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Abstract

We prove supercongruences modulo p2 for values of truncated hypergeometric series at some special
oints. The parameters of the hypergeometric series are d copies of 1/2 and d copies of 1 for any integer
≥ 2. In addition we describe their relation to hypergeometric motives.
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1. Introduction

Fix an integer d ≥ 2 and consider the hypergeometric series

F(z) =

∞∑
n=0

(
(1/2)n

n!

)d

zn,

here (x)n denotes the product x(x + 1)(x + 2) · · · (x + n − 1). It is known as the Pochhammer
symbol. Let p be a fixed odd prime. For every integer s ≥ 0 we define the truncated series
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Fps (z) =

ps
−1∑

n=0

(
(1/2)n

n!

)d

zn.

n particular F1(z) = 1. Let z0 be a p-adic unit and suppose that Fp(z0) is also a p-adic unit.
hen, by a result of Dwork [3], we have for all s ≥ 1 that Fps (z0) is a p-adic unit together
ith the congruence

Fps+1 (z0)
Fps (z0)

≡
Fps (z0)

Fps−1 (z0)
(mod ps). (1)

o the sequence of quotients is a p-adic Cauchy sequence. We define the limit

f (z0) = lim
s→∞

Fps (z0)
Fps−1 (z0)

.

The number f (z0) is referred to as the unit root part of the Frobenius-action on a suitable
p-adic cohomology. We shall make this a bit more explicit in Section 4.

From (1) it follows that f (z0) ≡ Fp(z0)(mod p). But it turns out that for some values of
z0 one has stronger congruences, a remarkable phenomenon called supercongruences. In this
paper we prove the following theorem,

Theorem 1.1. Let ϵp = (−1)d(p−1)/2 and suppose that Fp(ϵp) is a p-adic unit. Then

Fp(ϵp) ≡ f (ϵp)(mod p2).

This proves part of the following conjecture we like to propose here.

onjecture 1.2. With the notations as above let ϵ = ±1 and suppose that Fp(ϵ) is a p-adic
nit. Then Fp(ϵ) ≡ f p(ϵ)(mod p2)

It should be remarked that if p ≡ 3(mod 4) then Fp(−ϵp) ≡ 0(mod p) by Corollary 2.4.
o the only values Fp(ϵ) which are still conjectural are Fp(−1) with p ≡ 1(mod 4).

For some choices of d, ϵ we conjecture some stronger congruences.

onjecture 1.3. Suppose that Fp(ϵ) is a p-adic unit. Then we have Fp(ϵ) ≡ f p(ϵ)(mod p3)
n the following cases: d = 3 and ϵ = ±1, d = 4 and ϵ = 1, d = 5 and ϵ = 1, d = 6 and
= 1.
Moreover, in the latter case we expect Fp(1) ≡ f p(1)(mod p5).

There are a number of results which go into this direction, although the formulation does
ot contain the unit root f p(ϵ) but an integer number, usually the pth coefficient of an L-
eries that occurs in number theory. For example, when d = 2 Mortenson [7] showed that

Fp(1) ≡

(
−4
p

)
(mod p2). Presumably we have f p(1) =

(
−4
p

)
. In general we expect that f p(ϵ)

s a zero of the pth factor of the global L-series associated to the underlying hypergeometric
otive. We explain this more in detail in Section 4
In the case d = 3 several authors (Ishikawa, Van Hamme, Ahlgren) independently proved

hat

Fp(1) ≡ cp(mod p2)

here cp is the pth coefficient of η(4τ )6
∈ S3(16, χ(−4)), see [8, p 322] and the references

herein. The notation S (N , χ) stands for the modular cusp forms of weight k with group Γ (N )
k 0

947
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and character χ . In particular χ (a) stands for the Legendre symbol
( a

.

)
. It is a CM form given

y cp = 2(a2
−b2) where p = a2

+b2 with a odd. For a proof we refer to [8, Thm 4]. Numerical
xperiment shows that these congruences do not hold modulo p3. Surprisingly enough, these
xperiments also suggest that Fp(1) ≡ f p(1)(mod p3). Presumably f p(1) is the unit root of

x2
− cpx + p2 corresponding to the local Euler factor of the L-series of the modular form.
Kilbourn [5] has shown that when d = 4 we have

Fp(1) ≡ ap(mod p3),

here ap is the coefficient of the modular form η(2τ )4η(4τ )4
=
∑

n≥1 anqn, q = e2π iτ in
S4(8, χ0). By χ0 we denote the trivial character. Presumably f p(1) is the p-adic unit root of
x2

− apx + p3 corresponding to the local Eulerfactor at p of the L-series of the modular form.
e cannot prove this, but if true it implies that f p(1) ≡ ap(mod p3).
Recently Osburn, Straub, Zudilin [9] proved that Fp(1) ≡ bp(mod p3), where bp is the pth

oefficient of the unique newform in S6(8, χ0). It is conjectured that this congruence holds
odulo p5 for all odd p. We believe that f p(1) is the p-adic unit zero of x2

− bpx + p5.
imilarly as before this would imply that f p(1) ≡ bp(mod p5).

Beside these results we like to record the following conjecture.

onjecture 1.4. We make the implicit assumption that Fp(−1) is a p-adic unit.
When d = 3 we expect Fp(−1) ≡ cp(mod p2) where cp is the pth coefficient of

(τ )2η(2τ )η(4τ )η(8τ )2
∈ S3(8, χ(−8)). It is a CM-form with coefficients given by 2(2b2

− a2)
here p = a2

+ 2b2 in case p ≡ 1, 3(mod 8). As conjectured in Conjecture 1.3 we also expect
hat Fp(−1) ≡ f p(−1)(mod p3).

When d = 5 we expect Fp(−1) ≡ dp(mod p2) where dp =

(
−8
p

)
(δ2

p − 2p2) and δp is the
pth coefficient of the form g ∈ S3(256, χ(−4)) whose expansion starts with

g(τ ) = q − 2
√

−2q3
+ 4q5

+ 8
√

−2q7
+ q9

+ 10
√

−2q11
+ 20q13

− 8
√

−2q15

− 10q17
− 10

√
−2q19

+ 32q21
− 8

√
−2q23

+ 9q25
− 20

√
−2q27

+ 20q29
+ · · ·

ince f p(−1) is (presumably) a zero of x2
− dpx + p4 we should have f p(−1) ≡ dp(mod p4).

owever, experiment shows that Fp(−1) ≡ f p(−1) only holds modulo p2. We are indebted to
adim Zudilin and Dave Roberts for the (conjectural) identification of the coefficients dp.

A natural, and often asked question, is what happens with the values of Fps (ϵ) with ϵ = ±1
nd s > 1. Numerical experiment suggests the following generalization of Theorem 1.1 might
e true.

onjecture 1.5. Let ϵ = ±1 and suppose that Fp(ϵ) is a p-adic unit. Then we have

Fps (ϵ) ≡ f p(ϵ)Fps−1 (ϵ)(mod p2s)

or all integers s ≥ 1.

Besides supercongruences for hypergeometric sums with parameters 1/2 and 1 there exist
everal other types for other parameter choices. We refer to [6] for a proof of Rodriguez-
illegas’s mod p3 conjecture for the 14 truncated hypergeometric sums of order 4 correspond-

ng to Calabi–Yau varieties.
The key to the proof of Theorem 1.1 is the special symmetry of the hypergeometric

ifferential equation for F(z). It reads θd F = z(θ + 1/2)d F , where θ is the derivation z d
dz .

simple verification shows that if F(z) is any solution of this differential equation then so is
948
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z−1/2 F(1/z). The actual proof of Theorem 1.1 is completely elementary, but at the end of the
proof we sketch the role of the symmetry in the background.

2. Proofs

We start with a few well-known elementary congruences.

Lemma 2.1. For any odd prime p and any integers 0 < b ≤ a we have(
ap
bp

)
≡

(
a
b

)
(mod p2).

The theorem was proven by Babbage in 1819, [1]. In 1862 Wolstenholme [11] showed that
his congruence holds modulo p3 for all primes p ≥ 5.

roof. Observe that(
ap
bp

)
=

(a−b)p∏
k=1

k + bp
k

.

plit the product into factors with p|k (and write k = lp) and factors where k is not divisible
y p. We get(

ap
bp

)
=

a−b∏
l=1

l + b
l

(a−b)p∏
k=1

(k,p)=1

(
1 +

bp
k

)
,

here the second product is restricted to k ̸≡ 0(mod p). The first factor equals
(a

b

)
, the second

is modulo p2 equal to

1 +

(a−b)p∑
k=1

(k,p)=1

bp
k

.

The well-known fact that
∑p−1

k=1 1/k ≡ 0(mod p) implies that the second product is 1(mod p2).
This proves our assertion. □

Lemma 2.2. Let γ = (4p−1
− 1)/p. Then

p−1∑
j=1

(−1) j−1

j
≡ γ (mod p).

This lemma occurs in the work of Eisenstein [4].

roof. First notice that
4p−1

− 1
p

=
1

4p
(4p

− 4) =
2p

− 2
p

2p
+ 2
4

.

y Fermat the last factor is 1(mod p) and we get that

4p−1
− 1

≡
2p

− 2
(mod p).
p p
949
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We compute the latter modulo p.

1
p

(2p
− 2) =

1
p

p−1∑
k=1

(
p
k

)
=

p−1∑
k=1

1
k

(
p − 1
k − 1

)
.

he number
(p−1

k−1

)
is the coefficient of xk−1 in

(1 + x)p−1
≡

x p
+ 1

x + 1
≡ 1 − x + x2

− x3
+ · · · + x p−1(mod p).

ence
(p−1

k−1

)
≡ (−1)k−1(mod p) and thus our congruence follows. □

emma 2.3. Define αr =
(1/2)r

r !
. Then for any odd prime p and any integer 0 ≤ r < p/2 we

ave

α p−1
2 −r ≡ (−1)

p−1
2 αr (mod p).

roof. Notice that

αr ≡
(1/2)r

r !
≡

(1/2 − p/2)r

r !
≡ (−1)r

(
(p − 1)/2

r

)
(mod p).

he symmetry is now immediate from the last expression. □

A direct corollary is the following.

orollary 2.4. Suppose p ≡ 3(mod 4). Then Fp(−ϵp) ≡ 0(mod p).

roof. Notice that

Fp(−ϵp) =

(p−1)/2∑
r=0

αd
r (−ϵp)r

≡ (−1)d(p−1)/2
(p−1)/2∑

r=0

αd
p−1

2 −r
(−ϵp)r (mod p)

≡ (−1)d(p−1)/2(−ϵp)
p−1

2

(p−1)/2∑
r=0

αd
r (−ϵp)r (mod p)

≡ −Fp(−ϵp)(mod p),

hich implies our assertion. □

emma 2.5. Let p be an odd prime and r, r ′, t integers ≥ 0 with r = pr ′
+ t and t < p.

et αr be as in the previous lemma and γ = (4p−1
− 1)/p. If p/2 < t , then p divides αr and

f t < p/2 we have

αr ≡ αr ′αt

⎛⎝1 − γ pr ′
+ 2pr ′

2t∑
j=1

(−1) j−1

j

⎞⎠ (mod p2).

Modulo p the congruence reads αr ≡ αr ′αt (mod p). This is known as the Lucas-property
for α .
r

950



F. Beukers and E. Delaygue Indagationes Mathematicae 33 (2022) 946–955

N

N

F

U

P

s

w

C
r

Proof. Instead of αr we start with
(2r

r

)
. Notice that(

2r
r

)
=

(
2pr ′

pr ′

)∏2t
k=1(k + 2pr ′)∏t
k=1(k + pr ′)2

.

ote that if t > p/2 the product in the numerator contains the factor p +2pr ′ and is therefore
divisible by p. Suppose from now on that t < p/2.

Consider the equation modulo p2. We apply Lemma 2.1 to the binomial coefficient and get(2r ′

r ′

)
. The product over k becomes

(2t
t

)
times

1 + 2pr ′

(
2t∑

k=1

1
k

−

t∑
k=1

1
k

)
(mod p2).

otice also that
2t∑

k=1

1
k

−

t∑
k=1

1
k

=

2t∑
k=1

(−1)k−1

k
.

inally use the relation
(2r

r

)
= 4rαr . Putting everything together we find that

αr ≡ αr ′αt 4r ′(1−p)

(
1 + 2pr ′

2t∑
k=1

(−1)k−1

k

)
(mod p2).

sing 4r ′(1−p)
≡ 1 − pr ′γ (mod p) yields our assertion. □

roof of Theorem 1.1.
In view of congruences (1) it suffices to prove that Fps (ϵp) ≡ Fp(ϵp)Fps−1 (ϵp)(mod p2) for

= 2, but we will do it for all s ≥ 2. Use the notation αr =
(1/2)r

r !
and Lemma 2.5 to find

Fps (z) =

ps−1
−1∑

r ′=0

(p−1)/2∑
t=0

(αr ′αt )d z pr ′
+t

(
1 − γ dpr ′

+ 2dpr ′

2t∑
k=1

(−1)k−1

k

)
(mod p2).

The terms with t > p/2 do not occur since αd
r ≡ 0(mod p2) whenever t > p/2. This gives

Fps (z) ≡ Fp(z)Fps−1 (z p) + pd
(
G p(z) − γ Fp(z)

) ps−1
−1∑

r ′=0

r ′z pr ′

αd
r ′ (mod p2)

here

G p(z) = 2
(p−1)/2∑

t=0

(
2t∑

k=1

(−1)k−1

k

)
αd

t zt .

In order to arrive at our result we set z = ϵp and show that G p(ϵp) ≡ γ Fp(ϵp)(mod p).
onsider G p(ϵp) = 2Σ = Σ + Σ as a sum of two (equal) sums over t . In one of these we

eplace t by (p − 1)/2 − t and obtain

(p−1)/2∑ (p−1−2t∑ (−1)k−1

k

)
αd

(p−1)/2−tϵ
(p−1)/2−t
p .
t=0 k=1

951
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Apply Lemma 2.3 and replace k in the inner summation by p − k. We get
(p−1)/2∑

t=0

( p−1∑
k=2t+1

(−1)−p+k−1

p − k

)
αd

t ϵt
p(mod p).

his equals
(p−1)/2∑

t=0

( p−1∑
k=2t+1

(−1)k−1

k

)
αd

t ϵt
p(mod p)

hus we obtain after addition of Σ ,

G p(ϵp) ≡

(p−1)/2∑
t=0

( p−1∑
k=1

(−1)k−1

k

)
αd

t ϵt
p ≡

( p−1∑
k=1

(−1)k−1

k

)
Fp(ϵp)(mod p2).

pplication of Lemma 2.2 yields the desired result. □

. The underlying mechanism

The proof of our main result uses a symmetry of the polynomials Fp(z), G p(z) modulo
p. We show here how this is forced by the symmetry of the hypergeometric equation.

ne easily sees that Fp(z)(mod p) is the unique polynomial of degree < p/2 which
atisfies our hypergeometric differential equation modulo p and which has constant term 1.
urthermore, Fp(z) log z + G p(z) is another solution modulo p. By the symmetry of our
quation z(p−1)/2 Fp(1/z) is also a polynomial solution modulo p. Hence, by uniqueness of

Fp, z(p−1)/2 Fp(1/z) ≡ λFp(z)(mod p) for some λ. To determine λ we set z = ϵp. Then
p F(ϵp) = λF(ϵp). Since F(ϵp) is a p-adic unit by assumption we conclude that λ = ϵp. Hence

Fp(z) is a reciprocal or anti-reciprocal polynomial. We observe that z(p−1)/2 Fp(1/z) log(1/z)+
z(p−1)/2G p(1/z) is also a mod p solution. Multiply by ϵp and add Fp(z) log z + G p(z). We find
he new solution G p(z) + ϵpz(p−1)/2G p(1/z) which is a polynomial solution. Hence it equals
Fp(z) for some µ. To find the value of µ we set z = 0. The constant term of G p(z) is 0 and

he constant term of ϵpz(p−1)/2G p(1/z) is the leading term of ϵpG p(z), which is 2
∑p−1

j=1
(−1) j−1

j ,
ence 2γ by Lemma 2.2. Using Fp(0) = 1 we conclude that µ = 2γ . Now set z = ϵp in

ϵpz(p−1)/2G p(1/z) + G p(z) ≡ 2γ Fp(z)(mod p)

nd we obtain that G p(ϵp) = γ Fp(ϵp), the key step in the proof of our theorem.

. Hypergeometric motives

In this section we explain the nature of the unit root f p(z0) via finite hypergeometric sums
nd their ζ -functions. For any q = pk we consider a generator ω of the multiplicative characters
n F×

q . Then we define the Gauss-sum

gq (ωk) =

∑
x∈F×

q

ω(x)kζ Tr(x)
p ,

here Tr : Fq → Fp = Z/pZ is the trace map and ζp is a primitive pth root of unity. Let φ

e the unique character of order 2. Let t ∈ F×
q and define

Hq (t) =
(−1)d

1 − q

q−2∑(
gq (φωm)gq (ω−m)

g (φ)

)d

ω((−1)d t)m .
m=0 q
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It turns out that the values are rational integers which are independent of the choice of ω and ζp.
uch functions were introduced by John Greene and independently Nick Katz by the end of the
980s. According to Katz these sums are traces of the Frobenius operator on l-adic cohomology
ssociated to the hypergeometric differential equation. More concretely, hypergeometric sums
how up in point counting results on algebraic varieties over finite fields. The relevant example
or us is the following.

heorem 4.1. Let q be an odd prime power, t ∈ F×
q and d ≥ 2 an integer. Then the number

f points with coordinates in F×
q on the hypersurface

X t :

d∏
i=1

(xi + 2 + x−1
i ) = 4d t−1

s given by

(q − 2)d
− (−1)d

q − 1
− (−1)d Hq (t).

roof. This is a consequence of Theorem [2, Thm 6.1]. Since our hypergeometric parameters
are just 1/2 and 1 we are in a special situation where the parameters ai from [2, Thm 6.1] read
(2, . . . , 2, −1, . . . ,−1) with d repetitions of 2 and 2d repetitions of −1. The corresponding
variety is given by the intersection of the following varieties in (P2)d ,

u1 + v1 + w1 = u2 + v2 + w2 = · · · = ud + vd + wd = 0, λ

d∏
i=1

u2
i =

d∏
i=1

viwi .

limination of the ui gives us λ
∏d

i=1(vi +wi )2
=
∏d

i=1 viwi . Then set xi = vi/wi and λ = t/4d

to get the equation of our assertion. Theorem [2, Thm 6.1] gives the point count with invertible
coordinates in Fq as

(q − 2)d

q − 1
+

1
qd (q − 1)

q−2∑
m=1

gq (ω2m)d gq (ω−m)2dω(λ)m .

se the Hasse–Davenport relation gq (2 m) = ω(4)m gq (ωm)gq (φωm)/gq (φ) and gq (m)gq (−m) =

−1)mq to get

(q − 2)d

q − 1
+

1
q − 1

q−2∑
m=1

(
gq (φωm)gq (ω−m)

gq (φ)

)d

ω((−4)dλ)m

=
(q − 2)d

− (−1)d

q − 1
− (−1)d Hq (4dλ)

We find our desired point count after replacing λ by t/4d . □

We now compute ζ -function associated to the values of Hq (t) (with t ∈ F×
p ) in the usual

ay,

Z p(t, T ) = exp
(

Hps (t)
s

T s
)

,

hich turns out to be a polynomial in Z[T ] of degree d when t ̸= 1. When t = 1 and d odd
he degree is d − 1, when t = 1 and d even Z (1, T ) is a polynomial of degree d − 2 divided
p
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by a factor 1 − p−1+d/2T . We shall simply take the d − 2-degree polynomial for Z p(1, T ) in
this case.

Here we are not able to prove all this, but we simply mention some folklore results
and conjectures which make up a large body of a project on hypergeometric motives by
F.Rodriguez-Villegas, D. Roberts and M. Watkins. The latter has implemented the computations
in Magma. This is now an impressive library to compute the polynomials Z p(T ), and
also to manipulate the global L-series that contain the Z p(p−s) as local Euler factors. In
addition K. Kedlaya has recently announced a Sage-implementation (largely a port of the
Magma-implementation) which also calculates the Z p(T ) for us.

We use some of these calculations to illustrate the background to the supercongruences and
the origin of the unit-root f p(z0). The polynomial Z p(t, T ) can be factored as

∏
i (1 − µi T )

where the µi are algebraic and all have the same absolute value p(d−1)/2 according to the
Weil-conjectures. The exponent d − 1 is called the weight of the ζ -factor Z p(t, T ). By abuse
of language we shall call the µi the zeros of Z p(t, T ). The idea is now that if f p(z0) is a p-adic
unit, the polynomial Z p(z0, T ) has a unique p-adic zero which is a unit, namely f p(z0). Here
re some examples.

When d = 4 and z0 = 1 we get Z p(1, T ) = 1−apT + p3T 2 where ap is the pth coefficient
f η(2τ )4η(4τ )4. It is clear that when this polynomial has a unit root f p(1), the Newton polygon
as p-adic slopes 0,3. Hence f p(1) ≡ ap(mod p3). The missing slopes 1, 2 may account for
he occurrence of a supercongruence mod p3.

When d = 6 and z0 = 1 we get Z p(1, T ) = (1 − papT + p5T 2)(1 − bpT + p5T 2), where
p is as above and bp the pth coefficients of the newform in S6(8, χ0). The Newton slopes of

he first one are 1,4 (if ap is a unit) and 0,5 for the second (if bp is a unit). This shows that
f p(1) ≡ bp(mod p5) and one might also consider this as an explanation for the conjectural
upercongruence modulo p5.

In general, when d is even and z0 = 1, we expect a factorization Z p(1, T ) = Up(T )Vp(T )
nto two factors in Z[T ]. The degrees of Up, Vp are −1 + d/2, −1 + d/2 when d = 2(mod 4)
nd −2 + d/2, d/2 if d ≡ 0(mod 4). The factor Up has one Newton slope 1 and the others
igher. The factor Vp, when f p(1) is a unit, has Newton slopes 0,2 and higher. So, in a way
he factorization of Z p(1, T ) separates the slope 1 from the slopes 0, 2, . . .. Naturally f p(1)
s the unit root zero of Vp. The separation of the slopes may be seen as an explanation of
he supercongruences from Theorem 1.1. Speculations of this type were first made by Dave
oberts and Fernando Rodriguez-Villegas in their preprint [10]. Instead of speaking about
ewton slopes they consider Hodge levels in the cohomology of a hypergeometric motive.
Finally we record a few factorizations of Z p(−1, T ) when d is odd. This is a case where

actorizations are abundant.
When d = 3 we get

Z p(−1, T ) = (1 − pT )(1 − cpT + χ (−8)p2T 2).

ere cp is the pth coefficient of the modular form η(τ )2η(2τ )η(4τ )η(8τ )2 and is related to the
ase d = 3 in Conjecture 1.4.

When d = 5 we get

Z (−1, T ) = (1 − γp p2T )(1 − pcpT + p4T 2)(1 − dpT + p4T 2),

here dp is the coefficient defined in Conjecture 1.4 and cp the pth coefficient of η(4τ )6. The

oefficient γp is −1 if p ≡ 5(mod 8) and 1 otherwise.
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When d = 7 we get

Z p(−1, T ) = (1 − p3T )(1 − papT + p6T 2)Q4(T ),

here Q4 is a factor of degree 4. Here ap =

(
−4
p

)
(φ2

p − 2p2) where φp is the pth coefficient
f the form in S3(32, χ(−4)) that begins with

q+4iq3
+2q5

−8iq7
−7q9

−4iq11
−14q13

+8iq15
+18q17

−12iq19
+32q21

+40iq23
+· · ·

Moreover, when p ≡ 3, 5(mod 8) the polynomial Q4 factors into 1 − p6T 2 times a
uadratic factor 1 − γpT + p6T 2. However, this does not give us anything stronger than mod

p2 congruences. We are indebted to Dave Roberts for the identification of the modular form.
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