effect on TCRβ frequencies,
partly masking clonal dynamics that allow for quantification of the T-cell response induced
by vaccination. Together, these results identify the size of T-cell samples as a key factor
that determines to which extent T-cell responses can be quantified and compared using
TCR sequencing.

Discussion

In this proof-of-concept study, we applied longitudinal TCRβ sequencing on CD4 memory T
cells from individuals before and after pneumococcal conjugate vaccination. We developed
specific criteria to classify clonal expansions from longitudinal TCR sequencing data, aiming
to discriminate between biological and technical variation in the results. Doing so, we
identified some TCRβs that expanded after vaccination, although these were mostly limited
to a few individuals and a single time point. The absence of detectable and persistent T-cell
expansions in most individuals illustrates the complications of longitudinal TCR sequencing
when there is a small and/or diverse T-cell response. The sample size appears a crucial
factor for detection of TCRβ expansion in the overall T-cell repertoire. An overview of
critical technical requirements for a robust longitudinal TCRβ repertoire characterisation
are detailed in Box 1.

The complications with detecting considerable T-cell expansions upon pneumococcal
conjugate vaccination does not indicate absence of a substantial T-cell response, or lack
of a protective effect of vaccination. Firstly, the total size of the T-cell response in these
donors is unknown and may well be below the 1% range, meaning that all vaccine-specific
sequences together are still relatively rare and not easily distinguishable from all sequences
with different specificities. Secondly, the total response is expected to be composed of many
individual TCRαβ clonotypes with different TCRβ sequences. Many of their frequencies will
fall below our limit of detection (Figure 5.4B) especially when we track cells at the level of
individual TCRβ sequences. Moreover, even when TCRβ sequences are present at multiple
time points, their dynamics cannot always be distinguished from noise. Thirdly, it remains
to be determined whether the size and/or diversity of the T-cell response correlates with
protection against infection. The sharp increase in Diphtheria-specific IgG antibodies
indicates a substantial response upon vaccination, while the size and breadth of the T-cell
response currently remains an open question as a functional characterisation of the T-cell
response was not included in this study.
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Box 1: Challenges of following a T-cell response with TCR sequencing

Its enormous diversity is one of the key features of the TCR repertoire, but also poses a majorchallenge to measure T-cell responses using longitudinal TCRβ sequencing. Without a prioriknowledge about which TCRs are antigen-specific, the responders must be distinguishedfrom the T-cell clones with different specificities, just based on the changes in theirabundance. Thus, a sufficient increase in frequency is required to identify the potentiallymany TCRβ chains that are expressed by the antigen-specific cells mounting the T-cellresponse. For each involved T-cell clone, this requires: (1) an abundance in the repertoirethat is sufficient to be present in the sample, (2) a TCR sequencing protocol that is sensitiveenough to detect changes in frequency, and (3) a careful analysis to distinguish betweentechnical variation and true clonal dynamics.
1. Sufficient abundance of cells of interest in the sorted cell populationThere are about 1012 T cells in the human body, so even samples of millions of cells willonly constitute a tiny proportion of the total pool. Combined with the large diversity of theTCR repertoire, this results in limited TCR overlap between samples of naive and memoryT cells, even between replicates of the same time point (Warren et al., 2011). The measuredoverlap correlates strongly with the sequencing depth of the sample, which depends onthe starting number of cells and the sequencing protocol (Figure 5.4A). These observationsfollow from the probability of clonal presence in a sample, which, for small samples, scalesroughly linearly with the sample size. A central question is which proportion of the cells inthe sample are expected to be participating in the response towards the vaccine. A previousstudy estimated the response after yellow fever vaccination (YFV) to comprise 2-8% of thetotal T-cell pool in blood, which is composed of many clones which frequencies differ byseveral orders of magnitude (Pogorelyy et al., 2018). Since most vaccines are expected toinduce a much smaller response than YFV, the frequency of most vaccine-specific TCRβswill be very low, even at the peak of the response. It may thus be useful to enrich the samplefor T cells that participate in the response, to obtain enough signal. In this study, we sortedthe CD4 memory T-cell population because a response was anticipated to occur within thiscell population. Although we were limited by the availability and size of the samples, furtherenrichment may be possible by sorting for activation markers and antigen-specificity usingavailable tetramers when possible. While enrichment for cells with specific characteristicsallows for quantitative estimates of the total T-cell response, the identification of individualclonal T-cell dynamics will become more complicated.
2. Sensitive TCR sequencing protocolsWhen calculating the expected effect size in a sample for a given number of sorted cells,it is important to take the loss of information during the TCR sequencing protocol intoaccount. We estimated that probably less than 10% of the cells contributed one or more mRNAmolecules to the eventual dataset after amplification, sequencing, and processing of the data(Figure S5.6). Moreover, some of the cells perhaps contributed multiple mRNA molecules,each labelled with a separate UMI sequence, adding to the uncertainty of estimating clonalabundance before and after vaccination. The frequencies of TCRβs in the data is distortedby many stochastic processes, including the sampling of cells and mRNA molecules, aswell as the amplification and sequencing of transcripts. We quantified the contribution ofthese factors by comparing replicate samples from the same TCR repertoire, which revealedthat typically a frequency of at least 0.1% of the memory T-cell repertoire is required tobe stably present in multiple samples at our average sequencing depth (Figure 5.4B). Wealso found considerable differences in TCRβ abundance between replicates, requiring us to
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set strict thresholds to discriminate T-cell expansion from technical variation. Note thatsequencing the same TCRβ library twice yielded much more similar results, indicating thatmost uncertainty is introduced before the sequencing (Figure 5.4A - red points). Havingmultiple samples from the same TCR repertoire is essential to estimate the contributionof technical variation to the measured abundances. Specific algorithms exist to model thenoise introduced during TCR sequencing and to discriminate this from true TCR dynamics(Koraichi et al., 2022; Touzel et al., 2020). Another factor to consider is the contributionof uneven PCR amplification. While UMIs are used to factor this out, the UMI-based errorcorrection of the sequences requires multiple reads sharing their UMI. The wide distributionof the number of reads per UMI results from the uneven amplification by PCR and identifiesa sufficient sequencing depth as a key requirement to allow enough sequences to reach thethreshold for error correction (Figure 5.4C).
3. Processing the samples and quantification of expansionDuring the steps outlined above, from reverse transcription, via amplification, to sequencingthe TCRβ libraries, it is inevitable that errors are introduced. As UMIs label cDNAmolecules before amplification, they greatly assist error-correction of the reads. Dedicatedpipelines exist to perform these steps, which can also correct other errors by clusteringof low-quality or nearby sequences (Bolotin et al., 2015; Gerritsen et al., 2016). Theresulting data provides a way to estimate the changes in frequency of each TCRβsequence. Careful interpretation is necessary for the reasons explained above, mainlydistinguishing between real biological effects and the technical variation arising duringthe entire TCR sequencing process. This requires a robust classification of expansion,which is ideally calibrated using on samples from the same and different time points.
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Figure 5.4 – Sample overlap and coverage. A. Fraction of the sample overlapping between
two replicates from the same time point (see Methods). Comparisons between multiple
samples of sorted cells (blue circles) and replicates generated by sequencing the same TCRβ
library twice (red triangles). The open blue circles indicate samples from donor 292, which
have a relatively high overlap due to a low TCRβ diversity (see also Figure S5.3). B. TCRβ
frequency in the largest replicate at which sequences start missing in the smallest replicate
(see Methods). X marks indicate comparisons in which the most abundant TCRβ sequence
did not overlap between both samples. C. Cumulative frequency of the UMI-coverage, plotted
as the fraction of UMIs supported by at least a given number of reads (horizontal axis). The
vertical dashed line indicates a coverage of 3 reads per UMI, which was used as the minimum
support to take a sequence into account in the analysis (see Methods).
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TCR repertoire characterisation is usually done by sequencing of the mRNA coding for

the α- and/or β-chain of the TCR. While single-cell techniques exist to perform paired
sequencing of both TCR chains, their drawback is the limited number of cells that can
currently be profiled. Instead, many studies focus on the TCRβ-chain, for which high-
throughput methods allow characterisation of millions of cells. Our choice to sequence the
bulk TCRβ repertoire instead of paired TCRαβ single-cell sequencing has both advantages
and drawbacks. Doing so, we could characterise the TCR repertoire from many cells per
time point, which is necessary to detect clonal expansion. Although missing information
on the TCRα, a substantial expansion of a TCRαβ clonotype will likely be reflected by an
increased frequency of its TCRβ sequence. More detailed identification of the expanding
TCRs in donor 203 would have required single-cell analysis of many cells. This could have
allowed us to further characterise the expanded clones, for example by their transcriptional
profiles. In addition, the technical variation stemming from the fact that single cells can
contribute multiple mRNA molecules in a bulk analysis is excluded when sequencing the
repertoire at the single-cell level. Currently, however, considering the limited expansion
observed in most bulk repertoires, we do not expect that we could have captured a larger
response using single-cell sequencing, because sample sizes would have been even smaller.

A key challenge remains to distinguish between technical variation and true dynamics
of the TCR repertoire. This discrimination requires a sufficient sample size, which in
turn requires large numbers of input cells and minimisation of information loss during
the TCR-sequencing procedure (see also Box 1). This reduces the relative contribution of
sampling noise and technical biases, which allows setting less strict thresholds to quantify
expansion. The TCR dynamics result from a combination of vaccine-induced expansions
and other ongoing immune responses. Thus, functional assays are crucial to verify the
specificity of the expanded T-cell clones. Such information will also help to interpret the
dynamics functionally, such as the changes in TCR diversity after vaccination. It could be
that the ongoing immune response is not easily detected in blood samples, if the response
mostly occurs in lymphoid organs or specific tissues. The large variation in MHC-genes
across individuals causes immune responses to be mostly private. Still, finding motifs in
vaccine-specific TCR sequences would enable more direct identification of the vaccine-
induced T-cell response (Mudd et al., 2022), perhaps even without the need for data from
consecutive time points.

Some vaccines, like YFV, may elicit large T-cell responses that can be accurately
quantified by longitudinal TCR sequencing. Vaccines that activate fewer T cells, or a wide
diversity of T-cell clones will be much more challenging to characterise with sequencing
of the TCR repertoire. Translating parameters of the T-cell response into a personalised
biomarker of vaccine efficacy involves several other challenges. A first step would be to relate
these to other correlates of protection such as (neutralising) antibody titres. For example,
this may give insight into the importance of the breadth and depth of the T-cell response,
which can be estimated using TCR sequencing. The relevance of such features beyond the
currently known risk factors and serological assays will require extensive clinical studies.
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While currently perhaps not yet feasible, technological advances may enable this in the
future. This study should be considered as one of the first steps on the way to personalised
vaccination strategies that will further protect people at risk from infectious diseases.

Materials and Methods

Study cohort

Samples used in this study were selected from The Vaccines and InfecTious disease in the
Ageing PopuLation (VITAL) cohort (Baarle et al., 2020), which was started in 2019 in the
Netherlands. For this study healthy individuals were recruited who did not use immune-
modulatory drugs and who were not immunocompromised due to a medical condition.
This study was approved by the acknowledged ethical committee METC Noord Holland and
carried out in accordance with the recommendations of Good Clinical Practice with written
informed consent from all subjects, in accordance with the Declaration of Helsinki.
Sample selection

For this study, the samples were selected from the VITAL cohort based on age. We selected
8 donors with an age between 25 and 40 years (young adults), as well as 5 adults that were
over 65 years (older adults). Individuals were vaccinated with the pneumococcal vaccine
Prevenar 13. Blood samples were collected from all individuals at day 0 (before vaccination),
at day 7, at day 28 and between 4 or 8 months post-vaccination (see Table S5.1).
PBMC and serum isolation

Peripheral blood mononuclear cells were obtained by Lymphoprep (Progen) density
gradient centrifugation from heparinised blood, according to the manufacturer’s
instructions. PBMCs were frozen in 90% fetal calf serum and 10% dimethyl sulfoxide
at -135°C until further use. Serum was isolated out of tubes with clot-activation factor
and stored at -80°C until further use. Blood withdrawals were postponed if participants
received other vaccinations or had elevated body temperatures (> 38°C).
Cytomegalovirus (CMV)-specific antibodies

Anti-CMV IgG antibody concentrations were measured by an in-house-developed
multiplex immunoassay (Tcherniaeva et al., 2018). Cut-off values were based on previous
calculations: Individuals with a CMV-specific antibody level of ≤ 4 arbitrary units (RU)/ml
were considered CMV-negative, individuals with an antibody level > 7.5 RU/ml were
considered CMV-positive, and those with a level between 4 and 7.5 RU/ml were considered
inconclusive and hence excluded from further analysis (Samson et al., 2020).
Determination of diphtheria-specific antibody concentrations

Nunc MaxiSorp ELISA plates were coated with 2.5µg/ml diphtheria toxoid (Statens Serum
Institute) and blocked with 0.01M Glycin. Plasma samples were analysed in duplicates.
Bound antibodies were detected with HRP-conjugated secondary Rabbit Anti-Human
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IgG Antibody (Sigma-Aldrich) and TMB one component Substrate Solution (Diarect). IgG
antibodies were quantified in IU/ml using Standard Diphtheria Antitoxin Human Serum
(NIBSC). The detection limit of the assays used was 0.015 IU/ml and antibody concentrations
above 0.1 IU/ml were considered as protective.
Isolation of CD4 memory T cells for TCR repertoire analysis

Approximately 5 million PBMCs were labelled at 4°C for 30 min with the following mAbs mix:
CD8(RPTA-T8)-FITC, CD3(UCHT1)-PerCP, CD4(RPA-T4)-APC/Cyanine7, CD27(O323)-
Brilliant Violet 765, CD45RO(UCHL1)-PE (All Biolegend). After the staining was finished,
samples were split in two portions and sorted separately to obtain duplicates. CD4+ memory
T cells were defined as CD27+CD45RO+, CD27-CD45RO+, and CD27-CD45RO- (thus, all
CD4+ cells, except the naive T cells (CD27+/CD45RO-)) and sorted using a FACS Melody
(BD). CD4+ memory T cells were sorted directly into PBS, spun down and resuspended in
RNA Later (Ambion Inc. Applied Biosystems). Sorted samples were stored at -80°C for
subsequent TCRβ clonotype analysis.
Preparation of TCRβ cDNA libraries for sequencing

mRNA was isolated with the RNA microkit (Qiagen) according to the manufacturer’s
protocol. Isolated mRNA was used in the 5’ RACE-based SMARTer Human TCR a/b Profiling
Kit v2 (Takara Bio USA, Inc.) to perform sequencing of TCRs, following the manufacturer’s
protocol using only the TCRβ-specific primers. Clean-up was performed with AMPURE XP
clean-up beads (BD). The resulting TCRβ libraries were sequenced on an Illumina MiSeq
(paired-end 2x300nt). The reproducibility of the sequencing was analysed by sequencing
the libraries of donor 145 twice. To check the effects of a larger number of shorter reads,
we sequenced the samples from donor 204 and 292 on an Illumina NextSeq (paired-end
2x150nt) instead.
Processing of TCRβ sequencing data

TCRβ sequencing data was processed using the CogentTM NGS Immune Profiler pipeline
(version 1.0), as provided by Takara Bio. We set the overseq-threshold to 3, meaning that
UMI-TCR pairs supported by at least 3 reads were taken into account. We defined a TCRβ

sequence as the combination of V-segment, CDR3 amino acid sequence and J-segment. For
the analyses presented in Figure 5.2D-F, Figure 5.3, and Figure S5.3 we joined the counts
from replicates of the same time point to arrive at a single TCR repertoire per time point. The
equivalent analysis of Figure 5.3A using the individual replicates is shown in Figure S5.4A.
A robust classification of expansion

TCRβ sequences have frequencies that can differ by multiple orders of magnitude. The
most abundant sequences are often measured with a sufficient number of UMIs to reliably
estimate their frequency in the repertoire. The frequency of many rare sequences is much
less certain, as their proportion in the data is relatively more affected by sampling noise.
While classifying expansion between timepoints, we accounted for these differences using
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a two-step approach. We used replicates of the same time point of the same donor (which
are thus samples from the same T-cell repertoire) to estimate the sampling noise. The
requirements for expansion were optimised to be both specific and sensitive: they should
result in little or no expansion between samples from the same time point, while allowing
for detecting expansions between time points.

Firstly, we determined a general fold-change threshold based on the abundant TCRβ

sequences. Specifically, we analysed the sequences present at a relative frequency of more
than 0.5% in a sample and quantified their fold-change when comparing with another
sample taken. To still obtain a fold-change in cases where a sequence was present in one
sample, but absent in the other, we replaced the frequency in the second sample with
half the frequency of being represented by a single UMI in that sample. We determined
the optimal fold-change threshold by comparing replicates of the same time point, and
samples from different time points. Since we know that by definition there should be no
expansion between the repertoires sampled at the same time point, we used 1.5 as the
optimal fold-change threshold for our samples (Figure S5.2A).

Secondly, we quantified the sampling noise, which is expected to have a larger effect
on the fold-change of rare sequences. Based on the relative frequency of a sequence in
a reference sample, we calculated its expected number of UMIs in another sample. If no
further threshold would be added, this would result in many sequences to be classified as
expanded, even between samples from the same time point (Figure S5.2B). We therefore
added a threshold to this number (accounting for the contribution of sampling noise to
the absolute UMI count), to obtain the minimum UMI count to be classified as expanded
compared to the reference sample. By setting an absolute UMI count threshold of 30 UMIs,
we decreased the number of expanded sequences between samples from the same time
point, while still allowing the detection of expansions between time points (Figure S5.2B).

Thus, we classify a sequence as expanded between sample 1 and 2, if (1) the relative
frequency in sample 2 is at least 1.5 times higher than in sample 1, and (2) the absolute UMI
count in sample 2 exceeds the relative frequency in sample 1 with at least 30 UMIs. These
two requirements together result in the dashed lines shown in Figure 5.2C-F.
Quantification of overlap between samples

We quantified the TCRβ overlap between sample pairs using Bray-Curtis dissimilarity,
because it takes abundance into account and its value can be intuitively understood. For
a collection of TCRβ X with proportions X i and X j in sample i and j, respectively, the
Bray-Curtis dissimilarity is calculated as BC = 1−∑

min(X i, X j). The relative overlap, 1−BC,
can thus be understood as the proportion that is identical between two samples, in terms
of identity and abundance, such that no overlap remains if this part is removed from both
samples.

To obtain a quantitative estimate of the minimum resolution of the TCRβ sequencing
assay, we compared replicates from the same time point from the same individual with each
other. Since these are obtained from the same TCR repertoire, they provide the opportunity
to estimate the minimum TCRβ sequence frequency that guarantees overlap between
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samples. We then sorted the TCRβ sequences based on abundance in the largest sample.
Starting from the sequence with the highest frequency, we kept track which fraction of the
TCRβs was also observed in the smaller replicate. Continuing this until less than 90% of
the most abundant sequences was overlapped, we obtained an estimate on the minimum
TCRβ frequency that is required to guarantee overlap between samples from the same TCR
repertoire.
Diversity estimates

Many measures exist to quantify diversity of a sample, which mostly differ in the relative
contribution of richness and evenness. Richness relates to the distinct number of TCRβ

sequences in a sample, while evenness quantifies the differences in abundance between
TCRβ sequences. We used three distinct measures to estimate the TCRβ diversity in our
samples. The richness is the total number of distinct TCRβ sequences in the sample. Given a
collection of TCRβ X with proportions X i in a sample, the Shannon index is H =−∑

X i ln X i,which can be expressed as the effective number of species by eH . The Simpson index
is given by λ = ∑

X2
i , of which the inverse 1/λ is the effective number of species. These

three measures were evaluated for the TCRβ repertoires at each time point, and plotted in
Figure S5.3A-C. To compare diversity between donors and timepoints while accounting
for the different sample sizes, we computationally down-sampled all samples to have a
total number of UMIs equal to the smallest sample in the set. The normalised diversity
measures calculated from these down-sampled repertoires are provided in Figure S5.3D-F.
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Supplementary Figure S5.1 –Number of sorted cells and identified TCRβ sequences. A.Number
of sorted CD4 memory T cells per sample. While the numbers of sorted cells for donor 203 were in
the same range as the other samples, the exact numbers could not be retrieved. B. Total number of
TCRβ sequences retrieved by TCR sequencing per sample.
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Supplementary Figure S5.2 – Thresholds for classification of expanded sequences. A. The
fraction of abundant sequences (> 0.5% in the reference sample) that would be classified as expanded
because their fold-change exceeds the threshold (horizontal axis). Comparisons were made between
samples from the same time point (blue) and between a reference sample and a sample from a
later time point (red). The vertical dashed line indicates a fold-change of 1.5, which was used in the
analysis to classify expansion. B. Similar to A, but now for all sequences and additionally requiring an
absolute difference in UMI count. A sequence is classified as expanded if (1) the fold-change is larger
than 1.5, and (2) the number of UMIs for that sequence exceeds the reference relative frequency
with at least the excess UMI threshold (that varies on the horizontal axis). The vertical dashed line
indicates the threshold of 30 UMIs, which was used in the analysis to classify expansion.

Supplementary Table S5.1 – Donor characteristics

Donor ID Age (years) Sex CMV status
Timing

follow-up sample
Comments

1 70 M CMV- 6.5 months

17 73 F CMV- 4.4 months

72 71 F CMV- 6.5 months

105 68 M CMV- 5.5 monts

145 69 F CMV- 6.2 months Sequenced twice

157 27 M CMV- 6.9 months

203 38 F CMV+ 7.7 months

204 25 F CMV- 6.0 months
Illumina NextSeq; 3

samples per time point

264 27 F CMV- 6.8 months

273 31 M CMV- 5.7 months

292 28 F CMV+ 6.5 months
Illumina NextSeq; 3

samples per time point

310 30 F CMV- 5.4 months

311 25 F CMV- 5.5 months
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1Supplementary Figure S5.3 – Estimated TCRβ diversity in pooled replicates before and after

vaccination. A. Number of distinct TCRβ sequences per time point, after pooling the sequence
counts of the corresponding replicates. The vertical axes have a logarithmic scale. B. Effective
number of species (TCR sequences) as quantified with the Shannon index (see Methods). C. Effective
number of species (TCR sequences) as quantified with the Simpson index (see Methods). D-F. Similar
to A-C, but after normalising the size of the samples by down-sampling to the smallest sample (2613
UMIs) to allow for comparison between time points and individuals.
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1Supplementary Figure S5.4 – Expansion based on individual replicates and down-sampling of

pooled samples. A. Similar to Figure 5.3A, for which samples from the same time point were pooled
before classification of expansion. Here, the comparisons were made between individual replicates,
meaning that a sequence will be classified as expanded if it satisfies both requirements in any of the
post-vaccination replicates compared to any of the pre-vaccination replicates. The number of TCRβs
meeting both requirements of expansion in any of those comparisons is plotted. Colours indicate
the first time point at which the specific sequence was classified as expanded (red: day 7, blue: day
28, green: month 4-8). The grey bars serve as a proxy for dynamics that are not induced by the
vaccination, by classifying ‘expansion’ while reversing the order of the time points. B. Comparison
of the number of detected expansions in donor 203 versus the other donors, after correcting the
data for the different sample sizes by down-sampling. We down-sampled the data of donor 203,
pooled per time point like in Figure 5.3, at each time point 10 times to the number of UMIs that
were identified for the corresponding pooled samples from each of the other donors. Plotted on the
vertical axis is the number of detected expansions for donor 203 that remain after down-sampling
(median ± standard deviation), which is compared to the number of detected expansions of the
indicated donor on the horizontal axis. The dashed line indicates the identity line, which indicates an
identical number of detected expansions in both cases. The low numbers of expansions that remain
after down-sampling indicate that the sample sizes of most of the donors were insufficient to detect
the breadth of the response that was detected in donor 203. The observation that the other donors
often showed more expanding clones than observed in the equally sized samples of donor 203,
suggests that they may in fact have experienced a more diverse T-cell response than donor 203.
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Supplementary Figure S5.5 – TRBV usage differences between samples from the same TCR

repertoire and another time point. Comparison of TRBV usage between samples from the
same individual. The total difference in TRBV usage between samples is quantified by summing
the differences in relative frequency for each TRBV gene. Comparisons are performed per donor,
between samples from the same time point (red circles) and different time points (blue triangles).
The result of each comparison is plotted, with the boxes summarising the median difference (thick
line inside), as well as the first and third quantiles (bottom and top of the box, respectively).
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1Supplementary Figure S5.6 – TCRβ contribution per input cell. A. Total number of TCRβ
mRNA molecules (uniquely labelled with UMIs) retrieved by TCR sequencing as a function of the
number of sorted CD4 memory T cells for the corresponding sample. B. Average mRNA contribution
per input cell, as measured by dividing the total number of TCRβ sequences by the number of
input cells. The horizontal dashed line shows the mean value. This can be considered an upper
bound of the probability a given cell in the sample will contribute an mRNA molecule, as cells can
contribute multiple molecules. C. Fraction overlap (see Methods) between replicates before and
after redistributing sequences over the samples. The relative fraction of TCR sequences that overlap
between the two replicates is shown on the horizontal axis. We then combined the TCRβ counts
of both samples and randomly redistributed the sequences to arrive at two artificial samples with
total counts identical to the original samples. We performed this redistribution 100 times, arriving
at 100 estimates for the overlap after redistribution. The median of these values is plotted on the
vertical axis, with error bars indicating the standard deviation (often invisible due to the range of the
error bars being smaller than the plot symbols). The dashed line indicates identical overlap between
two samples for both comparisons, which is the expectation if every cell in the sample would have
contributed maximally one mRNA molecule (de Greef et al., 2020). The increase of overlap for all
sample pairs after redistribution indicates that a substantial fraction of the cells contributed multiple
mRNA molecules. Hence, the probability for a given cell to contribute a TCRβ mRNA is expected to
be considerably lower than the upper bound shown in B.
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Abstract

The diversity of the T-cell receptor (TCR) repertoire is an essential hallmark of the adaptive
immune system. However, this diversity also complicates analysis of its spatial organisation.
Here we characterise the TCR repertoire of individual lymph nodes from mice with a reduced
receptor diversity. This approach allows for a reproducible comparison of repertoires within
and between mice. We find evidence for a deterministic CD4/CD8 lineage choice, and a
consistent spatial structure in the repertoire. Specifically, we identify a small subset of
T cells with a TCR-driven preference for one or multiple lymph nodes. This shows that
the spatial organisation of a part of the naive T-cell repertoire is non-random and may be
affected by localised self-antigens.

Introduction

αβ T cells are one of the major cell types in adaptive immunity. The specificity of each
T cell is determined by its heterodimeric T-cell receptor (TCR). The TCR genes of each
T cell are formed in the thymus by a process termed V(D)J recombination. This process
involves the recombination of germline gene segments, that are fused in an imprecise
manner, giving rise to a huge diversity of different TCRs (Hayday et al., 1985; Izraelson et al.,
2018; Zarnitsyna et al., 2013). The α- and β-chain sequences of the TCR can be uniquely
described by the combination of their V and J segments and the hypervariable CDR3 region
between these segments. Resting, i.e., naive T cells are activated through binding of their
TCR to cognate antigen, which are complexes of peptides with Major Histocompatibility
Complex (MHC)-encoded molecules (peptide/MHC). In the absence of cognate foreign
antigen, naive T cells remain resting, and their maintenance requires ‘tickling’ of their TCR
by low-affinity binding to self-peptide/MHC molecule complexes (Brocker, 1997; Kirberg
et al., 1997; Tanchot et al., 1997). Differences in the expression of self-antigens between
anatomical locations may thus lead to a spatial organisation of the TCR repertoire.

T cells used to characterise the TCR repertoire are often sampled from the blood, as
this is easily accessible and can be sampled longitudinally. Still, only a small fraction of T
cells appears in the blood, as the vast majority occurs at other locations throughout the
body, including the spleen, lymph nodes, and gut (Ganusov and Boer, 2007). Previous
studies in mice and humans showed that there are considerable differences between the
TCR repertoires sampled from distinct anatomical locations, even for naive T cells that have
not been activated by cognate antigen and expanded by proliferation (Bergot et al., 2015;
Thome et al., 2016; Zhang et al., 2021). However, such analyses are always hampered by the
combination of a high diversity and limited sample size and/or sequencing depth, which
means that only a limited fraction of the local repertoire could be analysed. This directly
affects any measure of repertoire overlap, as missing or overrepresented clonotypes could
arise due to these sampling effects (Ferrarini et al., 2017; Madi et al., 2014) and need not
reflect a true spatially structured organisation of the repertoire.
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Thus, it remains an open question whether or not the TCR repertoire of naive T cells is
uniformly distributed across tissues. This can be addressed in a more reproducible manner,
reducing biases arising from sampling effects, when the TCR diversity is reduced in mice.
In the most extreme case, this involves studying the spread and cell-division history of T
cells harbouring monoclonal, transgene-encoded, TCRs after transfer into T-cell deficient
recipients, such as Rag2-/- mice. This reveals that for several of such TCR-transgenic
cells, these distribute evenly across the lymph nodes, while other TCRs show cell division,
increased residence, and/or activation-marker expression in a limited but reproducible
set of lymph nodes (data Kirberg lab). This indicates that even naive T cells may have
a spatial niche determined by their TCR, in which their TCR may bind to localised (self-
)peptide/MHC complexes that, in case of a T-cell depleted environment, even allows for
cell division, i.e., homeostatic proliferation. Currently it is not known to which extent this
spatial organisation was the result of excessive proliferation by these transgenic cells in a
lymphopenic environment, and/or whether these rules also apply to the normal situation.

Here, we characterised the spatial structure of the TCR repertoire by Vα staining and by
TCR sequencing of T cells from individual lymph nodes taken from ‘one-TCRα’ mice. The
animals were raised using gnotobiotic technique (Heine, 1998) and only had a minimal,
strictly anaerobic flora to exclude variation caused by external stimuli from newly acquired
bacteria or pathogens, or changes in the microbiome composition. While their TCRα

repertoire originates from V to J recombination, as in wild type mice, it has a strongly
reduced diversity as all T cells must use one specific TCRβ chain. This provides a unique
opportunity to perform high-throughput TCR sequencing on millions of T cells, covering
their nearly complete diversity. Here, this information is used to reproducibly compare
repertoires across lymph nodes and mice. By enriching the lymph nodes for resident T
cells, we increase the repertoire differences between lymph nodes, suggesting that there
are resident cells which are spatially structured. This reveals a layered organisation of
the T-cell repertoire, in which many cells are circulating, while a small fraction shows a
TCR-driven preference for a specific set of lymph nodes.

Results

Vα staining in one-TCRα mice reveals spatial differences in the TCR repertoire

The spatial structure of the TCR repertoire may be reflected by differential usage of germline
TCR segments that may get evident by comparing T cells from individual lymph nodes
for Vα-family usage. We performed such analyses in one-TCRα mice (see Methods) that
have a strongly reduced TCR diversity. This is achieved by a transgene-encoded TCRβ

chain on a homozygous TCRβ-/- background. In addition, one-TCRα thymocytes can only
use the TCRα recombination product of one of their chromosomes, since the other TCRα

allele is not functional. Thus, every T cell must use the identical transgenic TCRβ chain
together with a recombined TCRα chain of the functional allele. In this way, there are no
in-frame secondary TCRα chains that, in the normal situation, a third of all T cells may
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Figure 6.1 – Vα staining of T-cell subsets in lymph nodes. Shown is the fraction of T cells staining
positive for the indicated Vα-family specific antibodies as a percentage of all αβ T cells (αβ T cells
being identified as Vβ8.2+ since all αβ T cells in one-TCRα mice must use the transgenic TCRβ chain).
Note that the scales of the vertical axes differ between rows. Top and bottom of boxes indicate the
first and third quantiles, respectively, and the line inside represents the median value for each lymph
node. Individual values are shown as small dots. The horizontal black line indicates the median
value of the isotype control group across all lymph nodes per Vα family for each T-cell subset. The
anatomical location of each lymph node is shown in Figure S6.1A.

have (Casanova et al., 1991). The diversity of the peripheral TCR repertoire in one-TCRα

mice is strongly constrained, due to the lack of TCRβ chain diversity and because only the
TCRα chains that are compatible with the fixed TCRβ chain to survive thymic selection
can be present. In these mice we can study the distribution of the TCR repertoire by just
analysing the TCRα repertoire.

We thus stained T cells derived from various lymph nodes of individual one-TCRα mice
(Figure S6.1A) maintained by gnotobiotic technique and subdivided the T cells by gating
into the CD4 Tconv, CD4 Treg and CD8 populations (see Methods). For each of these, we
determined the proportion of cells using one of the four Vα-families for which specific
monoclonal antibodies are available. This revealed Vα-usage patterns that were mostly
population-specific, indicating that the TCR repertoire of CD4 Tconv cells is clearly distinct
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from that of CD8 T cells (Fig. 1 - blue and green). The CD4 Tconv and CD8 subset each
showed a very reproducible Vα usage across mice and lymph nodes. Vα usage of CD4 Treg
overall resembled that of CD4 Tconv cells, although being less consistent between mice and
showing more variation for some Vα-family usage in one or more lymph nodes. Together,
this shows that Vα staining does not reveal if there is a spatial distribution within the TCR
repertoire, even with the reduced TCR diversity of one-TCRα mice.

Differences in the TCR repertoire between lymph nodes may be too subtle to be picked
up by Vα-family staining. For example, there could be a small fraction of cells with a clear
preference for a given lymph node, whose signal gets diluted by circulating cells with other
TCR specificities but using a V segment belonging to the same Vα family. We enriched
the repertoire for ‘resident’ T cells by treating mice with antibodies to block CD62L (L-
selectin). This treatment prevents lymphocytes from entering the lymph nodes from the
blood during their normal recirculation, since CD62L is needed to interact with ligands
present on the endothelium of the high endothelial venules (HEV). Thus, T cells that have
TCRs without a specificity for self-antigens presented in the given lymph node will likely
leave faster than those T cells that have a TCR that, in the given lymph node, will bind to
local (self-)peptides.

Indeed, after treatment with anti-CD62L, the Vα usage of the remaining cells showed
increased inter-individual variation and was clearly distinct to that in mice that were not
treated or received control antibodies (Figure 6.1 - red vs. blue and green). The increased
inter-individual variability may be partly the result of the lower number of remaining
cells after treatment. Still, there were also consistent differences that were induced by the
treatment. For example, the relative increase for Vα2+ cells among CD8 T cells in the renal
lymph nodes (J) co-occurred with a relative decrease of such cells in lymph nodes draining
the skin (A-F) (Figure 6.1). Also, the fraction of Vα8.3+ CD4 Tconv cells was reduced in all
lymph nodes except for those located close to the gut (G&H) (Figure 6.1). These results
indicate that the drainage of cells out of lymph nodes is not a random process that would
on average affect all cells equally, since in that case the frequency in the use of specific
Vα-families should not change upon blocking CD62L. Rather, it appears that lymph nodes
may contain a subset of cells that are (relatively more) resident and that carry a distinct
TCR repertoire.
The TCR repertoire is reproducible and the result of deterministic lineage

choice

Although the Vα staining on mice treated with anti-CD62L antibodies showed some spatial
patterning, these results are based on the summation of TCRs that share Vα-family use
while still having a diverse TCR repertoire. We then characterised the distribution of
individual TCRs, thus T cells having the same TCR specificity because they share their
TCRα amino acid sequence, across lymph nodes and between individual mice by TCRα

repertoire sequencing. As many cells as possible of the CD4 Tconv, CD4 Treg and CD8 subsets
were sorted from each of the lymph nodes and their TCR repertoire was characterised by
targeted NGS sequencing of TCRα cDNA libraries with an average coverage of ∼ 30 reads
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Figure 6.2 – TCR repertoires are reproducible and result from deterministic lineage choice in

one-TCRα mice. A. Heatmap showing Bray-Curtis similarity (see Methods) between repertoires
across cell subsets of three mice. Data from individually sequenced lymph nodes were merged
to obtain subset-specific repertoires for each mouse. On the diagonal the score is maximal, since
comparing a sample against itself yields a similarity score of 1. Above the diagonal, values are shown
to allow for quantitative comparison. B. Receiver operating characteristic (ROC) curves resulting
from a neural network that predicts cell subset based on TCR sequence (see Methods). The area
under the curve (AUC) values are indicated and can be compared to a random prediction (dashed
line, AUC = 0.5).

per cell. We performed error correction using Unique Molecular Identifiers (UMIs) and
the RTCR pipeline (Gerritsen et al., 2016) (see Methods), which resulted in a dataset of >
25 million error-corrected TCRα sequences. Since T cells in one-TCRα mice have a fixed
TCRβ chain, each T cell’s specificity is entirely encoded by its single functional TCRα chain.
TCRα chains were differentiated according to their individual combination of V family, J
gene and CDR3 amino acid sequence. We compared the similarity for TCRα-chain usage
between any two samples using the Bray-Curtis index (see Methods). This measure can be
interpreted as the fraction of the sample comprising identical TCRs at the same frequency
in both samples. Thus, this measure takes both identity and abundance of the TCRs into
account to derive a numerical value of the repertoire overlap. In other words, it yields 1 for
identical repertoires, when all TCRα sequences occur at the same relative frequency, and
yields 0 for repertoires having no overlapping sequences.

The TCR repertoire of each subset shows a high overlap between individual mice,
especially for the CD4 Tconv and CD8 subsets (Figure 6.2A). Apparently, this is a direct
result of the fixed TCRβ chain which forces the peripheral TCRα repertoire, downstream
to thymic selection, to obtain a less diverse TCR repertoire for which TCR frequencies are
shared, even among individual mice. Although the CD4 Treg repertoires have a smaller
overlap between mice than CD4 Tconv and CD8 cells, they still contain many TCRs that are
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present in all mice and at similar frequencies.
In contrast to the overlap of each subset between individual mice, the TCRs appear

extremely subset-specific such that almost no TCRs are found to occur both in CD4 and CD8
cells. Only a small fraction of the TCR repertoire overlaps between the CD4 Tconv and Treg
subsets and these show virtually no overlap with the CD8 subset, both within individual
mice and comparing across individual animals (Figure 6.2A). Technically, this implies a
high purity of the samples, which is essential to characterise TCR repertoires. Biologically,
it means not only that the TCR repertoire of CD4 and CD8 cells are different (Bergot et al.,
2015; Camaglia et al., 2023; Mark et al., 2022), but that the CD4/CD8 lineage choice of T cells
is completely TCR-driven, and that this choice is made consistently within and between
mice. In other words, it shows that CD4/CD8 fate choice is largely deterministic, although
it is based on the affinity of the TCR for a large variety of self-peptide/MHC complexes. We
illustrate the deterministic nature of these lineage choices further, by training a neural
network on the data (see Methods). The prediction of a CD8 fate based on the TCRα sequence
achieved a high AUC of 0.8, indicating that the TCR indeed determines which phenotype
the cell adopts (Figure 6.2B). While the model cannot capture the full decision process, the
thymus apparently makes a consistent CD4/CD8 choice given a specific TCR. Note that
these observations depend on the fixed TCRβ chain and that TCRα-based predictions would
not be possible when paired with variable TCRβs (Camaglia et al., 2023; Carter et al., 2019).
Also, the absence of secondary TCRα chains, that arise due to lack of allelic exclusion for
TCRα, will have contributed during the training of the neural network. In fact, since the
combination of TCRα and TCRβ determines the affinity for self-peptide/MHCs, one would
have to perform paired TCRαβ sequencing on many more cells to capture the reproducibility
of the selection process in wild type mice with full TCR diversity. Thus, one-TCRα mice
provide a unique opportunity to characterise the rules governing lineage choice during
thymic selection.
Resident T cells have a lymph node-specific TCR repertoire

The TCRα repertoire of one-TCRα mice demonstrates considerable overlap across various
lymph nodes within and between untreated mice. Similarity scores were highest for CD8
cells, followed by CD4 Tconv cells, while CD4 Treg cells only showed a limited overall degree
of overlap (Figs. 3A and S3A&B). Thus, without impeding lymphocyte recirculation, the
TCRα repertoire of conventional T cells (CD4 Tconv and CD8) is mostly shared among
the various lymph nodes, both within and across individuals. The high overlap within
individuals is expected to be caused by a continuous T-cell redistribution due to lymphocyte
recirculation (Textor et al., 2014). For CD4 Treg, the overlap between different lymph
nodes is less complete, demonstrating that a significant fraction of the repertoire is either
not shared or shared with different frequencies among the different lymph nodes of an
individual (Figure 6.3A). Interestingly, the CD4 Treg subsets showed a clear spatial structure
with the TCR repertoire of external lymph nodes (B-E) being more similar to each other as
compared to the other nodes.

The lymph nodes from mice that were treated with anti-CD62L contained far fewer
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Figure 6.3 – Lymph node-specific changes to the TCR repertoire upon blocking CD62L. A&B.

Heatmaps showing Bray-Curtis similarity between TCR repertoires of the indicated T cell subsets
from individual lymph nodes of a control (A) and an anti-CD62L-treated mouse (B). Further mice
are shown in Figure S6.3. C. Heatmap showing Bray-Curtis similarity between the TCR repertoire of
CD8 T cells from individual lymph nodes of control and anti-CD62L-treated mice. The other subsets
are shown in Figure S6.4A&B. D. Visual representation of the TCR repertoire structure by Principal
Coordinate Analysis (PCoA) on CD4 Treg cells. Lymph nodes are depicted as letters, individual mice
are shown as colours, with the background distinguishing control (white) or anti-CD62L-treated
(black) mice. Identical lymph nodes across mice are connected by dashed lines. Other subsets shown
in Figure S6.4C&D.
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cells (Figure S6.1B) and generally showed less overlap between lymph nodes (Figs. 3B
and S3C&D). The pattern that external lymph nodes of untreated mice have a similar
CD4 Treg TCR repertoire was, however, enhanced by anti-CD62L treatment. Moreover, a
similar pattern became apparent for CD4 Tconv and CD8 cells. In addition, the mesenteric
lymph nodes (G&H) of treated mice showed high overlap within and between mice,
indicating a consistent preference of some TCRs towards these nodes. Altogether, the TCR
repertoire of T cells retained within specific lymph nodes is to a large extent reproducible,
as shown by the overlap between identical lymph nodes of several treated mice (Figure 6.3C
and Figure S6.4A&B). By performing a down-sampling analysis we could show that the
observed effects of treatment are to a large extent consistent across mice and not simply
the result of sequencing fewer cells (see Methods and Figure S6.2). A PCoA analysis on the
dissimilarities between repertoires showed that the differences between TCR repertoires of
individual lymph nodes are mostly due to lymph node identity and treatment, rather than
mouse identity (Figs. 3D and S4C&D). Even on the level of individual TCRα sequences we
find consistent spatial patterns that increase in magnitude upon anti-CD62L treatment
(Figure 6.4). This figure also illustrates that there are abundant TCRs that are consistently
enriched or depleted in certain lymph nodes after treatment. Specifically, 8 out of 9
abundant TCRs showed a clear preference for just one or a few lymph nodes.
A T cell’s preference for a lymph node is TCR driven

The strong and reproducible effects of anti-CD62L treatment on the repertoire distribution
makes it possible to classify TCRα sequences for each lymph node, based on their relative
enrichment or depletion upon treatment. Since we are comparing across different mice,
such an analysis is limited to the TCRs that are sufficiently shared between treated and/or
control mice, which account for 50-90% of the total TCRα-repertoire in most samples,
depending on the subset and lymph node location (Figure 6.5A - coloured bars). We found
many TCRs to be depleted upon treatment, indicating that those T cells are leaving a lymph
node relatively quickly, most likely since their TCR does not (strongly) interact with (self)-
peptide/MHC as present in the given lymph node. Such T cells could be interpreted as
circulating cells (Figure 6.5A - orange bars). They accounted for a large fraction of T cells in
control mice with up to 60% of such T cells present in the external lymph nodes (B-E). A
much smaller set was found to be consistently enriched upon treatment with anti-CD62L,
indicating that these T cells are to some extent specific to that lymph node and are longer
retained in there. While consistently and often strongly enriched in treated samples, we
found that such ‘resident’ T cells only make up a minor fraction in the control lymph nodes,
typically 1-3% for CD4 Tconv and Treg, and 10-15% of CD8 cells (Figure 6.5A - red bars in
control samples).

We then compared the amino acid sequences of TCRs to each other based on their
enrichment or depletion in specific lymph nodes upon anti-CD62L treatment. Interestingly,
pairs of TCR sequences for which their CDR3 amino acid sequences are similar were much
more often enriched in the same lymph nodes than those that were less similar in CDR3
amino acid sequence (Figure 6.5B). Sequences with only one amino acid difference were



6

112 | Chapter 6
CD4 Tconv CD4 Treg CD8

C
A

A
R

G
S

A
LG

R
LH

F
T

R
A

V
10 T

R
A

J18
C

A
A

S
D

Q
G

G
R

A
LIF

T
R

A
V

7 T
R

A
J15

C
A

LE
G

T
G

N
T

G
K

LIF
T

R
A

V
17 T

R
A

J37

A B C D E F G H I J A B C D E F G H I J A B C D E F G H I J

0.000

0.005

0.010

0.015

0.020

0.00

0.02

0.04

0.00

0.01

0.02

0.03

Lymph node

R
el

at
iv

e 
fr

eq
ue

nc
y

A

CD4 Tconv CD4 Treg CD8

C
A

A
S

K
P

N
T

N
K

V
V

F
T

R
A

V
7 T

R
A

J34
C

A
A

S
R

N
S

N
N

R
IF

F
T

R
A

V
10 T

R
A

J31
C

A
LR

T
G

N
T

G
K

LIF
T

R
A

V
12 T

R
A

J37

A B C D E F G H I J A B C D E F G H I J A B C D E F G H I J

0.00

0.04

0.08

0.12

0.000

0.005

0.010

0.015

0.00

0.01

0.02

0.03

0.04

Lymph node

R
el

at
iv

e 
fr

eq
ue

nc
y

B

CD4 Tconv CD4 Treg CD8

C
A

A
S

A
N

Y
G

N
E

K
IT

F
T

R
A

V
14 T

R
A

J48
C

A
LG

N
Y

N
V

LY
F

T
R

A
V

6 T
R

A
J21

C
A

LT
G

G
Y

K
V

V
F

T
R

A
V

12 T
R

A
J12

A B C D E F G H I J A B C D E F G H I J A B C D E F G H I J

0.00

0.01

0.02

0.03

0.04

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

Lymph node

R
el

at
iv

e 
fr

eq
ue

nc
y

C

Control anti−CD62L

1
Figure 6.4 – Frequency patterns of individual abundant TCRs. Relative frequencies of the three
TCR sequences that are most abundant in control CD4 Tconv (A), CD4 Treg (B) and CD8 (C) samples.
Samples from the same mice share the grey or black plotting symbol and are connected with lines.
Note that some data points are missing due to excluded samples (see Methods). Control mice are
shown in grey, mice treated with anti-CD62L in black.
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Figure 6.5 – Lymph node residence is determined by TCR amino acid sequence. A. Cumulative
proportion of TCRs, classified by their frequency change upon anti-CD62L treatment in each lymph
node (LN). White: TCRs that are absent in at least one control sample and at least one treated
sample (‘private’). Red: TCRs of ‘resident’ T cells that consistently showed a higher frequency in the
specific lymph nodes from treated mice than those from control mice (‘enriched’). Orange: TCRs
of ‘non-resident’ T cells that consistently showed a lower frequency in the specific lymph nodes
from treated mice than those from control mice (‘depleted’). Black: TCRs that are sufficiently shared
across mice but do not consistently differ in frequency between lymph nodes from control and
treated mice (‘unaffected’). B&C. Relation between lymph node residence behaviour upon CD62L
treatment (being either ‘enriched’ or ‘depleted’) and the number of amino acid positions that differ
for the TCRs being compared. Plotted is the proportion of TCR-pairs, at each Levenshtein distance
between their CDR3 sequences, that share at least one lymph node in which they are classified as
enriched (B) or depleted (C). The plotted values are normalised by dividing by the overall matching
fraction irrespective of Levenshtein distance.
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most often enriched in the same lymph node, with a difference of 3 or 4 amino acids still
showing a trend towards sharing such behaviour. This suggests that there are groups of
similar TCRs that are specific to one or more (self-)antigens present in specific lymph nodes,
which would serve as a niche for T cells expressing these TCRs. Sequences with a lower
similarity did not show a shared enrichment towards the same lymph nodes, consistent
with a different TCR-specificity. Interestingly, we observed a similar but much weaker
trend for the depletion of TCR sequences upon treatment (Figure 6.5C). This would be
consistent with having a TCR for which the relevant (self-)peptide/MHC is not presented
within the specific lymph nodes. Together, this shows that the TCR sequence is the major
determinant for the residence of T cells in specific lymph nodes.

Discussion

In this study, we characterised the spatial distribution of the TCR repertoire in mice. Robust
analysis of such spatial differences is challenging due to the enormous diversity of the
TCR repertoire, secondary TCRα chains arising by TCRα allelic inclusion, and the limited
throughput of single-cell sequencing techniques that are necessary to capture paired
TCRαβ sequence information. We solved these issues by studying one-TCRα mice, for
which high-throughput TCRα sequencing captures the full diversity of the TCR repertoire
as present in these mice. Doing so, we could show that CD4/CD8 lineage choice is a process
that is largely deterministic given a TCR sequence. Moreover, we could identify TCR-
abundance patterns across lymph nodes that were consistent between mice. Enriching
for resident T cells by treating with anti-CD62L to block lymphocyte recirculation, we
could realise a distinction between TCRs that are either retained or remain circulatory
with respect to a given lymph node. This revealed that the vast majority of naive T cells
in a lymph node is circulating, while a small fraction of cells is more resident, reflecting a
TCR-directed preference for one or more specific lymph nodes.

The mice we studied were kept using gnotobiotic technique and only had a minimal,
strictly anaerobic flora. Thus, the spatial distributions we observed are unlikely to be
imposed by stimulation with foreign antigens apart from those taken up as food. Although
we did not specifically sort the cells to express characteristic naive T-cell surface markers,
this implies that the observed preference for certain lymph nodes is driven by interactions
with locally presented self-peptides. The 4-day period between anti-CD62L treatment
and cell isolation leaves the opportunity that these interactions result in both residence
and local proliferation. Our study focused on the TCR repertoire, leaving the physiologic
function of such lymph node-specific preferences as an open question. We speculate that
specific lymph nodes function as a niche for certain TCR specificities, where these cells are
more likely to be retained, receive survival signals by the ‘tickling’ of their TCR, and/or
undergo cell division. Such localised fitness differences may play a role in the maintenance
of naive T-cell diversity, in contrast to a scenario in which competition between TCR clones
of similar specificity happens throughout the lymphoid system.
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Although we could impute a TCR-driven preference for some of the analysed T cells by
our strict classification, this was not possible for all sequences. Firstly, a comparative TCR
profiling requires harvesting of several different lymph nodes and needs inter-individual
comparisons to be able to quantify changes in TCR frequency as induced by treatment. As a
result, any analysis must be limited to those TCR sequences that are sufficiently shared
across individuals. Secondly, although we harvested lymph nodes throughout the body,
there are many more locations that contain T cells, including other lymph nodes, spleen,
and gut (Cose et al., 2006). Hence, we would predict that TCRs that were consistently
reduced in all studied lymph nodes may still have a specific niche at a location that we did
not include in the current analysis. Alternatively, a low TCR affinity to a self-peptide/MHC
ligand may not cause a significant increase in the lymph node retention time to be noticed
in the time frame used here. Thirdly, the effects of treatment were not as prominent for
all TCRs in all lymph nodes. For example, the mesenteric lymph nodes had a distinct TCR
repertoire even before treatment (Figure 6.3D). Instead of being enriched in these lymph
nodes after treatment, the TCRs with a preference for the mesenteric lymph nodes were
mostly characterised by consistent depletion in all other lymph nodes. All in all, if a full
characterisation of TCR-driven preferences for anatomical locations would be possible, it
would require more samples from many more mice, which is difficult to realise even by
current advances in high throughput sequencing.

While the use of one-TCRα mice provides the opportunity of nearly complete TCR
repertoire profiling, it remains an open question to which extent the resulting insights
translate to mice with a fully diverse αβ TCR repertoire. The observation that a fixed TCRβ
chain allows for the generation of both CD4 and CD8 T cells supports the consensus that the
lineage choice of double positive T cells is not restricted by one of the TCR chains, α or β, but
rather depends on the combination of TCRα and TCRβ (Carter et al., 2019; Springer et al.,
2021; Tanno et al., 2020; Uematsu et al., 1988). This would predict that the TCRα repertoire
of CD4 and CD8 T cells could be very distinct in the context of another TCRβ chain or in the
presence of a different MHC allele. Thus, characterising the TCR repertoire of T cell subsets
while fixing different TCRβ chains or MHC haplotypes would be a promising avenue for
further characterisation of the deterministic nature of lineage choice in the thymus.

Even though limited-diversity T-cell repertoires may not be as protective against
foreign pathogens (Messaoudi et al., 2002), they provide feasible opportunities that can be
generalised to, but not directly tested in fully diverse TCR repertoires. Taken together, one-
TCRα mice offer the ability to reduce the complexity of the T-cell repertoire to a level that
allowed us to shed a light on the spatial organisation of TCR repertoires. This study revealed
the deterministic nature of T-cell lineage choice, and the non-uniform distributions of
TCRs, which are shaped by TCR-driven lymph node preferences.



6

116 | Chapter 6

Methods

Animals

One-TCRα mice were bred by intercrossing the following alleles to yield TCRα+/- TCRβ-/-
TCRβ-Kaa-tg+ Foxp3gfp/gfp ♀ or Foxp3gfp/Y ♂ animals used for the experiments:
• TCRα (Mombaerts et al., 1991),
• TCRβ (Mombaerts et al., 1992),
• Foxp3-IRES-eGFP (Wang et al., 2008), and
• TCRβ-Kaa (Kieback et al., 2016).

Initially, animals for breeding were obtained by rederivation into isolators using
hysterectomy and dunk-tank passage, placing the foetuses with MAS/A foster females that
have a minimal, strictly anaerobic flora. Progeny were genotyped and the line maintained
by continual intercrosses using gnotobiotic technique in isolators. Both female ♀ and ♂

male animals were used for experimentation.
Treatment with anti-CD62L

Mel-14 hybridoma cells were used to produce batches of anti-CD62L mAb (Gallatin et al.,
1983). 511.7D12 was used to produce an isotype-matched control mAb (anti-KLF3, (Alles
et al., 2014)). Antibodies were purified by Protein G affinity chromatography. To block
lymphocyte recirculation in vivo, animals were transferred into sterile IVC-caging and
received 1 mg of Mel-14 mAb in PBS i.v. on day 0 and were analysed on day 4 (Lepault et al.,
1994). As indicated, control animals instead received anti-KLF3 (same dose), PBS (carrier),
or were untreated but similarly manipulated as injected ones. Three different batches of
Mel-14 gave similar results (two produced in-house, one from low endotoxin contract
production at InVivo Biotech Service, Hennigsdorf, Germany).
Cell sorting and FACS analysis

Lymph nodes were isolated, ruptured in-between nylon-meshes (40 µm pore size), filtered
(40 µm pore size), and the cells obtained were stained for TCR-Vβ8.2 (F23.2-Alexa700,
prepared in-house), CD4 (Pe, BD), CD8 (Pe-Cy7, BD), and CD24 (HSA, eFluor450, BD)
in the presence of 2.4G2 mAb (Fc-block) tissue culture supernatant at 1/5 to 1/10 dilution.
Sytox-blue dye was added and all dye-excluding cells were sorted on a 4 laser (405, 488,
561, 633 nm) BD AriaFusion cell sorter. Four subpopulations were collected, in this order
from far left to far right:

1. control cells (mostly B cells: Vβ8.2- CD4- CD8- CD24+, not further analysed),
2. CD4 Tconv (Vβ8.2+ CD4+ CD8- CD24- Foxp3-gfp-),
3. CD4 Treg (Vβ8.2+ CD4+ CD8- CD24- Foxp3-gfp+), and
4. CD8 (Vβ8.2+ CD4- CD8+ CD24- Foxp3-gfp-) cells,

using ‘4-way purity’ sort-mode and at sorting speeds to generally have > 90% sort
efficiency. In this way, up to ∼ 700 000 cells were collected into 1.5 ml Eppendorf tubes; when
necessary, additional tubes were used to collect all cells from a given origin (subpopulations
1-4 and lymph nodes A-J, see Figure S6.1A). When more than ∼ 700 000 cells could be
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obtained, these would be processed independently and only the final NGS sequencing data
were to be aggregated computationally. Reassuringly, the resulting repertoires showed
high overlap before aggregation.

Following sorting, cells were pelleted in a swing-out rotor, the supernatant aspirated,
and the pellet was resuspended by vortexing while adding TriZol (Sigma) to which 1/500
volume of 2-mercaptoethanol had been added, using up to 600 µl per tube. Lysates prepared
in this way were long-term stored at -75°C. Where appropriate, graded numbers (10 or 40
cells) of monoclonal T cells (spike-in cells) were sorted directly on top of the lysate. To this
end, the T cells were isolated from pooled lymph nodes of Rag1- or Rag2-deficient OT-2,
P14 (327), OT1, DO11.10 or HA-TCR transgenic mice and stained for CD4, CD8 and TCR to
identify the nominal T cells for sorting.

For FACS analyses, mAbs either to Vα2 and Vα11 or to Vα3.2 and Vα8.3 were combined
with Vβ8.2, CD4, and CD8 specific reagents for staining in the presence of 2.4G2 mAb
(Fc-block) tissue culture supernatant. For analysis on a LSRII-SORP 4 laser (405, 488, 561,
633 nm) instrument, cells were washed, adding Sytox-blue dye before analysis to exclude
dead cells by gating.
TCRα library preparation and sequencing

Briefly, total RNA was isolated from cells lysed and stored in TriZol, ensuring complete
phenol removal by an additional chloroform extraction, and adding GlycoBlue (Invitrogen)
co-precipitant to ease quantitative recovery. Precipitated RNA was dissolved in citrate
buffer and stored at -75°C until used. For cDNA preparation, a maximum RNA amount
corresponding to ∼ 400 000 cells was processed (lysates containing more sorted cells
were split, processed in parallel, pooling the final material before PCR) using a gene
specific primer corresponding to the B6 TRA-C 3’UTR allele polymorphism in order to
limit any contribution from the 129-derived TCRα-KO allele in the presence of a 5’- and
3’-blocked Template-Switch-oligonucleotide (TSO, containing 20 nt of the Illumina Read2
sequencing primer, a UMI [N6S or N7S], and rGrGrG) at predetermined optimal conditions
for first strand synthesis using any SuperScriptII (RNaseH-) equivalent commercial reverse
transcriptase (usually ProtoScript II, NEB). Remaining RNA was digested, salts were
removed by precipitation, and a first PCR was performed using all of the cDNA with Phusion
polymerase (Finnzyme or NEB, (Wang et al., 2004), a forward primer completing the
Illumina Read2 sequence (introduced by the TSO during first strand cDNA synthesis), and
a reverse TRA-C specific primer that overlaps the neo-insertion cassette of the TCRα-KO
allele in order to exclude any PCR-products arising from the inactivated allele. Following
purification by precipitation, a semi-nested second PCR used one of a series of 8 reverse
primers that (from its 5’ to 3’) add the Illumina Read1 primer sequence, each having one
of a balanced and phased internal index sequence (3 to 10 nt long, similar to (Glenn et al.,
2019)), and 23 nt complementary to the 5’ end of the TRA-C coding region.

For cDNA and PCR, lysates were grouped and processed according to input cell number.
The number of PCR cycles for each group was adjusted such that in theory (all mRNA
molecules being reverse transcribed and each PCR cycle leading to a doubling of product
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copy number) an assumed number of 5 TCRα mRNA copies per cell (Inaba et al., 1991; Ma
et al., 2018) would give a detectable but not overamplified band (actually a smear since
derived from a multitude of TCRs) on an agarose gel. Either our assumptions were correct or
T cells may have a higher TCRα mRNA copy number and our methodology is sub-optimal,
but we had no lysates that failed. The resulting bands, derived from lysates containing
roughly similar numbers of sorted cells, were cut out of the gel and the DNA was purified on
commercial glass-milk columns (SMARTPURE kit, Eurogentec), quantified by Nanodrop,
and similar amounts of the isolated DNA, each derived by the use of one of the 8 reverse
primers, were pooled to yield a sample to be processed for NGS.

NGS was performed on an Illumina NovaSeq instrument using XP flowcells to obtain 2 x
250 nt paired-end reads at the DRESDEN-concept Genome Center (DcGC) / CRTD / CMCB
Deep Sequencing Facility, Dresden, Germany. To this end, the DNA quantity in each sample
was re-determined on a Qbit (PicoGreen fluorometry) and 8 ng DNA was subjected to a
6 cycle extension PCR with NEBNext Q5 II polymerase and primers to complete the Illumina
Read2 sequencing primer region, adding unique dual indexes specific for each sample (to
be read by IndexRead1 and IndexRead2 sequencing), and to incorporate the Illumina p5
and p7 regions for on-chip immobilisation and bridging PCR amplification (Bentley et al.,
2008). The resulting material was subjected to XP beads purification, quantified on Qbit
and fragment analyser, and finally pooled, balancing the molar input according to the
number of cells that contributed in order to achieve a read-depth of ∼ 30-40-fold per input
cell.
TCRα sequencing data processing

Paired-end reads were merged with PEAR (Zhang et al., 2014) using default settings. For
each read that could not be paired, for example because the product was too long to have
any overlap, we added the last 15 nucleotides of Read2 to the Read1 to combine the UMI
and TCR information in a single read. We then split the reads based on the 8 different
internal index sequences, by selecting those merged reads that started with an exact match
to one of the internal indices, followed by CAGCAGGT (which corresponds to the primers’ 3’
TRA-C sequence region that the series of 8 reverse primers contain to bind to TRA-C). We
extracted the UMI sequences by taking the last nucleotides from the merged reads (7 or 8
bases, depending on the N6S or N7S UMI design of the actual TSO used), and only accepted
those that had CCC following the UMI sequence, matching the TSO design with rGrGrG at
its 3’ end. RTCR (Gerritsen et al., 2016) was used to generate UMI-based TCRα consensus
sequences (umi_group_ec), and we proceeded with all sequences in the output that were
based on at least three reads. We processed this data using the main RTCR module (run)
with a B6-specific TRA reference set that corresponds to the single functional TCRα allele
in one-TCRα mice (see below).
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Table 6.1 – Selected alleles from IMGT for one-TCRα repertoire analyses.

TRAV TRAJ

1*02
2*01
3-1*01
3-3*01
3-4*01
3D-3*02
3N-3*01
4-2*02
4-3*03
4-4/DV10*02
4D-2*01
4D-3*06
4D-4*03
4N-3*01
4N-4*01
5-1*02
5-2*01
5-4*02
5D-4*01
5N-4*01
6-1*03
6-2*02
6-3*02
6-4*03

6-5*04
6-6*04
6-7/DV9*04
6D-3*03
6D-4*01
6D-5*01
6D-6*05
6D-7*04
6N-5*01
6N-6*01
6N-7*01
7-1*02
7-2*02
7-3*04
7-4*01
7-5*03
7-6*02
7D-2*01
7D-3*03
7D-4*02
7D-5*02
7D-6*02
7N-4*01
7N-5*01

7N-6*01
8-1*03
8-2*01
8D-1*01
8D-2*03
8N-2*01
9-1*02
9-2*02
9-3*01
9-4*02
9D-1*03
9D-2*05
9D-3*03
9D-4*01
9N-2*01
9N-3*01
9N-4*01
10*02
10D*01
10N*01
11*02
11D*01
11N*01
12-1*06

12-2*02
12-3*05
12D-1*02
12D-2*02
12D-3*04
12N-1*01
12N-2*01
12N-3*01
13-1*02
13-2*03
13-3*01
13-4/DV7*02
13-5*01
13D-1*04
13D-2*03
13D-3*01
13D-4*03
13N-1*01
13N-2*01
13N-3*01
13N-4*01
14-1*01
14-2*02
14-3*01

14D-1*01
14D-2*01
14D-3/DV8*01
14N-1*01
14N-2*01
14N-3*01
15-1/DV6-1*01
15-2/DV6-2*02
15D-1/DV6D-1*07
15D-2/DV6D-2*03
15N-1*01
15N-2*01
16*01
16D/DV11*01
16N*01
17*02
18*02
19*03
20*01
21/DV12*03

2*01
3*01
4*02
5*01
6*01
7*01
9*02
11*01
12*01
13*01
15*01
16*01
17*01
18*01
21*01
22*01
23*01
24*02
25*02
26*01
27*01
28*01
30*01
31*01

32*01
33*01
34*02
35*01
37*01
38*01
39*01
40*01
42*01
43*01
44*01
45*01
46*01
47*02
48*01
49*01
50*01
52*01
53*01
54*01
56*01
57*01
58*01
61*01

A customised set of one-TCRα-specific TRAV and TRAJ germline reference

sequences

The TCRα locus contains many gene segments, as multiple duplications led to nearly
identical V gene paralogues present in the germline as allelic forms, by which strains may
differ. As a result, it is not always possible to uniquely identify a V gene in TCR sequencing
data, especially when using relatively short reads and when the reference set of sequences
derives from a cumulative database on all mouse strains, without clear assignment
from which strain a given allele is derived. Indeed, the TCRα locus is polymorphic and
structurally different between several inbred mouse strains indicating a long history that
is at evolutionary scale (Rupp et al., 2016). In one-TCRα mice, the single functional TCRα

allele is derived from C57BL6/J, while the default mouse TRA germline reference set of
RTCR is based on a combination of this and several other mouse strains, such as 129Sv,
BALB/c, and many others. Because RTCR estimates the error rate of the data based on errors
with respect to the germline sequence, it is crucial to minimise mismatches between the
true TCRα germline-corresponding V-segment, as found during experimental sequencing,
and the germline reference used for alignment. To obtain the best possible germline
reference set for one-TCRα mice, we downloaded all available Mus musculus TRAV and
TRAJ gene segment sequences from IMGT (Lefranc et al., 2009). By running MiGMAP
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(https://github.com/mikessh/migmap) on one million consensus sequences supported by
at least 10 reads that were randomly selected from the data, we identified the best-matching
allele for each gene segment. The selected 116 TRAV and 48 TRAJ alleles that were then
used as germline reference are provided in Table 6.1.
Data analysis

Cells of the same subset and derived from the same lymph node that were divided over
more than one tube because they exceeded ∼ 700 000 cells were processed as individual
samples. Afterwards, the resulting TCR tables were joined to obtain a single TCR dataset.
TCRα sequences matching those of the spike-in monoclonal TCR-transgenic cells were
removed before analysis.

A total of four erroneous samples were excluded from analysis and are shown as grey
bars in the heatmaps. Two samples were excluded because they were accidentally mixed
during the experimental protocol. Two other samples showed a substantial repertoire
overlap with another T cell subset. One of these had a TCR diversity that far exceeded the
number of input cells. As to these observations these samples are apparently dominated by
contamination, motivating their exclusion during further analyses.

Since the TCRβ sequence is fixed, the TCR-specificity of each T cell in one-TCRα mice
is entirely conveyed by its TCRα amino acid sequence. To avoid missing overlap between
samples due to ambiguous V-gene assignment, we used a combination of V family, CDR3
amino acid sequence, and J gene to identify a TCR and compare its frequency between
samples.

Many different methods are used in ecology and biology to compare the composition of
(TCR-)species between sites or samples. Here, we chose to use the Bray-Curtis similarity
index (Bray and Curtis, 1957) to compare TCR repertoires across pairs of samples, because it
takes abundance into account and its value can be intuitively understood. Specifically, for a
collection of TCRs X with proportions X i and X j in sample i and j, respectively, Bray-Curtis
similarity can be calculated as BC =∑

min(X i, X j). The Bray-Curtis similarity can thus be
understood as the proportion that is identical between two samples, in terms of identity
and abundance, such that no overlap remains if this part of the sample is removed. The
Principal Coordinate Analysis (PCoA; Figure 6.3D and Figure S6.4) was performed using
the scikit-bio library in Python 3, by interpreting the Bray-Curtis dissimilarity (1−BC) as
a distance.
Subsampling

Typically, treatment with anti-CD62L reduces the cell number in a lymph node and enriches
for T cells that remain longer (‘resident’ T cells). To check to which extent the set of
remaining TCRs, as compared to the control situation, is reproducible across mice, we
used a subsampling approach (Figure S6.2A). For each lymph node, we calculated the Bray-
Curtis similarities between a ‘central’ treated sample and another treated sample (BCTT)
as well as a control sample (BCTC). The latter two samples were diversity-matched by
subsampling. Specifically, we randomly selected TCRs from the most diverse sample, until
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the selection reached a TCR diversity identical to the other sample. Thus, if treatment leads
to a random subset of the TCR diversity remaining in the lymph node, BCTT and BCTC are
expected to be similar. The observation that in most of such iterations BCTT, the similarity
between treated samples, exceeds BCTC, the similarity between a control and treated
sample, confirms the non-random effect of the experimental treatment (Figure S6.2B).
In other words, the ‘resident’ T cells express a, to some extent, reproducible subset of the
TCR diversity.
Subset prediction from TCR sequences

The deterministic nature of lineage choice is illustrated using a neural network. The absence
of significant repertoire overlaps between TCRs of the different subsets, especially between
CD4 (both CD4 Tconv and Treg) and CD8 cells indicates that the thymus makes a consistent
lineage choice based on TCR specificity. This decision process in vivo is determined by the
binding affinity to many different (self-)peptide/MHC complexes, with CD4 T cells (both
CD4 Tconv and Treg) having a TCR binding to complexes of class II and CD8 T cells a TCR
binding to complexes of class I MHC molecules. Here we illustrate the deterministic role of
the TCR in this process in silico by training a neural network that predicts the likelihood
that a particular TCR sequence leads the T cell to adopt the CD4 Tconv, CD4 Treg, or CD8
phenotype. Specifically, for each subset, we took the 5000 most abundant TCR sequences
(in terms of V family, CDR3 amino acid sequence and J gene) across all control mice and
lymph nodes analysed. We then trained a neural network using the DeepTCR architecture
(Sidhom et al., 2021) using 80% of the data as input and using the default parameter settings
for supervised training. The predictive performance of the model was then tested using
the remaining 20% of the sequences.

Author contributions

J.K. conceived the study. The experimental procedures were carried out by S.N., C.B. and
J.K.. P.C.d.G. performed the data analysis with input from J.K and R.J.d.B.. P.C.d.G. and J.K.
wrote the manuscript, which was edited and approved by all authors.

Acknowledgments

We thank Irene ter Horst and Ramona Mirke for their help with mice and cell sorting. This
study was supported by The Netherlands Organization for Scientific Research Graduate
Program 022.005.023 (to P.C.d.G.) and by the German Science Foundation (DFG) supporting
the Forschergruppe CONTROL-T (FOR 1961) with grants KI611/2-1 and KI611/2-2 (to J.K.).



6

122 | Chapter 6

Supplemental Figures

Salivary
glands

nd thymus

Spleen

2 Superficial parotid ln.
(facial or lateral mandibular ln.)

1b Accessory
mandibular ln.

1a Mandibular ln.

3 Proper axillary ln.
4 Accessory axillary ln.

6 Popliteal ln.

5 Subiliac ln.
9b Medial iliac ln.
9a Caudal mesenteric ln.

8b Pancreaticoduodenal ln.

Kidney 10 Renal ln.

Superficial
cervical lns.( )

7 Colic ln.

8a Jejunal lnn.

2

LN A

LN B

LN C

LN D

LN E

LN F

LN G

LN H

LN I

LN J

A C
D

4
 T

co
n
v

C
D

4
 Tre

g
C

D
8

A B C D E F G H I J

3

4

5

6

3

4

5

6

3

4

5

6

Lymph node

N
u
m

b
e
r 

o
f 
s
o
rt

e
d
 c

e
lls

 (
lo

g
1
0
)

Control anti−CD62L (individual) anti−CD62L (pool)

B

1
Supplementary Figure S6.1 – Cell sampling frommice. A. Schematic representation of mouse
anatomy and sampled lymph nodes. The letters indicate how the lymph nodes are referred to
throughout the text and figures. B. Number of cells that were sorted for each subset per lymph
node. The filled black triangles represent the samples that were composed of lymph nodes pooled
from 8 individual mice that were treated with anti-CD62L.
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Supplementary Figure S6.2 – Inter-mouse similarity is not just the result of sequencing fewer

cells. A. Schematic representation of sample comparison (see Methods for details). B. Fraction of
comparisons, n=18 if all samples were available, resulting in a Bray-Curtis similarity that is higher
between treated samples than between control and treated samples. The horizontal dashed line
indicates 0.5 which would be consistent with a TCR-independent effect of anti-CD62L treatment.
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Supplementary Figure S6.3 – Supplemental to Figure 6.3A&B. Heatmaps showing Bray-Curtis
similarity between TCR repertoires of different cell subsets from individual lymph nodes in control
mice (A and B) as well as an anti-CD62L treated mouse (C) and a pool of 8 anti-CD62L treated mice
(D). Grey values indicate excluded samples (see Methods).
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Supplementary Figure S6.4 – Supplemental to Figure 6.3C&D. A&B. Heatmaps showing Bray-
Curtis similarity between TCR repertoires of CD4 Tconv (A) and Treg (B) cells from individual lymph
nodes of control and anti-CD62L-treated mice. Grey values indicate excluded samples (see Methods).
C&D. Visual representation of the repertoire structure by Principal Coordinate Analysis (PCoA) on
CD4 Tconv (C) and (D) CD8 samples. Lymph nodes are depicted as letters, individual mice are shown
as colours, with the background distinguishing between control (white) and anti-CD62L-treated
(black) mice. Identical lymph nodes across mice are connected by dashed lines.
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The advances in high-throughput sequencing techniques, in particular during the past
decade, enabled the collection of enormous amounts of TCR repertoire sequencing data.
Experimental procedures, like the use of UMIs, and bioinformatic solutions in the form
of dedicated software pipelines address some of the challenges with reliable processing of
this data. Both are necessary to obtain a quantitative and reproducible characterisation of
the TCR repertoire. In this thesis, we went a step further by analysing the TCR repertoire
of humans and mice along several axes, to address outstanding immunological questions.
This general discussion chapter summarises the main findings, discusses the interpretation
of the bigger picture and poses outstanding questions that require follow-up studies.

Multiple samples from the same TCR repertoire

Each sample of T cells that is used to characterise the TCR repertoire only covers a tiny subset
of the total T-cell pool. The resulting TCR sequence frequencies in the data reflect the true
abundance in the repertoire but are also shaped by variation between cells, for example as
a result of differential expression levels and amplification efficiencies. A common approach
in this thesis is that we compared TCR repertoires derived from multiple samples. Doing so,
we studied the TCR repertoire in several dimensions: the differences in abundance between
TCR sequences, the TCR dynamics after antigen exposure and during healthy ageing, and
the spatial organisation of the TCR repertoire in an individual. The integration of the many
samples we analysed provided the opportunity to address immunological questions from
TCR sequencing data.
Multiple samples to reliably classify TCR sequences by abundance

In Chapter 2 – 4 we integrated the information obtained from multiple subsamples to
discriminate between abundant and rare TCR sequences in the repertoire. We used the
inter-sample incidence rather than the intra-sample abundance to classify TCR sequences
by their frequency in the repertoire. In fact, single-cell sequencing techniques take this
approach to the extreme, by capturing only a single cell in each subsample. Our approach
combines the advantages of bulk and single-cell TCR sequencing: it allows for affordable
characterisation of large numbers of cells, while reducing the impact of variable mRNA
contributions by individual cells. This method enabled us to show in Chapter 2 that T-cell
clones in the naive repertoire are extremely heterogeneous with respect to their abundance,
which is only partly explained by their generation probability. In Chapter 3 we identified
that, in addition to previously identified features, absence of a D-segment is a characteristic
of many abundant TCRβ sequences in the naive repertoire of young individuals. The short
Chapter 4 discussed the analysis of changes in the TCRβ repertoire during healthy ageing,
for which having multiple subsamples appears crucial to extrapolate findings from small
samples to the size of the entire repertoire.

In each of these studies, we processed the data of the subsamples individually before
joining the data to determine the incidence of each TCR sequence. This has practical
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reasons, as the output of the TCR sequence data processing pipelines we used just provides
a count for each identified TCR sequence. This information does not allow for determining
the incidence of a TCR sequence, because the subsample from which each individual TCR
transcript originated remains unknown. The error correction, merging similar and/or
low-quality TCR sequences, was thus performed on the level of individual subsamples.
With respect to the identification of abundant TCR sequences this can be considered
a conservative approach. If error correction would have been performed by clustering
TCR sequences over multiple subsamples, a high incidence could result from incorrectly
clustering similar TCR sequences found in separate subsamples. In our approach, TCR
sequences can only have a high incidence by independent identification in multiple
subsamples. At the same time, we may have missed TCR sequences overlapping between
subsamples, for example due to sequencing errors in the CDR3 region and a failure to correct
these by clustering. Such cases could be accounted for by future TCR processing pipelines
that can process multiple samples from the same repertoire together. This approach would
allow for error-correction of low-quality sequences in a sample, based on a similar high-
confidence sequence in another subsample. Corrections like this should be performed with
care, to prevent the overestimation of abundant sequences by excessive clustering. Another
future pipeline feature that would benefit the analysis is the inclusion of the UMI sequences
and sample indices in the output. Such information allows one to verify that TCR sequences
with high incidence are not due to errors during demultiplexing, i.e., the separation of
reads from a sequencing run based on sample-specific indices. The combination of TCR
and UMI sequences in the output would also allow one to perform error-correction on the
UMIs, which improves the estimates of TCR sequence frequencies in a single sample.
Multiple samples to distinguish T-cell dynamics from technical variation

In Chapter 5 we aimed to characterise the T-cell response after pneumococcal vaccination
using TCR sequencing. Without prior information about vaccine-specific TCR sequences,
this requires quantification of the frequency differences between samples from different
time points, which we compared against the differences between replicates, i.e., samples
from the same time point. By having multiple samples for individual time points, we
could quantify how reproducibly TCR sequence frequencies are estimated between samples
from the exact same repertoire. The observed differences in frequency were for many
sequences as large between samples from the same time point as between different time
points, illustrating the need for a robust classification to obtain solid evidence for changing
TCR frequencies with time. In addition to requiring a minimum relative fold-change,
we therefore only classified a TCR sequence as expanded if the absolute number of UMIs
supporting the sequence exceeded the pre-vaccination frequency by another threshold.
Using this combination of two thresholds, only few sequences were classified as expanded
in most individuals. Importantly, the size of the different samples seems to dominate the
estimated number of expanded TCR sequences, complicating quantitative comparison
between donors. We thus showed the complications in using TCR sequencing to identify a
response upon vaccination and identified the sample size as a limiting parameter to obtain
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a biological signal that can be distinguished from technical variation.

The challenge of discriminating between technical and biological effects is not unique
to following TCR frequencies longitudinally. The quantification of differences in gene
expression of cells between different experimental conditions poses in fact a similar
question. Dedicated software packages, such as EdgeR (Robinson et al., 2010), are used
in such cases to model both the biological and technical variability. At the same time,
the number of distinct TCR sequences in humans (in the order of 108 (Qi et al., 2014))
largely exceeds the number of protein-coding genes on the human genome (about 20 000
(Willyard, 2018)). As a result, technical variation potentially has an even larger effect on
most of the observed TCR frequencies. It could therefore be that only the dynamics of the
most abundant TCR sequences can be reliably quantified. A tool that is specifically developed
to fulfil this task is NoisET (Koraichi et al., 2022; Touzel et al., 2020), which can be used to
estimate the noise from multiple replicates and then classify sequences based on changes
that exceed the estimated noise levels. Both EdgeR and NoisET use statistical models
to account for the noise. A more mechanistic understanding of the sources of technical
variation will require dedicated benchmarking experiments. The resulting insights should
be used to optimise the experimental TCR sequencing pipeline such that the noise is reduced
and the remaining technical variation is accurately estimated. Only in such a way reliable
conclusions can be drawn from comparisons between TCR repertoires, for example from
different time points after infection or vaccination.
Multiple samples to uncover a multi-level organisation of the TCR repertoire

In Chapter 6 we studied the TCR repertoire of one-TCRαmice that have a strongly restricted
TCR diversity. By comparing samples from different T-cell subsets against each other, such
as CD4 versus CD8 T cells, we obtained evidence for a lineage choice that is deterministic
given the TCR sequence. Moreover, by sampling the TCR repertoire from individual lymph
nodes across genetically identical mice, we revealed a reproducible, TCR-driven preference
of some T cells to a limited set of lymph nodes. These results indicate that at least not
all T-cell clonotypes are randomly distributed throughout the body, but are organised
based on their TCR specificity. So, the comparison between multiple samples from diverse
anatomical locations in genetically identical mice revealed a non-random organisation of
the TCR repertoire. The expected biological mechanism behind the reproducible CD4/CD8
lineage choice and the lymph node preference is the affinity of certain TCR specificities for
self-peptide/MHC complexes. Although we did not study these interactions in more detail,
our analysis suggests that even the naive TCR repertoire has a spatial organisation. The
TCR repertoire as measured in the blood does not allow for addressing research questions
about the mechanisms behind this spatial distribution, as well as its function. An example
of such a question would be what changes the TCR repertoire distribution undergoes after
presentation of one specific peptide/MHC complex in a constrained anatomical location.

The analysis of spatial differences in the TCR repertoire is much more complicated to
perform in humans. This is not only because of the very sparse availability of human tissue
and lymph node samples, but also due to the wide diversity of TCR specificities and (self-)
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peptides, as well as the MHC polymorphism in the human population. These complicating
factors play a much smaller role when studying one-TCRα mice since they have a reduced
TCR diversity, a limited impact of foreign peptides when kept using gnotobiotic technique,
and no MHC diversity between individuals. Hence, the animal model allowed us to address
biological questions that are not straightforward to study in the more complex human
context.

Another method to reduce the complexity of the immune system is using computational
models. Examples range from statistical models, which infer the underlying probabilities
during TCR generation and selection, to mechanistic models of repertoire maintenance
(Chapter 2). In the latter case, we hypothesised that the dynamics of naive T-cell clonotypes
are neutral, which we tested against NGS data using a simple model. This comparison
was only possible by reducing the actual complexity of the T-cell biology. One example
of a simplification in this study is that the in silico repertoires of CD4 and CD8 T cells
were created from the same set of TCR sequences. In Chapter 6, however, we showed
that the TCR repertoire of CD4 and CD8 T cells is clearly distinct, at least in the one-
TCRα mice. This means that the simplification of generating in silico repertoires from
the same set of TCR sequences may not be completely accurate, but it still allowed us to
reject neutral dynamics as a mechanism for the maintenance of the naive TCR repertoire.
Thus, addressing fundamental questions about the biology of adaptive immune repertoires
often requires simplification of the system. The art is to find a balance that aims to reduce
the complexity of the system experimentally and/or computationally to an appropriate
level.

From the TCR as a barcode towards a functional interpretation

of the repertoire

The analyses described in this thesis generally focus on the repertoire of TCR sequences,
without studying them functionally, for example in terms of the antigen specificities.
In other words, we interpreted the TCR sequence often like a ‘neutral barcode’. This
barcode is shared between the T cells that belong to the same clonotype, that have the
same antigen specificity. Even without knowing the specificity, this allows quantitative
insight into the dynamics of the clonotypes. Importantly, the sequence of a single TCR
chain is also shared between clonotypes that differ in the other TCR chain. This means
that the sequence of a single TCR chain does not uniquely label a single antigen specificity.
From this perspective, having only single-chain data is not optimal, as during the analysis
different TCR specificities are joined as one entity whenever they share one of their TCR
chains. This challenge does not occur in single-cell data or when one of the TCR chains is
fixed, like in one-TCRα mice. Still, even in individuals with a fully diverse TCR repertoire,
following single chains allows one to measure the cumulative frequency of groups of T cells
sharing one of their TCR chains.
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The TCR sequence as a ‘neutral barcode’ to study clonal dynamics

Longitudinal samples of the TCR repertoire allow for a quantitative analysis of T-cell
dynamics at different time scales. An example is the quantification of the response after
infection or vaccination, like we performed on the TCRβ repertoire in Chapter 5. In such
an analysis, an expanding TCRβ sequence may actually represent multiple clonotypes.
This data therefore cannot provide a complete picture of the breadth and depth of the
T-cell response. Although this is a limitation, one can still compare the number and total
frequency of the expanding TCRβ sequences to approximate the level of the response. In
addition, the durability of the response can be estimated by studying the frequencies of
these sequences in follow-up samples. Thus, although it does not cover the full diversity of
clonotypes in a sample, single-chain TCR sequencing does provide valuable insights into
T-cell responses.

Another question that can be addressed using longitudinal TCR sequencing relates
to the T-cell dynamics on a longer time scale, which are expected to be less dominated
by the effect of individual stimuli. Bensouda Koraichi et al. used Bayesian inference to
estimate the parameters of clonal dynamics in the T-cell pool based on longitudinal TCR
sequencing data spanning up to three years (Bensouda Koraichi et al., 2023). Interestingly,
they found a strong negative correlation between the turnover rate and the age of an
individual, suggesting that repertoires of older people have slower dynamics than those
of young individuals. Longitudinal TCR repertoire studies spanning longer time spans
are very rare, understandably because the current sequencing techniques have been
developed quite recently. An exception is the study by Yoshida et al. which involved TCRβ

repertoire sequencing of samples that were collected approximately 20 years apart and then
cryopreserved (Yoshida et al., 2017). They describe an overall decrease in CD8 T cell diversity
with age, while the diversity of the CD4 T cell repertoire retained a fairly high diversity.
Note that the interpretation of TCR repertoire diversity changes with age is challenging
and does not always yield robust results (Chapter 4). They also found considerable TCRβ

overlap between samples taken about two decades apart (Yoshida et al., 2017), indicating
that many T cell clonotypes are maintained at a similar frequency for long periods of time.
Biologically, these findings show that the T-cell pool can be very dynamic in response to
specific antigen, but also quite stable over a long time span. Technically, it means that
much can be learned about the dynamics of T-cell clonotypes, even if the data is far from
complete. TCR sequences of single chains from small samples are very informative about
the dynamics of clonotypes on a pool level.
Heterogeneity between and within T-cell subsets

When studying T-cell biology by analysing TCR sequences, it may be an oversimplification
to study the TCR repertoire in broadly defined subsets of circulating T cells. In fact, there is
no such thing as the TCR repertoire. The T cells in a sample that harbour the observed TCRs
actually have different phenotypes and fulfil many different functions. Single-cell studies
show that T cells have an enormous diversity in gene expression profiles, even within the
well-established T-cell subsets (Guo et al., 2018; Schattgen et al., 2021; Zemmour et al., 2018;
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Zheng et al., 2017). These differences likely relate to T-cell function, which implies that
each TCR repertoire analysis actually studies a collection of TCR repertoires. Each of these
may have different dynamics and inferring the dynamics from TCR repertoire data only
provides an average of the actual production and turnover rates. The differences between
the actual rates are reflected in the TCR frequency distribution, which can be very broad
(Desponds et al., 2016; Gaimann et al., 2020; Qi et al., 2014). For the total T-cell pool this
is natural as a memory T-cell clone specific for a persistent virus is expected to occur at a
much higher frequency than an unactivated T-cell clone that has been recently produced
by the thymus. Moreover, even in repertoires of naive T cells we found a large heterogeneity
with respect to their clone size (Chapter 2). This implies that survival and division rates
are heterogeneous, even within the naive T-cell pool. Note that these observations were
based on samples from the blood and even larger heterogeneity may exist between different
tissues (Chapter 6). So, while current studies already indicate large differences between
T-cell clones, even more variability is to be expected when zooming in into specific T-cell
subsets at particular anatomical locations.

An interesting example of a relevant difference between T-cell clones is whether their
TCR was recombined in the presence or absence of TdT. This enzyme is necessary for the
non-templated insertions in the TCR sequence that contribute to the diversity of the TCR
repertoire. In both humans and mice, TdT expression is suppressed during early repertoire
development before birth (Benedict et al., 2000; Gregoire et al., 1979). This means that the
repertoire starts with a population of T-cell clones with limited diversity. Direct analysis
of this specific set of sequences is not straightforward, as sequences without detectable
N-additions can also be generated in the presence of TdT (Marcou et al., 2018; Murugan
et al., 2012). Still, these sequences are found to be abundant, excessively shared between
identical twins, and persistent over multiple decades (Pogorelyy et al., 2017). This implies
that the early presence of such clones may have allowed them to increase in abundance
before experiencing much clonal competition, simply because they were generated first
(Gaimann et al., 2020). In addition, it is tempting to speculate that TCRs without N-
additions play a role explaining their early production. For example, they may have an
increased probability to survive thymic selection, to boost a quick generation of an early
T-cell repertoire. Alternatively, they could have a broad antigen specificity, allowing them
to provide protection, even with a relatively small TCR repertoire. Such a hypothesis can be
explored by studying biochemical properties of sets of TCR sequences with and without
N-additions. An example of a potential mechanism is the stickiness of certain amino acids
in the CDR3, which was reported to be characteristic for the TCR repertoire of regulatory T
cells (Lagattuta et al., 2022) and other CD4 T-cell subsets (Kasatskaya et al., 2020). These
features may help to also interpret the early production of TdT-independent TCR sequences
functionally and thus explain this level of heterogeneity in the TCR repertoire.
Classification of sequences in the TCR repertoire

One of the largest challenges when studying the adaptive immune system is a classification
task: to tell which TCR sequences will and will not bind a given a peptide/MHC complex. The
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opposite question may be even more complicated to address: given a TCR sequence, which
of the many possible antigens will it bind to? Central to these challenges is the immense
diversity of both TCRs and peptide/MHC complexes, and the complications with studying
their interactions at a large scale. Antigen-specific T cells can be sorted using tetramers
or dextramers, which are complexes of MHC molecules that are associated with a specific
peptide and bound to a fluorochrome. By performing TCR sequencing on these sorted
populations, one obtains TCR sequences that bind one given peptide/MHC combination.
The resulting set of TCR sequences is sometimes characterised by a motif in the TCR
sequence, such as an over-represented V/J combination or a specific stretch of amino acids
in the CDR3 sequence (Cukalac et al., 2015; Dash et al., 2017; Pogorelyy et al., 2022; Sant
et al., 2018). Such features help generalise predictions of antigen binding, based on the
presence of these motifs in other TCR sequences. Multiple databases, including VDJdb
(Shugay et al., 2017), McPAS-TCR (Tickotsky et al., 2017) and IEDB (Vita et al., 2019), collect
sets of TCR sequences that have been found to bind to specific peptide/MHC complexes.
These are interesting resources to address the challenge of annotating TCR sequences with
their antigen specificity.

Even though these databases exist, there are several reasons that this challenge is far
from solved. First, the data is extremely sparse, since currently only a tiny fraction of the
potential peptide/MHC complexes has been studied using tetramers. Second, because most
of the TCR sequences found to bind to specific antigens have been sequenced in bulk, which
does not provide information on the pairing between TCRα and TCRβ chains. Since the
antigen specificity of a TCR is defined by the combination of both chains, the information
on antigen-specific TCRs is often incomplete. Third, since studies vary in their approach to
assess the antigen-specific TCR repertoire, for example using tetramers or dextramers, the
confidence on TCR-peptide/MHC interactions is variable. Even though these challenges
make it difficult to generalise predictions for TCR specificity, various machine learning
approaches have been developed to fulfil this task. The predictive success of tools like
TCRex (Gielis et al., 2019), DeepTCR (Sidhom et al., 2021), and pMTnet (Lu et al., 2021)
indicates that such approaches support the prediction of TCR specificity. With more data
becoming available, especially at the single-cell level, this seems a promising development.
It remains to be determined if the TCR amino acid sequences themselves provide enough
information. Alternatively, dedicated structural predictions with tools similar to AlphaFold
(Jumper et al., 2021) may be necessary for accurate annotation with antigen specificity. It
should be noted that reported binding of a TCR to a peptide/MHC complex is not a guarantee
for T-cell activation (Vazquez-Lombardi et al., 2022), imposing another level of complexity
for functional predictions of T-cell reactivity.
Towards a functional interpretation of the TCR repertoire

The insights and developments discussed so far mostly relate to fundamental questions
about the biology of T cells. The importance of T cells in health and disease also implies that
this knowledge has practical applications. Obvious examples include novel treatments
against cancer, such as boosting the action of tumour infiltrating lymphocytes, or
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immunotherapy with chimeric antigen receptors (CARs) that are expressed by engineered
T cells. An application of T-cell repertoire data would be to assess the T-cell immunity
of an individual qualitatively or quantitatively. A proof of principle of this potential is the
possibility to infer past exposure to an antigen based on the TCR repertoire. This approach
relies on TCR sequencing of a cohort, of which for each individual is known whether or not
they were exposed to a virus, for example. By training machine learning models on the
repertoire data it appears possible to infer cytomegalovirus (CMV) seropositivity (Emerson
et al., 2017) and presence or absence of a T-cell response against SARS-CoV-2 (Dalai and
Baldo, 2021; Gittelman et al., 2022) based on the TCRβ repertoire. Such approaches do
not require a mechanistic understanding of which TCR sequences are part of the T-cell
response. Moreover, this was possible even though large MHC polymorphism exists in the
human population, which means that TCR sequences that are specific to a virus in one
individual are not guaranteed to be specific for the same virus in another individual. These
results suggest that inferring antigen exposure based on a TCR repertoire seems feasible
for at least some pathogens, provided that there is enough TCR sequencing data to train a
classification model.

The TCR repertoire is shaped by pathogen exposure, and defines to which extent T
cells can protect against future challenges. This contains a wealth of information that
cannot only be used to uniquely identify an individual (Dupic et al., 2021), but also to make
quantitative predictions about the current state of T-cell immunity in an individual. It
is therefore crucial to learn which parameters of the TCR repertoire are most relevant to
infer the level of protection. An example is that decreasing TCR diversity with age has been
proposed as one of the mechanisms behind immune senescence (Amoriello et al., 2021; Xu
et al., 2020; Yager et al., 2008). It remains to be determined which measure of TCR diversity
is most informative about such an effect. A substantial decrease in repertoire richness may
result in ‘holes in the repertoire’, but absence of a response could as well be the result of
functionally exhausted T cells. Technically, it is notoriously difficult to reliably estimate
the actual richness of the TCR repertoire from a small sample (Chapter 4). Functionally,
the actual number of distinct clonotypes may not be very informative, as a high number of
different but similar TCR sequences does not guarantee coverage of the entire antigenic
space. Similar questions arise when assessing the response upon vaccination with TCR
sequencing. It will require large cohort studies to determine which aspects of the T-cell
response are most informative to estimate the level of protection. If this information cannot
be inferred from TCR repertoire data alone, a more complete picture can be achieved by a
multi-omics approach using single-cell sequencing, combining TCR repertoire analysis
with a functional characterisation of T-cell subsets (Schattgen et al., 2021).
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Outlook

The huge diversity of the TCR repertoire and the constraints regarding the number of cells
that can be analysed in an experiment pose a fundamental challenge for TCR repertoire
studies. In addition, like in any experiment, inevitable errors that are introduced during the
experimental procedures make the analysis of the resulting data difficult. Instead of striving
for excluding these complications completely, our ambition should be to account for them.
Dedicated control experiments, replicate sampling, and quantitative modelling appear
promising methods to obtain immunological insights, given the experimental limitations.

With the advances in high-throughput and single-cell sequencing, it is more feasible
and affordable than ever to acquire large amounts of TCR sequencing data. Now this progress
is continuing, challenges arise at new levels. It will require a large effort to organise TCR
repertoire data in such a way that it becomes useful to train machine learning models to
annotate repertoires functionally. Such interpretation is promising, as the TCR repertoire is
even more personal than the genome, because it provides information on exposure history
and future protection to pathogens. The resulting immunological insights are expected to
support the further development of personalised medicine, which will benefit both science
and society.
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Samenvatting

Het afweersysteem in mensen en gewervelde dieren bestaat uit zowel de aangeboren als de
verworven afweer. Deze verschillende verdedigingsmechanismen voorkomen samen veel
infecties die veroorzaakt worden door bijvoorbeeld virussen en bacteriën. Verworven afweer
werkt door middel van grote populaties van zeer specifieke B-cellen en T-cellen, die samen
gevaarlijke binnendringers en beschadigde cellen onderscheiden van onschuldige eiwitten
en gezonde cellen. De specificiteit van de T-cellen, die de focus van dit proefschrift vormen,
wordt bepaald door hun T-celreceptor (TCR). Een T-cel kan activeren wanneer zijn TCR
bindt aan een lichaamsvreemd eiwitfragment, waarna de cel zich gaat vermenigvuldigen.
Dit resulteert in een grote groep T-cellen met dezelfde TCR, die de geïnfecteerde cellen
doden of ondersteuning bieden aan andere afweercellen. Een deel van de groep specifieke
T-cellen blijft leven na deze respons en ontwikkelt zich tot geheugencellen. Door deze
verhoogde aanwezigheid en paraatheid verloopt een volgende respons tegen hetzelfde
pathogeen vaak sneller, waardoor ziekte in veel gevallen wordt voorkomen. Dit principe
van verworven immuniteit vormt de basis van het succes van bescherming door vaccinatie.

Doordat T-cellen elk een specifieke TCR hebben en in aantal kunnen veranderen door
nieuwe productie, celdeling en sterfte, is het repertoire van TCRs erg dynamisch. We
kunnen deze dynamica in kaart brengen door de volgorde van nucleotiden die coderen
voor de receptor te achterhalen. Dit gebeurt met behulp van sequencing, waarmee het
tegenwoordig mogelijk is om de TCR-identiteit van miljoenen T-cellen tegelijkertijd op
te helderen. De informatie die volgt uit zulke experimenten vereist een gedegen analyse:
naast een grote TCR-diversiteit bevat de data ook veel kleine foutjes. Een belangrijke
kanttekening bij TCR-sequencing is dat het menselijk lichaam ongeveer een biljoen T-
cellen bevat, waarvan dus slechts een klein deel in kaart kan worden gebracht. Hierdoor
hebben kleine onzorgvuldigheden in het experiment en de analyse mogelijk een groot effect
op de geschatte dynamica van de T-cellen in het lichaam. Dit probleem ondervangen we in
dit proefschrift door de informatie uit meerdere monsters (samples) slim te combineren:
zodoende kunnen we de onzekerheden van de analyse goed inschatten en de TCRs uit de
monsters correct classificeren.

In Hoofdstuk 2 bestuderen we het menselijk TCR-repertoire van de T-cellen die nog
niet zijn geactiveerd. Deze zogeheten naïeve T-cellen hebben een grote verscheidenheid
aan TCRs, die we met behulp van sequencing in kaart brengen. Opvallend is dat de TCRs in
de monsters onderling sterk verschillen in hoeveel ze voorkomen. Deze verschillen worden
deels verklaard door de verschillende productiekansen van elk van de TCRs. Daarnaast
vergelijken we meerdere monsters van hetzelfde TCR-repertoire om uit te sluiten dat de
veelvoorkomende TCRs enkel veroorzaakt worden door dezelfde T-cel meerdere keren te
meten. Door de voorspellingen op basis van vele wiskundige modellen te vergelijken met
de data hebben we de verschillen in TCR-aanwezigheid verder in kaart gebracht. Hieruit
blijkt dat ook vóór T-cel activatie sommige TCRs in veel meer T-cellen voorkomen dan de
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meeste andere TCRs. Dit betekent dat een klein aantal TCRs een aanzienlijk deel van het
naïeve T-celrepertoire beslaat.

De analyse van Hoofdstuk 3 gaat verder in op de verschillen tussen TCRs die veel
en weinig voorkomen in het repertoire van naïeve T-cellen. We identificeren specifieke
eigenschappen in de nucleotiden- en eiwitvolgorde van veelvoorkomende TCRs. De meest
opvallende eigenschap heeft te maken met de opbouw van de TCR-nucleotidenvolgorde.
Deze wordt gevormd door het aan elkaar plakken van verschillende gen-segmenten,
waaronder een zogeheten D-segment. Onze analyse laat zien dat een aanzienlijk deel
van de TCRs het D-segment mist, en dat dit bovendien gebruikelijker is bij TCRs die
veel voorkomen. TCRs die gedeeld worden tussen vele individuen missen ook vaak een
D-segment, wat mogelijk verklaard wordt doordat ze vroeg in de ontwikkeling van het
afweersysteem geproduceerd worden.

Een belangrijke eigenschap van een functioneel T-celrepertoire is een grote
verscheidenheid aan TCRs. Omdat met de leeftijd de aanmaak van nieuwe TCRs afneemt is
een grote vraag of dit leidt tot afname van TCR-diversiteit en daarmee tot verminderde T-
celimmuniteit. Hoofdstuk 4 richt zich op de eerste van deze twee vragen, door de gemeten
TCR-diversiteit te vergelijken tussen verschillende leeftijdsgroepen. Hoewel dit klinkt als
een relatief eenvoudige analyse, identificeren we verschillende haken en ogen aan deze
aanpak. Zo laten we zien dat het sterk uitmaakt in welke mate de verschillende types T-
cellen voorkomen in het genomen monster. Naïeve T-cellen bevatten bijvoorbeeld meestal
veel meer verschillende TCRs dan geheugencellen. Daarnaast blijkt het TCR-repertoire
zo divers dat een enkel monster vaak onvoldoende is om de diversiteit goed te kunnen
schatten. Zulke schattingen worden beter door de informatie uit meerdere monsters te
combineren. Dit stelt ons in staat om verschillen in TCR-repertoire diversiteit tussen jonge
en oudere mensen aan te tonen. Al met al laat dit zien dat het koppelen van TCR-diversiteit
aan kwaliteit van het afweersysteem een gedegen analyse vereist.

Waar de voorgaande hoofdstukken zich met name richtten op een momentopname van
het naïeve T-celrepertoire, gaat Hoofdstuk 5 over de veranderingen in het TCR-repertoire
van geheugencellen na vaccinatie. Om dit te doen nemen we T-cellen af van mensen,
voor en nadat ze een vaccinatie tegen pneumokokken hebben ontvangen. Door het TCR-
repertoire in deze monsters in kaart te brengen proberen we te achterhalen welke T-cellen
geactiveerd zijn door het vaccin. Ook dit blijkt makkelijker gezegd dan gedaan, omdat
het voorkomen van TCRs zelfs aanzienlijk kan verschillen tussen twee monsters vanuit
hetzelfde TCR-repertoire. Hieruit blijkt hoe belangrijk het is om meerdere monsters te
analyseren, zodat een betrouwbare classificatie van geactiveerde T-cellen kan worden
gemaakt. In de meerderheid van de gevaccineerde donoren vinden we bewijs voor T-
celdeling, maar het geschatte aantal specifieke TCRs blijkt afhankelijk van veel factoren.
Een bepalende factor voor deze schatting blijkt de grootte van elk van de monsters, wat het
vergelijken van de responsen tussen donoren bemoeilijkt. Als een gevolg hiervan worden
T-cel responsen die niet heel groot of juist erg divers zijn moeilijk herkend. Het gebruik
van het TCR-repertoire als indicatie van de effectiviteit van een vaccin in een individu is in
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zulke situaties dan ook voorlopig niet haalbaar.
In Hoofdstuk 6 veranderen we van organisme dat we bestuderen: van de mens naar

een specifieke muizenstam met een beperkte TCR-diversiteit. Dit maakt het mogelijk om
bijna het volledige TCR-repertoire in kaart te brengen met behulp van sequencing, en om
dit te vergelijken tussen meerdere muizen. Opnieuw hebben we meerdere monsters met
T-cellen geanalyseerd, ditmaal vanuit de verschillende lymfeklieren in een muis. Door
de TCR-repertoires met elkaar te vergelijken laten we zien dat er een strakke organisatie
van het repertoire is, die gedeeld wordt door elk van de muizen. Een gevolg van deze
organisatie is dat bepaalde TCRs consistent meer voorkomen in specifieke lymfeklieren.
We vinden sterke aanwijzingen dat deze voorkeur qua verblijfplaats bepaald wordt door
de TCR-specificiteit. Daarnaast vinden we sterk bewijs dat de TCR bepaalt in welke T-
celtype de T-cel zich ontwikkelt. Deze inzichten laten zien dat de verdeling van TCRs over
T-celsubgroepen en organen niet willekeurig is, maar een organisatie volgt die in deze
muizen makkelijker aan te tonen is dan in mensen.

Samenvattend gebruiken de studies in dit proefschrift de verdeling en verschuiving
van het TCR-repertoire om de onderliggende T-celdynamica in kaart te brengen. Door
vooruitgang in de experimentele aanpak en de data-analyse ontstaat een steeds completer
beeld van de onderliggende processen. Door ook in de toekomst informatie uit meerdere
bronnen slim te combineren werken we steeds verder aan het persoonlijk maken van
vaccinaties en medicijnen.
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