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Abstract
Connectives such as Tonk have posed a significant challenge to the inferentialist. It
has been recently argued (Button 2016; Button and Walsh 2018) that the classical
semanticist faces an analogous problem due to the definability of “nasty connectives”
under non-standard interpretations of the classical propositional vocabulary. In this
paper, we defend the classical semanticist from this alleged problem.
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1 Introduction

Inferentialism about logical vocabulary is the view that the meaning of a logical con-
nective is conferred on it by its rules of use (or some privileged subset thereof). One
well-known problem for the view concerns connectives like tonk, which are defined in
terms of a set of rules fromwhich unwanted consequences can be derived.1 In the case
of tonk, for instance, it allows the derivation of any conclusion from any non-empty
set of premises, and should therefore be rejected by the inferentialist as a meaningful
connective, despite being well-defined in terms of a pair of intelim rules. The inferen-
tialist is therefore left with the difficult task of separating in some principled manner

1 The intelim rules for tonk are:
A

tonk-I
A tonk B

A tonk B
tonk-E

B

See Prior (1960).

B Michael De
mikejde@gmail.com

Hitoshi Omori
hitoshiomori@gmail.com

1 Department of Philosophy, Utrecht University, Janskerkhof 13 room 0.02, 3512 BL Utrecht,
The Netherlands

2 Department of Philosophy I, Ruhr University Bochum, GA 3/129, Universitätsstrasse 150,
44780 Bochum, Germany

123



149 Page 2 of 14 Synthese (2022) 200 :149

those sets of rules that define genuinely meaningful bits of language from those that
do not.2

The problem of tonk is particular to inferentialism. It is not a problem that arises
for one who believes that (model-theoretic) truth conditions confer meanings on con-
nectives. Call such a person a semanticist. However, Tim Button (2016) has recently
argued that the semanticist faces an analogous tonk-like challenge, which runs as
follows. The language of classical propositional logic has an intended two-valued
interpretation expressed by the familiar truth tables. It also has unintended interpre-
tations, such as that given by any matrix defined in terms of a boolean algebra with
more than two elements, where the designated set of values forms a filter (the familiar
filter consisting of just the top element, truth). Such interpretations are unintended
because there are more than the standard two truth values, truth and falsity, and the
truth functions take more than these two values as input and may return non-standard
truth values as output. An example of such a matrix is given by the four-valued lattice
four whose Hasse diagram is depicted thus:

1

a b

0

The top element 1 is the only designated—i.e. truth-like—value, negation is boolean
complementation, and conjunction is meet. Relative to this interpretation one can
define a connective, called Knot by Button, given by the following truth table:

A �A

1 1
a b
b a
0 0

1.1 Digression

It is worth pointing out that Knot, taken as a truth function, occurs elsewhere in the
literature. For instance, it is equivalent to the mixed double negation ∼¬, where ∼ is
a de Morgan negation and ¬ is classical negation:

2 For a biased overview of some prominent such attempts, see Prior (2010).
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A ∼A ¬A

1 0 0
a a b
b b a
0 1 1

De Morgan negation is familiar from non-classical logics, such as Belnap and Dunn’s
four-valued logic FDE (also known as FDE), and is itself definable from Knot and
classical negation by �¬. (Note, however, that the set of designated values of FDE is
{1, b} rather than {1}.) The language with Knot is thus truth-functionally equivalent
to the language of BD+ of De and Omori (2015), which is the classical negation
expansion of FDE. Knot is more commonly known as “conflation” at least since
Fitting (1994) and is the natural counterpart of negation in the information ordering
variant of four. End of digression.

With the introductionofKnot into the language,we lose somedesirable properties of
logical consequence, such as substitutivity (of equivalents), conditional-introduction,
disjunction-elimination, and negation-introduction.3 If these are regarded by the
semanticist to be properties essential to logical consequence, then despite the fact
that Knot is definable in a semantics that characterizes classical logic, the semanticist
will have to somehow rule out Knot in much the same way the inferentialist has to
rule out tonk. And there lies the alleged analogy between Knot and tonk.

Our aim in this paper is to discuss some potential semanticist responses to the prob-
lem. The first kind involves meaning-theoretic constraints that pin down the intended
two-valued interpretation and thereby rule out Knot. The second kind involves accept-
ing in some senseKnot as a coherent connective and attempting to fit it into a classical
semantic framework.To this endweconsiderKnot as a functionalmodality andprovide
a two-valued world semantics for the operator. This renders Knot more analogous to
something like an ‘actually’ operator than to a logical connective such as conjunction.
We conclude with some final remarks.4

2 Constraints onmeaning as responses to the problem

Weshouldmake clear that the following argument poses no problem for the semanticist
(or the usual inferentialist, for that matter).

[The problem of many-valued truth-tables] arises as follows. As we saw […]
there are systems of truth-tableswithmore than two truth-values, which nonethe-
less characterize classical sentential logic. Call these many-valued truth-tables
for classical sentential logic. Consequently, the classical inference rules for the
connectives¬,∧,∨ and→ fail to pin down the two-valued truth-tables uniquely
(up to isomorphism). From this, one might conclude that the connectives’ infer-

3 The reason substitutivity fails, for instance, is that logical equivalence no longer guarantees sameness of
truth-value.
4 Some alternative responses to the problem can be found inRamírez-Cámara andEstrada-González (2021),
Teijeiro (2020). However, unlike ours, these responses are not strictly classical.
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ence rules fail to determine theirmeanings. I say ‘might’, because it is not entirely
obvious that the availability of many-valued truth-tables amounts to a problem-
atic indeterminacy of meaning. But if it does, then inferentialism fails. (Button,
2016, p. 11)

If this line of reasoning poses a problem, it is one for a special—and likely rare—
version of inferentialism or semanticism, viz. one according to which the syntactic
rules governing the usual connectives need to uniquely secure the intended interpreta-
tion of the connectives. But this is a view that inferentialists and semanticists alike can
and largely do reject. So the argument against the semanticist must be one concerning
the relation between truth conditions and semantics, not one concerning the relation
between rules (syntax) and semantics.

The argument above can be seen as a specific case of a more general categoricity
problem, akin to the problem of pinning down the standard model of arithmetic in a
first-order language. Button and Walsh say, for example:

Moderate semanticists may yet insist that they can provide the logical expres-
sions with exactly as precise a meaning as they should have. In particular, they
may insist that they can lay down the meaning of the logical vocabulary up to
isomorphism […]We first mentioned this option in §2.5, we outlined a problem
facing this moderate objects-modelist in Chapter 7: no theory with a finitary
proof system can pin down the natural numbers up to isomorphism […]] The
moderate semanticist faces a similar problem: by Theorem 13.6, our inference
rules cannot pin down the semantic structure up to isomorphism. (Button &
Walsh, 2018, p. 305)

One may ask why this is an objection to semanticism rather than inferentialism, since
the semanticist does not claim that the inference rules for the connectives uniquely
secure (up to isomorphism) the intended two-valued interpretation of the connectives.5

The answer is that being unable to secure the intended interpretation is a problem for a
certain kind of semanticist, viz. what Button andWalsh call themoderate semanticist.
Themoderate semanticist maintainsmoderate objects-platonism, which is roughly the
view that:

Moderate objects-platonism: Mathematical entities are genuine objects we can
talk about or refer to, not by way of a faculty of mathematical intuition, but by
way of description.

Since mathematical entities are abstract, Button and Walsh argue that moderation
entails referential indeterminacy concerningmathematical entities. The argument goes
roughly as follows. The only way we can refer to mathematical entities (says the mod-
erate objects-platonist), such as the natural numbers, is via a theory about them such
as first-order Peano arithmetic (PA for short). But given well-known properties of
first-order logic, PA has models of arbitrarily large infinite cardinality. It is there-
fore impossible, via a first-order theory such as PA, to pick out the intended model

5 That certain proof systems for classical (propositional) logic are not capable of uniquely pinning down
the two-valued semantics is an observation originally made by Carnap in the fourties and it is a topic revived
by Timothy Smiley (1996) under the label the categoricity problem.
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(up to isomorphism). And even though there is a categorical theory of the naturals,
viz. second-order Peano arithmetic interpreted by the full semantics for its second-
order language, that theory also has models of arbitrarily large infinite cardinality, e.g.
Henkin models. Since nothing about a formal language fixes its interpretation for the
moderate objects-platonist, they are thereby lead to referential indeterminacy.

The moderate semanticist has a similar problem. Truth-values and models are
abstract entities, so the only way we can refer to them (according to the moderate
semanticist) is by way of theory. And even though the theory of two-element boolean
algebras is categorical with respect to its usual semantics, it has models of various
sizes.6 There is, therefore, no way for the moderate semanticist to secure the intended
two-valued interpretation of the language, and therefore no way to rule out the defin-
ability of nasty connectives.

We are mostly in agreement with Button and Walsh concerning the problem of
referential indeterminacy faced by the moderate semanticist.7 However, that problem
rests crucially on an acceptance of moderation which is not part and parcel of seman-
ticism. Moreover, the semanticist that rejects moderation still needs to address the
problem of many-valued truth-tables, i.e. they still need to rule out unintended models
as playing a meaning-constitutive role. This is why we are focusing on the problem as
we formulate it below, namely, as a problem for the semanticist who accepts no more
than the (possibly restricted) claim that truth conditions are meaning-conferring. Let
us therefore set up the problem as we understand it.

Button tells us that “Knot clearly implements a well-defined semantic function [so]
semanticists need, at least, to tell us which kinds of semantic constraints succeed in
‘suitably’ assigning meanings” (Button, 2016, p. 11). One might wonder why any
such story needs to be told. After all, the intended two-valued interpretation of the
(propositional) logical vocabulary can be expressed in natural language, and we have
no reason to think we are unable to refer to the intended interpretation in natural
language. All other interpretations of the logical language may be claimed to be mere
algebraic constructs that may (or may not) have practical utility but which otherwise
play no meaning-theoretic role. Such non-standard interpretations are what Copeland
(Copeland, 1983) calls pure rather than applied semantics. The classicist can then
agree with Button that “we should refuse to add Knot to our language” (Button, 2016,
p. 10, our emphasis), but not because there is a potentially meaningful but problematic
connective that needs to be ruled out by general meaning-theoretic constraints, but
because Knot is simply undefinable relative to our language whose meanings are
specified informally in natural language and hence not subject to categoricity worries.
Call this the natural language response to the problem.

Is this response plausible? There is good reason to think not. For, if the inferentialist
is burdened with the task of delineating the rules that confer meaning on the connec-
tives from those that do not, why isn’t the semanticist burdened with the analogous
task of delineating the truth conditions that confer meaning from those that do not?

6 See Button and Walsh (2018, Sect. 13) for details.
7 However, we do have our reservations about an argument that depends on directly referring to abstract
entities, such as boolean-valued models, in order to radically undermine direct reference to abstract entities.
But aside from thatworry, wewonderwhether themoderate semanticist could, for purely semantic purposes,
identify truth values with concretia since they need only two of them.
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After all, the inferentialist and semanticist maintain analogous principles concerning
meaning—one holds that inference rules are meaning-conferring and the other that
truth conditions are. If the semanticist is free to stipulate a highly constrained set
of truth conditions that confer meaning on the connectives (i.e. those that yield the
intended semantics), the inferentialist should be entitled to the same concerning infer-
ence rules. The problem is that the each needs to rule out undesirable connectives on
general, well-motivated, meaning-theoretic grounds. The inferentialist holds that:

IMP: (introduction or elimination) rules are meaning-conferring.

Since, taken unrestrictedly, IMP leads to trouble, the inferentialist must provide gen-
eral, meaning-theoretic constraints that rule out connectives such as tonk. The same
should be true of the semanticist who endorses an analogous meaning-theoretic prin-
ciple:

SMP: truth conditions are meaning-conferring.

Like IMP, unrestricted SMP arguably leads to trouble. Thus, the semanticist must
also come up with general, meaning-theoretic constraints that rule out undesirable
connectives such Knot. For the remainder of the paper it is this problem that we shall
refer to as the problem of many-valued truth-tables, as Button calls it:

The problem of many-valued truth-tables: In order to rule out nasty logical
connectives such as Knot, the semanticist must provide general, well-motivated,
meaning-theoretic constraints that entail the indefinability of such logical connec-
tives.

Oneway ofmeeting this problem is by providing constraints that pin down the intended
two-valued semantics since, relative to that semantics, no nasty connective is definable.

We should briefly say something about what truth conditions are. Just as the infer-
entialist is entitled to assume a background proof-theoretic framework, such as natural
deduction, the semanticist is entitled to assume a background semantic framework,
such as one in which an interpretation consists of assigning sentences one of possibly
more than two truth-values relative to a set of recursive truth conditions. The truth
conditions for a connective⊗ amounts to providing a means for determining the value
of any formula containing ⊗ as main connective.

What constraint can the semanticist endorse that would rule out the definability of
nasty connectives? The following is discussed in Button (2016), Button and Walsh
(2018).

CON-SUB: A semantics is meaning-conferring only if every expansion of the lan-
guage validates the Substitution of Equivalents (SUB):

� � A B � C C � B
SUB

� � A′

in which A′ and A differ only in that one contains an occurrence of B where the
other contains an occurrence of C .8

8 To be clear, an expansion of a language L relative to a semantics S is obtained by adding to L a truth-
function definable over the set of truth-values of S.
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For instance, it is easy to see that the intended two-valued semantics satisfies CON-
SUB because the base language is, relative to the semantics, truth-functionally
complete—i.e. no expansion of the language involves a connective that is not already
definable from the base. We will come back to functional completeness later.

The reason CON-SUB solves the problem of many-valued truth-tables is due to the
following equivalence:

• A semantics satisfies CON-SUB iff it is the intended two-valued semantics.

Concerning the constraint, Button says:

[CON-SUB] seems in the spirit of inferentialism: it mentions only inferential
concerns, and inferentialists can insist upon Substitutivity as a constraint on
inference (perhaps as a structural rule) […] a single inferentialist idea explains
bothwhywe should refuse to addKnot to our language and dissolves the problem
of many-valued truth-tables. Semanticists, however, still owe us a discussion of
Knot. (Button, 2016, p. 12)

Note that SUBcan be formulated in terms of semantic entailment rather than deducibil-
ity, so it is not clear why CON-SUB would be available only to the inferentialist.
Moreover, the inferentialist does not typically take CON-SUB as a primitive meaning-
theoretic constraint that somehow guides their choice of meaning-conferring (e.g.
introduction-elimination) rules. Rather, SUB is a consequence of setting up one’s
meaning-conferring rules in the right way. (A typical meaning-theoretic constraint
for the inferentialist would be something such as harmony.) Regardless of whether
CON-SUB is available only to the inferentialist, let us look to what we think are in
any case more plausible meaning-theoretic constraints for the semanticist.

No classical semanticist would deny the following concerning the relation between
truth and falsity:

CON-BIV: Asemantics ismeaning-conferring only if, relative to any interpretation,
(i) each sentence is assigned either truth or falsity (no-gaps) and (ii) no sentence
is assigned both (no-gluts).

Thefirst part ofCON-BIV is sometimes calledbivalence and the second contravalence.
What does this constraint amount to? It can be seen as a generalized version of the
constraint that negation be a contradictory-forming operator, i.e. an operator that is
both contrary- and subcontrary-forming. Two propositions are contraries if they cannot
be true together, and they are subcontraries if they cannot be false together. (In a more
generalized setting, it is natural to identify truth with designationhood and falsity
with non-designationhood.) Since the classicist takes negation to be a contradictory-
forming operator, they endorse the following:

Neg-contrariety: For every sentence, it and its negation cannot both be true;
Neg-subcontrariety: For every sentence, it and its negation cannot both be false.

Given the usual truth conditions for conjunction and negation, we arrive at the follow-
ing general constraint concerning truth conditions:
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CON-TC: Asemantics ismeaning-conferring only if the connectives are given their
usual truth conditions; e.g. a disjunction is true iff each disjunct is true, a negation
is true iff its negand is false, etc.9

Bivalence, i.e. CON-BIV, and the usual truth conditions, i.e. CON-TC, would seem
to imply that there are two truth-values that are exclusive and exhaustive, i.e. that
there are precisely two-values. However, assuming the two conditions does not beg
the question since they alone cannot secure the intended two-valued semantics. For if
we equate generally truth with designationhood and falsity with undesignationhood,
then there are many-valued semantics satisfying CON-BIV and CON-TC together.
For instance, take the four-valued diamond with the top and one of the intermediate
values as designated (as with FDE); relative to such a semantics both CON-BIV
and CON-TC are satisfied and yet Knot is definable. Thus, the semanticist should be
entitled to assume CON-BIV and CON-TC as a general constraints on the sorts of
truth conditions that count as meaning-conferring.

This allows us to restrict the sort of semantics deemed legitimate from the semanti-
cist’s perspective. FollowingButton, call a semantic pair 〈A, D〉 (for a given language)
a pair consisting of an algebra for the language (hence each connective is an operation
inA), plus a set of designated values fromA. Call a semantic pair proto-classical just
in case classical consequence is coextensive with the consequence relation valid over
the semantic pair in the language with logical vocabulary from {¬,∧,∨,→}. Then
according to Theorem 3 of Button (2016), any proto-classical semantic pair satisfying
no-gaps, i.e. for each a of A, either a ∈ D and ¬a ∈ D, implies CON-TC and CON-
BIV. However, although omitted from Button (2016), the converse is also true, i.e.
CON-TC and CON-BIV imply that any semantics we discuss must be proto-classical
and satisfy no-gaps.

Using the four-valued truth-tables as an example (with only the top value as
designated), notice that disjunction (i.e. the algebraic operation join) takes the two
intermediate values—neither of which are truth—to truth. Thus, on the four-valued
semantics, a disjunction can be true when neither disjunct is, and so disjunction fails
have its usual truth conditions in the four-valued setting. So CON-TC rules out cer-
tain seemingly legitimate semantic pairs from consideration, such as the four-valued
boolean algebra with only the top value designated. However, and to reemphasize,
assuming CON-TC does not beg the question by implying by itself the intended two-
valued semantics. For consider the four-valued boolean algebra with both the top and
one intermediate value as designated. This is the same as the semantics for FDE with
the important difference that deMorgan negation is replaced by classical negation (i.e.
boolean complementation). The resulting semantics—relative to which nasty connec-
tives are definable—gives rise to classical logic while ensuring that all the connectives,
including disjunction, are given their rightful truth conditions. The semanticist will
therefore need more than CON-TC to secure the intended two-valued semantics.10

This leads us to what will become the final piece of the semanticist’s solution to
the problem of many-valued truth-tables. Consider the following constraint:

9 When truth is understood as designationhood and falsity as undesignationhood, the usual truth conditions
are called the truth principles in (Button & Walsh, 2018).
10 CON-TC’s failure to secure the intended semantics is discussed in Button and Walsh (2018, Sect. 13.4).
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CON-FUNC: A semantics is meaning-conferring only if its base vocabulary (con-
sisting e.g. of negation, conjunction, and disjunction) is functionally complete.

It is easy to see that the four-valued semantics is not functionally complete since none
of the intermediate values are definable from the classical connectives. Moreover, we
know that the intended two-valued semantics satisfies CON-FUNC since its classical
vocabulary is functionally complete. However, CON-FUNC is not sufficient by itself
to secure the intended two-valued semantics since CON-TC or proto-classicality are
needed.11 Now, CON-FUNC is equivalent to CON-SUB under the assumption that
the semantics is a boolean algebra with only the top element designated, but we do
not see any general constraint that would yield such a restriction on the range of
legitimate semantics.12 However, it is only once we combine CON-FUNC, CON-TC,
and CON-BIV that we are able to pin down the intended two-valued semantics.13

The only question that remains is whether CON-FUNC is a plausible constraint on
meaning for the classicist. We think it is since functional completeness is a proposi-
tional version of expressive adequacy, viz. the ability to express any logical notion,
i.e. propositional function, implicitly definable in one’s semantic framework. Now one
might wonder why the classical vocabulary needs to be functionally complete. Aren’t
there other propositional operators that are not definable from the classical ones, such
as possibility or belief? To be sure, there are, but CON-FUNC ought not be a require-
ment not that every semantic notion be expressible in terms of the classical ones, but
that every logical notion be so-expressible, and notions like possibility (in the non-
logical sense) and belief are non-logical. Clearly no semanticist would maintain that
every notion is definable from purely logical ones since not every notion is logical.
Moreover, the typical semanticist holds that the usual connectives such as∧ and¬ are
the only logical connectives, and the sense in which they are the only logical connec-
tives is that all other logical connectives (i.e. truth-functions) are definable from them.
This is just to say that the usual connectives form a functionally complete set. Thus,
we maintain, CONF-FUNC expresses a natural meaning-theoretic constraint for the
semanticist.14

To sum up the discussion so far, we presented the problem of many-valued truth-
tables. We then discussed a “natural language” response according to which the
semanticist can pick out the intended semantics using natural language, thereby ruling
out the definability of nasty connectives. We then explained why such a solution is not
available to the semanticist since it does not follow from general, meaning-theoretic

11 See footnote 13 for details.
12 The equivalence is easily seen since, given amany-valued semantics, none of the constants corresponding
to the intermediate values (i.e. between the top and bottom of the algebra) will be definable from the classical
vocabulary.
13 A proof of this result relies on Theorem 6 of Button (2016). For suppose a semantic pair satisfies CON-
FUNC and CON-TC. By CON-TC the semantics is protoclassical. Since functional completeness implies
that every signature expansion of the underlying algebra validates SUB, we have (b) of Theorem 6. Together
with protoclasicality, we get (a) of Theorem 6, i.e. that the semantics is (up to isomorphism) the intended
two-valued one.
14 As a referee points out, it is not clear whether such a response would extend to the problem of many-
valued truth-tables generalized to first- and higher-order languages. However, note that if a solution to the
propositional version of the problem exists, then the first-order semantics must be two-valued. This rules
out potentially problematic connectives such as ♥ discussed in Button and Walsh (2018, pp. 311–312).
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constraints and it therefore does not take seriously the parallel between the problem
of tonk for the inferentialist and the semanticist’s problem concerning nasty connec-
tives. We then went on to discuss a solution in terms of general, meaning-theoretic
constraints including CON-BIV, CON-TC, and CON-FUNC, and concluded that each
is a legitimate meaning-theoretic constraint for the semanticist. While none of them
individually secures the intended two-valued semantics, putting them all together, the
semanticist is able to provide an answer to the problem of many-valued truth-tables.

3 Amodal semantics for Knot

Even if the semanticist rejects Knot as a piece of logical vocabulary, there is still room
to accept it as a piece of non-logical, modal vocabulary. For Knot can be given amodal
semantics.15 Doing so may even be instructive, since it indicates a potential reason
for the nastiness of the connective that concerns a distinction between two types of
consequence within a modal framework, viz. local versus global consequence. We
begin with formalities.

Definition 1 A �-model for the language is a triple 〈W , •, V 〉, whereW is a non-empty
set (of states); • : W −→ W with • • w = w for all w ∈ W ; and V : W × Prop −→
{0, 1} is an assignment of truth values to state-variable pairs. Valuations V are then
extended to interpretations I to state-formula pairs by the following conditions:

• I (w, p) = V (w, p);
• I (w,¬A) = 1 iff I (w, A) = 0;
• I (w, A ∧ B) = 1 iff I (w, A) = 1 and I (w, B) = 1;
• I (w, A ∨ B) = 1 iff I (w, A) = 1 or I (w, B) = 1;
• I (w, A→B) = 1 iff I (w, A) = 0 or I (w, B) = 1;
• I (w, �A) = 1 iff I (•w, A) = 1.16

Semantic consequence is then defined globally:� |� A iff for all �-models 〈W , •, V 〉,
if for all w ∈ W , I (w, B) = 1 for all B ∈ �, then for all w ∈ W , I (w, A) = 1.

We now show that |� and the consequence relation | defined over the four-valued
semantics for Knot (given in Button (2016)) are equivalent.

Lemma 2 If � |� A then � | A.

Proof Immediate since the four-valued semantics is just a special case in which the
number of states is two for the �-models. ��
Lemma 3 If � | A then � |� A.
Proof We prove the contrapositive. Suppose that � �|� A. Then, there is a �-model
M := 〈W , •, V 〉 such that I (w, B) = 1 for all w ∈ W and I (w, A) �= 1 for some

15 Amodal semantics is mentioned in Button (2016, p. 10), but the one provided here is more general since
it does not involve a single, two-world frame.
16 The reader may notice that the semantics for Knot is similar to the semantics of negation in relevance
logic on the so-called Australian plan, i.e. in terms of the Routley star (see Routley and Routley (1972)).
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w ∈ W . Call such a witness state u, and consider the submodel Mu of M such that
Wu := {u, •u}, and •u and V u are the restrictions of • and V to Wu . Since for all
w ∈ Mu and for all B ∈ �, w | B and yet u �| A, � �|Mu A. Given that Mu

corresponds to a 4-interpretation I 4 such that � |Mu C iff � |I 4 C by setting
I 4(p) = 1 iff I u(w, p) = I u(•w, p) = 1, we have that � �|I 4 A. Whence � �| A. ��

Note that the above lemmas rest on the well-known observation that twoworlds will
suffice for the purpose of characterizing FDE in terms of the Routley star semantics
(cf. Example 8.13.12 of Humberstone (2011)).

Thus, we have now established the following.

Proposition 4 � | A iff � |� A.
Based on the above alternative semantics, we may conclude that the connective

Knot is a symmetric, functional modality, in the sense that the accessibility relation
governing Knot is symmetric and functional.17 Admittedly, we currently know of
no useful application of this modality. However, a symmetric, functional negative
modality was employed in a recent paper by Odintsov and Wansing (2020) in which
they provide an alternative semantics for the logic HYPE of Leitgeb (2019). Note
here that Odintsov and Wansing deployed the local consequence relation instead of
the global one we used above. If we also consider the local consequence relation based
on �-models, then we obtain the expansion of FDE obtained by adding the conflation
operator which is also equivalent to BD+. In terms of the four-valued semantics, this
means designating both 1 and a instead of only 1, which gives us back all of the lost
properties.18

4 Is there a legitimate problem?

The problem of many-valued truth-tables presupposes that the familiar rules, such
as conditional-introduction and substitutivity, are valid no matter what. We have two
concerns with this. The first is that, it is clear that the inferentialist regards rules
such as conditional-introduction to be valid in this way since such rules are meaning-
conferring, and it makes little sense (for the inferentialist) to say that a rule that can’t
be endorsed by their own lights confers meaning on a connective. However, it is no
commitment of the semanticist that rules such as conditional-introduction are valid no
matter what, since these rule do not play the sort of meaning-theoretic role they play
for the inferentialist. This brings us to the second concern. There are good reasons to

17 See Segerberg (1986) for a semantical analysis of functional modalities and Standefer (2018) for a
proof-theoretical analysis.
18 Since our main focus is on the semanticist reply to Knot, proof systems do not have much of a role to
play. However, the curious reader may find a few remarks about proof theory interesting. Recalling that
the expansion of classical propositional logic by Knot is (algebraically) equivalent to FDE plus boolean
negation or conflation, we may borrow some proof-theoretic considerations on a variant of FDE obtained
by taking only the top element as designated. This variant is referred to as ETL in Pietz and Rivieccio
(2013). Then, a tableau system can be given along the lines of Marcos (2011), an axiomatic proof system
along the lines of Pietz and Rivieccio (2013), and a signed sequent calculus along the lines of Wintein and
Muskens (2016).

123



149 Page 12 of 14 Synthese (2022) 200 :149

think that rules such as conditional-introduction simply are not valid no matter what,
unless you look at only a very restricted fragment of our entire language. Consider
our modal vocabulary which includes, not just two familiar notions of possibility and
necessity, but also notions like actuality that are not definable from just these two.
Let us denote ‘Actually A’ by ‘@A’. Then a popular and simple interpretation of @
(relative to a Kripke model) is that @A is true at a world just in case A is true at some
distinguished element, the actual world.19 Truth in a model is defined as truth at the
actual world, and validity is defined in terms of the preservation of truth over the class
of models.20

Relative to this semantics, if A is true at the actual world of a model, then so is @A
and conversely—that is, A and @A are logically equivalent. Yet it is also well-known
that A and @A are not intersubstitutable salva veritatae. For instance, if A is true in a
model (i.e. true at the actual world), then@A is true at everyworld in themodel, and so
its necessitation is true in the model. But clearly the necessitation of A need not be true
in the model. The failure of substitutivity here has never been considered a problem,
let alone a problem that is analogous to the problem of tonk. There are two reasons
for this. First, assuming our semantics is adequate (even if only in a range of limited
cases), it tells us why substitutivity is invalid. It does not make sense to stubbornly
defend substitutivity and to reject any semantics for ‘actually’ that invalidates the rule,
and the same goes for Knot on its modal interpretation. To do so would be to hold
an unjustified dogma in the validity of the rule no matter what the language. Second,
since ‘actually’, like Knot, conservatively extends the language, our beloved classical
rules remain valid when reasoning in the usual extensional language. They fail only
where they should.21

The moral is that there is nothing problematic about breaking rules by expanding
the language. On the contrary, Button says:

I think that we should refuse to add Knot to our language, since doing so would
force us to adopt an undesirable logic. To be clear, Knot is less horrible than
Tonk. Adding Tonk to a language leads to logical triviality, and |� is certainly
not trivial. However, the lesson of §2 is that, if we add Knot to our language,
then we must abandon [certain rules, such as SUB]. Classical logic validates all
[of these rules]. By contrast, logics lacking [these rules] are extremely weak; too
weak, I think, for us to want to use them. (Button, 2016, p. 10)

However, consider expansions of classical logic, such as modal logic. These logics are
classical, and yet we have seen that within these frameworks, e.g. within a possible
worlds semantics, it is easy to define connectives that violate principles that classically
hold in the base language. First, we would not say that such modal expansions of the
language are non-classical. Second, we would not say these logics are too weak to

19 We are not endorsing this as the correct or best formal rendering of the ordinary language ‘actually’. We
are using it merely for illustrative purposes.
20 In other words, � | A iff for every model M , if each member of � is true at the actual world of M ,
then A is true at the actual world of M .
21 Since we are assuming that a semantics consists of an algebra and a set of designated values drawn from
the algebra, and that an expansion of the language involves the addition of a connective interpreted by a
operator definable over the algebra, any expansion of the language is conservative.
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be useful. In the purely classical language, they’re just as strong as classical logic,
and when they are weaker they are justifiably so. One ought not reason unrestrictedly
with substitutivity when using the operator ‘actually’ (as it was defined above), for
instance, since the rule is invalid. Given the richness of natural language, we would be
surprised if more than a very small handful of the rules valid in classical propositional
logic were universally valid in ordinary language, and yet weakness of logic over our
entire language has not been a hindrance to our reasoning in ordinary language.

An acceptance of Knot is, therefore, far less problematic than an acceptance of tonk
would be for an inferentialist, since the former merely weakens the logic whereas the
latter trivializes it.22 The semanticist could therefore bite the bullet and accept Knot,
agreeing that rules like conditional-introduction are in general invalid.23 Moreover,
the semanticist remains entitled to use all classically valid rules when reasoning within
the classical fragment of the language. So perhaps there is room for a response that
simply embraces a completely general version of SMP and the definability of nasty
connectives that comes with it.
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