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Samenvatting in het Nederlands

Plastics worden toegepast voor vele doeleinden, doordat het goedkoop te produc-
eren is, lang meegaat en het bijvoorbeeld luchtdicht, waterdicht en steriel kan zijn.
Doordat plastic zo lang meegaat ondervinden we echter veel vervuiling van deze
materialen, onder meer in de oceaan. Veel plastic heeft een lagere dichtheid dan
water en blijft dus drijven. Een inmiddels bekend fenomeen zijn de ‘drijvende vuil-
nisbelten’, in het Engels ‘floating garbage patches’ genoemd: dit zijn gebieden in
het midden van de oceaan waar hoge concentraties aan plastic deeltjes te vinden
zijn. Deze gebieden bevinden zich rond de subtropen: éen van de bekendste dri-
jvende vuilnisbelten is te vinden in het noorden van de Stille Oceaan, maar ook in
het noorden van de Atlantische Oceaan is er bijvoorbeeld éen te vinden.
Het is nog vrij onbekend waar het meeste plastic afval in de oceaan precies vandaan
komt: komt het bijvoorbeeld vooral uit rivieren, vanaf de kustlijn, of van visserijen?
Verder is het nog vrij onbekend welke processen ervoor zorgen dat plastic deeltjes
‘verdwijnen’ uit het oppervlak van de oceaan. Zo kan een deel van het plastic afval
bijvoorbeeld aanspoelen op stranden, na een tijdje naar beneden zinken (bijvoor-
beeld door aangroei van algen), of uit elkaar brokkelen in kleinere plastic stukjes.
Hoeveel plastic afval er in de oceaan terechtkomt en hoeveel er na verloop van tijd
verdwijnt is een groot vraagstuk: huidige schattingen van de hoeveelheid drijvend
plastic afval in de oceaan zijn namelijk veel lager dan de geschatte hoeveelheid plas-
tic afval dat elk jaar in de oceaan terecht komt. Dit proefstuk is geschreven in het
kader van het TOPIOS project (Tracking Of Plastics In Our Seas), waarin we de
massabalans voor plastic afval in de oceaan willen sluiten.

In dit proefschrift dragen we bij aan een sluitende massabalans voor plastic afval
in de oceaan, door observationele metingen te combineren met numerieke (com-
puter) modellen. Er zijn verschillende manieren om dit te doen. De afgelopen jaren
zijn statistische methoden als machine learning steeds populairder geworden om
voorspellingen mee te doen. In hoofdstuk 2 van dit proefschrift gebruiken we een
regressiemethode (‘random forests’) om te voorspellen hoeveel afval er aanspoelt op
de Nederlandse Noordzeekust. We maken hierbij gebruik van een dataset van Sticht-
ing De Noordzee, die in de jaren 2014–2019 schoonmaakacties hebben verricht op
Nederlandse stranden en hebben bijgehouden hoeveel afval er bij deze acties werd
opgeruimd. Wij koppelen de gemeten hoeveelheden afval aan de weers- en zeecon-
dities rondom de schoongemaakte stranden: denk hierbij aan bijvoorbeeld de wind-
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kracht en windrichting, het getij, de zeestromingen en de oriëntatie van de kustlijn.
Met het regressiemodel voorspellen we vervolgens hoeveel afval er gemiddeld langs
de hele kustlijn verwacht wordt: rond de 16 500–31 200 kilogram. We voorspellen
gemiddeld genomen relatief hoge concentraties strandafval rond Egmond en Bergen
en relatief lage concentraties in Zeeland.
Veel van de plastic deeltjes die in de oceaan worden gevonden zijn slechts enkele
millimeters groot en zijn fragmenten van grotere plastic objecten. Er zijn echter
niet veel modellen in de literatuur te vinden die het fragmentatieproces van plastic
deeltjes beschrijven. In hoofdstuk 3 ontwikkelen we een nieuw model dat beschrijft
hoe plastic deeltjes in de loop van tijd fragmenteren. Hiermee modelleren we de
lengte van plastic fragmenten in de oceaan en op stranden. We laten zien dat het
meten van de lengte van plastic deeltjes ons mogelijk informatie kan geven over
bijvoorbeeld de tijdschaal waarop fragmentatie van plastic deeltjes plaatsvindt.
Het zijn niet alleen de ‘drijvende vuilnisbelten’ in het midden van de oceaan waar
de concentratie van plastic deeltjes hoog is. Ook in gebieden als de Middellandse
Zee, omgeven door kustlijn, is dit het geval. In hoofdstuk 4 stellen we een massabal-
ans op voor drijvend plastic afval in de Middellandse Zee. We definiëren mogelijke
bronnen voor plastic afval, mogelijke processen die plastic deeltjes verwijderen uit
het wateroppervlak (het aanspoelen en zinken van plastic deeltjes) en kalibreren dit
model vervolgens met metingen uit de literatuur van concentraties plastic aan het
wateroppervlak (door middel van planktonnetmetingen). We gebruiken dit gekali-
breerde model om een schatting te geven van de belangrijkste bronnen van plastic
vervuiling in de Middellandse Zee, en waar het meeste plastic afval terecht komt.
Ten slotte doen we een soortgelijke analyse in hoofdstuk 5, maar dan op een glob-
ale schaal, met een complexer model en meer metingen. Net als in hoofdstuk 4
kalibreren we parameters in een numeriek model, gerelateerd aan bronnen, trans-
port en processen die plastic deeltjes verwijderen uit het wateroppervlak. We doen
deze kalibratie door middel van data-assimilatie, waar een groep modellen met ver-
schillende parameterwaarden wordt vergeleken met observationele metingen. Hi-
ervoor gebruiken we netmetingen van plastic concentraties aan het wateroppervlak
en dieper in de waterkolom, en metingen van concentraties plastic op stranden. Een
belangrijke conclusies uit dit hoofdstuk is dat de hoeveelheid plastic massa in de
oceaan (ongeveer 3 000 000 ton) waarschijnlijk veel hoger is dat voorheen geschat
(250 000 ton): mogelijk zagen voorgaande studies grotere plastic objecten over het
hoofd, die bijdragen aan het grootste deel van de totale massa. Verder schatten we
de bronnen lager in dan voorgaande studies, en verwachten we dat plasticvervuiling
een langdurig probleem zal zijn, zelfs als er plotseling geen nieuw plastic afval in de
oceaan terecht zou komen.



CHAPTER 1

Introduction

In the 20th century, fossil fuels revolutionized all industry sectors by serving as the
source for synthetic plastics, making it possible to create the durable, cheap, and
sterile objects that are used in our daily lives. Harmful side-effects of this ‘Plas-
tic Revolution’ are directly observable, as the highly durable plastic objects started
to accumulate in the marine environment. Some of the earliest scientific accounts
of marine plastic pollution come from the seventies, from measurement campaigns
finding high concentrations of plastic particles in the North Atlantic Ocean (Carpen-
ter & Smith Jr., 1972; Colton et al., 1974; Morris, 1980) and the North Pacific Ocean
(Wong et al., 1974; Shaw & Mapes, 1979). More studies followed in the eighties,
some noting that marine life was getting entangled in plastic items such as fishing
gear, and suggesting that the presence of plastics in the stomach of animals might be
a cause of mortality (Fowler, 1987; Ryan, 1987). In the late nineties marine plastic
pollution started to gather more attention, as more observations in the North Pacific
showed large plastic concentrations in the subtropical gyre (Moore et al., 2001), an
area that would later be called the ‘Great Pacific Garbage Patch’ (Young et al., 2009;
Lebreton et al., 2018). The direct visibility of plastics as one type of anthropogenic
pollution led to worldwide media attention, awareness campaigns, and cleanup ini-
tiatives over the years.

The North Pacific subtropical gyre is one of the 5 subtropical gyres in which float-
ing matter accumulates at the ocean surface. Large-scale regions of downwelling at
the ocean surface are driven by the Ekman currents, caused by the surface winds
and the Coriolis effect (Kubota, 1994). Due to the fact that most plastic particles
are buoyant and remain at the ocean surface, they accumulate within these regions.
The dispersion of plastic particles is furthermore affected by the geostrophic ocean
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currents, caused by pressure gradients (variations in sea surface elevation) and the
Coriolis effect. Although the geostrophic currents are nondivergent and do not lead
to accumulation on their own, they have a strong impact on the overall accumu-
lation patterns (Onink et al., 2019). Plastic concentrations at the ocean surface as
estimated in van Sebille et al. (2015) are presented in Figure 1.1. Clearly visible are
the five subtropical gyres: two gyres in the Northern hemisphere (the Pacific and
Atlantic), and three in the Southern hemisphere (the Pacific, Atlantic, and Indian
Ocean). Besides high plastic concentrations in the subtropical gyres, a large amount
of plastic particles can be found in enclosed basins such as the Mediterranean Sea,
and relatively high concentrations are predicted around coastlines in South-East Asia
and around the Barents Sea. The plastic concentrations as predicted in van Sebille
et al. (2015) reach values of more than one million particles per square kilometer.
These high numbers, combined with photos of marine plastic pollution in the media,
led to the persistent myth of literal plastic islands or even plastic continents in the
middle of the oceans. With a mean mass of roughly 0.01 grams per particle (van Se-
bille et al., 2015) this is far from the reality, however: most of the plastic items that
are found in the ocean are millimeter-sized plastic fragments (Cózar et al., 2014).
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Figure 1.1: Modelled plastic mass concentrations at the ocean surface from van Sebille et
al. (2015). High concentrations can be observed in the five subtropical gyres, as well as in
the Mediterranean Sea, around the Barents Sea, and near the coastlines of South-East Asia.
Figure adapted from van Sebille et al. (2015).

Surprisingly, even though marine plastic pollution is easily observable, little is known
about the sources of the pollution: how much of the plastic waste that we produce
is littered, how much of this enters the ocean, and where? Additionally, little is
known about the sinks: are there processes that remove the plastic pollution from
the marine environment, and on what time scales is this happening? These issues are
directly related to a long-standing question in the marine plastic research commu-
nity: what happens with the majority of the plastics that enter the ocean (Thompson
et al., 2004)? This question gained traction due to the fact that the amount of plas-
tics estimated to float at the ocean surface (in the order of hunderds of thousands
metric tonnes; Eriksen et al., 2014; van Sebille et al., 2015) is roughly two orders of
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magnitude smaller than the estimated amount of plastics entering the ocean every
year (in the order of tens of millions metric tonnes; Jambeck et al., 2015; Borrelle
et al., 2020).

The work presented in this thesis is part of the TOPIOS project: Tracking Of Plas-
tic In Our Seas. The aim of this project is to make advances in closing the plastic
budget, by creating a novel modelling framework that tracks plastic transport in the
ocean. In this thesis we contribute to this project, by using observational data of
plastics in the marine environment to inform numerical models. By doing this, we
make an effort in obtaining a better understanding of marine plastic sources, path-
ways, and sinks. This is important to make future prevention strategies and cleanup
efforts more effective. By knowing where and when plastic litter accumulates in the
marine environment, we can make more targeted removal efforts, and get a clearer
overview of potential impacts on marine ecosystems. By knowing where and when
plastic litter enters the marine environment, policymakers can target the sources
that are responsible for a large part of the plastic problem, and mitigation strategies
can be developed to remove plastic pollution before it actually enters the ocean and
can cause harm to marine ecosystems.

1.1 Sources of marine plastics
The production of plastic items has grown rapidly the past couple of decades, from
roughly 50 million metric tonnes per year in the 1970’s, to an estimated 400 million
metric tonnes in 2015. In a similar fashion, the plastic waste generation has been
increasing by roughly 5% per year to 300 million metric tonnes in 2015. Only a
small part (9%) of this waste is estimated to be recycled, with a large part (79%)
likely ending up on landfills or in the natural environment (Geyer et al., 2017). The
term ‘Mismanaged Plastic Waste’ (MPW) is used to define the plastics that are avail-
able to enter the natural environment, for example via littering, or by ending up on
uncontained open dumps (Jambeck et al., 2015; Geyer et al., 2017).

How much of this mismanaged plastic waste actually enters the ocean is an open
question, and the quantities and pathways vary widely between different studies. A
part of the mismanaged plastic waste could enter the oceans along coastal regions.
Jambeck et al. (2015) estimated that 4.8 million to 12.7 million metric tonnes of
plastic enter the ocean every year this way. Plastic waste can be transported from
inland regions towards the oceans via rivers. These estimates range widely, from
0.8 million to 2.7 million metric tonnes (Meijer et al., 2021), to 6 kilotonnes per
year (Weiss et al., 2021). We will come back later to the large discrepancies be-
tween these studies in Chapter 5. Borrelle et al. (2020) estimated 19 million to 23
million metric tonnes of plastic to enter aquatic ecosystems every year (i.e. oceans,
lakes, and major rivers combined). Fishing activity is thought to be a major source
of plastic pollution as well. On Dutch beaches, about 40% of the plastic items are
thought to originate from the fishing industry, which we will come back later on in
Chapter 2. In global scenarios, the fishing industry is thought to contribute to about
18% of the total plastic litter (Lebreton et al., 2018).
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Input via coastal regions, rivers, and fishing activity are estimated to be the three
major sources of marine plastic pollution (Lebreton et al., 2018). It is very difficult
to put exact percentages on their contributions. First, they might vary region to
region. Secondly, whereas fishing related items are sometimes possible to identify
(e.g. fishing nets or buoys), this is much harder for coastal plastics and riverine plas-
tics. One of the objectives in this thesis is to attempt to put numbers to the source
percentages. In Chapter 5, Figure 5.1 we show the three main plastic source cate-
gories on a global map. The three sources are distributed differently on the map,
with for example relatively high expected coastal plastic input in South-East Asia
(Jambeck et al., 2015), and a relatively high amount of fishing hours in the North
Sea (Kroodsma et al., 2018). We will use numerical models to predict how plastic
items from these different sources will disperse through the ocean, see Section 1.3.
By varying the magnitude of the different sources in our numerical models, we ex-
pect to change the global distribution of marine plastic pollution. In Chapter 4 and
Chapter 5, we calibrate the marine plastic sources in such a way that we achieve the
best possible model fit to observational data.

1.2 Sinks of marine plastics
There are different mechanisms that are hypothesized to remove plastics from the
surface water of the ocean or the marine environment altogether, which could ex-
plain the mismatch between the estimated plastic input and the amount of plastics
floating in the ocean. We will briefly discuss some of these: sinking and sedimen-
tation due to biofouling, plastics ending up on coastlines (beaching), degradation,
and fragmentation. We will refer to these processes as ‘sinks’ in this thesis, un-
derstanding that this term is dependent on the time scale and particle size that is
considered. For example, plastic particles might get buried on beaches or end up
in marine sediments. It is still unknown how long plastic particles actually remain
in these reservoirs, which can make them temporary sinks when considering long
time scales. Fragmentation can act as a sink for marine plastics, by breaking down
particles below typically measured sizes.

1.2.1 Biofouling
The majority of plastics that are produced are expected to float in sea water, since
they created from polymers with a density lower than sea water, or due to their
foamed structure. These buoyant polymers include polyethylene (PE), polypropy-
lene (PP), and polystyrene (PS), and are expected to make up roughly 60% of all
plastics entering the marine environment (Andrady, 2011; Lebreton et al., 2018).
Even though many plastics are initially buoyant, a biofilm can develop on the sur-
face of the particles that is denser than seawater. This can make plastic items neg-
atively buoyant on time scales of just weeks to months (Lobelle & Cunliffe, 2011;
Fazey & Ryan, 2016). An example of biofouled plastic particles from the experi-
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mental study in Lobelle & Cunliffe (2011) are shown in Figure 1.2. The larger the
surface area to volume ratio, the more biofilm can attach per volume of plastic.
In Fazey & Ryan (2016) larger surface to volume ratios were therefore observed
to lead to shorter sinking time scales of polyethylene samples. Field data supports
the theory that biofouling can indeed make initially buoyant particles to sink down,
as for example Egger et al. (2020b) found high percentages of polyethylene and
polypropylene (i.e. initially buoyant) particles in the deep North Pacific waters.
The microbial community that lives on plastic items and forms the biofilm has been
called the ‘plastisphere’ in the literature (Amaral-Zettler et al., 2020). These commu-
nities form highly complex ecosystems that can vary particle to particle, and change
over time. Diatoms and Rhodobacteraceae are commonly found in biofilms, and are
thought to be early and one of the dominant colonizers (Carson et al., 2013; Amaral-
Zettler et al., 2020). It is possible that microbes by themselves are not enough to
make all types of plastic items sink: Amaral-Zettler et al. (2021) found that particles
with a low surface to volume ratio might require the attachment of multicellular or-
ganisms before getting negatively buoyant, such as bivalves, barnacles, and worms.

In Kooi et al. (2017) biofouling was hypothesized to lead to interesting dynamical
behaviour of plastic particles in the water column. As plastic particles start sink-
ing due to biofouling, the light intensity and water temperature start to decrease,
slowing down the growth of algae. Due to algae mortality and respiration, the parti-
cles might start to become positively buoyant again, leading to a vertical oscillatory
movement of plastic particles. The idealized model by Kooi et al. (2017) was later
extended to more realistic scenarios in the ocean in Lobelle et al. (2021) and Fis-
cher et al. (2022). We implement the model by Fischer et al. (2022) in Chapter 5
to capture the effect of biofouling on vertical mixing of plastic particles in the water
column.

Figure 1.2: Sheets of polyethylene plastic that have been submerged in seawater for 2–3
weeks (Plymouth, United Kingdom) (Lobelle & Cunliffe, 2011). Photo courtesy of Delphine
Lobelle.
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1.2.2 Beaching

Coastlines are thought to be an important reservoir for marine plastic pollution
(Isobe & Iwasaki, 2022). Onink et al. (2021) estimated that the majority (67-77%)
of plastics reside on beaches or in coastal waters up to 10 km offshore. Anecdotal
evidence that plastic concentrations are high on beaches can be obtained when go-
ing to any beach in the Netherlands. When walking along the beach at the location
where floating matter has accumulated during the latest flood, one is very likely
to find items such as fishing nets, bottle caps, and packaging. It is likely one can
find more plastic mass on a couple of square meters of beach compared to the open
ocean, where it is typical to find a lot of small plastic fragments. Some example
photographs are shown in Figure 1.3. Given the possibility that beaches play an im-
portant role as a reservoir for marine plastics, we will take a closer look at beached
plastics in the Netherlands in Chapter 2.

Estimating plastic concentrations on beaches remains a difficult task. One challenge
is the fact that the hydrodynamics in coastal waters are highly different from those
in the open ocean, with the (increased) influence of for example (breaking) waves,
tides, and coastline morphology (van Sebille et al., 2020). Some studies have tried
to link observed beach plastic concentrations to conditions related to the environ-
ment and land usage: for example looking at distance to nearby population centers
(Ryan et al., 2018; Olivelli et al., 2020), looking at the wind speed and ocean cur-
rent components towards the land (Eriksson et al., 2013; Thepwilai et al., 2021),
and looking at local tide and wave conditions (Pawlowicz, 2020; Williams & Tu-
dor, 2001). Other experimental studies have estimated how long it takes for plastic
particles to move from coastal waters onto the beach (Pawlowicz, 2020), and how
long particles typically remain on beaches before washing back into the ocean (re-
suspension), parameterising these processes using time scales (Hinata et al., 2020).
These kind of parameterisations can be informed by mark-recapture experiments,
where a large amount of easily recognizable items are released on the beach or in
the coastal water, after which the amount of these items on the beach is kept track of
over time (Hinata et al., 2017). It is very difficult to estimate how all these different
studies generalize to other regions, since their underlying methodologies, models,
considered variables, and amount of data differ.
Another challenge in estimating beach plastic concentrations is the lack of standard-
isation of measurements: studies differ in considered particle sizes, perform mea-
surements per unit length or per unit area, use different units (number of particles
versus mass), vary in the length/width of beach that is sampled, vary in the use of
replicates, and use different platforms/formats to provide the data. Two examples
of large-scale measurement datasets are the OSPAR dataset from Europe (OSPAR,
2010), and the MDMAP dataset from the United States (Burgess et al., 2021). Even
though these datasets are similar in many ways, one can not directly compare the
resulting plastic concentrations between both datasets, since different particle sizes
are considered (all sizes and >50 cm in OSPAR data, versus >2.5 cm in MDMAP
data). Both datasets only consider the number of plastic particles as opposed to
weight. This can introduce measurement error into the datasets, as the number of
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(a) Microplastics filtered from ∼900 m2

surface water of the North Atlantic Ocean.
(b) Plastics located on the beach of Texel, the
Netherlands

Figure 1.3: Plastic concentrations can be relatively high on coastlines compared to the open
ocean: a couple of square meters of Dutch beach yield more plastic mass compared to roughly
900 m2 in the North Atlantic subtropical gyre in this anecdotal example. Own material

plastic particles will be heavily dependent on the smallest items that cleanup partic-
ipants will look for, which we will further discuss in Chapter 5.

1.2.3 Degradation and fragmentation
Looking at Figure 1.3, it is clear that degradation and fragmentation of plastics in
the marine environment is important to take into account: the majority of plastics
particles found in the open ocean are small millimeter-sized fragments (Cózar et al.,
2014). There are different mechanisms for plastic degradation: photodegradation
by UV-light, thermal degradation by visible light, and thermal oxidation by infrared
light (Amaral-Zettler et al., 2020). Furthermore, biological degradation is possi-
ble under the influence of enzymes: PET and PUR are susceptible for this type of
degradation, PE and PP are likely less susceptible (Amaral-Zettler et al., 2020). It
is commonly thought that degradation of plastics is dominant on beaches, due to
higher temperatures, and more UV-radiation and oxidation (Efimova et al., 2018;
Andrady, 2011). Degradation makes plastic particles more brittle, which enhances
the fragmentation by mechanical abrasion (Song et al., 2017). Studies have shown
that some polymer types such as polystyrene could be sensitive to photochemical
oxidization into carbon dioxide and dissolved organic carbon. Ward et al. (2019)
estimated half-life times of polystyrene in the marine environment due to this pho-
tochemical oxidation in the order of decades. Polypropylene, and to a lesser extend
polyethylene, have additionally been reported to oxidize into dissolved organic car-
bon in lab studies (Zhu et al., 2020).

Despite the clear effect of fragmentation on the number of observed plastic particles,



1

8 | Chapter 1 – Introduction

relatively little is known about the modelling of this process. Observational data
show an increase in the number of particles for a decreasing particle size. Some
of the earliest works looking closer at abundance-size distributions are Cózar et al.
(2014, 2015), for which the measured data are shown in Figure 1.4. In Cózar et al.
(2014) a fragmentation model was developed to explain the power law that is visible
in the data for particles larger than approximately one millimeter, which is visible
as a straight line on a log-log scale. This power law was modelled by hypothesizing
scale-invariance of the fragmentation process: each time a plastic object fragments
(e.g. the length of the fragments are half the original object length), the amount
of fragments increases by a similar amount (e.g. an increase in abundance by 8
when considering a three-dimensional cubic object). The slope of the power law
on a log-log scale would then directly be related to the spatial dimension of the
fragmented object: e.g. two-dimensional sheet-like objects, or three-dimensional
cube-like objects. A drop in abundance can be seen in Figure 1.4 for particles smaller
than roughly one millimeter, which was hypothesized to be caused by the removal
of plastic particles from the surface water by processes such as biofouling in Cózar et
al. (2014). The fragmentation model from Cózar et al. (2014) has some limitations
and inconsistencies, however. We will come back to this in Chapter 3, where we will
present a new fragmentation model for marine plastics.

power law

L / 2

N x 8

loss of small
plastics

input of big
plastics

Figure 1.4: An increasing amount of particles can be found in the ocean surface for a decreas-
ing particle size, down to about one millimeter. Two examples are shown with data from the
global ocean and the Mediterranean Sea (Cózar et al., 2014, 2015). The amount of particles
on the y-axis is normalized to allow for the comparison between both datasets. The hypoth-
esized cause for the power law behaviour is furthermore illustrated for a three dimensional
example (a cube-like object), where each time that the particle size decreases by a factor 2,
the amount of fragments increases by a factor of 8.
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1.3 Modelling transport of plastic particles
The dispersion of floating matter such as plastics can be studied in two different
reference frames. The Eulerian reference frame is fixed in space, and particles are
described in terms of concentrations. Dispersion of particles can be modelled by
a tracer advection-diffusion equation as for example done in Mountford & Morales
Maqueda (2019). One can also have a much more simplified representation of plas-
tic transport in the marine environment by using box models. In Koelmans et al.
(2017) a box model was used to represent the fragmentation of plastics in the global
ocean, in Lebreton et al. (2019) this was extended to include transport globally be-
tween beaches, coastal waters, and the open ocean. In Chapter 3 we use a similar
box model to represent fragmentation and transport of plastics in the Mediterranean
Sea.
In a Lagrangian reference frame we follow individual particle trajectories. We can
study the transport of particles by making use of Lagrangian drifter data, or by
numerically integrating the trajectories of individual virtual particles.
More than 600 satellite-tracked Lagrangian drifters have been present in the global
ocean in any given month since 1993 (Pazan & Niiler, 2004), and about 1000 new
drifters are deployed every year by the NOAA global drifter program (Lumpkin et al.,
2016). One way to capture drifter transport statistics is by constructing stochastic
matrices, which describe how drifters are transported between different grid cells
of the ocean in terms of probabilities. These stochastic matrices have been used to
simulate how floating matter such as plastic particles are transported in the global
ocean, as was done in for example Maximenko et al. (2012) and van Sebille et al.
(2012). This methodology was furthermore used in van Sebille et al. (2015) to
estimate the total global mass of marine plastic pollution which was presented in
Figure 1.1.

To construct the stochastic matrices, first the ocean is divided into a set of bins, e.g.
by constructing an equidistant grid in the zonal and meridional direction. Each bin
is given an unique index. The stochastic matrices P are then calculated by counting
the amount of objects n moving to bin i from bin j, for a given time window ∆t.
The columns are furthermore normalized by dividing by the total amount of particles
starting in bin j:

Pij =
nto i, from j

nfrom j
(1.1)

As the matrix columns are normalized to 1, these stochastic matrices describe a
Markov process with transition probabilities from bin j to bin i. The matrix P can
then be used to model the evolution of a tracer concentration ρ over the time win-
dow ∆t:

ρ(t+ ∆t) = P ρ(t) (1.2)

For a more elaborate overview of stochastic matrices in oceanography, and possi-
ble applications such as using them to find stationary densities and dispersion time
scales see e.g. Wichmann (2021), Wichmann et al. (2019b), and van Sebille (2014).
We will use stochastic matrices in this thesis in Chapter 5 to capture the transport of
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plastic tracers in the global ocean.

In Lagrangian particle tracking models we numerically integrate the trajectories of
virtual particles in the ocean. In this case we need an ocean velocity field, which
is normally provided by an ocean general circulation model (OGCM). OGCMs gen-
erally resolve the primitive equations, containing an approximation of the Navier-
Stokes equations for the rotating earth (using the Boussinesq approximation and hy-
drostatic approximation), the continuity equation, heat and salt conservation equa-
tions, and an empirically determined equation of state relating sea water density to
temperature, salinity, and pressure (Randall & Zehnder, 2001). The ocean velocity
fields used in this thesis are derived from the NEMO primitive equation ocean model
(Madec & the NEMO team, 2017). We use ocean reanalysis products in this thesis,
which means that the OGCM has been assimilated to optimally match historical ob-
servational data. This can for example be historical data of sea surface height and
sea surface temperature, from satellite or in-situ observations.
The evolution of a tracer with concentration ρ in the ocean can be described using
the advection-diffusion equation:

∂ρ(x, t)

∂t
= −v(x, t) · ∇ρ(x, t) +∇ · (K · ∇ρ(x, t)), (1.3)

under the influence of a resolved velocity component v, and a diffusivity tensor K
which models the effect of unresolved (sub-grid) scale velocity components. This
tracer equation can be rewritten in terms of a Fokker-Planck (or Kolmogorov for-
wards) equation, describing the time evolution of the tracer probability density
function (van Sebille et al., 2018). These equations are in an Eulerian reference
frame that is fixed in space.
In the Lagrangian reference frame, a cloud of Lagrangian particles with stochas-
tic trajectories can be used to approximate the evolution of the (Eulerian) Fokker-
Planck equation. The Lagrangian particles are integrated according to a stochastic
ordinary differential equation, where they experiences a deterministic drift due to
currents acting on scales larger than the grid size, as well as a stochastic forcing
capturing uncertainty introduced by sub-grid processes. The deterministic drift is
relatively trivial, where we can use for example a Runge-Kutta ordinary differential
equation solver to solve for the particle advection. Different methods exist to model
the stochastic forcing. In zeroth-order Markov models, stochastic noise is added to
the particle positions. In first-order Markov models, stochastic forcing is added to
the particle velocities. When one is interested in the dispersion of particles within
relatively short time scales (e.g. days or even weeks) Markov-1 models can be more
suitable (Reijnders et al., 2022). In this thesis, we are interested in the evolution
of plastic tracers in the order of years or longer, in which case Markov-0 models are
suitable and the easiest to implement. The stochastic differential equation that is
used in this thesis to integrate Lagrangian particle trajectories that remain at the
surface ocean is given by:

x(t+ ∆t) = x(t) +

∫ t

t+∆t

v(x, τ)dτ +R
√

2K∆t, (1.4)
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where x are the Lagrangian particle locations, R is a random number from the nor-
mal distribution with zero mean and unit variance, and K is the tracer diffusivity.
In this thesis and many other Lagrangian particle studies (e.g. Delandmeter & van
Sebille, 2019) the diffusivity is assumed to be uniform in space and time, where
the value depends on the grid resolution (Neumann et al., 2014). When K is not
uniform, the random term in Eq. (1.4) needs to be modified. Non-uniform diffu-
sivity fields can for example be estimated by considering drifter buoy trajectories
and their separation over time (see e.g. Rühs et al., 2017), which is out of scope
for this thesis. The grid resolution of the ocean circulation models from which the
ocean velocity components are obtained in this thesis are 1/12◦ and finer. Most
turbulent dispersion should therefore already be accounted for, as mesoscale eddies,
containing most of the oceanic kinetic energy, are resolved (Ferrari & Wunsch, 2009;
Reijnders et al., 2022).
The ocean velocity data obtained from ocean circulation models generally contain
the effects of the Ekman currents and the geostrophic currents. Additional trans-
port can be induced on particles at the ocean surface by surface waves (Stokes drift)
and wind drag (Kubota, 1994; Cunningham et al., 2022). These components can
be added to the deterministic drift term in Eq. (1.4). Wind drag can be important
for very light plastics such as foamed polystyrene (Chubarenko et al., 2016). Wind
drag is often neglected, however, assuming that most plastic objects float just below
the water surface (Lebreton et al., 2012; Macias et al., 2019). This is supported by
modelling studies not finding an increased correlation between model output and
measurements of plastic concentrations when adding wind drag (Lebreton et al.,
2018). Many studies superimpose a field containing the Stokes drift onto the Ek-
man and geostrophic current fields. In Onink et al. (2019), no closer agreement be-
tween observations and model output was observed when superimposing the Stokes
drift onto the Ekman and geostrophic velocity components, explained by overesti-
mation of the Stokes drift caused by non-independence of the Ekman and Stokes
drift components. In Cunningham et al. (2022), it was shown that the interaction
of Stokes drift and the Coriolis force in the upper-ocean boundary layer results in
a unsteady flow that can counteract the effect of Stokes drift. This finding was still
unpublished when implementing Chapter 5. Since simply adding Stokes drift to the
velocity components does not increase the model-observation match, we do not add
it as a separate component there.

Vertical displacement of plastic particles in the water column can have an effect
on the overall accumulation patterns, due to differences in the ocean currents in
different water layers (Wichmann et al., 2019a), or due to processes only acting near
the ocean surface such as Stokes drift (Breivik et al., 2014). Vertical displacement in
the water column can be caused by particles rising or sinking due to a difference in
density with respect to the surrounding sea water, or by vertical turbulent mixing.
We can add these vertical transport terms to the stochastic differential equation in
Eq. (1.4), where the vertical turbulent mixing scheme from Onink et al. (2022a) is
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used:

x(t+ ∆t) =x(t) +

∫ t

t+∆t

v(x, τ)dτ +R
√

2K∆t

+ wb(t)∆t+ (∂Kz(x, t)/∂z) ∆t+R
√

2Kz(x, t)∆t (1.5)

where wb is the particle sinking velocity induced by (negative) buoyancy, and Kz is
the vertical diffusivity field which can be obtained from the ocean circulation model.
The particle rise velocity is usually estimated by assuming a certain shape and size
(e.g. sphere or ellipsoid; Poulain et al., 2019), and by calculating the difference in
density with respect to the sea water. Different formulations for estimating the rise
velocity exist, where we use the one by Dietrich (1982) in Chapter 5 after calibrat-
ing it to experimental data from Poulain et al. (2019). We furthermore allow the
rise velocity to vary over time, due to the biofouling process changing the effective
particle density and radius (Fischer et al., 2022).

1.4 Combining models with observational data
In this thesis, we will explore a range of different techniques that can be used to
combine numerical models with observational data. The most appropriate method
to combine numerical models with observational data depends on the quantity of
observational data that are available, and the availability of accurate and reliable
numerical models.
We show a scale of some available techniques in Figure 1.5. On the left end of
the spectrum we have the case where a numerical model is available that is able to
accurately capture the underlying process of the problem. For example, a numerical
solver is available for a problem where three criteria are satisfied: 1) the underlying
physics are well known, 2) all relevant scales of the problem can be resolved, and 3)
the boundary and initial conditions are well known. Think for example a simplified
flow case where the Navier-Stokes equations can be resolved up to the Kolmogorov
microscales. If some observational data are available, these can be used to validate
the model.

In practical circumstances it is hard to satisfy all these three criteria. In the middle of
the spectrum we have a scenario where the (physical) models cannot meet all three
criteria, but where more observational data are available. In this case, data assimi-
lation methods are a good option. One well known example are numerical weather
prediction models. These models are often non-linear, making them chaotic and
sensitive to initial conditions. Data assimilation algorithms can be used to calibrate
the initial conditions, such that the model output optimally match the available ob-
servational data. Afterwards, the model with the calibrated initial conditions can be
used to provide a more accurate forecast.
Most applications of data assimilation relate to the state estimation problem: for the
problem presented in this thesis the state vector could contain the plastic concentra-
tions ρ. A numerical model m is used to calculate how this state evolves over time,
for example making use of the stochastic matrix presented in Eq. (1.2), or by solv-
ing the (Lagrangian approximation of the) advection diffusion equation in Eq. (1.3).
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Data 
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Figure 1.5: A trade-off between model and data availability is driving the selection of the
most appropriate data-driven modelling method. Figure adapted, courtesy of Alberto Car-
rassi.

We know that the state ρ predicted by our model is not perfect. On the other hand
we might have some observations d: these can be relatively accurate (with a given
amount of observational error), but sparse in space and/or time. We can use these
observations to create an updated estimate of our state. Most data assimilation al-
gorithms can be derived in some way from Bayes theorem, by which we can write
the state estimation problem as:

f(ρ|d) =
f(d|ρ) f(ρ)

f(d)
, (1.6)

i.e. we estimate the posterior probability density function f of our state ρ given the
observations d. In the nominator we multiply the likelihood, f(d|ρ), with the prior
estimate of the state, f(ρ). The term in the denominator acts as a normalization
constant.
Data assimilation can also be used to estimate parameter values θ. This is relevant
for this thesis: in our plastic dispersion models we have unknown parameters defin-
ing, for example, the time scales on which plastic particles start sinking down due
to the biofouling process. Combined state and parameter estimation is also a possi-
bility (Evensen, 2009). In that case, the set of parameters can simply be appended
to the state vector, after which the data assimilation algorithm is used to estimate
both simultaneously. We will denote the vector that contains the state ρ and/or the
parameters θ as z, consistent with Evensen et al. (2022) in which a clear and com-
prehensive overview of data assimilation and state estimation methods is given.

Some approaches, like Markov-Chain Monte-Carlo (MCMC) methods, try to sample
the full posterior probability density function f in Eq. (1.6). To reliably sample the
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full posterior probability density function, one needs a lot of model evaluations,
however, which can be prohibitively expensive. Many data assimilation approaches
do not try to estimate the full posterior probability density function in Eq. (1.6).
When one assumes that the prior probability density function is a Gaussian, the
maximum a posteriori (MAP) estimate, or the most probable solution for the state-
parameter vector z can be calculated (Evensen et al., 2022):

zMAP = argmax
z

(f (z|d)) . (1.7)

This problem can be solved by minimizing a cost function J that is given by:

J(z) =
1

2
(z− zprior)

T
C−1
zz (z− zprior) +

1

2
(g(z)− d)

T
C−1
dd (g(z)− d) , (1.8)

where the first term compares the difference between the z and its prior estimate
zprior, weighted by the prior error covariance matrix Czz; and where the second
term compares the observations d with the predicted output from the model g(z) ,
weighted by the measurement error covariance matrix Cdd. The term g is called the
observation operator, which maps the state vector with size Nz to the observation
vector with size Nd: RNz → RNd . Taking the example in this thesis: the observation
operator would extract the plastic concentration from the state vector at the specific
times and locations for which the corresponding measurements are available.
In variational data assimilation methods, gradients of Eq. (1.8) with respect to z are
calculated to solve the minimization problem, by using for example Gauss-Newton
iterations (Evensen et al., 2022). This problem can be hard when z is very large,
and when no tools are available to automatically differentiate the model. Ensemble
Kalman Filter methods are very popular in data assimilation, which approximately
solve the minimization of Eq. (1.8) by using an ensemble of model runs. These
methods are easy to implement since the model to be assimilated can be used as
given, and work well for high-dimensional problems.
A part of this thesis consists of exploring what data assimilation and parameter es-
timation techniques are feasible for constructing plastic mass budget analyses. In
Chapter 4 we use a MAP approach to estimate a set of parameters defining sources
and sinks of plastic pollution, where Eq. (1.8) is minimized using a gradient based
method. We furthermore explore whether MCMC methods are feasible and compare
the results. In Chapter 5 we use an ensemble based approach called the Ensemble
Smoother with Multiple Data Assimilation (ESMDA; Emerick & Reynolds, 2013).
This method is similar to the Ensemble Kalman Filter, but works better for non-
linear models.

Finally, on the right side of the spectrum in Figure 1.5 we have a scenario where
it is hard to have an underlying numerical model for the problem at hand, and
where we try to predict underlying processes purely based on observational data.
These kind of problems can be resolved using statistical learning or machine learning
techniques. In this thesis we will consider supervised learning, where an algorithm
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is provided an input vector, a corresponding output vector, with the goal of creating
a map between the two. More specifically, we consider regression algorithms, as
opposed to predicting a finite amount of classes (classification). A broad range of
machine learning algorithms are available, where a good overview is given in Hastie
et al. (2008). A very basic example of a regression algorithm is linear regression,
where a linear map is made from a explanatory variable, called a feature in machine
learning (e.g. wind speed) to an observed quantity (e.g. plastic concentration).
Decision trees and random forests are popular methods due to their robustness, and
will be used in this thesis in Chapter 2. Artificial neural networks are probably the
most commonly known machine learning technique, due to their high versatility and
being able to capture highly complex relations, which is for example necessary for
image processing applications.
In machine learning, the input vector typically consists of multiple (Nf ) features.
Taking the example that will be presented later in Chapter 2: these can be the
wind speed and the height of the tide. For every observation (e.g. measured plas-
tic concentration at a given location and time), the corresponding set of features
are calculated. We then let the regression algorithm create the map from the in-
put vector containing the features, to the output vector containing the observations:
RNf×Nd → RNd . This can be done by minimizing a cost function very similar to
Eq. (1.8). Where g in Eq. (1.8) was called the observation operator in the case of
data assimilation, this is now a regression algorithm such as an artificial neural net-
work, that takes the Nf features as input, and by optimizing its internal parameters
(e.g. weights connecting the nodes of the artificial neural network) tries to repro-
duce the observations as well as possible. An illustration showing the similarities
between machine learning and data assimilation is shown in Figure 1.6.

DA: parameters !
ML: weights w

DA: state 
ML: features z

observations

d
observations

Figure 1.6: Data assimilation and machine learning can be quite similar in their set-up and
available methods, but differ in terminology. In data assimilation, a state evolves over time
as a function of model parameters θ, where the observation operator g maps the state to
the observations d. In machine learning, a vector containing the features is transformed by
e.g. a neural network with parameters (weights) w into the observations d. Both methods
minimize a similar underlying cost function. Figure based on Geer (2021).

In machine learning, there is (typically) no underlying physical model, which means
that the parameters (e.g. weights of an artificial neural network) have no direct
physical meaning or interpretation. The parameters are therefore often not assigned
a prior probability density function, which means that only the second term of the
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cost function in Eq. (1.8) remains, and the weighing with Cdd can be ignored. There
are exceptions, however, such as Bayesian neural networks where the neural net-
work nodes and/or weights are given a prior probability density function (Jospin
et al., 2022). Many machine learning algorithms furthermore employ regulariza-
tion techniques (Hastie et al., 2008), which has a similar effect as assigning a prior
probability density function to parameter values.

1.5 Research questions and thesis outline

In this thesis, we will focus on one methodological research question:

How can we use data-driven modelling to quantify the marine plastic mass
budget, where we bring together numerical models with observational data?

Here, we define data-driven modelling as using data to derive the functional form
or the parameters of a model.
This methodological question is used to answer an underlying scientific research
question:

What processes cause the large mismatch between the expected marine plastic
input and the estimated marine plastic standing stock? Is there a missing sink
of marine plastics?

In Chapter 2, we start close to home, by looking at litter on beaches in the Nether-
lands. As touched upon in Section 1.2.2, concentrations of plastics are relatively
high on coastlines. We will try, for the first time in the literature, to estimate the
total amount of litter on Dutch beaches. We make use of a dataset provided by
Stichting De Noordzee, who organize the Boskalis Beach Cleanup Tour every year,
keeping track of the amount of litter that was gathered. Data of litter concentrations
from the years 2014–2019 are used to train a random forest regression algorithm,
which takes the environmental conditions at the location and time of the cleanup
stage as input features. Afterwards, the regression algorithm is used to extrapolate
the litter concentrations along the entire Dutch North Sea coastline. We will also
investigate whether some particular environmental features play an important role
in estimating the litter concentrations. As mentioned in Section 1.2.2 little is known
about which physical and environmental parameters are the main drivers behind
the beaching of litter. No physical model exists at the moment which capture all rel-
evant parameters for the beaching process at an affordable computational cost. The
dataset from Stichting De Noordzee is quite unique in the field of plastic research, be-
cause of the amount of datapoints, consistency, and underlying effort. We therefore
use machine learning in this chapter, located on the right side of the data-driven
spectrum in Figure 1.5.

Many of the plastics that are found in the marine environment are small millimeter-
sized fragments. While developing the plastic source-sink-transport models, it turned
out that existing fragmentation models for marine plastics were relatively limited,
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and contained some inconsistencies. A new fragmentation model is presented in
Chapter 3, capturing how plastic particles fragment over time. This model is based
on existing fragmentation models capturing how rocks break down over time (Char-
alambous, 2015), which has been used to model and understand grain size distri-
butions. We will use the fragmentation model to explain the shape of the plastic
particle size distribution that was shown in Figure 1.4. We will furthermore analyze
how different parameters in the fragmentation model, for example related to the
fragmentation time scale and dimensionality of the plastic objects, affect this parti-
cle size distribution. This can give us information whether parameters such as the
fragmentation time scale can be estimated based on observational data.

In Chapter 4, we develop the methodology used to estimate the marine plastic mass
budget, by combining tracer transport models with observational data of plastic con-
centrations. We move towards the middle of the data-driven spectrum in Figure 1.5,
where we use observational data to calibrate a set of parameters defining sources
and sinks or marine plastics. To slightly simplify the problem, we limit the spatial
domain and focus on the surface water of the Mediterranean Sea. After calibrating
the set of parameters, we give an updated estimate on the total amount of plastic
entering the Mediterranean Sea, and give an overview where most of the plastic
pollution is expected to end up.

This analysis is extended to the global ocean in Chapter 5, where we consider longer
time scales and furthermore increase the model complexity by adding biofouling dy-
namics, adding the fragmentation process from Chapter 3, increasing the amount of
particle size classes, and increasing the amount of data from different marine reser-
voirs (surface ocean, deep ocean, and beaches). This calibrated model is used to
answer what is most likely causing the large mismatch between the expected ma-
rine plastic input and the estimated amount of plastics at the ocean surface.

Finally, we end the thesis with a summary in Chapter 6 by answering the research
questions stated above, and provide an outlook on future research coming forth
from our findings.





CHAPTER 2

Estimating the mass budget of
Dutch coastal litter using beach

cleanup data and machine
learning

Coastlines potentially harbor a large part of litter entering the oceans such as plastic
waste. The relative importance of the physical processes that influence the beaching
of litter is still relatively unknown. Here, we investigate the beaching of litter by
analyzing a data set of litter gathered along the Dutch North Sea coast during ex-
tensive beach cleanup efforts between the years 2014–2019. This data set is unique
in the sense that data is gathered consistently over various years by many volun-
teers (a total of 14,000), on beaches which are quite similar in substrate (sandy).
This makes the data set valuable to identify which environmental variables play an
important role in the beaching process, and to explore the variability of beach litter
concentrations. We investigate this by fitting a random forest machine learning re-
gression model to the observed litter concentrations. We find that especially tides
play an important role, where an increasing tidal variability and tidal height lead
to less litter found on beaches. Relatively straight and exposed coastlines appear
to accumulate more litter. The regression model indicates that transport of litter

This chapter has been published as:
Kaandorp, M.L.A., Ypma, S.L., Boonstra, M., Dijkstra, H.A., van Sebille, E. (2022): Using machine learn-
ing and beach cleanup data to explain litter quantities along the Dutch North Sea coast. Ocean Science,
18(1):269-293. https://doi.org/10.5194/os-18-269-2022
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through the marine environment is also important in explaining beach litter vari-
ability. By understanding which processes cause the accumulation of litter on the
coast, recommendations can be given for more effective removal of litter from the
marine environment, such as organizing beach cleanups during low tides at exposed
coastlines. We estimate that 16,500–31,200 kilograms (95% confidence interval) of
litter are located on the 365 kilometres of Dutch North Sea coastline.

2.1 Introduction
The accelerated release of mismanaged plastic waste into the global ocean gives
rise to the need for effective cleanup strategies (Ogunola et al., 2018). In order
to minimize the negative impact of plastic pollution on the environment, cleanup
strategies need to be optimized to target the most impacted areas while limiting the
economic costs (Haarr et al., 2019; Newman et al., 2015). Recent studies indicate
that plastics remain trapped in coastal zones (Koelmans et al., 2017; Lebreton et
al., 2019; Kaandorp et al., 2021; Morales-Caselles et al., 2021), with at least 77%
of buoyant marine plastic debris beaching or floating in coastal waters (Onink et
al., 2021). Therefore, beach cleanups have the potential to be a highly effective
mitigation measure.
In addition, the plastic concentrations found on beaches are generally higher com-
pared to other environmental compartments such as the surface water or the seafloor
(Morales-Caselles et al., 2021), making beaches favorable locations for cleanup ac-
tivities. Furthermore, by limiting the resuspension of plastic items by removal, the
overall plastic concentration on the beach decreases over time and the formation of
microplastic is reduced (Andrady, 2011; Haarr et al., 2020; Lebreton et al., 2019).
At the same time, as cleanup activities generally involve a large number of volun-
teers, awareness of the plastic pollution problem increases, leading to a reduction of
plastic waste in the local environment (Kordella et al., 2013).
Although the benefits of beach cleanups are well known, the location and timing of
these activities are often not optimized. Haarr et al. (2019) identified accumulation
zones of beached plastic using the shoreline curvature and gradient in the Lofoten,
Norway, and showed that high-accumulation areas are often missed by cleanup ac-
tions. Other coastal properties like substrate and backshore type have been found
to influence debris quantities as well (Hardesty et al., 2017; Brennan et al., 2018),
with more litter accumulating in areas with increased backshore vegetation. Addi-
tionally, physical processes play an important role in the beaching of plastics and
should be considered when selecting effective sites for beach cleanups.
However, the relative importance of the various physical processes involved and
how these can be parameterised remains so far unknown (van Sebille et al., 2020;
Pawlowicz, 2020). Studies have addressed the importance of the landward wind
direction for debris accumulation rates (Eriksson et al., 2013; Critchell et al., 2015;
Hengstmann et al., 2017; Moy et al., 2018), the landward ocean circulation direc-
tion (Thepwilai et al., 2021), the role of tides (Eriksson et al., 2013; Pawlowicz,
2020) and waves (Williams & Tudor, 2001). The spatial and temporal variability
of the sources, e.g. rivers, population density and the fishing industry, also play
an important role for the accumulation of plastic on beaches (Rech et al., 2014;
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Critchell & Lambrechts, 2016).
In addition to the study by Haarr et al. (2019), there are several other studies that
assess the prediction or monitoring of beached plastic items using machine learning
methods. These algorithms can be useful in discovering complex relations between
environmental variables and litter concentrations. In Granado et al. (2019), a ma-
rine litter forecasting model was made using Bayesian networks, involving various
variables like wave height and period, wind velocity and directions, precipitation,
and river flows. Neural networks have been used to quantify litter categories in
Balas et al. (2004) and Schulz & Matthies (2014), and deep learning methods have
been used to automatically identify debris on beaches (Song et al., 2021).
In order to make data-driven methods work, relatively large and consistent data sets
are necessary, whereas most observational data is sparse. Beach cleanups and citizen
science initiatives can potentially provide valuable information for scientific studies
on marine pollution (Zettler et al., 2017), as these data are based on a considerable
amount of person hours. Examples of citizen science data used in marine pollution
research are e.g. Hidalgo-Ruz & Thiel (2013), where schoolchildren in Chile docu-
mented the distribution and abundance of plastic debris on beaches, and Ribic et al.
(2010, 2012), where amounts of marine debris were measured by volunteer teams
on beaches in the Pacific and Atlantic.
Here, we will build upon past data-driven studies by using an unprecedented data
set obtained from beach cleanup efforts organized along the Dutch North Sea coast
between 2014–2019. The number of participants (about 14,000), person-hours
(about 84,000 hours), the length of beach sampled (about 1,400 kilometres) and
the fact that all beaches sampled were similar in substrate (sandy), make this data
set unique and very appropriate to apply data-driven methods. Furthermore, a large
set of explanatory variables will be created, based on environmental conditions and
modelled transport of marine litter. We will fit a random forest regression model to
the observed litter concentrations as a function of these explanatory variables, and
investigate which ones are important to explain the variability in beach litter. This
allows us to investigate which variables are important predictors for the amount of
litter present on beaches, to get a better understanding of marine pollution, and to
increase the efficacy of beach cleanups by creating a predictive model that could aid
future cleanup efforts.

2.2 Methods

2.2.1 Data description and region of interest
Since 2013 the North Sea Foundation, a Dutch environmental non-governmental
organisation (NGO) advocating the protection and sustainable use of the North Sea
marine ecosystem, has organised the national Boskalis Beach Cleanup Tour. During
this tour, every year in August, the entire Dutch North Sea Coast is cleaned up by
volunteers. It is the largest cleanup campaign in The Netherlands. The tour is
divided into stages along the North Sea coast. The length of each stage is between
8-10 kilometres. The midway points of all stages are plotted in Figure 2.1 using the
black crosses.
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During the first three editions (2013-2015), the tour was organised over a period of
a month, with one stage per day. From 2016 on, the tour took 15 days, with simul-
taneous cleaning of two stages per day. One cleanup team started on the Wadden
Island Schiermonnikoog (most eastern cross in Figure 2.1), the other team started in
the southwestern province Zeeland in Cadzand (most western cross in Figure 2.1).
On day 15, both teams met halfway in Zandvoort (≈ 4.5◦E). The cleanups started
around 10.00am and ended around 4.00pm, with total cleanup times between 4-6
hours for each stage. The volunteers were guided by cleanup teams of the North Sea
Foundation, which consist of professional employees of the North Sea Foundation
and trained volunteers.
At each stage, all litter present on the beach was collected in plastic bags and
weighed. The weighing of the collected litter was done using analogue and/or dig-
ital scales (during the stage or at the end of the stage) and carried out by one of
the members of the cleanup team. Most of the litter found was plastic (estimated
percentage between 80-90% in terms of numbers). The years over which weights
of collected litter are available for each stage are plotted in Figure 2.1 using the
coloured squares. For most stages, weights are available for all years, in some cases
stages were added in later years. Figures with the observed amount of litter per loca-
tion per year are presented in the supporting material, Figure A.1a and Figure A.1b.
To get an impression of the mean environmental conditions along the Dutch North
Sea coast, the mean surface currents are plotted in Figure 2.1 using the arrows
(Global Monitoring and Forecasting Center, 2021), and the mean wind speed and
direction are plotted using the wind rose (Hersbach et al., 2020), all averaged over
August between 2014–2019. The wind is predominantly coming from the south-
west. Generally, the currents move from southwest to northeast along the North
Sea coast. The effect of fresh water influxes from rivers is visible around the south-
ern province of Zeeland (< 52◦N). The effect of this fresh water influx can be ob-
served over considerable distances along the Dutch coast, for example in the form of
fresh water lenses travelling downstream (de Ruijter et al., 1997; Rijnsburger et al.,
2021). Ricker & Stanev (2020) found that locations with high salinity gradients due
to a fresh water influx can act as a barrier for neutrally buoyant particles, possibly
causing accumulation of litter along these fronts. Finally, not plotted in the figure,
tidal currents move along the coast to the northeast during flood tide and southwest
during ebb tide.

2.2.2 Data preprocessing
Different sources of marine litter exist, such as mismanagement of waste near the
coast, input from rivers, or fishing gear which is lost at sea. The litter is then trans-
ported through the environment, and can eventually end up on beaches, influenced
by various factors such as ocean currents and winds. How all these variables com-
bined influence the beaching of litter is unknown, however. A regression model is
used here to relate various environmental variables to the observed litter concen-
trations. We will assess whether it is possible to use the regression model to make
predictions on the amount of beached litter, and if so, which environmental vari-
ables are important predictors to take into account.
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Figure 2.1: Locations of the midway points for each cleanup tour stage (black crosses); and
in which year data are available (the coloured squares). For stages with multiple data points
per year, different stretches of beach were cleaned (e.g. once the northern side, once the
southern side). Also plotted are the mean surface currents (arrows) (Global Monitoring and
Forecasting Center, 2021), and the wind rose (Hersbach et al., 2020), calculated over August
2014–2019.
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Table 2.1: An overview of the numerical hydrodynamic and wind data used to derive the
variables for the regression analysis. The data set name, temporal/spatial resolution, data
used to assimilated the numerical models, and corresponding references are presented. For
variables with an asterisk (∗) data are used from July up to September 2014–2019. For data
with a double asterisk (∗∗) data are used for all months from January 2011 up to September
2019, as these are used for the Lagrangian model simulations as well.

Variables Data set name Spatial res. Temporal res. Assimilated data Reference
U∗∗
curr , S∗ North West

Shelf reanalysis
1/9◦ × 1/15◦ daily-mean temperature, salinity

observations
(Global Monitoring and
Forecasting Center,
2021)

U∗∗
Stokes, H∗

s Global Ocean
Waves
reanalysis

1/5◦ × 1/5◦ 3-hourly-
instantaneous

Hs and directional
wave spectra
observations

(Global Monitoring and
Forecasting Center,
2020)

U∗
tide, h∗

tide FES2014 1/16◦×1/16◦ spectral altimetry data, tidal
gauges

(Lyard et al., 2021)

U∗
wind ERA5 global

reanalysis
1/4◦ × 1/4◦ daily-mean various observations (Hersbach et al., 2020)

For the environmental variables, three classes of data are used. First of all, hy-
drodynamic data (ocean currents, ocean surface waves, tides) and wind data are
used (Section 2.2.2). Furthermore, we use Lagrangian simulation data, capturing
transport of virtual particles representing floating litter. These simulations are used
to estimate fluxes of litter onto beaches (Section 2.2.2). Finally, we use data of
the coastal geometry and orientation (Section 2.2.2). Environmental variables are
calculated for various lead times and distances from the measurement locations (ex-
pressed as radii around the stage midway points). These variables are then fed into
a random forest algorithm to make the regression model.

Hydrodynamic and wind data

Numerical model data are used to specify the state of the sea and wind around
the beach cleanup locations, as these factors have been found to likely play a role
in the accumulation of beach litter (Eriksson et al., 2013; Thepwilai et al., 2021;
Williams & Tudor, 2001). Reanalysis data are used, where historical observational
data have been assimilated in numerical models.
Information on the ocean surface currents (Ucurr.), salinity (S), Stokes drift (UStokes),
and significant wave height (Hs) are derived from E.U. Copernicus Marine Environ-
mental Monitoring Service Information data. High frequency tidal forcing has been
used to produce the ocean current data, but output is only provided daily. To cap-
ture the effects of tides on a high temporal resolution, FES2014 data are used. Tidal
currents (Utides) and heights (htide) are calculated, taking the M2, S2, K1, and O1

constituents into account (Sterl et al., 2020), as well as the M4 and M6 components
which have been shown to play an important role in transport of suspended parti-
cles in the North Sea (Gräwe et al., 2014). The wind velocity field at 10m (Uwind)
is taken from ERA5 reanalysis data. ERA5 data are used for the atmospheric forcing
in the North West Shelf reanalysis product from which the surface current data are
obtained, making these data sets consistent. Further details on the temporal/spatial
resolution and assimilated data are given in Table 2.1.
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Lagrangian model setup
While data on the sea state and wind might explain the litter accumulating on
beaches to some extent, it misses information on possible sources of litter, and how
this litter is transported through the marine environment. We therefore include
estimates of beached litter fluxes in our analysis based on Lagrangian particle simu-
lations.
Using the OceanParcels Lagrangian ocean analysis framework (Delandmeter & van
Sebille, 2019), we model the trajectories of virtual buoyant particles at the sea sur-
face using a Runge-Kutta 4 integration scheme. These virtual particles represent
floating litter such as plastics. For the trajectories we consider a domain between
20◦W–13◦E, and 40◦N–65◦N, see Figure 2.2. We simulate a total of about 380,000
trajectories over the years 2011–2019. When particles move out of the specified
domain they are removed, which mainly happens after particles move northward
along the Norwegian coast. The ocean surface currents and Stokes drift from the
hydrodynamic data are used to move the virtual particles around. We do not add
additional tidal forcing to the Lagrangian model (Sterl et al., 2020) since the net
effect of tides is already included in the ocean surface current data set (Global Mon-
itoring and Forecasting Center, 2021). It is assumed that particles move just below
the surface water, and do not experience a direct wind drag (Lebreton et al., 2018;
Macias et al., 2019; Kaandorp et al., 2020). Effects of subgrid-scale phenomena are
parameterised using a zeroth-order Markov model (van Sebille et al., 2018). The
tracer diffusivity is set to a constant value of 10 m2/s, appropriate for the given mesh
size (Neumann et al., 2014).
Virtual particles are released daily at river mouths, proportional to the estimated
monthly riverine outflow of plastic waste based on the model by Lebreton et al.
(2017). These sources are plotted using green circles in Figure 2.2. Particles are
released daily in the sea, proportional to the amount of fishing hours based on
Kroodsma et al. (2018), shown in blue in Figure 2.2. These data are dependent
on fishing vessel transponders, which are not equally present over the years. We
therefore release a constant input of virtual particles from this source each day. Fi-
nally, there is a constant daily release of particles along coastlines, proportional to
the amount of estimated land-based mismanaged plastic waste within a radius of
50km from the coastline (Jambeck et al., 2015; SEDAC et al., 2005). These sources
are plotted in red-brown in Figure 2.2.
A beaching time scale τbeach parameterises how quickly litter moves from the sea
onto the beach when residing near the coast (for more details see Chapter 4). Here,
the probability of beaching Pbeach is given by:

Pbeach = 1− e−tcoast/τbeach , (2.1)

where tcoast is the time that particles spend in the model ocean cell adjacent to the
coast. Various values for τbeach are tested here, from τbeach = 25 days estimated for
plastic particles and τbeach = 75 days estimated for drifter buoys later in Chapter 4,
to a more conservative value of τbeach = 150 days. While in reality τbeach might vary
significantly both in space and time, it is unknown how this can be best parame-
terised (Onink et al., 2021). We use the Lagrangian model simulations to capture
the large-scale transport of litter, and allow the regression model to pick the most
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appropriate value for τbeach later on. Only direct pathways of litter through the sur-
face water are considered here and resuspension of litter from beaches (Onink et al.,
2021) is ignored. Particles are tracked until they have lost more than 99% of their
initial mass in the most conservative scenario of τbeach = 150 days. This means that
particles are deleted when they have spent more than 691 days near the coast.
Each virtual particle starts with a unit mass. Each time step that a virtual particle
spends near the coast, a fraction of its mass is lost due to the beaching process. This
means that as tcoast increases for a virtual particle, a fraction of its mass is lost,
which is calculated using Eq. (2.1). For each virtual particle, we calculate where
and when it loses mass due to the beaching process. These masses lost to beaching
are binned in a 1/9◦ × 1/15◦ beaching flux histogram for each day. These beaching
fluxes are denoted by Fbeach, and are calculated for each particle source: Fbeach,fis.,
Fbeach,riv. and Fbeach,pop. for fishing activity, river inputs, and mismanaged plastic
waste from coastal population, respectively.

Coastal orientation and geometry

Coastal orientation, geometry, and substrate are likely to influence the amount of
litter that actually beaches on coastlines (Brennan et al., 2018; Andrades et al.,
2018; Hardesty et al., 2017). Although the substrate of beaches in the Netherlands
is relatively similar (sandy), there are local variations in the coastline orientation
with respect to the large-scale coastline. We take this into account by including
information on how the hydrodynamic and wind data are oriented with respect to
the local coastline.
The Natural Earth data set is used here at a 1:10 million resolution (Kelso & Patter-
son, 2010), which is fine enough to estimate the general orientation of the beaches
on which the cleanup stages have taken place. Two locations are not present in the
coastal geometry of this data set (two man-made beaches along dams: Brouwers-
dam and Neeltje Jans); the coastal orientations of these locations were determined
manually.
Normal vectors to the coastline (denoted by n) are estimated by fitting a tangent
plane through the points defining the coastline segments. Using a singular value
decomposition we minimize the orthogonal distance between these points and the
plane. All points within a box of 10×10 km centered around the stage midway point
are selected (roughly the length scale of the beach cleanup tours). One example
is plotted in Figure 2.3a, where the dotted box is the selection around the stage
midway point, and the coastline segments within this box are indicated in orange.
The resulting normal vector to this coastline segment is plotted using the orange
arrow.
Dot products are calculated for vector fields (e.g. current velocity) with respect
to the coastline normal vectors, to quantify how much a vector points on-shore
(positive dot product), or off-shore (negative dot product). An example is presented
in Figure 2.3b. At a given stage midway point, the numerical data within a certain
radius are selected. For each of the cells we can then calculate the dot product
of the vector data with respect to the coastline normal vector. In the example of
Figure 2.3b, the normal vector points towards the northeast. Cells where the velocity
vector points in roughly the same direction (on-shore) are coloured red, the opposite
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Figure 2.2: Input scenarios used to seed virtual litter particles in the Lagrangian simulations.
Riverine input is indicated by the green circles, the amount of fishing hours in blue, and
the coastal mismanaged plastic waste density in red. Note the log scale used for all input
scenarios. While all rivers from Lebreton et al. (2017) are included in our analysis, only
rivers predicted to transport more than 0.2 tonnes of plastic litter into the ocean are plotted
here.
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Figure 2.3: Illustration of the methodology used to calculate the directional variables. In the
left panel (a), we show the high resolution coastline points and the derived normal vector
(n) in orange, located around the stage midway point (the black cross). Also shown are the
numerical model coastline points and the derived normal vector (ngrid) in brown. In the right
panel (b), it is shown how the dot product variables are calculated. In a radius around the
stage midway point, the dot product of the vector field is calculated with respect to the high
resolution coastline normal vector (n), where off-shore components are indicated in blue,
and on-shore components in red.

directions (off-shore) are coloured blue. In Figure 2.3b the example is presented for
only one time snapshot: the quantities can be calculated for various lead times. We
then save derived quantities such as the mean, maximum, or minimum dot product
over the lead time in a given radius, which will be further explained in Section 2.2.3.
The coastal normal vectors are also used to estimate the misalignment between the
numerical model coastline and the high resolution coastline. In Figure 2.3a, the
numerical model grid cell centers at the coast are plotted using the brown dots. A
singular value decomposition is used again to estimate the coastline normal vector
of the numerical grid (ngrid, indicated by the brown arrow). At each stage midway
point, the dot product is taken of ngrid with respect to the high resolution coastline
normal vector n, to obtain a measure for the misalignment. In the example plotted
in Figure 2.3a there would be a large amount of misalignment between ngrid and n,
resulting in a negative dot product between the two quantities.
Finally, the coastline length per grid cell is estimated. For each cell of the numerical
model, we take the coastline segments within the given cell, and calculate their
total length. Since coastlines show fractal behavior (Kappraff, 1986) their Euclidian
length is not well defined. This means that the lengths calculated here are estimates,
and that their value would increase when taking a higher model resolution.

Spatial variability

Information on spatial variability of beached litter can be useful for cleanup cam-
paigns to target areas which are likely to be the most polluted. One might expect
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that cleanup locations close to each other show more similar litter concentrations,
compared to locations that are further apart. Furthermore, it is important for mod-
elling studies to know the subgrid-scale variability which is not captured by the
(discrete) numerical data. Finally, observing how spatial variability changes for dif-
ferent length scales could give us clues which physical processes are important for
the dispersion of litter.
We will quantify the spatial variability of litter found on the coast as a function of
the separation distance between the different cleanup locations using an empirical
variogram. To compute the empirical variogram, all pairs of measurements within
a certain distance of each other are compared, defined by h ± δ, where h is called
the separation distance, and δ is half the bin width used to discretize the separation
distance. The empirical variance γ̂(h) of the measurements separated by h ± δ is
calculated using (Bachmaier & Backes, 2011):

γ̂(h± δ) =
1

2N(h± δ)
∑

(i,j)∈N(h±δ)

(zi − zj)2, (2.2)

where N(h± δ) denotes the number of samples in the given separation distance bin,
and z is the quantity of interest.
We calculate the empirical variogram on the log10 values of the measured plastic
concentrations in kg km−1. Confidence intervals of the calculated variogram are
estimated using a jackknife parameter estimation (Shafer & Varljen, 1990).
Measured litter concentrations are subject to both spatial and temporal variability.
To remove temporal variability as much as possible from the empirical variance es-
timates, we only use data pairs within a certain time separation. Decreasing the
time separation window reduces the effect of the temporal variability, but also re-
duces the number of available data pairs. We use a time separation of 3 days here,
for which it was found there are still enough available data pairs to compute the
empirical variogram.

2.2.3 Model
Machine learning features

The variables described in sections 2.2.2–2.2.2 are used to create a set of explanatory
variables, which are related to the observed beach litter quantities. It is, however,
not obvious what kind of lead time should be considered for the variables, and over
which spatial scale the variables will have an influence on beach littering. We there-
fore calculate a large set of combinations for the explanatory variables by varying
the radius of influence and/or the lead time. For the radii, we will consider the
variable data closest to the stage midway point (which we will denote by a radius of
0 km), and variable data within radii of 50 and 100 kilometres. For lead times, we
will consider 1, 3, 9, and 30 days. As shown in Eriksson et al. (2013) and Ryan et al.
(2014), the turnover of litter on beaches generally happens within time scales of
days, meaning that with this range of lead times we should be able to capture most
of the litter accumulation. Furthermore, a lead time of 30 days also captures all
tidal variability up to and including the spring-neap cycle. The combinations of vari-
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ables, lead times, and radii will be called features, which are fed into the regression
algorithm.
An overview of the features is given in Table 2.2. Three categories are defined: scalar
features; directional features, which contain information on the direction of various
vector fields with respect to the coastline; and features derived from the Lagrangian
model simulations.
For the scalar features, we look at Hs, and the magnitude of UStokes, Uwind, Ucurr.,
and Utides. We calculate the mean and the maximum of these quantities using all
data points within the given radii and lead times.
We calculate a number of features derived from the tidal height htide. First of all,
the maximum tidal height and the standard deviation of the tidal height over the
given lead times are calculated, taking the closest data point from the stage midway
point. Furthermore, a quantity is defined giving information in which period of the
spring-neap tidal cycle the stage was monitored (htide,deriv.). The maximum tidal
height at the stage day, and the maximum tidal height at the given lead time are
calculated. We calculate the temporal derivative by subtracting both values and
dividing by the lead time. A positive value means we are approaching the spring
tide, a negative value means we are approaching the neap tide. Since spring tides
occur roughly every two weeks, only lead times of 1 and 3 days are used for this
feature. Finally, the minimum and maximum tidal height encountered during each
stage are calculated, since these might contribute to how much beach was sampled
during that day.
The total coastline length within a given radius is calculated (lcoast), using the Nat-
ural Earth data set as explained in Section 2.2.2. To include possible local sources of
litter, the population within a given radius (npop.) is included as a feature (SEDAC
et al., 2005), as well as the total fishing activity (Kroodsma et al., 2018) within a
given radius (nfis.). Additionally, we want to include information on whether river
mouths are present upstream of the cleanup stage. We use salinity (S) as a proxy for
this, as a low salinity will indicate a nearby river mouth. The mean and minimum
salinity are calculated over the various radii and lead times.
The number of participants for each stage is used as a feature (npart.), to assess
whether a lower percentage of litter is captured at stages with less participants.
These data are available for 2017–2019. For 2014–2016 only the total number of
participants per year is available. To estimate the number of participants per stage
for these years, we first calculate the participant fractions per location over 2017–
2019. These fractions are then scaled with the total number of participants over
2014–2016.
For the directional features, we calculate the dot product of the Stokes drift, wind,
ocean currents, and tides with respect to the coastline normal vector (n). Again,
the mean and maximum are calculated, as well as the minimum, since this gives us
additional information whether there have been strong off-shore components. These
features are calculated for all radii and lead times. Furthermore, the misalignment
of the numerical model coastline normal vector (ngrid) with respect to the coastline
normal vector is specified as a feature.
Finally, the total fluxes of beached litter from the Lagrangian particle simulations
are given as features, from fisheries (Fbeach,fis.), riverine input (Fbeach,riv.), and
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Table 2.2: An overview of the machine learning features used. For each set of variables in
each column, derived quantities are calculated such as the maximum, sum, or mean, over the
given radius and lead time. Directional features are dot products of a given vector field with
respect to the coastline normal vector n. For parameters with an asterix∗, further explanation
is given in the main text. For the last category (Lagrangian model features), the radius, lead
time and the beaching time scale (τbeach) are all varied.

Categ. Scalar features Directional features Lagrangian
model features

Var. Hs,
|UStokes|,
|Uwind|,
|Ucurr.|,
|Utides|

htide htide lcoast,
npop.,
nfis.

S npart. UStokes ·n,
Uwind · n,
Ucurr. · n,
Utides · n

ngrid ·n Fbeach,fis.,
Fbeach,riv.,
Fbeach,pop.,
τbeach=25,75,
150d.

Qtt. mean, max max, std,
deriv.∗

max, min sum mean, min - mean, max,
min

- sum

Radii
[km]

0,50,100 0 0 0,50,100 0,50,100 - 0,50,100 0 0,50,100

Lead
times
[days]

1,3,9,30 1,3,9,30 during
tour∗

- 1,3,9,30 - 1,3,9,30 - 1,3,9,30

mismanaged waste from the coastal population (Fbeach,pop.). These features are
calculated for different beaching time scales τbeach, all radii, and all lead times.
The features are divided by the appropriate lcoast corresponding to the radius, to
get the estimated beached litter fluxes per unit length of coast. One benefit of
adding beached litter fluxes from the Lagrangian particle simulations, is that poten-
tial sources of litter far away from the beaching location can be included. While the
radius of influence for all features goes up to 100 kilometres, the Lagrangian model
features can still include information from further away, since the virtual particles
are tracked indefinitely as explained in Section 2.2.2.
Regression model. The features and corresponding response (the measured amount
of litter in kg km−1) are used to fit a random forest regression algorithm (Pedregosa
et al., 2011). This model allows us to capture non-linear relations between the
features and response. It is a non-parametric model, and does not require prior
knowledge on the model structure. These are both important reasons to choose the
specific algorithm: coastal processes affecting dispersion of marine litter are highly
complex (van Sebille et al., 2020), so we do not know a priori how the different en-
vironmental variables might interact, and how non-linear these interactions might
be. The random forest regression model can aid in scientific knowledge discovery
(Bortnik & Camporeale, 2021): it gives us Gini importances for all features (Nem-
brini et al., 2018). This is another reason for choosing this specific algorithm, as it
provides us information which processes are important for predicting beached litter
concentrations.
In total we have 342 features from all variable, radius, and lead time combinations.
There are a total of 175 measured litter concentrations. The large number of fea-
tures in comparison to the measurements makes it difficult to interpret the feature
importance and could lead to overfitting. Therefore, k-fold cross validation is used
to validate and test the model on a reduced amount of features, which are selected
from a set of clusters.
Some features correlate as these are, for example, derived from the same variable,
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but for a different radius or lead time. However, we do not know a priori which of
these radii and lead times are the most appropriate predictors for the beached lit-
ter quantities. For example, litter concentrations might be influenced by long-term
processes, slowly increasing the standing stock of litter on the beach, or the concen-
trations could be better predicted by conditions on the day leading up to the cleanup
stage. Since we do not know this, we let the algorithm select the most appropriate
variables. Features which are highly correlated will be assigned to clusters. We use
hierarchical Ward-linkage clustering for this, based on Spearman rank-order corre-
lations (McCann et al., 2019; Cope et al., 2017). This way, the total set of features is
reduced to 66 feature clusters. For further details and interpretation of the clusters
see the supporting material A.3.
Nested 5-fold cross validation is used for optimal feature selection from the clusters,
and to assess the model performance on a test data set. In the outer loop, we use
80% of the data to train the model, and use the remaining 20% to test the model
performance. This is repeated for each fold, i.e. 5 times. In the inner loop, 80% of
the training data (i.e. 64% of the total data) is used to train the model, and 20% of
the training data (i.e. 16% of the total data) is used to calculate the importance of
the features, also repeated 5 times. Since in the inner loop none of the test data are
used to train the model, we do not overpredict the model performance (Hastie et al.,
2008). As all features in our regression model are continuous (i.e. there is no bias
from categorical features (Nembrini et al., 2018)) we use the random forest Gini
importance. After the inner loop is complete, we then select the feature with the
highest Gini importance from each cluster. The random forest is trained using the
selected features, and its performance is evaluated using the test data. We keep track
of which features from the clusters are estimated to be the most important. The en-
tire process is repeated 10 times, to obtain consistent feature importance estimates.
A schematic of the model pipeline is presented in the supporting material A.4.

2.3 Results and discussion

2.3.1 Regression analysis
The regression model shows reasonable correspondence with the measured litter
concentrations, where the Pearson correlation coefficient (R) based on the repeated
cross validation is 0.72± 0.08. A scatter plot with the measured litter concentrations
on the x-axis and the predicted litter concentrations on the y-axis is shown in Fig-
ure 2.4. The points are coloured according to their test folds. As the 5-fold cross
validation is repeated 10 times, only one realization is shown here, where every data
point is plotted once.
In the same figure, the variability is shown that can be expected for length- and time
scales smaller than the numerical data resolution. Using the empirical variogram,
we calculate that γ̂ = 0.08 for lag distances of h = 5 ± 5 km. This lag distance
is at the lower side of the grid resolution for the numerical data (approximately
7 km for the ocean current data), so the model is not able to capture variations
below this length scale. Therefore a 1:1 line is plotted ± 2 standard deviations
based on this variance, as an indication of the optimal performance that can be
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Figure 2.4: Scatter plot of the observed litter quantities (x-axis), and the modelled litter
quantities (y-axis), both log-transformed. The points are coloured according to the 5 test folds
used in the analysis. The 1:1 line is plotted using the black dashed line, and the estimated
uncertainty based on the small-scale variance (±2σ) is plotted using the red dashed lines.

expected. In this case, 94% of the predicted values lie inside the ±2σ interval,
indicating that the model is close to the optimal performance that can be expected
for the given spatial and temporal resolution. It can be seen that there are two
kinds of outliers in Figure 2.4: low observed litter concentrations not captured by
the model (points in the upper left corner of the scatter plot), and high observed
litter concentrations not captured by the model (points in the lower right corner
of the scatter plot). This can be explained by the fact that the model is not able
to capture all variability contained in the observations. As the hydrodynamic and
wind data in the model have a limited resolution, subgrid-scale effects are missing
(see Section 2.3.2). Furthermore, local point sources of litter (both spatially and
temporally, e.g. shipping container accidents (van der Molen et al., 2021)) are not
captured by the model.
In Figure 2.5 we show box-plots for the 10 most important features based on the
Gini importance, picked out of the total 66 feature clusters. Importance scores for
all 66 feature clusters are plotted in the supporting material A.2. The model indi-
cates that tides play an important role for predicting the amount of beached litter.
The most important feature is related to the long term variability of the tidal height,
with a lead time of 30 days. Short term behavior is also seen as important, as the
second most important feature is the maximum tidal height encountered within a
lead time of 3 days. Furthermore, the maximum tidal height encountered during the
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tour is the 6th most important feature, and the dot product of the tidal currents with
respect to the coastline is the 8th most important feature. In general, a higher tidal
maximum and variability lead to less litter measured on the coastline (see the the
supporting material A.2.5 for further details). A higher tide during or preceding the
cleanup could re-suspend some of the litter from the beach. Furthermore, a higher
tide encountered during the cleanup stage reduces the beach width that can be sam-
pled. Perhaps a stronger variability in the tidal height leads to less persistent high
strandlines where the highest litter concentrations are normally found (Heo et al.,
2013). It has been shown in numerical studies that residual tidal currents can lead
to a net transport of both suspended and floating matter (Gräwe et al., 2014; Børve
et al., 2021; Schulz & Umlauf, 2016). While the regression model indicates that
tides play an important role, it is difficult to separate the causal relations between
all these different effects and the litter quantities found on beaches. To quantify this
in more detail, further experimental and numerical studies are required.
The coastline length in the neighborhood of the cleanup stage (lcoast) is ranked as
the 4th most important feature. This feature can describe multiple effects on litter
concentrations. More coastline per unit area means that litter concentrations are
possibly spread out over longer stretches of beach, reducing the amount of litter
per kilometer of beach. Furthermore, an increasing lcoast indicates an increasing
irregularity of the nearby coastline shape. This is for example the case around the
province of Zeeland in the southwest (< 52◦N in Figure 2.1): in these regions with
irregular coastlines, more sheltered beaches can be found compared to regions with
a long straight coastline, influencing the litter concentrations. Coastal orientation,
ngrid · n, plays an important role given its 5th highest Gini importance. When the
coastline section tends to be more directly located towards the open sea, the large
scale coastal geometry (ngrid) aligns with the small scale coastal geometry (n) at
the locations used here. In e.g. Haarr et al. (2019) and Hardesty et al. (2017), it was
reported that large scale headlands tend to enhance catchment of litter compared
to large scale sheltered areas. This is in line with our findings, with an increasing
ngrid · n leading to more predicted litter (see the supporting material A.2.5).
Results suggest that transport of marine litter is important to take into account, as
the 3rd and 7th most important features are beaching fluxes from the Lagrangian
model simulations from fishing activity and coastal mismanaged waste. These fea-
tures implicitly contain information on various hydrodynamic variables and sources
of litter, explaining why these are ranked above most other scalar and directional
features related to wind, currents, and waves. Also interesting to notice, is that they
are all ranked above the nearby fishing activity (nfis.) and population density (npop.)
, which are the 10th and 14th most important features respectively (see Figure A.2).
This could indicate that transport of litter through the marine environment is impor-
tant to take into account, as opposed to only considering local terrestrial sources.
From the three possible sources of litter used in the model, transport from fisheries
is the most important. This is consistent with the litter composition found on Dutch
beaches, which consists for a major part of fishing related items (40%; van Duinen
et al., 2022).
Finally, the dot product of Ucurr. with respect to the coastline is seen as important,
at place 9. This feature is related to small-scale/long-term behavior, which might
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Figure 2.5: Box plots for the feature Gini importances from the random forest regression
algorithm. Only the top 10 features are plotted here, an overview of all features can be
found in the supporting material A.2. The label colours correspond to the variable categories
in Table 2.2, where scalar features are indicated in blue, directional features in red, and
Lagrangian model features in orange. The radius and lead time are indicated in the brackets
when applicable.

give an indication whether there are currents present moving the litter on-shore to
the cleanup stage location.
Changes in predictive capability are relatively small when leaving out the Lagrangian
model simulation features, see Figure A.3. The Pearson correlation coefficient R in
this case is 0.72 ± 0.10, which is not significantly less than the full model. This
suggests that to some extent information on transport of litter is also contained in
other variables such as the currents, waves, and wind magnitude and direction.
Directional information seems to play an important role, as when leaving out the
Lagrangian model simulation features, 4 out of the 10 most important features are
related to the dot products of currents, tides, and Stokes drift with respect to the
coastline (see Figure A.4).
It is estimated that the number of participants taking part in the tour does not have
a large influence on the amount of litter that is found, see the supporting mate-
rial A.2 for further details. This suggests that with an average of 77 participants per
campaign, adding more participants would not necessarily lead to more litter being
cleaned up. No clear patterns emerge regarding lead times and radii for the most
important features. This could indicate that litter found on beaches is an ensemble
of objects with different moments of beaching and residence times. Features regard-
ing wind and significant wave height are seen as less important, being ranked 18th
and lower, see Figure A.2. It is possible that this information is already contained in
the Stokes drift, or that they play a lesser role in the transport of litter. One explana-
tion is that most of the litter found during the cleanup tour has a relatively low wind
drag coefficient in the water, which was also observed in Lebreton et al. (2018) for
litter in the Great Pacific Garbage Patch.
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Figure 2.6: The two principal components based on the five most important features (see
Figure 2.5). The points are coloured according to their latitude, from which the separation
of measurements into three different clusters (51–52◦N, 52–53◦N, and 53–53.5◦N) becomes
evident.

Having the full set of 66 feature clusters is not necessary for predictive capability. In
Figure A.5 we show that the model performs well when only picking the top 8 fea-
tures (Pearson correlation coefficient R: 0.79± 0.04). Increasing the amount of fea-
tures does not increase the model performance. For an operational model it would
therefore be recommended to stick to a lower amount of features, as this keeps the
model simple and easier to interpret. We investigate if the most important variables
are related to certain locations by performing a principal component analysis, tak-
ing these 8 most important features in the full model (Figure 2.5). A scatter plot
of the first two principal components is presented in Figure 2.6, where the dots are
coloured according to their latitude. The two principal components explain 50% and
17% of the total variance respectively. What can be seen, is that the points separate
into roughly three different regions: measurements taken at lower latitudes around
the province of Zeeland (51–52◦N), measurements taken between 52–53◦N, and
measurements obtained near the Wadden Islands (53–53.5◦N). The first principal
component shows the highest absolute correlation (Pearson R: 0.45) with long-term
tidal variability (with a lead time of 30 days). The second principal component
shows the highest absolute correlation (Pearson R: -0.58) with the nearby coastal
length (within a radius of 50km). As the measurements taken between 52–53◦N are
clustered quite closely together, this indicates that conditions regarding tides and
coastline geometry are relatively similar for these locations. Variations of the tidal
height are relatively large for 51–52◦N. The coastal geometry is also more irregular
here compared to the rest of the Netherlands. These factors combined likely lead to
less litter on beaches here: for < 52◦N we find on average 52 kg km−1, for > 52◦N
we find on average 73 kg km−1, calculated over 2014–2019.
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2.3.2 Spatial variability
To assess which length scales are important for the spatial variability of beached
litter, we calculate the empirical variogram for different lag distances. Spatial vari-
ability remains relatively constant for lag distances up to about 100 km, with a mean
of γ̂ = 0.07, see Figure 2.7. For the smallest lag distance (h = 5 ± 5 km), we find
γ̂ = 0.08. This variance estimate was also used to create the error bars in Figure 2.4.
Around h = 125 km there seems to be an increase in the variance, to about γ̂ = 0.2–
0.3. At this lag distance there is also a large uncertainty in the estimates however,
and fewer unique data pairs to calculate the empirical variance.
Interestingly, some periodic behavior seems to be present, with a length scale of
about 25 kilometers. One possible explanation could be the typical spacing of the
Dutch islands and peninsulas. As shown in the previous section, coastline orientation
likely plays an important role in the amount of observed litter. This effect can also
present itself in the variogram with, for example, measurements in sheltered areas
(e.g. coves) being more correlated with each other, compared to nearby exposed
locations (e.g. headlands).
The grid sizes used for our numerical data ranges from about 7 km (the surface
current data), to about 20 km (the wind data). This means that the variance at
and below these length scales is not captured by the numerical data. The variance
calculated for lag distances up to 20 km is quite substantial (γ̂ = 0.05–0.12). As
can be seen in Figure 2.4 the values corresponding to the lower and upper 95%
confidence interval vary by about an order of magnitude. This is essential to consider
when using observational data to inform numerical models: due to the amount of
variability at the subgrid-scale level, relatively large sets of observational data are
required to extract information. A large number of physical processes could induce
variability below length scales of 20 km, such as Langmuir circulations, or processes
in the coastal zone such as wave breaking, rip currents, and longshore currents (van
Sebille et al., 2020). Finally, it is important to consider that spatial variability is
inherent to data obtained from cleanup campaigns such as analysed here, due to
e.g. different participants having slightly different strategies for finding litter on
beaches.

2.3.3 Extrapolating litter quantities to the entire coastline
The random forest regression model can be used to extrapolate how much litter is
likely beached along the entire Dutch coastline. First, a regression model is trained
using the top 8 features listed in Figure 2.5. We then divide the Dutch North Sea
coastline into 1/9◦× 1/15◦ sections (roughly 7 by 7 kilometers). For each of the sec-
tions the top 8 features are computed, as well as the total coastline length contained
in each section. In total we have 65 separate sections, and a total coastline length
of 365 kilometers, which matches the total length of the Dutch North Sea coastline
from literature (Roomen et al., 2008). We choose to use a model trained using the
top 8 features for the extrapolations, as increasing the amount of features does not
increase the predictive performance (see Figure A.5). Furthermore, reducing the
amount of features simplifies the computations, as we do not need to compute all
391 variables again for all coastline sections.
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Figure 2.7: Variogram calculated for the log10 of the measured litter quantities in kg km−1,
with the lag distance h on the x-axis, and the empirical variance γ̂(h) on the y-axis, only taking
data pairs into account with a maximum of 3 days temporal separation. For the separation
distance half bin width δ = 5 km is used. The points are coloured by the number of unique
data pairs used to calculate the variance, the jackknife uncertainty estimate (±σ) is shaded
in blue.

For each section, the litter concentrations in kg km−1 are predicted per day over Au-
gust 2014–2019. Predictions are only made for August since all cleanup campaigns
were organized during this period, and making predictions for other months might
induce seasonal biases. The mean concentrations per coastline section are plotted in
Figure 2.8. For each day, the total litter quantities are computed by multiplying the
litter concentrations by the coastline length per section. Monte Carlo estimates of
the confidence bounds are calculated by randomly adding noise proportional to the
estimated variance (γ̂ = 0.08), which is repeated 1000 times per day per section.
We find a total of 16,500–31,200 kg litter along the Dutch North Sea coastline based
on the 95% confidence interval. It must be noted that this only accounts for the
visible litter on the beach surface. The cleanup efforts are likely to miss a substantial
amount of beached litter which is buried in beach sediment or located at the back
of the beach (e.g. in vegetation). This was for example noted in Lavers & Bond
(2017) for a remote island in the South Pacific, where in terms of mass about 68%
of the litter was located on the beach surface, 27% at the back of the beach in and
around vegetation, and 5% buried in beach sediment. Further research is necessary
to quantify how these numbers translate to Dutch beaches.
The total amount of litter gathered during the cleanup campaigns, and the total
amount of kilometers sampled per year is presented in Table A.1. The total amount
of litter gathered varies from 9,872 to 20,078 kilograms. This is in line with the ex-
pected total amount of litter predicted by the model, since the majority of the coast-
line (222–262 kilometers out of 365 kilometers) was covered during the cleanup
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Figure 2.8: Mean litter concentrations over August 2014–2019 extrapolated to the entire
Dutch coastline.

campaigns.

2.4 Conclusions and recommendations
Using data from beach cleanup efforts in the Netherlands between the years 2014–
2019, we analysed which variables are important for predicting litter on beaches,
and what spatial variability this litter has. In order to do this, we fitted a regression
model to the observed litter quantities, as a function of variables related to wind,
waves, currents, tides, coastal geometry, and simulated oceanic transport. We find
that tides play an important role, where an increasing tidal variability and increasing
tidal maximum lead to less observed litter on beaches. Other important variables are
whether the local orientation of a beach corresponds to the large-scale coastline ori-
entation, and the total nearby coastal length, which can both be seen as measures of
how exposed a beach is. These factors are likely explanations why the observed litter
quantities are relatively low in the southwestern part of the Netherlands compared
to the other parts. Additionally, transport of litter through the marine environment
is seen as important to take into account by the regression model. Rivers, fishing
activity, and mismanaged plastic waste along coastlines were taken into account as
possible sources of litter in the transport model, where the regression analysis at-
tributed relatively much importance to litter originating from fishing activity. This is
in line with findings in van Duinen et al. (2022), as approximately 40% of the litter
found on the Dutch North Sea coastline is estimated to originate from the fishing
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industry.
We compute that spatial variability of the observed litter concentrations is substan-
tial on length scales less than 10 kilometers, causing model ±2σ confidence bounds
to vary by about an order of magnitude. Due to this significant variability, large ob-
servational data sets are necessary if they are to be used to inform numerical models.
Finally, based on extrapolation of the regression model, we estimate that the Dutch
North Sea coastlines contain a total of 16,500–31,200 kilograms (95% confidence
interval) of litter on the beach surface.
Estimating the spatial variability of beached litter can give us information for effi-
cient monitoring of pollution. It can be used to constrain estimates of litter con-
centrations based on observations elsewhere. We found that the variance for lag
distances smaller than 125 km is relatively constant around γ̂ = 0.08. As an exam-
ple, if one measures a relatively high amount of 200 kg km−1 at the northern tip
of the mainland near Den Helder (≈ 53◦N in Figure 2.1), one can expect at least
54 kg km−1 of litter elsewhere in the Northern part of the Netherlands, taking the
95% confidence interval. After 125 km, the estimated variance seems to increase,
meaning that this observation becomes less informative for locations further away.
For future studies on quantifying beach litter variability, it would be interesting to
segment the beach cleanup tours into smaller stretches. One idea would be to orga-
nize some stages where the litter quantities are weighed per 1 kilometer, 100 meter,
or even shorter stretches. This way it would be possible to estimate the variance
on sub-kilometer scale. Ryan et al. (2020) reported significant correlations between
measurements taken roughly 50 meters apart (Spearman rank correlation of about
0.9). It would be interesting to see how this changes up to the kilometer scale.
This can give us valuable insights into which processes might be causing the high
amount of variability between litter observations, and what length scales should be
taken into account to capture this variability with models. We see relatively few
data points in Figure 2.7 for larger lag distances. Performing the cleanup stages in
a randomized order would provide a more even coverage of data points over the
given lag distances.

Future studies could further investigate the causal relations between the variables
seen as important predictors by the regression model and the litter concentrations
found on beaches. This is especially the case for tides, which constitute the two
most important features in the regression model (see Figure 2.5). Experimental
studies could further determine whether lower litter concentrations at locations with
higher tidal variability are mainly caused by litter re-suspending back into the sea,
or for example due to the fact that less area of the beach is sampled during high
tide. It should additionally be investigated how these effects compare to the role
of (residual) tidal currents, as it has been shown that this can play an important
role in transporting suspended matter towards the shore (Schulz & Umlauf, 2016).
Experimental investigations can be done in combination with numerical studies of
the nearshore marine environment, to capture the interactions between processes
such as tides, waves, and particle sizes (Alsina et al., 2020).
It should be investigated how the results found here generalize to other geographic
regions, and how the importance of explanatory variables vary globally. The model
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itself can not directly be used for other geographic regions, since the features used
to train the algorithm are specific to the region of interest. The model is likely to
perform poorly when making extrapolations for conditions not present in the train-
ing data. As an example, the substrate of beaches is likely to have a large impact
on litter concentrations (Hardesty et al., 2017), which are relatively uniform in this
analysis (all sandy beaches). According to our regression model, wind is not a very
important variable to take into account. Perhaps some of the high-windage litter
has been beached before reaching the Dutch waters. It should be noted, however,
that wind indirectly affects other variables such as the ocean currents and therefore
also the Lagrangian particle simulations. It would be interesting to re-do this anal-
ysis with data obtained nearby the English channel and check if wind plays a more
important role there, as in the Lagrangian model simulations many virtual particles
pass this region.
It is necessary to further investigate the effect of regular cleaning of beaches by mu-
nicipalities and other volunteer groups or individuals. This effect was left out in this
analysis due to unavailability of these data. It is likely that mainly the beaches near
densely populated areas are regularly cleaned. Since data on population density
has been included in the features, it is possible that this effect is taken into account
by the regression model, but further analysis is necessary. Furthermore, effects of
tourism can be taken into account in the future when these data are available, as
this affects the local population density seasonally.
Regarding effective cleanup of beaches, it is recommended to perform beach cleanups
during low tide, preferably in a week around the neap tide, when the tidal variabil-
ity is lower. If limited resources are available, one can focus on exposed shorelines
which generally accumulate more litter. Additionally, more litter can be expected on
relatively straight shorelines, compared to more irregular geometries where litter is
distributed over longer stretches of beach. We saw no effect from the number of par-
ticipants per beach cleanup tour on the amount of gathered litter, with an average
of 77 participants per tour. One possible improvement to clean up more litter could
therefore be to spread out participants over different stages, avoiding that parts of
the beach are inspected multiple times.





CHAPTER 3

Modelling size distributions of
marine plastics under the
influence of continuous
cascading fragmentation

Field studies in the global ocean have shown that plastic fragments make up the
majority of plastic pollution in terms of abundance. It is not well understood how
quickly plastics in the marine environmental fragment, however. Here, we study the
fragmentation process in the oceanic environment by considering a model which
captures continuous fragmentation of particles over time in a cascading fashion.
With this cascading fragmentation model we simulate particle size distributions
(PSDs), specifying the abundance or mass of particles for different size classes.
The fragmentation model is coupled to an environmental box model, simulating
the distributions of plastic particles in the ocean, coastal waters, and on the beach.
We demonstrate the capabilities of the model by calibrating it to estimated plastic
transport in the Mediterranean Sea, and compare the modelled PSDs to available
observations in this region. Results are used to illustrate the effect of size-selective
processes such as vertical mixing in the water column and resuspension of particles
from the beach into coastal waters. The model quantifies the role of fragmentation

This chapter has been published as:
Kaandorp, M.L.A., Dijkstra, H.A., van Sebille, E. (2021): Modelling size distributions of marine plastics
under the influence of continuous cascading fragmentation. Environmental Research Letters, 16:054075.
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on the marine plastic mass budget: while fragmentation is a major source of sec-
ondary plastic particles in terms of abundance, it seems to have a minor effect on
the total mass of particles larger than 0.1 mm. Future comparison to observed PSD
data allow us to understand size-selective plastic transport in the environment, and
potentially inform us on plastic longevity.

3.1 Introduction
Studies have shown that fragments make up the majority of marine plastic litter in
terms of abundance in the global ocean (Cózar et al., 2014; Suaria et al., 2016).
The large amount of fragments is evident from particle size distribution (PSD) data,
specifying the abundance or mass of particles for different size classes. An overview
of PSD data from various studies is given in Kooi & Koelmans (2019); some exam-
ples are presented in Figure 3.1. What is commonly observed in PSD data is a power
law for larger fragments (>1 mm in Figure 3.1), see e.g. Cózar et al. (2014, 2015),
Erni-Cassola et al. (2017), and Enders et al. (2015). This shows as a straight line
on a log-log scale as can be seen in Figure 3.1. Oftentimes, a maximum in the PSD
is observed at smaller particle sizes (∼1 mm in Figure 3.1), ending the power law
regime. This maximum has been observed to vary, and has been attributed to, for
example, the distance to the nearest coast (Pedrotti et al., 2016; Isobe et al., 2014).

It is necessary to further investigate the fragmentation process if we want to ex-
plain the particular shapes of measured PSD data. Fragmentation of plastics is likely
dominant on beaches or inland water bodies such as rivers, where plastics are sub-
jected to UV-radiation, oxidation, and higher temperatures, embrittling the particles,
which enhances the breaking down of particles by mechanical abrasion (Andrady,
2011; Kalogerakis et al., 2017; Song et al., 2017; Efimova et al., 2018). Fragmenta-
tion models have been proposed in e.g. Cózar et al. (2014), hypothesising that the
PSD slope depends on whether particles break down in a three-dimensional fashion
(i.e. like a cube), or more in a two-dimensional fashion (like a thin sheet). It has
been shown that the polymer type influences how plastic particles fragment (e.g.
due to differences in the surface cracks, see Andrady, 2011), and how quickly plastic
particles fragment (Song et al., 2017), hence directly influencing how PSDs evolve.

While the main driver behind the PSD might be fragmentation, physical processes
can have a size-selective influence on plastic particles (van Sebille et al., 2020). Ver-
tical turbulent mixing, induced by for example the wind, has been shown to mix
smaller particles with lower rise velocities to larger depths (Reisser et al., 2015;
Poulain et al., 2019; Kukulka et al., 2012; Chor et al., 2018). This can reduce
smaller size fractions in PSDs measured by nets at the ocean surface (typically sub-
merged ±10–50 centimeters depending on net type, see e.g. Pedrotti et al., 2016;
Cózar et al., 2015; Suaria et al., 2016). Furthermore, bigger (more buoyant) par-
ticles likely experience more influence from Stokes drift, given its limited depth of
influence (van den Bremer & Breivik, 2017; Breivik et al., 2016). Model studies
have indicated that Stokes drift tends to push plastic particles towards coastal ar-
eas (Iwasaki et al., 2017; Onink et al., 2019; Delandmeter & van Sebille, 2019).
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In Isobe et al. (2014) it was observed that for coastal seas near Japan, overabun-
dances of larger plastic particles were found close to the coast versus more offshore,
see Figure 3.1b. Coastal processes, such as beaching and resuspension, can be size-
selective. In Hinata et al. (2017), residence times of particles on beaches in Japan
were estimated using tagged litter. Higher particle rise velocities in the water were
related to longer residence times, as these particles are more likely to be pushed to
the backshore by wave swash. This could mean that larger objects remain longer
on beaches, and hence experience more weathering (Hinata et al., 2020). Finally,
PSDs could be influenced by size selective sinking, induced by for example biofoul-
ing (Ryan, 2015). Biofouling models predict that smaller particles, which have a
larger surface to volume ratio, tend to sink more quickly (Kooi et al., 2017). This
has been observed in experimental studies as well (Fazey & Ryan, 2016).

Previous studies, such as the ones by Koelmans et al. (2017) and Lebreton et al.
(2019), have tried to quantify marine plastic mass budget using conceptual models.
In both of these works, fragmentation is purely defined as a rate, breaking down a
mass percentage of a macroplastics category into a microplastics category over time.
How, and how quickly plastics fragment is still a very uncertain factor however.
In this work, we consider a fragmentation model based on fractal theory (Turcotte,
1986; Charalambous, 2015), modelling a large range of different size classes. A
benefit of modelling a range of size classes is that we can calibrate the model to
experimental fragmentation studies such as the one by Song et al. (2017), where
different polymers were subjected to laboratory conditions simulating weathering in
the marine environment. By modelling a range of size classes, we can furthermore
compare model output to measured PSDs in the environment, such as the ones
presented in Figure 3.1.
We couple our fragmentation model to an idealized box model where the marine
environment is split into three different compartments, similar to Lebreton et al.
(2019): the beach, coastal water, and open ocean. By considering a range of size
classes, we can study size-dependent processes in the marine environment men-
tioned earlier and their influence on the fragmentation process and resulting PSDs.
Finally, our model allows quantification of PSDs both in terms of the amount of par-
ticles in each size class, and the particle mass in each size class. We will make a
distinction between the two, and call them the number (i.e. abundance) size distri-
bution (NSD), and the mass size distribution (MSD). We will use the term PSD when
talking about size distributions in general (i.e. either NSD or MSD). We will show
that with these MSD data, our model can contribute to obtain a better understand-
ing of the plastic mass budget. Similar to the models in Koelmans et al. (2017) and
Lebreton et al. (2019), the idealized model presented here allows us to efficiently
test hypotheses regarding fragmentation, sources, sinks, and transport of marine
plastics. We will demonstrate this by applying the model to different marine plastic
scenarios in the Mediterranean Sea. The goal is to have an analysis which is con-
sistent with current experimental data of the fragmentation process, observational
data in terms of plastic concentrations and plastic PSD data, and current knowledge
on marine plastic sources, sinks, and transport.
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Figure 3.1: Observed number size distributions. a): Samples from Cózar et al. (2014) ob-
tained around the world, and samples from Cózar et al. (2015) and Ruiz-Orejón et al. (2018)
obtained in the Mediterranean Sea, see the supporting material B.3 for locations. b) and c):
Samples from Isobe et al. (2014, 2015) obtained from the Seto Inland Sea (Japan) and the
Sea of Japan. Coastal samples are defined as less than 15 kilometers from the shoreline. All
particle size distributions have been normalized relative to the total abundance of large items
(> 10 mm) to show differences for small particle sizes clearly. Most datasets seem to follow a
power law for the larger particle size classes (see Figure 3.7 below). Coastal samples tend to
have relatively few small particles (or: relatively many large particles), and all distributions
show a peak in abundance around 1 mm, instead of a monotonic increase with smaller sizes.

3.2 Methods

3.2.1 The cascading fragmentation model
The fragmentation model discussed here is based on simple fractal geometries. We
define the spatial dimension as DN . When DN = 3, we start with a cube with a size
of L×L×L which we call the parent object, see Figure 3.2a. This cube can be split
in eight equally-sized cubes, which can each be recursively split again. The size class
of the parent object is defined as k = 0, the size class of the cubes with length L/2 is
defined as k = 1, and so on. When DN = 2, the starting object is a sheet instead of
a cube, which can be split in four smaller sheets each time the size class increases.
Cózar et al. (2014) presented a fragmentation model where objects are broken down
into a set of smaller (equally sized) fragments in a series of successive fragmentation
events. This fragmentation model was used to explain why measured PSDs often
resemble power laws, i.e. functions of the form

n(l) = Cl−α, (3.1)

where n is the abundance, l is the particle size, α is the power law slope, and C
is a constant. However, this fragmentation model requires a constant input of new
parent objects to achieve a power law, while laboratory experiments have shown
that power laws in the PSD also appear after fragmenting a single input of parent
objects (Song et al., 2017).
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Figure 3.2: a) Illustration of a parent cube (size class k = 0), consisting of successively
smaller cubes, based on Turcotte (1986). Only 3 iterations until size class k = 3 are shown
here, the size class can increase indefinitely. b) Illustration of the cascading fragmentation
model with p = 0.5 and after one fragmentation event if , based on Turcotte (1986) and
Charalambous (2015)
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The fragmentation model used here builds upon the work of Turcotte (1986), where
it was noted that scale-invariance of the fragmentation process, whether it be caused
by weathering, explosions, or impacts, leads to such a power law. The idea behind
the model of Turcotte (1986) can be illustrated using Figure 3.2b. Following one
fragmentation event if , a certain fraction p of the original cube (size class k = 0)
splits off. For example, if p = 0.5, this results in 4 fragments of k = 1 splitting off,
leaving 0.5 object in size class k = 0. This process is assumed to be the same on
all length scales: a fraction p will split off from the fragments in size class k = 1 as
well: 16 fragments of size class k = 2 are created, and 4× 0.5 = 2 fragments are left
in size class k = 1. This process is repeated indefinitely.
Bird et al. (2009) and Gregory et al. (2012) extended this model by including a
temporal component, with each fragment breaking down further as if progresses.
Charalambous (2015) showed that repeatedly breaking down fragments over dis-
crete steps of if is a sequence of independent and identical Bernoulli trials with a
chance of success p, yielding a negative binomial distribution. This is rewritten in
terms of a continuous fragmentation index f (instead of the discrete if ), yielding a
probability density function giving the mass m in size class k at fragmentation index
f as:

m(k; f, p) =
Γ(k + f)

Γ(k + 1)Γ(f)
pk(1− p)f , (3.2)

where Γ is the gamma function. We will call this model, introduced in Charalambous
(2015), the cascading fragmentation model. We assume that f is directly propor-
tional to time in the environment, and will review this assumption in the discussion.
The amount of fragments in a given size class is estimated by multiplying the mass
with 2DNk, a factor determining how many fragments of size class k fit inside the
parent object:

n(k, f, p) = 2DNkm(k; f, p) (3.3)

We use DN = 3 as the baseline. However, this factor is DN = 2 for purely flat
objects like plastic sheets and DN = 1 for fibers or lines. As real-world samples
contain a combination of these objects, the value for DN in the environment can be
a non-integer between 1 and 3. The value of DN is only influenced by the shape of
the objects. The material properties (e.g. polymer type) only affect the value of p
and how quickly f progresses in time.
Figure 3.3a shows the NSD resulting from the cascading fragmentation model at
various fragmentation indices f . We start with one cube with a length L of 1 mm
at f = 0. The continuous description in Eq. (3.3) allows us to model the amount of
fragments at a very small fragmentation index of f = 0.001. There are few larger
fragments (> 10−2 mm) per parent object at this stage. At f = 1 we have exactly
a power law in the NSD, equivalent to the model by Turcotte (1986) which only
considers a single discrete fragmentation event if . A fractal dimension Df of the
object formed by all fractions can be defined, relating to DN and p by:

Df = log2

(
2DN p

)
. (3.4)

The NSD power law slope at f = 1 is given by this fractal dimension.
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Figure 3.3: Particle size distributions from the cascading fragmentation model, using p = 0.5.
Distributions for different fragmentation indices f are shown. Figure a: the discrete NSD (left
y-axis) and the NSD normalized with respect to the particle size (right y-axis). Figure b: the
discrete MSD (left y-axis) and the normalized MSD (right y-axis)

Fragments can be broken down further, eventually resulting in the NSD shown for
f = 10. This is not a power law anymore, and the slope of this curve has increased
significantly, with relatively many particles in the small size classes. The NSD (units:
n) can be normalized, by dividing the amount of fragments by the size class bin
width (units: n mm−1). These normalized NSDs are presented by the dashed lines.
Because of the log-scale on the x-axis, the distance between the given particle sizes
increases by a constant factor. This increases the magnitude of the normalized NSD
slopes by 1 compared to the discrete NSD. The slope of these normalized NSDs
is not dependent on the size class bins used for the measurements, allowing for
comparison between different studies.
Figure 3.3b shows the same analysis in terms of mass, i.e. the MSD, starting with
one cube of 1 g and 1 mm3. As fragmentation progresses, mass shifts from the
large fragments towards smaller fragments. At f = 1 we have a power law: the
difference in the slope between the NSD and MSD is 3, resulting from the 2DNk

term in Eq. (3.3), with DN = 3.

3.2.2 Environmental box model
With the cascading fragmentation model we can now simulate PSDs over time. Dif-
ferent particle sizes will undergo different types of forcing and transport in the envi-
ronment. The combination of fragmentation and size-selective transport is investi-
gated using a box model, presented in Figure 3.4. The boxes in this model represent
three different environmental regions: the beach, coastal waters, and open ocean.
Particles can move between the different environments, defined by a set of transition
probabilities (P ): particles can move to a different environmental box (the arrows
on the right in Figure 3.4), remain in the current box (recurring arrows on the left),
or vanish from the system (i.e. a sink, arrows on the left). Subscripts in Figure 3.4
denote ocean, coast, beach, or sink (O, C, B, and S respectively).
Besides different environmental regions, we have different particle size classes. For
a given size class, certain mass fractions will move to smaller size classes under the
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Figure 3.4: Environmental box model used to simulate Particle Size Distributions in the
marine environment. Particles move between and within the ocean, coast, and beach boxes,
and for each box there is a probability of being removed from the system.

influence of fragmentation. These fractions are estimated by evaluating Eq. (3.2)
for the given time step of the box model. Similarly, Eq. (3.3) is evaluated to deter-
mine the abundance of fragments moving to smaller size classes. Fragmentation is
assumed to only happen on the beach, where degradation is expected to be much
more effective than in the sea (Andrady, 2011; Andrady et al., 1993).
Each environmental box contains a range of different particle size classes. The com-
bination of environmental transition probabilities and fragmentation is modelled
using a transition matrix. For example, taking 15 different size classes and 3 envi-
ronmental compartments leads to a transition matrix of size 45× 45. Further details
are given in the supporting material B.2.

3.2.3 Applying the box model to the Mediterranean Sea
We will demonstrate the capabilities of the environmental box model using a set-up
based on the Mediterranean Sea. Environmental transition probabilities are derived
from the literature on plastic transport in the Mediterranean Sea as much as possible.
The different parameters, the studies on which they are based, and the areas of these
studies are shown in table 3.1.

Transport in the marine environment. A Lagrangian simulation of floating plas-
tic in the Mediterranean Sea (see Chapter 4) is used to determine transition proba-
bilities within and between the ocean and coast (PO,O, PO,C , PC,C , and PC,O). The
coast is defined as the ocean within 15 kilometers of the coastline.
Previous model studies have indicated that Stokes drift is able to push floating par-
ticles towards the coast, e.g. in the North Atlantic (Onink et al., 2019), the North
Sea (Delandmeter & van Sebille, 2019), and in the Sea of Japan (Iwasaki et al.,
2017). It has been hypothesised that this leads to near-shore trapping of larger
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Table 3.1: Environmental box model parameters and fragmentation parameters, references
used to estimate the parameter values, the respective study areas, and the estimated baseline
parameter values.

Parameter Reference study or
data

Reference study area Baseline parameter value

PO,O Kaandorp et al. (2020) Mediterranean 7.2 ·10−1 week−1

PO,C Kaandorp et al. (2020) Mediterranean 2.7·10−1 week−1

PC,O Kaandorp et al. (2020) Mediterranean 3.4·10−2 week−1

PC,C Kaandorp et al. (2020) Mediterranean 8.3·10−1 week−1

PC,B Menna et al. (2017),
Kaandorp et al. (2020)

Mediterranean 1.3·10−1 week−1

PB,C Hinata et al. (2017) Japan 3.2·10−2 week−1

PB,B Hinata et al. (2017) Japan 9.6·10−1 week−1

PS Cózar et al. (2015),
Kaandorp et al. (2020)

Mediterranean 5.1·10−3 week−1

input Kaandorp et al. (2020) Mediterranean 2,500 t year−1

p Song et al. (2017) South Korea 0.4
λ Song et al. (2017) South Korea 1.8·10−2 f week−1

plastic particles, as more bouyant particles would tend to reside closer to the water
surface, where they experience more influence from the Stokes drift (Isobe et al.,
2014; Iwasaki et al., 2017).
We investigate the effect of this near-shore trapping of larger plastic particles and its
influence on fragmentation. First, we calculate the transition probabilities assuming
all particle sizes reside at the ocean surface, where they experience the maximum
Stokes drift (corresponding to the transition probabilities between the ocean and
coast in table 3.1). We then compute how differently sized particles are vertically
distributed in the water column, and how this influences the lateral transport in-
duced by Stokes drift. The approach from Poulain et al. (2019) is used to estimate
particle rise velocities wb for different particle sizes, see the supporting material B.3
for further details. From these rise velocities we calculate the median particle depth,
using the particle density profiles from Kukulka et al. (2012). The Stokes drift is es-
timated at this depth, assuming a Stokes profile based on the Phillips wave spectrum
(Breivik et al., 2016). For this Stokes drift, the transition probabilities are calculated
using Lagrangian model simulations with different Stokes drift factors. In the end,
this gives us different transition probabilities (PO,O, PO,C , PC,C , and PC,O) for each
particle size. More information and resulting transition probability values are given
in the supporting material B.1 and B.3.
Using the same approach as presented in the next Chapter (see supporting mate-
rial C.2), we estimate PC,B by analysing drifter buoy data: from a set of 1682
drifters in the Mediterranean (Menna et al., 2017), we calculate how much time
these drifters spend near the coast before beaching. For drifter buoys within 15 kilo-
meters of the coastline, the beaching rate is estimated to be about 6.7 · 10−3 day−1

(corresponding to an e-folding time-scale τCB of 149 days). In Chapter 4 we esti-
mate that τCB for plastic particles is about 3 times lower than that for drifter buoys.
We will therefore use τCB = 50 days as the baseline estimate here.
We use data from Hinata et al. (2017) to estimate residence times τBC of plastic par-
ticles on beaches, to obtain PB,C and PB,B . This study was conducted on a beach
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in Japan, no information could be found for the Mediterranean Sea specifically. We
therefore assume that the Japanese setting is representative of the Mediterranean
too: a sensitivity study for τBC is presented in the supporting material B.1. As a
baseline estimate we use τBC = 211 days, reported for small plastic floats (cor-
responding to the baseline PB,C in table 3.1). We will then investigate the effect
of size-selective resuspension, for which the empirical relation from Hinata et al.
(2017) is used, i.e.,

τBC(wb) = 2.6 · 102 wb + 7.1, (3.5)

where τBC is given in days, and wb in m s−1.
The box model also requires transition probabilities for removal of particles: PO,S ,
PC,S , PB,S . We assume these are the same in all compartments, denoted by PS . A
given value for PS yields a certain amount of steady-state mass in the system. We
take the estimated input of waste into the Mediterranean from Chapter 4 (2,500
metric tonnes for the year 2015), and the estimated total floating mass from Cózar
et al. (2015) (2,000 metric tonnes). The value for PS is iterated until this mass
balance is satisfied, see the supporting material B.2 for more information.
Finally, we need to specify the plastic input into the marine environment in terms
of location and shape. We assume that new plastic objects are introduced on the
beach. This assumption does not affect results significantly, see the supporting ma-
terial B.1. We use an initial length of 200 mm based on typical dimensions of mu-
nicipal plastic waste in the Netherlands (Jansen et al. (2015), see the supporting
material B.4, assuming that plastic product dimensions are similar to those used
around the Mediterranean Sea. We use DN = 3 as the baseline, i.e. cubical-shaped
objects. The model time step is set to one week.

Fragmentation parameters. We use data from Song et al. (2017) to estimate the
fragmentation parameter p, and to estimate the fragmentation rate λ specifying how
much f increases per unit time.
In Song et al. (2017), plastic pellets were subjected to different levels of UV expo-
sure and to 2 months of mechanical abrasion with sand, simulating a beach envi-
ronment. The data for polyethylene (PE) and polypropylene (PP) pellets (26 mm3

and 19 mm3 respectively) are used, as these are the most abundant polymers in the
Mediterranean surface waters (PE: 52–76%, PP: 7–16%; Pedrotti et al., 2016; Suaria
et al., 2016).
We assume a single p value per material, and DN = 3. The fragmentation index f is
allowed to vary between the different levels of UV exposure when fitting the data.
By fixing p and varying f , we get a robust estimate for the unknown parameter p for
which we need a plausible value in the box model. We can expect that f is larger for
particles subjected to longer periods of UV exposure, since embrittlement will make
it easier for the mechanical abrasion to wear down the particles.
Resulting NSD fits using weighted least squares are presented in Figure 3.5, top row,
fitted values for f are presented in the legend. For PE particles, the best fit results in
p = 0.39, for PP particles p = 0.45. The experimental data are still at the early stage
of fragmentation (f < 1), with few fragments per parent pellet, except for small
fragment sizes.
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There is a good fit for the PE data, with almost all simulations within the data
errorbars (one relative standard deviation). For PP there is a good fit for 0, 2 and
6 months of UV exposure. At 12 months of UV exposure there is more mismatch
for the smallest size class (0.05–0.10 mm). This is also the only case where the
estimated f is lower than for the previous level of UV exposure.
The bottom row of Figure 3.5 compares the estimated volume fractions of the par-
ent pellets and the fragments. Generally, the modelled volume fraction of the parent
pellet is estimated reasonably well, although there is some overprediction for PE
with 12 months of UV exposure. The modelled fragment volumes are higher than
the ones estimated in Song et al. (2017). A possible explanation is that some of
the larger fragments could have been missed in the experimental setting since there
are very few of these per parent object (e.g. tenths or hundredths). One can see in
Figure 3.3 that at an early stage of fragmentation (f < 1), the larger fragments con-
tribute little to the total abundance of fragments (Figure 3.3a), but a lot to the total
volume or mass of fragments (Figure 3.3b). In the experimental setting ten parent
objects per sample were used, and fragments were counted under magnification on
0.7%-5% of the filter paper area. The larger fragments could therefore have been
missed, or even have a low probability of actually existing.
Following this analysis, we set the baseline value of p in the box model to 0.4, within
the range of the fitted p for PE and PP. A fragmentation rate λ needs to be chosen,
specifying how much f increases per unit time. We assume that λ is a constant,
meaning that the amount of fragmentation f is directly proportional to the time
that particles spend on the beach.
In Song et al. (2017) 12 months of laboratory UV exposure were roughly related to
4.2 years of environmental exposure, representing beach conditions in South Korea.
Regarding UV exposure, these conditions are quite similar to the Mediterranean
(Herman et al., 1999). Taking our estimated fragmentation indices for PE and PP
results in fragmentation rates λ of 1.8 · 10−2 f year−1 to 6.9 · 10−2 f year−1. The
value for PE is used as the baseline here, given it is the most common polymer in
the Mediterranean surface water (Pedrotti et al., 2016).
In Song et al. (2017) low-density polyethylene pellets are used: future studies are
necessary to analyse how the results change for high-density polyethylene. We ac-
knowledge that the fragmentation rate λ is still very uncertain, and more experi-
mental research is necessary to verify whether the assumption that f varies linearly
in time is a good approximation.

3.3 Results and discussion

3.3.1 Modelled environmental particle size distributions

Now that we have estimates for transition probabilities in the box model and es-
timates for the fragmentation parameters, we will simulate PSDs using a scenario
based on the Mediterranean Sea. We will quantify the power law slope α of the
results by numerically maximizing the log-likelihood ` of the data (Virkar & Clauset,
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Figure 3.5: Calibration of the cascading fragmentation model with experimental data from
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representing the relative error (one time the sample standard deviation). The fragmentation
model results are shown using the triangles and dashed lines.
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2014):

` = n(α− 1) ln bmin +

k∑
i=min

ni ln
(
b
(1−α)
i − b(1−α)

i+1

)
, (3.6)

where b are the bin boundaries used to discretize the data, containing ni samples in
the bin with index i, and n =

∑
ni. In some cases, not the entire particle size range

adheres to a power law. The lower bound of the power law domain is estimated by
minimizing the Kolmogorov-Smirnov statistic between the modelled NSD and the
theoretical power law NSD (Virkar & Clauset, 2014).

NSDs resulting from the box model are shown in Figure 3.6, corresponding MSDs
and a table with parameter settings can be found in the supporting material B.1.
Fragmentation is expected to increase the fraction of small particles, increasing α
over time (see Figure 3.3). However, environmental sinks limit the magnitude of
α: assuming a constant removal rate of plastic particles, smaller fragments, which
tend to be older, have a higher probability of being removed from the environment.
This combination of fragmentation and environmental sinks eventually leads to an
equilibrium, or statistical steady state. This is illustrated in Figure 3.6a using the box
model with the baseline parameters described in Section 3.2.2. As time progresses,
the relative proportion of fragments to parent objects increases. In this scenario, it
takes on the order of years for the NSD to resemble the steady state (red dashed
line). The magnitude of the environmental sinks is high enough to avoid long per-
sistence of fragmented particles: there are still relatively many parent objects, and
α = 2.57 is still below the value derived from the fractal dimension of α = 2.67 from
Eq. (3.4).

Steady state NSDs for different scenarios are presented in Figure 3.6b. Results for
the baseline parameters (blue lines) almost overlap with the results where size-
selective lateral transport is added to the box model, induced by vertical mixing and
Stokes drift (orange lines). In the baseline scenario α = 2.57 for all three NSDs.
When adding size-selective ocean transport, larger particles tend to move more fre-
quently from the ocean to the coast. This results in slightly more small particles
in the ocean box, increasing the power law slope here to α = 2.73. Adding size-
selective resuspension of particles (Hinata et al., 2017) has a strong effect (green
lines). Bigger objects have longer residence times on the beach, and therefore un-
dergo more fragmentation. This produces a large number of smaller fragments with
shorter residence times, which therefore move more rapidly to the coastal and ocean
cells. This near-shore trapping of larger plastic objects was already hypothesized in
e.g. Isobe et al. (2014). The empirical resuspension relation Eq. (3.5) causes the
model to deviate from a power law, the domain over which α is calculated is shaded
in green in Figure 3.6. The model yields α = 2.69 on the beach, which is lower
than in the coastal and ocean cells (both α = 3.37). A scenario where the frag-
mentation rate is based on PP instead of PE is presented (red lines). Fragmentation
breaks down the particles more quickly: a monotonic relation between particle size
and abundance is observed, with α = 3.03. Finally, a scenario is presented (purple
lines) where the input of plastic waste into the Mediterranean is 100,000 tonnes per
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Figure 3.6: Modelling NSDs using the environmental box model. Column a: transient re-
sponse to a constant input of particles into the model (baseline scenario). Column b: steady
state normalized NSDs for different environmental scenarios, normalized to the amount of
parent particles (200 mm). The approach from Virkar & Clauset (2014) is used to determine
the power law size range: for most scenarios, α is calculated over the entire size range except
for scenario 3, which is shown using the green shading.

year (Liubartseva et al., 2018; Jambeck et al., 2015), instead of the aforementioned
2,500 tonnes per year (from Chapter 4). The magnitude of the sinks needs to be
much larger now to attain a mass balance based on 2,000 tonnes of floating plastics
(Cózar et al., 2015). Fragmentation has little time to break down the particles, re-
sulting in relatively few fragments per parent object.

In Figure 3.7, we compare PSDs resulting from the box model with observed ones
in the Mediterranean Sea. In the model results we include both size dependent
ocean transport and resuspension. Fragmentation parameters are set to λ = 2 · 10−4

f week−1, and DN = 2.5, resulting in good agreement with the observed PSDs. The
effect of vertical turbulent mixing of fragments using the model from Poulain et al.
(2019) is shown as well (calm, U10 ≈ 4 m s−1, and above average, U10 ≈ 7 m s−1

conditions based on the 30% and 70% quantile of Mediterranean sea weather con-
ditions (Hersbach et al., 2020), see supporting material B.3, assuming a submerged
net depth of 25 centimeters (similar to e.g. Cózar et al., 2015).

Figure 3.7a presents the resulting NSDs. We compare model results in the ocean cell
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with measurements by Cózar et al. (2015), and results in the coastal cell with mea-
surements by Ruiz-Orejón et al. (2018), as these were mainly obtained further away
from the coast or close to the coast respectively (see the supporting material B.3, Fig-
ure B.7). Under calm wind and wave conditions there is good agreement between
the modelled and observed NSDs. Vertical mixing causes the modelled NSDs to de-
viate from the power law around <3 millimeters, similar to the measured NSDs.
Many of the smaller fragments are expected to be mixed below the net depth, re-
sulting in measuring only a fraction of small fragments. This, combined with a size
detection limit effect where elongated particles escape from meshes smaller than
their maximum length (Abeynayaka et al., 2020; Enders et al., 2015; Tokai et al.,
2021), could explain a part of the underabundance of sub-millimeter fragments in
observations. Measurement campaigns with much smaller size-detection limits than
the standard neuston nets (see e.g. Enders et al., 2015 or Kooi & Koelmans, 2019)
show increasing abundances for sub-millimeter fragments. It is therefore unlikely
that the underabundance of sub-millimeter fragments is explained by an increased
loss of these particles, suggested in some studies (Cózar et al., 2014; Pedrotti et al.,
2016).
Including vertical mixing has a strong effect on the estimated power law slope α.
An overview of the estimated α and the power law size range for Figure 3.7a is
given in the supporting material B.1. In the ocean cell, α = 2.73 without vertical
mixing, and decreases to α = 2.63 for calm conditions (U10 ≈ 4 m/s), and to 2.37
for above average conditions (U10 ≈ 7 m/s). A similar decrease is observed for the
coastal cell: α = 2.69 without mixing, decreasing to α = 2.60 (U10 ≈ 4 m/s) and
α = 2.34 (U10 ≈ 7 m/s). Similar to the model, a slightly lower α is calculated for
the measurements near the coast (2.49 ± 0.06) compared to measurements further
away from the coast (2.53± 0.04), although this difference is not significant.
Few PSD measurements are available for beaches. Two examples are shown in Fig-
ure 3.7a: one from the Mediterranean (Constant et al., 2019), and one for which
both the NSD and MSD were available (Fok et al., 2017). The measurements on
beaches have much lower power law slopes (α < 1.60) compared to measurements
in the water. This is also captured by the model, meaning size-selective resuspen-
sion indeed seems to play an important role. In the beach cell the modelled power
law slope of α = 2.02 is higher than the measured ones, which might indicate that
size-selective beaching should be taken in account as well.

Figure 3.7b presents the modelled MSDs. Vertical mixing has a large influence on
the measured mass for small particle sizes: even under calm conditions, the mea-
sured mass for particles of 0.1 mm is almost three orders of magnitude lower than
without mixing. Unfortunately, there is very limited observational data reporting
MSDs, so the comparison to data is more limited than for the NSDs in Figure 3.7a.
On beaches, the model matches the set of measurement well, but more data are
necessary to further verify this. Large fragments are expected to dominate in terms
of mass on beaches. In the water, α seems to be approximately zero on average.
This would mean that the mass contribution would scale roughly quadratically for
an increasing size class k, i.e. large fragments also dominate in terms of mass here.
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Figure 3.7: Comparison of modelled and measured PSDs, along with effects of vertical mixing
induced by turbulence on measured particle sizes. PSDs are normalized to the maximum
observed size class, if no measurements are available to the maximum modelled size class.
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The environmental box model used to model the PSDs is a useful tool for future
mass balance studies. The steady-state with the model settings used for Figure 3.7,
gives that about 98% of the mass in the system is on the beach, about 2% in the
coastal surface water, and about 0.2% in the surface open ocean. This large fraction
of plastics stranding is in good agreement with previous mass balance estimates
(Lebreton et al., 2019). It should be noted that other environmental regions, like
the ocean floor, are not included in these numbers as these are part of the sinks in
the box model (PS), which continuously take up more mass over time. Secondary
microplastics generation can be estimated: for the same model settings, about 6.5 ·
10−5% of the macroplastic (> 5 mm) mass breaks down into microplastics per week,
about 2.0 · 10−6% of microplastics become smaller than 0.1 mm. This is orders of
magnitude smaller than the estimated sinks, taking up about 5.0 · 10−2% of the
plastic mass per week. Longevity of plastics can be estimated: taking a sudden stop
of new plastics entering the marine environment, it would take about 176 years
for 99% of the plastic mass to disappear from the surface water and beaches. This
is a much longer time scale than given by the conceptual model in Koelmans et al.
(2017), where for a similar stop of new plastics, almost all plastic mass was removed
from the ocean surface layer within three years. Plastic residence times are highly
dependent on the input scenarios: in Koelmans et al. (2017), 3% of the world plastic
pollution was estimated to enter the ocean. Here, the input scenario from Chapter 4
is used for the Mediterranean Sea, where less than 0.1% of plastic waste from coastal
population was estimated to enter the marine environment. These differences show
the importance of further mass balance studies to constrain this number.

3.3.2 Model limitations
We will give a brief overview of the fragmentation model and environmental box
model limitations in this section, which can be addressed in future studies.
The fragmentation model presented here only has few parameters (p, f , and DN ),
and assumes that the fragmentation process is scale-invariant. One example where
the assumption of scale-invariance might not hold is when only the plastic surface
layer gets brittle with microcracks (Andrady, 2011). This possibly increases the
fragmentation rate below a certain length scale, dependent on how far UV radia-
tion penetrates the polymer and the polymer type. It is assumed that f is directly
proportional to the time that particles spend on the beach, leading to a constant
fragmentation rate λ. In e.g. Charalambous (2015), it was shown that grinding
can become less efficient as particles become smaller, which might lead to e.g. a
logarithmic relation instead.
One source of uncertainty in the fragmentation model is the fact that parameters are
calibrated using experimental data for low-density polyethylene and polypropylene
pellets only (Song et al., 2017). More research is necessary to quantify how frag-
mentation differs between low-density and high-density polyethylene, and for other
polymers found in the environment not taken in account here (e.g. polyamides and
polystyrene, which form a substantial fraction of polymers found in the Mediter-
ranean Sea surface water (Pedrotti et al., 2016)). PSDs are quite sensitive to the
choice of λ (see Figure 3.6) and p (see the supporting material B.1), for which the
values are still quite uncertain. More experimental data are required to further con-
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strain these parameters and to estimate how they vary globally. Finally, it is still
uncertain which processes can extend the degradation process to finer scales than
mechanical abrasion, and the magnitude of their influence (e.g. photochemical ox-
idation (Ward et al., 2019), or biodegradation (Gerritse et al., 2020; Molitor et al.,
2019)).
The environmental box model is an idealized section of the marine environment,
only considering overall transport between cells representing the open ocean, coastal
water, and beach. Regional influences are not taken in account and should be inves-
tigated in the future: think, for example, about different types of coasts (Weideman
et al., 2020) with different particle residence times and beaching timescales (Sama-
ras et al., 2014). A number of assumptions were made to arrive at the environmental
box model. We assume that the majority of plastic particles are fragments (Cózar
et al., 2014; Suaria et al., 2016), which means that the influence of primary plas-
tics such as resin pellets (Turner & Holmes, 2011) or plastic beads from consumer
products (Fendall & Sewell, 2009) is neglected. It is assumed that fragmentation
is dominant on beaches (Andrady, 2011). Fragmentation in the water column is
neglected, which might be for example induced by hydrolysis and biodegradation
(Gerritse et al., 2020), or ingestion and scraping by marine organisms (Reisser et
al., 2014; Mateos-Cárdenas et al., 2020). It is furthermore assumed that new plas-
tic particles are introduced on the beach. In reality there will be a combination of
inputs into the different environmental compartments depending on the sources. In
the supporting material B.1 it is shown that this assumption has no significant effect
on the results. Finally, it is assumed that the rate of plastic removal from the marine
environment is constant. Although we are looking at time scales in the order of
years here, seasonality might have an effect on the removal rate by influencing, for
example, biological activity.
We demonstrated the model capabilities using a set-up based on the Mediterranean
Sea. One source of uncertainty is that the resuspension time scale is obtained from
Hinata et al. (2017), based on experiments at a Japanese beach. A sensitivity study
for this parameter is given in the supporting material B.1. Future studies should
look at how this parameter varies for different beaches globally. The size of new
plastics introduced into the marine environment is still uncertain: it is fixed to 200
mm here, while in reality this will be a spectrum of different sizes, see the supporting
material B.1 and B.4 for more information.

3.3.3 Fragmentation models and size distribution data
The cascading fragmentation model by Charalambous (2015) used in this work,
shows quite good correspondence with experimental data from Song et al. (2017)
(see Figure 3.5). A benefit of the fragmentation model presented here, is the ability
to model the mass size distribution (MSD) as well, which can help us obtain a better
understanding of the marine plastic mass budget. MSD data to validate the model is
currently lacking however, for example to verify whether the larger size classes in-
deed make up most of the environmental plastic mass. More PSD data from beaches
would allow for better constraining residence times of plastic particles on beaches
and in coastal waters, and more data from marine sediment might give insight in
the role of size-selective sinking, induced by e.g. biofouling (Kooi et al., 2017).
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Fragmentation models for plastics have been introduced in previous works, such as
in Cózar et al. (2014). They focused mainly on spatial dimensionality: α = 3 in
the NSD was related to three-dimensional fragmentation, i.e. a cube splitting into
8 smaller cubes. Care should be taken in future studies that when working with
logarithmic binning, the normalized NSD (units: n mm−1) slope decreases by one
compared to the discrete NSD (units: n), see Figure 3.3. This was overlooked in
Cózar et al. (2014): α = 3 would correspond to two-dimensional fragmentation
with their model, see the supporting material B.5 for further explanation. Normal-
ization is also important to take into account when describing plastic particle size
in terms of a probability density function (Kooi & Koelmans, 2019), specifying the
probability per unit length (units: mm−1). Finally, estimating α is not trivial: fitting
straight lines on log-log transformed data induces large biases, maximum likelihood
approaches are more suitable, see e.g. Newman (2005) and Virkar & Clauset (2014).

3.4 Conclusions and recommendations
In this work, we modelled particle size distributions (PSDs) of plastics in the marine
environment, by considering a cascading fragmentation model, and a box model
taking in account size-selective transport between the open ocean, coastal water,
and beach. We showed that the cascading fragmentation model is able to explain the
power-law observed in PSDs from the environment and experimental fragmentation
studies, that size-selective transport plays an important role near the coast, and that
vertical mixing in the water column has a strong impact on measured PSDs.
Understanding the nature of PSDs and how they differ in environmental regions
can help us get a better understanding of the marine plastic mass budget. Previous
conceptual mass balance studies, such as the ones by Koelmans et al. (2017) and
Lebreton et al. (2019), did consider fragmentation, but only for 2 or 3 categories
(macro-, micro- and nanoplastics). Here, we model a range of size classes. This way,
we can not only predict which environmental compartment contains most plastic
mass, but also which size ranges.
We applied the combined fragmentation and environmental box model to a scenario
based on the Mediterranean Sea. For the steady-state, we estimate that of buoyant
plastics about 98% of plastics reside on beaches, about 2% in coastal surface waters,
and about 0.2% in the surface open ocean. On one hand, the model predicts frag-
mentation to play an important role in terms of generating a large number of plastic
fragments. On the other hand, fragmentation seems to play a minor role in the mass
budget compared to other environmental sinks, by moving mass from large to small
particle size classes.
Overall, the idealized model presented here is a valuable tool to efficiently test hy-
potheses regarding the marine plastic mass budget. It can be checked whether a
certain hypothesis leads to results which are consistent with current knowledge of
plastic sources, sinks, transport, fragmentation, and observational data of plastic
concentrations and PSDs. At a later stage, the fragmentation model could also be
applied to more complex physical models, taking into account spatial and temporal
variability of plastic transport in the marine environment.





CHAPTER 4

Closing the Mediterranean mass
budget of buoyant marine

plastics: inverse modelling of
sources and sinks

Estimates of plastic inputs into the ocean are orders of magnitude larger than what
is found in the surface waters. This can be due to discrepancies in the sources of
plastic released into the ocean, but can also be explained due to the fact that it is not
well known what the most dominant sinks of marine plastics are, and on what time
scales these operate. To get a better understanding on possible sources and sinks,
an inverse modelling methodology is presented here for a Lagrangian ocean model,
estimating floating plastic quantities in the Mediterranean Sea. Field measurements
of plastic concentrations in the Mediterranean are used to inform parameterisations
defining various sources of marine plastics, and removal of plastic particles due
to beaching and sinking. The parameters of the model are found using inverse
modelling, by comparison of model results and measurements of floating plastic
concentrations. Time scales for the sinks are found, and likely sources of plastics
can be ranked in importance. A new mass balance is made for floating plastics in
the Mediterranean: for 2015 there is an estimated input of 2,100–3,400 tonnes, and
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of plastics released since 2006, about 170–420 tonnes remain afloat in the surface
waters, 49–63% ended up on coastlines, and 37–51% have sunk down.

4.1 Introduction
It is currently not well known what happens with plastics once they end up in the
marine environment. Studies have shown that only a fraction of plastics which
are expected to enter the oceans remains afloat in the surface water. The total
mass of floating plastics in the global ocean has been estimated to be from 93–
236 thousand tonnes (van Sebille et al., 2015), to at least 269 thousand tonnes
(Eriksen et al., 2014). This is significantly different from the total input estimates
into the marine environment, which range from 4.8–12.7 million tonnes per year
from coastal population (Jambeck et al., 2015), to 1.15–2.41 million tonnes from
rivers only (Lebreton et al., 2017). This is not taking into account other possible
sources resulting from activities such as fishing, aquaculture, and shipping (Lebreton
et al., 2018).
One can investigate different environmental compartments where the remainder of
plastics might reside, such as shorelines. Another possibility is the deep ocean and
marine sediments: biofilm formed by micro- and macro-organisms (Fazey & Ryan,
2016; Lobelle & Cunliffe, 2011) and fecal pellets (Cole et al., 2013) can cover plastic
particles, increasing the average density and therefore induce sinking. Plastic par-
ticles might be present in biota: e.g. zooplankton, fish, or birds (Cole et al., 2013;
Güven et al., 2017; Franeker et al., 2011). Oxidation caused by UV-exposure can
make polymers more brittle, enhancing the fragmentation of plastics in the envi-
ronment (Song et al., 2017): particles might become too small to measure using
conventional techniques.
Estimates have been made in which environmental compartments the marine plas-
tics are likely to reside. Marine sediments are likely to contain a major percentage
of plastics, e.g. more than 90% of microplastics in terms of numbers for a global
scenario (Booth et al., 2017), with abundances of about four orders of magnitude
higher per unit volume of sediment than that found in surface waters in the oceanic
gyres (Woodall et al., 2014). Other studies cite the possibility that shorelines store
the majority of plastics (Lebreton et al., 2019), and that coastal fluxes possibly dom-
inate mass fluxes to the sea bottom (Liubartseva et al., 2018).
In this chapter, a framework is presented to close the plastic mass budget, by combin-
ing the strength of numerical models and in-situ measurements (Maximenko et al.,
2019). Models allow us to estimate plastic concentrations continuously over time on
a large spatial domain, but there are still a number of unknowns regarding processes
affecting the dispersal of marine debris (van Sebille et al., 2020). Measurements of
plastic concentrations as obtained by e.g. neuston net trawls give us more reliable
information at a given instance at a specific location. However, these are expen-
sive to carry out, and can be prone to high variation due to a relatively small area
covered, high heterogeneity of plastic concentrations (Pedrotti et al., 2016), and
presence of waves (DiBenedetto, 2020). By using an inverse modelling approach,
the best of modelling and observations is combined.
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Here, parameters in a numerical model governing sources and sinks of marine
plastics are estimated using observed plastic concentrations in surface waters. A
Bayesian framework is used, where prior information can be specified for the pa-
rameters based on previous (experimental) findings. After the posterior step is done,
the estimated parameters are used to quantify where, and in which environmental
compartments, most of the marine plastics are expected to reside. Here, we choose
to focus on the Mediterranean, which is an interesting test case because of two rea-
sons. First of all, numerical studies and field measurements suggest that there are
no stable plastic retention areas in the basin due to variability of the surface cur-
rents (Cózar et al., 2015), making it important to take time-varying processes into
account. Secondly, a large number of field studies measuring plastic concentrations
are available, providing valuable information that can be used to train numerical
models. We choose to focus on two major sinks of plastics: sinking down of plastics,
and plastics ending up on coastlines (beaching). Other sinks, such as fragmenta-
tion, degradation, and ingestion of plastics by animals are neglected, based on the
assumption that the removal rates of these sinks are likely at least an order of mag-
nitude smaller.

4.2 Methods

4.2.1 Lagrangian framework and forcing
In the Lagrangian framework presented here, virtual particles represent floating
plastics. The OceanParcels Lagrangian ocean analysis framework (Delandmeter & van
Sebille, 2019) is used to calculate the movement of floating plastic within a given
velocity field. Trajectories are integrated using a Runge-Kutta 4 scheme. The veloc-
ity field is derived from E.U. Copernicus Marine Service Information reanalysis data
for the Mediterranean currents at a 1/16◦ resolution(Simoncelli et al., 2019), and
hindcast data for the Stokes drift at a 1/24◦ resolution(Korres et al., 2019), both
spanning the years 2006–2016. Like other Lagrangian modelling studies (Macias
et al., 2019; Lebreton et al., 2018), it is assumed that the plastic particles move just
below the water surface, and hence do not experience a direct wind drag.
The effects of subgrid-scale phenomena such as submesoscale eddies are parame-
terised using a zeroth-order Markov model (van Sebille et al., 2018), with a constant
tracer diffusivity K. While some experimental estimates have been done estimating
this diffusivity parameter (Okubo, 1971), it is difficult to determine an appropriate
value, also because it will vary spatially (Rühs et al., 2017). Here, three different
(constant) values for K are used, namely K = 1 m2 s−1, K = 10 m2 s−1, and
K = 100 m2 s−1, to determine the sensitivity to this parameter.
The number of virtual particles should be large enough for the results to be statisti-
cally significant. First, a baseline simulation is done with about 1.2 million particles.
A certain percentage of the plastic particles will disappear from the surface water
over time due to sinking and particles ending up on coastlines. A time threshold
at which 99.9% of the plastic particles in the baseline simulation are removed was
determined to be approximately 50 days. Subsequent simulations were done with
about 7.2 million particles, where particles were removed well above this threshold
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Table 4.1: Data used of plastic concentration measurements in the Mediterranean.

Reference n km−2 g km−2 Sampling year Size classes
measured

Collignon et al. (2012) X 2010 < 5 mm
Collignon et al. (2014) X 2011-2012 < 5 mm, > 5 mm
Cózar et al. (2015) X X 2013 < 5 mm, > 5 mm
Fossi et al. (2012) X 2011 < 5 mm
Gajšt et al. (2016) X X 2012-2014 < 5 mm, > 5 mm
Galgani (2011) (unpublished, Gerigny et al., 2018) X X 2011 < 5 mm, > 5 mm
Galgani (2012) (unpublished, Gerigny et al., 2018) X X 2012 < 5 mm, > 5 mm
Gündoğdu & Çevik (2017) X 2016 < 5 mm
Gündoğdu et al. (2018) X 2016-2017 < 5 mm
Güven et al. (2017) X 2015 < 5 mm
de Haan et al. (2019) X X 2015 < 5 mm, > 5 mm
van der Hal et al. (2017) X 2013-2015 < 5 mm, > 5 mm
Pedrotti et al. (2016) X 2013 < 5 mm, > 5 mm
Ruiz-Orejón et al. (2016) X X 2011-2013 < 5 mm, > 5 mm
Ruiz-Orejón et al. (2018) X X 2014 < 5 mm, > 5 mm
Suaria et al. (2016) X X 2013 < 5 mm, > 5 mm
Zeri et al. (2018) X 2014-2015 < 5 mm

(after 180 days), see the supporting material C.4.
The beaching of particles is parameterised using a model presented later in this
chapter. Particles should therefore not move from mesh cells belonging to the ocean
onto land cells due to other processes, such as interpolation errors or Stokes drift.
This is ensured by pushing particles back towards the closest ocean cell when they
have ended up on the land, identical to what is done in Delandmeter & van Sebille
(2019).

4.2.2 Area of interest and field measurements used
The area studied here is the Mediterranean. The high spatio-temporal variability
of the currents in this basin causes that there are no known plastic retention areas
(Cózar et al., 2015). In order to get a better picture of the flow field, the time-
mean surface currents over 2006-2016 have been plotted as vectors in Figure 4.1.
In the same figure, locations of the measurements used here are plotted for which
references are shown in the legend. Two types of measurements are used here
(Table 4.1): manta trawl or neuston net samples reported in terms of abundance
(counts per square kilometer, n km−2) and in terms of mass (grams per square kilo-
meter, g km−2). A majority of the measurements were taken in the western basin
of the Mediterranean. There are much fewer measurements in the eastern basin,
which are mainly found in front of the coast of Turkey and Israel.
Two types of correction factors are used for the measurements: one for wind-
induced vertical mixing, and one accounting for different measured particle sizes.
For wind-induced vertical mixing the correction factor from Kukulka et al. (2012) is
used, see the supporting material C.1.
We want to account for all plastic particle sizes which are larger than the mesh-
size of the neuston nets. If the data are available, measurements of microplastics
(< 5 mm) and macroplastics (> 5 mm) are combined. If the data are given for
< 5 mm only, a correction factor is used. This correction factor is calculated from
the available measurements reporting both size classes. In terms of abundance a
correction factor of 1.14 (standard deviation: 0.14) was calculated. In terms of
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Figure 4.1: Available plastic measurements used here (coloured dots), and the time-mean
surface currents over 2006-2016 (grey arrows)

mass only measurements are used where both microplastics and macroplastics were
reported, so no correction factor is necessary in this case. Table 4.1 presents the
size-classes reported for each study.
The model output and measurements are transformed to a log10 scale for compari-
son. Measured values of plastic concentrations span multiple orders of magnitude.
Not transforming the data would lead to high outliers dominating the inverse mod-
elling process, while discrepancies at lower concentrations are just as relevant as
those at higher concentrations.
As shown in e.g. de Haan et al. (2019), replicate samples taken of plastic concen-
trations reveal a lot of variability. This variability was calculated on a specific length
and time scale using an empirical variogram, see the supporting material C.1. The
model used here has a spatial resolution of 1/16◦, and a temporal resolution of
one day. The variance of the measurements at this length and time scale, denoted
by γ, is γn=0.1376 (units: [log10(n km−2)]2) for the abundance measurements, and
γm=0.2201 (units: [log10(g km−2)]2) for the mass measurements. When comparing
model output to the observations, this variance is used to specify the measurement
uncertainty, since fluctuations on length and time scales smaller than these are not
resolved by the model.

4.2.3 Sources of plastics
Different release scenarios for plastics entering the marine environment are consid-
ered here. In modelling studies, the sources of marine plastics are often divided
into different classes. In one recent example for a global scenario (Lebreton et al.,
2018), 59.8% was estimated to come from the coastal population (<50km from the
coastline), 12.1% from inland population by riverine transport, 17.9% from fish-
eries, 1.3% from aquaculture, and 8.9% from shipping. Since the proportions for
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the Mediterranean might be significantly different, we make no such assumption
here. Instead, the model selects the appropriate fractions of input waste such that
there is a good fit of the model with the observed plastic concentrations, consistent
with their error estimates. The model can select from three major possible plastic
sources as shown in Figure 4.2, which were estimated to be the biggest sources of
pollution in Lebreton et al. (2018).

Firstly, input from rivers is considered, using the results from Lebreton et al. (2017).
In Figure 4.2 the yearly waste is plotted using green circles, where only rivers esti-
mated to release more than 0.2 tonnes of plastic per year are shown. In the model,
monthly estimates of plastic emissions are used for all rivers available. In Lebreton
et al. (2017), lower, mid, and upper estimates for riverine plastic input were given.
This is represented in our model by including a parameter varying from -1 to 0 to 1,
corresponding to the lower, mid, and upper estimates respectively. The parameter
is allowed to vary continuously in phase space, linear interpolation is used to de-
termine the riverine output for intermediate values. The input from rivers is given
instantaneously at the river mouth, possible delayed response due to e.g. transport
in the river itself (van Emmerik & Schwarz, 2020; Castro-Jiménez et al., 2019) are
not taken in account.
Another possible source of marine plastics is fishing activity (shown in blue in Fig-
ure 4.2). Data for the fishing intensity were obtained from the global fishing watch
(Kroodsma et al., 2018). These data are based the automatic identification system
(AIS) installed on vessels. This system has not been equally present on fishing ves-
sels over the years, and no data was available from before 2012. It was therefore
decided to assume a constant fishing intensity over the years, based on the years
2012-2016.
Finally, land-based mismanaged plastic waste (MPW) from coastal population is con-
sidered (shown in red in Figure 4.2 for 2010). The mismanaged plastic waste density
was estimated by overlaying population density data (SEDAC et al., 2005) with the
estimated mismanaged plastic waste per capita per country (Jambeck et al., 2015).
The estimated population density data are available from 2000 to 2020 in incre-
ments of 5 years. It is linearly interpolated to estimate the population density at a
given moment in time. The number of particles released along the coast is propor-
tional to the MPW production within 50 km, similar to Jambeck et al. (2015).
Input of plastics from the Atlantic is neglected here. In Cózar et al. (2015) a plastic
concentration of 159 g km−2 was reported inside the Strait of Gibraltar. Taking
the width of the strait, and the mean surface current which was calculated to be
0.55 m/s, would theoretically lead to about 40 tonnes of plastic per year. Since
this is small compared to the previously mentioned sources, and as it would require
a separate model to estimate how this source varies over time, it is not taken in
account here.

4.2.4 Parameterisation of plastic particle properties
Each virtual particle in the Lagrangian framework represents a certain abundance
(n) and mass (g) of plastic particles, similar to the super-individual approach used
for microbial modelling (Hellweger & Bucci, 2008). The concentration of plastics in
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Figure 4.2: Sources of marine plastics used in the model. The amount of virtual particles
released from each source is proportional to the magnitude of the source as plotted here.
Virtual particles released from rivers can directly be expressed in terms of mass, the other
sources are defined in relative terms to the riverine input.

n km−2 and g km−2 is calculated by taking a weighted kernel density estimate (KDE)
(Guillamón et al., 1998) of all virtual particles, weighted by the total abundance or
total mass of plastic particles inside the virtual particle respectively.
Initially, the abundance and mass of plastic particles inside the virtual particle de-
pends on the particle’s source, since one source might contribute more to the total
plastic pollution compared to the other. Over time, the abundance and mass of the
virtual particle are modified by sinks acting upon it. It is e.g. assumed that the
collection of plastics inside the virtual particle has a constant probability of beach-
ing over time when nearby the coast. This leads to an exponential reduction of the
abundance and mass of the virtual particle on a certain time scale τbeach.
This Lagrangian approach, which assigns an abundance and weight to the virtual
particles, allows for a relatively quick evaluation of different parameter sets com-
pared to e.g. a continuum approach with a plastic tracer concentration. Another
benefit is that it is easy to use reanalysis data sets for the forcing fields which have
already been assimilated with observational data.

Two sinks of plastic particles are considered: beaching and sinking. Each sink has its
own fraction defining what percentage of the plastics is still floating and not taken
away by the sink, denoted by fbeach and fsink respectively. The weight of the virtual
particle is the product of the weight at its source (wsource), with these different
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factors:
wptcl = wsource · fbeach(x, t) · fsink(t). (4.1)

Here, wsource can be expressed in mass (wsource,m) or in abundance (wsource,n); the
same holds for the particle weight (wptcl,m or wptcl,n). The value of wsource depends
on which of the three sources the particle comes from; this source is kept track of
for each particle during the simulation. For riverine sources there is an estimate
available of their individual pollution per month in tonnes (Lebreton et al., 2017):
wsource,m can directly be calculated. The rest of the sources are expressed in relative
terms to the riverine sources, to convert these to tonnes as well. This leads to two
parameters in the model defining the source ratios: Spop:riv and Sfis:riv, where
the subscripts pop, riv, and fis denote the sources from coastal population, rivers,
and fisheries respectively. A prior probability density function needs to be defined
for these parameters in the Bayesian framework used here. Bounds for the prior,
defined in terms of the 99.7th percentile of a Gaussian distribution, are set to enable
a very wide range of possibilities ( 1

20–20), such that each source can contribute at
most to 95% of the total mass. This easily captures the possible release scenarios
mentioned in the previous section (Lebreton et al., 2018).
For the total abundance of particles emitted by different sources no estimates could
be found. In order to express wptcl,n in terms of abundance (n), a linear fit through
the origin is made of the modelled (unitless) concentrations versus the measured
concentrations, see also van Sebille et al. (2015). The slope of this fit is used to
assign abundances (n) to wptcl,n of the virtual particles, allowing us to calculate the
density field in terms of n km−2.
One possible sink of floating plastics not taken into account here is fragmenta-
tion and degradation of plastics. Fragmentation eventually leads to particles be-
ing smaller than the detection limit (here: neuston net mesh size). This likely acts
on a significantly longer time scale (order of years) than beaching and sinking of
particles. In Song et al. (2017), polyethylene pellets, the material which forms the
majority of plastics found in the Mediterranean (Suaria et al., 2016; Pedrotti et al.,
2016), were subjected to 12 months of UV exposure and 2 months of mechani-
cal abrasion. It was estimated that this might translate to more than 4 years in
the natural environment. This weathering resulted in a volume loss of about 10%,
and produced about 20 fragments per polyethylene pellet. Photochemical oxidation
might also play a direct role in plastic degradation, converting plastic polymers into
carbon dioxide and dissolved organic carbon. In Ward et al. (2019) it was reported
that this process might play a role on decadal time scales. Both processes are un-
likely to have a significant effect on the results presented here, since their removal
rates are expected to be at least an order of magnitude smaller than what is neces-
sary for a mass balance: see the supporting material C.6 for a detailed discussion.
Nevertheless, taking fragmentation and degradation in account might be a next step
for future modelling studies.
Another sink not taken in account is the presence of plastics in biota. To our knowl-
edge the total amount of plastics in biota has not been quantified thoroughly yet. In
Booth et al. (2017) the total amount of plastics in fish was estimated to be about six
orders of magnitude lower than the amount of plastics in the surface water, hence
we neglect this possible sink.



Section 4.2 – Methods | 71

4

The goal of this work is to have a surface mass balance: particles are removed once
they start sinking down, and only surface measurements are used to infer the model
parameters. The water column and marine sediments therefore do not need to be
taken in account as separate sinks.

4.2.5 Sinks of plastics
The parameterisation of sinks is kept simple in order to avoid the problem from
becoming too under-determined (i.e. multiple sets of parameters fitting the data
equally well). Time scales define how quickly particles are removed from the surface
water due to the different sinks, with the goal of having a first order estimation on
their influence.

Beaching
The process of beaching takes place in the mesh cell adjacent to land, which will be
referred to as the coastal cell. It is assumed that plastic particles have a constant
probability of beaching when inside this coastal cell. The cumulative probability of
beaching for a set of plastic particles will follow an exponential distribution as a
function of the time that the particles spend in the coastal cell, denoted by tcoast:

fbeach = 1− Pbeach = e
− tcoast
τbeach , (4.2)

where τbeach is the time scale on which beaching occurs. The value for τbeach is one
of the parameters which is estimated in the inverse modelling process. The larger
the time scale τbeach, the longer the particles will remain in the water. This beaching
time scale should be interpreted as a time at which particles remain permanently on
the coastline (e.g. due to burial) and are not washed back to sea any more.
For drifter buoys, the beaching time scale is calculated to be about 76 days, see sup-
porting material C.2. However, floating plastic particles do not necessarily behave
like drifter buoys close to the shore. Therefore the prior probability density function
for τbeach is defined on the log10 of the values to cover a wide range of possibilities
(101–103 days), with the beaching time scale for the drifter buoys approximately at
the mode of the prior probability density function (102 days).

Sinking
For the sinking of particles, a similar approach is used as for beaching of particles,
where a time scale τsink determines how quickly plastic particles are removed from
the surface water. A majority of plastics is buoyant: the fraction of initially non-
buoyant plastics is defined as Psink,0. Due to the formation of a biofilm, initially
buoyant particles can start sinking down. Similar to Fazey & Ryan (2016), the prob-
ability that particles sink due to biofouling is modelled using a logistic function,
where over time the growing biofilm will increase the sinking probability:

fsink = (1− Psink,0) · (1− Psink), 1− Psink =
1

1 + e
rsink
τsink

(tage−τsink)
, (4.3)

where tage is the age of the particle, τsink is a time scale when 50% of the initially
buoyant particles will have sunk, and rsink is the inverse rate at which this happens
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(i.e. the slope of the logistic function at the inflection point) in terms of days. As a
first order approximation, sinking is assumed to be permanent: the effects of poten-
tial oscillations in the water column due to fouling/defouling(Kooi et al., 2017) are
assumed to be small.
Data from Fazey & Ryan (2016) are used to estimate parameter bounds for the
priors governing the biofouling process. The prior should cover a wide range of
values, since differences in the fouling process can be induced by factors such as the
particle size used in the experiment, the material, tethered vs. free-floating samples,
and differences in fouling communities for different geographical regions. The prior
probability density function of τsink is defined on the log10 of the value to cover a
wide range of possibilities. The lower bound is set to the lowest fouling time found in
Fazey & Ryan (2016) of 2 weeks. The upper bound is set to a value of 1 year, which
is much longer than the experimentally found fouling times, to allow for possible
differences in fouling behavior as described above. For rsink bounds on the prior are
set to the smallest and largest values calculated using the reported experimental data
(3–15 days). The initial fraction of positively buoyant plastic particles is estimated
by computing the fraction of polymers produced with a density lower than water
(Bond et al., 2018). Since it is not known for all materials whether it will float or
sink (e.g. the ‘other materials’ category, or polystyrene, which often appears in its
foamed version), this information is used to estimate a lower and upper bound on
the initial sinking fraction (0.17–0.44).

4.2.6 Inverse modelling
Parameters governing the sources and sinks are estimated using an inverse mod-
elling approach: parameters are chosen such that the model fit is consistent with
the observed plastic concentrations, whilst trying to adhere to the prior parameter
bounds specified in the previous sections.
There is relatively little information available on what kind of distribution is the
most suitable for the prior information. In most cases there are only point estimates
available for possible parameter values as obtained from previous modelling studies
or lab experiments. These estimates might differ for our modelling scenario due
to different geographical and environmental conditions. We do want to use these
estimates as prior knowledge however, since they tell us at least what orders of
magnitude we should look at. We choose Gaussian prior distributions here, and
assume Gaussian statistics for the model and measurement errors. This allows us to
formulate the problem as a least-squares problem, which is computationally much
less costly than e.g. using Monte Carlo methods, see supporting material C.3. The
cost function of the least-squares problem to be minimized as a function of the model
parameters m is defined as (Tarantola, 2005):

S(m) =
1

2
(g(m)− dobs)T C−1

D (g(m)− dobs) +
1

2
(m−mprior)

T C−1
M (m−mprior).

(4.4)
The first term on the right hand side is the mismatch between the modelled plas-
tic concentrations g(m) and the observations dobs, weighted by the measurement
covariance matrix CD. The last term is the deviation of m from the prior mprior,
weighted by the covariance matrix defining uncertainty of the prior model parame-
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ters CM . This term is derived from assuming Gaussian prior distributions. It has the
benefit of acting as a regularization term, which can help for solving ill-posed prob-
lems (Tikhonov, 1963). Both CD and CM are diagonal matrices: it is assumed there
is no correlation between the measurements. The diagonal entries of CD contain
the small-scale measurement variance presented before (γn=0.1376, γm=0.2201).
Bounds on the model parameters as mentioned in the text are used for the entries
in CM .
The cost function is minimized by linearising the forward model around an estimate
for the parameters m, and iteratively updating the parameters using a quasi-Newton
method, see supporting material C.3.

4.3 Results and discussion

4.3.1 Parameter estimation
Results are presented here for the simulation with a tracer diffusivity ofK = 10 m2 s−1,
which was calculated to be the most appropriate value for the grid resolution used
here (Neumann et al., 2014; Liubartseva et al., 2018). See supporting material C.4
for further details, along with a discussion on the sensitivity of the results to the
value of K, and entries of CD and CM .
Figure 4.3 shows the probability density function of the prior and the updated (pos-
terior) estimates for each parameter. The most likely value of the posterior for τbeach
is 24 days. This is lower than the τbeach estimated for drifter buoys (76 days). The
reason may be that floating plastic particles are more severely influenced by e.g.
wave action compared to the (drogued) drifters. The most likely estimate for τsink
is approximately 81 days. This is a bit higher than estimates found in Fazey & Ryan
(2016) ranging from 17 to 66 days for polyethylene samples. One explanation could
be that the Mediterranean is relatively oligotrophic (Stambler, 2014), causing slow
growth of the biofilm. For rsink there is not much difference between the prior and
posterior. The available data does not seem to contain much information about this
parameter (see supporting material C.4 for further discussion). For Psink,0 the most
likely estimate is 0.36. This corresponds well to the estimated value in Lebreton
et al. (2019), where 65.5% of all polymers are expected to be positively buoyant
(i.e. Psink,0=0.345).
The inverse model suggest that most plastics are likely to originate from coastal
population: the most likely value specifies about 1.9 times the total riverine input.
This is slightly lower than the value range (3.2–17.6) calculated from Lebreton et
al. (2018) for a global scenario. Fisheries are expected to emit less plastics: the
most likely value specifies about 0.2 times the total riverine input. This is at the
lower end of the global scenario range (0.2–4.9) (Lebreton et al., 2018). In terms
of percentages, 61% of marine plastics in the Mediterranean originate from coastal
population, 32% from rivers, and 6% from fisheries according to the most likely
posterior estimates.
The inverse model finds the low-end estimate of riverine input given in Lebreton
et al. (2017) to be the most likely, see supporting material C.4. Scatter plots of the
modelled versus measured plastic concentrations can also be found here (S5), where
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Figure 4.3: Prior (red dashed lines, right y-axes) and posterior (black solid lines, left y-
axes) probability density functions for the estimated parameters defining sources and sinks of
floating plastic particles. For probability density functions plotted using a logarithmic x-axis,
parameters were defined in terms of the log10 of the values.

it can be seen that correlation between the model and measurements is somewhat
low. This is difficult to overcome with the highly variable water surface measure-
ments used here. Recommendations to address this in the future are given in the
outlook.

4.3.2 Mass balance
The posterior parameter estimates as obtained using the observational data can be
plugged into the model. The now calibrated model is used to create a map where
plastics are removed from the surface water. The resulting fluxes due to beaching
and sinking are shown for the most likely estimates in Figure 4.4. Please note that
the beaching fluxes are given in terms of the amount entering the coastal cells of
the model, i.e. per unit area. This way no assumptions have to be made about the
coastal length inside the cells.
Some beaches which appear to be heavily polluted are located along the North
African coast, areas with high estimated amounts of mismanaged plastic waste (Jam-
beck et al., 2015). Another area is the eastern coast of the Mediterranean. A sig-
nificant amount of plastics are predicted to be emitted at the coast of Egypt, with
predominantly eastward currents following the coastlines. Other major sources of
plastics are thought to be the Seyhan and Ceyhan rivers in Turkey, where coastlines
in the vicinity are predicted to be heavily polluted as well. Adding to the various
sources of plastics, many surface currents end in the eastern basin due to down-
welling (Figure 4.1), enhancing the problem at these locations. Patterns of beaching
are different on islands depending on which side one looks at: e.g. more beaching
is estimated on the western face of Sardinia, and the northern face of Crete which
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was also reported in observations (Karkanorachaki et al., 2018).
The highest fluxes of sinking of more than 1 kg km−2 day−1 occur just next to the
coast, where the non-buoyant plastics immediately sink down. Further away from
the coast the fluxes are significantly less. In the centre of the Adriatic Sea, relatively
high sinking fluxes are predicted of more than 1 g km−2 day−1. In the western basin
there is a large area around the Balearic Islands spanning the Algerian to the Spanish
coast with relatively high sinking fluxes, of 0.1–1 g km−2 day−1 in the open water.
Some qualitative similarities can be observed when comparing with the previous
modelling study from Liubartseva et al. (2018), which also found high sinking fluxes
around the Balearic, the western coast of the Adriatic, south of the Ionian sea, and
the southern coast of Turkey. However, we find higher sinking fluxes in the Gulf
of Lion compared to its surroundings, and high sinking fluxes along the Eastern
Adriatic coast, and between Tunisia and Sicily.
There is an estimated total plastic input of about 25,600 tonnes over 2006–2016
(2,500 tonnes for the last complete model year 2015). The floating mass stays
relatively constant during the simulation, while the sinks keep taking up mass in-
troduced to the basin. Approximately 54% of all plastics eventually ends up on
coastlines, 45% starts sinking down. The most likely estimate for the total floating
mass in 2015 ranges from 110–190 tonnes. This has a small caveat: the model
misses some variance compared to the measurements, and since model output is
produced on a log10 scale this results in a underestimation of the total mass, see
supporting material C.5 for further discussion. Correcting for this missing variance
leads to an estimate of 190–340 tonnes of floating plastics. This is somewhat lower
than the estimate from Cózar et al. (2015), where it was estimated to be 756–2969
tonnes.
The numbers presented above are for the most likely posterior estimates. We can
also estimate the posterior covariance matrix, see supporting material C.3, allowing
us to estimate likely mass balance ranges using Monte Carlo sampling. For 2015
this results in a total plastic input in the range of 2,100–3,400 tonnes; a floating
mass of 170–420 tonnes; 1,200–1,900 tonnes of plastics beaching (49–63%); and
900–1,500 tonnes of plastics sinking (37–51%); all reported in terms of the 95%
confidence interval (80 samples).
Given the results presented here, it seems likely that at least for the Mediterranean
previous estimates of plastics entering the marine environment (>100,000 tonnes;
Liubartseva et al., 2018; Jambeck et al., 2015) are too high. Observed floating plas-
tic concentrations could in these cases only be explained by having time scales for
the sink terms which are much lower than estimated here. The estimated beaching
time scale for floating plastics is already lower than the one calculated for drifter
buoys. While the sinking time scale could in theory be lower than the estimated 12
weeks, it is very unlikely it will fall much below the minimum 2 weeks reported in
experimental studies (Fazey & Ryan, 2016). We do not expect that sinks neglected
here such as fragmentation and degradation of plastic could explain a large part of
the discrepancy, since time scales of these processes are expected to be relatively
high. See the supporting material C.6 for a detailed discussion. Using the approach
from Jambeck et al. (2015) and the same conversion rates of mismanaged plas-
tic waste to marine debris (15–40%, 50km radius), we get a plastic input into the
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Figure 4.4: Locations in the Mediterranean where beaching and sinking of plastic particles is
expected to occur, calculated over 2006-2016. Beaching fluxes are given for the coastal grid
boxes (1/16◦ by 1/16◦), hence no assumptions are made about coastal segment lengths or
widths (i.e. coastal lengths contained in the grid boxes will vary, the map does not represent
fluxes per stretch of beach in kg km−1 day−1 directly).

Mediterranean water of about 340,000–910,000 tonnes for 2015. Our estimated
plastic input from coastal population (1,100–2,300 tonnes for 2015) would corre-
spond to a conversion rate of 0.05–0.10%, which is about two orders of magnitude
lower. Neuston net measurements missing the larger plastic pieces could explain
some of this discrepancy, which should be quantified in the future. We do not expect
that this will explain all of the discrepancy however: in Lebreton et al. (2018) it
was found that in the North Pacific accumulation zone, the megaplastics category
(> 50 cm) consists for 92% of fishing nets, ropes, and lines, which are more likely
attributed to fishing related activities than land based mismanaged plastic waste.
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4.4 Conclusions and recommendations

In this work, inverse modelling was used to calibrate parameters governing sources
and sinks of floating plastics in the Mediterranean, by making use of neuston net
observations of plastic concentrations. The mass balance of floating plastics resulting
from this calibrated model was presented, which gives us insight where we expect
most plastics to enter and leave the surface water.
A major step which needs to be taken in future work is ensuring that there is enough
reliable data to inform the model, and making sure there is good correlation between
the model and measurements. Here, the correlation is somewhat low due to the high
measurement variability, which is further discussed in the supporting material C.5.
Observed plastic concentrations are highly variable as discussed earlier in this text,
see for example de Haan et al. (2019) and the supporting material C.1. Measure-
ment variability is further increased by the fact that different sampling campaigns
might have slightly different methodologies. The Mediterranean features highly
dynamic currents, making it relatively difficult to model plastic concentrations accu-
rately compared to a domain with a more steady-state structure, like the accumula-
tion zones in the subtropical gyres (van Sebille et al., 2015).
We can look at including more types of measurements, such as observations from
beaches, marine sediments, particle size distributions and possibly data of plastic
ingestion by animals. Some of these measurements are of a more cumulative nature,
such as plastics gathered in sediment traps over time. Perhaps this could alleviate
some of the high temporal variability, allowing for more accurate comparison of
model output against observational data, helping to constrain the model parameters
more accurately. Furthermore, this can result in a better understanding of the sinks
neglected here such as fragmentation, degradation, and ingestion. We expect that
these processes have a minor influence on the total mass balance (see supporting
material C.6 for a detailed discussion). However, how particle sizes evolve over
time due to degradation and fragmentation might be important to consider when
extending the model to consider size-dependent processes.
Decreasing the mismatch of the model with respect to the measurements will also
involve making the model more complex. Only three parameters define the magni-
tude and ratio of the different plastic sources. In future work the number of sources
could be extended, and local uncertainty in the input could be taken into account
spatially, e.g. correcting for errors in the estimated mismanaged plastic waste per
country. The output from individual rivers could be estimated more accurately on
smaller temporal scales, possibly taking into account variations on outflow and pre-
cipitation. Extending the amount of parameters defining the sources makes the
problem more under-determined however. This means it will be necessary to have
more accurate a priori knowledge, or more measurement data and/or reduced mea-
surement errors.
For some parameters, spatial and temporal variability is likely important to consider
in the future. Biological productivity in the Mediterranean has temporal variability
(e.g. seasonal blooms) and spatial variability (e.g. productivity related to upwelling,
Macias et al., 2015). This likely influences the sinking time scale of plastics, and
could be taken in account in the future by using data from biochemistry models.
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Similarly, coastlines along the basin vary in type, which might influence the beaching
time scale. Spatial variability could e.g. be taken in account by estimating whether
a beach is more ‘rocky’ or ‘sandy’. On the other hand, a parameter like Psink,0
might remain relatively constant both spatially and temporally, assuming the types
of plastics discarded in different countries are relatively similar.
Some larger plastic objects, like fishing nets, might not be captured by the neuston
net measurements used to calibrate the model. The input in terms of mass might
therefore in reality be larger than estimated here. It might be a good idea to combine
data used here with visual observations of litter as was for example done in Eriksen
et al. (2014) to account for the larger plastic items, if the mass of these objects could
be estimated.
In future work, effects caused by e.g. washing away of particles from beaches, de-
fouling of particles, different forcings for different particle sizes and shapes can be
taken in account by using a more elaborate data-assimilation scheme. This would
also allow for better separating the effects of primary and secondary sources of plas-
tics (Browne, 2015). As a final point this work can be extended to other geographical
regions where measurements are available.



CHAPTER 5

Closing the global mass budget
of buoyant marine plastics: large

long-lived debris dominates

One of the longstanding puzzles concerning marine plastic is where plastic ends up
after it enters the ocean. Latest estimates of the oceanic input of plastic are one to
two orders of magnitude larger than the amount floating at the surface. This discrep-
ancy could be due to overestimation of input estimates, processes removing plastic
from the surface ocean (sinking, sedimentation, and beaching), or fragmentation
and degradation. Here we present a global buoyant marine plastic mass budget to
address this discrepancy. We assimilate unprecedented amounts of observational
data from different marine reservoirs (coastlines, the ocean surface, and the deep
ocean) considering an extensive particle size range (0.1 mm–1.6 m). We show that
larger plastics (>2.5 cm) contribute to most marine plastic mass (3,100 out of 3,200
kilotonnes). Our model estimates an annual ocean plastic input of 500 kilotonnes,
which supports the theory that previous estimates (5,600–25,000 kilotonnes) were
likely overestimated. Our findings of a reduced oceanic plastic input and increased
standing stock lead to much higher residence times of plastics in the marine environ-
ment compared to previous model studies, in line with observational findings. With
longer-lived marine plastics come drastic consequences without countermeasures
and prevention strategies.

This chapter has been submitted as:
Kaandorp, M.L.A., Lobelle, D., Kehl, C., Dijkstra, H.A., van Sebille, E. (2023): The global mass of buoyant
marine plastics is dominated by large long-lived debris.
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5.1 Introduction

An estimated 250 metric kilotonnes (250 million kilograms) of plastic pollution
floats on the surface of the global ocean (Eriksen et al., 2014; van Sebille et al.,
2015). A much larger amount of plastic pollution is estimated to enter the ocean
every year, in the order of 800–2,400 kilotonnes from rivers (Meijer et al., 2021),
and 4,800–23,000 kilotonnes from coastal regions (Jambeck et al., 2015; Borrelle
et al., 2020). We assess what causes the misalignment between the estimated plas-
tic input and the total floating plastic mass, by assimilating unprecedented amounts
of observational data into a state-of-the-art 3D global transport model for marine
plastics, considering timescales in the order of decades (1980–2020). Our dataset
includes concentrations in terms of both number (in n m−3 in the ocean and n m−1

on beaches) and mass (in g m−3 in the ocean and g m−1 on beaches). In total
we use 14,977 measurements from the surface water, 7,114 from beaches, and 120
from the deep ocean (for an overview see the supporting material D.1). From 2,303
beach measurements we additionally use the fraction of fishing related items such as
fishing nets. We expand on the mass budget studies in Chapter 4 by increasing the
model complexity, incorporating numerous recently developed models for different
processes affecting marine plastic transport: sinking via biofouling, beaching, turbu-
lent vertical mixing, and fragmentation. By using a Bayesian framework, our model
results match well with both observed plastic concentrations across different marine
reservoirs and different size classes (see Figure D.2) and the latest understanding of
processes removing plastic from the surface ocean.
Sinking of plastic particles and sedimentation (particles settling on the ocean floor)
likely play an important role in removing plastic mass from the surface water (Kvale
et al., 2020; Martin et al., 2022). Initially buoyant items can start sinking due to the
growth of biofilm on their surface, on timescales of weeks to months (Ye & Andrady,
1991; Fazey & Ryan, 2016; Lobelle et al., 2021). We consider various biofouling
scenarios, including fouling-defouling cycles (Kooi et al., 2017; Fischer et al., 2022).
Model studies (Lebreton et al., 2019; Onink et al., 2021) have suggested that the
majority (67-77%) of plastics reside on beaches or in coastal waters up to 10 km
offshore. We therefore include models for beaching and resuspension of plastics
back to the ocean (Onink et al., 2019). Surface measurements are currently the only
large global observational datasets available in the ocean. Mixing of plastic particles
in the water column is hypothesized to be an explanation for the relatively low
estimates of plastic mass found in surface net trawls (Poulain et al., 2019; Fischer
et al., 2022). We account for this by resolving plastic transport three-dimensionally,
including the modelling of vertical turbulent mixing in the water column (Onink
et al., 2022a).
Fragmentation plays an important role in explaining the increasing number of plas-
tic particles for smaller particle sizes (Cózar et al., 2014; Song et al., 2017) and
can furthermore affect mass budget analyses by breaking down plastic items into
particles smaller than typically measured sizes. We therefore include the fragmen-
tation model presented in Chapter 3, including a size spectrum of plastic particles
(0.1 mm–1.6 m). This allows us to assimilate different types of observations such
as net trawls that mainly capture microplastics (<5 mm, with a typical mesh size of
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0.2 mm (Cózar et al., 2015)), as well as measurements of larger plastics (>25 mm)
from shipboard observations and beach cleanup campaigns. With this size spectrum
we can also more accurately link concentrations in terms of number of plastic parti-
cles to concentrations in terms of plastic mass, as a biased conversion between the
two has been shown to have a big impact on mass budget estimates (Weiss et al.,
2021).
We focus on plastics that are initially buoyant when entering the marine environ-
ment, such as polyethylene (PE), polypropylene (PP), and polystyrene (PS). These
polymers have been shown to make up the majority of items in the ocean’s surface
(Bond et al., 2018), deeper layers (Egger et al., 2020b), and beaches (Vianello et
al., 2013; Frias et al., 2014; Carson et al., 2011). This means we do not consider
polymers denser than seawater such as PVC and PET, which are estimated to make
up about 35–40% of the plastic mass entering the marine environment (Andrady,
2011; Lebreton et al., 2018)

5.2 Methods
We use a hybrid Lagrangian-Eulerian model to efficiently advect a virtual plastic
tracer through the global ocean, under various environmental forcings. First, we
use Lagrangian simulations to advect a globally dense set of virtual plastic parti-
cles over a timespan of one month. We run simulations for different particle sizes,
different biofouling scenarios, and different months. We then use each of these sim-
ulations to construct transition matrices: linear systems that define the probability
that plastic particles move from one grid cell of the ocean to another (van Sebille,
2014; Wichmann et al., 2019b). Parameterised sources and sinks for marine plastic
pollution are then directly added into the transition matrix model. This allows us
to efficiently evaluate different source and sink scenarios, which is necessary dur-
ing the data assimilation step where we calibrate the set of unknown parameters
to optimally match the observational data. For a more detailed explanation, see
the supporting material D.3.1. With the hybrid Lagrangian-Eulerian approach we
have a parsimonious model which can explain the sparse observed data with as few
parameters as possible (16 in total; see Figure D.7).

5.2.1 Data assimilation
Parameters defining sources, transport, and sinks of plastic pollution are given a
plausible range (i.e. the Bayesian ‘prior’) in accordance with current understanding
of these processes as discussed in the next sections. Gaussian probability density
functions are used to define the ranges, where the 95% confidence intervals de-
fine the lower and upper parameter estimates. Measurements contain an error, due
to both instrument errors (e.g., differences between campaigns in sampling) and
representation errors (e.g., due to unresolved scales and processes (Evensen et al.,
2022)). Measurement error is estimated by calculating variograms of the obser-
vational data (the same approach as Section 2.2.2 and Section C.1). We use an
ensemble smoother with multiple data assimilation (ES-MDA) to update the model
parameter values with the observational data (Emerick & Reynolds, 2013). An en-
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semble of 55 members (iterated 8 times) is used to estimate the most likely posterior
parameter values and confidence intervals. The ensemble members are furthermore
used to quantify uncertainty ranges for the estimated plastic concentrations and
fluxes. The modelled plastic concentrations represent a mean state, where subgrid-
scale variability is not captured. We estimate the subgrid-scale variability from the
model-observation mismatch after the data assimilation procedure. The subgrid-
scale variability is accounted for in the uncertainty ranges by performing a Monte
Carlo analysis (as was also done for the Mediterranean Sea mass budget, see Sec-
tion C.5) , where the plastic concentrations in each ensemble member are perturbed
100 times.

5.2.2 Lagrangian model
To generate the transition matrices, we advect virtual plastic particles in three di-
mensions in the global ocean using OceanParcels (Delandmeter & van Sebille, 2019),
with the Mercator Ocean PSY4 analysis product at 1/12◦ resolution as forcing (Gas-
parin et al., 2018). This forcing product has been assimilated with various data
sources (including altimetry, sea surface temperature, salinity and temperature ver-
tical profile data) and includes freshwater fluxes (Lellouche et al., 2018). Particles
are released horizontally on a hexagonal grid with an average hexagon edge length
of 22 km, and vertically at 12 logarithmically spaced depth layers between 0.5 m
and 5000 m. This release is repeated every month, for five years (2015–2019).
Transport is resolved for six different particle sizes (diameter), using an increment
of a factor 4 (0.1 mm, 0.4 mm, 1.6 mm, 6.4 mm, 2.6 cm, 10.2 cm). These particles
experience a varying amount of influence from vertical turbulent mixing, which can
affect their horizontal dispersion (Wichmann et al., 2019a). Analysis showed that of
these sizes, the largest particles (10.2 cm) experience negligible effect from vertical
mixing in the water column due to their high buoyancy. This is therefore the largest
particle size for which we calculate the advection in OceanParcels. We assume simi-
lar transport for larger particles (up to 1.6 meter) when constructing the transition
matrices (see Section 5.2.3) since these all remain at the ocean surface. Recent
studies have shown that simply adding the Stokes drift velocity (Cunningham et al.,
2022) or a windage term (Lebreton et al., 2018) to Lagrangian particle simulations
representing plastic transport does not increase the match with observational data,
which was verified in a preliminary analysis. These effects are therefore not included
in our model. Generally, Lagrangian particle simulations include a stochastic (dif-
fusive) term (van Sebille et al., 2018) to account for missing subgrid-scale effects
(e.g. submesoscale eddies). This stochastic term is not included as the transition
matrices calculated from the Lagrangian transport already introduce diffusion in the
dynamics (Wichmann et al., 2019b). Transport is resolved for four different vertical
transport scenarios under influence of turbulence and biofoulingas described in the
next section. The total number of particle trajectories across all simulations for the
different months, sizes, and transport scenarios, is 1.7 billion.

Vertical motions: mixing and biofouling

We consider four different scenarios for the vertical behaviour of plastic particles
in the ocean. In all four scenarios, vertical diffusion due to turbulence is included,
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using a Markov-0 random walk model (Onink et al., 2022a) forced by the PSY4
vertical diffusivity fields.
First, we consider plastic particles that remain positively buoyant, with a rise velocity
that is dependent on the particle size (Poulain et al., 2019). Spherical particles
(Dietrich, 1982) with a density of 1010 kg m−3 are used as a baseline, giving the
best match with observational data (see Figure D.13). In reality, environmental
plastics have a range of densities and shapes (Kooi & Koelmans, 2019). For a given
particle size in the model, we take a linear combination of the six differently sized
baseline particles, to model an assemblage of particles with different rise velocities.
This linear combination is calibrated during the data assimilation procedure to give
an optimal match with the observational data, see the supporting material D.3.4 for
further details. Using spherical particles as a baseline keeps the rise velocity model
consistent with our biofouling implementation (Fischer et al., 2022), and keeps the
calculation procedure computationally cheap (as opposed to some recent iterative
procedures for calculating rise velocities of non-spherical particles (Poulain et al.,
2019; Waldschläger & Schüttrumpf, 2019), which would add extra computational
costs).
Second, we include two scenarios for biofouling, using a recently developed La-
grangian model (Fischer et al., 2022). Biochemistry fields from the Mercator Ocean
BIOMER4 analysis product are used at 1/4◦ resolution. Biofilm on plastic particles
is gained via collisions and growth with algae in this model, and is lost via respi-
ration. Biofilm loss via grazing and viral lysis is neglected to keep the amount of
free model parameters limited, since this effect is suggested to be minor (Fischer
et al., 2022). Due to the growth and loss of biofilm, plastic particles can oscillate
vertically in the water column. This oscillatory behavior is only theoretical and has
not been experimentally observed. We therefore also include a scenario where the
fouling of particles is permanent, neglecting the respiration loss term. In our fourth
scenario, particles become neutrally buoyant, e.g. due to a balance in the fouling
and defouling processes, or slightly negatively buoyant particles reaching an equal
density isopycnal surface.

5.2.3 Transition matrix model
The statistics of the Lagrangian particle transport (probabilities that particles move
from one grid cell of the ocean to another) are stored in transition matrices, with
time-windows of 30 days. The Uber H3 grid is used to construct the transition
matrix bins horizontally, where each cell has an edge length of approximately 60
km. Each horizontal bin is furthermore divided vertically into four depth bins, with
boundaries at 0, 5, 50, 500 meters deep and at the ocean floor. Additional cells are
introduced into the transition matrix system representing the coastline segments
inside the coastal cells (see Figure D.10), to model transport between the ocean and
beaches. The resulting transition matrices have a size of 121,000 × 121,000.
In the next two sections we discuss how sources, transport, and sinks of marine
plastics are parameterised in the transition matrix model. We touch upon plausible
ranges for each parameter value, as these are used to define the prior probability
density functions in the Bayesian analysis, when assimilating observational data into
the model (see the supporting material D.2.3).
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Parameterisation of sources: rivers, coastlines, and fisheries

We consider three major types of marine plastic pollution sources in our model:
rivers, coastlines, and fishing activity (Lebreton et al., 2018), which are shown on a
map in Figure 5.1.
Current estimates of riverine plastic inputs vary widely. Global estimates based on
modelling studies calibrated to observational data range from 1,150–2,410 kilo-
tonnes per year (Lebreton et al., 2017) to 800–2,700 kilotonnes per year (Meijer
et al., 2021). However, it was recently argued that these values might be overes-
timates (Weiss et al., 2021), giving a much lower estimate of about 6.1 kilotonnes
per year. Reasons for potential overestimations are biases in conversion from num-
ber concentrations to mass concentrations due to too high particle mass estimates,
and mixing different sampling techniques without accounting for varying lower size
detection limits. We use the most recent global estimate of riverine inputs (Meijer
et al., 2021), given that they find a reasonable correlation to observational riverine
data (r2 = 0.74), and their data are publicly available. We take possible biases into
account by scaling the total input with a factor Sriv., where the bounds of this prior
are chosen to capture both the high-end (2,700 kilotonnes per year (Meijer et al.,
2021)) and low-end (6.1 kilotonnes per year, Weiss et al., 2021) estimates.
For coastal mismanaged plastic waste (MPW) we make use of a global MPW dataset
per country (Jambeck et al., 2015) in terms of kilotonnes per year per capita. Com-
bined with the estimated population density within 50 kilometers from the coast
(SEDAC et al., 2005), this gives us the coastal MPW per unit area per year. A param-
eter Spop. defines the relative input of coastal MPW with respect to the total riverine
input.
We estimate plastic loss per fishing hour by scaling a globally estimated fishing hours
dataset (Kroodsma et al., 2018) with a parameter Sfis. that defines the relative input
of fishing-related plastic with respect to the total riverine input. The prior bounds
for Spop. and Sfis. are defined using previously estimated input ranges for different
waste categories (Lebreton et al., 2018). This gives 2.7–7.3 times the riverine input
for coastal MPW, and 0.2–2.0 times the riverine input for fishing related plastic.
Larger items make up the majority of plastic mass found in the marine environment
(Lebreton et al., 2018; Ryan et al., 2020), while small fragments dominate in terms
of the number of particles (Cózar et al., 2015). It is not yet well known which
particle size dominates new plastic items introduced into the marine environment.
We parameterise the plastic input size using a log-normal distribution, capturing
the dominant particle sizes of plastic packaging in municipal solid waste sorting
facilities (about 0.2 meters, Jansen et al. (2015)) and the dominant sizes of plastic
items found in rivers (about 0.2–0.3 meters, van Emmerik et al. (2019) and Vriend
et al. (2020)), see the supporting material D.3.2 for more details.
Plastic waste generation has been increasing exponentially the last decades (Geyer
et al., 2017). We use an exponential function to parameterise the possibility that
this has led to an increasing amount of waste entering the ocean. The midpoint
estimate for the exponential growth rate (GRin) prior is calibrated to plastic waste
production estimates (Geyer et al., 2017), and the lower bound is set to zero to allow
for the possibility of no increased input into the ocean (e.g. due to more efficient
collection and processing of waste).
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Figure 5.1: The three major sources of marine plastic pollution: rivers (Meijer et al., 2021),
coastal mismanaged plastic waste (Jambeck et al., 2015), and fishing activity (Kroodsma et
al., 2018).
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Parameterisation of transport and sinks: biofouling, beaching, and fragmenta-
tion

The four different vertical transport scenarios (Section 5.2.2) yield four different
transition matrices. We assume particles in the ocean are an assembly of these four
scenarios. How much each scenario contributes is parameterised using three frac-
tions: fof (oscillatory fouling/defouling), fpf (permanent fouling), fnb (neutrally
buoyant), with the remaining fraction being the positively buoyant particles. In the
case of permanent fouling, we keep track of particles hitting the ocean floor (which
is one of our sinks), in which case they are classified as ‘sedimented’ and removed
from the system. Prior bounds for fpf are set to 1.7%–97% by comparing previous
estimates of plastic seafloor export (Kvale et al., 2020) to the estimated plastic mass
at the ocean surface (Eriksen et al., 2014). The remaining fractions are given equal
prior probabilities, with the maximum fraction values set to 95%.
The transition matrix contains separate cells for the coastline segments. The prob-
ability that plastic particles beach, i.e. move from a coastal ocean cell onto the dry
land, is parameterised using a beaching time scale τbeach (Onink et al., 2021; Kaan-
dorp et al., 2020). The prior probability density function for τbeach is defined on the
log10 of the value to cover a wide range of (positively valued) possibilities. Param-
eter bounds are based on the findings from Chapter 4, with a mid-point estimate of
100 days, and a lower bound set to 25 days. Resuspension time scales determining
how quickly differently sized plastic move from the beach to the ocean are based
on experimental findings (Hinata et al., 2017). A probability premoval is defined
for plastics being removed from beaches (e.g. due to burial (Ryan et al., 2020),
cleanup efforts, or direct degradation of plastic material such as oxidation (Ward
et al., 2019)). We use a removal rate of 0.2% based on the results from Chapter 3,
and allow it to vary an order of magnitude, capturing the removal rates from other
global mass budget studies (0.8%–4% per month, Isobe & Iwasaki, 2022). This is
the second ‘sink’ in which particles are permanently removed from our simulations.
The coastline length inside each grid cell, necessary to calculate litter concentrations
per unit length of beach, is computed using the natural earth dataset (Kelso & Pat-
terson, 2010). Coastlines have a fractal structure, which can lead to different along-
shore lengths in beach surveys compared to the discrete map data. We use a cor-
rection factor (Isobe & Iwasaki, 2022) to account for the 1.27 fractal dimension of
coastlines (Husain et al., 2021). The typical beach survey resolution is set to 100
meters, and the coastline segment resolutions are calculated directly from the natu-
ral earth map data. To account for the fact that less litter might beach in grid cells
with only a small amount of coastline, a parameter lbeach,min is introduced. Below
this value, the beaching probability decreases linearly down to zero.
We assume fragmentation of plastic items is dominant on beaches due to higher
temperatures, oxidation, UV-radiation, and mechanical abrasion (Andrady, 2011;
Kalogerakis et al., 2017; Song et al., 2017; Efimova et al., 2018). Previous studies
(Onink et al., 2022b) show that neglecting ocean fragmentation is justified, as long
as plastics fragment at the same rate or slower in the ocean compared to on beaches.
The fragmentation model from Chapter 3 is used here to simulate how plastic items
break down into smaller particles over time. Parameters to be estimated are the
fragmentation rate λf , and the shape factor dN which is used to represent the di-
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mensionality of plastic items (2 for flat objects, 3 for cubes, non-integer values for
mixtures of differently shaped objects). For plastic items the fragmentation rate is
still not well known. Parameter bounds for λf are based on experimental data (up
to 1.9 · 10−4 d−1, Song et al., 2017) and results from Chapter 3 (down to 2.9 · 10−5

d−1), and are defined on the log10 of the value to cover a wide range of possibilities.
Bounds for dN are based on observational data of plastic particle sizes and masses
(see the supporting material D.3.3). Fragmentation is the third ‘sink’ for plastic par-
ticles in our simulations, where they are removed when reaching a size smaller than
0.1 mm.
In our model we consider a full size spectrum from 0.1 mm to 1.6 m, using incre-
ments of a factor 2. Lagrangian particle transport is resolved for six sizes (0.1 mm
to 10.2 cm, see Section 5.2.2). For intermediate sizes in the spectrum, the available
transition matrices are interpolated linearly. For larger plastics (>0.1 m) similar
transport is assumed, as these particles remain predominantly at the ocean surface.
We model both the particle size distribution in terms of the number of particles and
in terms of mass, see Chapter 3 for more details. This way we can quantify which
particle size contributes to most of the marine plastic pollution. For smaller plas-
tic particles data are available on typical masses (Lenz, 2020; Egger et al., 2020a).
For bigger items the particle mass mp is extrapolated from the particle length lp
using mp ∝ ldNp , consistent with the fragmentation model. See the supporting mate-
rial D.3.3 for more details.

5.3 Results and discussion

5.3.1 A 3D map of marine plastic litter
We estimate a total amount of initially buoyant plastics in the 3D global ocean of
3,200 kilotonnes (95% confidence interval: 3,000–3,400 kilotonnes) for the year
2020 based on our assimilated model. A three-dimensional global map of the es-
timated marine plastic pollution for the complete modelled particle size spectrum
(0.1 mm to 1.6 m) is shown in Figure 5.2. The largest fraction of plastic mass is lo-
cated at the ocean surface: 59%–62%. More than a third of the mass resides deeper
in the ocean (36–39%), and the remainder is located on beaches (1.5%–1.9%).
These results, as well as the the estimated fluxes into and out of the marine environ-
ment are summarized in the schematic overview in Figure 5.3. We calculate a total
marine plastic input of 500 kilotonnes per year (95% confidence interval: 470–540
kilotonnes, for the reference year 2020), originating from coastlines (39–42%), from
fishing activity (45–48%), and from rivers (12–13%). The total input we predict in-
creases by about 4% per year, which is consistent with the estimated increase in
global plastic waste generation of about 5% per year (Geyer et al., 2017), and with
the observed increase of plastic concentrations in the Pacific Ocean (Lebreton et al.,
2018) and the North Atlantic Ocean (Wilcox et al., 2020). Our calculated global
riverine input of 57–69 kilotonnes per year is lower than previous estimates (800-
2,700 kilotonnes per year (Meijer et al., 2021).) The 190-220 kilotonnes of input
from coastlines is furthermore at least an order of magnitude smaller than previous
estimates (4,800–12,700 kilotonnes per year, Jambeck et al. (2015)). These much
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lower input estimates for rivers and coastlines are consistent with recent modelling
and observational studies (Ryan et al., 2020; Schöneich-Argent et al., 2020; Weiss et
al., 2021). The estimated input of 220–260 kilotonnes from fishing activity is some-
what lower than previous estimates of 640 kilotonnes per year (Li et al., 2016). Our
modelled concentrations of fishing related plastics are consistent with the observed
amount of items on beaches, see the supporting material D.2.1, and match quali-
tatively with review studies showing that the majority of plastic litter in the open
ocean originates from the ocean (Morales-Caselles et al., 2021) (e.g., items such as
nets, ropes, and buoys).
Biological processes (such as biofouling) play an important role in the dynamics and
export of plastic waste from the ocean surface. We estimate that 220 kilotonnes of
plastics are exported to marine sediments per year, of which 6 kilotonnes are mi-
croplastics (<5 mm), which is close to the 7–420 kilotonnes per year from previous
modelling studies (Kvale et al., 2020). We estimate that 6,200 kilotonnes of initially
buoyant plastics have ended up in marine sediments since 1950, which is less than
a recent estimate of 25,000-900,000 kilotonnes (Martin et al., 2022) for all plastic
(buoyant and non-buoyant). Our model shows that about half of the plastic particles
in the marine environment experience so much biofouling that they start sinking or
become neutrally buoyant. The high amount of plastic particles in the deep ocean
(Egger et al., 2020b), for a large part consisting of low density polymers such as PE
and PP, cannot be explained without this fouling.
We estimate a plastic sink of 3 kilotonnes per year at coastlines, due to processes
such as burial, cleanup efforts, and direct UV degradation. Additionally, a substantial
amount of plastics are fragmented into particles smaller than 0.1 mm; about 73
kilotonnes per year. We estimate that 2.2% of plastics larger than 5 mm fragment
into particles smaller than 5 mm per year, which is very close to previous model
estimates of about 3% per year (Lebreton et al., 2019).

5.3.2 Particle size contributions to the marine plastic mass bud-
get

One of our key results is that the majority of plastic mass is contained in the large
plastic items (>2.5 cm): 90%–98% (2,800-3,300 kilotonnes). Microplastics (<5
mm) and plastics between 5 mm–2.5 cm form the small remainder at 49–53 kilo-
tonnes and 150–170 kilotonnes respectively, which is in the same order of magni-
tude as previous estimates for small (0.3 mm – 20 cm) floating plastics (93–236
kilotonnes, van Sebille et al., 2015). These findings are also consistent with an anal-
ysis of the Great Pacific Garbage Patch (Lebreton et al., 2018), where it was found
that microplastics (<5 mm) only make up 8% of the total plastic mass at the ocean
surface.
Particle size distributions (Figure 5.4a) reveal an increase in the total plastic mass
with particle size according to a power law, up to an estimated dominant particle
size of about 0.4 meters. Few particles above this length scale are expected to enter
the marine environment. The model results indicate that most of the plastic mass
for particles smaller than 0.8 mm is below the ocean surface. The total plastic
mass on coastlines is about an order of magnitude less compared to the surface and
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Figure 5.2: A map of the predicted plastic concentrations in the marine environment.
The predicted concentrations of plastic items (0.1 mm – 1.6m) are shown for the most likely
parameter estimates in the ocean surface (0–5 m depth, panel a) and below the ocean surface
(panel b) in terms of g m−2. Predicted plastic concentrations on beaches (in purple to red in
panel a, white delineation) are shown in terms of g m−1. The estimated concentrations are
shown for the year 2020.
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Loss via beaching:            3 kt/year
Loss via fragmentation*: 73 kt/year

Loss via sedimentation: 220 kt/year

Coastal input:  203 kt/year
Riverine input: 63 kt/year
Fishing input:   239 kt/year

Total global marine plastic mass for the year 2020: 3,200 kt

*Fragmentation loss = items <0.1 mm 
**Macroplastics = items >25 mm 

Macroplastics**: 3,050 kt 
(vs. plastics <25 mm: 150 kt)
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Coastlines: 54 kt 
(vs. ocean: 3,146 kt)

Fragmentation
Fishing

Sedimentation

Beaching
98%

2%

Figure 5.3: Schematic overview of the estimated marine plastic fluxes and standing
stocks.

deep ocean for all particle sizes. The number of particles increases for decreasing
particle size (Figure 5.4b) according to a power law, as has been shown in previous
observational studies (Cózar et al., 2014; Kooi & Koelmans, 2019).
Our estimate of the total plastic mass for particles smaller than 5 mm (53 kilotonnes)
is similar to previous studies (35.5 kilotonnes, Eriksen et al., 2014). However, our
mass estimate for particles between 5 mm and 200 mm, 700 kilotonnes, is much
higher than previously estimated (30.6 kilotonnes, Eriksen et al., 2014). This is even
more so for particles larger than 200 mm, where our estimate of 2,500 kilotonnes
vastly exceeds the previously estimated 202.8 kilotonnes (Eriksen et al., 2014). This
difference can largely be explained by the very broad size intervals used previously
(Eriksen et al., 2014). To elaborate, due to the scaling of particle mass with size
(m ∝ l2 for flat objects, m ∝ l3 for cubic objects, see the methodology for further
details), using the same mean particle mass for a large size interval will vastly un-
derestimate the total mass. Biases in mass budget estimates due to incorrect usage
of mean particle masses were also observed for riverine plastic studies (Weiss et al.,
2021). As an example it can be seen in Figure 5.4 (left panel) that the larger par-
ticles around 200 mm by far dominate the total mass in the size range 4.76–200
mm, whereas these particles are very sparse in terms of total number (right panel).
These large differences in total mass estimates underline the importance of treating
different particle sizes very carefully in mass budget studies: preferably a (semi-)
continuous size spectrum should be used.
We recommend that future plastic measurement campaigns and mass budget studies
treat number and mass measurements more carefully. The amount of plastic parti-
cles increases exponentially with decreasing particle sizes. Reporting the number of
particles in observational studies can be unreliable when no strict lower limit of the
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Figure 5.4: Particle size distributions of marine plastics. The total mass in kilotonnes (a) and
number of particles (b) are shown for different size classes (from 0.1 mm to 1.6 m in terms
of diameter). Note the logarithmic axes.

particle size is used. This is especially true for visual observations (the main source
of data for beaches, OSPAR, 2010; Burgess et al., 2021), as the lower detection limit
likely varies per person. Measuring the total mass of items is more reliable in those
cases, as most of the plastic mass in the marine environment is contained in the
larger particle sizes which are more easily observed.

5.4 Conclusions and outlook
In summary, we find that the total amount of marine plastic litter, 3,000–3,400 kilo-
tonnes, is much higher than previous estimates (Eriksen et al., 2014), which for a
large part can be explained by better representing large plastic object masses. We
also find a plastic input into the marine environment of 470–540 kilotonnes per year,
at least an order of magnitude less than previous estimates (Jambeck et al., 2015;
Meijer et al., 2021; Borrelle et al., 2020). The decreased input and increased stand-
ing stock suggest that there is no ‘missing sink’ for marine plastic pollution, which
has been the focus of many recent papers (Weiss et al., 2021; Isobe & Iwasaki, 2022;
Kvale et al., 2020; Ryan et al., 2020). Our mass budget estimate is consistent with
observed plastic concentrations in different marine reservoirs, and with our latest
understanding of processes removing plastic particles from the surface ocean, such
as biofouling and sedimentation, beaching, fragmentation, and mixing.

Our finding of a lower plastic input into the marine environment and a higher stand-
ing stock means that the residence time of plastics in the marine environment is
much higher than previously estimated. For example, some studies (Koelmans et
al., 2017) predicted that given an instantaneous stop of plastic emissions, more than
95% of the plastic mass would be removed from the ocean surface within 1–2 years
due to fragmentation and sinking. We show a similar analysis for a sudden stop of
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Figure 5.5: Scenarios for the future marine plastic mass budget. A scenario for a sudden
stop of new plastics introduced into the marine environment in 2025 is shown in orange, a
business-as-usual scenario with an exponentially increasing input in grey. The inset presents
a zoom out of both scenarios. Also shown are the expected marine plastic mass losses along
coastlines (dashed blue line) and due to sedimentation (dotted blue line), showing that the
mass loss after a sudden input stop is expected to decrease rapidly.

new plastics introduced into the marine environment in 2025 in Figure 5.5 using our
data-assimilated model. We expect that in this scenario only 10% of the plastic mass
would be removed from the marine environment within 2 years (orange line). The
removal rate is expected to decrease rapidly over time, as plastics move away from
coastal regions towards areas such as the subtropical gyres. As there is no beaching
and little sinking of marine plastics in these low algal areas compared to coastal wa-
ters (Lobelle et al., 2021; Fischer et al., 2022), the plastic particles become highly
persistent (see the supporting material D.2.2). We estimate that the plastic input
into the marine environment is likely still growing around 4% per year. Previous
studies (Galgani et al., 2021) found no conclusive temporal trends regarding the
amount of plastic litter in the marine environment. Establishing temporal trends is
difficult due to the high variance in measured plastic concentrations (de Haan et al.,
2019). Our estimated growth rate of 4% per year gives the best match with obser-
vational data over the past decades (see the supporting material D.2.4), but might
change in the future under the influence of mitigation strategies and cleanup efforts.
Without further mitigation strategies and cleanup efforts, our estimated growth rate
of 4% per year has the potential to double the plastic standing stock within decades,
as shown in the inset in Figure 5.5. The combination of a projected exponentially
increasing input and long persistence of marine plastics means a likely increasing
negative impact of marine plastic pollution on ecosystems in the future.



CHAPTER 6

Summary and Outlook

In this chapter, I first look back on the research questions from Chapter 1. After-
wards, I provide a more general discussion on the field of plastic research and the
use of data-driven modelling, and what steps could be taken in future research.

6.1 Answers to the research questions

How can we use data-driven modelling to quantify the marine plastic mass
budget, where we bring together numerical models with observational data?

In this thesis, we used different data-driven modelling techniques such as machine
learning and data assimilation, where machine learning can be used to create regres-
sion models purely based on observational data, and where data assimilation can be
used to optimally combine numerical models with observational data. We showed
a schematic representation of the differences between these data-driven modelling
techniques in Figure 1.5. Purely data-driven modelling tools such as machine learn-
ing can be useful for marine litter studies, when no numerical model is available that
is able to capture the underlying physical processes of the problem at hand. Data
assimilation methods are suitable when the underlying physics can be modelled, but
where parts of the model are uncertain due to e.g. unknown parameter values. With
an underlying physical model the results are generally easier to interpret.

In Chapter 2 we explored how the amount of litter beaching on the Dutch North
Sea coastline can be predicted. It is not feasible to use traditional physics-based
models in this case, due to the complex physical processes and their unknown inter-
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actions near the coastline. We therefore used machine learning, where we trained
a statistical algorithm on a large set of explanatory variables and the corresponding
litter concentrations. We showed that the machine learning model is able to make
reasonable predictions of the plastic concentrations. We analysed the underlying
regression model to assess which variables contributed to the model performance,
indicating that tides, coastline orientation and length, and oceanic transport are im-
portant factors to take into account. In Chapter 4 and Chapter 5 we explored the
assimilation of marine plastic transport models with observational data. The benefit
of these methods is that we are able to get a reasonable match to the observational
data with relatively little parameters, which all have a clear interpretation as well.

The principle of parsimony, also referred to as Occam’s razor, means that the sim-
plest model that explains the data is preferred (Hoffmann et al., 1997). A Bayesian
perspective on this principle is given in Ghahramani (2013): when one has a set of
models m and observations d, the posterior probability of a model m is given by:

P (m|d) ∝ P (d|m)P (m). (6.1)

Highly complex models cover a much wider range of possible datasets compared
to simple models. Their likelihood P (d|m) is therefore much more ‘spread out’.
Since P (m|d) is a probability density function and hence normalized, the posterior
probability of a complex model that is able to capture observations d is lower than
a simple model that is able to do the same. Non-parsimonious models are likely to
overfit data used for training, which means that they will not generalize well to new
data.
Based on this argument, constructing a model with a set of interpretable parame-
ters and assimilating it with observational data is a good first choice for data-driven
modelling of the marine plastic mass budget. While machine learning was a good
option for Chapter 2, the model has a lot of parameters (the amount of parame-
ters in a random forest algorithm generally scales with the amount of data). It is
unlikely that the specific model that was trained in Chapter 2 generalizes well to
other regions of the world. This does not mean that the underlying methodology is
not useful: the machine learning algorithm is easily retrained, which could be done
in future studies using additional data from other regions. These kind of methods
can be useful in an operational setting, where one is less interested in the underly-
ing physics, and more interested in making predictions as accurate as possible. The
machine learning method in Chapter 2 was useful to identify which environmental
variables likely play an important role in predicting beached litter quantities, as this
was not known a priori. This information could be used in future Lagrangian parti-
cle tracking studies to improve the parameterisation of the beaching process.

The benefit of the data assimilation approach used in Chapter 5 lies in the fact that
different data from all over the marine environment can be used to inform param-
eters. As an example, we calibrated fragmentation parameters in Chapter 3 based
on observational data of particle size distributions alone. In the data assimilation
framework from Chapter 5, there are additional data that can inform the fragmen-
tation process, such as the amount of large plastic items relative to the amount of
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small plastic items found in the surface water or on beaches.

What processes cause the large mismatch between the expected marine plastic
input and the estimated marine plastic standing stock? Is there a missing sink
of marine plastics?

We estimate that the mismatch between the expected marine plastic input and the
floating plastic standing stock is caused by previous studies missing the contribution
of large plastic items, and by previous input estimates being too high.

We could already see in Chapter 3 that large plastic items play an important role in
the mass budget, when studying particle size distributions. We estimated that the
normalized mass size distribution of marine plastics in the surface water is approx-
imately flat, see Figure 3.7b. A flat normalized particle size distribution indicates
that the amount of mass in a size class scales with the amount of length units within
this size class: for example, particles between 1–10 mm would contribute to 9 times
as much mass compared to particles between 0–1 mm.
Looking at Figure 5.4 from our global mass budget estimate, it comes to no surprise
that previous studies overlooked the contribution of larger items. When measuring
plastics at the ocean surface, millimeter-sized objects are calculated to be 1,000-
10,000 times more abundant than objects between 0.1-1 meter. However, we esti-
mate that these large items contribute orders of magnitude more to the total marine
plastic mass. In many regions of the global ocean, fishing related items contribute
to a big fraction of these large plastic items, see Figure D.3.
In Chapter 4 we estimated the floating plastic mass budget in the Mediterranean
Sea, by calibrating a plastic transport model to neuston net measurements. Chrono-
logically, this was the first work to be completed in this thesis. In the discussion
in Section 4.4 we argued that our Mediterranean plastic mass estimates could be
underestimated, due to neuston net measurements not capturing the larger items.
Indeed, we saw later in Chapter 5 an order of magnitude difference between pre-
vious global mass budget estimates calibrated to neuston net measurements (van
Sebille et al., 2015) and our own mass budget estimate calibrated to data includ-
ing large plastic items. It is therefore likely that the input mass estimates for the
Mediterranean Sea given in Chapter 4 are underestimates: they are probably more
representative of small plastic items (roughly <10 mm in size) typically captured in
neuston net trawls (Morét-Ferguson et al., 2010).
Previous estimates of plastics entering the ocean have likely been too high due to
a lack of data, or due to biases in model calibration. For land-based plastic input
usually the estimate by Jambeck et al. (2015) is used (4.8–12.7 million tonnes). In
one step of this study, the fraction of mismanaged plastic waste entering the ocean
was estimated, based on calibration data from the San Francisco Bay in the United
States. Due to a lack of calibration data elsewhere in the world, this makes the
global extrapolation quite uncertain. As addressed in Chapter 5, previous riverine
input estimates (Lebreton et al., 2017; Meijer et al., 2021) could be overestimated
due to biases in the model calibration data: too high particle mass estimates when
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converting from number concentrations to mass concentrations, and mixing differ-
ent sampling techniques without accounting for varying lower size detection limits
(Weiss et al., 2021). We will come back to this in the next section.
Plastic mass is removed from the marine environment by sinks, such as biofouling,
beaching, and degradation and fragmentation. Coastal waters and beaches likely
play an important role in removing plastics from the surface water, as the biological
activity is relatively high there, and as the majority of degradation and fragmenta-
tion of plastics is expected to occur there (Song et al., 2017; Onink et al., 2022a). In
Chapter 5, we estimated that biofouling is the predominant sink globally, removing
about 220 kilotonnes of plastic from the surface water per year. We estimated that
about 73 kilotonnes of plastic fragment into particles smaller than 0.1 mm per year,
and estimated about 3 kilotonnes of plastic to be lost along coastlines due to effects
such as burial, degradation, and cleanup efforts. We calculated that beaches contain
a relatively small part of the marine plastic standing stock globally (2%). In Chap-
ter 2 we estimated that the Dutch North Sea coastlines contain about 17–31 tonnes
of litter, of which about 80–90% are plastic items. To put this into context, based on
the analysis in Chapter 5, we calculate roughly 350 tonnes of plastics to enter the
North Sea per year from Dutch rivers and coastlines. This number is a flux and not a
standing stock, but still indicates that it is likely a relatively small part of the Dutch
marine litter that remains on beaches.

6.2 Discussion and outlook
Several challenges remain in the field of marine plastic research, some of which
were already addressed in the previous chapters. I will discuss challenges related
to the modelling and observational data of marine plastic pollution, and will touch
upon steps that can be taken in future research to tackle these challenges.

6.2.1 Combining numerical models with observational data
A better understanding of (subgrid-scale) variability is essential. There is a high
amount of variability between observed plastic concentrations on temporal and spa-
tial scales that are not captured by the numerical model. We explored variability
in Chapter 2, where we constructed a variogram using the observational data of lit-
ter on Dutch beaches. Variability is important to quantify: numerical models will
always have a limited temporal and spatial resolution, which means that a certain
amount of subgrid-scale variability will be missed by the model. We used the calcu-
lated subgrid-scale variability to estimate the amount of uncertainty that the model
can be expected to have. We did a similar variability analysis in Chapter 4, where
we constructed variograms of number and mass concentrations of plastic particles
in the surface water. Ideally, we would correct for different factors that introduce
variability between measurements, to make the observational data more informative
for the numerical model.
Different physical processes can influence small-scale accumulation patterns of plas-
tics in the ocean. Since this introduces increased variability between measurements
in observational datasets, it would be beneficial to log the relevant physical vari-
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ables. One process that could have an influence on small-scale accumulation pat-
terns are windrows, where bubbles and floating debris accumulate in lines aligned
with the wind, see e.g. Cózar et al. (2021). In this case it is likely that the variability
between measurements (e.g. net trawls) is influenced by the wind speed and direc-
tion, and the direction of the measurement path. These are therefore factors that
would be valuable to note down in observational datasets. The wind speed, wave
height, and mixed layer depth furthermore influence how deep plastic particles mix
in the water column (Kukulka et al., 2012; Onink et al., 2022a) and would there-
fore be valuable to log during measurement campaigns if possible. Studies have
suggested that plastic concentrations might differ between anticyclonic and cyclonic
mesoscale eddies (Brach et al., 2018). When using coarser ocean circulation model
data, or a model that has not been assimilated with sea surface height, it might be
good to correct for this effect by using for example satellite altimetry data or derived
products.

On a similar note, further standardization of observational data would allow for bet-
ter intercomparison of data from different laboratories (Maximenko et al., 2019).
We already touched upon the issue of standardization of beach measurements in the
introduction (Section 1.2.2): to make observational efforts of beach plastic more
comparable (see e.g. OSPAR, 2010 and Burgess et al., 2021), efforts are necessary
to standardize for example the considered particle sizes, the length/width of beach
that is sampled, and whether this is done per unit length or per unit area.

With standardized observational data, and by correcting for subgrid-scale effects
that introduce variability between measurements, observational data can be made
more representative of the modelled plastic concentrations. An illustration of a pos-
sible framework is shown in Figure 6.1. Numerical models produce predictions d at
a given spatial resolution ∆x and a temporal resolution ∆t. The raw observational
data draw can be made representative of these spatial and temporal scales, where we
denote these corrected observations by d. In Chapter 5, we already correct observed
plastic concentrations for vertical turbulent mixing using the correction factor from
Kukulka et al. (2012). By doing this, we make the observed plastic concentrations at
the ocean surface representative of the modelled plastic concentrations for the given
vertical grid resolution ∆z. In the framework in Figure 6.1 we could try to make
measurements representative in all spatial directions by correcting for other factors
as well, such as the aforementioned windrows, and differences in concentrations
between cyclonic and anticyclonic eddies. The measurement error σd could further-
more be made dependent on the sampling technique (e.g. the neuston net type and
the filtered area/volume) and sampling conditions. This way, measurements taken
under highly variable conditions can be made less influential in the data assimilation
or machine learning step.
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Figure 6.1: A proposed framework to standardize observational measurements to make them
more representative of the numerical model output. The raw measurements (draw) can be
standardized for various environmental and sampling conditions to make them more repre-
sentative of the scales resolved by the numerical model, resulting in the standardized mea-
surements d and their estimated measurement error σd.

More complex models will require more complex data. In this thesis, we repre-
sented marine plastic transport using tracers. These tracers describe a large ensem-
ble of different types of plastics. Plastics in the ocean are very complex: they differ
for example in shape, size, density, and polymer type, which in turn affects processes
such as biofouling, beaching, mixing, the fragmentation process, and how particles
are transported horizontally and vertically. When we want to further disentangle
the effects that these different plastic particle properties have on transport and fate
in the marine environment, we need more complex data for model validation and
calibration.
Transport of plastics between the ocean and coastlines plays a role in all chapters
of this thesis. Beaches are one marine reservoir where more extensive and detailed
data are necessary. We parameterised transport of plastic particles between coastal
water and beaches using a beaching and resuspension time scale. Based on exper-
imental studies (Hinata et al., 2017) it is thought that larger plastic items remain
longer on beaches, due to their higher buoyancy, which makes them more likely to
wash ashore by waves. When we want to create more complex parameterisations
for the beaching and resuspension processes, extensive data on plastic particles in
coastal waters and nearby beaches, with measured sizes, masses, and rise velocities
would help greatly.
In Chapter 4 and Chapter 5 we estimated that the biofouling process has a substan-
tial influence on the vertical transport and sinking of marine plastics. More observa-
tional data on biofilms would help to further constrain biofouling model parameters.
Morét-Ferguson et al. (2010) already noted that plastic particles on beaches tend to
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have a lower mass per unit volume than those in the open ocean. Besides biofoul-
ing, it was hypothesised that density changes could be caused by degradation of the
polymers as well. Measuring particle densities and rise velocities from different re-
gions of the global ocean with biofilm and after digesting the biofilm can help us to
quantify to what extend vertical transport is influenced by the biofouling process.
The fragmentation model presented in Chapter 3 is simplified to keep the amount of
free parameters limited. We tried to find fragmentation parameters that are approx-
imately valid for all marine plastics. As a next step, one could try to model plastic
transport and fragmentation for different polymer types separately. This would re-
quire more particle size distribution data separated by polymer type, which to our
knowledge has not been published in the literature so far.
The influence of particle shape on transport is an active field of research, as shape
can influence the orientation and tumbling behaviour of particles in the water, which
in turn affects particle settling velocities and how particles are transported by e.g.
waves (Byron et al., 2015; Clark et al., 2020; DiBenedetto et al., 2018). Data on
particle shapes in the global ocean could quantify whether these kind of effects lead
to preferential accumulation of differently shaped particles in different regions of
the ocean, and whether more efforts should be taken in parameterising the effect of
shape on large scale plastic transport.

Data-driven modelling of plastic pollution allows us to learn more about the
marine environment. Using plastic pollution as an oceanic tracer has already al-
lowed us to study surface ocean dynamics. For example, studies have compared
numerical model output to observed plastic concentrations, to assess the influence
of different types of forcings such as the Ekman and geostrophic ocean currents,
and wave-induced currents (Onink et al., 2019; Cunningham et al., 2022). Hope-
fully, when more reliable observational data and more elaborate numerical models
become available in the future, we can use data-driven models to learn more about
the deep ocean and coastal processes as well.
Plankton play an important role in the global climate, by pumping down carbon to
the deep sea, and thus influencing the amount of carbon dioxide in the atmosphere
(Falkowski, 2012). Current biochemical models which simulate plankton ecosys-
tems and carbon and nutrient cycles have a large amount of parameters. Data to
validate these models come from satellite images used to estimate chlorophyll con-
centrations at the ocean surface, and very sparse in-situ observations (Aumont et al.,
2015). Perhaps these kind of biochemical models can be coupled to plastic tracer
models in the future, parameterising and calibrating the growth of plankton using
observational data of biofilms on plastic particles from the ocean surface, the deep
ocean, and ocean sediments.
Similarly, plastic pollution might allow us to learn more about coastal dynamics.
Satellite-tracked surface drifters have been used in the past to study submesoscale
processes and the effects of wind on coastal and estuarine systems (Davis, 1985;
Meyerjürgens et al., 2019). By using machine learning methods as in Chapter 2,
or by using data assimilation in coastal transport models, plastic particles could
perhaps replace these kind of drifter experiments by serving as a readily available
and cheap tracer.
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6.2.2 Observational data
Particle sizes matter. Future observational reporting should be very clear what
part of the particle size spectrum (see e.g. Figure 5.4) is actually measured, both
regarding the lower and the upper size limit: the total measured mass is sensitive to
the upper detection limit, while the total measured number is very sensitive to the
lower detection limit. Coming back to the standardization issue of beach measure-
ments, a strict lower size limit that is easily observed by volunteers needs to be set
when reporting the number of litter items on beaches. Measuring the mass would
provide a more reliable number, as the larger plastic items that contribute to most
of the plastic mass are more easily observable.
Particle size distributions on a log-log scale can be misinterpreted easily. We saw in
Chapter 3 that previous studies attributed the slope of particle size distributions to
the dimensionality of plastic objects: e.g. a slope of 3 in the case of fragmentation
of three-dimensional objects (Cózar et al., 2014). The fact that the slope of the
particle size distribution changes on a log-log scale when showing the abundance
on the y-axis (n, i.e. like a histogram), versus showing the normalized abundance
on the y-axis (n mm−1, i.e. like a probability density function) was overlooked.
Incorrectly linking particle size distributions with a slope of ∼3 to the fragmentation
of three-dimensional objects is still observed in some recent studies, e.g. Sorasan
et al. (2022) and Egger et al. (2020b). We hope that future studies can avoid this
oversight, and possibly make use of the fragmentation model that was presented in
this thesis.

More automation of plastic item detection will help greatly. Automating the
detection of plastic items from (hyperspectral) images would greatly help all afore-
mentioned issues in this chapter.
The first motivation for more automatic detection lies in the fact that more data
are necessary of large plastic items in the ocean, which are calculated to be very
sparse, but which contribute to most of the plastic mass in the marine environment.
Installing camera systems on vessels and automatically detecting floating plastic ob-
jects has been shown to be possible in e.g. de Vries et al. (2021). These methods
can be used to quantify the amount of large floating objects, and allow for automat-
ically estimating the object dimensions. With enough labelled data, these systems
can also be trained to give insights in the type of objects (e.g. nets and buoys),
which is useful to further quantify the contribution of fisheries to the marine plastic
pollution problem. Remote sensing of marine plastic debris using satellites is still
under development, but could additionally provide a continuous stream of global
data in the future (Martínez-Vicente et al., 2019).
Secondly, automating plastic detection can help to create the complex datasets that
will be necessary for future model calibration. Hyperspectral camera systems are
being developed, which can classify the polymer type of plastic particles (Henrik-
sen et al., 2022). With particle detection algorithms applied to the hyperspectral
images, properties such as length and shape can automatically be quantified. This
information can be used to gain a better understanding of the fragmentation pro-
cess per polymer type as mentioned earlier, and size-dependent or shape-dependent
transport.
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Finally, automation will help greatly in standardization, when the same algorithms
are used to quantify plastic particle properties across studies instead of measuring
these by hand. The plastic research community would greatly benefit from a central-
ized database where observational data can be stored, such that different detection
and analysis methods can be tested, cross-checked, and standardized.

Loss via beaching:            3 kt/year
Loss via fragmentation*: 73 kt/year

Loss via sedimentation: 220 kt/year

Coastal input:  203 kt/year
Riverine input: 63 kt/year
Fishing input:   239 kt/year

Total global marine plastic mass for the year 2020: 3,200 kt

*Fragmentation loss = items <0.1 mm 
**Macroplastics = items >25 mm 

Macroplastics**: 3,050 kt 
(vs. plastics <25 mm: 150 kt)

Biofouling

Coastlines: 54 kt 
(vs. ocean: 3,146 kt)

Fragmentation
Fishing

Sedimentation

Beaching
98%
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Figure 6.2: A closed mass budget for marine plastics. Much of the work presented in this
thesis built up to Chapter 5, where we calculated the global marine plastic mass budget. In
this schematic, we present an overview of the most important sources and sinks of plastics in
the global marine environment.





APPENDIX A

Supporting material Chapter 2

A.1 Observational and modelled data per year
Figure A.1a and Figure A.1b present the modelled litter quantities (left columns)
and the raw observational data (right columns) per year per cleanup stage. The
litter concentrations are plotted using circles, where the color and size correspond
to the litter quantities (note the logarithmic scale here). Table A.1 presents the total
gathered litter per year.

A.2 Extended results

A.2.1 Gini importance overview
A complete overview of the Gini importance for all features is presented in Fig-
ure A.2. The numbers in the feature labels give information on the radius (in kilo-
meters) and lead time (in days) if applicable, and in this order. See Table 2.2 for the
radius and lead time combinations used for the variables. The Lagrangian model
features (orange labels) are indicated by ’beaching_p’, ’beaching_r’, ’beaching_f’, for
litter sources originating from mismanaged coastal plastic waste (p), rivers (r), and
fishing activity (f) respectively.

Table A.1: Overview of the total amount of litter gathered per year during the beach cleanup tours.

Year 2014 2015 2016 2017 2018 2019
Total litter gathered
[kg]

20,078 9,872 19,203 14,863 11,163 10,991
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(a) 2014–2016 (b) 2017–2019

Figure A.1: Modelled (left column) and observed (right column) litter concentrations in kg km−1 per
individual location and year. Circles are scaled and colored according to the litter concentrations.

A.2.2 Excluding Lagrangian model features
A scatter plot of the measured litter concentrations versus the predicted values is
presented in Figure A.3, where Lagrangian model features have been excluded from
the feature set. As described in the main text, no significant decrease in the correla-
tion is observed compared to the case where Lagrangian model features have been
included (0.70± 0.10 versus 0.71± 0.11).
The complete overview of the feature Gini importances corresponding to the case
without Lagrangian model features is presented in Figure A.4. As mentioned in the
main text, more features related to the currents and Stokes drift orientation with
respect to the coastline are seen as important now, compared to Figure A.2. This
could be explained due to these features taking over the role of the Lagrangian
model features in capturing the effect of marine litter transport.

A.2.3 Effect of using only the top N features
It is not necessary to include all 66 feature clusters for predictive capability of the
model. In Figure A.5 we present the Pearson correlation coefficient R as a function
of the number of features included in the random forest algorithm, both with and
without using the Lagrangian model features. Each time only the top features (cor-
responding to Figure A.2 and Figure A.4) are used to train and test the model, using
10 times repeated 5-fold cross validation. Generally the model performs well with
about 7–8 features used. Performance is quite stable in the case when Lagrangian
model features are used, some outliers with lower Pearson correlation coefficients
can be observed when not taking into account these features. The Pearson corre-
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Figure A.2: Gini importance overview of all features; again labels are colored according to the feature
categories in Table 2.2.
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Figure A.3: Scatter plot of the observed litter quantities (x-axis), and the modelled litter quantities (y-
axis), when not taking Lagrangian model features into account. Litter quantities are log-transformed,
and points are colored according to the 5 test folds used in the analysis.

lation coefficient when using all 66 features, corresponding to Figure 2.4, is shown
using the red error bar. In this case the Pearson correlation coefficient is slightly
smaller than when using, for example, the top 8 features, which could indicate a
small amount of overfitting, although this difference is not significant.
In Figure A.6, we analyse the effect of leaving out certain feature categories on the
model performance. The random forest can create a highly non-linear map between
the features and corresponding response. It is therefore possible that when using
a large set of features and leaving out one important explanatory variable, it will
use a combination of the remaining features to still obtain a good fit. We therefore
only use the top 10 features in this analysis, and exclude the Lagrangian model vari-
ables, as these implicitly contain information on the other features. As can be seen,
leaving out a certain category of features reduces the model performance. This can
especially be observed when leaving out all features regarding tides, and the two
features regarding coastal properties (lcoast and ngrid · n). The mean Pearson corre-
lation coefficient decreases and the variance of the model performance increases.

A.2.4 Number of participants
As mentioned in the main text, the number of participants is not seen as a important
in terms of the Gini importance. The number of participants is correlated with the
population density in the neighborhood of the stage, and is therefore assigned to the
same feature cluster as the population density, for more details see Appendix A.3.
The number of participants was not picked out of this cluster as one of the most
important features during the k-fold cross validation. In order to separate the effect
of the number of participants per cleanup stage, a model run was done without the
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Figure A.4: Gini importance overview when not taking into account the Lagrangian model features,
where labels are colored according to the feature categories in Table 2.2.
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Figure A.6: Analysis where some of the feature categories have been left out. The top 10 features have
been used without the Lagrangian model features (see Figure A.4, as these implicitly contain information
on all feature categories. As can be observed, leaving out a set of features generally decreases the
predictive performance of the model, and increases the variability of the prediction quality.

nearby population densities as features. A summary of the resulting Gini impor-
tances is shown in Figure A.7, where only the top 10 features and the number of
participants are plotted.

A.2.5 Feature effect
The general effect of some features was described in the main text, such as the fact
that an increasing tidal variability, and misalignment of the high resolution coast-
line with respect to the numerical model coastline (ngrid · n) lead to less observed
litter. Figure A.8 illustrates this, by varying one feature on the x-axis, and plotting
the resulting predictions on the y-axis. In the decision trees of the random forest,
decision boundaries are made at optimal splitting locations, making the resulting
model highly non-linear. This makes it difficult to interpret the regression model. In
Figure A.8, we ’fix’ all features except the one listed on the x-axis. This feature is
then varied from its minimum until its maximum encountered value. Since the ran-
dom forest result can depend highly on the exact value of the other features, noise
is introduced. Each other feature is varied uniformly between its 0.4–0.6 quantile,
to illustrate whether the found relation for the given feature on the x-axis is robust.
Features which show relatively robust relations are related to tidal height, where
an increasing variability, and a higher maximum decrease the predicted litter con-
centrations. The effect for ngrid · n also seems to be robust, with increasing values
leading to more predicted litter. For the coastal length in the neighborhood (lcoast)
an increasing value seems to lead to less litter, although there is a sudden drop ob-
served here. This might be caused by the fact that there are relatively little data
points available where this feature has a high value (most of the stages were con-
ducted on relatively straight coastline sections), so the model has trouble learning
a relation here. For the Lagrangian model features, increasing values lead to more
predicted litter as expected. For the mismanaged coastal plastic waste (indicated
by ’beaching_p_tau25_050_009’), the results are quite dependent on the values of
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Figure A.7: Gini importance overview when not using nearby population densities as features, to separate
the effect of the number of participants per cleanup stage. In that case, it is the 28th most important
feature.
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other features, as a lot of noise can be seen here. Generally, the model indicates there
are increasing litter concentrations for increasing currents and on-shore Stokes drift.

A.3 Clustering dendogram
Correlated features are put into clusters using hierarchical Ward-linkage clustering
(McCann et al., 2019; Cope et al., 2017). An overview of the resulting dendrogram
is shown in Figure A.9. A threshold is chosen to make a cut in the dendrogram. This
was selected by hand to be a value of 2.3, at which the clusters remain relatively
interpretable (e.g. separate clusters for coastal properties and tidal properties). The
cut is shown in the figure by the red dashed line. Some general patterns regarding
the clusters are indicated in the dendrogram.

A.4 Model pipeline
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Figure A.8: Illustrated effect of the 12 most important features (x-axes) on the litter concentrations
(y-axes) according to the random forest regression model. For the 12 important features, we vary their
value from the minimum to maximum encountered value. All other features are fixed, and some noise is
added to illustrate robustness of the relations.
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Figure A.9: Dendrogram used to construct the feature clusters
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Figure A.10: Pipeline to train and test the random forest regression model. Nested k-fold cross validation
is used to select the best feature from each cluster (inner loop), and to evaluate the model trained with the
best features on the test data set (outer loop). The process is repeated to assess the average performance.
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B.1 Additional results: parameter settings and Mass
Size Distributions (MSDs)

The main text presents the transient NSD results for the baseline scenario, and var-
ious steady state NSD results for scenarios where model parameters are varied. An
overview of the box model parameters is given in table B.1. The corresponding
MSDs are presented in Figure B.1. Results show clearly that the scenarios have
a strong effect on the estimated mass for given particle sizes. Increased fragmen-
tation, either resulting from increased fragmentation rates or increased transport
towards beaches, results in the smaller particles making up more of the total mass.
The results of these simulations should be verified in the future with more in-situ
measurements, as this will give us more insight in the marine plastic mass budget.

Table B.1: Environmental box model parameters used to simulate the PSDs in Figure 3.6 and Figure 3.7
of the main text, and Figure B.1. Transition probabilities are given per week.

Baseline Size-dependent
ocean transport

Size-dependent
resuspension

Increased
frag.

Increased
input

fig.7 main text

PO,O 7.2 ·10−1 7.3·10−1–8.7·10−1 7.2 ·10−1 7.2 ·10−1 6.5 ·10−1 7.4·10−1–8.8·10−1

PO,C 2.7·10−1 1.2·10−1–2.6·10−1 2.7·10−1 2.7·10−1 2.4·10−1 1.2·10−1–2.6·10−1

PC,O 3.4·10−2 3.2·10−2–3.4·10−2 3.4·10−2 3.4·10−2 3.0·10−2 3.2·10−2–3.4·10−2

PC,C 8.3·10−1 8.3·10−1–8.3·10−1 8.3·10−1 8.3·10−1 7.4·10−1 8.4·10−1–8.4·10−1

PC,B 1.3·10−1 1.3·10−1 1.3·10−1 1.3·10−1 1.2·10−1 1.3·10−1

PB,C 3.2·10−2 3.2·10−2 2.0·10−3–4.5·10−1 3.2·10−2 2.9·10−2 2.0·10−3–4.5·10−1

PB,B 9.6·10−1 9.6·10−1 5.5·10−1–9.9·10−1 9.6·10−1 8.6·10−1 5.5·10−1–9.9·10−1

λ [f year−1] 1.8·10−2 1.8·10−2 1.8·10−2 3.3·10−1 1.8·10−2 1.0·10−2

input [t yr−1] 2,500 2,500 2,500 2,500 100,000 2,500
PS 5.1·10−3 5.1·10−3 5.6·10−4 5.1·10−3 1.1·10−1 5.0·10−4
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Figure B.1: Modelling MSDs using the environmental box model. Column a: transient response to a
constant input of particles into the model (baseline scenario). Column b: steady state normalized MSDs
for different environmental scenarios, normalized to the amount of parent particles (200 mm)
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Table B.2: Power law slopes α obtained by maximizing equation (6) in the main text to the mod-
elled and measured PSDs. The size range for which the power law holds is estimated by minimiz-
ing the Kolmogorov-Smirnov statistic of the observed data with respect to the fitted power law, see
Virkar & Clauset (2014). For beach samples no lower bound is estimated given the low amount of re-
ported bins. Uncertainties in α (± 1 times the standard deviation) are not calculated for the model, since
this depends on the amount of samples in the bins, which is undefined in this case.

Domain α Minimum
size

Ocean 2.73 ≥ 3.13 mm
Ocean + mixing (U10 ≈ 4 m/s) 2.63 ≥ 6.25 mm
Ocean + mixing (U10 ≈ 7 m/s) 2.37 ≥ 12.5 mm
Cózar et al. (2015) 2.53± 0.04 ≥ 3.16 mm
Coast 2.69 ≥ 3.13 mm
Coast + mixing (U10 ≈ 4 m/s) 2.60 ≥ 6.25 mm
Coast + mixing (U10 ≈ 7 m/s) 2.34 ≥ 12.5 mm
Ruiz-Orejón et al. (2018) 2.49± 0.06 ≥ 2.50 mm
Beach 2.02 ≥ 1.56 mm
Fok et al. (2017) 1.60± 0.01 ≥ 0.32 mm
Constant et al. (2019) 1.47 ± 0.01,

1.45± 0.03
≥ 0.06 mm

An overview of resulting power law slopes α for Figure 3.7 in the main text are
presented in table B.2, as well as the estimated power law size range. The model
predicts a slightly larger α in the ocean compared to the coast. A similar difference
is seen between the chosen sets of measurements near the coast (Ruiz-Orejón et al.,
2018) and further away from the coast (Cózar et al., 2015), although this difference
is not significant. Including vertical mixing has a strong effect on the estimated α.
The modelled values for α are somewhat higher than the measured ones with no or
calm wind conditions. Some differences can be expected since the environmental
box model is highly idealized, so comparison between the various model simulations
are of more interest. The model is quite sensitive to the fragmentation parameters
p and λ, which will be discussed later in Figure B.2. More experimental data is nec-
essary to further constrain these parameters, hopefully reducing mismatch between
the model and measurements.
Additional results were generated to quantify the sensitivity of parameter value es-
timates and assumptions made in the main text. Results are presented in Figure B.2
and Figure B.3. We only show results for the ocean cell in the box model, since the
sensitivity studies include no size-dependent transport and hence show no qualita-
tive differences between the different cells.
We first present the baseline scenario introduced in the main text, for which the pa-
rameters were shown in table B.1. For the baseline scenario, we assume all new plas-
tic waste is introduced on the beach. In reality this is of course more complicated, as
rivers might directly transport waste into coastal waters, and there might be sources
in the open ocean due to, for example, fishing activity and shipping. Regarding
plastic fragments found in the surface waters, land-based waste and rivers are likely
the main sources (see Chapter 4). We test what happens when we introduce new
plastic particles on both the beach and coastal waters assuming a 50%-50% split,
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Figure B.2: Sensitivity study regarding the input scenario (50%-50% split of new plastics entering the
beach and coastal waters), and sensitivity studies regarding polymer choice and fragmentation parame-
ters.

indicated by scenario 2 in Figure B.2. There is little effect from this assumption.
This can be explained due to relatively large exchange from the coastal cell to the
beach cell, compared to that from the coastal cell to the ocean cell (see the transition
probabilities in table B.1), leading to only a small delay in fragmentation.
Polymer choice has a significant effect on the modelled PSDs. We compare the
baseline (based on PE), to a case where λ and p are based on PP (scenario 3 in
Figure B.2). The slope of the NSD significantly increases, due to the increased frag-
mentation rate λ and a higher p. We can test what happens when a combination
of PE and PP is used (scenario 4 in Figure B.2). We use a mixture of 60% PE and
40%, based on European plastic demand (Bond et al., 2018). In that case, we get
a combination of the baseline (PE) results, and the results for PP. We furthermore
show sensitivity to the value of p (scenario 5 and 6 in Figure B.2). The value of p has
a significant effect on the slope of the PSDs. Future work should further look at con-
straining the fragmentation parameters (p and λ), as these clearly have a significant
effect on the results.
In Figure B.3 we first analyze what happens when taking the length of the plastic
input objects as 400mm instead of 200mm from the baseline scenario. Qualitatively
there is not much difference, except that the PSD shifts to the right. The slope
remains the same, so this assumption has no big influence on the results presented
in the main text. In scenario 8 and scenario 9 we analyze what happens when
adjusting the resuspension time, as this was based on an analysis in Japan (Hinata
et al., 2017), and might be different for our test case in the Mediterranean Sea. We
see that decreasing τB,C from 211 days (baseline) to 100 days leads to a decrease
in the time that particles spend on the beach, leading to less fragmentation, and
fewer small fragments. The opposite holds for increasing τB,C to 400 days, leading
to more small fragments. There is almost no effect on the slope of the NSD, only on
the amount of fragments per parent object, so the assumption of the baseline value
of τB,C has little effect on the results in the main text.
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Figure B.3: Sensitivity study for the initial size of new plastics, and residence times of plastic particles
on the beach.

B.2 Box model: transition matrix formulation
In this section we describe how the transition matrix underlying the environmental
box model is set up, and how the steady-state is calculated. As explained in the
main text, the transition matrix captures the effect of transport in the environment,
as well as the effect of fragmentation. The transition matrix describes these effects
for a given time step, set to one week. As a simple example, we present the case
where the fragmentation rate λ is 1 f week−1, and we take p = 0.5, DN = 3. For
size class k = 0, 1, 2... the cascading fragmentation model at f = 1 yields in terms
of abundance n = 0.5, 2, 8... fragments per parent particle, and in terms of mass
fractions m = 1

2 ,
1
4 ,

1
8 ....

The transition matrix in terms of abundance (Tn) is presented in Figure B.4, the
one in terms of mass (Tm) in Figure B.5. The example is shown for three different
size classes only. For notation, we use O, C, and B to denote ocean, coast, and
beach respectively, subscripts are used to denote the size class k, superscripts are
used for time indices i. On the left hand side of Figure B.4 and Figure B.5, we have
the abundance or mass at time i + 1, on the right hand side we have the transition
matrix multiplying the abundance or mass at time i. Cells in the transition matrix
containing zeros are left empty. The two coloured blocks (red and yellow) indicate
the entries where fragmentation is active. As can be seen the matrix is quite sparse.
This is because fragmentation is only active on the beach, so particles do not move
from one size class to another in the coastal water or ocean. On the beach, particles
can move to a higher or equal size class k under influence of fragmentation. The
upper right entries of the red and yellow blocks are zero, since particles can not move
to a lower size class (i.e. they cannot increase in size). If one has an infinite amount
of size classes, the operation in Figure B.5 would be mass conserving. Due to a
finite amount of size classes, there is some mass loss due to fragmentation however.
Finally, the entire transition matrices in Figure B.4 and Figure B.5 are multiplied
with the scalar PS , as particles are removed from the system by sinks (e.g. plastic
particles sinking down, or being removed from beaches). As explained in the main,
text PS is assumed to be the same in all environmental boxes, however this value
could be varied per environmental box if indications for this become available in
future studies.
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Figure B.4: Box model transition matrix in terms of abundance, for three different size classes k = 0, 1, 2,
and after f = 1

Size-dependent transport is easily added to the transition matrix, by varying the
transition probabilities per size class. All columns are properly normalized (i.e. col-
umn sums of 1), such that there would be conservation of mass when there would
be no fragmentation or sinks in the system.
Since there is a constant input of new parent objects into the system, the mass at
time i+ 1 is given by the mass at time i and the addition of new mass min:

mi+1 = Tmmi + Tmmin (B.1)

We want to estimate the steady state mass of the box model (mss), which is done
by setting

mi+1 = mi = mss, (B.2)

which yields:

mss −Tmmss = Tmmin (B.3)

mss = (I−Tm)
−1

Tmmin. (B.4)

The transition matrix Tm has one unknown parameter, PS . This value is optimized
such that the steady state floating mass is equal to the midpoint estimate for the
Mediterranean sea of 2,000 metric tonnes by Cózar et al. (2015).
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Figure B.5: Box model transition matrix in terms of mass, for three different size classes k = 0, 1, 2, and
after f = 1

B.3 Vertical mixing and size-dependent lateral trans-
port

B.3.1 Modelling mixing and Stokes drift
Vertical mixing of plastic particles is estimated using the approach from Poulain et
al. (2019). The rise velocity wb is estimated by solving (Poulain et al., 2019; Clift
et al., 1978):

240

πRe
(1 + 0.138Re0.792)w2

b =
2

15
l

(
1− ρp

ρw

)
g, (B.5)

where Re is the particle Reynolds number (Re = lwb/ν, with ν = 1 · 10−6), l is
the particle size, ρw is the density of sea water (set to 1.029 kg m−3), and g is the
gravitational constant (9.81ms−2).
In our model, the rise velocities are estimated assuming an ellipsoidal shape, with a
density ρp of 950 kg m−3. This combination gives a good match with reported den-
sities (Morét-Ferguson et al., 2010) of plastic particles, and observed rise velocities
(Poulain et al., 2019), see Figure B.6. In Poulain et al. (2019) a particle equivalent
length was used, for ellipsoids defined as Leq =

√
L1L2/4, where L1 is the length

and L2 is the width. We assume that these are approximately equal (L1 ≈ L2), to
simplify the calculations in terms of a particle size l.
Taking a balance between the upward particle flux caused by buoyancy, and a
Reynolds-averaged turbulent flux, results in an exponential profile for the amount
of particles as a function of depth (n(z)):

n(z) ∼ exp(zwbA
−1
0 ), (B.6)
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Figure B.6: Estimated rise velocities using the model from Poulain et al. (2019). In Poulain et al. (2019)
it was shown that most rise velocities of plastic particles fall in between those calculated for spheres
(900 kgm−3) and ellipsoids (1005 kgm−3). Here, we use ellipsoids with ρp = 950 kgm−3, which fit the
measured rise velocities from Poulain et al. (2019) well, see the solid black line.

for z ≤ 0, where A0 is an eddy-viscosity parameter estimated using A0 = 1.5u∗wκHs

(Thorpe et al., 2003), with u∗w being the water friction velocity, κ = 0.4 the von
Karman constant, and Hs the significant wave height (Kukulka et al., 2012).
Particles at different depths will be affected differently by Stokes drift. The influence
of Stokes drift with depth, vStokes(z), is estimated using the approach presented in
Breivik et al. (2016), where the wave spectrum is approximated using the Phillips
spectrum:

vStokes(z) =
2αg

ωp

(
exp(2kpz)−

√
−2πkpz erfc(

√
−2kpz)

)
, (B.7)

where α is Phillips’ parameter (8.3 · 10−3), ωp is the wave peak frequency, and kp =
ω2
p/g is the peak wavenumber.

ERA5 reanalysis data (Hersbach et al., 2020) are used to calculate typical weather
conditions for the Mediterranean Sea. In order to evaluate the vertical mixing and
the Stokes drift profiles, we need data for the peak wave period ωp, the significant
wave height Hs, and the water friction velocity u∗w. The water friction velocity is
estimated from the wind velocity at 10 meters U10. First the air friction velocity
u∗a is estimated from the drag coefficient CD using (Thorpe et al., 2003; Geernaert,
1990):

u2
∗a = CDU

2
10, CD = 10−3

(
0.75 + 0.067U10 [ms−1]

)
, (B.8)

afterwards continuous stress at the water surface is assumed, yielding

ρwu
2
∗w = ρau

2
∗a. (B.9)

Statistics for ωp, Hs, and U10 are calculated from ERA5 reanalysis data (Hersbach
et al., 2020). Various quantiles are calculated from the data, in order to be able to
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Figure B.7: Dividing the ocean into a coastal region (≤ 15 km from the coastline), and an open ocean
region (> 15 km) divides the measurements from Cózar et al. (2015) and Ruiz-Orejón et al. (2018) quite
well. The majority of samples from Cózar et al. (2015) are classified as open ocean this way (triangles),
the majority of samples from Ruiz-Orejón et al. (2018) as coastal samples (circles). These measurements
are used to compare the box model results with in the main text.

evaluate the environmental box model for different weather conditions as will be
explained in the next Section.

B.3.2 From mixing and Stokes drift to transition probabilities
In order to determine transition probabilities between the ocean and coastal water,
we use the Lagrangian model run for the Mediterranean sea from Chapter 4. The
domain of the Mediterranean Sea is split into offshore and coastal regions based on
the distance to the closest coastline, with a threshold of 15 km. The 15 kilometer
threshold was chosen as this divides the two sets of measurements with mainly
coastal samples (Ruiz-Orejón et al., 2018) and mainly offshore samples (Cózar et
al., 2015) well. This is shown in Figure B.7: coastal samples are plotted using dots,
and offshore samples using triangles.
The Lagrangian particle simulation is run with the results found in Chapter 4 for
five years starting from January the 1st 2010. From the total of approximately
770,000 particles, 66% are released based on the estimated mismanaged plastic
waste at the coast (50 km radius)(Jambeck et al., 2015; SEDAC et al., 2005), 29%
are released at river mouths based on Lebreton et al. (2017), and 6% are released at
locations with high fishing activity (Kroodsma et al., 2018). Transition probabilities
of particles moving between offshore and coastal cells of the mesh are calculated
from this simulation.
The Stokes drift influence is varied in the simulation to estimate how this influences
the transition probabilities between the ocean and coastal water. Six situations are
simulated, ranging from no Stokes influence, to various fractions of Stokes drift,
to full Stokes drift influence. These different situations can be translated to a cer-
tain depth, by evaluating the Stokes drift over depth using Eq. (B.7) and comparing
this value to the surface Stokes drift (i.e. vStokes(z)

vStokes(0) ) . Resulting transition proba-
bilities from the model runs are presented in Figure B.8. As can be seen, increas-
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Figure B.8: Transition probabilities between coastal and ocean cells for various values of vStokes(z) /
vStokes(0) as calculated by the Lagrangian model run, for dt = 7 days
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Figure B.9: Stokes influence fraction (Stokes drift at a given depth divided by the surface Stokes drift,
i.e. vStokes(z) / vStokes(0)) for different particle sizes, under the influence of different wind/wave
conditions.

ing the Stokes drift increases the probability that particles move from the ocean to
coastal waters (PO,C), decreases the probability that particles remain in the ocean
(PO,O), slightly increases PC,C , and slightly decreases PC,O as expected. Even with-
out Stokes drift, transport from the open ocean towards coastal waters can be ob-
served. This accumulation of particles in the coastal zone means that the coastal
transition probabilities are relatively insensitive to adding more Stokes drift.
Different particle sizes will be mixed to different depths using Eq. (B.5) and Eq. (B.6).
The median depth of the particles is calculated, and the Stokes drift influence (i.e.
the Stokes drift at this depth divided by the surface Stokes drift) is calculated using
Eq. (B.7). This yields the results presented in Figure B.9. As wind speed and wave
height increase, particles tend to be more mixed, and hence experience less Stokes
drift.
Data in Figure B.8 are linearly interpolated for the Stokes drift influence at a given
particle size as given in Figure B.9. This yields transition probabilities per particle
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Figure B.10: Transition probabilities for the environmental box model as a function of the particle size,
calculated for the median wind/wave conditions

size, results are presented in Figure B.10. These transition probabilities are used in
the transition matrix of the environmental box model.

B.4 Estimated municipal plastic waste properties

Typical properties of municipal plastic waste were estimated using data from Jansen
et al. (2015), in which waste mass fractions for different size classes were reported
from sorting facilities in the Netherlands. Fine screen apertures are used (50-65
mm), midsize apertures (140 mm), and coarse apertures (220-250 mm) to sort the
plastic waste. We take the midpoints here as the estimated aperture sizes (57.5
mm, 140 mm, and 235 mm). We assume the lower size limit to be 0 mm, and the
upper size limit to be 500 mm, which is an arbitrary choice, but does not have a
large impact on the results. We use the reported mass data for polyethylene and
polypropylene in Jansen et al. (2015), and use the environmental polymer fractions
from Suaria et al. (2016) to estimate their contribution (76% and 24% respectively).
Data are parsed using the WebPlotDigitizer tool Rohatgi (2020), and are shown in
Figure B.11a.
We normalize the mass percentages by the bin widths, to obtain an estimate for
the normalized MSD. The point estimates are given in Figure B.11b using the dots
with errorbars. From this we argue that particles around 200 mm likely contribute
to most of the new plastic mass entering the environment. Of course this is still a
first order estimate, and more research is needed to quantify the mass, abundance,
and dimensionality of ’new’ plastics entering the environment. As an example we
fit a lognormal distribution through the points in Figure B.11b, which fits the larger
particle size classes well, but underestimates the smallest size class. It is important to
further quantify the shape of this probability density function, since it will influence
the particle size distributions measured in the environment.
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Figure B.11: Quantification of municipal plastic waste dimensions, based on data from Jansen et al.
(2015). Figure a: histogram of MPW masses reported for 4 different size categories. Figure b: estimated
MSD using these data.
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Figure B.12: Illustration of the fragmentation model by Cózar et al. (2014)

B.5 Successive fragmentation model
In the main text we mention the fragmentation model by Cózar et al. (2014), which
we will call the successive fragmentation model here. We summarise the basic de-
tails here, and the difference between the resulting NSD and normalized NSD.
Objects in the successive fragmentation model are successively broken down into a
set of smaller (equally sized) fragments. Some iterations are shown in Figure B.12:
a cube with a length of L can be broken down into eight equally-sized smaller cubes
with length L/2, which can again be broken down into 8 smaller cubes with length
L/4. A resulting histogram counting the amount of particles at fragmentation index
f is presented in Figure B.13.
The grey dashed line in Figure B.13 is obtained with a constant input rate of large
objects with length L = 1 mm. The slope of this line on a log-log scale is -3. This
slope is purely dependent of the spatial dimension considered for the fragmentation
process. In case of the fragmentation of a 2-dimensional object (i.e. a square sheet
with negligible thickness), this line would have a slope of -2 on a log-log scale.
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Figure B.13: Illustration of the particle size distribution resulting from the successive breakage model

Results do not change when including a shape factor (α, relating the volume (V )
of the particles to their characteristic size (l) by V = αl3), and does not change
when adjusting the amount of fragmentation events per iteration (which is 1 in this
example).
This grey dashed line is not the resulting NSD however. It only connects the amount
of fragments at a given discrete particle size. We can bin the amount of fragments
per size class, e.g. using the bin boundaries as depicted by the vertical grey dotted
lines. By dividing the amount of fragments in each bin by the width of the bin,
we obtain the normalized abundance (red dashed line in Figure B.13), which is the
particle size distribution normally reported in literature. Important to note is that
the slope of this NSD is -4 instead of -3, due to the fact that the bin width decreases
by a factor of two when going to the left on a log scale. This has been overlooked
in e.g. Cózar et al. (2014), where NSD’s with a slope of -3 were thought to be
resulting from three-dimensional fragmentation, while in fact they correspond to
two-dimensional fragmentation in the successive fragmentation model.
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C.1 Measurement corrections and variance
Before using the plastic concentration measurements, they are corrected for vertical
mixing using the correction factor introduced by Kukulka et al. (2012):

N

Ntow
=

1

1− e−
dWb
A0

, (C.1)

where Ntow is the amount of plastics measured by the net tow, N is the corrected
amount of plastic particles, d is the submerged net depth, Wb is the rise velocity
of the plastic particles, and A0 is a parameter defining the near-surface turbulence.
The value for d was not provided for all references used here. Where possible, it was
calculated by comparing measurements in terms of volume with measurements in
terms of area. Otherwise the most commonly occurring values in the data-set were
used, which is d = 0.1 m for nets with a height of 0.2 m, and d = 0.15 m for nets
with a height larger than 0.2 m. The value for Wb was set to 0.0053 m/s, the median
rise velocity of plastic particles found in Reisser et al. (2015). Finally, A0 is given by

A0 = 1.5u∗wκHs, (C.2)

where u∗w is estimated to be 0.0012 times the wind velocity at 10 meters (U10) as
given by Pugh (1987), with U10 as obtained from wave watch III data (Tolman et al.,
2014); κ is the von Karman constant with a value of 0.4; and Hs is the significant
wave height. The significant wave height was estimated from U10 by using the
relation from Rossby & Montgomery (1935).
Here we use a tool from spatial statistics called the variogram, in order to assess
the variance γ of plastic measurements separated by a given spatial lag distance h.
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Figure C.1: Variograms constructed from the available plastic measurements

This can be used to estimate the amount of subgrid scale variance which can not be
captured by the model. By assessing the variance of the plastic measurements below
these scales, an indication can be obtained of the maximum achievable accuracy.
The variogram is calculated only for samples which were taken within a day of
each other, since this is the temporal resolution of the Lagrangian model output.
Since sample information is not available at every location, an empirical variogram
is constructed, considering the variance of measurements z separated by a certain
distance h ± δ. The variance for the samples within this separation distance is then
calculated using:

γ(h± δ) =
1

2N(h± δ)
∑

(i,j)∈N(h±δ)

(zi − zj)2, (C.3)

where N(h ± δ) denotes the amount of samples in a given separation distance bin.
The variogram can be calculated for both the plastic abundance and mass. Results
are shown in Figure C.1. The samples for γ(h ± δ) are colored by the amount
of data point pairs used for the calculations in this figure. A Gaussian variogram
was fitted through the points to show the trends more clearly. Several important
observations can be made. For both types of measurements there seems to be a
clear increase in the beginning, until about 20 to 40 kilometers. Afterwards this
increasing trend seems to level off, although this is difficult to be certain about since
there is a lack of data points for larger lag distances h, which also shows in the
larger spread for γ(h± δ). What is also important to notice, is that the variance at a
given lag distance is larger for the mass measurements compared to the abundance
measurements. This means that more variance is expected when comparing the
model to the measurements in terms of mass, and that it is more difficult to obtain
information from the individual mass measurements compared to the abundance
measurements for the inverse modelling process.

C.2 Beaching time scale estimate
In order to get a feeling for possible parameter values of τbeach, a beaching analysis
was done for a set of drifters in the Mediterranean (Menna et al., 2017). A total of
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Figure C.2: Beaching time scale τbeach estimated from drifter buoy data

1682 drifters were analysed, to see how long these drifters in general spend time
near the coast before ending up on the beach. The mesh used for the currents has
a spacing of 1/16◦, corresponding to roughly 6.9 km for the Mediterranean. This
distance was used to define whether a buoy is close to the coast. For each buoy the
time it spend near the coast was tracked: the coastal time was binned, and for each
interval the fraction was calculated of the buoys not having beached. A drifter was
assumed to have beached, when at its end-of-life one of the four cells surrounding
the drifter had a positive elevation. A 30 arc-second bathymetry dataset was used
for this (Becker et al., 2009). Out of all buoys, 195 buoys were estimated to have
beached at the end-of-life.
This analysis of drifters doesn’t have to reflect the behaviour of plastic particles near
the coast accurately. First of all, the particles have very different sizes, shapes, and
properties. Some of the drifters are drogued, and will therefore be less sensitive to
e.g. wave action and windage compared to floating plastic particles. Secondly, the
beaching time scale τbeach will implicitly have to take in account the recapturing of
plastic particles by the water, i.e. it should be interpreted more as a time scale at
which plastic particles remain permanently buried in the sand. The buoy trajectory
dataset was designed to cut off when the buoy was estimated to be beached; this
means that the time scale calculated from this data set should only account for one
beaching event.
From the drifter buoy analysis, it followed that for each day spend near the coast,
the drifter buoys have a probability of beaching of 1.2%. This translates into a time
scale τbeach of roughly 76 days, when assuming this probability remains constant
when spending time near the coast. Since the drifter data set is sparse especially
for longer coastal times, this is only a very first order estimate. For the inverse
modelling step of the floating plastics, the prior for τbeach was centred at 102 days
which is close to the buoy estimate. The inverse modelling was done on log10 of the
values in order to span multiple orders of magnitude, with the bounds on the prior
(99.7th percentile) ranging from 1 (101 days) to 3 (103 days).
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C.3 Inverse modelling implementation
The most likely values for the parameters are estimated by solving a minimization
problem. The cost function can be minimized by linearising the forward model
around an estimate for the parameters m, and iteratively updating the parameters
using e.g. a gradient descent algorithm. The update steps were done by using a
quasi-Newton method (see Tarantola (2005)):

mn+1 = mn − µn
(

GTnC−1
D Gn + C−1

M

)−1

(
GTnC−1

D (dn − dobs) + C−1
M (mn −mprior)

)
, (C.4)

where µn ≤ 1 defines the step-size of the update, and G is a matrix containing the
partial derivatives of the forward model with respect to the model parameters (i.e.
the local linearisation of the problem): (Gn)iα = (∂gi/∂mα))mn . This matrix was
calculated using forward finite differences.
After finding the most likely posterior estimate using the quasi-Newton method pre-
sented above, it is also possible to estimate the posterior covariance matrix C̃M ,
using:

C̃M ' CM − CMGT (GCMGT + CD)−1GCM . (C.5)

A second method was used for the inverse modelling step to verify the results from
the least-squares solution. A Markov Chain Monte Carlo (MCMC) method was used
to explore the parameter space which best matches the measurements and the given
prior model parameters. The posterior of the model parameters is explored by using
a random walk, where steps in the direction of likely parameter values have a higher
probability of being accepted by making use of Metropolis-Hastings algorithm. This
method does not rely on linearisation of the problem and is able to handle non-
Gaussian assumptions on model parameters and measurement uncertainties. The
MCMC method was implemented using the PyMC3 package in python (Salvatier et
al., 2016). The same prior is used for the MCMC method as for the least-squares
approach. Results comparing the MCMC method to the least-squares approach are
presented in the next section, see Figure C.3.
In Table C.1 the different parameters tuned in the inverse modelling process are
presented. The lower and upper values for the prior were defined as 3 times the
standard deviation. An extra parameter not discussed in the text is the kernel den-
sity estimation bandwidth (KDEbw). Lower and upper estimates for this parameters
were set by hand, by seeing whether the predicted field for the plastic concentra-
tions was not overly noisy or overly smoothed out. The parameter riverlow−high
corresponds to the parameter representing the riverine input from Lebreton et al.
(2017) in terms of the lower, mid, and upper estimate as explained in the main text.

C.4 Parameter estimation sensitivity study
Figure C.3 presents the sensitivity study done for various tracer diffusivity values
K, and different time thresholds at which particles are deleted. As explained in the
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Table C.1: Parameters optimized in this paper, possible values, and lower/upper bounds used in the
inverse modelling process. For parameters denoted by a power of 10, the inverse modelling process was
done on the exponent, in order to be able to cover a wide range of scales. Values displayed using ±
indicate one times the standard deviation.

Parameter Prior, lower
estimate

Prior, upper
estimate

notes

τbeach [days] 101 103 See drifter buoy analysis
τsink [weeks] 100.30 101.72 Corresponds to 2–52 weeks
rsink [days] 3 15
Psink,0 [-] 0.17 0.44

riverlow−high [-] -1 1 Lower to higher riverine input estimate
from Lebreton et al. (2017)

Spop:riv [-] 10−1.3 101.3 Maximum contribution each source:
95%

Sfis:riv [-] 10−1.3 101.3 See above
KDEbw [-] 0.05 0.2

main text, three different values for K were studied: K = 1 m2/s, K = 10 m2/s,
and K = 100 m2/s, of which K = 10 m2/s is likely the most appropriate value, given
e.g. the relation used in Neumann et al. (2014):

K = K0 · (l/l0)
4
3 , (C.6)

where K0 is set to 1 m2/s, l is the local grid resolution (1/16◦, or approximately 7
km in our case), and l0 is set to 1 km.
Most differences are observed when selecting a high tracer diffusivity ofK = 100 m2/s.
A higher diffusivity leads to less particles remaining close to the coastal zone in the
model. The beaching time scale remains relatively similar, which leads to a reduc-
tion in the sinking time scale in order to keep the right mass balance in the basin.
For all simulations all source importance ratios S are relatively equal, except from
Sfis:riv for K = 100 m2/s. There is an increase in the Kernel Density Estimate band-
width (KDEbw) when the tracer diffusivity increases. Possibly this could mean that
a lower tracer diffusivity leads to a more realistic simulation, as results with a higher
diffusivity are more smoothed out to reach a better agreement with the measured
plastic concentrations.
Little differences are observed between the simulation where no particles are deleted,
the simulation where particles are removed after 300 days, and where particles are
removed after 180 days, all at K = 10 m2/s. In order for the mass balance to hold,
it was calculated that after about 50 days, 99.9% of the mass input is gone from
the surface water. Keeping track of all particle trajectories indefinitely is therefore
not necessary, and induces a lot of computational costs. Instead, by deleting the
particles after a certain amount of time, a lot more particles can be released for less
computational effort. This is important in an inverse modelling study, as multiple
model iterations are necessary to converge to the right parameter estimate.
Results from the Markov Chain Monte Carlo (MCMC) analysis are consistent with
the results found using the least-squares approach. Since the parameter riverlow−high
converged consistently to the lower bound for the least-squares analysis, it was fixed
to -1. For the rest of the parameters, minimal differences are found for the most
likely MCMC values compared to the least-squares analysis for K = 10 m2/s and
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Figure C.3: Sensitivity study: days until deletion and K, and the MCMC analysis

removal at 180 days. Values in order of appearance in Figure C.3 (left to right, top
to bottom) for the MCMC and least-squares analysis respectively are: 24 days (24
days), 80 days (81 days), 63 days (67 days), 0.38 (0.36), 2.2 (1.9), 0.2 (0.2), 0.32
(0.31).
A summary of the total input of plastics and where plastics end up, for different
tracer diffusivity values is presented in Table C.2. As explained before, the higher
tracer diffusivity leads to less particles remaining close to the coast, and hence less
particles ending up on coastlines. Differences are quite minimal between K = 1
m2/s and K = 10 m2/s. The total input of plastics is relatively similar for all three
tracer diffusivity values, as there is not much difference in the source importance
ratios. Finally, the cost function value resulting from the inverse modelling process
is presented. Although the mismatch is slightly lower for K = 1 m2/s, the difference
is too little to prefer this tracer diffusivity value over the others from this result
alone.
Figure C.4 presents the sensitivity study when adjusting the specified confidence
interval of the parameter bounds, and adjusting the specified variation of the mea-
surements (all for K = 10 m2/s, and deletion of particles after 180 days). The
baseline simulation is presented, where the parameter bounds specify the 3σ confi-
dence interval, and the variation of the measurements on a log10 scale is specified
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Table C.2: Sensitivity study tracer diffusivity, input and sinks presented for 2006–2016 in terms of per-
centages and metric tonnes

Tracer diffusivity Beaching Sinking Total input Cost function value
K = 1 m2/s 56%, 14,300 tonnes 43%, 11,000 tonnes 25,500 tonnes 1253
K = 10 m2/s 54%, 13,800 tonnes 45%, 11,500 tonnes 25,600 tonnes 1255
K = 100 m2/s 33%, 9,400 tonnes 67%, 19,100 tonnes 28,400 tonnes 1255

as γn = 0.1376 (measurements reported in terms of abundance), and γm = 0.2201
(measurements reported in terms of mass).
When changing the parameter bounds to the 2σ confidence interval, this means that
less weight is given to deviations from the prior; when changing to the 4σ confidence
interval more weight is given to deviations from the prior. Two sets of measurement
variation levels were tested: one where γn = γm = 0.32, which comes from the
reported coefficient of variation for abundance measurements from de Haan et al.
(2019), and γn = 0.32 and γm = 0.75 as calculated from data reported in de Haan
et al. (2019) for abundance and mass measurements separately. These measure-
ment variation levels are larger than the one calculated here using the variogram
method, which means that less weight is given to deviations of the model from mea-
surements, hence it will have a similar effect as putting more weight on deviations
from the prior (the C.I. = 4σ case). The main observed effect is that putting more
weight to the prior will cause the Kernel Density Estimate bandwidth to be smaller.
The initial sinking fraction Psink,0 gets higher for the C.I. = 2σ case as well. In turn,
to keep the right mass balance, the beaching time scale seems to increase. Almost no
changes are observed in the sinking time scale, and minimal variations are present
for the source importance ratios and the expected riverine input.
In the main text it was mentioned that there is likely not enough information in the
data to say something about the parameter rsink: its posterior is almost the same
as the prior. To verify this, we did the same analysis, but changed the prior of rsink
to a much higher value (16 weeks instead of 9 weeks). Results are presented in
Figure C.5. As can be seen the posterior distribution of rsink is still almost exactly
the same as the prior distribution, further underlining our hypothesis there is no
information in the data about this parameter.

C.5 Model-measurement scatter plots and mass cor-
rection factor

Scatter plots showing agreement between the model and measurements (the base-
line case: K = 10 m2/s, deletion of particles after 180 days, γn = 0.1376, γm =
0.2201) are presented in Figure C.6, for abundance measurements (left) and mass
measurements (right). As can be seen, there is quite a lot of variability, and the
correlation is not very high.
As discussed in the main text, variability is high due to several reasons. First of all,
there is natural subgrid-scale variability which can not be captured by the model.
Secondly, variance in the measurements is likely further increased due to the fact
that different measurement campaigns might have slightly different measurement
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Figure C.4: Sensitivity study: specified confidence interval for the prior, and coefficient of variation
specified for the measurements
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Figure C.6: Model versus measurements: K = 10 m2/s, deletion at 180 days, γn = 0.1376, γm =
0.2201

methodologies. The expected subgrid-scale variability was estimated in section S1
using the variogram method.
The maximum achievable correlation between the model and measurements is lim-
ited due to the high subgrid-scale variability. This is illustrated using the red solid
lines in Figure C.6, which represent the model ± 2 times the standard deviation as
estimated using the variogram. In case of a perfect model and accurate variability
estimates, 95% of the data should lie between the red solid lines. In this case, this
is 77.4% for the abundance measurements and 78.4% mass measurements. There
is still room for improvement of the model, but even when 95% of the points would
fall between the red lines, the maximum achievable correlation remains limited.
Even with high variability and low correlation, there is still information to be ob-
tained from the observational data. In order to illustrate this, we varied the value of
one parameter, τsink around its most likely posterior value (81 days) to observe what
happens with the correlation and the cost function. Results are shown in Figure C.7.
As can be seen, the cost function value clearly attains its minimum at the most likely
posterior value. The maximum correlation values are not attained at exactly the
same value for τsink, but the optimization algorithm converges to a value where
both are relatively high. We see however that when moving away from the most
likely posterior point, there is reduction in either the correlation for the abundance
concentrations or the mass concentrations.
What is also important to note, is that we are not only interested in the correlation,
but also the bias of the model with respect to the measurements. By keeping the
bias at a minimum, we ensure that the mass balance in the basin is consistent with
the measured mass concentrations. In Figure C.8 we illustrate this by choosing a
too small value for τsink. Not only do we see a decreased correlation which was
also illustrated in Figure C.7, we also see that the model generally underpredicts the
mass (most of the points now lie above the 1:1 line), leading to an incorrect mass
balance.
In future work, it is recommended to look for sets of measurement campaigns with
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Figure C.7: Effect of varying τsink around the most likely posterior value on the correlation and cost
function value
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Figure C.8: Moving away from the most likely posterior point not only impacts the correlation between
the model and measurements negatively, it also creates a bias in the mass balance
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Figure C.9: Model versus measurements: K = 10 m2/s, deletion at 180 days, γn = 0.1376, γm =
0.2201 for measurements by Cózar et al. (2015) only

a larger amount of data points, which are taken in a consistent manner. To illustrate
this, we plotted the same scatter plots for the measurement campaign by Cózar et
al. (2015) only, which is the only dataset which spans both the western and the
eastern Mediterranean basin. Although this is only one sample study, we do see in
this case an increased correlation, and almost 90% of the data points falling within
the expected 2σ bounds.
Figure C.6 also illustrates more clearly why there is an underestimation of the total
floating mass in the model compared to previous estimates based on measurements
only by Cózar et al. (2015). In the mass scatter plot, the model data points range
from roughly 101 to 103. The measurement data points have a higher range due to
their high variability, ranging from roughly 100 to 104. Since we are working on a
log-log scale, the missing of the upper tails in the model distribution has a relatively
high influence on the total estimated mass. A mass correction was applied, by intro-
ducing noise to the modelled plastic concentrations, where the noise is equal to the
subgrid-scale variance calculated using the variogram for the mass measurements.

C.6 Which sinks are neglected and why?

We will illustrate why certain sinks are neglected in this work by considering a simple
mass balance model, where the floating mass inside the basin is modelled over time
using

dm(t)

dt
= Source− Sink. (C.7)

We will consider two cases here: the a priori case, taking numbers from previous
studies for the unknowns, and an a posteriori case, where we plug in our own es-
timates for the sources and sinks to see whether our assumptions are still valid, or
whether they should be adjusted in future studies.
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C.6.1 a priori
As a priori knowledge, we can use the numbers from Cózar et al. (2015) where the
total amount of floating plastic in the Mediterranean was estimated to be approxi-
mately 1000-3000 tonnes. Furthermore, we can use data from previous modelling
studies to get an estimate on how much plastic is thought to enter the basin a priori:
>100,000 tonnes per year (Liubartseva et al., 2018; Jambeck et al., 2015). Since
the estimated input is much larger than the amount which is floating, we assume
we are at least in a quasi-equilibrium, and that the estimated floating mass is ap-
proximately the steady-state value. We assume that the magnitude of the sink is
dependent on the amount of floating mass: each unit of plastic mass has a certain
constant probability of being removed from the surface water per unit time, defined
by the sinking rate psink, from which we write:

dm(t)

dt
= Source− psink ·m(t) = 0. (C.8)

The value of psink can be related to a time scale τ by assuming a constant probability
over time:

psink = 1− e−1/τ . (C.9)

Solving Eq. (C.8) for the a priori estimated input and estimated floating mass, yields
a sinking rate psink of about 0.1 to 0.3 day−1, or a time scale τ of about 3 to 10 days.
One question is whether we can neglect fragmentation in our model. In the main
text it was already addressed that in Song et al. (2017) weathering experiments
were done, from which we can get some feeling for possible time scales. We take
the volume loss of 10% for polyethylene samples subjected to 12 months of UV
radiation and 2 months of mechanical abrasion, which was estimated to correspond
roughly to 4 years of weathering in the environment. We can again assume this
volume loss is constant over time, defined by the fragmentation rate pfrag. (or time
scale τfrag.). This results in a pfrag. of about 7·10−5 day−1. We can separate the
fragmentation rate from the other sinks, which will be denoted by psink,other and
τsink,other:

dm(t)

dt
= Source− psink,other ·m(t)− pfrag. ·m(t) = 0. (C.10)

From this it is clear that psink,other and pfrag. should add up to psink in Eq. (C.8) in
order to have a mass balance, meaning that fragmentation has no significant effect
in terms of mass.
We can also analyse whether fragmentation could act as a significant source in terms
of abundance, due to the production of secondary plastics. In Song et al. (2017)
about 20 fragments per parent particle were observed for the same scenario as
described above (roughly 4 years of weathering in the environment). We write a
similar balance in terms of abundance:

dN(t)

dt
= Source− psink,other ·N(t) + pfrag. ·N(t) = 0. (C.11)

We assume that the sinks have a similar influence in terms of mass as in terms of
abundance: every single unit of mass, and every single plastic particle, has the same
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rate of being removed from the system (i.e. psink is still about 0.1 to 0.3 day−1).
In this case, 20 fragments over 4 years would translate to a pfrag. of about 2·10−3

day−1. This is significantly more than the influence in terms of mass, but still two
orders of magnitude lower than the magnitude of psink,other that we expect.
Finally, UV radiation might convert plastic polymers into carbon dioxide and dis-
solved organic carbon by itself: in Ward et al. (2019) the average lifetime until
partial oxidation of polystyrene was estimated to range between 10 to 50 years. As-
suming this process is constant over time, would lead to a UV degradation rate pUV
of about 3.8·10−5 to 1.9·10−4 day−1. This is about three orders of magnitude lower
than the psink required for the mass balance, and therefore neglected.

C.6.2 a posteriori
We can do the same analysis with the values from the mass balance obtained from
the inverse modelling study. We estimated a total input of about 2,100–3,400
tonnes, and a total floating mass of 170–420 tonnes. Using these numbers, we get a
required sink magnitude ranging from psink = 1.3 · 10−2 to psink = 5.5 · 10−2 day−1.
Using the same reasoning as above, this would mean that in terms of mass, the frag-
mentation rate is still expected to be significantly lower (7·10−5 day−1, so at least
two orders of magnitude) than the sinks required for the mass balance. In terms of
time scales, we have τsink ranging from approximately 17 to 72 days. Removing the
influence of fragmentation from the total sink would result in τsink increasing by at
most 0.5%. On a similar note, considering partial oxidation of polymers (which was
calculated to be 1.9·10−4 day−1 for the decadal time scale reported in Ward et al.
(2019) ), could lead to an increase in τsink of about 1.4%. Although these effects are
much more important now than for the a priori case, it will not change the inverse
modelling results dramatically.
In terms of abundance, fragmentation starts to play a bigger role, with a rate which is
approximately five times lower than the lowest estimated sink magnitude (pfrag. =
2 · 10−3 versus psink = 1.3 · 10−2).
For a first order estimate we think that leaving out fragmentation is reasonable. Its
influence was estimated to be mainly in terms of an increase in abundance. How-
ever, fragmentation will act as a net source (in terms of abundance) of secondary
plastics only at the beginning of the fragmentation process. After a while a lot
of the fragments will become too small to measure (i.e. below the neuston net
mesh size), leading to a net loss of particles. What is also seen in previous studies
(Onink & Laufkötter, 2020; Liubartseva et al., 2018), is that beaching patterns in
generally correspond quite well with the pattern of the source itself (i.e. a majority
of plastics will not travel far from its original source). This means it is likely the pat-
tern of secondary plastic sources is quite similar to the primary sources. This likely
diminishes the influence of fragmentation on the patterns of plastic concentrations
in the water as modelled here. The combined effect of fragmentation as a sink for
mass and a source in terms of abundance is very interesting, and is recommended
to be taken in account in future studies, also because it is clear from the a posteriori
calculations it is more important than one would think from the numbers given for
the a priori case.
We can also turn the line of reasoning around: perhaps the discrepancy between
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our estimated input and the one from literature is due to neglecting fragmentation
and degradation. We can take the estimated value for pfrag. (7·10−5 day−1) and
the most conservative (largest) value for pUV (1.9·10−4 day−1), keep psink,other
at our a posteriori range (1.3 · 10−2 to 5.5 · 10−2 day−1), and estimate the source
strength which would result in a steady-state floating mass of 170–420 tonnes. In
the extreme case of taking the smallest psink,other (1.3 · 10−2) and the maximum
floating mass (420 tonnes) we would get a required input in the system of 8,500
tonnes. This is much higher than our estimated input (2,100 - 3,400), but one has
to keep in mind that here we combined our very highest floating mass (420 tonnes),
with the psink,other corresponding to the very lowest input mass (2,100). These
extremes correspond to the upper and lower tail of the 95% confidence interval: the
probability of both occuring would be less than 0.05%. Still this increased number
does not explain the difference with respect to previous studies (Liubartseva et al.,
2018), where the input was estimated to be >100,000 tonnes per year.
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D.1 Observational data and model performance

D.1.1 Data overview

An overview of the data used to calibrate the numerical model is presented in Fig-
ure D.1, sources and details of the data are given inTable D.1.
A large amount of net trawl data come from previous studies that aggregated ob-
servational data for numerical model calibration, both globally (van Sebille et al.,
2015) and for the Mediterranean Sea (see Chapter 4). To account for the fact that
neuston net measurements can be biased due to wind mixing, the Kukulka correction
factor (Kukulka et al., 2012) is applied using ERA5 reanalysis wind speeds (Hers-
bach et al., 2020). Data for large plastic items at the ocean surface (>0.2 m) come
from previous studies using visual observations (Eriksen et al., 2014; de Vries et al.,
2021).
For beach measurements, MDMAP (Burgess et al., 2021) and OSPAR (OSPAR, 2010)
observations are included in terms of n m−1, focusing on larger plastic items (>2.5 cm
and >50 cm respectively). These datasets contain information on the type of litter
items, which is used to define a minimum percentage of fishing related plastics per
measurement location. These values can then be compared to the predicted model
fishing item percentages. Plastic litter types containing words such as ‘fish’, ‘rope’,
or ‘net’ are categorized as fishing related items. We gathered additional beach mea-
surements from the literature in terms of g m−1, using the criterion that the entire
beach width was sampled for comparability between samples.
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Figure D.1: Observational data across different marine reservoirs used to assimilate into the numerical
model. The markers show the locations of the available observational data, from neuston net measure-
ments at the ocean surface (blue dots), visual observations of large plastic items (>0.2m, blue circles),
the deep ocean (orange diamonds), and beaches (orange triangles).

Table D.1: Overview of the observational data used to calibrate the numerical model

Reference Measurement type Notes
van Sebille et al., 2015 Net trawls, surface ocean Compilation of 37 measurement campaigns for small

plastic particles (>0.335 mm) in terms of mass and
number, 11,854 data in total

Kaandorp et al., 2020 Net trawls, surface ocean Compilation of 18 measurement campaigns for small
plastic particles in the Mediterranean Sea (>0.335
mm) in terms of mass and number, 1170 data in total

Egger et al., 2020b,a Net trawls, surface ocean Data on 4 size classes available in terms of mass and
number, 1390 data in total

Egger et al., 2020b; Zhao
et al., 2022

Net trawls, deep ocean Data on 4 size classes available in terms of mass and
number, 120 data in total

Eriksen et al., 2014 Visual observations, surface
ocean

Visual detection for large plastics (>0.2 m) in terms of
number, 553 data in total

de Vries et al., 2021 Visual observations, surface
ocean

Automatic floating object detection for large plastics
(>0.5 m) in terms of number, 10 data in total

OSPAR, 2010 Beach measurements OSPAR data (>0.5 m) in terms of number, 1692 data in
total

Burgess et al., 2021 Beach measurements MDMAP data (>25 mm) in terms of number, 5022 data
in total

Hong et al., 2014;
Kaandorp et al., 2022;
Edyvane et al., 2004;
Lee & Sanders, 2015

Beach measurements Additional beach measurements in terms of mass, 238
data in total

Ryan et al., 2018 Beach measurements Data on small plastics (2–25 mm) in terms of mass and
number, 162 data in total
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D.1.2 Model performance

We compare measured plastic concentrations to the assimilated model results (Fig-
ure D.2), both in terms of number of particles (upper row), and mass (lower row).
The red dashed lines indicate the expected measurement error (95% confidence in-
tervals). The Pearson R correlation coefficients between the model and the various
datasets are presented in Table D.2.
The left column compares the model output to measurements from the Pacific Ocean
(Egger et al., 2020a,b), where different particle size classes were measured. When
considering all particle sizes together (0.5–50 mm) there is a good fit (R = 0.85) for
the number concentrations. This indicates that our fragmentation model is able to
capture the progression from large to small particle sizes accurately. The somewhat
poorer performance (R = 0.59) for the mass concentrations is likely due to varying
shapes and densities of plastic particles introducing increased variability into the
dataset, as was already noted in earlier studies (de Haan et al., 2019; Kaandorp
et al., 2020). When looking at the size classes separately we see a lower perfor-
mance for larger particle sizes (R = 0.50 for 15–50 mm). One explanation is the
fact that larger particles tend to be sparse, introducing variability between tows cap-
turing only a few or no particles (neuston net measurements typically show a cut-off
around 1 · 10−4 n m−3 caused by the lower detection limit of the method, see Fig-
ure D.2b). Measurements in the 15–50 mm category span about three orders of
magnitude, as opposed to about four orders of magnitude for measurements in the
0.5–1.5 mm category, which makes it more difficult to achieve the same level of cor-
relation with the amount of variability present in the datasets. Another explanation
would be a potential different influence by open ocean Stokes drift (Egger et al.,
2020a) which is not captured by our model.
The good correlation (R = 0.80; second column) between the model results and the
plastic concentrations in the global ocean from neuston net measurements shows
that the model is able to capture the magnitude of plastic concentrations globally.
Again a lower correlation is observed for larger plastic items (R=0.41 for the>0.2 m
category), which can be explained due to their relative sparsity (the measurements
span fewer orders of magnitude). Furthermore additional windage effects might
play a role for the largest plastic items that are not completely submerged, which is
not captured by our model.
The concentrations in the deep global ocean, where only few neuston net measure-
ments are available, are lower in our model than in the observations. Measurement
detection limits are a likely cause for the difference. A large fraction of the measure-
ments that we use here (Egger et al., 2020b; Zhao et al., 2022) did not capture any
plastic fragments during the trawl (>60%, depending on the measured size class).
The study providing most deep ocean measurements (Egger et al., 2020b) already
noted that the absence of detectable plastic fragments induces large uncertainties in
measured plastic concentrations.
Finally, the relative number and mass for different particle sizes on beaches is cap-
tured well by the model (R=0.75 and R=0.87 for all particle sizes combined; fourth
column), where we use measurements for three size classes: >0.5 m (OSPAR, 2010),
>25 mm (Burgess et al., 2021), and 2–25 mm (Ryan et al., 2018). When looking at



D

146 | Appendix D – Supporting material Chapter 5

10 5 10 3 10 1

Modelled [n m 3]

10 5

10 4

10 3

10 2

10 1

100

M
ea

su
re

d 
[n

 m
3 ]

a)
Pacific Ocean, surface

0.5-1.5 mm
1.5-5.0 mm
5.0-15.0 mm
15.0-50.0 mm

10 9 10 6 10 3 100

Modelled [n m 3]

10 9

10 7

10 5

10 3

10 1

101

M
ea

su
re

d 
[n

 m
3 ]

b)
Global Ocean, surface

>0.2 mm
>0.2 m

10 8 10 6 10 4 10 2

Modelled [n m 3]

10 8

10 6

10 4

10 2

M
ea

su
re

d 
[n

 m
3 ]

c)
Deep Global Ocean

Depth: 5-50 m
Depth: 50-500 m
Depth: 500-inf m

10 4 10 2 100 102

Modelled [n m 1]

10 4

10 3

10 2

10 1

100

101

102

103

M
ea

su
re

d 
[n

 m
1 ]

d)
Global beaches

2-25 mm
>25 mm
>0.5 m

10 7 10 5 10 3

Modelled [g m 3]

10 7

10 6

10 5

10 4

10 3

10 2

M
ea

su
re

d 
[g

 m
3 ]

e)

10 8 10 6 10 4 10 2

Modelled [g m 3]

10 8

10 6

10 4

10 2

M
ea

su
re

d 
[g

 m
3 ]

f)

10 12 10 10 10 8 10 6 10 4

Modelled [g m 3]

10 12

10 10

10 8

10 6

10 4

M
ea

su
re

d 
[g

 m
3 ]

g)

10 3 10 1 101 103

Modelled [g m 1]

10 3

10 1

101

103

M
ea

su
re

d 
[g

 m
1 ]

h)

Figure D.2: Scatter plots for modelled versus measured plastic concentrations. First column: mea-
surements for separate size classes at the ocean surface (Egger et al., 2020a,b). Second column: mea-
surements for small plastics (>0.2 mm) and large plastics (>0.2 m) at the ocean surface. Third column:
measurements below 5 m depth. Fourth column: measurements from beaches. The upper row presents
number concentrations (n m−3 in the ocean and n m−1 on beaches), the lower row presents mass con-
centrations (g m−3 in the ocean and g m−1 on beaches). The 1:1 line is shown using the dashed black
line, the expected amount of measurement error (±2σ) is shown using the dashed red lines. The Pearson
R correlation coefficients between the modelled and measured concentrations is shown in Table D.2.

the separate size classes we find no correlation for the 2–25 mm category. This can
be explained due to the fact that these measurements were taken only around one
location (South Africa), whereas our model is only able to differentiate over larger
spatial (global) scales. The same holds for the >0.5 m category, which were ob-
tained over a relatively limited area. Additionally, we discussed in the main text that
number concentrations are highly dependent on the lower size limit that is used.
This likely adds to the fact that there is no correlation in the >0.5 m category data,
which are largely obtained using volunteers (OSPAR, 2010). Nonetheless, these data
are valuable to constrain the order of magnitude of large plastic items on beaches.
We do see positive correlations for the >25 mm category: R = 0.35 and R = 0.56
for number and mass concentrations, respectively. This further underlines our rec-
ommendation in the main text of measuring the mass of plastic items on beaches
when performing visual observational studies.

D.2 Supplementary results

D.2.1 Estimated amount of fishing related plastics
In Figure D.3 we present the percentage of large fishing related plastic items (>2.5
cm) in terms of numbers as predicted by the calibrated model. The calculated per-
centage of fishing related items is relatively high in sparsely populated areas near
the polar regions, where little plastic is expected to enter the ocean from coastlines
or rivers. Furthermore we expect relatively high quantities of fishing related items in
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Table D.2: Pearson R correlation coefficients between the modelled and observed plastic concentrations

Domain Details Pearson R

Pacific Ocean, surface

n m−3 , all sizes 0.85
n m−3 , 0.5–1.5 mm 0.64
n m−3 , 1.5–5.0 mm 0.70
n m−3 , 5.0–15.0 mm 0.62
n m−3 , 0.5–50.0 mm 0.47
g m−3 , all sizes 0.59
g m−3 , 0.5–1.5 mm 0.64
g m−3 , 1.5–5.0 mm 0.71
g m−3 , 5.0–15.0 mm 0.62
g m−3 , 15.0–50.0 mm 0.50

Global Ocean, surface

n m−3 , all sizes 0.80
n m−3 ,>0.2 mm 0.80
n m−3 ,>0.2 m 0.41
g m−3 ,>0.2 mm 0.62

Deep Global Ocean

n m−3 , all depths 0.47
n m−3 , 5–50 m depth 0.88
n m−3 , 50–500 m depth 0.19
g m−3 , all depths 0.33
g m−3 , 5–50 m depth 0.53
g m−3 , 50–500 m depth 0.37

Global beaches

n m−1 , all sizes 0.75
n m−1 , 2–25 mm 0.09
n m−1 ,>25 mm 0.35
n m−1 ,>0.5 m -0.06
g m−1 , all sizes 0.87
g m−1 , 2–25 mm 0.07
g m−1 ,>25 mm 0.56

the South Pacific. The high amount of large fishing related items in the open ocean
is in agreement with overview studies indicating that the majority of plastic litter in
the open ocean originates from the ocean (Morales-Caselles et al., 2021).
In Figure D.4 we present the same percentage for small plastics (<2.5 cm) only. We
see an increase in the non-fishing related plastic percentage for smaller particle sizes.
This can be explained due to the input locations of the different sources. Plastic
input from rivers and coastlines tends to spend more time around coastlines and is
therefore expected to undergo more fragmentation compared to plastics introduced
from fishing activity further away from the coastlines.
From the observational data on beaches (OSPAR, 2010; Burgess et al., 2021) we
calculate the fraction of fishing related items in terms of numbers. We compare
these fractions to the model output in Figure D.5. Not all items can be accurately
categorized as fishing related items (e.g. fragments). The observed fractions of fish-
ing related items are therefore treated as minimum values: points in the lower right
half of the plot are plausible given the observational data. Most model results fall
within the plausible value ranges based on the observational data. Some interesting
differences can be observed in the fishing related item percentages from European
data (OSPAR, 2010) versus data mainly coming from the United States (Burgess
et al., 2021). Higher fishing related item percentages are modelled and observed
in Europe, which matches the expectation of high fishing related item input in this
region, see Figure 5.1 in the main text.

D.2.2 Environmental removal
In the main text we showed high persistence of plastic waste in the marine envi-
ronment: given a sudden stop of new plastic items introduced into the marine en-
vironment, we expect that only 9% of the plastic mass is lost within two years. The
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Figure D.3: Estimated global percentage of large fishing related plastics (> 2.5 cm, in terms of number
of items)

Figure D.4: Estimated global percentage of small fishing related plastics (<2.5 cm, in terms of number
of items)
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Figure D.5: Modelled versus measured percentage of fishing related items on beaches. Measurement
data come from OSPAR (OSPAR, 2010) and MDMAP (Burgess et al., 2021) beach cleanup data. Since not
all items can be accurately categorized as fishing related items (e.g. fragments), the observed percentage
of fishing related items is used as a lower bound. Shaded in red are the outliers, where more fishing
related items are measured than predicted by the model. Since the variability of number concentrations
is defined on a log scale, this area deviates from the 1:1 line for higher concentrations.
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Figure D.6: Estimated sedimentation fluxes and coastal removal of marine plastics

reason for this slow removal can be seen in Figure D.6. Most of the sedimentation
and coastal removal of plastic mass is expected near coastlines. We know, however,
that a lot of plastic mass eventually ends up in the subtropical gyres (Wichmann
et al., 2019b). Removal in these areas is relatively low. We therefore see a substan-
tial decrease in the total marine mass during the first couple of years after the input
stop in Figure 5.5 of the main text. As the plastic pollution reaches waters further
offshore the sedimentation and coastal removal decreases substantially.

D.2.3 Prior and posterior parameter estimates
In Chapter 5 we bring together different models and data sources that have been
developed in the past. In total 16 parameters are used to describe the sources,
transport, and sinks of marine plastics. We summarize the different scenarios that
are modelled and their corresponding parameters in Table D.3, and provide refer-
ences for further detailed explanations.
The prior probability distribution functions for the model parameters, and the (up-
dated) posterior estimates are presented in Figure D.7. Similar to the model study
for the Mediterranean Sea (see Chapter 4), we calculate a lower input from rivers
compared to previous studies (Lebreton et al., 2017; Meijer et al., 2021). We esti-
mate roughly 3 times the input from coastlines compared to the input from rivers,
which is close to the estimated 2 times for the Mediterranean Sea (see Chapter 4).
However, much higher fishing related quantities are estimated (about 3 times as
much as the riverine input, versus 0.2 times for the Mediterranean Sea). These dif-
ferences can be due to the specific region of interest, and can be caused by better
representation of bigger item sizes in this study. Figure D.3 already showed that a lot
of the bigger plastic items are expected to originate from fishing activity, but also that
the fraction of fishing related items can vary substantially depending on the region.
The beaching time scale τbeach is estimated to be 74 days. This matches well with
the Mediterranean Sea study, where it was estimated to be around 25 days for plas-
tic particles, and 75 days for drifter buoys. A higher value for plastic particles (74
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Table D.3: Summary table of the model parameters

Scenario Parameters Section
descrip-
tion

Limitations

Sources Sriv, Spop,
Sfis,
µrelease,log10,
GRin

5.2.3,
D.3.2

Seasonal variability is only available for the
fishing activity. A single exponential growth
rate of plastic input is estimated, which
might vary over time under influence of mit-
igation strategies

Beaching τbeach,
lbeach,min,
premoval

5.2.3,
D.3.1

Beaching is modelled using a global time
scale, whereas this might vary spatially de-
pending on various factors, e.g. coastline
orientation/geometry, tides (Kaandorp et
al., 2022)

Sinking fof , fnb, fpf 5.2.3 Biofouling is assumed to be the main driver
of positively buoyant particles becoming
negatively buoyant, biofilm growth is mod-
elled assuming spherical particles using al-
gal concentration and primary productivity
fields (Fischer et al., 2022)

Mixing aLeff , aLeff 5.2.2,
D.3.4

Vertical mixing is modelled using a random
walk model (Onink et al., 2022a) with base-
line rise velocities estimated using spherical
particles

Fragment. λf , pf , dN 5.2.3,
D.3.3

Fragmentation parameters are calibrated
for marine plastics in general, while they
might vary for different polymers (Kaan-
dorp et al., 2021)
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Figure D.7: Given prior probability density functions (blue), and the updated posterior probability den-
sity functions (red) for the model parameters.

versus 25 days) can be expected here, since the grid size used in the global model is
much coarser (approximately 60 kilometers versus 7 kilometers). As touched upon
in the main text, biofouling is expected to have a substantial influence on the particle
transport when looking at the calculated fouling fractions. Fragmentation is calcu-
lated to happen more quickly than previously expected (Kaandorp et al., 2021). This
can be due to the fact that environmental plastics are residing in the environment
much longer than what experimental weathering experiments allow for (Song et al.,
2017), on which these previous fragmentation rates were based. Longer residence
times in the environment can lead to more oxidation and embrittlement, possibly
enhancing the fragmentation rate. The estimated object dimension dN of around 2
suggests that most environmental plastics are roughly 2-dimensional: items with a
negligible thickness compared to their length and width. Mixing parameters (aLeff ,
bLeff , see Section D.3.4) are close to their prior values, indicating that the base-
line estimates for the amount of mixing that positively buoyant particles experience
match the observational data. Finally, the estimated exponential growth rate of 6%
per year is close to the estimated global plastic waste production of 4% per year in
(Geyer et al., 2017), indicating that the amount of plastic waste entering the global
ocean is likely proportional to the total global plastic waste production.

D.2.4 Plastic input growth rate
We estimate that the amount of plastic waste entering the ocean has increased by
about 4% per year. Establishing temporal trends in the amount of plastic pollution
in the marine environment is difficult, due to the high variance in the observations.
Previous studies (Galgani et al., 2021) have found no conclusive temporal trends
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Figure D.8: Model deviation per year for the baseline model where the plastic input increases by 4% per
year (in blue), and a model run where the amount of plastic entering the ocean does not increase over
time (in orange)

regarding the amount of litter in the marine environment.
In Figure D.8 we plot the deviation between the modelled and observed plastic con-
centrations per year in blue. We take neuston net measurements in terms of number
of particles, for which the the largest and longest record is available. The mean
model deviation is relatively steady over time. There is a high variance in the model
deviation (which could also be seen in Figure D.2). This is expected, as studies
taking replicate plastic measurements showed coefficients of variation up to 80%
(de Haan et al., 2019). In orange we plot the model deviation without the 4% in-
crease in plastic input per year. As can be seen, the results are relatively similar for
the most recent years. Without the increase in plastic input over time, the mean
model deviation increases for earlier years, however. This suggests that the amount
of plastic entering the marine environment has increased over the past decades as
predicted by the model.

D.3 Supplementary methodological information

D.3.1 Transition Matrix model schematic
A schematic representation of the transition matrix model is shown in Figure D.9,
using for simplicity an ocean model with 8 grid cells in total. Of these grid cells,
2 cells represent the coastlines, and 6 cells represent different depth layers in the
ocean.
First, we use OceanParcels (Delandmeter & van Sebille, 2019) to resolve transport of
virtual plastic particles in the ocean as explained in the main text. This transport is
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Figure D.9: Schematic illustration of the transition matrix model setup, with O and C denoting ocean
and coastline (beach) grid cells respectively; PC,O and PO,C representing the transition probabilities
from the coastline to the ocean and vice versa; PO,O and PC,C representing the transition probabilities
that particles remain within the ocean or coastline.

then captured using a transition matrix (with size 6×6 in the case of 6 ocean cells).
The transition matrix defines the probability that particles move from one grid cell
of the ocean to another grid cell. The columns of the transition matrix sum up to 1
since they define probabilities. In the example, the two elements of the coastline are
represented by 2 cells as well, resulting in a 8×8 transport matrix. Elements in the
transition matrix around the diagonal (indicated by the different shadings) represent
transport within the same depth layer. Transport from the surface ocean towards
the coast is captured by the lower left elements in the matrix (beaching), transport
from the coast to the ocean in the upper right (resuspension). These elements are
directly calculated from the given beaching and resuspension timescales, which are
parameters in the model. The columns are renormalized to 1 afterwards to have
a total transport probability of 1. Each time step, new plastics are introduced to
the system, determined by the three source parameters (Spop., Sfis., Sriv.). This
transition matrix is calculated for six different particle sizes, and different months
as explained in the main text.
To further clarify the beaching and resuspension model, Figure D.10 is shown. Plas-
tic particles in the coastal grid cell have a probability of beaching, determined by
the beaching time scale τbeach. The fraction of tracer beaching (pbeach) is calculated
using pbeach = 1− e

− 30
τbeach given a transition matrix time step of 30 days. The same

is done for the resuspension of tracer back into the ocean, given the resuspension
time scale τresus.. The tracer concentration on the beach is calculated by dividing
the amount of tracer by the length of the coastline within the grid cell, shaded in
red. This length is furthermore corrected for the fractal structure of the coastline
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Figure D.10: Schematic illustration of the beaching parameterisation.

(Isobe & Iwasaki, 2022) as explained in the main text. Finally, plastic particles
move from one size class to smaller size classes under the influence of fragmenta-
tion (Kaandorp et al., 2021). Each size class has a different transition matrix system
as explained above.

D.3.2 Input Mass Size Distribution
The input size distribution is parameterised using a Gaussian distribution on the
log10 of the particle size. Data from municipal solid waste sorting facilities (Jansen
et al., 2015) are used to estimate typical particle sizes of plastic waste. Further-
more data from river studies (van Emmerik et al., 2019; Vriend et al., 2020) are
used to estimate which particle sizes contribute to most of the plastic mass enter-
ing the ocean from rivers. These studies found dominant object sizes of roughly
0.3 meters (Vriend et al., 2020) and 5–50 centimeters (van Emmerik et al., 2019).
The available data are plotted in Figure D.11. Data from municipal solid waste
sorting facilities might be biased: plastic waste is deformed as it is transported in
larger (compressed) bales. We set the upper bound for the mean of the input size
distribution to a conservative 0.5 meters, capturing both the size distribution from
the municipal solid waste sorting facilities, and the upper bound for the dominant
particle size from rivers (van Emmerik et al., 2019).

D.3.3 Particle size mass ratio
In order to couple measurements in terms of number of particles and in terms of
mass, we need a relation between particle size and mass. Data on individual plastic
particle sizes and masses were obtained from measurements in the North Atlantic
(Lenz, 2020), see the blue dots in Figure D.12. In order to extrapolate these data,
a powerlaw relation is assumed for the particle mass, given that it depends on the
effective spatial dimension dN of the plastic objects: m ∼ l2 for flat objects (the dash-
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Figure D.11: Estimated input mass size distributions given data from waste treatment plants (Jansen
et al., 2015) and visual observations of large plastic items (de Vries et al., 2021).

dotted orange line), m ∼ l3 for cubic objects (the dashed orange line). In reality
marine plastics will be a combination of differently shaped objects, which means
that this spatial dimension is likely (Kaandorp et al., 2021) to have an intermediate
value around 2–3. The value of dN is introduced as a parameter in our model,
where we calibrate it such that the predicted mass and number concentrations are
consistent with the available measurement data.

D.3.4 Particle rise velocity estimates
Particle rise velocity estimates were obtained from experimental data (Poulain et
al., 2019), see Figure D.13 (left panel). We use the rise velocity formula for spheres
from Dietrich (1982) to interpolate this data, where the particle density is calibrated
to optimally fit the measurements (ρ = 1010 kg m−3). The estimated rise velocities
were used to resolve transport at different particle sizes. We denote the particle size
corresponding to the best fit in the left panel as the effective particle size L∗.
In reality, particles have different shapes and densities, and thus different rise veloc-
ities. We assume that for a given ‘true’ particle size L, rise velocities vary, due to the
different shapes and densities. We estimate this relation by looking at the difference
between the measured particle size (black markers in Figure D.13a) with the particle
size corresponding to the best fit (blue line in Figure D.13a). The result is shown in
Figure D.13b. We approximate this relation by a straight line in log-log space, where
the slope (aLeff ) and intercept (bLeff ) are uncertain, and introduced as parameters
to the model to control the vertical mixing behavior. Furthermore, the variance
of the fit is estimated, such that each particle size L in the model corresponds to
an assembly of particles with different effective particle sizes L∗ as resolved by the
Lagrangian simulations.
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Figure D.13: Particle rise velocity calculations: particle size versus measured rise velocities from Poulain
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