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OF MICROBES AND MEN
Bacteria were among the first known forms of life on earth, while Homo 
sapiens evolved billions of years later. Humans have therefore always co-
existed with bacteria, which have shaped the phenotype of our ancestors (1). 
The total of living microorganisms inhabiting our bodily surfaces together 
comprise the human microbiota. The term microbiome refers not only to the 
microbial community members but also encompasses their activity. Over the 
last decades, technological advances led to new sequencing techniques that 
enabled us to characterize human microbial communities at an increasing 
level of detail, including the microbiota of the respiratory tract and the gut (2). 
These early studies revealed an unanticipated diversity including a wealth of 
unknown bacterial species that had never been detected with conventional 
culture methods. Overall, gut microbial communities have been the most 
extensively studied. Nonetheless, the respiratory tract has also been shown 
to host a low-dense microbial community, spanning from the anterior nares 
all the way down to the lungs (3, 4). 

After researchers catalogued the composition of the human microbiota, 
and the bacterial component in particular, they quickly shifted their focus 
to the essential functional benefits that microbes have for human health. 
Mechanisms by which local microbial communities affect the host include 
competition with potential pathogens for niche space and nutrients, 
production of immunomodulatory metabolites such as short chain fatty 
acids, and direct interaction with epithelial receptors (5–8). Colonizing 
microbes are in close contact with immune cells residing in the mucosa and 
underlying lymphoid structures in both the intestinal and the respiratory 
tracts, providing ideal circumstances for microbial-immune crosstalk (9). 
The extent to which the microbiome may consequently contribute to health 
and disease becomes most apparent from the long list of infectious, auto-
immune and auto-inflammatory diseases that have been linked to changes 
to the microbial community composition compared with healthy individuals 
(10). Conversely, the microbial community composition may also adapt to 
host signals, for example in response to inflammation (11). This raises the 
typical chicken-and-egg conundrum: does the microbial community change 
in response to disease development, or do alterations to the microbial 
community predispose to disease?
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To unravel a potential causal link between the microbiome and the origin 
and progression of chronic diseases with childhood onset, we need to start 
by understanding microbial community development from birth onwards, 
and align this process with health over time. The first 1000 days from 
conception until the second birthday form a critical developmental window, 
when life events and environmental exposures can significantly affect a 
child’s path towards health or disease. Birth marks the transition from a 
sterile environment inside the womb to an extrauterine world swarming with 
microbes. The assembly of the early-life microbiota and their development 
from this point onwards are driven by many perinatal, lifestyle and 
environmental factors including, but not limited to, delivery mode, feeding 
type, infections and medical treatment like antibiotics (12–16). At the same 
time, the early-life microbiome is involved in instructing the infant immune 
system how to distinguish friend from foe (17, 18). Improved understanding 
of this crucial impact of the microbiome on immunity and child health may 
pave the way for opportunities for prevention if we are able to safeguard 
critical early-life microbes.

EARLY-LIFE MICROBIOTA AND IMMUNE MATURATION
The incidence of immune-related diseases with childhood onset such as 
asthma, allergies, and diabetes, is increasing worldwide (19). The theory of 
the ‘disappearing microbiota’ suggests that as a side-effect of modern life 
with high hygienic standards, altered nutrition and easy access to medical 
interventions, essential microbes for normal immune maturation are 
less frequently transmitted to infants and young children with potentially 
profound health consequences (20). This is supported by epidemiological 
studies showing that important drivers of the early-life microbial community 
composition, such as birth by caesarean section, lack of breastfeeding 
and antibiotic treatment in early life, are indeed associated with a higher 
risk of developing asthma and allergies in childhood (21–23). The broad 
involvement of the early-life microbiome in immune maturation and host 
health has for instance been convincingly demonstrated in experimental 
studies using infant mouse models (24–27). However, longitudinal studies 
in human infants that directly link microbial community development from 
birth to relevant immunological parameters, such as vaccine responses and 



Chapter 1

12

total antibody concentrations, remain scarce. Studies focusing on mucosal 
immunity are especially uncommon, even though mucosal surfaces form 
the primary site where host-microbiota interactions occur.

EARLY-LIFE MICROBIOTA AND RESPIRATORY INFECTIONS
Lower respiratory tract infections (LRTIs) remain a leading cause of childhood 
morbidity and mortality worldwide (28). From epidemiological evidence, it is 
well-known that children who have experienced a severe LRTI in the first years 
of life are also at increased risk of developing persistent wheeze and asthma 
later on (29, 30), but the biological underpinnings of these associations 
remain unclear at this point. The polymicrobial pathophysiology of childhood 
LRTI was elucidated by recent microbiota-based studies that challenged the 
longstanding one pathogen-one disease paradigm by revealing significant 
aberrations to upper and lower respiratory tract microbial communities 
combined with a higher frequency of specific respiratory viruses compared 
with healthy individuals (31–33). The developmental trajectory of the 
respiratory tract microbiota from birth onwards has also been associated 
with the risk of long-term respiratory morbidity such as a higher frequency 
of RTIs in the first year of life and the chronic disease asthma (14, 34, 
35). Tying these findings together, it follows that studying the respiratory 
microbiota during and following severe LRTIs in early childhood may improve 
our understanding of the biological mechanisms underlying subsequent 
persistent wheeze and asthma development and open new avenues for 
preventative interventions.

RESEARCH QUESTIONS AND OUTLINE OF THIS THESIS
In this thesis, we address the research gaps mentioned above and study 
the early-life microbiota in relation to mucosal immune maturation and 
respiratory infections in children. In addition, we expand on the potential 
of using saliva for determining antibody concentrations and presence of 
pathogens.
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The following research questions are addressed:

1. What is the current evidence for the influence of the early-life microbiota 
on respiratory health?

2. What are methodological challenges that researchers face when 
designing and executing a respiratory microbiota study?

3. Are maternal mucosal antibodies in early life associated with the 
assembly of the nasopharyngeal microbial community in healthy infants, 
and subsequently, is early-life nasopharyngeal microbiota development 
associated with the induction of intrinsic mucosal antibody responses?

4. Is the early-life development of the gut microbial community associated 
with the antibody response to childhood vaccinations and what is the 
influence of delivery mode?

5. How do salivary antibody responses to pneumococcal conjugate 
vaccination compare between two different immunization schedules?

6. Is the nasopharyngeal microbial community composition during and 
following a severe LRTI associated with recurrence of respiratory 
symptoms after the acute infection, and how do the nasopharyngeal 
microbiota recover after the infection?

7. How do the nasopharyngeal, salivary and lower respiratory microbiota 
develop during and following mechanical ventilation for a very severe 
LRTI?

8. How does the sensitivity for detection of common respiratory pathogens 
in children with RTI symptoms compare between saliva, nasopharyngeal 
swabs and oropharyngeal swabs?  

In chapter 2, we review pre-existing evidence on the influence of the 
early-life microbiota on respiratory health, thereby providing an extensive 
rationale for pursuing additional knowledge on host-microbiota interactions 
in young children. In chapter 3, we briefly discuss major methodological 
challenges faced when studying the low-dense respiratory microbiota, 
and provide recommendations on how to overcome these issues. Next, 
we focus on associations between the early-life nasopharyngeal and gut 
microbial community in healthy infants and mucosal antibody levels and 
vaccine responses, respectively, which were measured in saliva. We use a 
birth cohort of healthy infants (the MUIS study (36)) with intensive follow-
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up in the first year of life including microbiota characterization, providing 
a unique opportunity to align microbial community development from 
birth with immunological outcomes. Specifically, in chapter 4, we align the 
dynamics of total salivary antibody levels and the nasopharyngeal microbial 
community composition over time to investigate bidirectional antibody-
microbiota associations within the upper respiratory tract. In chapter 5, we 
investigate whether the gut microbial community composition in the first 
weeks of life, which is strongly driven by mode of delivery, are associated 
with subsequent differences in vaccine responses. To further explore the 
potential of saliva for research into mucosal antibody responses, we then 
compare salivary antibody responses to pneumococcal vaccination between 
two different immunization schedules in chapter 6. Next, we build upon 
previous knowledge on aberrations to the respiratory microbiota during 
severe LRTIs (31), to explore microbial community recovery from the acute 
infection onwards. In chapter 7, we use a case-control study of young 
children hospitalized for a LRTI (the MOL study (31)) to study the recovery 
of the nasopharyngeal microbial community composition after clinical 
symptoms of the acute infection had resolved. We also study associations 
between the microbial community composition at time of the acute infection 
and recurrence of respiratory symptoms during the 2 months follow-up 
period. In chapter 8, we explore changes to the upper and lower respiratory 
microbiota during and following mechanical ventilation for a very severe 
LRTI in pediatric intensive care patients participating in the MEREL study (31). 
Finally, in chapter 9, we compare the sensitivity of saliva, nasopharyngeal 
and oropharyngeal swabs for the detection of common respiratory 
pathogens in children presenting to the hospital emergency department 
with symptoms of a RTI. To conclude, in chapter 10, we discuss the main 
findings of these individual chapters in light of the current literature, and 
formulate recommendations for future research. 
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ABSTRACT
Microbial colonisation of mucosal surfaces starts at birth and diversifies within 
the first months of life. This process is mainly driven by niche-specificity but 
also by early environmental exposures, ultimately shaping the composition 
of the microbiome. Early-life microbiota likely perform important functions, 
among which are respiratory tract morphogenesis, pathogen resistance, and 
immune system development. Microbial dysbiosis or imbalance, instigated 
by altered exposure to lifestyle factors including antimicrobial treatment, is 
coupled to a dysregulated immune response, possibly leading to microbial 
overgrowth, infection and inflammation. Shifts in microbial communities 
have been associated with the early stages of (respiratory) diseases including 
acute infection, chronic wheeze and asthma, causing a paradigm shift in 
our current understanding of disease pathogenesis. Mechanistic insight 
obtained from animal, in vitro, and computational models, slowly start to 
highlight key host-microbiome-environment interactions contributing to 
disease. In the future, a systems science approach integrating microbiome 
data with host and environment characteristics may contribute to novel 
interventions to better prevent, diagnose and treat respiratory diseases.
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INTRODUCTION
Children represent the future, and health problems in early life can 
significantly influence their well-being in adolescence and later adulthood. 
Childhood respiratory tract infections (RTIs) remain a major global health 
concern; pneumonia is the leading cause of death in children under five 
years old, with most deaths occurring in low-income countries, whereas 
upper RTIs including acute otitis media (AOM), rhinitis and pharyngitis 
are amongst the most common causes of childhood illnesses worldwide 
(1). Antibiotic treatment can be lifesaving in this respect, but adds to the 
ever-increasing antimicrobial resistance among respiratory pathogens. 
Analogously, incidences of atopic disease, allergies and asthma have been 
on the rise for several decades, with allergic sensitisation rates among 
school children worldwide estimated at 40-50% (2). 

Advanced sequencing technologies have revealed that the human body is 
home to an intricate ecosystem of bacteria, fungi, parasites and viruses, 
called the microbiome, which might be key to pathogenesis of a broad 
range of paediatric respiratory diseases. Most work to date has focused 
on the bacterial component referred to as the microbiota. Acute and 
chronic respiratory infections in childhood have been related to discrete 
compositional shifts in the bacterial communities residing in the respiratory 
tract (3-5). Furthermore, atopy, chronic wheeze and asthma have been 
associated with changes in the intestinal and airway microbiota in the first 
year of life, well before clinical disease onset (4, 6). A plausible explanation 
could be that within the respiratory tract, the healthy microbiome maintains 
a symbiotic relationship with the mucosal surfaces, together cooperatively 
ensuring local immune homeostasis and pathogen resistance. On the other 
hand, a state of microbial dysbiosis triggered by endogenous or exogenous 
factors can disrupt host-microbiome interactions and consequently allow 
for infectious and inflammatory disease and vice versa (7). 

The neonatal phase is critical for healthy immune development. Birth marks 
the abrupt transition from the apparently sterile womb to the outside 
world, where the neonatal mucosal surfaces are immediately exposed to 
environmental, including microbial, stimuli. Immune cells are present at 
early stages of foetal development, but their functionality is directed at 
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tolerance of self- and maternal antigens: the post-natal immune system 
therefore needs to be ‘educated’ by its environment to find the balance 
between immune activation against enemies and tolerance to innocuous 
agents. The same environmental exposures in infancy including birth mode, 
feeding type and presence of other children in the household, seem to 
instruct appropriate immune maturation and shape respiratory microbiota 
development (8-11) – could the early-life microbiome be the primary 
instructor of immune maturation? This question drives an active area of 
research, as an affirmative answer would provide a promising window 
of opportunity to influence the immune system through manipulation of 
the microbiome, with potentially profound benefits for later-life health. 
In this chapter, we will first describe drivers of microbial acquisition and 
development from birth into childhood, and provide a detailed overview 
of key microbial occupants in the different respiratory tract niches and 
functions of the respiratory microbiota. Next, we will discuss possible causes 
and consequences of altered microbial development, including antimicrobial 
treatment, acute infection and chronic inflammatory disease. We will further 
elaborate on in vitro and in vivo techniques to study the microbiome. Finally, 
we will present our perspective on future applications of current knowledge 
in research and clinical practice.  

THE HUMAN MICROBIOME AND PHYSIOLOGICAL 
FUNCTIONS
Initial microbiome acquisition: A window of opportunity
Baby’s first microbes generally reflect the first microbial encounters, and 
are similar across different body sites including the respiratory tract (12). 
The commonly accepted notion that infants are born sterile was challenged 
by recent work suggesting that a distinct placental microbiome exists and 
that mother-to-infant transmission may begin in utero (13), although this 
finding remains controversial (14). One universal and inevitable exposure 
is birth itself, and the encountered microbes largely depend on mode of 
delivery; vaginally born children are primarily seeded with the faecal and 
urogenital microflora of the mother during birth, whereas caesarean born 
children initially carry typical skin-dwelling bacterial species (10, 12, 15). 
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Initial colonisation is mostly transient, and over time natural selection occurs 
of those microorganisms best fit to local micro-environmental conditions 
like pH and temperature, ultimately forming complex, niche-specific 
communities (10, 16). Throughout early life this process is progressively 
influenced by new environmental encounters, including dietary changes, 
infections, vaccination, pet keeping and exposure to other children, i.e. 
crowding, at day care facilities or at school (Figure 1) (8, 9, 17-19). Breastmilk 
in particular is renowned for conferring significant protection against 
respiratory and other infections to infants, and contains immunomodulatory 
proteins, prebiotic oligosaccharides and microbes that are each thought to 
contribute to microbial development in infancy (20). 

Health-associated early-life environmental exposures thus likely create 
local conditions that a plethora of commensal microbes thrive in, while 
potentially harmful pathogens are kept at bay, thereby constituting a healthy 
equilibrium between host and microbiota. By contrast, microbial dysbiosis 
is characterised by overgrowth of potential pathogens, underrepresentation 
of beneficial commensals, altering bacterial behaviour and predisposing the 
host to disease. Dysbiosis may be instigated by changes in host lifestyle or 
environment or a consequence of interspecies interactions, which is likely 
modulated by the resident microflora (21, 22). Microbiota resilience may be 
vital to maintaining microbial symbiosis and a healthy equilibrium with the 
host. In contrast to the gut microbiome, it remains unclear whether microbial 
diversity plays any role in resilience, or whether it is merely a function of 
the presence of keystone genera or species (23). Profound understanding 
of host-bacterial interplay may ultimately inform the development of 
microbiota-oriented interventions, restoring a healthy equilibrium between 
microbiome and host during the critical early-life  period, thereby preventing 
a path towards disease.

Respiratory microbiome composition and development in 
early life
The respiratory tract is composed of the upper respiratory tract (URT) and 
the lower respiratory tract (LRT), that are themselves divided into multiple 
anatomical structures. The main function of this complex organ system is 
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the exchange of oxygen and carbon dioxide. To optimise the gas exchange 
process occurring in the alveoli, the conducting airways first filter, warm and 
humidify inhaled air, and hereby also provide a first-line defence against 
potential pathogens. Microorganisms that are still aspirated from the URT 
become entrapped in the mucus covering the respiratory tract and are 
moved towards the oral cavity through ciliary action, from where they are 
cleared. Nonetheless, overlapping microbial ecosystems inhabit the entire 
surface of the respiratory tract, with a wide range of mostly aerobic and 
facultative anaerobic microbes forming specialised communities with large 
compositional differences between individuals (16, 17, 24, 25) (Figure 2).

Respiratory microbiota

Vaginal birth

Breast milk

C-section birth Antibiotics

Siblings

Day-care / School

Infections

Farm environment

Vaccination

Pets (dogs)

Figure 1 | Environmental factors influencing early-life respiratory microbiota 
composition. Several factors have been shown to induce shifts in early-life 
respiratory microbiota composition. These include the very first seeding of microbes 
during vaginal or C-section deliveries. Postnatal factors include diet, treatments, 
infectious events and/or familial and environmental exposures. Factors that have 
been shown to have a positive or negative impact on microbiota development and/
or host immunity are depicted in green or red, respectively.
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Nasal cavity

Nasopharynx

Oral cavity

Lungs

Biomass Key genera

Staphylococcus, Propionibacterium,
Corynebacterium, Moraxella,
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Corynebacterium, Dolosigranulum,
Haemophilus, Streptococcus

Streptococcus, Rothia,
Veillonella, Prevotella,
Leptotrichia, Porphyromonas
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Prevotella, Porphyromonas,
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Figure 2 | Early-life microbiota composition along the respiratory tract. 
Changes in physiological parameters along the respiratory tract create unique 
ecological niches, which ultimately shape the composition of the microbiota in early-
life. This niche-specific microbial diversification probably occurs during the first 2 to 
3 postnatal months of life in humans. The upper respiratory tract is an important 
source of microbes for the lungs, probably as a result of micro-aspiration. This 
results in a gradient in both the composition and the total biomass of the microbial 
communities with lower bacterial density at the distal part of the airways. Adapted 
from: (24).

Even the traditionally considered sterile lungs contain extremely diverse 
low-density microbial communities (26), which seem in generally healthy 
individuals the result of microbial migration from the URT, as explained 
by the island biogeography model (24, 27).  This model proposes that the 
oropharyngeal and - particularly in children - the nasopharyngeal niches 
form the ‘mainland’ from where microbes migrate to the ‘islands’, i.e. the 
lungs, where the community composition depends on microbial migration, 
elimination and reproduction, though still is connected with those in the URT 
(28-30). On the other hand, in advanced stages of chronic lung diseases like 
cystic fibrosis (CF), the populations ultimately become segregated as a result 
of alterations to local environmental growth conditions and/or differential 
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selection of microbes by (repeated) antibiotic treatment (31). Nonetheless, 
the easily accessible URT is commonly used as a proxy for studying the LRT 
microbiota, which seems valid for paediatric studies of both chronic and 
acute lung infections (28, 32), though further validation is required.

Anterior nares and nasal cavity

The anterior nares form the transition from the facial skin to the mucosal 
surfaces of the respiratory tract; hence, the microbial composition bears close 
similarity to the skin microbiota. The skin-like epithelial lining contains glands 
that secrete sebum, an oily matter promoting establishment of lipophilic 
skin colonisers, such as the genera Staphylococcus and Corynebacterium 
(25, 33). Other frequent occupants of this niche include Streptococcus 
spp., Dolosigranulum spp., and Moraxella spp. (25, 33). Age appears to be 
an important driver of the nasal microbial ecosystem, as members of 
Streptococcaceae and Moraxellaceae families were relatively more abundant 
in healthy children compared to healthy adults (34). Furthermore, mode of 
delivery seems to drive the nasal microbial community composition, with 
in caesarean born infants increased abundance of Staphylococcus spp. and 
decreased abundance of Corynebacterium spp. compared to vaginally born 
infants, as well as mode of feeding, with in formula-fed infants higher levels 
of Moraxella spp. than breastfed infants (33). 

Nasopharynx 

The nasopharynx clearly represents the most extensively studied niche 
of the early-life respiratory microbiome as it is considered the ecological 
niche for most respiratory pathogens. Predominant bacterial genera in 
the nasopharyngeal niche overlap considerably with those of the anterior 
nares, but the community composition becomes much more complex (4, 
17, 33). Distinct nasopharyngeal bacterial communities are established in 
the first weeks of life. On the first day post-partum, most children show a 
Streptococcus-dominated bacterial profile, but niche-specificity develops 
rapidly, with brief Staphylococcus aureus predominance at one week of age 
often preceding differentiation towards distinct communities dominated 
by Corynebacterium pseudodiphteriticum/propinquum, Dolosigranulum 
pigrum, Moraxella catarrhalis/nonliquefaciens, Streptococcus pneumoniae, 
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and/or Haemophilus influenzae over the first six months of life (10). These 
initial bacterial profiles likely set the infant on a microbial developmental 
trajectory; early Corynebacterium/Dolosigranulum predominance was often 
succeeded by stable Moraxella-dominated colonisation, whereas profiles 
dominated by S. pneumoniae or H. influenzae showed large fluctuations over 
time (17). D. pigrum is a lactic acid-producing bacterium, and this group of 
bacteria are generally considered to contribute to healthy microbiota and 
to have probiotic properties (35). Dolosigranulum and Corynebacterium often 
co-occur, and the hypothesis is that lactic acid production of Dolosigranulum 
decreases the pH, which selects for and supports Corynebacterium outgrowth 
(7).

Microbial encounters in early life heavily influence the earliest developmental 
phases of the nasopharyngeal microbiota. In caesarean born children, a delay 
in microbial succession patterns with prolonged S. aureus predominance 
was observed; moreover, these children showed decreased abundance 
of Corynebacterium and Dolosigranulum (10). Feeding type also seems an 
important determinant of early microbial succession patterns: in six-weeks-
old exclusively breastfed infants, Corynebacterium/Dolosigranulum-dominant 
profiles typically predominated, whereas S. aureus was highly abundant 
in formula-fed infants (9). Furthermore, exposure to other children in the 
household or at day-care facilities was associated with increased abundance 
of Haemophilus, Streptococcus and Moraxella and decreased abundance 
of Staphylococcus and Corynebacterium (4).  Further development from a 
composition dominated by only few taxa into an adult-like, more diverse, 
microbial community structure continues over the first years of life, 
although it remains unclear when the nasopharyngeal microbiota reaches 
full maturity (16). 

Oropharynx and oral cavity

The oral cavity and oropharynx form the route of entry to the gastro-
intestinal as well as the respiratory tracts, and are thus exposed to a wide 
range of food- and airborne bacteria as well as colonisers from connected 
niches. Unsurprisingly, the oropharynx harbours the most diverse 
bacterial assemblages of all URT niches (36). The oral and oropharyngeal 
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microbiomes are subject to similar environmental selective pressures, and 
consequently, their compositions are also similar (7). Interestingly, contrary 
to the nasopharynx, young children and adults already show comparable 
oropharyngeal microbial community composition, mostly composed 
of (facultative) anaerobic genera like Streptococcus, Prevotella, Neisseria, 
Veillonella, Porphyromonas and Rothia (16). Streptococcus spp. are amongst 
the earliest colonisers of the oral niche and clearly predominate the resident 
bacterial community, although their abundance decreases slightly when 
other genera emerge, i.e. Gemella, Granulicatella, Haemophilus and Rothia 
from three months of age, and subsequently Actinomyces, Porphyromonas, 
Abiotrophia and Neisseria after the first year of life (37). The childhood oral 
microbiome composition is, similar to other URT habitats, shaped by mode 
of delivery (12), feeding type, with breastfeeding linked to increased levels 
of lactobacilli (38) and Streptococcus (37), and transfer between household 
members (39). More specific to the oral niche, eruption and health status of 
teeth also affects local microbiome development (40).  

The lower respiratory tract

As one progresses distally in the LRT, the airway mucosa cell composition 
gradually shifts resulting in a unique microenvironment characterised by 
high levels of phospholipids in the form of surfactant (41) whose levels are 
known to gradually increase from 30 weeks of gestational age (42). Dysbiotic 
lower airways microbiota composition has been observed in neonates 
born prematurely (before 30 weeks of gestational age) when compared to 
term neonates of the same age suggesting that the in premature infants 
impaired phospholipid-rich environment could support the formation of 
a more diverse microbiota (43). Due to the invasive nature of LRT sample 
acquisition, studies in human neonates are very limited, mostly targeting 
premature, cystic fibrosis or chronic lung disease populations (30, 44-46). 
However, a recent study reported that the LRT microbiota in healthy infants 
forms within the first two postnatal months of life with diversity gradually 
increasing (43) consistent with the timing observed in the URT (47) and other 
body sites (48). Gestational age was strongly linked with immune maturation 
status, which correlated with differential microbiota profiles. The strongest 
gene expression signals upregulated with gestational age were related 
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to IgA pathway and IL-33 production, a cytokine linked with susceptibility 
to asthma in humans and disease exacerbation in mice (49). Notably, the 
same study identified Streptococcus and Neisseria spp. as key for neonatal 
LRT bacterial community structure. Interestingly, mode of delivery impacted 
microbiota composition in preterm but not term born neonates suggesting 
that immature lungs may represent a distinct microhabitat. Although lower 
airways bacterial communities of both children (30, 43) and adults (50-52) 
share common genera like Streptococcus, Veillonella, Neisseria, Porphyromonas 
and Prevotella with the URT, in particular with the oral cavity, differences 
remain (29). This suggests the presence of a selective pressure unique to 
the lower airways that may also explain the lower bacterial load typically 
observed in at this site (29, 53). Multiple factors, notably the presence of 
innate immunity proteins, such as surfactant protein A, lactoferrin, and 
defensins or adaptive secretory immunoglobulin A (sIgA) (43) may contribute 
to early-life LRT microbiota selection and homeostasis (54).   

Homeostasis between the respiratory microbiome and host 
mucosal surfaces 
Respiratory tract organogenesis

At birth, respiratory tract morphogenesis is not complete, in fact alveolarization 
is exponential in the first 2 years of life and continues until early adulthood 
(55). Early evidence from animal models indicates that the microbiota can 
influence lung development as germ-free mice have been reported to have 
lower numbers of mature alveoli. Intriguingly, experimentally introducing 
Lactobacillus spp. in the nasal cavities of germ-free pups can normalise alveolar 
architecture, suggesting causality of the lack of microbial exposure (56). The 
nasopharyngeal-associated lymphoid tissue in mice is in a strategic location 
for detecting incoming pathogens, and subsequently orchestrates immune 
responses, analogous to Waldeyer’s ring in humans. In neonate rodents this 
structure is nearly absent, which suggests that its development depends on 
environmental signals, possibly including the resident microbiota (57). These 
examples demonstrate that early respiratory microbiota acquisition likely 
contributes to adequate development of anatomical structures critical for gas 
exchange and local immunity.
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Pathogen resistance

The URT forms a major reservoir for opportunistic pathogens, and is an 
important gatekeeper for respiratory health (24). Colonisation of the URT 
with respiratory bacterial pathogens necessarily precedes local and invasive 
infection (58), but the same bacterial pathogens commonly inhabit the URT 
in the absence of disease. Bacterial species that are frequently isolated from 
respiratory specimens of patients suffering from RTI include S. pneumoniae, 
S. aureus, M. catarrhalis and H. influenzae, and these species can also be 
measured in up to 93% of asymptomatic children under two years of age 
(59). Mutualistic and competitive interspecies interactions underlie the co- 
and anti-occurrence patterns observed in culture-based studies (21, 59), and 
likely reflect that potential pathogens have evolved to keep each other at bay 
within the human host. These observations challenge Koch’s first postulate 
that each pathogen is exclusively linked to a distinct clinical disease, and 
supports the idea that RTIs are polymicrobial and result from aberrant 
interplay between (multiple) pathogens and their ecological surroundings. 
Therefore, viewing colonisation resistance and pathogen containment 
from an ecological perspective likely provides deeper understanding of 
respiratory health and disease.

A balanced ecosystem elicits homeostatic host-microbiome interactions and 
withstands colonisation by incoming pathogens. Once a microbial community 
has established within the URT, a diverse palette of microorganisms thrives 
on locally available nutrients, thereby depleting the resources that other 
species including pathogens need to colonise the niche successfully. 
Decreased community diversity, defined as the number of different bacterial 
species (richness) that are present at high abundance (evenness), has been 
associated with respiratory infections (3, 60, 61), and lack of competition 
might facilitate pathogen colonisation, but this association is not as clear-
cut as in studies of the gut microbiome (62). Certain community members 
called keystone species that compete with invading pathogens appear 
critical to maintain a balanced community composition (7). For example, 
high abundance of Dolosigranulum spp. and Corynebacterium spp. in the 
nasopharyngeal niche has been associated with respiratory health, and 
active exclusion of the renowned respiratory pathogen S. pneumoniae by the 
latter has been observed (17, 60, 63, 64). Furthermore, the oropharyngeal 
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microbiota has been suggested to prevent bacterial invasion through direct 
effects on the epithelial barrier, inducing mucus and antimicrobial peptide 
production and promoting tight junction integrity (65).

Once pathogenic species have settled in the URT, interactions with the 
resident microflora can constrain their pathogenicity. For instance, S. aureus 
is a highly abundant coloniser of the URT in early life, but rarely causes disease 
in infants. Both synergistic and antagonistic interactions might explain this: 
for example, co-occurrence with Corynebacterium spp. can inhibit S. aureus 
virulence (66), while presence of several other Staphylococcus spp. can 
limit S. aureus outgrowth through secretion of bactericidal substances (67, 
68). Apart from interspecies interactions keeping facultative pathogens in 
check, pathogenic species’ behaviour can shift towards commensalism. In 
such a state, S. aureus produces natural antimicrobials that can eliminate 
bacterial competitors (69). RTI caused by S. pneumoniae is more likely to 
occur soon after the host acquires a previously unmet strain (70). However, 
when prolonged colonisation exists, a state of symbiosis with the host will 
develop, where the colonising strain can exclude other strains of its own 
species that the immune system may not tolerate.

The chances that an opportunistic respiratory pathogen successfully 
causes infection may thus depend on the URT microbiome composition, 
as in a healthy state resource scarcity, health-promoting commensals and 
competing pathogens will counteract the intruder’s attempts. 

Immune-system development

Development of the immune system continues after birth, when its 
primary function switches from tolerance to maternal and self-antigens, 
to protection against disease-causing agents. Consequently, the immune 
system is likely the most malleable in the earliest life phase, at the same 
time that the respiratory microbiome develops. In continuous cross-
talk between the local microbiota and innate and adaptive immune cells, 
microbes provide crucial cues that teach the immune system to distinguish 
friend from foe (71) (Figure 3). Immunoglobulin A (IgA) secreted by B 
cells is present in the mucus layer covering the URT, where it selectively 
entraps microorganisms, precluding them from interacting with epithelial 
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receptors to colonise the mucosal surfaces. In this way, IgA is believed to 
regulate the commensal microbiota and orchestrate mutualistic host-
microbe interactions. This homeostatic role of IgA was most extensively 
investigated in the gastrointestinal tract (72) but recent findings suggest 
that similar mechanisms exist in the human airways (43). Specifically, 
neonatal gene expression in the lower airways linked with IgA production 
pathway and correlated with predicted microbial IgA proteases function.  
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Figure 3 | The roles of the respiratory microbiota in early-life. Early-life colonization 
of the airways by commensal microbes play a central role in the resistance against 
invading pathogen (upper panel) and the induction of immune tolerance (lower 
panel). The protection against harmful pathogens can be mediated by both direct (e.g. 
niche competition) and indirect mechanisms (e.g. release of microbial by-products). 
The sensing of microbes and/or their by-products by the resident mucosal cells 
(dendritic cells, alveolar macrophages, alveolar epithelial cells) induces the activation 
and the recruitment of immune cells systemically (Tregs, B cells, iNKTs), a process key 
for long-term immune tolerance and regulation of inflammation. DC, dendritic cell; 
Tregs, regulatory T cells; iNKTs, inducible natural killer T cells; AECs, alveolar epithelial 
cells; AMPs, antimicrobial peptides; sIgA, secretory immunoglobulin A.
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Dendritic cells (DCs) are important conductors of cell-mediated immunity, 
by constantly sampling their environment before moving to draining lymph 
nodes to present microbe-derived antigens either to T cells that can mount an 
effective immune response or to regulatory T cells that can induce tolerance. 
Mouse studies demonstrated that the expression of PDL-1 in neonatal lung 
DCs was a key process for tolerance to aeroallergens during the critical time 
window when lung microbiota establish (73). Invariant natural killer cells 
may also play an important role in mucosal tolerance, as perinatal microbial 
stimulation was needed to prevent exaggerated accumulation of these cells 
in both the respiratory and gastrointestinal tracts

Finally, although these mechanisms still require validation in humans, it 
is now evident that early-life microbial colonisation plays a major role in 
orchestrating peripheral tolerance in mucosal tissues.

The gut-lung axis
Moreover, although the above findings implicate a crucial role of the 
microbiome in immunity, it does not make a distinction between the role 
of the local (respiratory) microbiome, and the microbiome present at distal 
sites such as the gut. The bacterial gene pool of the gut greatly outnumbers 
that of the respiratory tract, and therefore, it is no surprise that the gut 
microbiota has shown important for respiratory health as well. The critical 
role of early microbial colonisation of the gut in regulating host immune 
responses was for example shown by a study in germ-free mice, where lack 
of microbial stimuli in infancy led to decreased immune activation to bacterial 
respiratory pathogens aggravating infection (74). Furthermore, allergic 
hyperresponsiveness and RSV-induced inflammation of mice airways was 
attenuated by an airway allergen challenge with dog-associated house dust 
through increased abundance of, amongst others, Lactobacillus johnsonii 
in the gut (75). In humans, it was shown that specific changes in intestinal 
bacterial communities in infants with CF, were followed by worsening of 
the clinical status of the patients, including pulmonary exacerbations and 
Pseudomonas aeruginosa acquisition in the respiratory tract (76). Although the 
exact mechanisms by which gut microbiota composition affects respiratory 
health are under active investigation, recent work showed that transport 
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of gut microbial antigens to the lung seems to directly modify alveolar 
macrophage function, and improve their host defences against bacterial 
pathogens (77, 78). Furthermore, gut microbiota changes induced by high-
fibre diets led to increased systemic levels of short-chain fatty acids, which 
seemed to modulate haematopoiesis and DC and macrophage functionality, 
conferring increased protection against asthma and lung tissue damage 
caused by viral infection (79, 80). However, alternative pathways suggested 
for this phenomenon are that microbial selection in the gut and lung occur 
simultaneously under similar selective pressures, or that these findings are 
merely a bystander effect resulting from systemic inflammatory processes. 
Therefore, future research into the gut-lung axis seems important to unravel 
(parallel) protective immune-modulating pathways, since these could serve 
as basis for future (dietary) interventions modulating respiratory health 
through manipulating the gut microbiome.    

DISEQUILIBRIUM BETWEEN THE HOST AND THE 
MICROBIAL WORLD
Ecological equilibrium between the host and its microbial population is 
believed to promote health by limiting pathogen overgrowth and dampening 
inflammation. By contrast, microbial dysbiosis, defined as microbial 
imbalance or maladaptation, may tip the equilibrium out of balance, 
possibly leading to infectious or inflammatory disease. In the following, we 
will explain how microbial dysbiosis may result from altered exposure, virus 
acquisition, antibiotic elimination or inflammatory selection and how it may 
enable acute infection, chronic wheeze and asthma. 

Causes of dysbiosis
Altered exposure: Caesarean section and formula feeding

The effects of mode of birth and infant feeding type on the respiratory 
microbiome composition were outlined in the previous section. Generally, 
birth by caesarean section and formula feeding are associated with 
colonisation patterns characterised by decreased abundance of health-
associated commensals like Corynebacterium and Dolosigranulum, and 
increased abundance of potential pathogens like Haemophilus and 
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Staphylococcus. Although the microbiome seems to recover with age (37), 
initial bacterial profiles likely determine bacterial succession patterns, which 
may impact short- and long-term disease susceptibility. Stable microbial 
colonisation in the first half year of life has been associated with exclusive 
breastfeeding and with fewer parent-reported upper RTIs, suggesting that 
breastfeeding may exert its protective effects through the microbiome 
composition (9, 17). Moreover, epidemiological evidence linking life style 
factors including mode of delivery and infant feeding type to development of 
chronic inflammatory diseases such as inflammatory bowel disease, asthma 
and allergies, further underscores the importance of this key period (81-83). 

External influence: Virus acquisition

Like bacteria, viruses can reside in the respiratory tract asymptomatically: 
while they are considered the main cause of (childhood) RTI, they are also 
detected in approximately 70% of healthy children (59, 84). Common benign 
respiratory viruses include rhinovirus, bocavirus, polyomaviruses, adenovirus 
and coronavirus. Viral-bacterial interplay may affect the resident microbiota 
composition and trigger the transition of colonising potential pathogens 
into disease-causing agents (85). Presence of respiratory viruses appears to 
increase rates of S. pneumoniae, H. influenzae and M. catarrhalis colonisation 
in asymptomatic children; for example, rhinovirus and respiratory syncytial 
virus were associated with increased risk of H. influenzae colonisation (59). 
Moreover, influenza A virus infection was followed by pneumococcal release 
from biofilm growth in the airways of mice, which led to severe respiratory 
disease (86). Potential mechanisms underlying virally induced alterations 
to bacterial colonisation were investigated in in vitro and animal studies 
and include enhancing bacterial adhesion and translocation through direct 
damage to the epithelial barrier (87-89), downregulating various components 
of the innate immune system (90-92), and increasing expression of host-
derived nutrient sources (93). It therefore seems plausible to abandon the 
one-pathogen-one-disease theory, instead study RTIs from an ecological 
perspective. In a recent study, we attempted to classify children with a 
moderate severe LRTI and healthy matched controls based on their total 
ecological community including bacteria and viruses: this indeed yielded 
a more complex classification model which included viruses, potential 
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pathogenic bacteria as well as (the presence or absence of)  multiple other 
commensal bacteria (28). Studies detailing simultaneous development of the 
respiratory bacterial and viral microbiota in young children in a longitudinal 
fashion are scarce, and would likely yield important novel insight into 
processes leading to RTIs. This would be of particular interest in the context 
of rhinovirus- and/or respiratory syncytial virus-associated LRTI in the first 
year of life, as these viruses are associated with later-life persistent wheeze 
and asthma (94).

Elimination: Antibiotics

Antibiotics represent one of the greatest advances in modern medicine, 
but due to their lack of selectivity, they have a broad impact on many 
constituents of the ‘healthy’ microbiota. Epidemiologically, antibiotic use 
in early childhood is also linked to an increased risk of later-life immune-
mediated diseases, and it has been proposed that this effect is mediated by 
microbiome changes resulting in impaired immune education (reviewed in 
(95)). Importantly, antibiotics are most frequently taken in the first two years 
of life, which can have important side effects on microbiome maturation 
(96).

Antibiotic use affects respiratory microbiome composition through 
loss of biodiversity and decreased abundance of keystone species like 
Dolosigranulum and Corynebacterium, leaving the niche partially vacant 
for opportunistic pathogens to grow or intrude and potentially cause a 
vicious cycle of disease (3-5). Indeed, risk of recurrent AOM was increased 
after recent antimicrobial exposure, probably due to diminished pathogen 
resistance (60). After completion of an antibiotic course and clinical recovery 
from infection, microbial communities reform to a state comparable but 
not always equal to before the infection, indicating to certain extent the 
microbiome’s resilience (3, 5). On the other hand, children taking antibiotics 
in the first two years of life were shown to harbour compositionally different 
oral microbial communities at least up to seven years of age, with decreased 
abundance of commensals such as Granulicatella and increased abundance 
of genera associated with oral disease such as Prevotella (37). Lasting 
perturbations of the microbiome suggest that dysbiosis induced by early 
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antibiotic exposure is not temporary, which could explain the association 
with later-life susceptibility to inflammation-mediated diseases, though the 
exact pathophysiological mechanisms require further study.

We propose two possible explanations for incomplete community resilience 
after antibiotic treatment. Microbiome re-formation may depend on the 
level of mucosal homeostasis prior to infection onset. Coming from a state 
of symbiosis between host and microbiota, microbiome species may be 
better able to sustain microbial balance, promoting their own survival and 
reconstitution after a disruptive event. Alternatively, selective elimination 
of commensals that are critical to a balanced microbial ecosystem may 
itself lead to long-term microbial dysbiosis, with a consecutive risk of 
pathogen overgrowth and inflammation. In this scenario, the damage done 
by antimicrobial therapy may depend on the antibiotic regimen, though 
the disruptive effect of different types of antibiotics on the respiratory 
microbiome is currently not yet known. 

Selection: Inflammation

Inflammation may select for bacterial species that thrive in a pro-
inflammatory environment, and thereby elicit microbial dysbiosis. 
Local inflammation may be involved in pathogen invasion and infection 
or instigated by external stimuli such as exposure to air pollution.  
The respiratory microbiome during infection is less diverse and contains 
increased levels of pathogenic species S. pneumoniae, H. influenzae, and 
M. catarrhalis compared to healthy controls (3, 5, 62, 97), supporting the 
hypothesis that host pro-inflammatory responses to pathogen invasion 
mediate selective bacterial colonisation. Moreover, it has been shown 
that following virus-associated RTI, an individual more readily develops 
a Moraxella -dominated bacterial profile and is more susceptible to 
future infections, strengthening the idea that the inflammatory state 
accompanying viral infection may modulate the respiratory microbiota 
long-term (4). Conversely, protective microbes, for example high nasal 
abundance of Corynebacterium and Dolosigranulum, is associated 
with decreased infection rates, possibly by limiting the host pro-
inflammatory response to a viral or bacterial pathogen and maintaining 
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the balance between asymptomatic colonisation and infection (4, 63). 
The quality of inhaled air is affected by particles including microbes, but also 
allergens, dust, and fine particulate matter that come in direct contact with the 
respiratory mucosal surfaces and affect host-microbe interactions (98-100). 
Individuals are variably and often chronically exposed to inhaled particles 
because of urbanisation, the working environment or proximity to domestic 
and/or farm animals, which can either prevent or induce inflammation. 
For instance, living near poultry farms was associated with an increased 
risk of community-acquired pneumonia, and during infection patients 
had an imbalanced oropharyngeal microbiota with higher abundance of 
S. pneumoniae (101). It was suggested that inhalation of emissions from 
agricultural activities affects mucosal immune responses, creating a pro-
inflammatory environment that instigates microbial dysbiosis, although 
a direct microbiome-modulating effect cannot be excluded. On the other 
hand, early-life outdoor and indoor allergen exposure appears to protect 
from development of persistent wheeze, asthma and allergies, possibly 
through modulation of the immune response and more diverse microbiota 
(11, 19). 

The question that remains is a typical chicken-and-egg conundrum: does 
mucosal inflammation lead to microbial dysbiosis with overgrowth of 
bacterial pathogens that prosper in the inflammatory milieu (102, 103), 
or does an imbalanced microbiome primarily drive inflammation and 
consequently induce infection (104, 105)?

Role of dysbiosis in disease
Acute respiratory tract infection

Respiratory pathogens generally enter the respiratory tract through the 
nose and nasopharynx, where they first encounter the resident microbiota 
and compete for resources required for successful colonisation of the 
mucosal surfaces. Since the nasopharynx and oropharynx are connected, 
colonising microbes may then also become member of the oropharyngeal 
microbiome (24). The nasopharynx is considered the primary niche from 
where potential bacterial and viral pathogens migrate to the sinuses, middle 
ears as well as the meninges (106). By contrast, dissemination to the lungs 
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is believed to occur primarily by aspiration from the oropharynx, although 
in young children, the nasopharynx seems to be an alternative source due 
to anatomical differences, preferred nasal breathing and increased nasal 
secretions (24). Lower RTIs are far less frequent than upper RTIs, which 
suggests that oropharyngeal pathogen containment may be highly effective, 
possibly resulting from the diverse microbial mixture of respiratory, gastro-
intestinal and skin bacteria.

Alterations to the respiratory microbiome associated with infectious disease 
include increased abundance of respiratory pathogens like Haemophilus 
and Streptococcus spp. and decreased abundance of health-associated 
commensals like Corynebacterium, Dolosigranulum and Moraxella spp. (28, 
107). Interestingly, changes to the microbiota seem to precede clinical 
signs of infection, suggesting causal involvement. Longitudinal follow-up of 
young children showed that microbial development trajectories of children 
experiencing more RTI episodes already deviated from normal development 
from the first month of life, with pronounced shifts in the nasopharyngeal 
microbial composition characterised by prolonged enrichment with oral-
type bacteria before RTI onset (108). However, merely a pro-inflammatory 
bacterial community is insufficient to cause clinical disease, and 
environmental stimuli, irritants, allergens, or viral infections seem required 
to tip the balance. For instance, viral invasion may enhance potential bacterial 
pathogen colonisation by damaging epithelial cells, modulating innate 
immune responses, and promoting bacterial proliferation through direct 
effects on the mucus layer, thereby predisposing to secondary bacterial 
infection (reviewed in (7)). Besides infection-promoting changes in the 
micro-environment, pro-inflammatory responses elicited by environmental 
triggers may result in tissue swelling, which may cause translocation of 
bacteria from the respiratory tract to other sites, such as sinuses or the 
Eustachian tube where they may subsequently cause, sinusitis or AOM (109). 
In this way, microbial disequilibrium occurring in parallel with an additional 
infectious or non-infectious trigger may incite acute infections.

The microbial composition of the URT appears to not only influence RTI 
susceptibility, but also modulate RTI severity. Hospitalisation for severe RSV 
infection was associated with nasopharyngeal bacterial profile enrichment 
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by S. pneumoniae and H. influenzae, whereas high abundance of S. aureus was 
related to mild disease (110). Infants carrying high levels of S. pneumoniae 
and/or H. influenzae in their noses showed upregulation of genes involved 
in pro-inflammatory pathways, which probably underlies the enhanced 
disease severity (110). Mechanistic evidence was obtained in mice: the airway 
microbiota was shown to protect from influenza-related death through 
dampening the antiviral immune response and limiting lung tissue damage 
(111). Further support is derived from metabolome analysis of infants with 
viral-associated LRTI, in which increased abundance of Streptococcus in the 
nasopharynx was associated with increased levels of pro-inflammatory 
sphingolipids and increased disease severity (112). In a similar study, high 
Haemophilus abundance was related to increased levels of N-acetyl amino 
acids, of which the functional potential remains unclear (113). Together 
these results again suggest that the resident respiratory microflora play an 
important role in acute RTI pathogenesis, even in infections of presumed 
viral origin.

Chronic wheeze and asthma

Asthma is a chronic inflammatory condition that affects one in ten children 
in westernised countries. Virus-associated LRTIs are a major risk factor for 
its development, particularly in case of rhinovirus and respiratory syncytial 
virus (94, 114). Furthermore, it is generally accepted that atopy at a young 
age, characterised by a bias towards Th2 response, is a risk factor for asthma 
development in children. The mechanisms driving this Th2 imbalance are 
still poorly understood but evidence points towards early-life microbial 
exposures deriving either from host’s microbiota and/or its environment 
leading to immune dysregulations that translate into allergic disorders later 
on.

Murine studies have again identified a critical neonatal period, during which 
the presence of microbial signals had protective effects against allergic 
sensitisation. Airway microbial colonisation was shown to be required for 
the induction of regulatory T cells via PDL1 expression on lung dendritic 
cells in the first weeks of life conferring protection against aeroallergen-
induced airway inflammation in mice (73). Similarly, eradication of the 
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microbiome by broad-spectrum antibiotic treatment resulted in increased 
airway inflammation that correlated with reduced Tregs in the gut; an effect 
observed only if the antibiotics were administered perinatally (115). Invariant 
natural killer T cells were also reported to play a role in this process, as early 
life microbial colonisation prevented their accumulation in both the lungs 
and the gut and reduced exaggerated airway responsiveness (116). 

This so-called window of opportunity in the neonatal period of mice is just 
starting to be explored in humans and seems to fall within the first three 
months of postnatal life. Multiple studies have associated changes in 
gut microbial diversity (6) or composition (117-119) early in life with later 
development of allergy and asthma. In the respiratory tract, asymptomatic 
hypopharyngeal colonisation with S. pneumoniae, M. catarrhalis, H. influenzae, 
or a combination of these species in one-month-old infants using traditional 
bacterial culture was associated with increased asthma prevalence at 
the age of five in children born to asthmatic mothers (120). In addition, 
nasopharyngeal colonisation characterised by high levels of Streptococcus, 
Moraxella and Haemophilus in the first two years of life, as defined by 
16S-based taxonomic profiling, correlated with increased prevalence of 
chronic wheeze at five years of age even after correcting for LRTI (114, 121). 
However, the impact of such dysbiosis and the mechanisms driving host-
microbial interactions in the early stages of human life is largely unknown, 
calling for future studies.

MODELS FOR STUDYING THE ROLE OF THE EARLY-LIFE 
MICROBIOME IN RESPIRATORY HEALTH
In humans, early-life microbiota studies have mostly been descriptive as 
they typically rely on bacterial communities taxonomic and functional 
characterisation using next generation sequencing technologies. Studies 
integrating the host component in the (neonatal) airways are limited (43) 
and conclusions are often drawn based on available clinical data. Moving 
from descriptive to mechanistic approaches targeting host-microbiome-
environment interactions is crucial when aiming to predict or influence 
respiratory health.
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In vitro functional studies in controlled conditions could provide important 
mechanistic insights of direct host-microbe interactions. This later approach 
was used to characterise the impact of specific bacteria/viruses on cell lines 
of human bronchial epithelial cells upon infection (122) or monocyte-like 
cells in the context of lung transplantation (123). While these models can 
be useful to address specific host-microbe interactions, caution must be 
exercised in extrapolating the results as it may miss important complexity at 
both microbial and host system levels. This becomes even more challenging 
when studying early life, a dynamic period during which changes rapidly occur 
due to both intrinsic developmental factors and external environmental 
cues.

A substantial number of animal studies have supported the concept 
for a role of the early-life microbiota. In particular, the use of germ-free 
mice, lacking exposure to any microorganism, provided key mechanistic 
evidence for the link between early-life microbial colonisation of the lungs 
and allergic disease development (73, 116). Although human and murine 
lung microbiota seem to share some similarities at least at the phylum 
level (73, 124, 125), important differences at higher taxonomic levels have 
been observed not only among these two mammalians but also between 
different mouse strains, which is also true for the gut (126), and between 
different vendors (127). Germ-free or antibiotic treated mice may also serve 
as recipients for human microbiota xenografts, making extrapolation of 
data towards humans slightly easier. Studies targeting the gastrointestinal 
tract have used this approach, where murine gut microbiota has been 
reconstituted either using fresh faecal samples or a defined number of 
bacterial species detected in early life (117). However, the final degree of 
community recolonisation appears limited as the murine diet and intestinal 
microenvironment presumably do not support colonisation by all microbial 
constituents of the human microbiome. 

Finally, computational approaches represent a promising avenue to 
model early-life microbiota establishment and interactions with the host. 
Advances in next generation sequencing technologies have enabled the 
generation of elaborate datasets, which could serve as a basis for in silico 
modelling. Such mathematical approaches have been used to explore lung 
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microbiota structure and stability, notably during chronic infections in 
cystic fibrosis patients (128, 129). This approach is particularly relevant for 
early-life microbial ecology where the community gradually matures after 
initial seeding while responding to invading pathogens. The challenge now 
resides in the integration of both host and microbiota multi-omics datasets, 
requiring the development of new algorithms to capture interactions within 
heterogeneous datasets.

CONCLUSION AND FUTURE PERSPECTIVES
Our expanding knowledge of the form and function of the airway 
microbiome has highlighted it as a potentially key determinant in both 
the development and progression of respiratory diseases. However, the 
majority of our knowledge is still limited to associations, with very little 
mechanistic insight available. The mechanisms of host-microbial crosstalk 
need to be approached from a system science perspective in order for 
the field to be able to distinguish cause from consequence and to develop 
rational intervention strategies (Figure 4). Mechanistic insight can come 
from animal models, in vitro studies and new bioinformatics approaches 
capable of integrating multiple highly dimensional datasets. In addition, 
the vast majority of research to-date has focused solely upon the bacterial 
component of the microbiome, disregarding the impact of resident viruses, 
fungi and phages – constituents whose role in host-microbe interactions 
are likely significant as well. Finally, the impacts of the microbiome upon 
immune cell function, immune development and respiratory diseases will 
depend on the stage of life, with early life representing an opportunity 
for shaping the health trajectory of an individual. Overall, this burgeoning 
area of research into the airway microbiome is providing novel insights 
into disease development and progression, and may pave the way for 
novel preventative and therapeutic approaches to restore symbiosis,  for 
example by (i) reducing the burden of potentially pathogenic species by 
targeted vaccination or antibiotic treatment which is current practice, (ii) 
increasing species diversity, for example by dietary adjustments or (iii) 
stimulating or supplementing specific beneficial microorganisms by pre- 
and probiotic products. The latter, interestingly, may be achieved either 
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directly or indirectly through the immune-modulating properties of the gut 
microbiome. However, much work remains to be done, and future efforts 
will build on the currently existing body of evidence summarised in this 
chapter.

Microbiota System
(Bacteria, Fungi, Viruses)

Host
(Epi)genetics

Host Physiology
(Immunity, Inflammation)

Environment
Behavior

Respiratory tract
Ecological niches

 

Figure 4 | Exploring early-life respiratory microbiota using a system science 
approach. The study of early-life microbiota should be approached in a holistic 
manner, integrating information from both the host and its environment in a 
temporal order. Arrows indicate the different type of interactions that may occur at 
different levels of the system and lead to its perturbation.
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INTRODUCTION
Over the last decade, researchers have begun to unravel the causes and 
consequences of variation within the respiratory microbiota, developing a more 
profound understanding of its role in the pathogenesis of pulmonary disease 
to improve clinical management. Developments in culture-independent 
identification of bacterial species have provided faster and more cost effective 
methods to characterize niche-specific microbial ecosystems. Historically, the 
gut has been the niche of focus for human microbiome research, but recent 
studies have revealed an unexpected diversity of bacteria in both the upper 
and lower airways, linking community composition to a number of respiratory 
diseases, including cystic fibrosis (CF), chronic obstructive pulmonary disease 
(COPD) and acute infections (1). Monitoring temporal changes in community 
composition of the respiratory microbiota can reveal the influence of host and 
environmental drivers on ecosystem behavior, as well as the consequences 
of infection susceptibility or severity, and treatment effects. Here, we 
outline current best practices and upcoming developments for respiratory 
microbiome research and potential clinical applications.

STUDY DESIGN
So far, in respiratory microbiome study design, we have learned that crucial 
elements in generating valid, useful results include clear research questions, 
power calculations, enrolment of sufficient numbers of subjects and controls, 
robust sampling and exhaustive patient information collection. Although 
this applies to any well-designed population-based or clinical study, we also 
need to carefully consider possible confounding effects of a broad range of 
environmental and host characteristics on microbiome composition (1, 2). The 
first pioneering cross-sectional studies linked altered microbial community 
structure and composition to disease state (3, 4), but longitudinal sampling 
is needed to fully understand the causes and long-term clinical outcomes of 
variation in respiratory microbiota. For example, recent well-characterized 
healthy birth cohorts have shown the dynamics of nasopharyngeal microbiota 
development in relation to lifestyle factors (5, 6), and have revealed marked 
shifts in microbial community composition associated with acute respiratory 
infections (7, 8). Intensive follow-up of CF (9, 10) and COPD (11) patients 
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demonstrated changes in the airway microbiome composition preceding 
symptom onset, suggesting that dysbiosis coupled to a dysregulated host 
immune response could be at the basis of disease progression (12). Support for 
the potential role for the respiratory microbiome in early disease pathogenesis 
is evident in early childhood, as microbial communities with fewer commensals 
and more potential pathogens are associated with consecutive wheeze and 
asthma (8). So far, every study of respiratory microbiota in relation to any lung 
disease, has revealed clear aberrations of microbial community composition 
from the healthy state, redefining commonly accepted pathophysiological 
concepts in respiratory disease pathogenesis (12).  

SAMPLE COLLECTION
With respect to anatomy and site of sampling, the respiratory tract 
is not a single uniform system, but consists of interconnected niches 
harboring distinct microbial communities that depend highly on local 
microenvironmental conditions. Therefore, when designing a new 
microbiome study, the appropriate sampling niche will largely depend 
on research question, hypothesis and target population. Key procedural 
practicalities also require consideration; for example, sampling the lower 
respiratory tract (LRT) requires invasive bronchoscopic procedures, limiting 
sample size, age-groups to be studied, and frequency of repeated sampling. 
To overcome this lack of access to the lungs, many studies use the easily 
accessible upper respiratory tract (URT) which is considered the likely 
source community of the lungs as well as a reservoir for most respiratory 
pathogens (12, 13). In healthy adults, microbial colonization of the LRT is 
assumed to originate from micro-aspiration of the oropharyngeal ‘flora’, 
and hence, the oropharynx can be used, albeit imperfect, as a proxy for the 
lungs. In children, however, both the nasopharynx and oropharynx are likely 
sources of microbial seeding to the LRT, probably resulting from anatomical 
differences, nasal breathing, and higher production of nasal secretions 
by children (14, 15), further limiting result extrapolation. In chronic lung 
diseases such as CF and COPD, the URT and LRT communities appear to 
become segregated with increasing disease duration. This is probably due to 
chronic inflammation, failure of lung clearance mechanisms, and repeated 
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antimicrobial treatment resulting in localized selection and evolution of 
independent communities, the latter rendering LRT sampling from multiple 
sites mandatory to obtain meaningful results (16, 17).  

SAMPLE PROCESSING
An important aspect to consider throughout the design and execution of a 
respiratory microbiome study is the risk of and control for contamination. The 
respiratory tract harbors low-density bacterial communities, with microbial 
densities dropping along the way from the URT to the LRT (14, 18). As a result, 
environmental DNA introduction during sample collection and processing 
becomes a likely threat, and can entirely overrule the true microbial signal (18). 
Sampling of the LRT particularly carries a high risk of microbial carryover from 
the URT, and so accurate sampling should be undertaken by well-trained and 
consistent personnel to  reduce the risk of contamination. During transportation, 
samples should be kept cooled in appropriate storage media, and then 
processed and stored at -80 oC as soon as possible to prevent selective bacterial 
outgrowth. Additionally, contamination from the laboratory environment and 
the reagents used for sample processing can significantly influence results 
from low-biomass microbial communities (19). Implementing proper ‘negative’ 
controls for all sampling, storage and laboratory procedures allows for later 
comparison and identification of potentially confounding environmental 
signals (for more details see (20)). Variations in methodology and batches can 
also affect results, highlighting the importance of clean working during DNA 
extraction and using fully optimized methods for the specific sample type. In 
addition to contamination, the extraction method can also affect the quality 
of the data and care should be taken to use methods which do not bias the 
bacteria extracted from the samples (18). Including ‘positive’ controls in the 
form of mock communities, will allow for adequate control and comparison 
between sequencing runs, laboratories and institutes (13). 

SEQUENCING PLATFORMS
Regarding sequencing platforms, amplicon sequencing is currently the 
most commonly used method for determining the microbial community 
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composition and targets the bacterial 16S ribosomal RNA (rRNA) gene, 
containing highly conserved as well as hypervariable regions. This targeted 
approach has revealed a wealth of information regarding community 
composition and dynamics. However, the taxonomic resolution provided 
by 16S rRNA sequencing is limited due to the short target region length, 
complicating accurate species- and strain-level identification. In comparison, 
metagenomic sequencing captures the entire microbial genomic content, 
including bacteria, viruses and eukaryotes, and allows for microbial 
characterization at the deepest taxonomic levels as well as functional 
potential profiling. However, applying this technique to low-biomass 
respiratory samples is challenging, as genome assembly requires high 
numbers of sequencing reads per sample, which makes detection of low-
abundant species difficult, and increases the risk of contamination (21). 

DATA HANDLING
Once data is generated, the bioinformatics and statistical methods required 
to analyze the large amounts of raw DNA reads generated by sequencing 
can be daunting. Initially, raw reads are filtered to remove sequencing errors 
and are assembled into complete sequences, after which the sequences are 
grouped based on similarity and assigned taxonomic names to reveal their 
identities. Several bioinformatics pipelines are freely available for data pre-
processing, including Qiime (22) and mothur (23). Each resulting microbial 
profile shows the abundance of individual species relative to the entire 
bacterial population within a sample, and contains many zero abundances, 
demanding nonparametric statistical methods developed specifically for 
handling microbiome data (24). Characterizing microbial development 
over time requires multiple measurements of the same individual, further 
complicating data analysis, but several approaches have been proposed 
to correct for repeated measures (25, 26). The increasing application of 
machine-learning techniques that perform predictive modelling of clinical 
outcomes from microbial profiles combined with host and environmental 
characteristics, is a promising development (27). However, the study of 
temporal microbiome dynamics, especially while accounting for confounding 
factors, remains in its infancy (24).
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CLINICAL APPLICATION
In the era of the 100,000 Genome Project and the launch of the NHS Genomic 
Medicine Service, it is clear that sequencing techniques are not only more 
accessible but are also becoming more integral to the clinical environment. 
In the clinic, identification by culture still dominates pathogen detection, 
and although quantitative methods such as qPCR are increasingly available, 
applications of sequencing technologies are lacking. Cost effectiveness and 
efficiency of sample and data processing are currently being improved 
to enable clinical implementation of sequencing methods. Single-use 
sequencing applications are being developed, as are faster methods of DNA 
extraction and library preparation (28). Technological and bioinformatic 
advances are in the pipeline to improve detection of subtle strain-specific 
variation within the target region (24). For applying sequencing at the point 
of care, the portable, low cost, real-time DNA sequencer Oxford Nanopore 
MinION has real potential with its ability to rapidly sequence the bacterial 
16S gene, even up to strain-specific resolution (29). The emergence of 
real-time sequencing technologies could dramatically influence diagnostic 
methods through accurate species identification and quantification within a 
clinically relevant time frame. 

RESEARCH PRIORITIES
To move closer towards clinical applications, comparative and meta-analyses 
must combine results from different cohorts to define actionable thresholds 
of microbial abundance. Current methodological heterogeneity restricts 
comparability across institutes, and so by underlining essential aspects 
of study design including consistent sample collection and processing, 
adequate contamination controls, and longitudinal sampling (summarized 
in the Figure and Box 1), we hope to encourage reaching a consensus 
on solid, robust methodology for respiratory microbiota research. Our 
increased understanding of respiratory disease pathogenesis will contribute 
to reshaping clinical diagnostic, preventative and therapeutic strategies. 
Important challenges remain to integrate the advances within microbiota 
research into everyday medical practice, and future efforts should prioritize 
standardization of protocols and analysis, adaptation of technology for 



Characterizing the respiratory microbiome 

61   

3

application in the field including remote settings, and collaboration across 
countries and disciplines (Box 2). However, current progress in respiratory 
microbiota research certainly provides a promising platform for the clinical 
application of culture-independent techniques in the future. 

Box 1 | Essentials for respiratory microbiome studies

• Longitudinal study design
• Appropriate power calculations
• Consistent sampling
• Appropriate niche (proxy)
• Minimise contamination at all stages
• Contamination controls at all stages
• Robust quality checks
• Consistent bioinformatics processing
• Suitable analysis techniques (complex data) 

Box 2 | Research priorities for future studies

• International platforms for communication
• Uniform sampling and transport protocols
• Standardized controls across laboratories 
• Agreement on handling complex data
• Adapt technology for remote settings
• Collaboration between research disciplines (clinics, microbiology, molecular 

biology, ecology, bioinformatics)
• Invest in (interdisciplinary) training
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ABSTRACT
Objective: To investigate associations between mucosal immunoglobulin 
(Ig) dynamics, nasopharyngeal microbiota development, and RTI frequency 
in the first year of life.

Materials and Methods: We collected nasopharyngeal and saliva samples 
from 127 healthy infants at 11 timepoints between birth and 12 months 
of age, together with data on perinatal and lifestyle factors, breastfeeding, 
and RTIs. Salivary IgG, IgA and IgM concentrations were measured using 
multiplex immunoassays. Nasopharyngeal gene expression profiles were 
determined in 43/127 infants using microarray. The nasopharyngeal 
microbial community was characterized in 114/127 infants using 16S-rRNA-
sequencing.  

Results: We observed strong upregulation of Ig production pathway gene 
expression preceding increases in salivary IgA and IgM at 1-2 weeks, and 
in salivary IgG at 6-9 months. High IgA concentrations directly after birth 
were observed exclusively in breastfed infants, and were associated with 
fewer RTIs in the first year of life as well as with lower bacterial biomass 
in the first days of life and earlier predominance of Corynebacterium and 
Dolosigranulum in the nasopharynx. Vice versa, early predominance of 
Moraxella was associated with higher subsequent IgA (2 weeks) and IgG 
concentrations (6 months), which were in turn associated with higher RTI 
frequency. 

Conclusion: Our results suggest that breastmilk-associated IgA directly after 
birth may affect microbiota assembly and development, and potentially 
thereby infection risk. Conversely, early pathogen exposure appears to 
boost subsequent mucosal Ig production and increase RTI susceptibility. 
Further studies are required to determine cause-effect relationships and 
mechanisms underpinning these results.
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INTRODUCTION
Local immunoglobulin (Ig)G, IgA and IgM at mucosal surfaces lining the 
respiratory tract is critical to the first-line defence against infections. T 
lymphocytes that can induce antibody production by B cells, are already 
present in nasopharynx-associated lymphoid tissue during gestation (1). 
However, directly after birth, regulatory T cells actively repress these cells 
to ensure tolerance to microbial colonization, which occurs at the cost 
of heightened infection susceptibility (2). The neonatal defence against 
infections therefore depends on maternal Ig acquired via transplacental 
transfer (IgG) and breastfeeding (predominantly IgA). Subsequent 
development of intrinsic mucosal antibody responses during infancy and 
their role in host protection remain poorly understood.

Microbial colonization of respiratory surfaces in infancy is influenced by 
host and environmental factors, including gestational age, mode of delivery, 
breastfeeding, antibiotic treatment, season and crowding (3–7). In turn, the 
early-life microbiota developmental trajectory is associated with long-term 
health, including susceptibility to respiratory tract infections (RTIs) (7, 8). 
Host-microbiota interactions in the early-life respiratory tract likely shape 
the local immune environment including the mucosal antibody repertoire 
(3). For example, IgA-secreting plasma cells remain scarce in germfree 
mice, but increase in number only after bacterial exposure (9). Conversely, 
mucosal antibodies influence microbial function. Secretory IgA coats and 
retains commensals to the mucosa, dampens pro-inflammatory immune 
responses and limits bacterial growth (10, 11). IgM likely has overlapping 
functions with IgA (12). By contrast, mucosal IgG mostly binds to potentially 
pathogenic invaders and appears to especially increase in response to 
infections (10, 13). 

To date, antibody-microbiota interplay has mostly been studied in the 
gut (14–17) and much less in the respiratory tract. Here, we demonstrate 
in a prospective, healthy birth cohort that early-life IgA is associated 
with nasopharyngeal microbiota assembly in the first days of life, and 
nasopharyngeal microbial community development is associated with 
mucosal antibody levels in the first year of life as well as RTI frequency. 
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METHODS
Microbiota and gene expression data that support the findings of this 
study were deposited in the National Centre for Biotechnology Information 
GenBank database (accession numbers PRJNA740120 and GSE152951).

Study design and sample collection
Study design and inclusion criteria were previously published (6). In short, 127 
healthy, full-term infants were enrolled in a prospective birth cohort study, 
and saliva and nasopharyngeal swabs were collected during 11 visits in the 
first year of life: within 2 hours after birth, on days 1, 7 and 14, and at 1, 2, 
3, 4, 6, 9 and 12 months of age. Sampling procedures are described in the 
supplementary materials. The nasopharyngeal microbiota (n=114 infants, 
n=1156 samples) and gene expression data (n=43 infants, n=286 samples) were 
previously published (18). For the current analyses, we added data on salivary 
IgG, IgA and IgM concentrations (n=127 infants, n=1099 samples; Figure S1). In 
addition, data were obtained on perinatal, environmental and lifestyle factors 
and experienced RTIs, defined as parent-reported respiratory symptoms 
and/or fever between 2 consecutive study visits. Infants were subdivided into 
groups with 0-2, 3-4, or 5-7 RTIs (7). Ethical approval was granted by the Dutch 
national ethics committee. Both parents provided written informed consent.

Salivary antibody measurement
IgG, IgA and IgM concentrations in saliva were quantified using fluorescent 
bead-based multiplex immunoassays (details in supplementary materials). 
Anti-human IgG, IgA or IgM were coupled to carboxylated beads (Luminex). 
Saliva was thawed and centrifuged, and the supernatant was diluted 1:200, 
which was applied to a well containing the beads, allowing the antibodies 
in the sample to bind to the bead surface. R-phycoerythrin-labelled mouse 
anti-human kappa and lambda solution (ITK Diagnostics) was added. 
Samples were acquired on a BioPlex 200 apparatus and concentrations 
interpolated using BioPlex software (Bio-Rad Laboratories). Samples were 
re-analysed at a 1:1000 dilution when the measured concentration was 
too high to accurately interpolate. Concentrations below the lower limit of 
detection were set at half the limit. 
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Nasopharyngeal microbiota characterization and viral qPCR
Bacterial DNA extraction and library preparation for the V4 region of the 
bacterial 16S-rRNA-gene and sequencing of amplicon pools with the Illumina 
Miseq platform were previously described (7). Bioinformatic pre-processing 
of raw reads was performed using DADA2 (details in supplementary 
materials) (18, 19). Each Amplicon Sequence Variant (ASV) was assigned 
taxonomic annotation with a unique rank number. Contaminant ASVs were 
identified and removed using the decontam-package (20). Raw and relative 
abundance ASV tables were used in downstream analyses. Total bacterial 
DNA was quantified using 16S-rRNA-gene quantitative (q)PCR (7). Viral qPCR 
specific for 17 respiratory viruses was performed as described elsewhere 
(18).

Nasal gene expression profiling
RNA extraction followed by microarray analysis (Affymetrix Clariom S Human 
Pico array) was performed as previously described (18). For the current 
study, eigengene expression of genes included in the Ig production pathway 
(Gene Ontology database) was calculated as the first principal component of 
the expression matrix (21).

Statistical analysis
R (version 4.1.2) was used for statistical analysis. Ig concentrations were 
analysed as continuous variables (log10-transformed) or categorized 
into high, middle and low terciles depending on the type of analysis. We 
considered p-values <0.050 or Benjamini-Hochberg (BH-)adjusted q-values 
<0.100 statistically significant. Z-scores of Ig concentrations, eigengene 
expression and relative abundances were generated by standardizing to all 
values. 

Associations between host factors and Ig concentrations were assessed using 
linear (mixed-effects) models. Group differences in Ig concentrations or log-
transformed bacterial density over time were assessed using linear mixed-
effects models with subject identifier as random effect and an interaction 
term between timepoint and the variable of interest as fixed effect, allowing 
for post-hoc extraction of pairwise contrasts per timepoint (emmeans-package). 
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Differences in microbial community composition were evaluated using 
permutational analysis of variance on the Bray-Curtis dissimilarity matrix 
(PERMANOVA, vegan-package). Microbiota cluster membership was allocated 
to each sample using average linkage hierarchical clustering as previously 
described (18). Differences in time to cluster transitions were evaluated with Cox 
proportional hazard models (survival- and survminer-packages). Associations of 
ASVs (present in >25% of samples tested) with Ig concentrations/terciles per 
timepoint were tested using Microbiome Multivariable Association with Linear 
Models 2 (MaAsLin2; MaAsLin2-package). Differential abundance of individual 
ASVs (present in >10% of samples tested) over time between Ig terciles 
was tested using smoothing spline (ss-)ANOVA (metagenomeSeq-package). 
Associations were tested between specific ASVs presence/absence (defined 
as >0.10% relative abundance) or relative abundance (log-transformed after 
adding a pseudocount of 1) and Ig levels in linear models.

RESULTS
Salivary antibody dynamics in the first year of life
Study population characteristics are summarized in Table S1. We 
distinguished 3 developmental phases with specific salivary antibody 
concentration dynamics within the first year of life (Figure 1A). In the first 
2 weeks of life, total IgA and IgM varied between individuals but generally 
increased (early phase), with a peak at month 1 followed by a subsequent 
decrease in concentrations (middle phase). Salivary IgG dynamics differed 
from IgA/IgM with the highest levels directly after birth, followed by a gradual 
decrease until 6 months of age. From 6 months onward, IgG levels increased 
(late phase), while IgA/IgM levels remained stable.

Salivary IgA/IgM increases were preceded by upregulation of genes involved 
in Ig production in the nasopharynx at day 1 (eigengene expression; Figure 
1B-C). IgG increases followed a second upregulation of Ig production 
eigengene expression between months 4 and 6. These findings suggest 
that intrinsic salivary IgA/IgM production started already in the first 2 weeks 
of life, while intrinsic IgG production only substantially increased after 6 
months. Therefore, we focused our analyses on IgA/IgM in the first 4 months 
of life and IgG in the second half-year.
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Figure 1 | Mucosal IgGAM development in the first year of life. (A) Salivary 
immunoglobulin (Ig)G, IgA and IgM concentrations in healthy infants (n=127) at 11 
timepoints in the first year of life (d=day, m=month, y=year). Boxes represent 
geometric mean concentrations (GMC) with 95% confidence interval (CI). (B) 
Eigengene expression of genes included in the Gene Ontology (GO) pathway for 
immunoglobulin production over time. Boxes show median with interquartile ranges 
(IQR). (C) Z-scores of Ig eigengene expression and salivary IgG, IgA and IgM 
concentrations over time showing strong upregulation of Ig production pathway 
gene expression preceding increases in salivary IgA and IgM at 1-2 weeks, and in 
salivary IgG at 6-9 months. Dots and lines show means with 95% CI.
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Early salivary IgA levels were associated with RTI susceptibility 
We studied antibody dynamics in relation to cumulative RTI frequency in the 
first year of life (0-2, 3-4 or 5-7 RTIs; Figure 2). IgA concentrations at day 1 were 
higher in infants with 0-2 compared with 5-7 RTIs in the first year of life (q<0.001). 
Conversely, IgA concentrations at day 14 were higher in infants who ultimately 
developed 5-7 RTIs (q=0.082). This association remained after adjusting for 
breastfeeding (day 1: q<0.001; day 14: q=0.038). IgM concentrations showed 
similar patterns. Regarding IgG, infants with 5-7 RTIs showed higher levels 
at 6 months of age than infants with 0-2 RTIs (q=0.014), suggesting that IgG 
responded to stimulation by the first infectious events in the preceding months.
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Figure 2 | Salivary antibodies in the first year of life according to the respiratory 
tract infection frequency. IgG, IgA and IgM geometric mean concentrations (GMC) 
per timepoint (d=day, m=month, y=year) for infants with 0-2, 3-4 and 5-7 respiratory 
tract infections (RTIs) in the first year of life. Error bars represent 95% CI. Dashed lines 
connect GMCs at consecutive timepoints per RTI group. Significance was assessed 
using linear mixed-effects models over time followed by post hoc extraction of 
pairwise contrasts per timepoint, and is denoted by ***: q<0.001; *: q<0.100. 

Early salivary IgA levels were associated with breastfeeding 
and nasopharyngeal microbiota assembly
We then investigated the effects of feeding type, mode of delivery, siblings, 
pets and season of birth on IgA/IgM concentrations in the early and middle 
developmental phases using multivariable linear mixed-effect models. In the 
early phase, breastfeeding was strongly associated with higher salivary IgA/
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IgM concentrations (Figure 3A). IgA/IgM concentrations were the highest in 
exclusively breastfed infants, followed by infants receiving both formula- and 
breastfeeding, and the lowest in exclusively formula fed infants (Figure 3B). 
Notably, at day 7, we observed a higher Ig production eigengene expression 
in formula fed infants compared with breastfed infants (Figure 3C), which 
might suggest earlier induction of intrinsic Ig production in infants lacking 
breastmilk-derived IgA. In the middle phase, formula feeding was associated 
with higher IgM but no longer with IgA concentrations. 

Next, we studied whether salivary IgA levels directly after birth were 
associated with nasopharyngeal microbiota assembly in the first 2 weeks 
of life. Analyses were focused on IgA, the most abundant mucosal antibody, 
which strongly correlated with IgM at each timepoint (Spearman’s ρ 0.72-
0.84,  q<0.001). We compared infants with high (n=39), middle (n=38) and low 
(n=39) IgA concentrations at day 0 (or day 1 for 14 infants missing day 0 data) 
in both unadjusted and feeding type-adjusted analyses. First, infants with 
low day 0/1 IgA had significantly higher nasopharyngeal bacterial density 
at day 7 compared with infants with middle (unadjusted q=0.010, adjusted 
q=0.032) or high day 0/1 IgA (unadjusted q=0.007, adjusted q=0.031; Figure 
4A). The microbial community composition at day 7 in infants with high day 
0/1 IgA was also significantly different compared with infants with low day 0/1 
IgA (PERMANOVA: unadjusted R2=3.4%, p=0.047; adjusted R2=3.9%, p=0.027) 
or with middle day 0/1 IgA (unadjusted R2=4.4%, p=0.020; adjusted R2=4.1%, 
p=0.025; Figure 4B), while no significant differences were observed at days 0 
and 1 themselves (p>0.050 for all comparisons). At the individual ASV level, 
infants with high day 0/1 IgA showed higher Dolosigranulum (5) abundance 
(p=0.034, q=0.39) and lower Staphylococcus (3) abundance (p=0.043, 
q=0.39) at day 7 than infants with low day 0/1 IgA (9 ASVs tested, MaAsLin2-
analysis; Figure 4C). Similarly, infants with high day 0/1 IgA showed higher 
Dolosigranulum (5) abundance (p=0.012, q=0.21) and a trend towards higher 
Moraxella (2) abundance (p=0.067, q=0.33) as well as lower Staphylococcus (3) 
abundance (p=0.012, q=0.210) at day 7 than infants with middle day 0/1 IgA 
(10 ASVs tested; Figure 4D). Because Dolosigranulum and Corynebacterium 
abundances are strongly correlated, we performed a sensitivity analysis 
excluding either of these ASVs, which confirmed that infants with high day 
0/1 IgA showed trends towards higher abundance of Corynebacterium (5) at 
day 7 when omitting Dolosigranulum (7), and vice versa (p<0.100, Figure S2).  
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Figure 3 | Early-life IgA and IgM are driven by feeding type. (A) Linear mixed-
effect models showing correlations between early-life factors and IgA and IgM 
concentrations in the early phase (days 0-14) and the middle phase (months 1-4). 
Dots and error bars denote model coefficients with 95% CI per antibody isotype. 
Significant associations are shown by the colored asterisks (***: p<0.001; *: p<0.050). 
(B) IgA and IgM concentrations in saliva over time stratified by feeding type per 
timepoint, i.e. exclusive breastfeeding (bf), mixed breast- and formula feeding (bf+ff) 
and exclusive formula feeding (ff). Boxes denote geometric mean concentrations 
with 95% CI. (C) Nasopharyngeal eigengene expression of the Ig production pathway 
in the first 2 weeks of life according to (current) feeding type. Boxes show medians 
with IQR and whiskers extend to 1.5*IQR.
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Figure 4 | Associations between day 0/1 IgA and nasopharyngeal microbiota 
assembly in early life. (A) Overall bacterial density in the first 2 weeks for infants 
stratified by low, middle and high day 0/1 IgA concentrations. A linear mixed-effects 
model was used to assess significance of the association between day 0/1 IgA group 
and log-transformed bacterial density over time, and contrasts were extracted by 
timepoint. Boxes indicate means with 95% CI. Significance is denoted by *: q<0.100. 
(B) Principal coordinate (PCo) analysis based on Bray–Curtis dissimilarities showing 
the nasopharyngeal microbial community composition at day 7 for infants with high, 
middle and low day 0/1 IgA. Percentages in brackets denote the total variance 
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explained by the first 2 principal coordinates. Each data point (cross) indicates a 
nasopharyngeal sample colored by day 0/1 IgA group. Ellipses denote the standard 
deviation of data points per group. In addition, the 8 highest-ranked ASVs at the day 
7 timepoint were visualized (triangles). Significance was assessed using permutational 
analysis of variance (PERMANOVA) adjusted for feeding type. (C,D) Differentially 
abundant ASVs at day 7 between infants with low and high day 0/1 IgA (C) and infants 
with middle and high day 0/1 IgA (D). ASVs present in at least 25% of samples tested 
were analyzed and ASVs that showed a trend towards significance after adjusting for 
feeding type but without adjusting for multiple testing are shown (p<0.100). Bars are 
colored according to the day 0/1 IgA group they are associated with. Lengths of the 
bars correspond with the MaAsLin2-model coefficient, which is related to the strength 
of the association. Error bars denote standard errors. (E) Kaplan-Meier curves 
depicting high, middle and low day 0/1 IgA in relation to the age at which a given 
infant first transitioned from a Staphylococcus-cluster (STA; left), to a Corynebacterium/
Dolosigranulum- (CDG5; middle) or to a Moraxella-cluster (MOR2; right) within the first 
3 months of life. Significance was assessed using Cox proportional hazards models 
adjusted for feeding type, with the high day 0/1 IgA group as a reference.

Although significance of these findings was lost after adjusting for multiple 
testing, temporal ss-ANOVA comparing infants with high and low day 0/1 IgA 
across the first 2 weeks of life revealed similar associations (Table S2).

To investigate whether day 0/1 IgA was also associated with long-term microbial 
outcomes, we compared the time to cluster transitions within the first 3 
months of life using survival analyses. Clusters were previously allocated to 
each sample using hierarchical clustering (18). Generally, the nasopharyngeal 
microbiota transitioned from the typical early-life Staphylococcus  (STA)-cluster 
via a Corynebacterium (5)/Dolosigranulum (CDG5)-cluster to a stable Moraxella 
(2) (MOR2)-cluster (Figure S3). Infants with high day 0/1 IgA were younger than 
infants with middle day 0/1 IgA when they transitioned from the STA-cluster 
(Cox proportional hazard models, high day 0/1 IgA as reference: unadjusted 
p=0.056, adjusted p=0.028), and to the CDG5-cluster (unadjusted p=0.028, 
adjusted p=0.014) but not to the MOR2-cluster (p>0.050). Differences between 
infants with high and low day 0/1 IgA were not significant (Figure 4E). 

Early Moraxella acquisition was associated with higher IgA 
levels
We next studied associations between the nasopharyngeal microbial 
community in the first 2 weeks of life and salivary IgA at day 14. At day 

Figure 4 | Continued
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14, IgA was comparable between breastfed and non-breastfed infants, so 
these analyses were not adjusted for breastfeeding. However, supervised 
analyses of the biomarker ASVs of the highly abundant early-life STA-, 
CDG5- and MOR2-clusters, showed that Moraxella (2) presence (p=0.057) 
and relative abundance (β=1.33 (95% CI 0.18-2.48), p=0.042) at day 7 were 
associated with higher IgA at day 14 (Figure 5A-B), whereas presence but 
not relative abundance of Dolosigranulum (7) at day 7 was associated 
with lower day 14 IgA (p=0.008), which persisted at month 1 (p=0.016; 
Figure 5C-D). Corynebacterium (5) and Staphylococcus (3) presence and 
relative abundance at day 7 were not associated with day 14 IgA. Infants 
subsequently transitioning to the MOR2-cluster between days 7 and 14 
(n=6) had significantly higher IgA at day 14 than infants with different cluster 
membership (p=0.038), which was no longer observed at later timepoints 
(Figure 5E). Conversely, infants who transitioned to the CDG5-cluster 
between days 7 and 14 (n=38) showed a trend towards lower IgA at day 14 
than infants with different cluster membership (p=0.051). In line, at day 14, 
relative abundance of Corynebacterium (5) negatively correlated with IgA (β=-
0.95 (95% CI -1.58- -0.32), p=0.004), while relative abundance of Moraxella (2) 
positively correlated with IgA (β=0.90 (95% CI 0.044-1.76), p=0.040), while no 
significant correlations were found for Dolosigranulum (7) or Staphylococcus 
(3). Subsequent transition to the MOR2- or CDG5-cluster between day 14 and 
month 1 was not associated with month 1 IgA (Figure 5F). Taken together, 
these findings suggest an association between nasopharyngeal Moraxella (2) 
acquisition within the first 2 weeks of life and higher salivary IgA at day 14.

RTIs, viral exposure and early pathobiont enrichment were 
associated with an earlier increase in IgG levels
Next, we studied associations of host and microbial factors with salivary 
IgG concentrations at 6 months of life, when IgG concentrations started 
to increase. In univariable analysis, breastfeeding, mode of delivery and 
presence of siblings were not found to be associated with salivary IgG 
concentrations. However, environmental and infectious exposures like 
day-care attendance, a recent positive viral PCR at the preceding timepoint 
month 4, and experiencing a RTI between 4 and 6 months were significantly 
associated with higher IgG concentrations at month 6 (Figure 6A). 
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Figure 5 | Correlates between the nasopharyngeal microbial community 
composition and early IgA levels. (A,C) Correlations between log-transformed 
relative abundances (RA) of Moraxella (2) (A) and Dolosigranulum (7) (C) at day 7 and 
log10-transformed IgA at day 14. Significance was assessed using linear models and 
denoted by *: p<0.050. (B,D) IgA concentrations over time  (day 7 (d7)-month 4 (m4)) 
for infants who did versus infants who did not acquire Moraxella (2) (B) or 
Dolosigranulum (7) (D) at day 7. Significance was assessed with linear mixed-effects 
models over time and post-hoc extraction of pairwise contrasts per timepoint, and 
was denoted by •: p<0.10; *: p<0.050. (E,F) IgA concentrations over time for infants 
who did compared to infants who did not acquire the Moraxella (2)-cluster (MOR2) 
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(left) and for infants who did compared to infants who did not acquire the 
Corynebacterium (5)/Dolosigranulum-cluster (CDG5) (right) between days 7 (d7) and 14 
(d14) (E) and between day 14 and month 1 (m1) (F). Significance was assessed with 
linear mixed-effects models over time and post-hoc extraction of pairwise contrasts 
per timepoint, and was denoted by •: p<0.10; *: p<0.050.

Indeed, month 6 IgG was significantly higher in infants with a recent RTI in 
combination with day-care attendance (p=0.010), viral detection at month 
4 (p=0.001) or both (p<0.001), and in infants with day-care attendance and 
viral detection at month 4 (p<0.001), compared with infants without these 
factors (Figure 6B). Regarding nasopharyngeal microbiota development 
in the first 6 months of life, infants with low month 6 IgG had higher 
abundances of Streptococcus (13) (days 15-179, q=0.009) and Moraxella (2) 
(days 35-190, q=0.014), and lower abundance of Staphylococcus (3) (days 49-
190, q=0.031) from month 1-2 onward than infants with low month 6 IgG 
(14 ASVs tested, SS-ANOVA; Figure 6C, Table S3). At 6 months of age, infants 
with middle/high month 6 IgG also had higher bacterial density (high vs low 
month 6 IgG: q=0.008; high vs middle month 6 IgG: q=0.040; Figure 6D) and 
a different overall microbial community composition (PERMANOVA: high 
vs. low R2=4.9%, p=0.008; low vs. middle  R2=4.2%, p=0.034; Figure 6E) than 
infants with low month 6 IgG, while these differences were not found at 
preceding timepoints. These findings suggest that besides (viral) infectious 
pressure, (accompanying) bacterial factors may contribute to the induction 
of endogenous IgG concentrations in infants.

Mucosal antibodies contribute to respiratory health in infants by preventing 
pathogen invasion while tolerating commensal colonization. We here 
describe the dynamics of salivary IgG, IgA and IgM concentrations in healthy 
infants across the first year of life. Endogenous IgA/IgM secretion into saliva 
appeared to start in the first weeks of life, while IgG concentrations only 
began to increase several months later. Sharp increases in IgA/IgM and IgG 
concentrations at 2 weeks and 6-9 months of age, respectively, were both 
preceded by increases in host Ig production gene expression, and may thus 
reflect induction of intrinsic antibody production around these ages. Up to 2 
weeks of age, IgA/IgM were strongly associated with breastfeeding, 

Figure 5 | Continued
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Figure 6 |Host and microbial factors associated with IgG production at month 
6. (A) Univariable models of correlations between host and environmental factors 
and month 6 IgG concentrations. Dots and error bars denote model coefficients with 
95% CI. Significant associations are denoted by the colored asterisks (***: p<0.001; *: 
p<0.050). (B) Infants were stratified according to daycare attendance at month 6, viral 
detection at the preceding month 4 (m4) timepoint and/or recent RTI between 
months 4 and 6, and associations with month 6 IgG concentrations were assessed in 
a linear model, using infants with none of these characteristics as a reference. 
Significance was denoted by ***: p<0.001; **: p<0.005; or *: p<0.050. (C) Z-scores of 
relative abundances of ASVs that were identified as significantly different between 



4

The early-life respiratory microbiota and mucosal antibody development

83   

infants with high versus low month 6 IgG by smoothing spline-ANOVA. (D) Bacterial 
density over time up to month 6 for infants with low, middle and high month 6 IgG. 
Boxes show median and IQR per timepoint. Significance was assessed using linear 
mixed-effects models with contrasts extracted post-hoc per timepoint, and indicated 
by **: q<0.005; *: q<0.100. (E) Principal coordinate (PCo) analysis based on Bray–
Curtis dissimilarities showing the nasopharyngeal microbial community composition 
at 6 months of age for infants with high, middle and low month 6 IgG. Percentages in 
brackets denote the total variance explained by the first two principal coordinates. 
Each data point (cross) indicates a nasopharyngeal sample colored by month 6 IgG 
group. Ellipses denote the standard deviation of data points per group. In addition, 
the 8 highest-ranked ASVs at the month 6 timepoint were visualized (triangles). 
Significance of differences between groups was assessed using permutational 
analysis of variance (PERMANOVA).

which is in line with breastmilk being the primary source of these antibodies 
at the beginning of life. An early increase in intrinsic IgA/IgM production may 
serve to compensate for their rapidly declining levels in breastmilk with time 
(22). Ig production also seemed to be induced even earlier in formula fed 
infants than in breastfed infants, which might reflect the body attempting to 
compensate for the lack of breastmilk-derived IgA. Furthermore, we found 
high IgG concentrations in saliva directly from birth, which likely reflects 
maternal IgG, passively derived from the systemic circulation (23). Intrinsic 
IgG synthesis was previously shown to start in the first week of life already 
(24). However, we here observed an overall decrease in salivary IgG in the 
first 6 months, suggesting that the natural decline of maternally-derived IgG 
prevailed over endogenous production in this period.

DISCUSSION
Interestingly, high breastfeeding-derived IgA levels directly after birth were 
associated with limited bacterial outgrowth, early replacement of the initial 
colonizer Staphylococcus with niche-specific commensals Dolosigranulum and 
Corynebacterium, and, importantly, a lower susceptibility to RTIs in the first 
year of life. Breast milk contains microbial communities of its own as well as 
bioactive components like oligosaccharides and lactoferrin, which are known 
to influence the gut microbial community composition (25, 26). Nonetheless, 
the associations between IgA and the nasopharyngeal microbiota persisted 
after adjusting for feeding type. Secretory IgA was previously shown to 

Figure 6 | Continued
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shape the gut microbial community (27). For instance, a study comparing 
IgA-deficient patients with healthy individuals revealed differences in the gut 
microbiota composition, including increased abundance of pathobionts and 
underrepresentation of normally IgA-bound commensals (12). Our results 
suggest that reduced levels of salivary IgA directly after birth may similarly 
affect the nasopharyngeal microbial community. Given that the early-life 
nasopharyngeal microbiota is associated with later-life respiratory morbidity 
(8, 28), the ability of breastfeeding-derived IgA to shape the infant microbiota 
from early on may partially explain the positive effect of breastfeeding on 
respiratory health even beyond the breastfeeding period (29). 

Nasopharyngeal microbial communities characterized by higher abundance 
of pathobionts like Moraxella and Streptococcus, and lower abundance of 
commensals like Dolosigranulum and Corynebacterium from early in life were 
associated with elevated IgA levels at day 14 and IgG levels at month 6. 
Experimental mouse studies have shown that in the gut, bacterial exposure 
induces IgA (30, 31) and IgG (32) repertoires adapted to the commensal 
microbiota. Based on our observations, the nasopharyngeal microbial 
community may analogously contribute to mucosal antibody induction in 
the upper respiratory tract. Enrichment of the nasopharyngeal microbiota 
with pathobionts has previously also been associated with a more pro-
inflammatory milieu in the respiratory tract (33), and we speculate that local 
inflammation may boost the antibody response. Alternatively, an impaired 
mucosal barrier function might underlie aberrant antibody responses to the 
local microbiota (34). In turn, elevated IgA levels at day 14 and IgG levels at 
month 6 were associated with a higher frequency of RTI episodes in the first 
year of life. 

Strengths of this study include the highly detailed participant information and 
the prospective design with frequent sampling in early life. Furthermore, the 
highly sensitive multiplex immunoassay allowed us to measure antibodies 
in very low saliva volumes. 

However, limitations include that for practical reasons, antibody levels and 
microbial community composition were determined in different, adjacent 
compartments of the upper respiratory tract. Since the nasopharynx-
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associated lymphoid tissue appears to be an important site for activation of 
B cells that subsequently migrate to the salivary glands (23), we considered 
this comparison to be valid. Furthermore, the study population consisted 
exclusively of healthy, term-born infants, and infants with risk factors for 
(severe) RTIs, such as prematurity or smoke exposure, were either absent or 
underrepresented, which might explain the more nuanced findings.

Taken together, our findings suggest that the respiratory microbial 
community directly after birth may be shaped by breastfeeding-derived, 
maternal antibodies, and in turn affect intrinsic mucosal antibody responses 
and respiratory infection susceptibility. Although cause-effect relationships 
cannot be determined based on our observational data, we believe that 
host-microbe-environment interactions in early life may be key to mucosal 
and microbial homeostasis, and respiratory health in the first year of life.
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SUPPLEMENTARY METHODS
Study design and sample collection
We collected saliva and nasopharyngeal samples from healthy, full-term 
infants who participated in a prospective birth cohort study. Details on 
study design and in- and exclusion criteria were previously published (1). 
Samples were collected at 11 predefined timepoints: within 2 hours and 24-
36 hours after birth, at 7 and 14 days and 1, 2, 3, 4, 6, 9 and 12 months 
of age. Saliva for antibody measurement was collected from 127 infants 
by rubbing an absorbent sponge (Malvern Medical Developments) on the 
gums, cheek pouches and tongue for approximately 1 minute, which was 
immediately transferred to an EDTA tube (BD Vacutainer) with protease 
inhibitor (Roche). Nasopharyngeal swabs for microbiota profiling were 
obtained from 114 infants as previously described (1), and stored in 10% 
glycerol/0.1% DEPC water or, for a subset of 43 infants, in RNA protect 
Cell Reagent (Qiagen), allowing for additional gene expression profiling (2). 
Samples were transported on dry ice and stored at -80˚C until laboratory 
analysis. Extensive questionnaires on perinatal, environmental and lifestyle 
factors were obtained as well as data on experienced RTIs, defined as parent-
reported respiratory symptoms and/or fever between two study visits. 
Infants were subdivided into groups with 0-2, 3-4, or 5-7 RTIs, as previously 
described (1). Ethical approval was granted by the Dutch national ethics 
committee (METC Noord-Holland). Both parents provided written informed 
consent. 

Salivary antibody measurement
Total immunoglobulin G (IgG), IgA and IgM in saliva were quantified using 
a fluorescent bead-based multiplex immunoassay (MIA). Anti-human IgG 
(clone JDC-10, mouse isotype IgG1 kappa, Southern Biotech, Cat. No. 9040-
01S), IgM (clone SA-DA4, mouse isotype IgG1 kappa, Southern Biotech, 
Cat. No. 9020-01) or IgA (clone MH14-1 mouse isotype IgG2b kappa, 
Progen, Cat. No. 11000) were individually conjugated to carboxylated 
microspheres (Luminex) using a two-step carbodiimide reaction (3). Saliva 
was thawed and centrifuged at 3000g at 4˚C for 5 minutes, and 5 µl of the 
supernatant was diluted 1:200 in PBS supplemented with 0.1% Tween-20 
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and 3% bovine serum albumin (grade V). From each diluted sample, 25 µl 
was applied to a well containing an equal volume of beads, allowing the anti-
human IgG, IgM or IgA on the bead surface to capture antibodies in the 
sample. In addition, blanks (serum dilution buffer), standard human serum 
IgG (6 mg/ml), IgA (1 mg/ml) and IgM (1 mg/ml; Sigma), and quality control 
human serum (NIBSC) and intravenous immunoglobulin (IVIg) (Sanguin) 
were included on every plate. R-phycoerythrin labeled mouse anti-human 
kappa and lambda solution diluted 1:100 (ITK Diagnostics) was added to 
each well. Samples were acquired on a BioPlex 200 (Luminex) apparatus and 
concentrations interpolated using the 5-parameter logistic fit in the BioPlex 
software package version 6.2 (Bio-Rad Laboratories). When the measured 
concentration was too high to accurately interpolate using criteria built into 
the software, samples were re-measured at a 1:1000 dilution. Concentrations 
below the lower limit of detection (IgG: 76 ng/ml, IgA: 17 ng/ml, IgM: 67 ng/
ml), were set at half the limit. Concentrations were given in ng/ml.

Nasopharyngeal microbiota characterization and viral qPCR
Bacterial DNA was extracted, after which the V4-region of the 16S-rRNA-
gene was amplified using the 515F/806R primer pair (4, 5). Amplicon pools 
were sequenced with the Illumina MiSeq platform (1). Bioinformatic pre-
processing of raw reads was performed using DADA2 (v1.16.0; maxEE = 2; 
truncLen = 200/150) as previously described (2, 6). Each Amplicon Sequence 
Variant (ASV) was assigned taxonomic annotation using the naïve Bayesian 
classifier and the Silva v138 (version 2) reference database (7) and a unique 
number. Contaminant ASVs were identified using the decontam-package (8) 
(v1.12.0; default parameters; combined method using per-batch detection) 
and removed. Samples with <3000 reads were excluded. We filtered ASVs 
with at least 0.1% relative abundance in at least two samples (1411 ASVs; 
excluding 9971 ASVs [87.6%] corresponding to 1.0% of reads). Relative 
abundances were obtained from raw read counts by total sum scaling. 
Both the raw and relative abundance ASV tables were used in downstream 
analyses. Total bacterial DNA was quantified using quantitative (q)PCR 
targeting the 16S-rRNA-gene as previously described (1). Viral qPCR specific 
for 17 respiratory viruses was performed on all nasopharyngeal samples as 
described elsewhere (9).
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Nasal gene expression profiling
RNA extraction from nasopharyngeal cells followed by microarray 
(Affymetrix Clariom S Human Pico array) for nasal gene expression profiling 
was performed as previously described (2). For the current study, we 
calculated the eigengene expression of the Ig production pathway from the 
Gene Ontology (GO) database (10) as the first principal component of the 
expression matrix, limited to genes included in the pathway (ID GO:0002377).

Statistical analysis
Statistical analyses were performed in R version 4.1.2. Antibody concentrations 
were analyzed either as continuous variable (log10-transformed) or 
categorized into high, middle and low terciles. We considered p-values 
<0.050 or, in case of multiple comparisons, false discovery rate-adjusted 
q-values <0.100 (Benjamini-Hochberg procedure) as statistically significant. 
Z-scores of Ig levels, eigengene expression and relative abundances were 
generated by standardizing to all values. 

Associations between host factors and antibody concentrations were 
assessed using linear (mixed-effects) models. Group differences in Ig 
concentrations or bacterial density over time were assessed using linear 
mixed-effects models with subject identifier as random effect and an 
interaction term between timepoint and the variable of interest as fixed 
effect. This interaction term allowed for post-hoc extraction of pairwise 
contrasts per timepoint using the emmeans-package (11). 

Differences in overall microbial community composition according to Ig tercile 
were evaluated using permutational analysis of variance on the Bray-Curtis 
dissimilarity matrix (PERMANOVA, adonis/adonis2-function, vegan-package 
(12)) and visualized with principal coordinate analysis. Microbiota cluster 
membership was allocated to each sample using average linkage hierarchical 
clustering on the Bray-Curtis dissimilarity matrix as previously described (2). 
The optimal number of clusters was determined based on clustering indices 
(Silhouette and Calinski-Harabasz indices). We only considered clusters with 
at least 10 samples. Differences in time to cluster transitions were evaluated 
with Cox proportional hazard models and visualized using Kaplan-Meier 
curves (survival- and survminer-packages (13, 14)). 
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On the individual ASV level, cross-sectional associations with Ig 
concentrations/terciles per timepoint were tested using Microbiome 
Multivariable Association with Linear Models 2 (MaAsLin2; MaAsLin2-
package) (15) using default parameters, limited to ASVs present in >25% of 
samples tested. Differential abundance of ASVs over time between Ig terciles 
was tested using smoothing spline (ss-)ANOVA (fitTimeSeries-function, 
metagenomeSeq-package (16)), limited to ASVs present in >10% of samples 
tested. This method allows for the detection of differentially abundant ASVs 
and also identifies the timeframe when significant differences exist. Default 
normalization and transformation methods were applied to the raw ASV 
table prior to running these analyses, i.e. cumulative sum scaling for ss-
ANOVA and total sum scaling for MaAsLin2, followed by log-transformation. 
In addition, associations were tested between specific ASV presence/
absence (defined as >0.10% relative abundance) or relative abundance (log-
transformed after adding a pseudocount of 1) and Ig levels in linear models.
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SUPPLEMENTARY TABLES
Table S1 | Characteristics of the study population.
n 127
Demographic characteristics
Female (%) 67 (52.8) 
Season of birth (%)
   Winter 27 (21.3) 
   Spring 28 (22.0) 
   Summer 47 (37.0) 
   Autumn 25 (19.7) 
Perinatal
Vaginal delivery (%) 76 (59.8) 
Birth weight, grams (median [IQR]) 3530.0 [3141.2, 3851.2]
Gestational age, weeks (median [IQR]) 39.0 [38.0, 40.0]
Environment
Breastfeeding, days (median [IQR]) 53.5 [3.0, 225.0]
Feeding type from birth (%)
   Exclusive formula feeding 23 (18.9) 
   Breast- and formula feeding 22 (18.0) 
   Exclusive breastfeeding 77 (63.1) 
Number of siblings (median [IQR]) 1.0 [0.0, 1.0]
Siblings <5 years of age (%) 70 (56.9) 
Pets (%) 56 (45.9) 
Daycare during first year of life (%) 81 (63.8) 
Parents highly educated (%) 92 (74.8) 
Inhouse smoking (%) 3 (2.4) 
Respiratory infections
Respiratory infections, frequency (median [IQR]) 3.0 [2.0, 4.0]
Respiratory infections, group (%)
   0-2 50 (39.4) 
   3-4 57 (44.9) 
   5-7 20 (15.7) 
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Table S2 | Associations between high compared with low day 0/1 IgA and 
individual ASV abundances over time in the first 14 days of life. 

Unadjusted Adjusted for 
feeding type

ASV Associated 
with day 
0/1 IgA

Interval 
start 
(days)

Interval 
end 
(days)

Area p-value q-value p-value q-value

Moraxella (2) high 9 16 14.2 0.079 0.082 0.079 0.079
Corynebacterium (5) high 4 10 12.7  ns  ns 0.041 0.074
Dolosigranulum (7) high 4 12 20.4 0.018 0.061 0.016 0.051
Staphylococcus (3) low 9 16 -13.3  ns  ns 0.033 0.074
Granulicatella (155) high 11 16 6.0 0.017 0.061 0.017 0.051
Corynebacterium (235) low 6 8 -1.5 0.067 0.082 0.067 0.075
Actinomyces (314) high 0 1 0.8 0.068 0.082 0.067 0.075
Noviherbaspirillum (464) high 0 4 2.9 0.082 0.082 0.067 0.075
Corynebacterium (495) high 0 7 5.2 0.026 0.061 0.017 0.051

Individual ASV abundances (present in >10% of samples tested) over time in the first 
14 days of life were compared between infants with day 0/1 (d0/1) IgA in the highest 
and lowest terciles using ss-ANOVA. The analysis was executed both unadjusted and 
adjusted for feeding type. All significant findings after adjusting for multiple testing, 
in either the unadjusted or adjusted analysis, are shown (q<0.100). ns=not significant.

Table S3 | Associations between individual ASV abundances in the first 6 
months of life and high compared with low month 6 IgG concentrations. 
ASV Associated 

with high/
low m6 IgG

Interval 
start (days)

Interval 
end (days)

Area p-value q-value

Moraxella (2) high 35 190 431.1 0.003 0.009
Staphylococcus (3) low 49 190 -228.8 0.021 0.031
Streptococcus (13) high 15 179 380.7 0.002 0.009
Streptococcus (14) low 27 119 -137.1 0.006 0.012
Corynebacterium (21) high 23 110 128.4 0.077 0.092
Corynebacterium (39) low 28 62 -25.3 0.097 0.097

Individual ASV abundances (n=14, present in >10% of samples tested) over time in 
the first half year of life were compared between infants with month 6 (m6) IgG in the 
highest and lowest terciles using ss-ANOVA. All significant findings after adjusting for 
multiple testing are shown (q<0.100).
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Figure S1 | Numbers of samples available per dataset. Sample availability is 
shown per dataset per timepoint (d=day, m=month, y=year). N=number of infants 
with at least one datapoint in a dataset. n=total number of samples in a dataset. 
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Figure S2 | Differentially abundant ASVs at day 7 according to day 0/1 IgA 
category. (A,B) Differentially abundant ASVs at day 7 between infants with low and 
high day 0/1 IgA (A) and infants with middle and high day 0/1 IgA (B) after excluding 
Dolosigranulum (7) from the analysis. (C,D) Differentially abundant ASVs at day 7 
between infants with low and high day 0/1 IgA (C) and infants with middle and high 
day 0/1 IgA (D) after excluding Corynebacterium (5) from the analysis. ASVs present in 
at least 25% of samples tested were analyzed and ASVs that showed a trend towards 
significance after adjusting for feeding type but without adjusting for multiple testing, 
are shown (p<0.100). Bars are colored according to the day 0/1 IgA group they are 
associated with. Lengths of the bars correspond with the MaAsLin2-model coefficient, 
which is related to the strength of the association. Error bars denote standard errors. 
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Figure S3 | Nasopharyngeal microbiota cluster membership succession. Dot 
flow diagram showing the progression of microbiota cluster membership over 
time. Clusters were characterized by predominance of Corynebacterium (5) with 
Dolosigranulum pigrum (7), (CDG5; n=268), Staphylococcus (3) (STA; n=231), Moraxella 
(2) (MOR2; n=266), Streptococcus (14) (STR14; n=124), Haemophilus (9/12) (HAE; 
n=74), Moraxella (11) (MOR11; n=53),  Corynebacterium (21) with Dolosigranulum 
pigrum (7) (CDG21; n=44), Lactobacillus (49) (LAC; n=14), Neisseria (51) (NEI; n=10) or 
Streptococcus (13) (STR13; n=10). 62 samples were not assigned a (sufficiently large) 
cluster. Transitions between clusters are plotted. Transition frequency is determined 
by dividing the number of transitions towards a given clusters by the total number 
of transitions within each time window. Edges and nodes are scaled by the number 
of available samples.
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ABSTRACT
The gut microbiota in early life, when critical immune maturation takes place, 
may influence the immunogenicity of childhood vaccinations. We assess the 
association between mode of delivery, gut microbiota development in the 
first year of life, and mucosal antigen-specific antibody responses against 
pneumococcal vaccination in 101 infants at age 12 months and against 
meningococcal vaccination in 66 infants at age 18 months. Birth by vaginal 
delivery is associated with higher antibody responses against both vaccines. 
Relative abundances of vaginal birth-associated Bifidobacterium and 
Escherichia coli in the first weeks of life are positively associated with anti-
pneumococcal antibody responses, and relative abundance of E. coli in the 
same period is also positively associated with anti-meningococcal antibody 
responses. In this study, we show that mode of delivery-induced microbiota 
profiles of the gut are associated with subsequent antibody responses to 
routine childhood vaccines.
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INTRODUCTION
Vaccination in early childhood is estimated to save millions of lives each year 
(1). Vaccine-induced protection is mediated through a combination of innate, 
humoral and cellular immunity, and is often quantified by measuring antigen-
specific antibody titers (2). Large interindividual variation in antibody responses 
to vaccines administered in early life may limit vaccine effectiveness, leaving 
some fully vaccinated infants unprotected against serious infectious diseases 
(3). Factors that influence vaccine responses include, among others, genetics, 
sex, perinatal characteristics like gestational age, birth weight, maternal 
antibodies, and feeding type, but also more general factors like geographical 
region (reviewed in (4)). Recent research has shown that the gut microbiota, 
i.e. the sum of all microorganisms residing in the human intestinal tract, also 
plays a role in immune responses to vaccination (5–11). This offers a potentially 
modifiable target to improve immunogenicity of childhood vaccines. 

The gut microbiome is seeded at birth and rapidly develops over the first 
months of life under the influence of mode of delivery, breastfeeding, antibiotic 
administration and nutrition (12–15). Timely exposure to specific microbes 
within the critical window of opportunity in early infancy shapes the immune 
system (16–18), including the B cell and immunoglobulin repertoire (19, 20). 
Microbial imprinting on the immune system in early life may in turn explain 
part of the variation in vaccine responses. In support of this hypothesis, it has 
been shown that antibiotic-induced microbial perturbances in an infant mouse 
model led to impaired antigen-specific immunoglobulin G (IgG) responses 
against five common childhood vaccines including the meningococcal group C 
(MenC) conjugate vaccine and the 13-valent pneumococcal conjugate vaccine 
(PCV-13) (21). Microbiota perturbance due to antibiotic exposure also resulted 
in impaired immune responses to seasonal influenza vaccination in healthy 
adults without pre-existing immunity, suggesting that primary responses are 
more sensitive to microbiota changes than recall responses (7). In human 
infants, the composition of the microbial community pre-vaccination has been 
correlated with systemic immune responses to oral rotavirus vaccine, oral 
poliovirus vaccine, Bacillus Calmette-Guérin, hepatitis B, and tetanus vaccines 
(5, 6, 10, 11, 22, 23). However, the temporal relationship between 1. early-
life exposures, 2. gut microbiota composition, and 3. subsequent childhood 
vaccine responses has not yet been studied.
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Here, we demonstrate in a healthy birth cohort that mode of delivery-
induced differences in microbial colonization patterns in the gut in early life 
are associated with antigen-specific IgG responses to the 10-valent PCV (PCV-
10) and the MenC conjugate vaccine in saliva. For these vaccines, mucosal 
IgG has been shown to confer vaccine-induced protection against infection 
(24). These findings are key for the design of intervention strategies that 
modulate the gut microbiota to enhance vaccine immunogenicity in infants.

RESULTS
We investigated associations between early-life exposures, gut microbiota 
development in the first year of life and its effect on vaccine responses later 
in life in a birth cohort of 120 healthy, term born infants (25).  Follow-up of 
the infants and sample inclusion for gut microbiota characterization by 16S 
rRNA gene sequencing and salivary antigen-specific IgG measurement by 
multiplex immunoassay are shown in Supplementary Figure 1. Basic, lifestyle 
and environmental characteristics were previously published (26), and are 
briefly summarized in Table 1. Infants received routine vaccinations according 
to the Dutch National Immunization Program (NIP). Serotype-specific anti-
pneumococcal IgG concentrations were measured in routinely collected saliva 
of 101 infants at the age of 12 months  median 28 days [IQR 21-33] after the PCV-
10 booster dose). Anti-MenC IgG concentrations were measured in routinely 
collected saliva of 66 infants at the age of 18 months (median 116 days [IQR 
105-120] after MenC vaccination). Geometric mean concentrations (GMC) of 
IgG concentrations against the different pneumococcal vaccine serotypes 
ranged from 7.33 ng/ml (95% CI 5.75-9.33 ng/ml) for serotype 23F to 27.30 
ng/ml  (95% CI 22.14-33.67) for serotype 19F. The anti-MenC IgG GMC was 
10.64 ng/ml (95% CI 8.64-13.11 ng/ml) (Figure 1A). IgG concentrations against 
the 10 pneumococcal vaccine serotypes strongly correlated with each other 
(Pearson’s ρ 0.56-0.86, adjusted p<0.001 for all pairwise correlations), and not 
with anti-MenC IgG antibodies (Pearson’s ρ 0.12-0.31, adjusted p>0.397 for all 
pairwise correlations) (Figure 1B). As serotype-specific anti-pneumococcal IgG 
concentrations were strongly correlated, we focused our analyses on serotype 
6B, which shows relatively weak antigenic properties, and is commonly found 
during (severe) pneumococcal disease (27). Significant findings were validated 
for the other serotypes. 
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Table 1 | Cohort description.  
PCV-10 response MenC response

n  101 66
Sex, female (%)   54 (53.5) 35 (53.0)
Perinatal characteristics
Mode of delivery, vaginal (%)   58 (57.4) 42 (63.6)
Antibiotics during birth (%)    2 ( 2.0) 1 (1.5)
Exclusive formula feeding (%)   17 (16.8) 10 (15.2)
Breastfeeding, days (median [IQR]) 55.0 [3.0, 248.0] 114.0 [3.0, 289.8]
Environmental characteristics
Presence of siblings (%)   68 (67.3) 46 (69.7)
Number of siblings  (median [IQR]) 1.0 [0.0, 1.0] 1.0 [0.0, 0.1]
Pets in the household (%)   46 (45.5) 36 (54.5)
Antibiotic treatment  
Antibiotics in the first 3 months  (%)   13 (12.9) 4 (6.1)
Antibiotic courses* (median [IQR]) 0.0 [0.0, 1.0] 0.0 [0.0, 1.0]

Participant characteristics are summarized for all infants who had anti-pneumococcal 
immunoglobulin G  (IgG) responses available  (n=101; left column), and the subset of infants 
who had anti-meningococcal type C  (MenC) IgG responses available  (n=66; right column). 
*The number of antibiotic courses is given up to the time that vaccine responses were 
measured, so up to 12 months in the left column and up to 18 months in the right column.
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Figure 1 | Anti-pneumococcal and anti-MenC IgG concentrations following 
vaccination. A) Immunoglobulin G  (IgG) concentrations against 10 pneumococcal 
vaccine serotypes  (1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F and 23F; n=101) and meningococcus 
type C  (MenC; n=66) following vaccination. Black dots and error bars represent 
geometric mean concentrations with 95% confidence intervals  (CI). B) Correlation 
plot of IgG concentrations against the 10 pneumococcal vaccine serotypes and 
against MenC following vaccination. Numbers indicate the correlation strength, 
which was evaluated using Pearson’s correlation coefficients.
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Mode of delivery was associated with vaccine responses
We first investigated whether early-life host characteristics previously 
associated with differences in gut microbiome development and/or vaccine 
immunogenicity, were related to anti-Ps6B and anti-MenC IgG responses. 
Mode of delivery, feeding type, sex, antibiotics use in the first 3 months of life, 
and pets in the household were related to vaccine responses against one or 
more serotypes in univariate analysis, while having older siblings, the number 
of antibiotic courses, and daycare attendance were not. These variables 
were included in multivariable linear models, including an interaction term 
between mode of delivery and feeding type due to the interdependency of 
these variables. Vaginal delivery (in contrast to caesarean  (C-)section birth) 
was independently associated with higher anti-Ps6B IgG concentrations 
(β=0.51 [95% CI 0.043-0.97], p=0.033; Figure 2A). However, we also observed a 
negative interaction between vaginal delivery and exclusive formula feeding 
on anti-Ps6B responses (β=-1.32 [95% CI -2.43 - -0.21], p=0.021), suggesting 
that the positive effect of vaginal birth was diminished by subsequent formula 
feeding. Similar associations were found for IgG responses to most of the 
other pneumococcal vaccine serotypes  (Supplementary Table 1). Stratified 
analyses confirmed that, within the vaginally delivered group, the anti-Ps6B 
IgG GMC of breastfed infants  (n=51) was 3.5-fold higher compared to formula 
fed infants  (n=7; adjusted p=0.070); similarly, within the breastfed group, the 
anti-Ps6B IgG GMC of vaginally delivered infants  (n=51) was two-fold higher 
compared to C-section born infants (n=33), although this difference was not 
significant  (adjusted p=0.51). Anti-Ps6B IgG concentrations did not differ 
between feeding types within the C-section born group (Figure 2B). Likewise, 
for MenC, vaginal delivery was also associated with higher IgG concentrations 
compared to C-section delivery (β=0.42 [95% CI 0.016-0.83], p=0.042), which 
was independent of feeding type (Figure 2A). In a stratified analysis, vaginally 
delivered infants (n=42) showed a 1.7-fold higher anti-MenC IgG GMC 
compared to C-section delivered infants (n=24; p=0.002; Figure 2B). Mode 
of delivery and feeding type were thus the only early-life factors significantly 
associated with IgG responses against Ps6B and MenC, while sex, antibiotic 
use, and having pets were not. We concluded that mode of delivery and 
feeding type are likely microbiome modulators from birth onward (26), and 
therefore considered them as such for our downstream analysis. 
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Figure 2 | Associations between early-life exposures and anti-pneumococcal and 
anti-MenC IgG concentrations following vaccination. A) Data are presented as model 
coefficients with 95% CI per covariate computed with two-sided multivariable linear 
regression with log-transformed anti-Ps6B  (n=101) or anti-MenC  (n=66) IgG concentrations 
as dependent variable. The analysis was not adjusted for multiple comparisons.  
C-section=caesarean section; AB=antibiotics. B) anti-pneumococcal serotype 6B  (anti-
Ps6B) IgG responses for vaginally born, breastfed  (vag+bf, n=51), vaginally born, formula 
fed  (vag+ff, n=7), C-section born, breastfed  (cs+bf, n=33), and C-section born, formula fed  
(cs+ff, n=10) infants  (left) and anti-meningococcus type C  (anti-MenC) IgG responses for 
vaginally born  (vag, n=42) and C-section born  (cs, n=24) infants  (right). Black dots and 
error bars represent geometric mean concentrations  (GMCs) with 95% CI. Significance 
was assessed using two-sided analysis of variance  (ANOVA) on log-transformed IgG 
concentrations followed by a post-hoc Tukey-Kramer test, correcting for time between 
vaccination and IgG measurements. Padj = FDR-adjusted p-value. 
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Gut microbial community composition at one week of age was 
associated with vaccine responses
We then studied whether gut microbiota development in the first year of life 
was associated with anti-Ps6B and anti-MenC IgG responses. Overall, 1,052 out 
of 1,156 fecal samples (91.0%) passed quality control for 16S rRNA gene-based 
sequencing, and were included in further analyses (Supplementary Figure 1). We 
have previously shown in this cohort that the gut microbiota composition of infants 
born by C-section was significantly different compared to vaginally delivered 
infants, with lower relative abundance of Bifidobacterium and Escherichia coli, and 
enrichment of Enterococcus faecium and Klebsiella, from birth persisting up to the 
age of two months (26). From the age of two months onward, the gut microbiota 
composition remained comparable between mode of delivery groups.

We first studied associations between the alpha diversity measures, 
including Shannon diversity and the observed number of species, at each 
time point and vaccine responses. No association was found between alpha 
diversity and anti-Ps6B or anti-MenC IgG concentrations at any time point, 
with the exception of an inverse correlation between the observed number 
of species at the age of two months and anti-Ps6B IgG concentrations (β=-
0.029 [95% CI -0.049- -0.0087], adjusted p=0.082). This association was not 
observed for the other pneumococcal vaccine serotypes. 

We compared the overall microbial community composition between infants 
with above and below median anti-pneumococcal and anti-meningococcal 
IgG responses using permutational analysis of variance (PERMANOVA) on 
the Bray-Curtis dissimilarity matrix per timepoint, and found no significant 
differences. As a measure of gut microbiota stability, we calculated the Bray-
Curtis similarity (1-Bray-Curtis dissimilarity) between consecutive timepoints 
within individuals. Microbiota stability between day one and week one, 
and between week one and week two correlated with higher anti-Ps6B 
IgG concentrations (day one-week one: β=1.66 [95% CI 0.44-2.88], adjusted 
p=0.074; week one-week two: β=1.22 [95% CI 0.22-2.22], adjusted p=0.077), 
which was not observed for any other time interval. Microbiota stability in 
the first two weeks of life was also significantly positively associated with IgG 
concentrations against all other pneumococcal vaccine serotypes (adjusted 
p≤0.083, Supplementary Table 2). In contrast, no significant associations 
were found between microbiota stability and anti-MenC IgG concentrations. 



5

Mode of delivery modulates intestinal microbiota and vaccine responses

107   

The first two weeks of life, where gut microbiota stability was associated 
with anti-pneumococcal IgG concentrations, is compatible with the time 
frame when we previously found the largest difference in gut microbial 
composition between vaginally born and C-section born infants in this 
cohort  (at the age of one week) (26). In addition, this time frame coincides 
with the ‘window of opportunity’ when the gut microbiota primes the 
maturation of the immune system  (16–18). Therefore, we decided to focus 
on the microbial community composition in ‘week one’ samples, where 
we identified three distinct community state types (CSTs) (Supplementary 
Figure 2). PERMANOVA confirmed that these CSTs differed considerably in 
community composition (R2=34.8%, p<0.001). Infants with CST1 (n=55) were 
characterized by a microbial community with low relative abundances of both 
Bifidobacterium and E. coli, while infants with CST2 (n=48) had profiles with 
high relative abundances of Bifidobacterium, and infants with CST3 (n=16) 
had high relative abundances of E. coli (Figure 3A). Species-level microbial 
community composition obtained by shotgun sequencing of a subset of 
20 ‘week one’ samples confirmed that samples assigned to CST2 had high 
relative abundances of Bifidobacterium breve and/or Bifidobacterium longum, 
and samples assigned to CST3 had high relative abundances of E. coli, while 
samples assigned to CST1 mostly lacked these species (Supplementary 
Figure 3).

We then studied whether these CSTs were associated with anti-Ps6B and 
anti-MenC IgG concentrations following vaccination. Infants with CST1 had 
the lowest IgG concentrations against both Ps6B and MenC  (anti-Ps6B IgG: 
GMC 7.84 ng/ml [95% CI 4.88-12.60]; anti-MenC IgG: GMC 8.28 ng/ml  [95% 
CI 5.93-11.56]) (Figure 3B). Compared with infants with CST1, anti-Ps6B IgG 
concentrations were approximately two-fold higher in infants with CST2 
(GMC 17.05 ng/ml [95% CI 12.64-23.00], adjusted p=0.096) as well as in 
infants with CST3 (GMC 14.85 ng/ml [95% CI 7.36-29.97], adjusted p=0.202), 
though only the comparison of anti-Ps6B responses between CST1 and CST2 
infants was significant. We observed similar overall associations between 
week one CSTs and IgG responses against most other pneumococcal vaccine 
serotypes, but differences between CST1 and CST2 were not significant 
(Supplementary Table 3). By contrast, anti-MenC IgG concentrations in 
infants with CST3 were nearly two-fold higher (GMC 15.76 ng/ml [95% CI 
7.25–34.26], adjusted p=0.054) than in infants with CST1. 
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Figure 3 | Gut microbial community state types at week 1 and anti-Ps6B and 
anti-MenC IgG concentrations.
 (A) Boxplot of relative abundances of the top 7 operational taxonomic units  (OTUs) 
per community state type  (CST) defined at 1 week of age. Boxes show medians with 
interquartile ranges.  (B) CSTs are plotted against anti-Ps6B IgG concentrations  (left) 
and anti-MenC IgG concentrations  (right). Dots are colored according to mode of 
delivery and feeding type from birth. Black dots and error bars represent GMCs with 
95% CI. Significance was assessed using two-sided ANOVA on log-transformed IgG 
concentrations followed by post-hoc Tukey-Kramer tests, correcting for time between 
vaccination and IgG measurements. padj = FDR-adjusted p-value. 
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Mode of delivery was a strong driver of week one CSTs. All infants with CST2 
were vaginally born, which was significantly more than infants with CST1 
(29.1%; Fisher’s exact test, adjusted p<0.001), or CST3 (62.5%, adjusted p<0.001). 
Vaginal birth was also overrepresented in infants with CST3 compared to 
CST1 (adjusted p=0.020). In contrast, feeding type (breastfeeding vs. exclusive 
formula feeding) was not significantly different between these CSTs. A post-
hoc analysis revealed that the association between mode of delivery and anti-
Ps6B IgG responses disappeared with the addition of week one CST as an 
independent variable, indicating that the positive effect of vaginal delivery on 
anti-Ps6B IgG depended fully on the CST. In contrast, vaginal delivery remained 
significantly associated with anti-MenC IgG responses, regardless of week one 
CST, suggesting an independent effect (Supplementary Table 4).

To evaluate whether observed differences in early-life microbial community 
composition were sustained for a prolonged time, including time points closer to 
vaccination, temporal development of the gut microbiota according to week one 
CST was assessed using PERMANOVA. The microbial community composition 
of children according to their CST defined at week one converged over time, 
resulting in no differences between samples belonging to the CST groups from 
month six onward (Figure 4A). In pairwise comparisons, the observed differences 
in microbial community composition disappeared between infants with CST1 
and CST3 by month one, between infants with CST2 and CST3 by month four, and 
between infants with CST1 and CST2 by month six. Similarly, relative abundances 
of Bifidobacterium and E. coli converged over time between CST groups (Figure 
4B). At the age of 12 months, we identified two distinct CSTs, which were not 
significantly associated with anti-Ps6B or anti-MenC IgG responses, confirming 
that early-life microbiota were more strongly related to vaccine responses than 
the microbiota close to time of vaccination (Supplementary Figure 4). 

Early-life dynamics of individual OTUs were related to vaccine 
responses
Next, we investigated differences in individual OTU succession patterns within 
the first two months between high and low vaccine responders  (stratified 
along the median antigen-specific IgG response). Higher abundances of E. 
coli (days 0-41, adjusted p=0.013) and Bifidobacterium (days 0-5, adjusted 
p=0.027) were associated with high anti-Ps6B responses (confirmed for 
7/9 other pneumococcal vaccine serotypes, Supplementary Table 5). 
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Figure 4 | Temporal gut microbial composition development according to 
week 1 CST. (A) Non-metric multidimensional scaling  (NMDS) plots based on Bray-
Curtis dissimilarity, depicting the gut microbial composition per timepoint. Each dot 
represents the microbiota composition in a single participant’s sample. Infants are 
stratified according to week 1 CST. Ellipses represent the standard deviation of data 
points for each CST. Effect sizes  (R2) calculated by permutational analysis of variance  
(PERMANOVA) and corresponding p-values are shown in the plots.  (B) Relative 
abundances of Bifidobacterium  (1)  (left) and Escherichia coli  (2)  (right) over time 
according to week 1 CST. Significance of differences according to week 1 CST was 
assessed using Kruskal Wallis tests. 
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This was also observed for several Bacteroides OTUs, whereas Clostridium, 
Prevotella and Streptococcus pyogenes were associated with low responses 
(adjusted p<0.050). 

Higher E. coli abundance (days 0-13, adjusted p=0.072) was also associated 
with high anti-MenC responses (Supplementary Table 6). Because the MenC 
vaccination is administered at the age of 14 months, which is much later in life 
than the pneumococcal vaccinations, we extended the analysis to 12 months 
to allow for identification of associations with OTUs that colonize later in life. 
In high anti-MenC responders, we observed significantly higher abundances 
of multiple low abundant OTUs belonging to the Lachnospiraceae family, 
including Fusicatenibacter saccharivorans (days 101-381, adjusted p=0.080), 
Pseudobutyrivibrio (days 125-381, adjusted p=0.036) and several Blautia and 
Roseburia OTUs (Supplementary Table 7). 

Species-specific validation using targeted qPCR
Finally, we performed a targeted species-specific qPCR to validate the 
presence and abundance of E. coli, Klebsiella spp. and Enterococcus spp. in 
all samples obtained at one week of age (n=119). The relative abundance of 
E. coli showed a strong inverse correlation with E. coli Ct-values (Spearman’s 
ρ=-0.88, p<0.001), and the same was observed for Klebsiella spp. Ct-values 
(Spearman’s ρ=-0.41, p<0.001) and for Enterococcus spp. Ct-values (Spearman’s 
ρ=-0.88, p<0.001), corroborating our 16S rRNA gene sequencing-based data. 
In line with our findings, E. coli presence was more often detected by qPCR in 
infants who would subsequently have high anti-Ps6B IgG responses (34/49, 
69%) than in infants with low anti-Ps6B IgG responses (25/50, 50%; p=0.078). 
E. coli was also more often detected in week one samples of infants who 
were born by vaginal delivery (54/74, 73%) than in C-section born infants 
(20/44, 45%; p<0.001). Presence of Enterococcus spp. or Klebsiella spp. were 
not associated with the anti-Ps6B IgG response. Also, none of the species 
identified by targeted qPCR were associated with the anti-MenC IgG response 
(Supplementary Table 8).
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DISCUSSION
We studied interactions between early-life exposures, gut microbial 
community development in the first year of life, and subsequent antibody 
responses in saliva against pneumococcal and meningococcal conjugate 
vaccination in a healthy birth cohort. A stable gut microbial community with 
high relative abundances of potentially beneficial bacteria in the first weeks 
of life, including Bifidobacterium and E. coli, was associated with high antibody 
responses to pneumococcal vaccination at 12 months of life. Furthermore, 
high E. coli abundance in early life was associated with high antibody 
responses to meningococcal vaccination at 18 months of life. Vaginal 
delivery was associated with high antibody responses to both vaccines, and, 
as we previously showed in this cohort (26), with the early-life gut microbiota 
colonization patterns that we now associated with high antibody responses. 
Previous studies on associations between gut microbiota composition and 
serum antibody responses have focused on the microbiota near the time of 
vaccination (5, 6, 10, 11, 22). However, our findings suggest that especially 
early-life gut microbiota development may set the stage for robust immune 
responses to childhood vaccinations.

The period in which we identified associations between the gut microbiota 
composition and vaccine responses coincides with the critical window of 
opportunity spanning the first 100 days of life, when immune maturation is 
most affected by the early-life gut microbiota (28).  In mice, the detrimental 
effects of antibiotic-induced gut microbiota disruption on host immunity, 
including vaccine responses, metabolism and even lifespan were shown to 
be particularly potent when exposure occurs in early life (21, 29, 30). Relevant 
to the capacity to mount an effective antibody response to vaccination, the 
early-life gut microbiota have been implicated in the shaping of the systemic 
B cell and immunoglobulin repertoire (19, 20, 31). For instance, deficiency 
of IgA and IgG1 production in germ free mice can be restored by microbial 
exposure (32). In line, a culture-based study executed in human infants 
showed that the presence of E. coli and bifidobacteria in the gut in the first 
weeks of life was related to higher numbers of circulating CD27+ memory 
B cells at four and 18 months of life (33). In a recent microbiota-based 
study, lack of early bifidobacterial colonization was also linked to immune 
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dysregulation at the age of three months, showing reduced levels of 
circulating plasmablasts, and naïve and transitional B cells (17). This suggests 
that bacterial colonization patterns in early infancy drive B cell maturation, 
and have a lasting effect on, among others, adaptive immunity which may, 
for instance, be reflected in differences in antibody responses to  infant 
and childhood vaccinations. In line with this concept, we found associations 
between gut microbiota community state types (CSTs) characterized by 
high relative abundances of E. coli and/or Bifidobacterium and low relative 
abundances of, among others, Streptococcus, E. faecium and Klebsiella in one-
week-old infants, with higher antibody responses to vaccination months 
later in childhood. 

Our study adds to an existing body of evidence for a positive effect of E. coli and 
Bifidobacterium on the immune response to vaccination. For instance, higher 
relative abundances of Gram-negatives including E. coli were associated with 
an adequate immune response against oral rotavirus vaccines (5). Another 
study showed that treatment with the probiotic E. coli Nissle in a pig model 
enhanced the immune response to human rotavirus infection (34), providing 
a causal link. A potential mechanism whereby E. coli may influence vaccine 
responses was pinpointed by a study demonstrating that impaired antibody 
responses to seasonal influenza vaccination in germ-free or antibiotic-
treated mice were restored through TLR5-signaling by flagellated, but not 
unflagellated, E. coli (8), suggesting strain- and antigen-specific immune 
enhancement. Furthermore, early-life absence of Bifidobacterium has been 
associated with reduced systemic immune responses to Bacillus Calmette-
Guérin, polio virus, tetanus and hepatitis B vaccination (11, 22), which we 
also found for pneumococcal conjugate vaccination. Bifidobacterium species 
produce short chain fatty acids (SCFAs) known to interact with host immune 
cells. For instance, early-life reductions in fecal SCFAs have been linked to 
an increased risk of asthma (28), but effects of such metabolites on vaccine 
responses have not yet been studied. Conversely, we also found associations 
between other taxa such as Clostridium, Prevotella and S. pyogenes and lower 
vaccine responses, and it remains open to investigation whether these 
associations reflect a potential negative effect on the maturing immune 
system.  Although the exact mechanisms remain to be unraveled, we 
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hypothesize that very early-life microbiota-host crosstalk at the intestinal 
mucosa imprints on systemic immunity, and may thereby affect vaccine 
responses.

Vaginal delivery and breastfeeding are important drivers of early-life 
Bifidobacterium and E. coli abundance (13, 26, 35), whereas antibiotic 
treatment in the neonatal period has shown to dramatically reduce these 
bacteria (36). Our results reveal an association between mode of delivery-
induced early-life microbiota profiles and anti-pneumococcal and anti-
meningococcal vaccine responses, underlining that discouraging the 
increasing application of C-section in the absence of medical urgency may 
be important to preserve the microbiota-immune axis in infants. Whether 
antibiotic-induced microbiota disruption is associated with reduced vaccine 
responses has not yet been studied in infants (7, 21). Nonetheless, preterm 
infants, who generally receive antibiotic treatment in the first weeks 
after birth, have been shown to generate lower antibody levels following 
vaccination compared to term-born controls (37). In our healthy, term-born 
cohort, very few infants were exposed to maternal antibiotics or required 
antibiotic treatment themselves in the first weeks of life, and further studies 
are required to compare our findings to  (preterm) infants who received 
antibiotics as neonates.

We observed stronger associations of specific gut colonization patterns in 
early life with antibody responses to pneumococcal vaccination than with 
antibody responses to meningococcal vaccination. Furthermore, antibody 
responses against pneumococcal serotypes were not correlated to those 
against MenC, suggesting antigen-specific associations between the early-
life microbiota and vaccine responses. A more likely explanation is that 
pneumococcal and meningococcal vaccinations are administered at different 
ages. When meningococcal vaccination is administered at 14 months of 
age, the immune system has been exposed to other factors, and is already 
more mature and possibly more resilient to microbiota-related cues than 
when the first pneumococcal vaccination is administered at two months 
of age (16). Notably, we associated higher abundances of members of the 
Lachnospiraceae family, including butyrate-producing taxa, with higher anti-
meningococcal antibody responses. The abundance of these bacteria in the 
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gut typically increases following the cessation of breastfeeding (35, 38), and 
are generally found to be also beneficial for the developing immune system 
(39). 

Perturbed gut microbial colonization patterns may contribute to reduced 
vaccine effectiveness across certain populations and settings (9). Methods 
to modulate the gut microbiota following perturbations such as C-section 
birth are being investigated, and range from probiotic administration (40) 
to maternal fecal microbiota transplants (41), but it remains unknown if 
such interventions confer any long-term health benefits including enhanced 
vaccine immunogenicity. Our findings provide a rationale for investigations 
into potential interventions that modulate the infant gut microbiota to 
improve vaccine immunogenicity. Our results also suggest that different 
interventions should be considered for vaccinations given earlier in life 
compared to later in life in future studies.

Strengths of our work include the dense sampling at different timepoints, 
especially in the beginning of life. The extensively documented epidemiological 
data and microbiota composition of our cohort allowed us to establish 
associations between gut microbiota and vaccine responses in healthy 
infants. Furthermore, with the sensitive multiplex immunoassay technology, 
we could accurately measure antigen-specific antibody concentrations, 
even in very low volumes of saliva. Limitations of our work include using 
saliva for antibody measurements rather than serum for practical and 
ethical reasons. However, both anti-pneumococcal and anti-MenC vaccine-
induced IgG concentrations in saliva were shown to correlate with serum 
concentrations (42, 43), and are, therefore, a valid proxy for systemic IgG. 
Furthermore, while pneumococcal and meningococcal vaccination protect 
from infection primarily through neutralizing IgG, we did not assess other 
parameters of immunity such as IgA, antibody affinity, and T cell responses. 
Future studies could employ a multi-omics approach to obtain a complete 
overview of the mechanisms that underlie interindividual variation in vaccine 
responses (2, 44). Our observational study was also not primarily designed 
to study relationships between drivers, microbes and health outcomes such 
as antibody responses to vaccination, which limited our power to detect 
significant associations. Finally, the time between vaccination of the infants 
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and sampling was variable and antibody measurement was not always 
performed within the optimal time window of 2-6 weeks after vaccination, 
which despite that we corrected for this in our analyses, may still have 
affected our results. 

In conclusion, we demonstrate that mode of delivery-induced differences 
in the gut microbiota in the first weeks of life, including differences in E. 
coli and Bifidobacterium relative abundances, are associated with anti-
pneumococcal and anti-MenC IgG responses to vaccination. Incorporating 
antibody responses to vaccination as a parameter in future trials of 
early-life microbiota modulation could offer opportunities to assess 
beneficial outcomes on the microbe-mediated training of the immune 
system. Improved understanding of the microbial factors driving immune 
maturation and vaccine immunogenicity is key to improve vaccine 
performance and combat infectious diseases in children.

METHODS
Study population and sample collection
Fecal samples, saliva and questionnaires were collected from a healthy birth 
cohort in which 120 healthy, full-term infants were enrolled. This study was 
primarily designed to investigate the effect of mode of delivery on early-
life microbiota development independent of intrapartum antibiotics, and 
therefore, routine peri-operative antibiotic administration to mothers 
delivering by C-section was postponed until after umbilical cord clamping. 
The current analysis of associations between host and microbial factors and 
antibody responses to vaccination entails a secondary goal of the study. Details 
on study design were previously published (26, 45). For the current analyses, 
we expanded our dataset with data and salivary samples up to 18 months from 
78 (65%) subjects, who participated in the follow-up study beyond the first 
year of life. Both parents provided written informed consent. Ethical approval 
was granted by the Dutch national ethics committee (METC Noord-Holland, 
M012-015), and the study was registered in the Netherlands Trial Register 
under number NTR3986. Participants received no financial compensation. 
Study visits were conducted within 2 hours post-partum, 24-36 hours after 



5

Mode of delivery modulates intestinal microbiota and vaccine responses

117   

birth, at 7 and 14 days and at 1, 2, 4, 6, 9, 12 months and, for those who 
participated in the follow-up study, 18 months of age. Saliva for antibody 
measurement was collected at the ages of 12 and 18 months. An absorbent 
sponge (Malvern Medical Developments Ltd., Worcester, UK) was rubbed on 
the gums, cheek pouches and tongue for 1 minute. Saliva was immediately 
transferred to a tube containing EDTA (BD Vacutainer, New Jersey, USA) 
with protease inhibitor (Roche, Basel, Switzerland). Fecal samples for 
gut microbiota profiling were collected by the parents prior to each visit 
using sterile containers, and were directly stored in the home freezer, 
until collection by research personnel. Saliva and feces were transported 
on dry ice and stored at -80˚C awaiting subsequent laboratory analysis.  
Directly after birth, information on prenatal and perinatal characteristics 
was obtained. Glean Study Manager was used to build a database for data 
collection (Sidekick-IT). At each subsequent home visit and additionally at the 
age of three months, extensive questionnaires including vaccination dates 
were collected. Infants received all routine childhood vaccinations from 
healthcare professionals at well-baby clinics according to the Dutch national 
immunization program (NIP), independent from the study. Ten-valent 
pneumococcal conjugate vaccine (PCV-10) was administered to infants born 
before September 2013 (52/120 participants) at the ages of 2, 3, 4, and 11 
months, and to infants born from September 2013 (68/120 participants) at 
the ages of 2, 4, and 11 months due to changes in the NIP. Meningococcus 
group C (MenC) conjugate vaccination was administered at the age of 14 
months.

Measuring antibody responses to vaccination
Antigen-specific IgG against the capsular polysaccharides of pneumococcal 
vaccine serotypes 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, and 23F was measured in 
saliva obtained at 12 months of age (approximately 1 month after the final 
PCV-10 dose), and IgG against MenC polysaccharide in saliva obtained at 
18 months of age (approximately 4 months after vaccination). Antibodies 
were quantified using fluorescent bead-based multiplex immunoassays 
(MIA) (46–48). Carboxylated microspheres (Luminex, Austin, TX) were 
coated with the respective polysaccharide antigens. To this end, antigens 
were first linked to Poly-L-lysine, and then the complex was bound to the 
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microspheres in a reaction using EDC with sulpho-NHS. Standard reference 
sera with previously assigned concentrations of serotype-specific IgG 
were an in-house intravenous immunoglobulin  (IVIG) for pneumococcal 
serotypes (Sanquin, Amsterdam, The Netherlands), calibrated on the WHO 
international standard 007sp (NIBSC), and CDC1992 for MenC (NIBSC, Ridge, 
United Kingdom) (49). Saliva was thawed and centrifuged, and supernatants 
were diluted 1:2 and 1:10 using phosphate buffered saline (PBS; pH=7·2) 
with 5% antibody-depleted human serum (Valley Biomedical, Winchester, 
VA) and with 15 ug/ml multi cell wall polysaccharide (Statens Serum Insititut, 
Copenhagen, Denmark). From each dilution, 25 µl was mixed with an equal 
volume of beads. R-phycoerythrin conjugated goat anti-human IgG solution 
diluted 1:200 (Jackson ImmunoResearch, West Grove, PA) was added to each 
well. Analysis of the beads was performed on a BioPlex 200 apparatus using 
the BioPlex software package version 6.2 (Bio-Rad Laboratories, Hercules, 
CA). IgG concentrations were determined based on averaging results of both 
dilutions. When the concentrations differed more than twofold (coefficient 
of variation >47%), the result of the 1:10 dilution was used when in standard 
range. IgG concentrations were expressed in ng/ml. IgG concentrations 
below the lower limit of detection, which ranged from 0.08 ng/ml for 
pneumococcal serotype 4 to 0.37 ng/ml for pneumococcal serotype 14, and 
was 0.21 ng/ml for MenC, were set at half the lower limit of detection.

DNA isolation and sequencing
For bacterial DNA extraction and microbiota profiling, fecal samples were 
first thawed and vortexed. Approximately 100 μl raw feces from each 
sample was added to 300 μl lysis buffer (Agowa Mag Mini DNA Isolation 
Kit, LGC ltd, UK), 500 μl 0.1-mm zirconium beads (BioSpec products, 
Bartlesville, OK, USA) and 500 μl phenol saturated with Tris-HCl (pH 8.0; 
Carl Roth, GMBH, Germany) in a 96-wells plate. The fecal samples were 
mechanically disrupted with a Mini-BeadBeater-96 (BioSpec products, 
Bartlesville, OK, USA) at 2100 oscillations per minute for 2 minutes. DNA 
purification was performed with the Agowa Mag Mini DNA Isolation Kit 
following the manufacturer’s recommendations. Finally, the extracted 
DNA was eluted in 60 μl elution buffer (LGC Genomics, Germany). 
Adaptations in the standard DNA isolation procedure were applied 
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for samples collected directly postpartum and on day 1, which were 
presumed to have low bacterial abundance and diversity (26). The amount 
of bacterial DNA was determined by a quantitative polymerase chain 
reaction (qPCR), as described elsewhere (50), using primers targeting the 
bacterial 16S rRNA gene (forward: CGAAAGCGTGGGGAGCAAA; reverse: 
GTTCGTACTCCCCAGGCGG; probe: 6FAM-ATTAGATACCCTGGTAGTCCA-
MGB) on the 7500 Fast Real Time system (Applied Biosystems, CA, 
USA).  Samples with a minimum bacterial DNA yield of >0.3 ng/ul above 
the concentration in negative isolation controls were included in the 
sequencing protocol. The V4 hypervariable region of the 16S rRNA gene 
was amplified using F515/R806 primers (30 amplification cycles), and 
amplicon pools were sequenced on the Illumina MiSeq platform (Illumina, 
San Diego, CA) in 17 runs along with isolation and PCR blanks as negative 
controls.

Bioinformatic processing
Sequences were processed in our bioinformatics pipeline (25). We applied 
an adaptive, window-based trimming algorithm (Sickle, version 1.33) to filter 
out low quality reads below a Phred score threshold of 30 and/or a length 
threshold of 150 nucleotides (51). Sequencing errors were corrected with 
BayesHammer (SPAdes genome assembler toolkit, version 3.5.0) (52). Sets of 
paired-end sequence reads were assembled using PANDAseq (version 2.10) 
and demultiplexed (QIIME, version 1.9.1) (53, 54). Singletons and chimeras 
(UCHIME) were removed. Operational taxonomic unit (OTU) picking was 
performed with VSEARCH abundance-based greedy clustering of reads at 
97% similarity (55). Taxonomic annotation of OTUs was performed with 
the Naïve Bayesian RDP classifier (version 2.2) and the SILVA (version 119) 
reference database (56, 57). The resulting OTU table contained 6690 taxa. 
We selected OTUs that were present at a confident level of detection, i.e. 
representing at least 0.1% of all reads in at least two samples (excluding 
0.4% of all reads) . This abundance-filtered dataset contained 623 OTUs, and 
is referred to as the raw OTU table. We performed normalization by total 
sum scaling to obtain the relative abundance OTU table. Both OTU tables 
were used for downstream analyses.
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Whole genome sequencing for validation of OTU taxonomic 
annotations
Taxonomic annotations of the 16S rRNA gene sequences were validated, 
using whole genome shotgun sequencing (WGS) on a subset of 20 week 
one samples (ten from vaginally delivered infants, and ten from C-section 
born infants). For library preparation, the Truseq Nano gel free kit was used. 
From the libraries, 150 base paired-end sequence data were generated 
using a NovaSeq instrument to yield 750M+750M reads in two runs. Reads 
were trimmed to remove amplicon adapter sequences and to maintain a 
quality threshold of 30 and a minimum read length of 35 base pairs using 
Cutadapt (58) (version 1.9.dev2). SAM files were generated per sample and 
per run with Bowtie2 (59). SAM files from different runs were merged per 
sample using Picard (60), and were used as input to MetaPhlAn2 (61) for 
profiling and annotating the microbial communities within each sample 
(default parameters). The relative abundances of the top five 16S rRNA gene 
sequencing-based OTUs Bifidobacterium (1), E. coli (2), Staphylococcus (3), 
Klebsiella (4) and E. faecium (5) were shown to correlate strongly with the WGS 
species-level relative abundances of B. breve, B. longum and B. adolescentis 
(combined; Pearson’s ρ=0.95, adjusted p<0.001), E. coli (Pearson’s ρ=0.95, 
adjusted p<0.001), Staphylococcus epidermidis (Pearson’s ρ=0.86, adjusted 
p<0.001), Klebsiella oxytoca (Pearson’s ρ=0.83, adjusted p<0.001) and E. 
faecium (Pearson’s ρ=0.92, adjusted p<0.001), respectively, confirming their 
taxonomies.

Species-specific qPCR
Species-specific qPCR was performed on all week one samples (n=119) to 
confirm the presence and abundance of E. coli, Klebsiella spp., and Enterococcus 
spp., using the VetMAX™ MastiType Multi Kit (Applied Biosystems™, CA, USA) 
according to the manufacturer’s instructions. The qPCR test results were 
analyzed with the recommended Animal Health VeriVet Software, available 
on Thermo Fisher Cloud. One sample was excluded from statistical analysis 
because its Internal Amplification Control did not pass the Ct-value criteria 
in three out of the four mixes.
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Statistics and reproducibility
Microbiome data were excluded from the analysis if fecal samples had 
insufficient bacterial DNA available (n=104). Antibody measurements were 
excluded from the analyses if infants did not receive their vaccinations in 
time (n=8 at month 12, n=1 at month 18), or if the saliva sample did not 
have a sufficient volume for laboratory analysis (n=8 at month 12, n=11 at 
month 18; Supplementary Figure 1). The study sample size was originally 
calculated to detect differences in the microbiota composition between 
infants born by vaginal delivery and by C-section (26). For the current study, 
no statistical method was used to predetermine sample size. Data analysis 
was performed in R version 4.0.3 within RStudio version 1.3.1093 (62). All 
statistical tests were two-tailed, and p-values below 0.050 or Benjamini-
Hochberg adjusted p-values below 0.100 were considered statistically 
significant. IgG responses were analyzed as continuous log-transformed 
variables or stratified along the median into high and low responses. All 
analyses were adjusted for time between vaccination and saliva collection 
using a second degree polynomial to account for the natural kinetics of the 
antibody response. 

Concordance between IgG concentrations was evaluated using Pearson’s 
correlations. Associations between early-life host characteristics  (mode of 
delivery, feeding type, sex, antibiotic use in the first three months, number 
of antibiotic courses, daycare attendance, having siblings and having pets) 
and IgG concentrations were assessed using univariate linear models, 
and factors with a p<0.050 for one or more serotypes were included in 
multivariable models. IgG geometric mean concentrations (GMCs) were 
compared between groups defined by mode of delivery and feeding type, 
using ANOVA followed by post-hoc Tukey-Kramer tests to account for 
unequal group sizes (HSD.test-function, agricolae package [version 1.3-5] 
(63), parameter ‘unbalanced’ set to TRUE). We tested the assumptions of 
normality and homogeneity of variance of the ANOVA test by inspecting the 
distribution of the residuals and with Levene’s test, respectively. 

Gut microbiota alpha diversity was assessed by the number of observed 
species and the Shannon diversity index (phyloseq package [version 1.38.0] 
(64)). Associations between alpha diversity measures per timepoint and IgG 
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concentrations were tested using linear models. Permutational multivariate 
analysis of variance (PERMANOVA) on the Bray-Curtis dissimilarity matrix 
was used to test for overall differences in the microbial community 
composition per timepoint between infants with high and low IgG responses 
(adonis2-function, vegan package [version 2.5-7] (65)). Stability of the 
microbial community composition over time was calculated as the Bray-
Curtis similarity  (1–Bray-Curtis dissimilarity) between consecutive samples 
from the same individual, where a higher similarity indicates higher stability. 

Dirichlet multinomial mixture models were used to group infants into 
community state types (CSTs) based on gut microbiota composition at 
week one and at month 12 separately (DirichletMultinomial package [version 
1.36.0] (66)). For this analysis, the raw OTU table was filtered, retaining OTUs 
present in >10% of the samples included in the analysis. The optimal number 
of CSTs was set at the number of Dirichlet components representing optimal 
model fit, testing a range of one to seven components. Model fit was based 
on the Laplace approximation to the negative log model, where a lower value 
indicates a better fit. Differences in the gut microbial community composition 
according to CST were evaluated using PERMANOVA (adonis-function, vegan 
package [version 2.5-7] (65)). Differences in IgG GMCs according to week 
one and month 12 CSTs were evaluated using ANOVA and post hoc Tukey-
Kramer tests, as described above.

Smoothing-spline analysis of variance (SS-ANOVA, fitTimeSeries-function, 
metagenomeSeq package [version 1.36.0] (67, 68)) was used to detect 
differences in individual OTU abundances in the first two months of life 
between infants with responses above and below the median antigen-
specific IgG concentration. For the anti-MenC IgG response, this analysis was 
repeated for the entire 12 month follow-up period. For this analysis, the raw 
OTU table was filtered, retaining only OTUs present in >10% of all samples 
included in the analysis. This method detects differentially abundant OTUs, 
and identifies the time intervals in which significant differences exist.

Correlations between the relative abundances of E. coli, E. faecium and 
Klebsiella at the age of one week and the species-specific Ct-values from 
targeted qPCR were evaluated with Spearman’s rank-order correlations. 
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Chi-square tests were used to assess differences in presence of species 
identified by targeted qPCR between infants with above and below median 
IgG responses and between mode of delivery groups.

Data and code availability
Sequence data that support the findings of this study have been deposited 
in the NCBI Sequence Read Archive (SRA) database with BioProject 
ID PRJNA481243 [https://www.ncbi.nlm.nih.gov/bioproject/481243], 
and PRJNA555020 [https://www.ncbi.nlm.nih.gov/bioproject/555020]. 
Taxonomic annotations were based on the Silva reference database 
(version 119).  All R code used to run the statistical analysis is publicly 
available at https://gitlab.com/EMdK/muis_vaccine_responses.
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Supplementary Table 2 | Validation of associations between Bray-Curtis similarity 
and anti-pneumococcal IgG levels.  
Ps time interval β (95% CI) adjusted p-value
1 d1-w1 1.20 (-0.03 - 2.42) 0.065

w1-w2 0.86 (-0.05 - 1.78) 0.065
4 d1-w1 1.07 (0.08 - 2.06) 0.055

w1-w2 0.75 (-0.02 - 1.51) 0.055
5 d1-w1 1.00 (0.05 - 1.95) 0.040

w1-w2 0.80 (0.09 - 1.51) 0.040
7F d1-w1 0.72 (-0.29 - 1.73) 0.162

w1-w2 0.96 (0.22 - 1.70) 0.024
9V d1-w1 1.22 (0.29 - 2.15) 0.011

w1-w2 1.02 (0.33 - 1.72) 0.009
14 d1-w1 1.25 (0.18 - 2.33) 0.023

w1-w2 1.25 (0.43 - 2.08) 0.006
18C d1-w1 1.77 (0.72 - 2.82) 0.002

w1-w2 0.77 (-0.10 - 1.65) 0.083
19F d1-w1 1.14 (0.13 - 2.15) 0.056

w1-w2 0.41 (-0.38 - 1.20) 0.307
23F d1-w1 1.01 (-0.11 - 2.13) 0.077

w1-w2 1.15 (0.27 - 2.03) 0.023

Model coefficients (β) with 95% CI and adjusted p-values were computed with two-sided 
multivariable linear regression on log-transformed anti-pneumococcal concentrations per 
serotype (Ps; n=101). All analyses were corrected for time between vaccination and IgG 
measurement and for multiple comparisons. Abbreviations: Ps = pneumococcal serotype; 
d1=day 1; w1=week 1; w2=week 2.
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Supplementary Table 8 | Validation of 16S rRNA gene sequencing-based results 
by targeted qPCR. 

Anti-Ps6B IgG response Anti-MenC IgG response
High Low p-value High Low p-value

n 49 50 33 31
Escherichia coli presence (%) 34 (69.4) 25 (50.0) 0.078 23 (69.7) 19 (61.3) 0.657
Klebsiella spp. presence (%) 23 (46.9) 21 (42.0) 0.770 16 (48.5) 13 (41.9) 0.783
Enterococcus spp. presence (%) 29 (59.2) 37 (74.0) 0.177 22 (66.7) 19 (61.3) 0.851

Presence of E. coli, Enterococcus spp. and Klebsiella spp. identified by quantitative 
polymerase chain reaction (qPCR) on all week 1 samples, for infants with high and 
low anti-Ps6B and anti-MenC IgG responses. p-values were calculated with two-sided 
chi-square tests.
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Supplementary Figure 1 | Sample overview. Fecal samples were collected for 
gut microbiota characterization from 120 healthy infants at days (d)0 and 1, weeks 
(w)1 and 2, and months (m)1, 2, 4, 6, 9 and 12. Fecal samples were excluded from 
the analysis if they had insufficient bacterial DNA available (n=104). Saliva was 
collected from 118 infants at the age of 12 months for measuring anti-pneumococcal 
immunoglobulin G (IgG) and from 78 infants at the age of 18 months for measuring 
anti-meningococcal IgG. Saliva samples were excluded if infants did not receive their 
vaccinations in time (n=8 at month 12, n=1 at month 18), or if the saliva sample did 
not have a sufficient volume for laboratory analysis (n=8 at month 12, n=11 at month 
18). N=total number of infants from which samples were collected; n=total number 
of available samples.
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Supplementary Figure 2 | Dirichlet multinomial mixture model fit. Dirichlet 
multinomial mixture model identified 3 compositionally distinct community state 
types (CST) as the best model fit at the week 1 timepoint. Model fit was based on 
the Laplace approximation to the negative log model where a lower value indicates 
a better model fit. 
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determined by whole genome shotgun sequencing. Samples were ordered by week 
1 community state type (CST). 
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Supplementary Figure 4 | Community state types at 12 months of age. (A) Dirichlet 
multinomial mixture model identified two compositionally distinct community state 
types (CST) as the best model fit at the month 12 timepoint. Model fit was based on 
the Laplace approximation to the negative log model where a lower value indicates 
a better model fit. (B) Boxplot of relative abundances of the top 7 operational 
taxonomic units (OTUs) per community state type (CST) defined at 12 months of 
age. Boxes show medians with interquartile ranges. (C) Month 12 CSTs are plotted 
against anti-Ps6B IgG concentrations (left) and anti-MenC IgG concentrations (right). 
Dots are colored according to mode of delivery and feeding type from birth. Black 
dots and error bars represent geometric mean concentrations with 95% confidence 
intervals. Significance was assessed using two-sided ANOVA on log-transformed IgG 
concentrations, correcting for time between vaccination and IgG measurements. 
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ABSTRACT
Pneumococcal conjugate vaccines reduce pneumococcal colonization via 
serotype-specific immunoglobulin G (IgG) at mucosal surfaces. The infant 
immunization schedule with the ten-valent pneumococcal conjugate 
vaccine (PCV10) changed from a 3+1 schedule (2-3-4-11 months) to a 2+1 
schedule (2-4-11 months) in The Netherlands in 2013. We compared anti-
pneumococcal IgG concentrations in saliva between the schedules. IgG was 
measured using a fluorescent bead-based multiplex immunoassay, at the 
ages of 6 (post-primary) and 12 (post-booster) months in 51 infants receiving 
the 3+1 schedule and 68 infants receiving the 2+1 schedule. Post-primary 
IgG geometric mean concentrations (GMCs) were comparable between 
schedules for all vaccine serotypes. Post-booster IgG GMCs were significantly 
lower after the 2+1 schedule for serotypes 4 (p=0.035), 7F (p=0.048) and 23F 
(p=0.0056). This study shows small differences in mucosal IgG responses 
between a 3+1 and a 2+1 PCV10 schedule. Future studies should establish 
correlates of protection against pneumococcal colonization for mucosal 
antibodies.



6

Salivary antibody responses to 10-valent pneumococcal conjugate vaccination

147   

INTRODUCTION
Pneumococcal conjugate vaccination in children has drastically reduced 
the burden of disease caused by Streptococcus pneumoniae, ranging from 
respiratory infections like acute otitis media and pneumonia to invasive 
disease like septicaemia and meningitis (1,2). Apart from direct protection, 
a reduction in nasopharyngeal pneumococcal colonization is the second 
pillar of success of conjugate vaccines (3). Nasopharyngeal colonization 
can be considered both a prerequisite for infection as well as the source of 
community spread (4,5). The pneumococcal conjugate vaccine does not only 
induce long-term immunoglobulin type G (IgG) in serum, but also at mucosal 
surfaces (6), which were shown to correlate well with serum levels (7). 
Although the exact mechanisms by which pneumococcal acquisition at the 
nasal mucosa is prevented following pneumococcal conjugate vaccination 
remain unclear, mucosal IgG has been suggested as a protective agent (8,9).

The Netherlands introduced the 7-valent pneumococcal conjugate vaccine 
(PCV7) in the national immunization program (NIP) in 2006, and switched to the 
10-valent vaccine (PCV10, Synflorix) in 2011. Initially, immunization was advised 
in a primary series of 3 vaccines at the ages of 2, 3 and 4 months followed by 
a booster dose at the age of 11 months (3+1 schedule). In November 2013, 
the schedule was adapted by dropping the 3-month dose (2+1 schedule). This 
decision was based on non-inferiority data from a trial investigating the impact 
of timing and number of doses for the 13-valent vaccine (10). However, less 
is known for the 10-valent vaccine, which covers fewer serotypes, and differs 
in carrier proteins and immunogenicity (11,12), and in particular, the impact 
on mucosal IgG concentrations has not been compared between different 
immunization schedules. Therefore, we aimed to compare post-primary and 
post-booster serotype-specific anti-pneumococcal IgG concentrations in saliva 
following vaccination with PCV10 in a birth cohort of infants who received either 
the 3+1 (2-3-4-11 months) or the 2+1 (2-4-11 months) immunization schedule.

METHODS
Study population and sample collection
Saliva was available from 119 healthy, full-term infants born between 
December 2012 and June 2014, who participated in the Microbiome Utrecht 
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Infant Study (13). Follow-up until the age of 12 months was complete for 117 
(98.3%) infants (Figure 1). According to the Dutch NIP, 51 infants born before 
September 2013 received PCV10 in a 3+1 schedule with vaccinations at 2, 3, 4 
and 11 months of age, and 68 infants born from September 2013 received a 
2+1 schedule with vaccinations at 2, 4 and 11 months of age. Mothers were not 
vaccinated with PCV10. Saliva was collected from infants during home visits at 
1 month of age (baseline), after finishing the primary series at 6 months of age 
(post-primary), and after the booster dose at 12 months of age (post-booster). 
Saliva was collected by placing an absorbent sponge (S10 Oracol, Malvern 
Medical Developments Ltd., Worcester, UK) in the cheek pouch and under 
the tongue for 1 minute, so that the sponge became saturated with saliva, 
and was immediately transferred to a tube containing EDTA (BD Vacutainer, 
New Jersey, USA) plus protease inhibitor (Roche, Basel, Switzerland). Samples 
were transported on dry ice and stored at -80°C awaiting laboratory analyses. 
Ethical approval was granted by the Dutch national ethics committee (METC 
Noord-Holland, M012-015, NTR3986), and parental informed consent was 
obtained from all participants. The study was conducted in accordance with 
the European Statements for Good Clinical Practice.

Laboratory methods
Concentrations of serotype-specific anti-pneumococcal IgG in saliva were 
measured using a fluorescent bead-based multiplex immunoassay (MIA), 
which had been validated internally for use in saliva and was previously 
published (7, 14) In short, 10 sets of carboxylated microspheres (Luminex, 
Austin, TX) were coated with the pneumococcal polysaccharide antigens 1, 4, 
5, 6B, 7F, 9V, 14, 18C, 19F and 23F (ATCC, Manassas, VA). Antigens were linked 
to Poly-L-lysine, and the complex was bound to the microspheres in a reaction 
using EDC with sulpho-NHS. The in-house reference serum IVIG (Sanquin, 
Amsterdam, The Netherlands) with previously assigned concentrations of 
IgG, determined by calibration with international standard serum, was used 
in serial dilutions as standard reference (15). Saliva samples were thawed and 
centrifuged, and supernatants were diluted 1:2 and 1:10 using phosphate 
buffered saline (PBS; pH=7.2) with 5% antibody-depleted human serum (Valley 
Biomedical, Winchester, VA) and with 15 ug/ml multi cell wall polysaccharide 
(Statens Serum Insititut, Copenhagen, Denmark). From each dilution, 25 µl 



6

Salivary antibody responses to 10-valent pneumococcal conjugate vaccination

149   

was mixed with an equal volume of beads. R-phycoerythrin conjugated goat 
anti-human IgG solution diluted 1:200 (Jackson ImmunoResearch, West 
Grove, PA) was added to each well. Analysis of the beads was performed 
on a BioPlex 200 apparatus using the BioPlex software package version 6.2 
(Bio-Rad Laboratories, Hercules, CA). Concentrations were determined by 
averaging results of both dilutions. Results from the two dilutions differed 
more than twofold (coefficient of variation (CV) >47%) in 23 samples with 
low IgG concentrations. The 1:10 dilution was considered to be more precise 
because of less interference from components of the saliva, and therefore, 
the result of the 1:10 dilution was used when in standard range for samples 
with a high CV. IgG concentrations were expressed in ng/ml. The lower limit 
of detection ranged from 0.08 ng/ml for serotype 4 to 0.37 ng/ml for serotype 
14. Lower IgG concentrations were set at half the limit.  

Statistical analysis
Serotype-specific IgG antibody concentrations in saliva are reported as 
geometric mean concentrations (GMCs) with 95% confidence intervals (CI). Fold 
changes were calculated as the ratio between GMCs. Baseline, post-primary 
and post-booster IgG concentrations were compared with Kruskal-Wallis tests 
followed by pairwise comparisons, and p-values were adjusted for 3 multiple 
comparisons using Bonferroni correction. Differences in post-primary 
and post-booster salivary serotype-specific IgG concentrations between 
immunization schedules were first assessed using Wilcoxon rank-sum tests. 
Multivariable linear regression was used to test independent associations 
of log2-transformed IgG concentrations with vaccination schedule, month 1 
(baseline) log2-transformed IgG concentrations, sex, age in days at time of 
first vaccination, and time between vaccination and sampling as covariates. 
The antilog (2x) of model coefficients with their 95% CIs are presented as 
geometric mean ratios (GMRs). GMRs indicate the relative increase in salivary 
IgG concentrations that is related to a 1-unit change in the model covariate. 
Time between vaccination and sampling was included in the model in a 
second degree polynomial to reflect the natural kinetics of IgG responses to 
vaccination. P-values below 0.050 were considered statistically significant, 
and p-values above 0.050 but below 0.100 were considered relevant trends 
towards significance. Analyses were performed in R version 4.0.3.  
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Figure 1 | Flowchart showing number of infants and samples per PCV10 
immunization schedule. Numbers of infants in the study and of immunoglobulin G 
(IgG) measurements at each sampling moment, broken down according to PCV10 
immunization schedule (2+1 or 3+1 schedule). Reasons for missing measurements 
were a too low sample volume for laboratory analysis, the infant not having received 
the vaccine before the sampling moment (non-adherence to the national 
immunization program [NIP]) or the infant dropping out of the study.

RESULTS
Salivary serotype-specific anti-pneumococcal IgG concentrations were 
measured in 73 baseline saliva samples, 106 post-primary samples 
(obtained on average 62 days after the last priming dose, range 22-89 
days) and 101 post-booster samples (obtained on average 27 days after 
the booster dose, range 5-64 days) (Figure 1). IgG concentrations increased 
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over time for all vaccine serotypes (Figure 2A). After the primary series, 
salivary serotype-specific IgG GMCs varied between 1.00 ng/ml (95% CI, 
0.75-1.34) for serotype 23F and 4.56 ng/ml (95% CI, 3.67-5.65) for serotype 
7F, representing a 1.2 to 5.5-fold change compared with pre-immunization 
concentrations; this increase was significant for serotypes 1, 4, 5, 6B, 7F, 9V 
and 18C (all Bonferroni-adjusted p-value<0.050) but not for serotypes 14, 
19F, and 23F. After the booster dose, we observed a stronger, significant 
3.2 to 9.4-fold increase compared with post-primary salivary IgG GMCs for 
all vaccine serotypes (all Bonferroni-adjusted p-value <<0.001), resulting in 
post-booster GMCs between 7.33 ng/ml (95% CI 5.75-9.33) for serotype 23F 
and 27.30 ng/ml (95% CI, 22.14-33.67) for serotype 19F. 

Because the PCV10 immunization schedule changed in 2013, 51 (42.5%) 
infants who were immunized according to the ‘old’ 3+1 schedule with 
priming doses at 2, 3 and 4 months, were compared with 68 (56.7%) infants 
who received the ‘new’ 2+1 schedule, dropping the 3-month dose. Regarding 
post-primary IgG concentrations, there were no differences between the 
schedules, although we observed a trend towards higher IgG concentrations 
against serotype 4 in children who received the 2+1 schedule compared 
with the 3+1 schedule (p=0.064) (Figure 2B). By contrast, post-booster IgG 
concentrations were significantly lower following the 2+1 in comparison with 
the 3+1 schedule for serotypes 4 (p=0.035), 7F (p=0.048) and 23F (p=0.0056), 
with a borderline significant difference for serotype 9V (p=0.058) (Figure 2C). 

To investigate independent effects of immunization schedule and 
other factors known to influence PCV immunogenicity, i.e. age at first 
immunization, baseline anti-pneumococcal IgG concentrations, and male 
compared to female gender, on the IgG response to PCV10, we performed 
a multivariable analysis (Figure 3). These host factors were comparable 
between subjects receiving different schedules (Table 1). We found no 
significant associations between immunization schedule and post-primary or 
post-booster salivary anti-pneumococcal IgG concentrations in multivariable 
analysis, though for serotype 23F a trend towards lower post-booster IgG 
concentrations was observed for the 2+1 group (p=0.079). Older age at 
time of first immunization was associated with higher post-primary IgG 
concentrations against serotypes 1, 4, 18C and 19F (GMR 1.05-1.08, p<0.030), 
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Figure 2 | Serotype-specific anti-pneumococcal IgG responses following the 
priming doses and the booster dose of PCV10. Serotype-specific anti-pneumococcal 
IgG concentrations were compared (A.) before PCV10 vaccination, after the primary 
series and after the booster dose, and between the 3+1 (at 2-3-4-11 months) and the 
2+1 (at 2-4-11 months) PCV10 immunization schedule (B.) after the primary series, or 
(C.) after the booster dose. Black dots and error bars represent geometric mean 
concentrations with 95% confidence intervals. Significance was assessed by pairwise 
Wilcoxon rank-sum tests, and was indicated by ***: p<0.001; **: p<0.005; *: p<0.05; 
•: p<0.10; ns: not significant.
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but not with post-booster salivary IgG concentrations. Finally, we observed 
negative correlations between baseline and post-primary IgG concentrations 
for serotypes 5, 6B, 7F, 14, 18C and 23F (GMR 0.70-0.86, all p<0.005), and 
between baseline and post-booster IgG concentrations for serotype 14 
(GMR 0.84, 95% CI 0.73-0.96, p=0.014). Male compared to female gender 
was not associated with IgG responses to PCV10.

Post−primary Post−booster
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GMR (95% CI)

Se
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Figure 3 | Independent associations between PCV10 immunization schedule, 
baseline antibody concentrations, age at first vaccination, and sex and vaccine 
responses. Significant findings (p<0.050) are shown in red. For PCV10 schedule, 
geometric mean ratios (GMRs) greater than 1.0 indicate that children who received 
the new 2+1 (2-4-11 months) schedule, have higher IgG concentrations than children 
who received the old 3+1 (2-3-4-11 months) schedule after the primary series or the 
booster dose. For baseline IgG, the GMR indicates the relative increase in IgG 
concentrations associated with a doubling of baseline IgG concentrations. For age at 
first PCV10 vaccination, the GMR indicates the relative increase in IgG concentrations 
associated with a 1 day increase. Male vs. female sex was not significantly associated 
with serotype-specific IgG concentrations and was therefore not included in the 
figure. The analyses were also corrected for time between vaccination and saliva 
collection using a second degree polynomial. 
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DISCUSSION
To our knowledge, this is the first study that compared serotype-specific anti-
pneumococcal IgG in saliva following pneumococcal conjugate vaccination 
with PCV10 between different immunization schedules. Comparable IgG 
concentrations were observed 2 months after completion of a 2-dose (2-4 
months) and a 3-dose (2-3-4 months) primary series of PCV10. However, IgG 
concentrations against serotypes 4, 7F and 23F were modestly but significantly 
lower following the booster dose in children who received PCV10 in a 2+1 
schedule. Studies comparing serum IgG responses between the 3+1 and 2+1 
PCV10 schedule have not been published, and it remains unclear whether 
our findings in saliva align with results in serum. However, a large trial 
comparing schedules with PCV13 showed that post-booster serum responses 
following the 2+1 schedule were non-inferior to the 3+1 schedule (10).  

Table 1 | Gender, age at first immunization, and baseline anti-pneumococcal 
IgG in infants receiving the 3+1 and the 2+1 PCV10 schedule. 

3+1 schedule 2+1 schedule p-value
51 68

Basic characteristics
   Male (%) 23 (45.1) 33 (48.5) 0.85
   Age at first immunization, 
   months (median [IQR])

1.9 [1.8, 2.1] 1.9 [1.8, 2.0] 0.74

Baseline anti-pneumococcal IgG, GMC (95% CI) (ng/ml)
   Ps1 0.75 (0.54-1.06) 0.80 (0.51-1.26) 0.80
   Ps4 0.79 (0.60-1.04) 0.61 (0.45-0.83) 0.28
   Ps5 0.94 (0.63-1.39) 1.11 (0.76-1.62) 0.52
   Ps6B 0.45 (0.26-0.76) 0.69 (0.40-1.17) 0.19
   Ps7F 1.08 (0.58-2.01) 0.61 (0.37-1.01) 0.25
   Ps9V 0.52 (0.29-0.92) 0.37 (0.24-0.57) 0.62
   Ps14 1.05 (0.60-1.84) 1.15 (0.62-2.16) 0.84
   Ps18C 0.69 (0.40-1.18) 0.62 (0.32-1.18) 0.80
   Ps19F 2.16 (1.50-3.10) 2.86 (2.04-4.00) 0.32
   Ps23F 0.82 (0.48-1.40) 0.81 (0.44-1.47) 0.93

Significance was assessed using Wilcoxon rank-sum tests. Data are summarized as n 
(%); median with interquartile range (IQR); or geometric mean concentrations (GMC) 
with 95% confidence intervals (CI). Abbreviations: Ps=pneumococcal serotype.
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Previous studies have demonstrated strong correlations between saliva and 
serum anti-pneumococcal IgG (7,16), suggesting that salivary antibodies can 
be a useful indicator of serum antibody status. Furthermore, IgG at mucosal 
surfaces may contribute to protection against pneumococcal infection by 
inhibiting nasopharyngeal colonization. Findings from a human challenge 
model showed that mucosal IgG effectively prevented acquisition of S. 
pneumoniae through bacterial agglutination (9). Future studies should strive 
to establish correlates of protection against pneumococcal colonization for 
mucosal antibodies.

Furthermore, anti-pneumococcal IgG patterns in saliva were comparable 
to those observed in studies of systemic IgG responses in serum 
following vaccination with PCV-10, which suggests that saliva may be a 
good, non-invasive specimen next to serum to monitor IgG responses to 
vaccination. In line with earlier observations, we confirmed that older age 
at time of the first PCV10 dose was associated with higher post-primary 
IgG concentrations (10,17). Likewise, we confirmed that pre-vaccination IgG 
concentrations at 1 month of age were negatively related to post-primary 
IgG concentrations. Similar associations were previously reported for serum 
antibody concentrations, and likely reflect that maternally derived IgG, 
which predominates in early life, inhibits the IgG response to pneumococcal 
vaccination (17). 

Strengths of our study include the extensive participant data including 
vaccination dates. The sensitive MIA technology also allowed us to accurately 
measure IgG concentrations, even in very low volumes of saliva. A limitation of 
our study is the lack of serum; therefore, salivary IgG could not be correlated 
with serum levels. Furthermore, the relatively low number of participants 
limited our power to detect significant differences and may explain why 
vaccine schedule was not associated with the anti-pneumococcal IgG 
response in multivariable analysis. We did not correct IgG measurements 
for the dilution factor in saliva, but earlier work has shown that this has 
only little effect (7). Moreover, our observational design does not allow 
to fully preclude the influence of potential confounding factors, including 
potential differences in circulation of pneumococcal vaccine serotypes in 
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the population and thereby boosting of mucosal immunity during the study 
period (7,18). However, since 2011, temporal changes in vaccine serotype 
prevalence in the paediatric population in The Netherlands have been rare, 
so we anticipate this to be of limited effect (19). 

In conclusion, modest decreases in serotype-specific anti-pneumococcal IgG 
concentrations in saliva following the booster PCV10 dose were observed 
after leaving out the middle dose of the primary series, resulting in a 2 (2-
4) month interval between the first and second primary immunizations. 
Future research should investigate whether salivary IgG is a good correlate 
of protection from nasopharyngeal pneumococcal colonization after 
immunization. We propose that measuring IgG against vaccine serotypes in 
saliva next to serum may represent a valid, non-invasive method to quantify 
mucosal immune responses in studies investigating or monitoring changes 
to pneumococcal vaccines and schedules.
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ABSTRACT
Childhood lower respiratory tract infections (LRTI) are associated with 
dysbiosis of the nasopharyngeal microbiota, and persistent dysbiosis following 
the LRTI may in turn be related to recurrent or chronic respiratory problems. 
Therefore, we aimed to investigate microbial and clinical predictors of early 
recurrence of respiratory symptoms as well as recovery of the microbial 
community following hospital admission for LRTI in children. To this end, 
we collected clinical data and characterized the nasopharyngeal microbiota 
of 154 children (4 weeks-5 years old) hospitalized for a LRTI (bronchiolitis, 
pneumonia, wheezing illness, or mixed infection) at admission and 4-8 weeks 
later. Data were compared to 307 age-, gender- and time-matched healthy 
controls. During follow-up, 66% of cases experienced recurrence of (mild) 
respiratory symptoms. In cases with recurrence of symptoms during follow-
up, we found distinct nasopharyngeal microbiota at hospital admission, with 
higher levels of Haemophilus influenzae/haemolyticus, Prevotella oris and other 
gram-negatives and lower levels of Corynebacterium pseudodiphtheriticum/
propinquum and Dolosigranulum pigrum compared to healthy controls. 
Furthermore, in cases with recurrence of respiratory symptoms, recovery of 
the microbiota was also diminished. Especially in cases with wheezing illness 
we observed a high rate of recurrence of respiratory symptoms, as well as 
diminished microbiota recovery at follow-up. Together, our results suggest 
a link between the nasopharyngeal microbiota composition during LRTI and 
early recurrence of respiratory symptoms, as well as diminished microbiota 
recovery after 4-8 weeks. Future studies should investigate whether (speed 
of) ecological recovery following childhood LRTI is associated with long-term 
respiratory problems.
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INTRODUCTION 
Lower respiratory tract infections (LRTIs) remain a leading cause of illness in 
early childhood, and are a risk factor for the development of recurrent and 
even chronic respiratory problems (1–3). For instance, approximately half of 
infants with bronchiolitis will subsequently experience recurrent wheezing 
episodes (4), which may persist for years and might eventually develop 
into asthma (5). Also, health-related quality of life may remain substantially 
decreased for months or even years following a LRTI in both children (6) and 
adults (7). Causes of respiratory problems following a LRTI remain largely 
unknown, but emerging evidence suggests that the upper respiratory tract 
(URT) microbiota may play a role (8, 9). 

As expected, during a LRTI, the microbial communities of the respiratory 
tract differ strongly from those of healthy, matched controls, with 
increased presence of potential pathogens (‘pathobionts’) like Streptococcus 
pneumoniae and Haemophilus influenzae, and decreased presence of 
presumed beneficial bacteria like Corynebacterium and Dolosigranulum 
(10–13). However, microbiota ‘recovery’ following a LRTI is not extensively 
studied. One case-control study has shown that the abundance of pathobiont 
Haemophilus decreased to normal levels within a month (11). Conversely, a 
longitudinal study demonstrated persistent enrichment with Moraxella up to 
6 months after a LRTI (14). Furthermore, in a prospective cohort of infants 
with bronchiolitis, increased nasal levels of Moraxella and Streptococcus in 
the weeks directly following hospitalization were associated with recurrent 
wheeze at the age of 3 years, suggesting that persistent microbial ‘dysbiosis’ 
may contribute to long-term respiratory outcomes following a LRTI (8). 

Using a matched case-control design, we have previously demonstrated 
significant aberrations of the nasopharyngeal microbial community at time 
of hospital admission for childhood LRTI, when compared to asymptomatic 
age-, gender- and time-matched controls (13). Currently, we extend our 
analysis to 4-8 weeks follow-up, and demonstrate that early recurrence of 
respiratory symptoms is related to the nasopharyngeal microbial community 
composition at times of LRTI as well as to impaired microbiota recovery 
following LRTI. 
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METHODS
We refer to our previous publication on this cohort (13) for details on study 
design and microbiota analysis, and to the online data supplement for 
details on statistical analysis. Data are available from the NCBI Sequence 
Read Archive database (BioProject ID PRJNA428382).

Study design
We enrolled 154 cases aged 4 weeks to 5 years old, hospitalized for a LRTI, and 
307 age-, time- and gender-matched, healthy controls from the community 
(1:2 ratio except for 1 case). Age, season and gender are known to influence 
microbiota composition (15–17), and were therefore used as matching 
criteria to avoid confounding. Nasopharyngeal swabs were obtained from 
cases at hospital admission and 4-8 weeks after discharge during a follow-
up visit to the outpatient clinic or at home. Nasopharyngeal swabs from 
controls were obtained once during a home visit within 2 weeks from case 
admission (Figure S1). Extensive information on medical history, lifestyle 
and environment was collected from all participants using questionnaires. 
From cases, we also collected clinical data during admission and at follow-
up. Two expert paediatricians independently grouped cases into 3 major 
LRTI phenotypes (pneumonia, bronchiolitis, and wheezing illness) based 
on medical records. Cases with an unclear or overlapping phenotype 
were classified as mixed infection. Recurrence of respiratory symptoms 
was defined as a parent-reported new episode of one or more respiratory 
symptoms (including rhinorrhoea, wheezing, earache, sore throat, coughing, 
hoarseness, and ‘other’ respiratory symptoms) between hospital discharge 
and the follow-up visit 4-8 weeks later. The study was approved by the Dutch 
National Ethics Committee (NL42019.094.12). Written informed parental 
consent was obtained from all participants.

Microbiota analysis
Bacterial DNA was isolated and quantified as previously described (17–19), 
with the following minor modifications: 16S Real Time PCR was conducted 
using TAMRA probe 16S-P1 (FAM-ATT AGA TAC CCT GGT AGT CCA-TAMRA) 
(Life Technologies, Carlsbad, CA) and a PCR mixture containing 12.5 µl 2x 
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Taqman universal master mix (Life Technologies, Carlsbad, CA), 1 µl of 
each primer (10 µM), 1 µl of the probe (5 µM), 6.5 µl HPLC graded water 
(Instruchemie, Delfzijl, Netherlands) and 3 µl of template DNA, on the 
StepOnePlus System (Applied Biosystems, Foster City, CA). Almost all 
samples (>99%) contained sufficient DNA for reliable analysis (Figure 
S1). Following, amplicon libraries of the 16S-rRNA gene (V4 region) were 
generated, and sequencing was executed on the Illumina MiSeq platform 
(Illumina Inc., San Diego, CA). Bioinformatic processing was performed as 
previously described (20, 21). Contaminating sequences were identified 
using the decontam R-package, using their relation to bacterial biomass 
(frequency method) and their presence/absence in samples versus DNA 
isolation controls and PCR blanks (prevalence method) (22). In total, 21 OTUs 
were identified as contaminants, and were removed prior to downstream 
analyses (Table S1). Each operational taxonomic unit (OTU) was assigned 
taxonomy and a rank number based on its abundance. Double annotations 
were assigned to OTUs that could be annotated to both species. Presence 
of Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae 
and Moraxella catarrhalis was confirmed by quantitative PCR. Viral presence 
was detected by qualitative multiplex Real Time PCR (RespiFinder SMARTfast 
22, Maastricht, Netherlands).

Statistical analysis
Data analysis was performed in R version 3.4.3. Case-control comparisons 
accounted for matching. P-values or Benjamini-Hochberg adjusted q-values 
below 0.050 were considered statistically significant. Chi-square and 
Wilcoxon tests were used to compare host characteristics between cases 
with and without recurrence of respiratory symptoms during follow-up. 
Independent relationships between antibiotic treatment, LRTI phenotype, 
age, and recurrence of respiratory symptoms during follow-up were assessed 
using multivariable logistic regression, including pairwise interactions and 
correcting for follow-up time. Conditional logistic regression was used to 
compare viral presence between cases and controls. Alpha diversity was 
assessed by the Chao1 index for microbial richness and the Shannon index 
for diversity (phyloseq (23)), and significance of differences between cases 
and controls was evaluated using linear mixed-effect models. Microbiota 
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recovery was considered complete when the overall microbial composition 
was comparable between cases after 4-8 weeks follow-up and matched 
controls, which was evaluated by permutational analysis of variance 
(PERMANOVA) on the Bray-Curtis dissimilarity matrix (vegan (24)). We similarly 
analysed differences in microbial diversity at time of admission between 
cases with and without subsequent recurrence of respiratory symptoms, 
adjusting for age, gender and month of hospital admission. Discriminant 
OTUs between cases and controls were identified by combining significant 
results from metagenomeSeq analysis (25) and cross-validated VSURF analysis 
(26), which were then filtered at a fold change (FC) of above 1.5 or below 
0.5 (i.e. a 50% change). Stratified analyses were performed of microbiota 
recovery in relation to recurrence of respiratory symptoms during follow-up, 
LRTI phenotype, antibiotic treatment, and viral presence. In these stratified 
analyses, differential abundance testing was limited to the top 100 highest-
ranked OTUs, because false positive results in low abundant OTUs are a 
known risk of metagenomeSeq analysis with smaller group sizes (27).

RESULTS
Clinical and microbial factors during LRTI were associated with 
early recurrence of respiratory symptoms
Cohort characteristics were detailed previously (13). Follow-up data were 
available for 149 (97%) cases, with a median follow-up time of 39 days (IQR 
35-46) (Figure S1). In the 4-8 weeks following hospital discharge, 98 (66%) 
cases experienced recurrence of respiratory symptoms (from here on called 
recurrence of symptoms) (Table S2). Of these cases, 57 (58%) specified at least 
2 different respiratory symptoms, and 47 (48%) also reported fever (>38°C).  
Furthermore, 41 cases (42%) consulted a physician, and 8 cases (8%) received 
antibiotics for these symptoms. Follow-up time was significantly longer in 
cases with recurrence of respiratory symptoms (p=0.015). Cases with and 
without recurrence of symptoms during follow-up were not significantly 
different in terms of baseline characteristics including age, lifestyle and 
environmental factors, medical history, and clinical findings such as LRTI 
phenotype and antibiotic treatment (Table 1). However, when age, LRTI 
phenotype and antibiotic treatment were included in a multivariable model 
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as predictors of recurrence, we found a borderline significant, independent 
association between a diagnosis of wheezing illness and an increased rate 
of subsequent recurrence of respiratory symptoms (β=1.19 compared to 
pneumonia, 95% CI -0.097-2.54, p=0.074). Furthermore, an independent 
positive association was found between antibiotic treatment during 
admission and subsequent recurrence of respiratory symptoms (β=2.47, 
95% CI 0.52-4.86, p=0.023), but this effect diminished with increasing age 
(interaction age and antibiotics: β=-0.078, 95% CI -0.15- -0.013, p=0.028)  
(Table S3). Viral presence, number of viruses and detection of respiratory 
syncytial virus (RSV) or Human rhinovirus (HRV) was not significantly different 
between cases with and without recurrence (Table 1).

Table 1 | Characteristics of cases with and without recurrence of respiratory 
symptoms during 4-8 weeks follow-up. 

 Recurrence  No recurrence P-value
n  98  51
Basics
   Age (months)  12.7 (5.5, 21.6)  16.1 (3.5, 32.1) 0.481
   Girl  39 (39.8)  21 (41.2) 1.000
   Season of sampling   0.679
      Spring  13 (13.3)  7 (13.7) 
      Summer  20 (20.4)  14 (27.5) 
      Autumn  10 (10.2)  3 (5.9) 
      Winter  55 (56.1)  27 (52.9) 
   Born at term  90 (91.8)  47 (92.2) 1.000
   Mode of delivery   0.190
      vaginal  76 (77.6)  43 (84.3) 
      elective caesarean section  9 (9.2)  6 (11.8) 
      emergency caesarean section  13 (13.3)  2 (3.9) 
Lifestyle and Environmental Factors
   Breastfeeding >3 months  38 (38.8)  18 (35.3) 0.812
   Day care attendance  65 (66.3)  28 (54.9) 0.235
   Tobacco smoke exposure  19 (19.4)  14 (27.5) 0.359
   Number of siblings  1.0 (0.2, 2.0)  1.0 (0.0, 2.0) 0.654
Medical History
   Previous LRTI*  29 (29.6)  11 (21.6) 0.393
   Previous hospitalization for RTI†  29 (29.6)  8 (15.7) 0.096
   Prior wheezing  25 (25.5)  11 (21.6) 0.740
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 Recurrence  No recurrence P-value
n  98  51
Clinical Data
   Main discharge diagnosis   0.408
      bronchiolitis  37 (37.8)  19 (37.3) 
      indeterminate  18 (18.4)  8 (15.7) 
      pneumonia  18 (18.4)  15 (29.4) 
      wheezing  25 (25.5)  9 (17.6) 
   Antibiotic treatment during admission  25 (25.5)  14 (27.5) 0.953
   Prednison during admission  16 (16.3)  9 (17.6) 1.000
   Follow-up time (days after admission)  42.0 (36.0, 49.0)  39.0 (34.5, 44.0) 0.015
Viral detection at admission
   Any virus (%)  94 (98.9)  47 (94.0) 0.232
   Respiratory syncytial virus (%)  42 (44.2)  28 (56.0) 0.240
   Human rhinovirus (%)  51 (53.7)  21 (42.0) 0.245
   Number of viruses  1.0 (1.0, 2.0)  1.0 (1.0, 2.0) 0.299

Data are n (%) or median (IQR). Data were acquired from parent questionnaires and 
medical records. Viral presence was detected by multiplex PCR in nasopharyngeal 
samples obtained at admission. P-values were calculated by chi-square tests or 
Wilcoxon rank-sum tests. * lower respiratory tract infection; † respiratory tract 
infection.

In this cohort, significant differences in the microbial community composition 
between cases at admission and controls were previously shown, with 
especially increased abundance of pathobionts Haemophilus influenzae/
haemolyticus and S. pneumoniae, and decreased abundance of presumed 
beneficial bacteria like Moraxella catarrhalis/nonliquefaciens, Dolosigranulum 
pigrum and Corynebacterium pseudodiphtheriticum/propinquum (13). Here, a 
modestly lower Shannon diversity at time of admission was related to a higher 
rate of recurrence of symptoms, even after adjusting for age, gender and 
month of hospital admission (p=0.049; Figure 1A). Furthermore, the overall 
microbial community composition at time of admission was significantly 
different between cases with versus cases without subsequent recurrence 
of symptoms, independent of age, gender and month of hospital admission 
(R2: 0.020, p=0.012) (Figure 1B), though not correlated with the severity of 
recurrence of symptoms (i.e. number of symptoms (1 or >1), presence of 

Table 1 | Continued
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fever, or the parents’ decision to consult a physician during follow-up (data 
not shown)). Cases with recurrence of symptoms had higher abundances 
of gram-negatives like H. influenzae/haemolyticus, Prevotella oris, Actinomyces 
and Fusobacterium species and lower abundances of health-associated 
C. pseudodiphtheriticum/propinquum and D. pigrum at time of admission 
compared to controls. On the other hand, cases without recurrence had 
higher abundances of amongst others gram-positives Staphylococcus aureus/
epidermidis and S. pneumoniae at admission compared to controls (Table 2 
and Figure S2).

Figure 1 | Nasopharyngeal microbiota during LRTI was associated with early 
recurrence of respiratory symptoms. 
(A) Alpha diversity measures Chao1 index and Shannon diversity index estimated 
at time of admission for cases with compared to without recurrence of respiratory 
symptoms during follow-up. Boxes denote means with 95% confidence intervals. 
Significance was tested by linear models adjusting for age, gender and month of 
admission, and is indicated by *: p<0.05. (B) Nonmetric multidimensional scaling 
biplot based on Bray-Curtis dissimilarity depicts nasopharyngeal microbiota 
composition at time of admission for cases with compared to without recurrence 
of respiratory symptoms during follow-up, combined with the top 10 operational 
taxonomic units (OTUs) with highest relative abundance in the entire cohort. Ellipses 
represent the standard deviation of all points within a sub-cohort. Significance was 
tested using permutational analysis of variance (PERMANOVA), adjusting for age, 
gender and month of hospital admission. 

 



Chapter 7

170

Table 2 | Biomarker species during acute LRTI for subsequent recurrence of 
respiratory symptoms. 
Differentially 
abundant at 
admission

OTU* FC† Significant in

In cases with 
subsequent 
recurrence of 
respiratory 
symptoms vs. 
controls

Haemophilus influenzae/haemolyticus (2) 5.97 ms‡ + V§
Fusobacterium (83) 2.57 ms
Prevotella oris (45) 2.31 ms
Actinomyces graevenitzii (68) 1.88 ms + V
Fusobacterium (74) 1.76 ms
Actinomyces johnsonii (75) 1.76 ms + V
Actinomyces odontolyticus (48) 1.66 ms + V
Dolosigranulum pigrum (5) 0.41 ms
Corynebacterium pseudodiphtheriticum/ 
propinquum (4)

0.41 ms

In cases 
without 
subsequent 
recurrence of 
respiratory 
symptoms vs. 
controls

Neisseria lactamica (19) 2.97 ms + V
Staphylococcus aureus/epidermidis (7) 2.38 ms + V
Streptococcus pneumoniae (3) 2.31 V
Atopobium (100) 1.99 ms
Klebsiella (11) 1.75 ms + V
Halomonas (14) 1.57 ms
Prevotella melaninogenica (16) 1.54 V
Prevotella nanceiensis (25) 0.49 ms
Neisseria (9) 0.43 ms + V

* operational taxonomic unit; † fold change; ‡ metagenomeSeq analysis; § VSURF 
analysis.

Nasopharyngeal microbiota and viral profiles after recovery 
from LRTI
We also aimed to study remaining differences in microbial community 
diversity and composition between recovered cases and controls. In general, 
samples obtained 4-8 weeks after hospital discharge showed significantly 
higher microbial richness in (former) cases when compared to controls 
(p=0.042), while Shannon diversity and biomass were comparable (Figure 
S3). Furthermore, despite the observed major differences in the overall 
microbial community composition at time of infection, after 4-8 weeks the 
microbiota of recovered cases had become more similar to controls, and only 
a small, non-significant difference remained (R2: 0.004, p=0.080; Figure 2A-B). 
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On the OTU level, we observed 15 OTUs that were significantly differentially 
abundant between recovered cases and controls (Table 3 and Figure S4). 
Of these, Moraxella species and Helcococcus were already underrepresented 
at admission, and remained underrepresented in recovered cases, whereas 
various gram-negative species including H. influenzae/haemolyticus, P. oris, 
and Neisseria lactamica remained overrepresented in recovered cases 
compared to controls. 

Figure 2 | Nasopharyngeal microbiota recovery following LRTI. (A) Nonmetric 
multidimensional scaling biplot based on Bray-Curtis dissimilarity depicts 
nasopharyngeal microbiota composition for cases at admission, cases at follow-
up (recovery), and controls, combined with the top 10 operational taxonomic units 
(OTUs) with highest relative abundance in the entire cohort. Time (t) in days between 
admission and the follow-up visit was reported as median (IQR). Ellipses represent 
the standard deviation of all points within a sub-cohort. Significance was tested using 
permutational analysis of variance (PERMANOVA). (B) Mean relative abundances of 
the 10 OTUs with highest relative abundance. 

Assessment of microbiota recovery in relation to recurrence of respiratory 
symptoms, showed that when compared to matched controls, cases 
with recurrence of symptoms during follow-up had a significantly higher 
microbial richness at the end of follow-up (p=0.034; Figure S5A). This 
difference in microbial richness was not present between cases without 
recurrence of symptoms and their matched controls. Also, on microbial 
community composition level, the microbiota composition had failed to 
normalize in cases with recurrence of respiratory symptoms during follow-
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up (R2: 0.008, p=0.028), while in cases without recurrence the microbiota 
were comparable to controls (R2: 0.005, p=0.50). Especially the abundances 
of H. influenzae/haemolyticus, Neisseria, P. oris, and Porphyromonas were 
persistently increased after recovery in cases with recurrence of symptoms 
during follow-up compared to controls, while in cases without recurrence, 
abundance of S. aureus/epidermidis and N. lactamica were increased after 
recovery compared to controls (Figure S5B). 

Table 3 | Discriminant OTUs for cases during acute LRTI and after 4-8 weeks 
follow-up compared to controls. 

Cases at admission 
vs. controls

Cases at recovery vs. 
controls

Association OTU* FC† Significant in FC Significant in
Admission Lactococcus lactis (67) 2.06 ms‡ + V§ ns ll ns

Corynebacteriaceae (161) 1.83 ms + V ns ns
Abiotrophia (111) 1.66 ms + V ns ns
Corynebacterium (62) 1.64 ms ns ns
Megasphaera (137) 1.62 ms ns ns
Fusobacterium (74) 1.61 ms ns ns
Actinomyces (48) 1.56 ms ns ns
Fusobacterium (83) 1.53 ms ns ns
Actinomyces graevenitzii 
(68)

1.52 ms + V ns ns

Acinetobacter soli (125) 1.51 ms ns ns
Actinomyces johnsonii (75) 1.51 ms ns ns
Dolosigranulum pigrum (5) 0.43 ms ns ns
Dolosigranulum (122) 0.4 ms + V ns ns

Admission 
and 
Recovery

Haemophilus influenzae/
haemolyticus (2)

3.85 ms + V 1.69 V

Neisseria lactamica (19) 2.22 ms + V 1.96 ms + V
Prevotella oris (45) 2.03 ms 1.72 ms + V
Moraxella (54) 0.32 ms + V 0.45 ms + V
Moraxella (58) 0.19 ms + V 0.45 ms + V
Moraxella lincolnii (6) 0.18 ms + V 0.3 ms + V
Moraxella (84) 0.17 ms + V 0.34 ms
Moraxella (163) 0.15 ms + V 0.39 ms + V
Moraxella (112) 0.08 ms 1.68 ms
Helcococcus (43) 0.07 ms 0.07 ms + V
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Cases at admission 
vs. controls

Cases at recovery vs. 
controls

Association OTU* FC† Significant in FC Significant in
Recovery Neisseriaceae (15) ns ns 2.26 ms + V

Moraxella (12) ns ns 1.83 ms
Porphyromonas (39) ns ns 1.62 ms
Bradyrhizobium (17) ns ns 1.54 ms + V
Janthinobacterium lividum 
(23)

ns ns 0.09 ms + V

* operational taxonomic unit; † fold change; ‡ metagenomeSeq analysis; § VSURF 
analysis; ll not significantly different.

Viral presence at time of admission and after recovery was available for 70 
cases and for 139 corresponding controls. As described previously (13), 97% 
of cases tested positive for any virus at time of admission versus 85% of 
controls (p=0.019). At follow-up, 91% of (former) cases were virus-positive, 
which was not significantly different from controls. RSV detection was higher 
in cases at time of admission compared to controls (40% vs. 4%; p<0.001), 
but had normalized after recovery (3%). Interestingly, in recovered cases, 
HRV detection was more common (80%) than at time of admission (57%, 
p=0.006), though comparable to controls (70%; Figure S6). Detection of 
other respiratory viruses was low and not significantly different between 
cases and controls following recovery.

Microbiota recovery depends on LRTI phenotype, but not on 
antibiotic treatment or type of virus
Next, we used stratified analyses to investigate whether microbiota recovery 
was related to antibiotic treatment, LRTI phenotype or viral presence at time 
of admission. In total, 43 (28%) cases were treated with antibiotics (33 beta-
lactam, 10 macrolide) during admission. Interestingly, only cases not treated 
with antibiotics showed significantly higher microbial richness after follow-
up compared to controls (p=0.001), while no differences in Shannon diversity 
were observed in either group compared to their respective controls (Figure 
S7A). Microbiota composition at follow-up also showed little difference 
between both antibiotic-treated and not antibiotic-treated cases and their 

Table 3 | Continued
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respective controls (treated cases versus controls R2: 0.007, p=0.47; non-
treated cases versus controls R2: 0.005, p=0.17). 

Regarding LRTI phenotype, 57 (37%) cases were classified as bronchiolitis, 
37 (24%) as pneumonia, 34 (22%) as wheezing illness, and 26 (17%) as mixed 
infection. Only (former) bronchiolitis cases had significantly increased 
microbial richness after follow-up compared to matched controls (p=0.013), 
though a similar trend was observed for former wheezing illness cases 
(p=0.088; Figure S7B). Furthermore, only (former) wheezing illness cases 
still showed a trend towards a different overall microbial community 
composition at follow-up compared to their respective controls (R2: 0.023, 
p=0.072; Figure 3). As aforementioned, cases with wheezing illness had 
the highest incidence of recurrence of respiratory symptoms, while cases 
with pneumonia had the lowest incidence (Table 1). On OTU level, we 
observed that cases recovered from wheezing illness had increased levels 
of Streptococcus anginosus, and gram-negatives like P. oris, Porphyromonas 
and Neisseria, which were all also associated with recurrence (Figure 4). By 
contrast, cases recovered from pneumonia had increased levels of Klebsiella, 
Neisseriaceae, and gram-positives S. aureus/epidermidis and Kocuria, possibly 
related to antibiotic selection (Figure S8).

Finally, we stratified the analysis based on the most prevalent viruses at time 
of LRTI, i.e. RSV and HRV, which were detected in 72 (47%) and 73 (47%) cases, 
respectively, to rule out virus-mediated effects on microbiota recovery. 
Cases recovered from a RSV-associated LRTI had no significant differences in 
microbial richness, diversity or the overall microbial composition compared 
to their matched controls (R2=0.003, p=0.624). Cases recovered from a HRV-
associated LRTI also showed no significant differences in overall microbial 
composition compared to controls (R2=0.008, p=0.165), though they had 
a slightly higher microbial richness upon recovery, which tended towards 
significance (p=0.070; Figure S7C).



7

Microbial and clinical factors are related to recurrence of symptoms after LRTI

175   

Figure 3 | Microbiota recovery depended on infection phenotype. Nonmetric 
multidimensional scaling plots based on Bray-Curtis dissimilarity depict 
nasopharyngeal microbiota composition for cases at admission, cases at follow-up 
(recovery), and controls, for each of the 4 phenotypes. Ellipses represent the standard 
deviation of all points within a sub-cohort. Significance was tested using permutational 
analysis of variance (PERMANOVA). 
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Figure 4 | Discriminant OTUs between cases recovered from wheezing illness 
and matched controls. Volcano plot of differentially abundant OTUs between cases 
recovered from wheezing illness and controls. Significance was assessed by 
metagenomeSeq analysis and cross-validated VSURF analysis limited to the top 100 
most highly ranked OTUs, and combined results were filtered at a fold change of at 
least 1.5 or below 0.5. OTUs marked by an asterisk were identified by cross-validated 
VSURF analysis. Results of data points falling beyond the limits of the plot: Helcococcus 
log2FC -5.93, adjusted p-value (log10) 13.48; Janthinobacterium lividum log2FC -3.67, 
adjusted p-value (log10) 10.01.

DISCUSSION
LRTI is strongly associated with dysbiosis of the nasopharyngeal microbiota 
(13). Here, we found in children hospitalized for acute LRTI that lower 
microbial diversity and the overall microbial community composition in the 
nasopharynx were modestly associated with subsequent recurrence of even 
very mild respiratory symptoms within 1-2 months. Specifically, we identified 
gram-negatives like H. influenzae/haemolyticus, P. oris and Actinomyces species 
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as potential biomarkers of an increased risk of recurrence of respiratory 
symptoms, and gram-positives like S. aureus/epidermidis and S. pneumoniae 
as potential biomarkers of a reduced risk. 

These findings add to a small but growing body of literature suggesting that 
host-microbial interactions during and following acute (L)RTI may contribute 
to short- and long-term respiratory outcomes.  Previously, Neumann et al. 
found in noses of infants with their first RTI that lower microbial diversity 
and increased levels of bacterial families Moraxellaceae or Streptococcaceae 
were associated with persistent respiratory symptoms (28). Also in the nasal 
niche, Mansbach et al. related persistently increased levels of Moraxella 
and Streptococcus in the weeks following hospitalization for bronchiolitis in 
infancy to persistent wheeze at the age of 3 years (8). In case of RSV infection, 
increased nasopharyngeal levels of gram-negatives including H. influenzae 
have been associated with a pro-inflammatory systemic immune response 
with enhanced neutrophil recruitment and activation, and increased disease 
severity (29, 30). Correlates with clinical outcomes during recovery remain 
unknown, but a severity-dependent relationship between RSV bronchiolitis 
and the risk of recurrent wheezing and asthma has been described (31). 
Moreover, Haemophilus -dominated nasopharyngeal microbiota during RSV 
infection has also been related to increased viral load (11)  and delayed 
clearance (32), which might also contribute to persistent inflammation, 
slower recovery and more respiratory morbidity. Finally, in healthy infants, 
increased influx into the nasopharynx of gram-negatives typically found 
in the mouth, like Prevotella, Neisseria and Fusobacterium, has also been 
associated with higher susceptibility to RTIs in general (20, 33). Alternatively, 
gram-positive commensals might dampen inflammatory responses. For 
instance, S. epidermidis was shown to enhance mucosal innate immune 
responses in the nose and to thereby confer resistance to viral infection (34). 
Moreover, dominance of Corynebacterium and Dolosigranulum in the infant 
nasopharyngeal microbiota has been related to decreased incidence of RTIs 
(35). Future studies should therefore investigate whether antibiotic treatment 
targeted at gram-negatives and/or preservation or supplementation of gram-
positive commensals may prevent recurrence of respiratory symptoms after 
LRTI and improve long-term respiratory outcomes. 



Chapter 7

178

In general, we observed that the nasopharyngeal microbiota had recovered 
4-8 weeks after hospitalization for LRTI, though subtle differences remained 
including a persistently lower abundance of Moraxella than seen in healthy 
controls. Remarkably, this is opposite to observations by Teo and colleagues 
(14). This study had an unmatched design, later timing of post-LRTI sampling 
and a different geographic location, but the discrepancy with our findings 
might also reflect biological differences between their cohort at high risk 
for atopy and our unselected cohort. In line with our findings, Kaul and 
colleagues recently demonstrated that in some adult patients with acute 
influenza infection, microbial communities returned to a healthy state within 
22 days from hospital admission (36). It thus appears that the URT microbiota 
are resilient, but the speed of recovery differs between individuals. In 
addition, we observed that children with early recurrence of respiratory 
symptoms following LRTI also had diminished microbiota recovery, despite 
a longer follow-up duration and more time for the microbiota to recover. 
The association between longer follow-up duration and recurrence of 
respiratory symptoms may be directly linked, though also explained by the 
fact that children had to be asymptomatic at the time of sampling, and as 
a consequence the follow-up visit was postponed when symptoms were 
present at that moment. Irrespectively, given the high incidence of symptom 
recurrence in our cohort, we theorize that while the microbiota gradually 
recover following LRTI, resistance to viral infection or bacterial pathobiont 
acquisition and overgrowth might remain diminished for some time, resulting 
in a (temporarily) elevated risk of new infections upon pathobiont exposure. 
Aberrant airway immune profiles in asymptomatic neonates and during RSV 
infection were previously associated with presence and abundance of gram-
negatives colonizing the respiratory tract (29, 37, 38), and might mediate this 
association, but this remains to be investigated. An alternative hypothesis is, 
however, that children may be genetically predisposed to both microbiota 
shifts and development of RTIs. For example, genetic variants were 
previously shown to increase susceptibility to otitis media by modifying the 
middle ear microbiome (39). This would mean our findings are correlative 
in nature more than causally linked. Future studies should therefore take 
genetic factors into consideration to understand the potential mechanisms 
underpinning our findings.  
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Importantly, we observed early recurrence of respiratory symptoms followed 
by diminished microbiota recovery especially in children with wheezing 
illness, whereas microbiota changes during LRTI were previously shown to be 
phenotype-independent (13). Together, our findings suggest that especially 
in children with inflammation-driven illness, the nasopharyngeal microbiota 
may have more limited property to recover to a state comparable to healthy, 
matched controls. This is in line with other observational studies where 
LRTIs accompanied by wheezing symptoms were particularly associated 
with aberrant respiratory microbiota development (14) and with later-life 
persistent wheeze and development of asthma (2, 3). We speculate that 
wheezing illness patients, who were older than patients with a different 
LRTI phenotype, may have had a more elaborate medical history with LRTIs 
and atopic symptoms, which may have resulted in reduced resilience of the 
microbiota. Alternatively, wheezing illness patients often received treatment 
with inhaled corticosteroids upon hospital discharge, which might also have 
affected microbiota recovery (40, 41). Unfortunately, limited power hampered 
us to study the effect of inhaled corticosteroids on the respiratory microbiota 
and its recovery. Antibiotic-treated patients also had an increased risk of 
subsequent recurrence, particularly the younger ones. Dutch physicians tend 
to reserve antibiotic treatment for the more severely ill patients. Therefore, 
we cannot rule out that this correlation between antibiotic treatment and 
recurrence might be influenced by more severe disease and accompanying 
inflammation. Following, the restorative capacity of the nasopharyngeal 
microbiota appeared in general not related to antibiotic treatment, though 
we had insufficient power to test if younger antibiotic-treated children may be 
more prone to prolonged microbiota disturbance, as has been suggested in 
previous reports (42, 43). Finally, the type of virus detected at time of admission 
seemed unrelated to recurrence of respiratory symptoms and microbiota 
recovery in this cohort, despite known relationships between LRTIs associated 
with RSV or HRV and chronic respiratory morbidity (44).

Strengths of our study include the strictly matched case-control design that 
allowed us to preclude bias from age, gender and seasonality. Furthermore, 
inclusion of children up to 5 years old, hospitalized for all LRTI phenotypes 
allowed us to perform in-depth analyses. However, several limitations need 
to be acknowledged. We were unable to directly study the lung microbiota 
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during recovery, but the high concordance between the microbiota in 
nasopharyngeal and endotracheal samples at time of LRTI in young children 
implies that the nasopharyngeal microbiota provides a valid proxy (13). 
Furthermore, follow-up of cases entailed only one timepoint, and therefore, 
we could not distinguish at what pace microbial recovery occurred, and 
whether microbial recovery was still ongoing. Follow-up duration also varied 
and was different between cases with and without recurrence. However, 
since the microbiota of cases with recurrence had even more time to recover, 
this strengthens the likelihood that recurrence of respiratory symptoms 
following LRTI is associated with diminished microbiota recovery. Lastly, 
for our analyses of recurrence we relied on parental report of respiratory 
symptoms since hospital discharge, which may have introduced recall bias.

In conclusion, our results suggest that the composition of the nasopharyngeal 
microbiota during acute LRTI in children may increase susceptibility to 
new respiratory symptoms in the months following, while the microbiota 
gradually recover. Future prospective studies with higher resolution and 
longer follow-up duration, especially focused on recovery from LRTI in high-
risk groups of recurrent or chronic respiratory morbidity, are required to 
confirm and nuance our findings, and should strive to combine host and 
microbial factors into prediction models of (long-term) clinical outcomes. 
The current work may be a stepping stone to improved understanding of 
respiratory outcomes after childhood LRTI and potentially provide input for 
clinical studies on methods to alleviate recurrent respiratory problems. 
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SUPPLEMENTARY METHODS
Statistical analysis
Data analysis was performed in R version 3.4.3 within RStudio version 
1.1.383. All analyses comparing cases to controls accounted for the matched 
nature of the samples. A p-value of less than 0.050 or a Benjamini-Hochberg 
adjusted q-value of less than 0.050 were considered statistically significant. 
Chi-square and Wilcoxon tests were used to compare host characteristics 
between cases with and without recurrence of respiratory symptoms 
during follow-up. Independent relationships between host characteristics 
and recurrence of respiratory symptoms during follow-up were assessed 
in multivariable logistic regression models, with treatment (antibiotics vs. 
no antibiotics), lower respiratory tract infection (LRTI) phenotype (wheezing 
illness, bronchiolitis and mixed infection vs. pneumonia) and age in months 
both as individual explanatory variables and in pairwise interactions, and also 
correcting for follow-up time in days. The final model was based on backward 
selection of variables using a p-value of 0.10 as cut-off, until the optimal 
strength of the model based on the Akaike information criterion was reached. 
To compare viral presence between cases and controls, conditional logistic 
regression was used. To assess alpha diversity, we calculated the Chao1 index 
for microbial richness and the Shannon index for diversity (phyloseq (1)), and 
significance of differences between cases and controls was evaluated using 
linear mixed-effect models. We also compared alpha diversity measures 
between cases at time of hospital admission with and without subsequent 
recurrence of respiratory symptoms using linear models adjusted for age, 
sex and month of hospital admission. Nonmetric multidimensional scaling 
(NMDS) biplots based on the Bray-Curtis dissimilarity matrix (ordinate-
function, phyloseq (1), 2 dimensions, maximum 10.000 iterations) were used 
to visualize differences in the overall microbial community between groups. 
Statistical significance of differences in the overall microbial community was 
assessed by permutational analysis of variance (PERMANOVA) using the 
adonis-function or, when comparing cases with and without recurrence of 
respiratory symptoms during follow-up, the adonis2-function adjusting for 
age, sex and month of hospital admission (vegan (2), 1999 permutations). We 
considered microbiota recovery to be ‘complete’ if there was no remaining 
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significant difference in the overall microbial community between cases at 
recovery and matched controls. Relative abundances of the top 10 most 
highly abundant operational taxonomic units (OTUs) were visualized in a 
stacked bar chart. We used metagenomeSeq analysis (3) (fitZig-function) to 
identify differentially abundant OTUs between cases and controls (filtered 
on OTUs present in >10% of the samples, maximum 100 iterations, mixed 
model design). Next to that, we identified OTUs with highest discriminative 
abilities between cases and controls with random forest classifier analysis 
using a 10-fold cross-validated VSURF procedure (4). In this analysis, OTUs 
were considered discriminant when they were selected at least twice in the 
interpretation step. Log2 fold changes of discriminant OTUs as calculated 
by metagenomeSeq were converted to fold changes using the formula fold 
change = 2^log2 fold change. Combined results from metagenomeSeq and 
VSURF were then additionally filtered at a fold change of at least 1.5 or 
below 0.5 (i.e. a 50% change) to retain only discriminant OTUs with relevant 
changes. Above analyses were repeated to assess microbiome recovery in 
relation to clinical outcome (recurrence vs. no recurrence of respiratory 
symptoms during follow-up), LRTI phenotype, antibiotic treatment, and 
presence of respiratory syncytial virus or human rhinovirus. In these sub-
analyses, we limited differential abundance testing to the top 100 highest-
ranked OTUs, because of limited power, and to avoid false positive results in 
low abundant OTUs which is a known risk using metagenomeSeq analyses in 
smaller group sizes (5).
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SUPPLEMENTARY TABLES
Table S1 | OTUs identified as contaminants. 
OTU Method
Tepidimonas (28) Both
Schlegelella (10) Both
Acidovorax (66) Both
Vogesella (69) Both
Acinetobacter (31) Both
Acinetobacter seohaensis (64) Both
Phyllobacteriaceae (52) Both
Pseudomonas stutzeri (95) Both
Tardiphaga robiniae (106) Both
Mesorhizobium (81) Both
Shewanella (30) Both
Massilia (88) Frequency
Pseudomonas aeruginosa (79) Frequency
Rhizobiales (169) Prevalence
Xanthomonadales (114) Prevalence
Cyanobacteria (126) Prevalence
Hydrotalea (205) Prevalence
Cyanobacteria (143) Prevalence
Acinetobacter (139) Prevalence
Modestobacter (167) Prevalence
Cupriavidus metallidurans (156) Prevalence

OTUs were identified as contaminants using their relation with bacterial biomass 
(frequency method) or their presence in samples compared to negative controls 
(prevalence method) or both.

Table S2 | Respiratory symptoms in cases during 4-8 weeks follow-up. 
n  98
Respiratory symptoms
  Rhinorrhea  73 (74.5) 
  Cough  61 (62.2) 
  Wheezing  20 (20.4) 
  Earache  11 (11.2) 
  Sore throat   7 (7.1) 
  Hoarseness   4 (4.1) 
Severity measures
  Number of respiratory symptoms 2.00 (1.00, 2.00)
  >1 respiratory symptoms  57 (58.2) 
  Fever (>38°C)  47 (48.0) 
  Physician visit  41 (41.8) 
  Antibiotic treatment   8 (8.2)

Data are presented as n (%) or median (IQR). Data were acquired from parent 
questionnaires.
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Table S3 | Independent relationships between clinical characteristics during 
acute lower respiratory tract infection and early recurrence of respiratory 
symptoms. 

Coefficient Std. Error Z-value P-value
Intercept -2.588 1.237 -2.093 0.036 
Age (months) 0.002 0.020 0.079 0.937
Antibiotic treatment 2.473 1.088 2.274 0.023 
Diagnosis bronchiolitis* 0.751 0.702 1.069 0.285
Diagnosis mixed* 0.479 0.703 0.681 0.496
Diagnosis wheezing illness* 1.190 0.666 1.787 0.074 
Follow-up time (days) 0.061 0.024 2.550 0.011 
Age (months):Antibiotic treatment -0.078 0.035 -2.202 0.028

* with pneumonia as a reference
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Figure S5 | Microbial recovery in cases with and without recurrence of 
respiratory symptoms during follow-up. (A) Alpha diversity measures Chao1 index 
and Shannon diversity index are shown for cases after recovery with and without 
recurrence of respiratory symptoms and matched controls. Boxes denote means 
with 95% confidence intervals. Significance was tested by linear mixed-effect models 
and indicated by *: p<0.05. (B) Log2 fold changes (log2FC) of differentially abundant 
OTUs between cases at time of recovery who had had recurrence of respiratory 
symptoms during follow-up and controls (purple, x-axis), or between cases at time of 
recovery who had not had recurrence of respiratory symptoms during follow-up and 
controls (green, y-axis), or both (black). Significance was assessed by metagenomeSeq 
analysis and cross-validated VSURF analysis limited to the top 100 most highly ranked 
OTUs, and results were combined and filtered at a fold change of at least 1.5 or below 
0.5. OTUs marked by an asterisk were identified by cross-validated VSURF analysis.
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Figure S6 | Viral carriage in cases and controls as detected by quantitative PCR. 
Bars denote percentages of samples positive for any virus and for each individual 
respiratory virus for cases at admission, cases at recovery, and controls. Significance 
was assessed by conditional logistic regression and is indicated by ***: p<0.001, **: 
p<0.005, or *: p<0.05.
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Figure S7 | Microbial recovery according to antibiotic treatment, LRTI phenotype 
and viral presence. Alpha diversity measures Chao1 index and Shannon diversity 
index are shown for cases at recovery and matched controls, stratified by (A) antibiotic 
treatment or no antibiotic treatment, (B) LRTI phenotype and (C) type of virus present 
at admission. Boxes denote means with 95% confidence intervals. Significance was 
tested by linear mixed-effect models and indicated by **: p<0.005; *: p<0.05; •: p<0.10.
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Figure S8 | Discriminant OTUs between cases after recovery from pneumonia 
and controls. Volcano plot of differentially abundant OTUs between cases with 
pneumonia at recovery and controls. Significance was assessed by metagenomeSeq 
analysis and cross-validated VSURF analysis limited to the top 100 most highly ranked 
OTUs, and combined results were filtered at a fold change of at least 1.5 or below 
0.5. OTUs marked by an asterisk were identified by cross-validated VSURF analysis. 
Results of data points falling beyond the limits of the plot: Helcococcus (43) log2FC 
-4.21, adjusted p-value (log10) 8.30; Janthinobacterium lividum (23) log2FC -3.08, 
adjusted p-value (log10) 6.82.
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MAIN TEXT 
The lower respiratory tract (LRT) harbours distinct, dynamic low-density 
microbial communities, established through micro-aspiration from the 
upper respiratory tract (URT) (1–3). However, during intubation and 
mechanical ventilation, the endotracheal tube temporarily alters the 
anatomical continuity between URT and LRT, and may provide a bridge 
for airborne microbes and a barrier for micro-aspiration. Shortly after 
intubation for a severe LRT infection (LRTI) in children, the microbiota of the 
nasopharynx and LRT were shown to be very similar (4). However, it remains 
unknown how the respiratory microbial community develops while the child 
recovers from the infection under treatment with mechanical ventilation 
and antibiotics. We therefore analysed respiratory microbiota changes in 
children participating in our study on acute LRTIs and who were admitted to 
the paediatric intensive care unit (PICU) for mechanical ventilation (4).  

The subset of 29 infants with community-acquired LRTI who required 
intubation and ventilation, was recruited between September 2013 and 
September 2016. The mean age of the cohort was 3.4 months (range 1.0-
12.8) with 48% being female. All children were diagnosed with bronchiolitis. 
Conventional microbiological findings were available for 21 of the children. 
Antibiotics were administered to 28/29 children (25 co-amoxiclav, 2 
cephalosporins, 1 azithromycin), 5 of whom were already started on 
treatment shortly before PICU admission. We obtained nasopharyngeal (NP) 
swabs, saliva and endotracheal aspirates (ETA) upon intubation (29 NP, 27 
saliva, 25 ETA) and shortly before extubation (16 NP, 15 saliva, 14 ETA), which 
was on average 5.9 days (SD 2.6) after intubation. Saliva was collected by 
placing an absorbent sponge in the cheek pouches and under the tongue 
until it became saturated with saliva, which was immediately transferred 
into glycerol DEPC medium using a sterile syringe. ETA was collected during 
routine suctioning of the endotracheal tube without instilling saline. We also 
obtained 20 NP swabs and 19 saliva samples during a follow-up visit, on 
average 51.9 days (SD 13.5) after PICU discharge.

Microbiota profiles were generated by sequencing of the 16S rRNA gene V4 
hypervariable region. Sequence data was deposited in the NCBI Sequence 
Read Archive database (BioProject ID PRJNA669463). Methodological details 
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were previously published (4). Overall, 29 NP, 27 saliva, and 24 ETA samples 
at intubation, 12 NP, 14 saliva, and 11 ETA samples at extubation, and 20 
NP and 19 saliva samples at follow-up passed quality control (94.5% of 
available samples) and were eligible for further analysis. Infants with missing 
extubation samples were not significantly different from those with available 
samples in terms of baseline microbiota composition, age or sex (data not 
shown). Bacterial load was estimated by quantitative (q)PCR targeting the 
16S rRNA gene (5, 6). Pneumococcal presence and abundance was tested 
by lytA qPCR.

Alpha diversity was assessed using the Chao1 and Shannon indices for 
richness and diversity, respectively. Bacterial load and alpha diversity are 
summarised as median (IQR), and differences by timepoint were evaluated 
using linear mixed-effect models including subject as a random effect. 
Differences in overall microbial composition were evaluated by permutational 
multivariate analysis of variance on the Bray-Curtis dissimilarity matrix with 
permutations constrained within subject. Microbiota clusters were assigned 
to each sample using unsupervised hierarchical clustering. Biomarker species 
of each cluster were identified using random forest classifier analysis as 
previously described (7). Associations between clusters and timepoints were 
tested with fisher’s exact tests. To assess microbiota concordance between 
niches, we calculated within-subject Bray-Curtis similarity (1–Bray-Curtis 
dissimilarity), and Spearman’s correlations between individual operational 
taxonomic unit (OTU) abundances. 

Our results show that bacterial load dropped dramatically between 
intubation and extubation in all niches, though for saliva this difference 
was not significant (NP: from 92.2 pg/µl (43.9-309.6) to 4.0 pg/µl (1.6-24.0), 
p=0.024; saliva: from 270.3 pg/µl (80.5-771.8) to 113.0 (20.1-290.6), p=0.158; 
ETA: from 126.8 pg/µl (31.6-708.2) to 3.9 pg/µl (2.8-13.4), p=0.039). After 
recovery, the bacterial load had increased only moderately in the NP (to 
39.6 pg/µl (13.9-144.6), p=0.459), and more strongly in saliva (to 364.8 pg/µl 
(200.5-775.5), p=0.014). At the same time, richness and diversity remained 
comparable in the NP between intubation and extubation (Chao1: from 
47.5 (34.6-62.3) to 46.8 (34.3-54.2), p=0.840; Shannon: from 1.17 (0.81-1.87) 
to 1.53 (0.81-1.75), p=0.945). In saliva, richness and diversity decreased 
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between intubation and extubation, though the difference was only 
significant for diversity (Chao1: from 55.0 (43.1-62.6) to 46.8 (39.4-50.9), 
p=0.443; Shannon: from 2.1 (1.8-2.6) to 1.5 (0.9-1.8), p<0.001), which had 
also significantly increased again after recovery (to 2.3 (1.8-2.6), p<0.001). 
In ETA, we observed a modest non-significant increase in richness and 
diversity between intubation and extubation, which seemed mostly driven 
by an increase in evenness rather than species richness (Shannon: from 
0.14 (0.07-0.76) to 0.99 (0.45-1.63), p=0.112, Chao1: from 32.8 (29.4-42.8) to 
51.0 (40.5-62.3), p=0.065). Furthermore, the overall microbial community 
composition changed significantly between intubation and extubation in 
both NP (R2=5.8%, p<0.001) and saliva (R2=7.6%, p<0.001) and even more 
in ETA samples (R2=11.2%, p=0.002; Figure 1A-C). Consequently, when 
compared to recovery samples, the NP and saliva microbiota composition 
were even more different from the pre-extubation (NP: R2=12.8%, p=0.020; 
saliva: R2=10.2%, p=0.012) than from the intubation timepoint (NP: R2=7.0%, 
p=0.001; saliva: R2=3.5%, p=0.038), implying marked ecological impact and 
deviation from healthy microbiota as a consequence of antibiotic treatment 
and/or mechanical ventilation within a narrow timeframe.

We then performed clustering of NP, saliva and ETA microbiota profiles and 
distinguished 7 clusters, characterized by either Streptococcus (1) (STREP 
1), Moraxella catarrhalis/nonliquefaciens (MOR), Haemophilus influenzae/
haemolyticus (HAEMO), Corynebacterium propinquum/pseudodiphtheriticum 
with Dolosigranulum pigrum (COR/DOL),  Streptococcus salivarius (7) (STREP 
2),  Enterobacter/Klebsiella (ENTERO), or Staphylococcus aureus/epidermidis 
(STAPH) (Figure 1D-F). In NP and ETA, the MOR- and HAEMO-clusters 
predominated at intubation, and diminished following ventilation and 
antibiotic treatment. The COR/DOL-profile was exclusively found in NP 
samples and mostly observed after recovery (p<0.05). At extubation, the 
MOR-cluster was only observed in the single infant who did not receive 
antibiotic treatment. By contrast, in saliva, both STREP 1 and STREP 
2-clusters predominated at intubation, with the STREP 2-cluster diminishing 
at extubation, and being completely absent after recovery (not significant). 

Overall, at extubation, the STREP 1-, STAPH- and ENTERO-clusters were 
most prevalent, in line with expected changes following antibiotic exposure. 
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Within the STREP 1-cluster, a shift from pneumococcal dominance at 
intubation to non-pneumococcal streptococci pre-extubation was observed 
(Spearman’s correlation lytA Ct-values with Streptococcus (1) abundance at 
intubation: ρ=-0.68, p<0.001; at extubation: ρ=-0.08, p=0.883). Interestingly, 
the STAPH-profile was only present in 2 NP samples at intubation, but 
predominated in ETA at extubation (p=0.006). The ENTERO-cluster was 
uniquely found at extubation (p<0.05). Enterobacter/Klebsiella became the 
most predominant OTU in 4 children following (2-8 days of) intubation and 
ventilation (mean abundance NP: 50.8%, range 0.03-99.4%; saliva: 11.9%, 
range 0.0-45.1%; ETA: 64.5%, range 30.0-99.7%), even though this OTU was 
mostly absent at intubation, except for one child with a very low abundance 
in the NP of 0.008%. To identify this OTU at the species level, we attempted 
to re-culture the corresponding samples, and identified in 3 of those gram-
negative strains that were identified as Enterobacter cloacae by MALDI-
TOF mass spectrometry. Together, these findings imply that the typically 
hospital-acquired and antibiotic-resistant pathobiont E. cloacae colonized 
and/or became dominant in the respiratory tract of these children during 
PICU stay. Similarly, we observed dominance of a Stenotrophomonas species 
(77.7% of ETA microbiota) in 1 case pre-extubation, despite it being nearly 
absent at intubation (0.002%), again suggesting selection or outgrowth 
during ventilation. In general, conventional culture performed at admission 
confirmed the predominant pathogens observed in the NP and/or ETA 
profile of 12/21 children. Culture results were negative in 5/21 children, and 
confirmation of non-predominant gram positives but lack of detection of the 
predominant (gram negative) pathogen was observed in 4 children. These 
findings underline that culture results, especially in children treated with 
antibiotics, often lack to provide insight in presence and/or predominance 
of respiratory pathogens. 

We previously demonstrated highly concordant NP and ETA microbiota at 
intubation in this cohort, suggesting the NP is the source community of 
the LRTI in young children (4). However, interestingly, NP-ETA concordance 
at intubation (within-subject median Bray-Curtis similarity 0.66 (IQR 
0.44-0.81)), had dropped pre-extubation (0.53 (IQR 0.31-0.63)), although 
this difference was not significant (Wilcoxon rank-sum test, p=0.188).
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Figure 1 | Respiratory microbiota dynamics during and following mechanical 
ventilation for severe lower respiratory tract infection. (A-C) Nonmetric 
multidimensional scaling (NMDS) biplots based on the Bray-Curtis dissimilarity matrix 
visualizing the overall microbiota composition in the nasopharynx (NP, panel A), saliva 
(panel B) and endotracheal aspirate (ETA, panel C) at time of intubation, extubation 
and after 2 months recovery time, along with 8 biomarker operational taxonomic units 
(OTUs). Ellipses represent the standard deviation of the data points per subgroup. (D-F) 
Alluvial plots of cluster transitions in the NP (panel D), saliva (panel E) and ETA (panel F) 
between time of intubation, extubation and after 2 months recovery time. Hierarchical 
clustering of all samples based on the Bray-Curtis dissimilarity matrix identified 
7 distinct clusters, characterized by either Streptococcus (1) (STREP 1), Moraxella 
catarrhalis/nonliquefaciens (MOR), Haemophilus influenzae/haemolyticus (HAEMO), 
Corynebacterium propinquum/pseudodiphtheriticum with Dolosigranulum pigrum 
(COR/DOL),  Streptococcus salivarius (7) (STREP 2),  Enterobacter/Klebsiella (ENTERO), 
or Staphylococcus aureus/epidermidis (STAPH). Stacked bars represent the number 
of samples in each cluster per timepoint, and connections between bars represent 
transitions of participants with 2 consecutive samples available between timepoints.
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Also, only 36 OTUs (combined relative abundance 36.6%) were still 
significantly correlated between NP and ETA samples pre-extubation, 
compared to 74 OTUs (combined relative abundance 84.2%) at intubation, 
suggesting non-NP microbes may have settled in the LRT community. 
We therefore investigated whether micro-aspiration could explain these 
findings, and studied the concordance between saliva and ETA samples 
both at intubation and pre-extubation. We observed that the concordance 
in microbial community composition between saliva and ETA was low at 
both intubation (within-subject median Bray-Curtis similarity 0.13 (IQR 0.03-
0.33)), and pre-extubation (0.17 (IQR 0.04-0.61)). Moreover, the number 
of OTUs that correlated between both niches dropped from 70 OTUs at 
intubation (combined relative abundance 57.0%), to 52 OTUs at extubation 
(combined relative abundance 14.7%). Collectively, our data suggest that 
the NP is a more important source community for the LRT compared to the 
oral microbiota in children, and that NP, saliva and ETA microbiota evolve 
relatively independently during mechanical ventilation, which resulted in 
increased segregation between the URT and LRT microbial communities. 

In summary, we observed that during intubation and ventilation, combined 
with antibiotic treatment in critically ill children suffering from a community-
acquired LRTI, the respiratory microbiota composition clearly changed, even 
deviating further from ‘healthy’ profiles. The bacterial load dropped and the 
relative abundance of predominant pathogens decreased, simultaneously 
allowing antibiotic-resistant bacteria including Staphylococcus species, 
non-pneumococcal streptococci, and Enterobacter/Klebsiella species, to 
colonize and/or overgrow the respective niches. Furthermore, our data 
suggest differential effects of intubation/ventilation and/or antibiotic use 
on microbial communities in the respective niches. Our findings are in line 
with previous results in adults (8). However, unlike findings in adults, the 
LRT microbiota of young children with a severe LRTI reflected the NP more 
than the oral microbiota before intubation, which did not change during 
ventilation. The main limitation of this study is its small sample size. Future, 
larger studies are required to disentangle independent effects of (different) 
antibiotic therapies and intubation for mechanical ventilation on respiratory 
microbiota dynamics. Further study is especially important because the 
respiratory microbiota composition during intubation has recently been 
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related to clinical outcomes in adults. For instance, Dickson and colleagues 
reported that detection of species of the Enterobacteriaceae family in the 
lungs of critically ill adults was associated with acute respiratory distress 
syndrome and prolonged duration of mechanical ventilation (9). Similarly, in 
a large cohort of mechanically ventilated patients, worse clinical outcomes 
were related to low alpha diversity combined with pathogen overgrowth 
in the LRT, in contrast to high alpha diversity with dominance of typically 
oral taxa (10). In line with these findings, Woo and colleagues observed that 
increased abundance of oral taxa including Streptococcus during intubation 
and ventilation were related to successful extubation (11). Findings 
presented here thus warrant similar studies of respiratory microbiota 
changes during intubation and ventilation in relation to recovery in critically 
ill paediatric patients, and exploration of methods to prevent rapid in-
hospital acquisition and/or enrichment of antibiotic-resistant pathobionts in 
this already vulnerable patient population.  
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ABSTRACT
We compared respiratory pathogen detection in saliva with nasopharyngeal 
(NPS) and/or oropharyngeal swabs (OPS) in 29/57 children with respiratory 
symptoms. The sensitivity in NPS was 93% (95% CI 78-98%), in OPS 79% (95% 
CI 60-90%), in saliva overall 76% (95% CI 58-88%), and in 18 saliva samples 
collected with drooling or sponges, 94% (95% CI 74-99%). Saliva offers 
attractive practical advantages, and could thus be a relevant specimen 
alternative in the pediatric population.
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INTRODUCTION
Respiratory infections are the most common cause of illness in childhood, 
and may be caused by various viral and bacterial pathogens (1). Accurate and 
timely identification of pathogens causing infectious diseases is important 
to guide treatment and infection control precautions, which is highlighted by 
the current SARS-CoV-2 pandemic. Multiplex PCR of nasopharyngeal swabs 
(NPS) and oropharyngeal swabs (OPS) is widely applied for respiratory 
pathogen detection. However, particularly for children, NPS and OPS 
collection holds disadvantages, as the procedure is uncomfortable and may 
be experienced as painful, induces sneezing or coughing, and requires a 
trained health care worker to obtain a high quality sample. Saliva collection 
causes little discomfort, is safer, and can be done by self-sampling or by 
parents, which may reduce anxiety and increase the willingness of children 
to undergo sampling for microbiological testing. To date, only one study in 
children demonstrated a 74% sensitivity of respiratory pathogen detection 
in saliva compared to NPS (2). Therefore, we evaluated the sensitivity of 
respiratory pathogen detection in saliva in children using multiplex PCR. 

MATERIALS AND METHODS
This study prospectively enrolled children (<18 years old) who presented to 
the emergency department of a general hospital in The Netherlands between 
April 14, 2020 and August 9, 2020, within 14 days of onset of symptoms of 
a potential SARS-CoV-2 infection (3). NPS and OPS were routinely obtained 
using flexible swabs (Copan eSwabs® 490CE and 484CE, Brescia, Italy), which 
were placed in Amies medium. Upon oral (parental) consent, saliva was 
obtained at the same time using at least one of three methods, depending 
on the age of the child: stroking both cheek pouches and the tongue with a 
swab (DNA-col, Labonovum, Limmen, the Netherlands), which was placed in 
RNA protect Cell Reagent (Qiagen, Hilden, Germany) (all ages); drooling 0.5 
ml into a tube with 10% glycerol in DEPC water (≥5 years); or consecutively 
rubbing two absorbent sponges (Oracol Saliva Collection Device, Malvern 
Medical Developments Ltd., Worcester, United Kingdom) on the gums, 
cheek pouches and tongue for 60 seconds each (<5 years). From 5 children, 2 
extra saliva sponges were collected for volume measurements. Additionally, 
patient characteristics were extracted from medical records. 
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NPS, OPS and saliva were transported to the laboratory at room temperature. 
Sponges were centrifuged at 800g for 5 minutes to extract saliva. All samples 
were tested within 72 hours for the presence of respiratory pathogens 
using qualitative multiplex ligation-dependent probe amplification (MLPA, 
RespiFinder® 2Smart kit 22 FAST, PathoFinder, Maastricht, Netherlands). MLPA 
is designed to detect 21 pathogens, including rhinovirus, influenza viruses, 
respiratory syncytial viruses, human metapneumovirus, adenovirus, bocavirus, 
coronaviruses, parainfluenza viruses, Bordetella pertussis and Mycoplasma 
pneumoniae. In addition, all samples were tested for presence of SARS-CoV-2 
using quantitative RT-PCR based on the presence of the E-gene (4).

Data analysis was performed in R version 3.6.1. The sensitivity of saliva (overall 
and per collection method), NPS and OPS for respiratory pathogen detection 
was compared with a combined reference standard, defined as detection of 
any pathogen in at least one sample (NPS, OPS or saliva). Wilson 95% confidence 
intervals (CI) were calculated using the DescTools package. The number of 
pathogens per sample type was compared using Mann-Whitney U tests. Clinical 
characteristics (i.e. number of symptoms, duration of hospitalization, and 
medical treatment with bronchodilators and corticosteroids) were compared 
between children with the same pathogens detected in saliva (collected with 
drooling or sponges) as in NPS and OPS and children with fewer/different 
pathogens detected in saliva (collected with drooling or sponges) than in NPS 
and OPS, using chi-square tests and Mann-Whitney U tests.

RESULTS
In total, 57 children with symptoms indicative of a potential SARS-CoV-2 
infection participated in the study and had saliva collected alongside NPS 
and OPS, of whom 29 children (51%) had one or more pathogens detected 
in at least one sample and were included in the analysis. Saliva was collected 
with swabs and drooling from 6 children (21%), with swabs only from 11 
children (38%), by drooling only from 3 children (10%), and with sponges 
from 9 children (31%). The median age was 2.1 years [interquartile range 
(IQR), 1.1-3.5 years], and 11 (38%) children were female. Symptoms had 
been present for a median of 2 days [IQR, 1-3 days] at time of emergency 
department presentation, and most commonly included fever (18 children, 
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62%), rhinitis (16, 55%), shortness of breath (15, 52%), coughing (15, 52%), 
decreased appetite (12, 41%), and vomiting (6, 21%). Most children required 
hospital admission (24, 83%) for a median duration of 1 day [IQR, 0.5-2 days]. 

Rhinovirus was the most commonly detected pathogen, followed by 
adenovirus and bocavirus, coronaviruses (types 229E and NL63/HKU1) and 
B. pertussis (Table 1). No SARS-CoV-2 was detected. Two and 3 pathogens 
were simultaneously detected in nine children and one child, respectively. 
Overall, 22/29 (76%, 95% CI 58-88%) children had at least one pathogen 
detected in saliva, compared to 27/29 children having at least one pathogen 
detected in NPS (93%, 95% CI 78-98%), and 22/28 children in OPS (79%, 
95% CI 60-90%). Rhinovirus, coronavirus, and B. pertussis were more often 
detected in saliva than adenovirus and bocavirus. 

Among the different saliva collection methods, swabs appeared to perform 
poorly compared to saliva by drooling or sponges, which, when taken together, 
tested positive for at least one pathogen in 17/18 children (94%, 95% CI 74-99%; 
Table 1). The swabs were not intended for microbiological testing and yielded 
very low saliva volumes, which may both contribute to their poor performance.

Table 1 | Respiratory pathogen detection by multiplex PCR according to sample 
type, compared to the combined reference standard. 
Pathogen Total* NPS OPS Saliva, 

any
Saliva, 
swab

Saliva, 
drooling

Saliva, 
sponge

Any 29 27/29 
(93%)

22/28 
(79%)

22/29 
(76%)

6/17 
(35%)

8/9 
(89%)

9/9  
(100%)

Rhinovirus 24 24/24 
(100%)

20/23 
(87%)

18/24 
(75%)

4/12 
(33%)

7/8 
(88%)

8/9 
(89%)

Adenovirus 6 5/6 
(83%)

4/6 
(67%)

2/6 
(33%)

0/2  
(0%)

0/1  
(0%)

2/3 
(67%)

Bocavirus 6 3/6  
(50%)

3/6  
(50%)

1/6 
(17%)

1/3 
(33%)

0/1  
(0%)

0/2  
(0%)

Coronavirus 3 3/3  
(100%)

1/3 
(33%)

2/3 
(67%)

1/2  
(50%)

1/1  
(100%)

0/1  
(0%)

Bordetella 
pertussis

1 0/1  
(0%)

0/1 
(0%)

1/1  
(100%)

0/1  
(0%)

1/1  
(100%)

0/0  
(NA)

*Total = number of children with pathogen in any of the NPS, OPS or saliva specimens. 
Pathogens that were tested, but were not detected in the study participants: influenza 
viruses (A and B), respiratory syncytial virus (A and B), human metapneumovirus, 
parainfluenza viruses (1, 2, 3 and 4), Mycoplasma pneumoniae, Legionella pneumophila, 
Chlamydophila pneumoniae, severe acute respiratory syndrome coronavirus 2. 
Abbreviations: NPS = nasopharyngeal swab; OPS = oropharyngeal swab.
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By contrast, the volume obtained by drooling was fixed at 0.5 ml. We then 
measured the volume of saliva obtained with 2 consecutive sponges from 5 
children (5 months-4 years old), which exceeded 0.5 ml in four of them. Both 
of these methods thus yielded sufficient volumes of saliva for laboratory 
analyses. Eleven children who had only swabs collected were excluded from 
further analyses.

The average number of pathogens detected per specimen type was 1.0 
(range 0-2) in saliva by drooling and 1.1 (range 1-2) in saliva from sponges, 
which was not significantly different from the average number of pathogens 
detected in NPS (1.2, range 0-2; p>0.323) and OPS (1.0, range 0-2; p>0.661) 
from the same children. Eleven children had the same pathogen(s) 
detected in saliva as in NPS and OPS. However, 5 children had some but 
not all pathogens in NPS and OPS detected in saliva, and 1 child had none 
of the pathogens in NPS and OPS detected in saliva. Children for whom 
all pathogens in NPS and OPS were also detected in saliva, reported more 
symptoms (median 4 [IQR 2.5-4] versus 2 [IQR 2-2.75]), were hospitalized 
for a longer period (median 2 days [IQR 2-2] versus 1 day [IQR 0.62-2.12], 
p=0.306), and more often required medical treatment with bronchodilators 
(82% versus 33%, p=0.142) and systemic corticosteroids (46% versus 17%, 
p=0.512) compared to children for whom pathogen detection in saliva was 
unsuccessful, but these differences were not significant. By contrast, 1 child 
had B. pertussis detected in saliva, which was not found in NPS or OPS.

DISCUSSION
We found a 94% sensitivity of saliva for respiratory pathogen detection in 
children, provided that saliva was collected by drooling or sponges, which 
is comparable with results from studies in adults (5). Our results add to the 
only previous study in children which found a 74% sensitivity of respiratory 
pathogen detection in saliva collected with a single absorbent sponge (2). 
Concordance between pathogens detected in saliva, NPS and OPS seemed 
to be higher in more severely ill children, which may be explained by higher 
viral loads increasing the likelihood of pathogen detection in saliva. Our 
results also suggest that some pathogens, like adenovirus and bocavirus, 
are less likely to be detected in saliva than others, which may be due to post-
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infectious shedding at low viral loads, but our numbers are too low to draw 
definite conclusions on pathogen-specific differences in saliva detection. 
Furthermore, detection of B. pertussis in saliva in one case directly altered 
decisions on antimicrobial treatment and isolation measures. Testing saliva 
alongside NPS and OPS may thus have an additional benefit, which was 
previously demonstrated in adults (6,7), but is novel for children. 

Our work is mainly limited by the small sample size, which did not allow 
us to evaluate significance of differences in sensitivity between different 
sample types. Furthermore, the more clinically relevant respiratory syncytial 
virus, parainfluenza virus or influenza virus were not circulating at the time 
of inclusion. Future studies to validate our findings should, therefore, take 
place in winter, when prevalence of these viruses will normally be higher, 
and should evaluate viral loads, which we were not able to assess. SARS-
CoV-2 was also not detected, reflecting its low prevalence in (symptomatic) 
children in the first epidemic wave in The Netherlands (8). Finally, we did not 
quantify practical aspects of using saliva, such as collection time and costs, 
so the implementation of microbiological testing of saliva in medical practice 
remains to be investigated.

In summary, we have shown that saliva can be used with high sensitivity 
for respiratory pathogen detection in children, and can provide additional 
results compared to NPS and OPS with direct consequences for clinical 
management. Collection should be by drooling or with sponges to ensure 
adequate volumes. However, sponges take more time to collect and require 
some additional steps during laboratory processing, so this method may be 
reserved for cases when drooling is not possible. Collecting saliva is simpler, 
less uncomfortable, and better tolerated by children than NPS or OPS and 
therefore, saliva could be a relevant specimen alternative in the pediatric 
population.
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INTRODUCTION
Human evolution in symbiosis with bacteria and other micro-organisms 
inhabiting all bodily surfaces including the respiratory and gastro-intestinal 
tract (i.e., the microbiota) has selected for mutualistic functions of the 
microbiome that support an equilibrium with the host (1). As a result, the 
human microbiome plays a pivotal role for general health. For example, 
microbes have immune-modulating properties, provide colonization 
resistance to prevent pathogen invasion and infection and aid in the digestion 
and production of important nutrients (2). The immune-modulating functions 
of the human microbiome may be particularly important in the earliest phase 
of life. In infancy, both the microbiome and the immune system undergo 
rapid developmental changes at the same time. Accumulating evidence 
suggests that these two processes are strongly intertwined: microbial cues 
provide important input for the maturing immune system, and vice versa (3). 
It is even believed that in the period spanning approximately the first 100 
days of life, the so-called ‘window of opportunity’, the microbiome leaves a 
permanent mark on the immune system, and thereby may thus already pave 
the way for future health or disease development. The primary motivation 
for studying the composition and development of the microbiome in infancy, 
early childhood and also later in life, is to shed light on the pathogenesis 
of infectious and immune-mediated childhood diseases, and open up new 
avenues of research into (preventative) microbiota-based interventions.

The infant’s first microbiota are seeded at birth. Some studies identified 
bacterial DNA in the placenta or amniotic fluid and proposed the existence 
of a prenatal microbiota (4, 5), but a thorough investigation convincingly 
showed that these findings are most likely based on contamination and 
perinatal acquisition of bacteria (6). During birth, the mother provides her 
child with a rather uniform bacterial “starter kit”. Consequently, the microbial 
composition of different niches including the nasopharynx, oral cavity and 
gut, is strikingly similar directly after birth, but niche-specific microbial 
communities begin to develop soon after (1, 7). In contrast, variation in 
microbiota composition between individual neonates can be large, for 
instance due to mode of delivery: the initial composition of the microbiota 
of vaginally born infants, who came into contact with the maternal genital 
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and fecal flora while passing through the birth canal, strongly differs from 
the more skin- and environment-transmitted microbiota of Caesarean (C-)
section born infants (8–10). Infants born by C-section show, among other 
differences, later colonization with and lower relative abundances of 
beneficial lactic acid-producing bacteria in both the upper respiratory tract 
and the gut microbiota compared with infants born by vaginal delivery, and 
these differences persist for months (11, 12).

Subsequent microbiota maturation follows dynamic, niche-specific 
trajectories in healthy infants, although the individual course is highly 
sensitive to exogenous exposure to, for instance, breastmilk and solid 
foods, antibiotics and other drugs, other children and animals (13). The 
nasopharyngeal microbiota rapidly diversify in the first weeks of life: typically, 
initial Staphylococcus predominance is first replaced by Gram-positive 
commensals Dolosigranulum and Corynebacterium that become  predominant, 
and later on by Moraxella, which stably predominates the niche from around 
the age of three months (14–16). This microbial colonization pattern is more 
often observed in vaginally delivered, breastfed infants as opposed to 
C-section born, formula fed infants (12, 16). In contrast to the nasopharynx, 
the gut microbiota have a more complex composition and develop over a 
longer time period, in parallel with (required adaptation to) dietary changes. 
An initial phase of breastmilk-stimulated Bifidobacterium predominance may 
be followed by a transitional phase with higher abundances of members of 
the family Lachnospiraceae upon the introduction of solid foods, reaching a 
stable state at around three years of age (17, 18). For both niches, early-life 
deviations from these natural microbial maturation trajectories have been 
associated with disadvantageous effects on respiratory health later on, such 
as a higher susceptibility to respiratory tract infections (RTIs) (11, 16) and 
atopic diseases like asthma (19, 20).

The microbial ecosystem is especially sensitive to perturbations in infancy 
and early childhood (21). The terms “dysbiosis” or “microbial imbalance” 
are difficult to define, but they are commonly used to describe microbiota 
aberrations that are related to the manifestation or progression of a disease. 
The current scientific literature contains countless examples of over- and 
underrepresentation of specific bacterial taxa either directly or indirectly 
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associated with disease (see chapter 2 for a review focused on the respiratory 
microbiota and respiratory diseases). On the one hand, microbiota shifts 
may directly affect infection susceptibility. The most well-known example 
is that antibiotic-induced reduction of gut microbiota diversity may in some 
patients lead to the selection of (intrinsically resistant) Clostridium difficile 
causing recurrent episodes of severe diarrhea, that can in some cases only 
be treated by a drastic microbial reset through a fecal microbiota transplant 
(22). Another example of intervention-related changes to the microbiota 
with consequences for infection susceptibility is pneumococcal conjugate 
vaccination, which successfully reduces nasopharyngeal colonization with 
(pathogenic) pneumococcal vaccine serotypes. However, pneumococcal 
colonization was shown to be replaced by Staphylococcus and Haemophilus, 
upon which, for example, the incidence of otitis media associated with these 
respiratory pathogens increased (23–26). Microbiota changes may also 
have indirect effects on the host, for example through microbiota-induced 
immune modulation. A clear example is the acquisition of Bifidobacterium 
colonization, which is generally delayed in C-section born infants compared 
with vaginally born infants (11), and appears to be essential for adequate 
functioning of the immune system in early life. Consequently, the lack of the 
metabolically active Bifidobacterium as well as Bacteroides in the first three 
months of life has been associated with immune dysregulation and systemic 
inflammation (27) as well as an increased risk of developing several immune-
mediated disorders with childhood onset like type 1 diabetes and asthma 
later on (20, 28). In the respiratory tract, very early Moraxella enrichment in 
the first weeks of life was associated with a stronger activation of the local 
antiviral immune response, and with a higher frequency of symptomatic 
RTIs in the first year of life (16, 29). 

All in all, current evidence suggests that perturbations to the microbial 
community composition in early childhood may have long-term effects for 
the host susceptibility to disease. However, direct associations between 
the early-life microbiota composition and the development of the immune 
system, as an intermediate player between the microbiome and health 
outcomes, are less studied. Furthermore, the capacity of the microbiome to 
recover by itself following a perturbation (i.e., resilience of the microbiome) 
has not been studied extensively, while this is likely critical to maintaining 
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good health (30). The primary aims of this thesis were to a) study associations 
between the early-life development of the microbiota and humoral adaptive 
immune function, and b) the resilience of the microbiota in children following 
perturbation from a severe lower respiratory tract infection (LRTI). 

KEY FINDINGS OF THIS THESIS
Early-life microbes leave their mark on mucosal and systemic 
humoral immunity 
At this stage, only few human infant studies investigated a link between 
microbiota development from birth onward and relevant immune functions. 
In chapters 4 and 5 of this thesis, we demonstrated associations between 
early-life microbiota development in a healthy birth cohort (the MUIS study 
(16)) and antibody responses, an important effector component of both 
mucosal and systemic immunity. Demonstrating such temporal associations 
is an important first step to prove causal relationships between the early-life 
microbiota, immune maturation and health consequences.

Local host-microbiota crosstalk in the upper respiratory tract and infection 
susceptibility

First, chapter 4 focused on the nasopharyngeal microbiota and the 
dynamics of local mucosal IgG, IgA and IgM concentrations in saliva obtained 
at 11 timepoints in the first year of life. Our primary aim was to explore 
correlates between the composition of the nasopharyngeal microbiota and 
the subsequent intrinsic mucosal antibody response. However, unlike other 
studies that used animal models (31), our prospective, observational design 
did not allow us to experimentally disconnect the bidirectional interactions 
between microbial colonization and antibody responses. This aspect 
combined with the age-dependent dynamics of both the nasopharyngeal 
microbiota and antibody concentrations confound the interpretation 
of direct correlations (32), and to overcome these challenges, we took a 
stepwise approach in the statistical analysis. 

First, we aligned nasal expression of genes involved in antibody production 
with IgG, IgA and IgM concentrations over time. Twice in the first year of 
life, sharp increases in gene expression were directly followed by overall 
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increases in antibody concentrations, namely IgM and IgA in the first two 
weeks, and IgG between months six and nine. This approach allowed us to 
estimate the onset of endogenous antibody production, which thus seemed 
to be much earlier for IgA and IgM than for IgG. 

We then focused our analysis on nasopharyngeal microbiota development 
leading up to the induction of week two IgA and month six IgG production, 
and showed that early enrichment of Moraxella and underrepresentation 
of Dolosigranulum and Corynebacterium were consistently associated with 
higher antibody concentrations at these timepoints. Intriguingly, elevated 
IgA levels at week two and IgG levels at month six were in turn also 
associated with a higher total number of parent-reported RTIs in the first 
year of life. High induction of IgG at six months of age was likely reactive to 
prior RTIs and other characteristics that were in line with a history of higher 
microbial exposure (i.e. daycare attendance, viral detection, high bacterial 
load). This was not the case for IgA. Instead, high IgA induction at two weeks 
of age was only associated with very early Moraxella enrichment, which 
we have previously also associated with stronger interferon signalling (29) 
and higher RTI susceptibility (16), and underrepresentation of the health-
associated commensal Dolosigranulum. We hypothesize   that initially, high 
mucosal IgA induction may be an excessive, perhaps nonspecific response 
to the microbiota, which may reflect inadequate tuning of the (mucosal) 
immune system by the local microbial community. This may then result in 
a higher number of symptomatic RTIs.  Indeed, colonization of the infant 
upper respiratory tract with Moraxella catarrhalis and Haemophilus influenzae 
has previously been related to topical inflammation (33). Local baseline 
inflammation in older, immunosenescent mice has also been linked to an 
inappropriate mucosal innate immune response and subsequent failure 
to clear the respiratory pathogen Streptococcus pneumoniae, which was 
suggested contribute to the increased susceptibility to pneumococcal 
infections at older age (34). Nevertheless, we cannot distinguish whether the 
number of RTIs in the first year of life would have been even higher if early 
boosting of the mucosal IgA response had not occurred. 

Though cause and consequence cannot be exactly unraveled, we concluded 
that maintaining stable antibody concentrations may be a hallmark of 
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respiratory health in the first year of life. All in all, mucosal antibodies 
might thus be an early and easily accessible biomarker of mucosal immune 
imbalance in the upper respiratory tract.

Long-term effects of microbiota-mediated immune maturation reflected in 
vaccine responses

Next, chapter 5 focused on the gut microbiota and antibody responses 
to routinely administered PCV-10 (at 2, (3,) 4 and 11 months of age) and 
meningococcus type C (MenC) vaccination (at 14 months of age). Antigen-
specific vaccine responses were measured in saliva, but since salivary IgG 
responses to vaccination correspond well with serum levels, these were 
considered to reflect systemic immunity (35, 36). Based on the “window of 
opportunity”-concept, we hypothesized that we would find the strongest 
associations between the gut microbiota composition in the first weeks 
of life and vaccine responses to routine vaccinations of the national 
immunization program starting at two months of age, even though the 
latter were measured months later at the age of 1-1.5 years. We identified 
a chain of events, where vaginally born infants had a gut microbiota profile 
with high relative abundances of Bifidobacterium and Escherichia coli at 
the age of one week and higher antibody responses to pneumococcal 
and meningococcal vaccination later on compared with C-section born 
infants. This finding supports the hypothesis that the gut microbiota may 
be a mediator between delivery by means of C-section and immune effects 
including the increased risk of childhood immune-mediated diseases (37). 
Interestingly, we found stronger associations of the early-life microbiota 
with the pneumococcal vaccine response than with the meningococcal 
vaccine response. While several explanations are possible, we believe that 
this is most likely due to the different timing of vaccine administration: PCV-
10 was first administered at the age of 2 months in our cohort, while MenC 
vaccination was not given until the age of 14 months. While the immune 
system appears to be most sensitive to bacterial cues in the earliest phase 
of life, accumulating evidence also suggests that with time, the effect 
of initial lack of exposure can be mitigated by appropriate subsequent 
microbiota maturation. For example, in a large Danish birth cohort, the risk 
of asthma was only increased in C-section born infants who still retained 
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C-section-induced microbiota changes by the age of one year (38). Olin and 
colleagues unexpectedly observed rapid convergence of initially strongly 
different immune phenotypes in term and preterm born infants onto 
shared developmental paths, and proposed a framework where (opposing) 
adaptive responses to multiple, varied antigens ultimately limit the number 
of possible immune phenotypes (39). So, full understanding of the role of 
the gut microbiota in the development of immune-mediated disorders 
with childhood onset requires high-resolution evaluation of longitudinal 
developmental trajectories of the microbiome with emphasis on the first 
weeks of life, but continuing throughout childhood.

Distinguishing drivers and consequences

A major challenge we faced with the studies discussed in chapters 4 and 
5, was clearly distinguishing early-life environmental drivers, microbial 
community shifts, and consequences for immune parameters in the statistical 
analysis. For example, in chapter 4, we found that breastfeeding was the 
primary source of IgA until the induction of endogenous production, and 
early-life breastmilk-derived IgA was, in turn, associated with nasopharyngeal 
microbiota assembly. This may suggest that early-life IgA influences the 
formation of the microbiota, which is in line with findings from other studies 
(40–42). However, breastmilk also contains microbial communities of its own 
(43). Feeding type could thus be both a potential confounder as well as an 
independent driver of the effect of IgA on the nasopharyngeal microbial 
community composition. Reassuringly, statistical significance of the effects 
persisted when we considered breastfeeding as a confounding factor and 
included feeding type as an independent variable in multivariable models. 
A similar issue arose in chapter 5, where microbial community types 
observed at one week of age were primarily driven by mode of delivery, and 
both were also associated with the outcome, i.e. the antibody response to 
vaccination. Given the clear temporal succession, we applied the principles 
of mediation analysis to unravel whether these triangular associations could 
reflect a sequence of events (44). Indeed, the association between the week-
one microbial community types and the immune response to pneumococcal 
vaccination persisted, regardless of delivery mode. This finding provided 
additional evidence for a role of the gut microbiota as a mediator between 
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delivery mode and vaccine responses, and at the same time demonstrated 
an added value of mediation analysis for longitudinal human microbiome 
studies. 

Molecular mechanisms underlying microbiota-mediated effects on host 
immunity

The underlying molecular mechanisms of microbiota-induced immune 
modulation are likely many and complex. The findings presented in 
chapters 4 and 5 of this thesis are merely associative in nature, but they 
align with mechanistic studies from other research groups, which supports 
the biological plausibility of our results. First, direct interaction of bacterial 
constituents with epithelial receptors may trigger immunomodulatory 
pathways. E. coli was shown to promote antibody responses to the trivalent 
inactivated influenza vaccines through TLR5-mediated flagellin sensing 
that stimulated plasma cell differentiation (45), and was also found to 
be associated with a higher antibody response to pneumococcal and 
meningococcal vaccination in chapter 5. Second, some bacteria including 
Bifidobacterium species are well-known for their ability to metabolize human 
milk oligosaccharides and thereby produce short chain fatty acids (SCFA) 
(46, 47). SCFAs are considered key metabolites that support symbiotic host-
microbiota relationships, and the gut microbiome functional capacity for 
SCFA biosynthesis was demonstrated to be lower in infants who developed 
type 1 diabetes than in healthy controls (48). Bifidobacterium abundance 
was also associated with higher vaccine immunogenicity in chapter 5 and 
other studies (49, 50), and it remains to be investigated whether SCFAs play 
a role. A different metabolic pathway affecting host immunity to vaccination 
was described by Hagan and colleagues, who showed that an antibiotic-
induced reduction of bile acid metabolism by the gut microbiome activated 
inflammatory responses and impaired the antibody response to influenza 
vaccination in healthy adults without pre-existing immunity (51). Third, 
in mice, bacterial antigens from the gut have been shown to disseminate 
systemically and trigger the production of antigen-specific IgG and IgA 
antibodies elsewhere, which were in turn shown to protect against sepsis 
caused by bacteria that originated from the gut microbiota (52, 53). This 
phenomenon could underlie some of the correlations between specific 
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bacterial taxa and antibody induction described in chapter 4, though this 
mechanism has not yet been demonstrated in humans, nor for bacterial 
antigens originating from the respiratory tract. All in all, it appears to be 
possible that the associations we found between the early-life microbiota 
and clinically relevant immune parameters reflect true biological processes.

Lower respiratory tract infections as part of a vicious cycle of 
host-microbiota interactions
An important property of a healthy microbiota is its capacity to recover to 
the baseline state after a perturbation, which is called microbiome resilience 
(30). In chapters 7 and 8, we studied the resilience of the nasopharyngeal 
microbiota following a severe LRTI. During a severe LRTI (i.e. an LRTI requiring 
hospitalization), nasopharyngeal microbial communities are characterized 
by (hyper)dominance with potentially pathogenic bacteria like H. influenzae 
and S. pneumoniae, and virtual absence of beneficial commensals like 
Corynebacterium and Dolosigranulum, regardless of phenotypic characteristics 
traditionally linked to ‘viral’ versus ‘bacterial’ infections (54). Studies using 
animal models have also shown that experimental respiratory pathogen 
introduction disrupted the composition of the local microbiota (55, 56).  A 
LRTI can thus be considered a perturbation of the respiratory microbiome. 
High nasopharyngeal abundances of Haemophilus and Streptococcus species 
have also been associated with increased severity of respiratory syncytial 
virus bronchiolitis, indicating that the extent of the microbial ecosystem 
perturbation can contribute to inflammation leading to symptoms as well 
as to the course of disease of this viral infection (57). However, subsequent 
recovery of the perturbed microbial ecostate, as well as determinants of 
this recovery and potential clinical consequences of (lack of) microbiota 
recovery, remain elusive at this point.

Potential drivers of respiratory microbiota recovery following a LRTI

In chapter 7, we described both clinical and nasopharyngeal microbiota 
recovery in young children hospitalized for a LRTI in a case-control study 
(the MOL study (54)). With stringent matching of LRTI cases with two healthy 
controls of the same age and sex and within the same season, we were 
able to approximate microbiological recovery as the discrepancy of the 
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nasopharyngeal microbiota profiles of the case approximately six (range: 
four to eight) weeks after hospital admission compared with its two matched 
controls, as a measure of normalization to an age-appropriate configuration. 
Using this measure, we observed interesting associations between clinical 
factors, like antibiotic treatment, LRTI phenotype and age, and microbiota 
recovery. Overall, children showed a microbial composition comparable to 
healthy controls six weeks after hospital discharge, regardless of whether 
they had received antibiotic treatment or not. By contrast, the microbiota 
of children with the clinical LRTI phenotype of wheezing illness, who 
were generally older than two years of age, had not (yet) recovered to a 
state comparable to healthy controls at the follow-up visit, as opposed to 
children with a bronchiolitis, pneumonia or ‘mixed’ phenotype. Children 
with a wheezing illness LRTI also more often experienced new respiratory 
symptoms within the period between hospital discharge and the follow-
up visit. This is in line with epidemiological data showing that children 
with a wheezing LRTI remain at an increased risk of developing wheezing 
illness and asthma during childhood (58–60). The group of children who 
experienced new respiratory symptoms during follow-up also showed 
reduced recovery of the microbial composition, with persistently increased 
relative abundances of Haemophilus and typically oral Gram-negatives such 
as Prevotella and Fusobacterium species as well as reduced abundances of 
health-associated commensals, and thereby the circle was complete. 

In chapter 8, we investigated the microbiota of the nasopharynx, saliva 
and the lower respiratory tract in a small cohort of even more severely ill 
children who required pediatric intensive care unit (PICU) admission and 
mechanical ventilation for a LRTI (the MEREL study (54)). These children also 
all received antibiotic treatment for the LRTI. During the PICU stay, initial 
hyperdominance of ‘classic’ respiratory pathogens like Haemophilus and 
pneumococcus shifted to entirely different profiles. When the ventilatory 
tube was removed after a few days, microbiota profiles were characterized 
by high relative abundances but a low bacterial load of Staphylococcus, 
Enterobacteriaceae, Stenotrophomonas or non-pneumococcal streptococci, 
which we attributed to antibiotic selection of resistant species and/or 
introduction from the intensive care environment through the ventilatory 
tube. Despite this strong microbiota shift during mechanical ventilation, we 
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observed quite ‘normal’ nasopharyngeal and salivary microbiota profiles 
at the follow-up visit approximately two months after discharge from the 
intensive care. When we compared the nasopharyngeal microbiota profiles 
to age-matched healthy controls (taken from a different study, since we 
lacked a direct control group for the intensive care cohort), no differences 
in the overall composition were apparent anymore (results not reported 
in the chapter). This finding might indicate that the upper respiratory tract 
microbiota also showed a good recovery after intensive care treatment for 
a LRTI. Taken together, the degree to which the microbiota are perturbed 
during the acute infection, the clinical severity of a LRTI, and/or antibiotic 
treatment thus did not appear to restrain the recovery of the upper 
respiratory microbiota to an age-appropriate composition. In contrast, 
in the subgroup of (generally older) children hospitalized for a wheezing 
illness LRTI, microbiota recovery was more limited or slower. This finding 
suggests impaired resilience of the microbiota in this group, potentially as 
a consequence of underlying (chronic) immune-mediated/inflammatory 
processes and/or prior corticosteroid use present in these children.

Reduced microbiota resilience may precede a critical transition to an 
alternative ecostate

The human microbiota forms a complex, dynamical ecosystem. Variation in 
the microbiota composition is large between as well as within individuals over 
time, which hampers the definition of a ‘normal’ or ‘healthy’ microbiota (1). 
At this stage, we are not yet able to use our accumulating knowledge of the 
microbiota to predict, let alone prevent, disease outcome for the individual 
patient. For this purpose, we may need to discover early markers of critical 
bifurcations where the microbial ecosystem passes a threshold and shifts 
to a contrasting ecostate that is associated with a negative clinical outcome, 
like asthma. Scheffer and colleagues formulated a theory of generic early-
warning signals for such transition points in dynamical systems that can also 
be applied to the microbiome (61). This theory states, among others, that 
complex systems (e.g. the microbiome) show “critical slowing down” before 
reaching a transition point, which is reflected in increasing correlation of 
the state of the system at consecutive timepoints, increasing variance and 
slower recovery to baseline after a perturbation (61). 
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The results from chapters 7 and 8 support this theory. Impaired microbiota 
resilience in children recovering from a wheezing illness LRTI, might reflect 
“critical slowing down” as a sign that the microbiota of these children is 
nearing a transition point towards an alternate microbial ecostate. Once 
extrinsic and intrinsic forces push the respiratory microbiota over this point 
to this alternate ecostate, this may in turn affect the host in various ways (e.g. 
by producing certain metabolites or inducing inflammation) with potential 
health effects (62). In this case, wheezing LRTIs in particular are associated 
with asthma development (63, 64). Hence, we speculate that the observed 
“critical slowing down” might predict a clinically relevant transition point of 
the microbiome to an alternate ecostate associated with asthma. Greater 
fluctuations over time are another characteristic of a complex system 
nearing a shift to an alternate ecostate, because consecutive perturbations 
have additive effects when recovery is slow. We may also have observed 
this phenomenon in chapter 7, where children who had again experienced 
new respiratory symptoms particularly demonstrated reduced microbiota 
recovery 4-8 weeks after a severe LRTI compared with children who 
remained asymptomatic in this period. This may reflect a vicious cycle where 
slower microbiota recovery after a LRTI predisposes to the recurrence of 
respiratory symptoms upon new pathogen exposure, which further disrupts 
the microbial ecosystem, and so on (65). Testing this hypothesis requires 
large, longitudinal studies with frequent clinical phenotyping and microbiota 
characterization of pediatric (wheezing illness) LRTI patients.

Another example of microbiome perturbation is antibiotic treatment. 
Nevertheless, in chapter 7, the subset of children who received antibiotic 
treatment overall showed adequate microbiota recovery. The microbiota 
of these children thus proved to be resilient to the antibiotics, or the 
antibiotics might even have ‘helped’ to reconstitute the original microbiota. 
In other cases, antibiotics may be intended to correct the microbiota to the 
original ecostate, but without success, due to a resilient dysbiotic state of 
the microbiota (30). In patients with cystic fibrosis (CF), establishment of 
chronic Pseudomonas aeruginosa colonization in the lung causes frequent 
pulmonary exacerbations and a steady decline in lung function. Antibiotic 
treatment targeted at this pathogen often ameliorates clinical symptoms 
for a short while. However, at the ecological level, antibiotic treatment 
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was shown to lead to an increase rather than a decrease in P. aeruginosa 
abundance, which was followed by a recovery of the microbiota to the pre-
treatment composition within 30 days (66). Presence of P. aeruginosa in the 
CF microbiota may mark an alternative stable ecostate that is associated 
with worse disease outcome and is difficult to reverse permanently by 
antibiotic therapy. 

In summary, limited ability of the respiratory microbiota to recover to a pre-
perturbation state after an infection might be an early warning sign for a 
future transition to an alternate and possibly undesirable ecostate, which 
is at least difficult and perhaps even impossible to revert. Hence, we might 
be better able to predict an individual’s risk of certain complications or long-
term health problems if we could measure microbiota resilience. However, 
studying resilience ideally requires frequent sampling of the same individuals 
in a long time series starting before a perturbation, which may, for example, 
be feasible for CF patients followed from birth, but not for healthy children 
who may or may not develop a LRTI. In the latter case, our approach to 
assess microbiota resilience in post-LRTI patients by comparison with 
healthy, matched controls may be an option to consider in future studies.

Opportunities for using saliva as a specimen for infection and 
immunity research

The results presented in this thesis are in part gained from the analysis 
of saliva specimens: in chapters 4 and 5 to measure either total or 
vaccine antigen-specific antibody concentrations with fluorescent bead-
based multiplex immunoassays, and in chapter 8 to characterize the oral 
microbiota composition with 16S rRNA gene sequencing. Saliva offers 
attractive practical advantages, especially in children. Collection of saliva 
is simple, non-invasive and does not require assistance from a health care 
professional. This reduces fear and discomfort experienced by children, 
which increases the likelihood that they will cooperate, especially when 
repeated samples are needed. Here, we take a small sidestep to make a 
plea for the more widespread use of saliva in pediatric infectious diseases 
and immunology research based on the findings also presented in chapters 
6 and 9 of this thesis.
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Serum IgG antibody titers and seroconversion remain the golden standard 
to assess the efficacy of many vaccines and different dosing schedules to 
evaluate possible changes to national immunization programs (67, 68). In 
chapter 6, we compared anti-pneumococcal antibody concentrations in 
saliva between infants participating in our healthy birth cohort study, who 
had received either three (at 2, 3 and 4 months of age) or two (at 2 and 
4 months of age) primary doses of the 10-valent pneumococcal conjugate 
vaccine due to a change in the national immunization program. We found 
only minor decreases in the salivary antibody response after the booster 
dose (at 11 months of age for both groups) in the group with the two-dose 
schedule. The neutralizing IgG antibody response is the primary immune 
effector of the pneumococcal vaccination (69), which does not only provide 
protection against invasive infections, but also prevents pneumococcal 
acquisition in the upper respiratory tract. This suggests that systemic IgG 
antibodies transported to saliva may play a direct role in protection from 
pneumococcal infection (70–72). Monitoring salivary antibody responses 
to pneumococcal vaccination would require knowledge of a surrogate 
of protection against infection, which has previously been estimated for 
MenC vaccination (73), but not yet for pneumococcal vaccination. Finding 
this surrogate could pave the way for a more prominent role of saliva in 
pneumococcal vaccine trials, in particular when they concern large-scale 
vaccination campaigns or populations where drawing blood is difficult (e.g. 
young children).  

For respiratory pathogen detection in children with a RTI, the deep 
nasopharyngeal swab remains the golden standard, which most children 
experience as uncomfortable. At the onset of the Coronavirus Disease 
2019 (COVID-19) pandemic, the sudden need for high volume viral testing 
attracted attention to more patient- and child-friendly sample collection 
methods. This led to a heap of studies demonstrating a comparable or 
even higher sensitivity for detecting severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) in saliva compared with nasopharyngeal swabs 
in both adults and children (74–76). In the same period, we initiated a 
similar pilot study comparing different sampling methods in the pediatric 
population, but we took a broader approach testing for a range of 
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respiratory viral and bacterial pathogens (chapter 9). Though we did not 
detect SARS-CoV-2 in our study population (children were largely unaffected 
in the first wave of COVID-19 in The Netherlands (77)), we found an overall 
sensitivity of respiratory pathogen detection in saliva of 94%, comparable to 
nasopharyngeal and oropharyngeal swabs, provided that we used sponges 
or drooling collection methods rather than swabs. In our subsequently 
initiated household SARSLIVA-study, repeated self-collection of saliva at 
home by family members of a laboratory-confirmed COVID-19 patient 
provided detailed insight into viral transmission within the household (78). 
Moreover, the study participants, including children, found the frequent self-
collection of saliva manageable and preferable to nasopharyngeal swabs 
(unpublished data). With the persisting threat of SARS-CoV-2 and perhaps 
future outbreaks of new respiratory viruses, viral testing may remain 
crucial for effective infection control and child-friendly sampling methods 
remain highly relevant. More research in children may enable the ranking 
of different sample types, alone or in combination, for respiratory pathogen 
testing in different settings (e.g. hospital vs. community) and populations 
(e.g. asymptomatic vs. symptomatic, younger vs. older), taking into account 
the degree of (dis)comfort experienced by the child and their caregivers. 

For early-life microbiota studies, chapter 8 again underlined that 
nasopharyngeal samples are likely more representative of the (lower) 
respiratory microbiota than saliva (13). Nonetheless, saliva is a very 
informative substance that can be used to assess relevant outcomes such 
as antibody concentrations or viral presence, which is particularly attractive 
in longitudinal studies with repeated measurements over time at high 
resolution.

FUTURE PERSPECTIVES
Moving from correlation to causation
Knowledge of the human early-life microbiota continues to expand at a 
rapid pace, but the translation of this knowledge into practical applications 
is still in its infancy. Longitudinal studies with prospective follow-up from 
birth and extensive phenotyping now begin to provide important insight into 
the intrinsic dynamics of the microbiota in relation to immune maturation 
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and disease susceptibility, which is the first step to establish causal links in 
humans. Examples are chapters 4 and 5 of this thesis, where the design of 
our cohort of healthy infants with longitudinal follow-up from birth allowed 
us to carefully disentangle associations between early-life host factors 
(e.g. mode of delivery), subsequent microbiota maturation, and immune 
effectors later on (e.g. vaccine response) with a clear temporal succession, 
which is not definite proof but could help to understand causal links. Similar 
birth cohorts with longitudinal microbiota follow-up also exist of infants 
who are genetically predisposed to the development of immune-mediated 
diseases like asthma (14) and diabetes (17) and of infants who were exposed 
to a perturbating factor like antibiotics in early life (79). Meta-analysis of 
different microbiota birth cohort studies would provide an additional layer 
of evidence, but is complex because of the many confounders introduced by 
differences in study design and setting (e.g. sampling methods, geographic 
region) as well as laboratory methods (e.g. DNA isolation and sequencing 
protocols), as explained in chapter 3. Nonetheless, the current drive of the 
scientific community to publicly share raw sequencing data already makes 
it much more feasible to harmonize different data sets by using increasingly 
advanced bioinformatic techniques (80, 81). Such analyses that combine, 
compare and contrast different cohorts may reveal both generic and cohort-
specific associations between key players in the microbiota and health 
outcomes in childhood. 

For mechanistic support of correlative findings linking bacterial taxa to 
clinical outcomes, researchers tend to turn to animal studies. Antibiotic 
perturbation studies in infant mice have shown microbiota-mediated effects 
on host immunity, metabolism and even lifespan that were independent 
from the antibiotics themselves (82–84). The controlled transplantation of 
defined consortia resembling the neonatal microbiota in mouse models to 
assess their dynamics and effects on the host, represents another, new line 
of investigation which may prove enlightening in the future (85). Although 
murine models allow for some experimental control of host effects, they 
also suffer from specific limitations, including cage effects and coprophagy 
(ingesting feces), and have a profoundly different microbiota composition 
as well as immune forces acting on the microbiota than humans, hampering 
the translation of results to the human situation. In an upcoming in natura 
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approach, taxonomic data is aligned with other readouts reflecting microbial 
activity, such as transcriptomics, metabolomics and proteomics. Such 
integrated analysis of multi-omic studies requires careful interpretation of 
the different data layers in light of each other, but can yield multilevel insight 
into molecular pathways linking microbial shifts via metabolic or host gene 
expression changes to a disease outcome (29). However, causal pathways 
can still only be derived if the human study participants are exposed to 
an intervention, which can be antibiotics, pro- or prebiotics, vaccination or 
even pathogen exposure using a human challenge model (86). Lastly, when 
multiple epidemiological microbiota studies point towards bacteria that may 
be highly beneficial to human health, this warrants in-depth species-specific 
studies. One such species is Dolosigranulum pigrum, which has consistently 
been associated with respiratory health and is considered a candidate for live 
biotherapeutic agents (15, 16, 87). Detailed in vitro experiments of D. pigrum 
revealed that this lactic acid bacterium can indeed enhance nasal barrier 
function, dampen inflammatory responses and exert antimicrobial activity 
against Staphylococcus aureus, and, when cooperating with Corynebacterium, 
also against S. pneumoniae (88, 89). These and other confirmations of 
biological underpinnings for correlative observations like those presented in 
this thesis, strengthen the body of evidence for functional host-microbiota 
interactions.

Translation to the clinic
Making the move to microbiota modulation for health benefits would 
not only require a thorough functional understanding of the microbial 
ecosystem, but also a workable definition of a desired target endpoint. 
Defining a ‘healthy’ microbiome has proven exceptionally difficult (1, 62). 
Some have argued that microbiotas follow the ‘Anna Karenina principle’ 
adapted from Leo Tolstoy – while health-associated microbiotas are all alike, 
microbiotas associated with disease states are all different in their own way 
(90). We observed this phenomenon in chapter 5, where the microbiota 
community types that were associated with higher vaccine responses had 
a relatively homogeneous composition (predominated by either E. coli or 
Bifidobacterium), while the composition of the microbiota associated with 
lower vaccine responses strongly varied between infants. Besides specific 
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microbiota configurations, age-appropriate microbiota maturation may 
be a hallmark of health, especially in the youngest pediatric population: 
several studies calculating a microbiota ‘age’ showed that maturation was 
delayed in infants with more frequent RTIs (16) or with severe malnutrition 
(91) compared with their peers. Analogously, we associated very early 
Moraxella predominance in the nasopharynx, which would normally occur 
around the age of three months, with stronger mucosal IgA induction and 
more frequent RTIs in chapter 4. Constructing a growth curve of normal 
microbiota development, as is common for other child developmental 
parameters like weight and height, might be an interesting option to detect 
abnormalities (early). As outlined above in our discussion of chapters 7 and 
8, it has also been proposed that the resilience of the microbiota in response 
to a perturbation like a LRTI is an indicator of health (30). However, assessing 
this in an individual patient requires repeated sampling both before and 
after the perturbation, which is often not feasible in clinical practice. Instead, 
compiling a population-scale public health database that allows for the 
comparison of an individual’s microbiota after a perturbation to a selection 
of microbiotas from a group of carefully matched peers, might be a solution 
in the future (92).

Although exact therapeutic microbiologic goals remain to be defined, 
interventions that have already proven to alter the infant gut microbiota 
composition range from seeding of C-section born infants with maternal 
fecal or vaginal microbiota soon after birth (93, 94), via live therapeutic 
agents for preterm infants (95) to prebiotics added to formula (96). Long-
term health benefits remain elusive at this stage and will take time to 
evaluate, but it is likely that ongoing investigations will shed light on the 
consequences of early-life microbiota modulation. The findings presented in 
this thesis have three main implications for microbiota-directed intervention 
trials. First, chapter 7 pointed towards nasopharyngeal enrichment with 
Gram-negatives like Haemophilus and less abundant typically oral bacteria 
combined with decreased abundance of health-associated commensals, as 
potential mediators of worse respiratory outcomes after a LRTI. Previously, 
especially higher Haemophilus abundance during a LRTI had consistently 
been associated with inflammation, increased viral load, prolonged viral 
presence, and increased illness severity (57, 97–99). Furthermore, influx 
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of typically oral bacteria in the nasopharynx has also been associated 
with increased RTI susceptibility (100). Future studies should determine 
whether Gram-negatives like Haemophilus, Prevotella and Fusobacterium 
might be biomarkers of ongoing respiratory morbidity in pediatric post-
LRTI patients, and whether antibiotic or pre/probiotic interventions targeted 
at the containment of these species and/or the support of beneficial 
commensals, might alleviate some of the burden. However, the potential 
of respiratory microbiota manipulation has barely been explored to date 
and presents specific challenges (101). Second, in chapters 4 and 5, 
microbiota configurations in the first 7 days of life seemed to be the most 
relevant for the immune effectors we studied, again underlining that the 
immune tone is already set as early as the first weeks of life. This finding 
suggests that interventions may be most effective when administered very 
early in life, in line with the ‘window of opportunity’-hypothesis. Third, we 
have demonstrated associations between the microbial composition and 
clinically relevant outcomes like (vaccine-induced systemic and natural 
mucosal) antibody responses or recurrence of respiratory infection 
symptoms in chapters 4, 5 and 7. These outcomes can be easily measured 
in the short term and are very common in the pediatric population, which 
offers major advantages like smaller sample sizes and shorter follow-up 
duration compared with trials with a long-term, rare outcome such as the 
development of chronic, and/or immune-mediated disorders. The antibody 
response to vaccination has even been implicated as an early predictor 
of other future health parameters: two-year-long monitoring of mice who 
received antibiotics early in life and subsequently followed an aberrant 
microbial maturation trajectory, revealed that these mice did not only 
mount lower antibody responses to vaccination, but also had higher insulin 
resistance, more inflammation, and a reduced lifespan than antibiotic-naïve 
mice (82). Importantly, antibody levels can even be easily measured in a 
non-invasive manner if saliva is used.

Take home message for clinicians
Although, as aforementioned, the influence of the early-life microbiota on 
immune maturation in infancy with health effects that may last a lifetime, 
still needs to be mechanistically proven in humans, the immense body 
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of evidence has become difficult to ignore. Therefore, at this point, our 
main message to clinicians is to make an effort to cherish the early-life 
microbiota in daily practice. Practices that disrupt the vertical mother-infant 
transmission as well as the maintenance of early-life microbes are highly 
abundant nowadays (102). C-sections on demand are increasingly common 
in certain parts of the world and form an avoidable threat to the microbiota-
immune axis (37). Antibiotics are often prescribed to newborns with signs 
of an infection that prove to be innocent later on, and we encourage the 
use of risk stratification tools including sensitive biomarkers of early-onset 
sepsis to reduce unnecessary antibiotic use (103). Breastfeeding has many 
obvious health benefits including effects on the microbiota and should be 
stimulated, and should be replaced by infant formula resembling breast 
milk when breastfeeding is not possible (96). Notwithstanding that practices 
like emergency C-sections and antibiotics for suspected early-onset sepsis 
can of course be lifesaving, weighing short- and long-term microbial and 
immunological effects might still lead to a reduction of their use without 
medical urgency. Safeguarding critical early-life microbes is likely to prove 
beneficial to the health of future generations.
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NEDERLANDSE SAMENVATTING 
Introductie
Ongezien leeft de mens samen met een ontelbaar aantal bacteriën, die 
voorkomen op de slijmvliezen van de darmen en de luchtwegen en op de 
huid. Samen vormen de koloniserende bacteriën het menselijke (bacteriële) 
microbioom. Dankzij de komst van nieuwe moleculaire technologie die 
het mogelijk heeft gemaakt om deze bacteriën nader te bestuderen 
en te classificeren op basis van hun DNA (zie ook hoofdstuk 3), hebben 
we in de afgelopen 15 jaar veel geleerd over de samenstelling van het 
microbioom en tal van belangrijke functies die het microbioom vervult voor 
onze gezondheid op korte en lange termijn. Bacteriën en andere micro-
organismen zoals virussen, schimmels en parasieten ontwikkelden zich vele 
miljoenen jaren eerder dan de mens en daarom is het niet meer dan logisch 
dat het microbioom de menselijke evolutie heeft beïnvloed en belangrijke 
functies vervult voor de gezondheid van de mens. Het microbioom 
speelt bijvoorbeeld een rol bij de vertering en productie van belangrijke 
voedingsstoffen, beschermt tegen kolonisatie en infectie door pathogenen 
en beïnvloedt het functioneren van het immuunsysteem. 

Een pasgeboren baby verkrijgt diens eerste flora van de moeder tijdens 
de passage door het geboortekanaal. Dit microbiële “startpakket” is vrij 
uniform, wat betekent dat vlak na de geboorte de samenstelling van het 
microbioom op verschillende plekken (niches) van het babylichaam, zoals 
de darmen, de huid en de luchtwegen, nog tamelijk hetzelfde is. Echter 
al snel daarna past het microbioom zich aan aan lokale omstandigheden 
in de verschillende niches, onder invloed van bijvoorbeeld temperatuur, 
vochtgehalte en de beschikbaarheid van voedingsstoffen. Zo ontwikkelen 
zich niche-specifieke verschillen in de samenstelling van het microbioom. Bij 
drie maanden oude baby’s zijn de darmen in grote mate gekoloniseerd met 
bacteriën van de genera Bifidobacterium en Escherichia, terwijl bacteriën van 
de genera Moraxella, Corynebacterium en Dolosigranulum vooral voorkomen 
in de (bovenste) luchtwegen. 

In de darmen en de luchtwegen is er nauw contact tussen de lokale 
microbiota en cellen van het immuunsysteem en de samenstelling van het 
microbioom is geassocieerd met de ontwikkeling van het immuunsysteem 
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en de gezondheid van een kind op langere termijn. Een afwijkende 
microbioom samenstelling op jonge leeftijd is bijvoorbeeld geassocieerd 
met een hogere gevoeligheid voor luchtweginfecties, maar ook met een 
toegenomen risico op chronische ziektes die gekenmerkt worden door 
afwijkend functioneren van het immuunsysteem, zoals astma, allergieën 
of suikerziekte. Steeds meer studies laten zien dat vooral het microbioom 
in de allereerste levensweken, wanneer ook het immuunsysteem grote 
ontwikkelingen doormaakt, geassocieerd is met de gezondheid van een 
kind op latere leeftijd. De samenstelling van het microbioom is, juist in deze 
eerste levensfase, ook heel gevoelig voor invloeden van buitenaf. Een kind 
dat middels een keizersnede geboren wordt, mist de eerste blootstelling aan 
moeders vaginale en darmflora tijdens de passage door het geboortekanaal, 
en begint daardoor met een andere microbioom samenstelling dan een 
kind dat geboren wordt middels een vaginale bevalling. Borstvoeding bevat 
goede bacteriën en voedingsstoffen en stimuleert daarmee een microbioom 
samenstelling die we associëren met gezondheid, terwijl antibiotica het 
microbioom juist in ongunstige zin aantasten. Uiteraard zijn een keizersnede 
en antibiotica vaak medisch noodzakelijk, maar door het effect dat deze 
blootstellingen hebben op de samenstelling van het microbioom in het 
vroege leven, beïnvloeden ze mogelijk tevens de gezondheid van het kind 
op de korte en langere termijn. Ook na de eerste levensweken blijft de 
samenstelling van het microbioom geassocieerd met gezondheid en ziekte; 
zo geeft een afwijkende samenstelling van het microbioom van de (bovenste) 
luchtwegen een verhoogd risico op (ernstige) luchtweginfecties in de 
opvolgende jaren. In hoofdstuk 2 hebben we een samenvatting geschreven 
over de bestaande kennis over het verband tussen het microbioom van de 
luchtwegen in het vroege leven en ziekte en gezondheid. Dit proefschrift 
borduurt hierop voort.

Interacties tussen het microbioom van de luchtwegen in het 
vroege leven en lokale antistoffen
In hoofdstuk 4 bestudeerden we de samenhang tussen factoren waar een 
pasgeboren kind aan blootgesteld wordt (zoals borstvoeding), de ontwikkeling 
van het microbioom van de neus en het verloop van de totale concentratie 
antistoffen in speeksel in het eerste levensjaar. Hiervoor maakten we gebruik 
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van gegevens uit de ‘Microbiome Utrecht Infant Study’, oftewel de MUIS 
studie. Aan deze studie namen 130 gezonde, pasgeboren baby’s deel, van wie 
op elf vooraf vastgestelde momenten, tussen twee uur na hun geboorte tot 
hun eerste verjaardag, een diepe neuswat, speeksel, huidwat en ontlasting 
verzameld werden. Daarnaast werd informatie verzameld over onder 
andere geboortewijze, borstvoeding, antibioticagebruik en luchtweginfecties. 
Uitscheiding van antistoffen in speeksel biedt bescherming tegen bacteriën en 
virussen die een luchtweginfectie kunnen veroorzaken. Er bestaan verschillende 
typen antistoffen, waaronder immuunglobuline A (IgA), dat vooral voorkomt op 
slijmvliezen zoals in de mond en de darm, en immuunglobuline G (IgG), dat 
vooral voorkomt in het bloed, maar ook wordt uitgescheiden in speeksel. Wij 
verwachtten dat blootstelling van baby’s aan veel verschillende, gezondheids-
bevorderende bacteriën in de neus zou leiden tot hogere concentraties van IgA 
en IgG in speeksel en daarmee een betere bescherming tegen luchtweginfecties. 
Deze hypothese bleek deels juist en deels onjuist. 

Ten eerste zagen we bij baby’s die (deels) gevoed werden met moedermelk 
in de eerste weken na de geboorte, hogere IgA concentraties in speeksel 
vergeleken met baby’s die alleen flesvoeding kregen. Moedermelk bevat 
veel IgA, wat de baby beschermt tegen infecties in de eerste levensfase, 
wanneer de eigen antistofproductie nog op gang moet komen. Het verband 
tussen voedingswijze en speeksel IgA concentraties verdween na de leeftijd 
van twee weken, wat erop kan duiden dat de eigen productie van IgA na 
14 dagen op gang was gekomen. Dit werd ondersteund door een toename 
van de expressie van genen die een rol spelen bij antistof productie op de 
leeftijd van 14 dagen. Ten tweede zagen we dat baby’s met hoge speeksel 
IgA concentraties direct na de geboorte, op jongere leeftijd al een groter 
gehalte aan gezondheids-bevorderende bacteriën zoals Corynebacterium 
soorten en Dolosigranulum pigrum in het microbioom hadden dan baby’s 
met lage speeksel IgA concentraties direct na de geboorte. Uit eerder 
onderzoek was reeds bekend dat een luchtwegmicrobioom met een 
hoge aanwezigheid van Corynebacterium soorten en D. pigrum mogelijk 
beschermend is tegen het doormaken van veel luchtweginfecties gedurende 
het eerste levensjaar. Deze bevindingen tezamen suggereren dat de bekende 
beschermende werking van borstvoeding tegen luchtweginfecties ten dele 
berust op de aanwezigheid van IgA in de moedermelk direct na de geboorte, 
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wat mogelijk een vroege ontwikkeling van een luchtwegmicrobioom met 
veel gezondheids-bevorderende bacteriën stimuleert. Ten derde vonden 
we hogere speeksel IgA concentraties op de leeftijd van twee weken en 
hogere IgG concentraties op de leeftijd van zes maanden bij kinderen die 
betrekkelijk veel luchtweginfecties doormaakten in het eerste levensjaar en 
die een luchtwegmicrobioom hadden met weinig Corynebacterium soorten 
en D. pigrum. Deze associatie tussen hogere concentraties van IgA rond twee 
weken en later ook IgG en meer luchtweginfecties was tegenovergesteld 
aan wat we vooraf hadden verwacht. Een mogelijke verklaring is dat een 
ongunstigere microbioom samenstelling en meer luchtweginfecties de 
antistofproductie juist in grotere mate stimuleren. Een beperking van dit 
onderzoek is dat het MUIS geboortecohort een relatief gezond cohort is en 
er geen kinderen meededen die extreem lage antistofconcentraties hadden 
en om die reden heel gevoelig zouden kunnen zijn voor het ontwikkelen van 
luchtweginfecties.

Het darmmicrobioom van de pasgeborene beïnvloedt de 
werking van vaccinaties
De opkomst van vaccinaties in de 20e eeuw heeft de morbiditeit en mortaliteit 
als gevolg van diverse ernstige infectieziekten op de kinderleeftijd verder 
teruggedrongen, nadat betere hygiëne, voeding en behuizing de totale 
sterfte al belangrijk hadden gereduceerd. Een belangrijk mechanisme 
waarmee vaccinaties beschermen tegen specifieke ziekteverwekkers is door 
het opwekken van een IgG antistofrespons in het bloed. Hoewel vaccins 
vrijwel altijd hoge individuele bescherming bieden tegen infectieziekten, 
bestaan er aanzienlijke verschillen in de hoogte van de antistofrespons 
van individuele kinderen. Het is niet geheel duidelijk wat die verschillen 
veroorzaakt. In hoofdstuk 5 onderzochten we of het darmmicrobioom 
hiermee geassocieerd kon zijn, waarbij we opnieuw gebruik maakten 
van gegevens van de MUIS studie. Specifiek onderzochten we of de 
samenstelling van het darmmicrobioom in het vroege leven samenhing met 
de IgG antistofrespons tegen het 10-valente pneumokokkenconjugaatvaccin 
(die de kinderen kregen op de leeftijd van 2, 3, 4 en 11 maanden) en het 
meningokokken C conjugaatvaccin (die kinderen kregen op de leeftijd van 14 
maanden). Beide vaccins zijn onderdeel van het Rijksvaccinatieprogramma 
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en bieden bescherming tegen ernstig verlopende infecties veroorzaakt 
door pneumokokken en meningokokken. Ons onderzoek liet zien dat de 
antistofrespons gemeten in speeksel op beide vaccins minder hoog was 
bij kinderen die geboren waren middels een keizersnede dan kinderen die 
middels een vaginale bevalling ter wereld waren gekomen. Verder was er 
een verschil in samenstelling van het darmmicrobioom, waarbij een hogere 
mate van aanwezigheid van Bifidobacterium soorten en Escherichia coli op 
de leeftijd van één week geassocieerd was met een hogere antistofrespons, 
vooral na de pneumokokkenvaccinaties. Bifidobacterium soorten en E. coli op 
de leeftijd van één week kwamen op hun beurt meer voor bij kinderen die 
geboren waren middels een vaginale bevalling. Deze bevindingen tezamen 
suggereren daarom dat geboortewijze effect heeft op het darmmicrobioom 
dat vervolgens een afdruk achterlaat op de functie van het immuunsysteem 
en de respons op vaccinaties. Verrassend was dat het darmmicrobioom 
op de leeftijd van één week het meest sterke verband toonde met de 
antistofrespons op vaccinaties later in het leven, vanaf de eerste verjaardag: 
de laatste dosis van het pneumokokkenvaccin werd gegeven rond 11 
maanden waarna we de antistoffen bepaalden op de leeftijd van 12 
maanden en het meningokokken C werd gegeven rond 14 maanden waarna 
we de antistofrespons bepaalden op 18 maanden. Deze bevinding steunt de 
hypothese dat het darmmicrobioom vlak na de geboorte nog altijd invloed 
uitoefent op het immuunsysteem later in het leven, met mogelijk langdurige 
consequenties voor de gezondheid. Onze bevindingen zijn echter alleen 
associaties en verder onderzoek is nodig om een oorzakelijk verband aan 
te tonen.

Microbioom herstel na ernstige onderste luchtweginfecties en 
het risico op terugkerende luchtwegklachten
Infecties van de bronchiën en longen, zogenoemde onderste luchtweginfecties, 
zijn nog altijd  één van de belangrijkste oorzaken van overlijden van jonge 
kinderen wereldwijd. Klassiek wordt vaak onderscheid gemaakt tussen een 
virale of een bacteriële oorzaak, maar in de praktijk is het een samenspel. 
Eerder onderzoek heeft aangetoond dat het luchtwegmicrobioom bij 
kinderen ten tijde van een onderste luchtweginfectie, ongeacht de  
veronderstelde verwekker, sterk afwijkt van dat van gezonde kinderen. 
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Daarnaast is reeds bekend dat een samenstelling van het microbioom van 
de bovenste luchtwegen (neus en keel) waarbij van jongs af aan een groot 
gehalte aan bekende bacteriële luchtwegpathogenen, zoals pneumokokken 
en Haemophilus influenzae worden gezien, predisponeert voor frequentere 
en ernstigere luchtweginfecties. Deze bevindingen impliceren dat de 
samenstelling van het microbioom van de bovenste luchtwegen een rol 
speelt in de pathogenese van onderste luchtweginfecties. In hoofdstuk 
7 borduurden wij voort op dit onderzoek en bestudeerden wij het herstel 
van het microbioom in de neus na het doormaken van een ernstige 
onderste luchtweginfectie en mogelijke determinanten van dit herstel. 
Hiervoor maakten we gebruik van gegevens van de ‘Microbioom Onderste 
Luchtweginfecties’ (MOL) studie. In deze studie werd het microbioom van 
de neus van 154 kinderen vanaf de leeftijd van zes weken tot vijf jaar, die 
opgenomen waren geweest in het ziekenhuis vanwege een ernstige onderste 
luchtweginfectie (patiënten), vergeleken met dat van twee gezonde kinderen 
van dezelfde leeftijd en hetzelfde geslacht en op dezelfde tijd van de opname 
(gezonde controles). Het microbioom van de neus van de controles diende 
als vergelijking voor een ‘normaal’, gezond microbioom voor de gepaarde 
patiënt. Over het algemeen vertoonde de patiënten groep als geheel vier tot 
zes weken na de ziekenhuisopname een goed herstel van het microbioom, 
dat wil zeggen dat het microbioom vergelijkbaar was met de gezonde 
controles, ongeacht of er antibiotische behandeling had plaatsgevonden 
tijdens de ziekenhuisopname. Wel vertoonde de subgroep van kinderen die 
waren opgenomen vanwege een onderste luchtweginfectie getypeerd door 
benauwdheid met piepende uitademing ten gevolge van bronchusobstructie, 
een minder goed herstel van het microbioom. Ziekenhuisopname vanwege 
een dergelijke ernstige onderste luchtweginfectie met bronchusobstructie 
is geassocieerd met de diagnose astma op latere leeftijd. De ontwikkeling 
van astma is ook geassocieerd met een afwijkend microbioom. Het niet 
herstellen tot een samenstelling zoals bij gepaarde, gezonde controles na 
een ernstige onderste luchtweginfectie met bronchusobstructie zou kunnen 
duiden op betrokkenheid van een afwijkend luchtwegmicrobioom bij astma. 
In de eerste weken na ontslag uit het ziekenhuis werd gezien dat twee derde 
van de patiënten opnieuw luchtwegklachten ontwikkelde. Dit percentage 
lag zelfs nog hoger bij de kinderen die een onderste luchtweginfectie met 
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bronchusobstructie hadden doorgemaakt. Terugkerende luchtwegklachten 
gingen op hun beurt samen met een luchtwegmicrobioom met een hogere 
aanwezigheid van H. influenzae alsook anaerobe, gramnegatieve bacteriën 
zoals die van de genera Prevotella en Fusobacterium. Dit verschil was al 
aanwezig tijdens de ziekenhuisopname en persisteerde na de herstelperiode 
van vier tot zes weken. Samen suggereren deze bevindingen een vicieuze cirkel 
waarbij een afwijkende samenstelling van het luchtwegmicrobioom tijdens 
een ernstige onderste luchtweginfectie geassocieerd is met terugkerende 
luchtwegklachten, waarna afwijkingen in het luchtwegmicrobioom 
persisteren. Deze afwijkende luchtwegmicrobioom samenstelling en 
verminderd microbioom herstel na een ernstige luchtweginfectie lijken ook 
geassocieerd met de diagnose astma op later leeftijd, maar nader onderzoek 
is nodig om hier een uitspraak over te kunnen doen. 

Sterke veranderingen in het luchtwegmicro-bioom tijdens een 
intensive care opname voor ernstige onderste luchtweginfecties
Een zeer kleine groep kinderen met een ernstige onderste luchtweginfectie 
behoeft een intensive care opname met mechanische ventilatie. Bij deze 
kinderen is het mogelijk om via de beademingsbuis materiaal uit de lagere 
luchtwegen te verkrijgen en om daarin het microbioom van de lagere 
luchtwegen te bestuderen. In hoofdstuk 8 onderzochten we veranderingen 
in het microbioom van de neus, het speeksel en de lagere luchtwegen bij 
29 kinderen die aan de beademing lagen vanwege een ernstige onderste 
luchtweginfectie. Deze kinderen namen deel aan de ‘Microbioom Ernstige 
Luchtweginfecties’ (MEREL) studie. We vonden dat ten tijde van de beademing 
de meer bekende luchtwegpathogenen zoals H. influenzae en pneumokokken 
overheersend aanwezig waren in zowel de bovenste als de lagere luchtwegen. 
Enkele dagen later, na klinisch herstel en het afkoppelen van de beademing, 
werd een geheel andere microbioom samenstelling gevonden met een 
sterk gedaalde totale hoeveelheid bacteriën (waarschijnlijk als gevolg van 
behandeling met antibiotica) en overheersing van Staphylococcus soorten, 
Enterobacteriaceae, Stenotrophomonas maltophilia of streptokokken anders 
dan pneumokokken. Deze bacteriën zijn vaak resistent voor antibiotica en 
komen veel voor in een ziekenhuisomgeving, en waren dus waarschijnlijk 
geïntroduceerd en/of uitgeselecteerd tijdens de ziekenhuisopname. 
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Desalniettemin observeerden we na een herstelperiode van ongeveer twee 
maanden, dat de microbioom profielen in de neus van de kinderen weer 
vergelijkbaar waren met die van gezonde kinderen van dezelfde leeftijd. 
Dit suggereert dat het microbioom van deze kinderen een grote veerkracht 
vertoont, ondanks de grote veranderingen die werden geobserveerd tijdens 
het ernstig ziekzijn. 

Mogelijkheden voor een bredere toepassing van speeksel bij 
onderzoek naar infecties en immuniteit
Een deel van de resultaten uit dit proefschrift zijn verkregen door het gebruik 
van speeksel voor het meten van antistofconcentraties (hoofdstukken 4 en 
5) en het karakteriseren van het microbioom (hoofdstuk 8). Het gebruik van 
speeksel heeft veel praktische voordelen: het verzamelen is gemakkelijk, non-
invasief en vereist geen assistentie van een zorg- of onderzoeksmedewerker, 
in tegenstelling tot het verkrijgen van bijvoorbeeld bloed of het afnemen van 
een diepe neuswat. Desondanks wordt in klinisch onderzoek betrekkelijk 
weinig gebruik gemaakt van speekselmonsters. Voor het onderzoeken van 
de antistofrespons na vaccinatie is bijvoorbeeld bloed de gouden standaard. 
In hoofdstuk 6 vergeleken wij antistofresponsen tussen twee verschillende 
toedieningsschema’s van het 10-valente pneumokokkenconjugaatvaccin (op 
de leeftijd van 2, 3, 4 en 11 maanden vergeleken met 2, 4 en 11 maanden) als 
onderdeel van het Rijksvaccinatieprogramma bij de deelnemers van de MUIS 
studie. Onze bevindingen waren vergelijkbaar met eerdere bevindingen van 
studies die de antistofrespons vergeleken in bloed. Een belangrijk obstakel 
voor wijdverbreid gebruik van speeksel bij onderzoek naar nieuwe vaccins en 
vaccinatieschema’s is het ontbreken van een afkapwaarde voor de speeksel 
antistofconcentratie waarboven een vaccin goede bescherming biedt tegen 
infectie. Het bepalen van dergelijke waardes voor antigeen-specifieke 
antistofresponsen in speeksel zou bij toekomstig vaccinonderzoek invasieve 
bloedafnames kunnen besparen, wat met name aantrekkelijk is voor studies 
met kinderen als doelgroep. Voor het aantonen van luchtwegpathogenen 
bij kinderen met ernstige luchtwegklachten wordt vaak een diepe neuswat 
gebruikt. Sommige kinderen ervaren ook dit onderzoek echter als te 
vervelend en weigeren dit. In hoofdstuk 9 onderzochten wij of speeksel een 
gelijkwaardig alternatief zou kunnen zijn. De vraag of we speeksel konden 
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gebruiken in plaats van een diepe neuswat werd erg relevant toen het op 
grote schaal testen van kinderen op Severe Acute Respiratory Syndrome 
Coronavirus 2 (SARS-CoV-2) onderdeel vormde van de maatregelen om 
de COVID-19 pandemie in te dammen. In ons onderzoek bij 57 kinderen 
met luchtwegklachten, vonden wij dat de gevoeligheid van speeksel voor 
het aantonen van luchtwegpathogenen (virussen en bacteriën anders dan 
SARS-CoV-2) nagenoeg vergelijkbaar was met die van de diepe neuswat, op 
voorwaarde dat voldoende speekselvolume werd verkregen door te spugen 
of met behulp van een absorberend sponsje. Wij concludeerden dat het 
gebruik van speeksel overwogen kan worden indien het verkrijgen van een 
diepe neuswat praktisch niet mogelijk is. Deze beide studies demonstreren 
de mogelijkheden van speeksel als een meer kindvriendelijk alternatief bij 
onderzoek naar infecties en immuniteit.

De toekomst van microbioomonderzoek in het vroege leven en 
gezondheidseffecten
Hoewel het aantal studies naar het microbioom in het vroege leven en 
gezondheidseffecten op latere leeftijd in hoog tempo groeit, staat de 
vertaling van deze kennis naar de klinische praktijk nog in de kinderschoenen. 
Longitudinale studies waarbij blootstellingen op jonge leeftijd (bijvoorbeeld 
geboortewijze of antibioticagebruik) worden gelinkt aan microbioom 
veranderingen en vervolgens aan uitkomsten voor de gezondheid 
(bijvoorbeeld een vaccinrespons of terugkerende luchtwegklachten) zijn 
een goede stap richting het aantonen van verbanden, maar vormen geen 
definitief oorzakelijk bewijs. Dierstudies waarbij het microbioom wordt 
gemanipuleerd en vervolgens gezondheidsuitkomsten worden gemeten 
verlenen ondersteunend bewijs, maar kunnen niet één op één worden 
geëxtrapoleerd naar de situatie bij de mens. Verschillende onderzoeksgroepen 
experimenteren met nieuwe methodes om de samenstelling van het 
microbioom van pasgeborenen te beïnvloeden, bijvoorbeeld met specifieke 
probiotica die gezondheids-bevorderende bacteriën bevatten en door de 
pasgeborene in te smeren met vaginaal vocht of te transplanteren met de 
fecale flora van hun moeders. Deze methodes lijken in de eerste plaats veilig 
en hebben inderdaad een effect op de samenstelling van het microbioom 
in het vroege leven, maar toekomstige studies zullen moeten uitwijzen of 
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ze vervolgens ook een positief effect op de gezondheid bewerkstelligen. 
Dit vereist grote en langlopende studies. Onze bevindingen suggereren 
dat het grootste gezondheidseffect wellicht behaald kan worden wanneer 
dergelijke “correcties” van een verstoord microbioom (bijvoorbeeld als 
gevolg van een keizersnede of antibioticagebruik) op een zo jong mogelijke 
leeftijd worden ingezet. Het bepalen van totale antistofconcentraties of 
antistofresponsen na vaccinaties als maat voor gezondheidseffecten van 
dergelijke interventies zou kunnen worden overwogen, met als belangrijk 
voordeel dat dit bij elk (gevaccineerd) kind al op jonge leeftijd mogelijk is (in 
tegenstelling tot aandoeningen die zich pas op latere leeftijd ontwikkelen, 
zoals astma en allergieën). Daarnaast zou onderzoek naar mogelijkheden 
voor ondersteuning van herstel van een gezond microbioom na een ernstige 
onderste luchtweginfectie kunnen worden opgezet met het toedienen van 
antibiotica gericht op reductie van Haemophilus en/of anaeroben of door 
probiotica met gezondheids-bevorderende bacteriën en het bepalen van 
een eventuele gezondheidswinst (bijvoorbeeld de frequentie van nieuwe 
luchtweginfecties). 

Voor nu blijven preventieve en therapeutische opties gericht op microbioom 
verbetering nog grotendeels toekomstmuziek. Desondanks kan kennis van 
interacties tussen het microbioom, infecties en immuniteit reeds van nut 
zijn in de klinische praktijk. Ingrepen zoals een keizersnede of antibiotische 
behandeling zijn vaak medisch noodzakelijk, maar bewustzijn van effecten 
van medische beslissingen op het microbioom van een kind met eventuele 
lange termijn consequenties voor de gezondheid zou in sommige gevallen 
kunnen leiden tot een andere afweging. Wanneer we leren essentiële 
bacteriën in het vroege leven veilig te stellen, dan plukken toekomstige 
generaties daar hopelijk de vruchten van.
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DANKWOORD 
Ongelooflijk, we zijn er! Hier volgen de allerlaatste woorden van mijn 
proefschrift. Voor mij hebben ze een lange aanloop van vijf jaar lang 
vastberaden doorwerken gekend, maar ik weet maar al te goed dat het voor 
jullie hoogstwaarschijnlijk de eerste woorden zijn die jullie lezen. Des te 
meer reden om er de nodige zorg aan te besteden.

Het komt regelmatig voor dat ik de vraag krijg ‘Waar heb je je 
promotieonderzoek eigenlijk gedaan? In Utrecht?’. Meestal haakt men 
mentaal af bij mijn enigszins moeilijk te volgen antwoord: ik was verbonden 
als promovendus aan het UMC Utrecht, hoewel mijn eerste promotor 
eigenlijk bij de universiteit van Edinburgh werkte, en ik was zelf in dienst 
van het Spaarne Gasthuis, maar de helft van de week zat ik in het RIVM (én 
eigenlijk heb ik de helft van mijn promotietijd voornamelijk thuis gewerkt). 
Mede door deze interessante constructie zijn er door de jaren heen veel 
verschillende mensen betrokken geweest bij mijn onderzoek. Zonder jullie 
was dit proefschrift er niet geweest.

Allereerst, prof. dr. Bogaert, beste Debby, jij gaf mij de kans om aan dit 
promotietraject te beginnen. Jouw vertrouwen in mij en de grote mate aan 
vrijheid die je mij hebt geboden, hebben er heel erg aan bijgedragen dat ik 
kon groeien als onderzoeker. Ook liet je altijd ruimte voor een persoonlijk 
gesprek en advies over van alles en nog wat, wat ik echt bijzonder heb 
gewaardeerd (en ga missen). Je gedrevenheid en aandacht voor je 
onderzoeksgroep ondanks de fysieke afstand en andere uitdagingen in de 
afgelopen jaren zijn bewonderenswaardig. Bedankt voor alles.

Prof. dr. Sanders, beste Lieke, bedankt voor je support en warme begeleiding. Ik 
keek altijd uit naar ons overleg op jouw kamer in het RIVM. Je bent onovertroffen 
in het versturen van de meest beknopte e-mailberichten met maximaal positief 
effect op mijn humeur ("top, Liek" of "keep smiling :)"). Daarnaast hielp jouw 
nuchtere en frisse blik op mijn werk mij keer op keer om extra gemotiveerd 
dóór te gaan en er net op een andere manier naar te kijken. 

Dr. Van Houten, beste Marlies, samen gingen wij in de allereerste dagen 
van de coronapandemie de uitdaging aan om in sneltreinvaart een nieuwe 
studie op te zetten. Het viel me niet altijd mee, maar ik ben je dankbaar dat 
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je me de kans hebt geboden om zo ervaring op te doen met enkele cruciale 
facetten van het initiëren en uitvoeren van wetenschappelijk onderzoek. Ooit 
zei je tegen mij "soms moet je iets gewoon doen, want je kunt vooraf niet 
weten wat het gaat opleveren” en dat advies heb ik in mijn oren geknoopt.

Dr. Boes, prof. dr. Kluytmans, prof dr. Van de Wijgert en prof. dr. Willems, 
heel erg bedankt voor uw bereidheid om mijn proefschrift te beoordelen 
en zitting te nemen in mijn leescommissie. Hetzelfde geldt voor prof. dr. 
Lebeer, en bovendien een ‘dikke merci’ dat u naar Nederland wilt afreizen 
om mij het vuur aan de schenen te leggen tijdens mijn verdediging.

Ik wil alle kinderen en hun ouders die hebben meegedaan aan de MUIS, 
MOL, MEREL en SARSLIVA pilot studies heel erg hartelijk bedanken. Ook alle 
mensen die aan deze studies hebben meegewerkt, waarvan een aanzienlijk 
deel al ver voor mijn tijd als onderzoeker plaatsvond, ben ik dankbaar. 
Zonder jullie toewijding aan deze studies was er niets te analyseren geweest.

En dat geldt natuurlijk in de eerste plaats voor alle mensen van 
het Wetenschapsbureau van de Spaarne Gasthuis Academie. Jullie 
doorzettingsvermogen en vindingrijkheid maken een succes van alle (en 
het zijn er veel) klinische studies die jullie onder je hoede nemen. Ik heb 
veel van jullie geleerd over alles wat er komt kijken bij de uitvoering van 
wetenschappelijk onderzoek op topniveau. Jacqueline en Sandra, het was 
superfijn en leerzaam om samen de inclusie en uitvoering van de SARSLIVA 
pilot studie te doen. Ook de hulp van Sjoerd en Paul bij zowel de uitvoering 
als het opschrijven van de resultaten was onmisbaar. Judith, jouw enorme 
kennis over allerhande praktische zaken wisselde ik maar al te graag uit 
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