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Abstract. We present a logic for reasoning about higher-order upper
and lower probabilities of justification formulas. We provide sound and
strongly complete axiomatization for the logic. Furthermore, we show
that the introduced logic generalizes the existing probabilistic justifica-
tion logic PPJ.

Keywords: Justifcation logic · Probabilistic logic · Upper and lower
probabilities · Strong completeness

1 Introduction

Since the seminal paper about justification logics was published, [3], a whole
family of justification logics has been established, including logics with uncer-
tain justifications, see [2,4,9,10,12,15,17]. However, justification logics in which
uncertainty originates from incompleteness of information is still not provided.

The main feature of justification logic is that evidence is representable
directly in the object language, i.e. the language of justification logic includes
formulas of the form t : A meaning that t justifies A. In this paper, we distinguish
the following two types of incomplete information within t : A:

1) “t” is incomplete.
A friend tells me that she saw in some weather forecast that tomorrow is
going to rain. I know which are possible forecasts she could have checked.
As a consequence of an incomplete justification t (she read in some weather
forecast and did not specify in which one) and since each forecast provides
a probability for the rain, my degree of belief that “tomorrow is going to
rain” is true lies in an interval [r, s], where r represents the lowest probability
according to the possible forecasts she checked, and s the highest.
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2) “:” is incomplete.
After taking a medication x, a patient gets a symptom S. It is known that
the symptom S is a side effect of the medication x and that there exist old
and new series of the medication x. The chance that the side effect occurs is
smaller when taking medication of the new series.
In this case both t: “the patient took the medication” and A: “the patient
got the symptom” are certain, but we do not know if t is the reason for A
or there exists another reason. Also, we do not know if the patient took the
medication of the old or the new series. In the former case, the chance that x
caused S is bigger than in the later case. Thus, our degree of belief that t : A
lies in some interval.

In this paper we formalize both types of uncertainty illustrated above. To
capture uncertainty about probabilities we use the lower and upper probability
measures. For an arbitrary set of probability measures P , the former assigns to
an event X the infimum of the probabilities assigned to X by the measures from
the set P , while the later returns their supremum.

We provide a new logic, ILUPJ1, as an extension of the justification logic J
with two families of unary operators L≥s and U≥s, for s ∈ Q ∩ [0, 1]. That idea
comes from some of our previous papers, see e.g., [6,18]. The intended meanings
of these operators are that ’the lower (upper) probability is greater or equal to s’.
Therefore, saying that our degree of belief lies in an interval [r, s] is represented
by saying that the lower probability is equal to r and the upper probability is
equal to s.

The first case, when “t” is incomplete and therefore our degree of belief that
A is true belongs to an interval [r, s] we can represent in the logic ILUPJ with

t : L=rA ∧ t : U=sA.

The second case, when “:” is incomplete, i.e., situations in which we are not sure
if t is the justification for A, can be represented by

L=r(t : A) ∧ U=s(t : A).

The corresponding semantics of our logic consists of special types of possible
world models, where every world is equipped with a space that consists of the
non-empty set of accessible worlds, algebra of subsets and a set of probability
measures.

We propose a sound and complete axiomatization of the logic. In order to
prove the strong completeness theorem, which is the main technical result of the
paper, we use a Henkin-like construction modifying our previous techniques for
probabilistic and temporal logic [5,13,14,16]. Also, the proofs in our logic can
be infinite although all the formulas of the logic are finite.

We also compare our logic with the probabilistic justification logic PPJ from
[10], and we prove that ILUPJ properly generalizes it. The logic PPJ is obtained
1 I stands for iterations, LUP for lower and upper probabilities and J for the justifica-
tion logic J.
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by extending the justification logic J by a list of standard unary operators, P≥s,
whose intended meaning is ‘the probability is greater or equal to s’. In that
approach there is no uncertainty about probabilities, and a unique probability
value is assigned to an event. In our example from the first case, this would
correspond to the situation where only one forecast is available. In the general
case, where we consider several forecasts, we need to assign sets of probabilities to
events, which lead to our more general semantics and, consequently, to different
probability operators. Indeed, if r is the lowest probability according to the
possible forecasts, and s the highest, we cannot always assign a truth value to
the sentence “t justifies that our degree of belief that tomorrow will rain with
probability at least �” (in the language of PPJ: t : P≥�A), where � ∈ (r, s) –
according to some forecasts the sentence is true, and according to others it is
false. On the other hand, in ILUPJ we can distinguish two cases: t : L≥�A is false
and t : U≥�A is true.

The content of this paper is as follows. In Sect. 2 we define the basic notions
needed for defining our logic. In Sect. 3 we propose the logic ILUPJ, whereas
in Sect. 4 we prove the soundness and strong completeness theorem. In Sect. 5
we prove that our logic generalizes the logic PPJ and we conclude the paper in
Sect. 6.

2 Preliminaries

We start with preliminary notions that will be used in the definition of the
semantics of the logic ILUPJ.

Definition 1 (Algebra Over a Set). Let W �= ∅ and let ∅ �= H ⊆ P(W ). H
is called algebra over W if:

1) W ∈ H,
2) For X,Y ∈ H, W \ X ∈ H and X ∪ Y ∈ H.

Definition 2 (Finitely Additive Probability Measure). For an algebra H
over W , a function μ : H −→ [0, 1] is called finitely additive probability measure,
if:

1) μ(W ) = 1,
2) For X,Y ∈ H, μ(X ∪ Y ) = μ(X) + μ(Y ), whenever X ∩ Y = ∅.
Definition 3 (Lower and Upper Probability Measures). Let H be an alge-
bra over W and P be a set of finitely additive probability measures defined on
H. For X ∈ H, the lower probability measure P∗ and the upper probability
measure P ∗ are defined as follows:

1) P∗(X) = inf{μ(X) | μ ∈ P},
2) P ∗(X) = sup{μ(X) | μ ∈ P}.
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Now we state three properties which are used in our proof of soundness and
completeness theorem for ILUPJ. The proof of these basic properties of P∗ and
P ∗ follows directly from the properties of infimum and supremum.

1) P∗(X) ≤ P ∗(X),
2) P∗(X) = 1 − P ∗(Xc),
3) P ∗(X ∪ Y ) ≤ P ∗(X) + P ∗(Y ), whenever X ∩ Y = ∅.

Complete characterization of P∗ and P ∗ is needed in order to axiomatize
upper and lower probabilities. We use the characterization used by Anger and
Lembcke [1], which was also used by Halpern and Pucella [8, Theorem 2.3]. For
that characterization we need a notion of (n, k)-cover.

Definition 4 ((n, k)-cover). A set X is covered n times by a multiset

{{X1, . . . , Xm}}

of sets if every element of X appears in at least n sets from X1, . . . , Xm meaning
that for all x ∈ X, there exist i1, . . . , in ∈ {1, . . . , m} such that for all j ≤ n,
x ∈ Xij .

An (n, k)-cover of (X,W ) is a multiset {{X1, . . . , Xm}} that covers the set
W k times and covers the set X n + k times.

With the notion of (n, k)-cover we are ready to define the characterization
theorem:

Theorem 1 (Anger and Lembcke [1]). Let W �= ∅, H an algebra over W ,
and f a function f : H −→ [0, 1]. There exists a set P of probability measures
such that f = P ∗ iff the function f satisfies the following three conditions:

(1) f(∅) = 0,
(2) f(W ) = 1,
(3) for all m,n, k ∈ N and all X,X1, . . . , Xm ∈ H, if {{X1, . . . , Xm}} is an

(n, k)-cover of (X,W ), then

k + nf(X) ≤
m∑

i=1

f(Xi).

3 The logic ILUPJ

In this section we describe the syntax and semantics of the logic ILUPJ and
provide an axiomatization.



262 D. Doder et al.

3.1 Syntax

We will use the following notation:

Con = {c0, c1, . . . , cn, . . . } for a countable set of constants,
Var = {x0, x1, . . . , xn, . . . } for a countable set of variables, and
Prop = {p0, p1, . . . , pn, . . . } for a countable set of atomic propositions.

Definition 5 (Justification Terms). Terms are built from the sets Con and
Var with the following grammar:

t ::= c | x | t · t | t + t | !t,

where c ∈ Con and x ∈ Var. The set of all terms will be denoted by Tm.

For a term t and non-negative integer n we use the following notation:

!0t := t and !n+1t :=!(!nt).

Terms represent justifications for an agent’s belief (or knowledge). In the orig-
inal justification logic, the Logic of Proofs [3], terms represent formal proofs in
e.g. Peano arithmetic [11]. In possible world models for justifcation logic, first
developed by Fitting [7], terms may represent arbitrary justifications like direct
observation, public announcements, private communication, and so on.

Let us discuss the role of a given justification term depending on its main
connective [12]:

– Constants are used in situations where the justification is not further ana-
lyzed, e.g. to justify axioms, see rule (IR1).

– Variables are used to represent arbitrary justifications.
– The operation · represents the agent’s ability to reason by modus ponens.

Assume that s justifies the agent’s belief in A and t justifies the agent’s belief
in A → B, then t · s will justify her belief in B, see axiom (Ax2).

– The operation + combines two justifcations to a justification with broader
scope, see axiom (Ax3). Often this is illustrated as follows. Let s and t be
two volumes of an encyclopedia and s + t be the set of those two volumes.
Suppose that one of the volumes, say s, contains justification for a proposition
A. Then also the larger set s + t contains justification for A.

– The operation ! represents the agent’s ability to perform positive introspec-
tion. In our logic ILUPJ, we only include positive introspection for axioms
and iterated belief of axioms, see rule (IR1). Assume an agent believes an
axiom A and c is a justification for that belief. By positive introspection the
agent believes that she believes A and that A is justified by c. The term !c
will justify the result of the positive introspection act.

Definition 6 (Formulas of the Logic ILUPJ). Formulas of the logic ILUPJ
are defined with the following grammar:

For A ::= p | U≥sA | L≥sA | ¬A | A ∧ A | t : A

where p ∈ Prop and s ∈ Q ∩ [0, 1].
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Other connectives, ∨,→,↔, are defined as usual. The following abbreviations
will be used for introducing other types of inequalities:

U<sA ≡ ¬U≥sA

L<sA ≡ ¬L≥sA

U≤sA ≡ L≥1−s¬A

L≤sA ≡ U≥1−s¬A

U=sA ≡ U≤sA ∧ U≥sA

L=sA ≡ L≤sA ∧ L≥sA

U>sA ≡ ¬U≤sA

L>sA ≡ ¬L≤sA.

We set A ∧ ¬A ≡ ⊥ and A ∨ ¬A ≡ �.

3.2 Axiomatization

Axioms of the logic ILUPJ:

(Ax1) � A, where A is a propositional tautology
(Ax2) � t : (A → B) → (s : A → (t · s) : B)
(Ax3) � t : A ∨ s : A → (t + s) : A
(Ax4) � U≤1A ∧ L≤1A
(Ax5) � U≤rA → U<sA, s > r
(Ax6) � U<sA → U≤sA
(Ax7) � (U≤r1A1∧· · ·∧U≤rm

Am) → U≤rA, if A → ∨
J⊆{1,...,m},|J|=k+n

∧
j∈J Aj

and
∨

J⊆{1,...,m},|J|=k

∧
j∈J Aj are propositional tautologies, where r =

∑m
i=1 ri−k

n , n �= 0
(Ax8) � ¬(U≤r1A1 ∧ · · · ∧ U≤rm

Am), if
∨

J⊆{1,...,m},|J|=k

∧
j∈J Aj is a proposi-

tional tautology and
∑m

i=1 ri < k
(Ax9) � L=1(A → B) → (U≥sA → U≥sB)

Before we state the inference rules of the ILUPJ logic, we define a constant
specification:

Definition 7 (Constant Specification). Constant specification CS is any set
that satisfies:

CS ⊆ {(c, A) | c is a constant and A is an instance of some axiom of ILUPJ}.
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The constant specification is used to control an agent’s reasoning capabilities,
i.e. to specify which axioms the agent has a justification of. So we can model
agents that are not logically omniscient. Assume that the constant specification
includes (c,A) for some axiom A and some constant c. Then using rule (IR1),
see below, we can infer c : A, i.e. the agent beliefs A and c justifies that belief.
However, if for no constant c we have that (c,A) ∈ CS, then the agent does not
have an atomic justification for A, i.e. she may not have justified belief of the
axiom A.

Inference Rules of the logic ILUPJ:

(IR1) �!nc :!n−1c : · · · :!c : c : A where (c,A) ∈ CS and n ∈ N

(IR2) If T � A and T � A → B then T � B
(IR3) If � A then � L≥1A
(IR4) If T � A → U≥s− 1

k
B, for every k ≥ 1

s and s > 0 then T � A → U≥sB

(IR5) If T � A → L≥s− 1
k
B, for every k ≥ 1

s and s > 0 then T � A → L≥sB

Axioms (Ax7) and (Ax8) together are the logical representation of the third
condition from Theorem 1. Equivalent to saying that {{X1, . . . , Xm}} covers a
set X n times is to say that:

X ⊆
⋃

J⊆{1,...,m},|J|=n

⋂

j∈J

Xj .

Hence, the condition that the formula

A →
∨

J⊆{1,...,m},|J|=k+n

∧

j∈J

Aj

is a tautology states that [A]M,w
2 is covered n + k times by a multiset

{{[A1]M,w, . . . , [Am]M,w}},

while the condition that ∨

J⊆{1,...,m},|J|=k

∧

j∈J

Aj

is a propositional tautology states that the set W is covered k times by a multiset
{{[A1]M,w, . . . , [Am]M,w}}.

Formula A is deducible from a set of formulas T , denoted by T � A, if there
exists at most countable sequence of formulas A0, A1, . . . , A, where every Ai is
an axiom or a formula that belongs to the set T , or is derived from the preceding
formulas by some inference rule (exception is that the Rule (IR3) can be applied
on the theorems only). Formula A is a theorem, denoted by � A, if it can be
deduced from the empty set.

2 [A]M,w represents the set of all worlds from W (w) in a model M where A holds and
will be defined later.
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3.3 Semantics

For sets of formulas X and Y , we will use the following notation:

X · Y := {A | B → A ∈ X and B ∈ Y, for some formula B}.

In order to provide semantics for the logic ILUPJ, we start with the notion
of a basic evaluation.

Definition 8 (Basic Evaluation). Let CS be a constant specification. A basic
CS-evaluation is a function ∗, such that

∗ : Prop → {true, false} and ∗ : Tm → P(For),

and for s, t ∈ Tm, c ∈ Con and A ∈ For we have:

1) s∗ · t∗ ⊆ (s · t)∗

2) s∗ ∪ t∗ ⊆ (s + t)∗

3) if (c,A) ∈ CS then
a) A ∈ c∗

b) !nc :!n−1c : · · · :!c : c : A ∈ (!n+1c)∗, for n ∈ N.

We will write t∗ and p∗ instead of ∗(t) and ∗(p) respectively.

Definition 9 (ILUPJCS-Model). Let CS be any constant specification. An
ILUPJCS-model (or simply model) is a tuple 〈W,LUP, ∗〉, where:

– W is a nonempty set of worlds.
– LUP assigns to every w ∈ W a space, such that LUP (w) = 〈W (w),H(w),

P (w)〉, where:
- ∅ �= W (w) ⊆ W ,
- H(w) is an algebra of subsets of W (w) and
- P (w) is a set of finitely additive probability measures defined on H(w).

– ∗ is a function from W to the set of all basic CS-evaluations, i.e. ∗(w) is a
basic CS-evaluation for each world w ∈ W .

We will denote ∗(w) by ∗w.

Definition 10 (Truth in a Model). Let CS be any constant specification. and
let M = 〈W,LUP, ∗〉 be a model. We define what does it mean for a formula
A ∈ ForILUPJ to hold in M at the world w by:

– M,w |= p iff p∗
w = true, for p ∈ Prop

– M,w |= U≥sA iff P ∗(w)([A]M,w) ≥ s,
– M,w |= L≥sA iff P∗(w)([A]M,w) ≥ s,
– M,w |= ¬A iff M �|= A,
– M,w |= A ∧ B iff M |= A and M |= B,
– M,w |= t : A iff A ∈ t∗w,
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where3 [A]M,w = {u ∈ W (w) | M,u |= A} and W (w) and P (w) are given by
LUP (w). The functions P ∗(w) and P∗(w) are defined as in Definition 3.

Definition 11 (Measurable Model). Let CS be a constant specification and
let M be a model. M is said to be measurable if [A]M,w ∈ H(w) for every A ∈
For. The class of all measurable ILUPJCS-models will be denoted by ILUPJCS,Meas.

For a model M , we write M |= A if for every w ∈ W , M,w |= A. For T ⊆ For,
M |= T means that M |= A for every A ∈ T . Finally, T |= A means that M |= T
implies M |= A.

Definition 12 (Satisfiability). Formula A is satisfiable if there exists a mea-
surable model M and w ∈ W such that M,w |= A. A set of formulas T is
satisfiable if every formula in T is satisfiable.

As usual, we have the deduction theorem.

Theorem 2 (Deduction Theorem). Let A,B ∈ For, T a set of formulas and
CS be any constant specification. Then T ∪ {A} � B iff T � A → B.

Proof The proof is completely standard. We only show the case in the direction
from left to right where the last rule application is an instance of (IR4). In this
case B = C → U≥sB

′. We have:

(1) T,A � C → U≥s− 1
k
B′, for all k ≥ 1

s

(2) T � A → (C → U≥s− 1
k
B′), for all k ≥ 1

s by induction hypothesis
(3) T � (A ∧ C) → U≥s− 1

k
B′, for all k ≥ 1

s

(4) T � (A ∧ C) → U≥sB
′ by (IR4)

(5) T � A → (C → U≥sB
′),

which is T � A → B. ��
We also need the following technical lemma.

Lemma 1

(a) � U≥sA → U>rA, s > r
(b) � U>sA → U≥sA
(c) If � A ↔ B then � U≥sA ↔ U≥sB

Proof From (Ax5) and (Ax6), using contraposition we obtain proofs for (a) and
(b), while (c) is a direct consequence of (IR3) and (Ax9). ��

4 Soundness and Completeness

The soundness theorem can be proved as usual by transfinite induction on the
depth of the derivation T � A.

Theorem 3 (Soundness). Let CS be a constant specification. For T ⊆ For and
A ∈ For we have:

T � A ⇒ T |= A.

3 When M is clear from the context we will write [A]w.
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4.1 Completeness

Definition 13 (ILUPJCS-Consistent Set). For an arbitrary constant specifi-
cation CS and T ⊆ For we say that:

(a) T is ILUPJCS-consistent if and only if T �� ⊥. Otherwise, T is ILUPJCS-
inconsistent.

(b) T is maximal if and only if for all A ∈ For, either A ∈ T or ¬A ∈ T .
(c) T is maximal ILUPJCS-consistent if and only if it is maximal and ILUPJCS-

consistent.

Lemma 2. Let CS be an arbitrary constant specification and T an ILUPJCS-
consistent set of formulas.

(1) For any A ∈ For, either T ∪ {A} is ILUPJCS-consistent or T ∪ {¬A} is
ILUPJCS-consistent.

(2) If ¬(A → U≥sB) ∈ T , then there exists some n > 1
s such that

T ∪ {A → ¬U≥s− 1
n
B}

is ILUPJCS-consistent.
(3) If ¬(A → L≥sB) ∈ T , then there exists some n > 1

s such that

T ∪ {A → ¬L≥s− 1
n
B}

is ILUPJCS-consistent.

Proof. (1) Suppose that both T ∪ {A} � ⊥ and T ∪ {¬A} � ⊥ hold. From the
Deduction Theorem, we get T � ¬A and T � A which contradicts the
assumption that the set T is ILUPJCS-consistent.

(2) Assume that for all n > 1
s we have:

T,A → ¬U≥s− 1
n
B � ⊥.

From Deduction Theorem and propositional reasoning, we obtain

T � A → U≥s− 1
n
B,

and from Inference Rulle 4 T � A → U≥sB. Contradiction with the assump-
tion that ¬(A → U≥sB) ∈ T .

(3) Similar to the previous case. ��
Theorem 4 (Lindenbaum). Let CS be an arbitrary constant specification.
Every ILUPJCS-consistent set can be extended to a maximal ILUPJCS-consistent
set.

Proof. Consider a ILUPJCS-consistent set T and let A0, A1, A2, . . . be an enumer-
ation of all the formulas from For. We define a sequence of sets Ti, i = 0, 1, 2, . . .
in the following way:
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(1) T0 = T ,
(2) for every i ≥ 0,

(a) if Ti ∪ {Ai} is ILUPJCS-consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
(b) if Ai is of the form B → U≥sC, then Ti+1 = Ti ∪ {¬Ai, B → ¬U≥s− 1

n
C},

for some n > 0, so that Ti+1 is ILUPJCS-consistent, otherwise
(c) if Ai is of the form B → L≥sC, then Ti+1 = Ti ∪ {¬Ai, B → ¬L≥s− 1

n
C},

for some n > 0, so that Ti+1 is ILUPJCS-consistent, otherwise
(d) Ti+1 = Ti ∪ {¬Ai},

(3) T♠ =
⋃∞

i=0 Ti.

Using induction on i, we prove that for every i ∈ N, Ti is ILUPJCS-consistent.

(i) T0 is ILUPJCS-consistent because T is.
(ii) Suppose that Ti is ILUPJCS-consistent. We prove that also Ti+1 is:

– Ti+1 is constructed using the step (2)(a). Trivially.
– Ti+1 is constructed using the step (2)(b). From Lemma 2((1) and (2)).
– Ti+1 is constructed using the step (2)(c). From Lemma 2((1) and (3)).
– Ti+1 is constructed using the step (2)(d). Since Ti ∪ {Ai} is ILUPJCS-

inconsistent, we know that Ti ∪ {¬Ai} is ILUPJCS-consistent.

Now let us show that T♠ is maximal ILUPJCS-consistent set. From the con-
struction above we know that for any A ∈ For either A ∈ T♠ or ¬A ∈ T♠, i.e.,
T♠ is maximal.

In order to prove that T♠ is ILUPJ-consistent, we prove that:

(i) It does not contain all the formulas from For;
(ii) It is deductively closed.

It is clear from the construction that T♠ does not contain all the formulas from
For, so the only thing left to prove is that T♠ is deductively closed. Assume
T♠ � A. Using transfinite induction on a depth of derivation we prove that
A ∈ T♠.

1) A ∈ T♠. Trivially.
2) A is an instance of some of the axioms (Ax1)–(Ax9). There exists k ∈ N

with A = Ak. Assuming that ¬Ak ∈ Tk+1, we get a contradiction from:

Tk+1 � Ak and Tk+1 � ¬Ak.

3) A is obtained from T♠ by an application of (IR1), i.e.,

A =!nc :!n−1c : · · · :!c : c : B,

for some n ∈ N, axiom B and (c,B) ∈ CS. There exists k such that A = Ak

and if ¬A ∈ Tk+1, then

Tk+1 � A and Tk+1 � ¬A

which gives us a contradiction.
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4) A is obtained from T♠ by an application of (IR2). Induction hypothesis
tells us that there exists l, such that both premises belong to Tl. Since there
exists k such that A = Ak, if ¬A ∈ Tmax(k,l)+1, then

Tmax(k,l)+1 � A and Tmax(k,l)+1 � ¬A

which gives us a contradiction.
5) A is obtained from T♠ by an application of (IR3), i.e., A = L≥1B and � B.

Since there exists some k such that A = Ak, same reasoning as in 2) gives
us the claim.

6) A is obtained from T♠ by an application of (IR4). That means, A = B →
U≥sC and for every k ≥ 1

s ,

T♠ � B → U≥s− 1
k
C.

Assuming that A �∈ T♠, i.e., ¬(B → U≥sC) ∈ T♠, we find a number m,
such that

¬(B → U≥sC) ∈ Tm.

Also, from the construction of T♠ we know that for some l,

¬(B → U≥s− 1
l
C) ∈ Tl.

Further, from inductive hypothesis,

B → U≥s− 1
l
C ∈ T♠.

Hence, there exists m′ with

B → U≥s− 1
l
C ∈ Tm′ .

Contradiction with a consistency of Tmax(l,m′)+1, since both

B → U≥s− 1
l
C ∈ Tmax(l,m′)+1, ¬(B → U≥s− 1

l
C) ∈ Tmax(l,m′)+1.

7) The case when A is obtained from T♠ by an application of (IR5) can be
proved similarly to the previous case.

We conclude that T♠ is deductively closed set which does not contain all formulas
meaning that T♠ is consistent. ��
Definition 14 (Canonical Model). Let CS be an arbitrary constant specifi-
cation. The canonical model is the tuple Mcan = 〈W,LUP, ∗〉 , where:

1) W = {w | w is a maximal ILUPJCS-consistent set of formulas},
2) LUP (w) = 〈W (w),H(w), P (w)〉 is defined as follows:

W (w) = W ,
H(w) = {{u | u ∈ W (w), A ∈ u} | A ∈ For},
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P (w) is any set of probability measures such that

P ∗(w)({u | u ∈ W (w), A ∈ u}) = sup{s | U≥sA ∈ w}.

3) for every world w ∈ W , the basic CS-evaluation is defined with:
1. For p ∈ Prop:

p∗
w =

{
true if p ∈ w
false if ¬p ∈ w

2. For t ∈ Tm:
t∗w = {A | t : A ∈ w}

Lemma 3. Let Mcan = 〈W,LUP, ∗〉 be the canonical model. For every u ∈ W
and every formula A,

{u | u ∈ W,A ∈ u} = [A]Mcan,u.

Proof. We prove the statement by proving that A ∈ u iff u |= A by induction on
the length of A. If A = p the claim follows by definition of the canonical model.
Cases when A = ¬B or A = B ∧ C are trivial.

1. Let A = U≥sB. First, let U≥sB ∈ u. Then

sup{r | U≥rB ∈ u} = P ∗(u){w | w ∈ W,B ∈ w} = P ∗(u)([B]u) ≥ s,

so u |= U≥sB.
Now, suppose that u |= U≥sB, i.e.

P ∗(u)([B]u) = sup{r | U≥rB ∈ u} ≥ s.

If P ∗(u)([B]u) > s, then we have (properties of a supremum and monotonic-
ity) U≥sB ∈ u.
If P ∗(u)([B]u) = s, then as a direct consequence of (IR4), we have that
U≥sB ∈ u.

2. Now, let A = L≥sB or equivalently A = U≤1−s¬B. Suppose U≤1−s¬B ∈ u.
Our goal is to show that

sup{r | U≥r¬B ∈ u} ≤ 1 − s,

hence, suppose towards contradiction that

sup{r | U≥r¬B ∈ u} > 1 − s.

Then, there exists a rational number q ∈ (1 − s, 1 − s + ε], for some ε > 0,
such that U≥q¬B ∈ u. Therefore, U>1−s¬B ∈ u. Contradiction. That means

sup{r | U≥r¬B ∈ u} ≤ 1 − s,

i.e., P ∗(u)([¬B]u) ≤ 1 − s and therefore we obtain u |= L≥sB.
For the other direction, assume that u |= U≤1−s¬B, i.e.

sup{r | U≥r¬B ∈ u} ≤ 1 − s.

We distuingish the following cases:
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(1) sup{r | U≥r¬B ∈ u} < 1−s. In this case, if U>1−s¬B ∈ u, we would have
also that U≥1−s¬B ∈ u, so sup{r | U≥r¬B ∈ u} ≥ 1 − s. Contradiction.

(2) sup{r | U≥r¬B ∈ u} = 1 − s. We want to show that then it must hold

inf{r | U≤r¬B ∈ u} = 1 − s.

Suppose first towards contradiction that

inf{r | U≤r¬B ∈ u} < 1 − s.

Then there exists a rational number q1 ∈ [1 − s − ε, 1 − s) such that
U≤q1¬B ∈ u, and so U<1−s¬B ∈ u. Contradiction with U≥1−s¬B ∈ u
(this follows directly from Inference Rule 4). Now, suppose that

inf{r | U≤r¬B ∈ u} > 1 − s,

i.e.,
inf{r | U≤r¬B ∈ u} = 1 − s + ε.

Taking an arbitrary rational number q2 ∈ (1 − s, 1 − s + ε), we obtain
that both

U≤q2¬B ∈ u and U≥q2¬B ∈ u

which contradicts properties of an infimum and supremum. Hence

inf{r | U≤r¬B ∈ u} = 1 − s,

or equivalently
inf{r | L≥1−rB ∈ u} = 1 − s

and as a consequence of an Inference Rule 5, we get L≥sB ∈ u.
3. Finally let A = t : B. Since {u | u ∈ W,u |= t : B} = [A]Mcan,u and

{u | u ∈ W, t : B ∈ u} = {u | u ∈ W,B ∈ t∗u} = {u | u ∈ W,u |= t : B},

the proof is finished. ��
Theorem 5. Let CS be an arbitrary constant specification. Mcan is a
ILUPJCS,Meas-model.

Proof. Since there exists a maximal ILUPJCS-consistent set, we know that W �= ∅
and W (w) �= ∅. Proof that H(w) is an algebra is straightforward. Also note that
for every w ∈ W , ∗w is a basic CS-evaluation by the construction of the canonical
model.

Let us prove the existence of a set of probability measures P (w) claimed in
2) and that P ∗(w) is well defined.

1) There exists a set of finitely additive probability measures P (w) and P ∗(w)
is an upper probability measure for P (w):
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We prove the three conditions from Theorem 1 and since the first two con-
ditions, P ∗(w)(∅) = 0 and P ∗(w)(W ) = 1, are trivial, we prove only the
third, i.e., if

{{[A1], . . . , [Am]}}
is an (n, k)-cover of ([A],W ), then

k + nP ∗(w)([A]) ≤
m∑

i=1

P ∗(w)([Ai]).

Let P ∗(w)([Ai]) = sup{r | U≥rAi ∈ w} = ai, for i = 1, . . . , m. For an
arbitrary fixed ε > 0, there exist rational numbers qi ∈ (ai, ai + ε) with
U≤qiAi ∈ w. If that would not be the case, then U>qiAi ∈ w which contra-
dicts with the fact that ai is supremum. As a consequence we get

w � U≤q1A1 ∧ · · · ∧ U≤qmAm,

and by (Ax7)
w � U≤qA,

where q =
∑m

i=1 qi−k

n , n �= 0. Thus, sup{r | U≥rAi ∈ w} ≤ q or equivalently
P ∗(w)([A]) ≤ q. Thus, we have

P ∗(w)([A]) ≤
∑m

i=1 qi − k

n
=

∑m
i=1 ai + mε − k

n
.

Because this holds for every ε > 0 we obtain k + nP ∗(w)([A]) ≤∑m
i=1 P ∗(w)([Ai]). If n = 0, we have to show that k ≤ ∑m

i=1 P ∗(w)([Ai]).
Reasoning as above, we obtain

w � U≤q1A1 ∧ · · · ∧ U≤qmAm,

for some qi ∈ (ai, ai + ε). From (Ax8), how
∨

J⊆{1,...,m},|J|=k

∧

j∈J

Aj

is a propositional tautology, we have that
∑m

i=1 qi ≥ k. Again, from the fact
that it holds for every ε > 0, we obtain

∑m
i=1 ai ≥ k.

2) P ∗(w) is well defined : that Lemma 1(c) tells us that a value of the supremum
does not depend on a choice of an element from [A]. Hence P ∗(w)([A]) is
well defined.
Finally, note that as a direct consequence of the Lemma 3 we have that this
model is measurable. ��

Theorem 6 (Strong Completeness for ILUPJ). For an arbitrary constant
specification CS, T ⊆ For and A ∈ For we have:

T |= A ⇒ T � A.
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Proof. Suppose that T �� A or equivalently T �� ¬A → ⊥. From Deduction
Theorem we get T,¬A �� ⊥ meaning that the set T ∪{¬A} is ILUPJCS-consistent.
From Theorem 4 we know that there exists a maximal ILUPJCS-consistent set
T♠ with T ∪ {¬A} ⊆ T♠. Finally, since T♠ is a world in the canonical model,
we get Mcan, T♠ |= T and Mcan, T♠ |= ¬A and thus T �|= A. ��

5 ILUPJ as a Generalization of the Logic PPJ

In this section we prove that the logic ILUPJ generalizes the logic PPJ from [10].
The strategy we use relies heavily on the strategy used in [6]. Let us briefly recall
the logic PPJ.

The language of the logic PPJ extends the language of the justification logic
J with the list of operators P≥s, where s is a rational number from the [0, 1]. For
example,

p ∧ P≤ 1
2
(t : q) and P= 1

3
P≥1(s : (p ∨ r))

are well defined formulas. PPJ-models are defined as triples M = 〈W,Prob, ∗〉,
where:

– W is a non empty set of worlds
– Prob is an assignment which assigns to every w ∈ W a probability space,

such that Prob(w) = 〈W (w),H(w), μ(w)〉, where:
W (w) is a non empty subset of W ,
H(w) is an algebra of subsets of W (w) and
μ(w) : H(w) → [0, 1] is a finitely additive probability measure.

– ∗w is a basic CS-evaluation.

Satisfiability of a formula is defined as expected for the justification logic
formulas and

M,w |= P≥sA iff μ(w)({v ∈ W (w) | v |= A}) ≥ s.

Axiomatization of the logic PPJ is the following:

(P1) � A, where A is a propositional tautology
(P2) � t : (A → B) → (s : A → (t · s) : B)
(P3) � t : A ∨ s : A → (t + s) : A
(P4) P≥0A,
(P5) P≤rA → P<sA, s > r,
(P6) P<sA → P≤sA,
(P7) (P≥tA ∧ P≥sB ∧ P≥1(¬A ∨ ¬B)) → P≥min{1,t+s}(A ∨ B),
(P8) (P≤tA ∧ P<sB) → P<t+s(A ∨ B), t + s ≤ 1.

Inference Rules

(1) �!nc :!n−1c : · · · :!c : c : A where (c,A) ∈ CS and n ∈ N

(2) If T � A and T � A → B then T � B
(3) If � A then � P≥1A
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(4) If T � A → P≥s− 1
k
B, for every k ≥ 1

s and s > 0 then T � A → P≥sB

Soundness and strong completeness theorems for the logic PPJ are proved
(see [10], Theorems 11 and 22).

The ILUPJ logic has the similar semantical structure as the logic PPJ. Also,
it is clear that the semantics of the logic ILUPJ is more general, since reasoning
about upper and lower probabilities requires sets of probability measures, while
in the logic PPJ one measure per possible world is sufficient (thus they are
isomorphic to the “sets of” probability measures which are singletons).

However, the axiomatic systems are quite different. We focus on the two proof
theoretical aspects of the generalization:

1. which axioms should be added to the logic ILUPJ to reduce the proposed class
of models to the class of models isomorphic to the models for the logic PPJ

2. how can we use the added axioms to formally obtain the axiomatization of
PPJ.

As already stated, the subclass of the ILUPJ-models that contains only those
structures where the set of probability measures is a singleton set is isomorphic
to the class of PPJ-models. Thus, we add the following axiom which guarantees
that it is the case:

(Ax10) U≥rA → L≥rA. (1)

We will denote ILUPJ+Axiom (Ax10) by ILUPJExt.
It can easily be proved that the following holds (see the proof of Proposition 1

in [18]):

� U≤rA → L≤rA. (2)

From (1) and (2) follows that operators U and L have the same behavior in the
sense that for every formula A and every r ∈ Q ∩ [0, 1]

� U≥rA ↔ L≥rA. (3)

As a consequence we have that in ILUPJExt one type of operators is sufficient,
since changing one type of operator with other will lead to an equivalent formula.
For example, if we replace all the operators for lower probability with the oper-
ators of upper probability in A ≡ L≥ 1

3
U≤ 1

2
L=1(t : p), we will obtain the formula

B equivalent to A B ≡ U≥ 1
3
U≤ 1

2
U=1(t : p). It can be proved in a straightforward

manner by the induction on the complexity of a formula that this holds for any
formula. This fact allows us, without loss of generality, to consider only formulas
with the U operators in ILUPJExt.

Our aim is to prove that the set of theorems of the logic PPJ is a subset of
the set of theorems of the logic ILUPJExt. In order to prove that, we show that
all the axioms and inference rules of the logic PPJ can be inferred in the logic
ILUPJExt, where an operator P is replaced by U .
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First not that the axioms (P1)–(P6) correspond to the axioms (Ax1)–(Ax6)
and inference rules coincide as well. Our goal is to prove that the appropriate
counterparts of the axioms (P7) and (P8), i.e.,

(U7) (U≥tB ∧ U≥sC ∧ U≥1(¬B ∨ ¬C)) → U≥min{1,t+s}(B ∨ C),
(U8) (U≤tB ∧ U<sC) → U<t+s(B ∨ C), t + s ≤ 1,

follow from the axiomatization of ILUPJExt, where in that inference the essen-
tial role is played by the axioms (Ax7) and (Ax8).

In order to prove that we need the following Lemma:

Lemma 4. ILUPJExt � (U≤tB ∧ U≤sC) → U≤t+s(B ∨ C), t + s ≤ 1.

Proof. We will show that the claim can be inferred from the axiom (Ax7). Con-
sider the axiom (Ax7) for:

m = 2; n = 1, k = 0; r1 = t; r2 = s;
A1 = B; A2 = C; A = B ∨ C.

In this case we get r = t + s and therefore the Axiom (Ax7) has exactly the
shape of the required formula. We also have to check whether the formulas

A →
∨

J⊆{1,2},|J|=1

∧

j∈J

Aj

and ∨

J⊆{1,2},|J|=0

∧

j∈J

Aj

are tautologies. The first formula has the form B ∨ C → B ∨ C which is clearly
a tautology, while the second formula has the form

∧
j∈∅ Aj , and

∧
j∈∅ Aj = �

by definition and hence a tautology. ��
Theorem 7. The set of theorems of the logic PPJ is a subset of the set of
theorems of the logic ILUPJExt.

Proof. As already mentioned, we only need to prove that:

(a) ILUPPExt � (U≥tB ∧ U≥sC ∧ U≥1(¬B ∨ ¬C)) → U≥min{1,t+s}(B ∨ C),
(b) ILUPPExt � (U≤tB ∧ U<sC) → U<t+s(B ∨ C), t + s ≤ 1.

Proof of (a). First recall that the formula

(U≥tB ∧ U≥sC ∧ U≥1(¬B ∨ ¬C)) → U≥min{1,t+s}(B ∨ C)

can be written as:

(U≤1−t¬B ∧ U≤1−s¬C ∧ U≤0(B ∧ C)) → U≤1−min{1,t+s}¬(B ∨ C).

Now, consider the axiom (Ax7) for:
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m = 3; n = k = 1; r1 = 1 − t; r2 = 1 − s; r3 = 0;
A1 = ¬B; A2 = ¬C; A3 = B ∧ C; A = ¬(B ∨ C).

We obtain that r = 1 − (t + s).

(i) If t + s > 1 then (Axiom (Ax8),
∑m

i=1 ri < k)

� ¬(U≤1−t¬B ∧ U≤1−s¬C ∧ U≤0(B ∧ C)),

so � (U≤1−t¬B ∧ U≤1−s¬C ∧ U≤0(B ∧ C)) → U≤1−min{1,t+s}¬(B ∨ C)).
(ii) If t+ s ≤ 1, then 1−min{1, t+ s} = 1− (t+ s) = r and it is left to check
if

A →
∨

J⊆{1,2,3},|J|=2

∧

j∈J

Aj

and ∨

J⊆{1,2,3},|J|=1

∧

j∈J

Aj

are tautologies. Namely, in this case, the first formula has the following form:

¬(B ∨ C) → ((¬B ∧ ¬C) ∨ (¬B ∧ B ∧ C) ∨ (¬C ∧ B ∧ C)),

and the second formula:

¬B ∨ ¬C ∨ (B ∧ C).

It is obvious that both of these formulas are tautologies and therefore this
part is proved.

Proof of (b). Let us show equivalently that ILUPJExt � (U≤tB ∧ U≥t+s(B ∨
C)) → U≥sC:

� U≥t+s(B ∨ C) → U>t+s′(B ∨ C), for all s′ < s (contraposition (Ax5))
U≤tB ∧ U≥t+s(B ∨ C) � U≤tB ∧ U>t+s′(B ∨ C), for all s′ < s
U≤tB ∧ U≥t+s(B ∨ C) � U≤tB ∧ U>s′C, for all s′ < s (by Lemma 4)
U≤tB ∧ U≥t+s(B ∨ C) � U≥sC (by (IR4))
� (U≤tB ∧ U≥t+s(B ∨ C)) → U≥sC (by Deduction theorem) ��

6 Conclusion

We present a logic which allows making statements about upper and lower prob-
abilities of the justification formulas. In this framework, we can represent infor-
mation like: “t is justification that probability of A lies in the interval...” and our
formalism, the logic ILUPJ, can be used for reasoning not only about lower and
upper probabilities of a certain justification formula, but also about uncertain
belief about other imprecise probabilities. The language of our logic is modal
language which extends justification logic language with the unary operators
U≥r and L≥r, where r ranges over the unit interval of rational numbers. The
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corresponding semantics consist of the measurable Kripke models with sets of
finitely additive probability measures attached to each possible world, as well
as a function ∗ from the set of worlds to the set of all basic CS-evaluations. We
prove that the proposed axiomatic system is strongly complete with respect to
the class of measurable models.

We also provided an extension of the proposed axiomatization in order to
prove that the logic ILUPJ is a generalization of the logic PPJ for reasoning
about sharp probabilities of justification formulas from [10].

Acknowledgement. We would like to thank the anonymous reviewers whose com-
ments helped to improve the paper substantially.
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