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Abstract
Tight regulation of protein translation drives the proteome to
undergo changes under influence of extracellular or intracel-
lular signals. Despite mass spectrometry–based proteomics
being an excellent method to study differences in protein
abundance in complex proteomes, analyzing minute or rapid
changes in protein synthesis and abundance remains chal-
lenging. Therefore, several dedicated techniques to directly
detect and quantify newly synthesized proteins have been
developed, notably puromycin-based, bio-orthogonal nonca-
nonical amino acid tagging–based, and stable isotope labeling
by amino acids in cell culture–based methods, combined with
mass spectrometry. These techniques have enabled the
investigation of perturbations, stress, or stimuli on protein
synthesis. Improvements of these methods are still necessary
to overcome various remaining limitations. Recent improve-
ments include enhanced enrichment approaches and combi-
nations with various stable isotope labeling techniques, which
allow for more accurate analysis and comparison between
conditions on shorter timeframes and in more challenging
systems. Here, we aim to review the current state in this field.
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propargylglycine; iTRAQ, Isobaric tag for relative and absolute quanti-
tation; LC, Liquid chromatography; LPS, Lipopolysaccharide; mePROD,
Multiplexed enhanced protein dynamics; MITNCAT, Multiplex isobaric
tagging/non-canonical amino acid tagging multiplex; mPDP, Multiplexed
proteome dynamics profiling; mRNA, Messenger ribonucleic acid; MS,
Mass spectrometry; NCAA, Non-canonical amino acid; NSP, Newly
synthesized protein; OPP, O-propargyl-puromycin; pSILAC, pulsed
SILAC; PUNCH–P, Puromycin-associated nascent chain proteomics;
QuaNCAT, Quantitative non-canonical amino acid tagging; RNA,
Ribonucleic acid; SILAC, Stable isotope labeling by amino acids in cell
culture; TMT, Tandem mass tag; TNF-a, Tumor necrosis factor alpha;
tRNA, Transfer-ribonucleic acid.
Introduction
Protein translation is the gatekeeper between the

genome and the proteome by serving as the final regu-
latory layer before gene expression. This multistep pro-
cess comprises initiation, elongation, termination, and
ribosome recycling. Protein synthesis is a fundamental
process that is strongly connected to cell growth
(Figure 1). Protein synthesis is generally upregulated in
tumor cells, and consequently, inhibition of protein syn-
thesis is an attractive strategy for cancer treatment [1,2].

In addition to proteome expansion to facilitate cell
growth, spatiotemporal control of the translational ma-

chinery on protein synthesis by translation of newly
transcribed mRNA or pre-existing mRNA pools or-
chestrates rapid adaptations to environmental cues and
internal signals. Thereby, protein synthesis underlies
many crucial physiological processes such as learning
and memory formation, T cell activation, and inflam-
mation [3].

Although the importance of protein synthesis is well
recognized, quantitative analysis of protein synthesis has
proven to be challenging. The rate of protein synthesis

can be indirectly inferred frommRNA levels measured by
RNA-sequencing or ribosome profiling. However, mRNA
levels show limited correlation to protein synthesis
because translation is, as the final regulatory layer of the
proteome, a highly and tightly regulated process. This
allows the cell to rapidly synthesize specific proteins
Current Opinion in Chemical Biology 2022, 66:102074

Delta:1_given name
Delta:1_surname
Delta:1_given name
mailto:m.p.baggelaar@uu.nl
https://www.sciencedirect.com/journal/current-opinion-in-chemical-biology/special-issue/108CLDR6GW6
https://doi.org/10.1016/j.cbpa.2021.07.001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cbpa.2021.07.001&domain=pdf
www.sciencedirect.com/science/journal/13675931
www.sciencedirect.com/science/journal/13675931


2 Omics (2022)
under stress or other extracellular or intracellular in-
fluences [4,5]. Direct analysis of synthesis at the protein
level is therefore indispensable to investigate alterations
in the proteome over time or in response to stimuli. Here,
we review recent progress in the development of mass
spectrometry (MS)ebased tools to investigate, at a
proteome-wide level, protein synthesis.

Mass spectrometry–based proteomics
Continuous advances in the capabilities and perfor-
mance of high-resolution mass spectrometers allow the

study of the proteome with increasing depth and detail.
Currently, thousands of proteins and their post-
translational modifications in complex biological sam-
ples can be analyzed in parallel. Quantitative tech-
niques, such as stable isotope labeling by amino acids in
cell culture (SILAC) and tandem mass tags (TMTs),
allow to accurately determine changes in protein abun-
dance over time and between different conditions, even
within a single liquid chromatography (LC)eMS run
[6,7]. Nevertheless, minor changes in protein abun-
dance are challenging to detect and are often overlooked

in bottom-up analyses. Therefore, targeted detection of
newly synthesized proteins (NSPs) is a requisite to
elucidate minute differences in protein synthesis.
Consequently, dedicated MS-based methods have been
developed to study protein synthesis (Figure 2).
Puromycin-based approaches
Puromycin is an aminonucleoside antibiotic, produced
by Streptomyces alboniger, and has served as inspiration for
the development of powerful molecular tools to study
NSPs [8]. Puromycin inhibits protein synthesis by
ribosome-catalyzed incorporation into the C-terminus of
nascent polypeptide chains, preventing further
Figure 1

Protein translation overview. mRNA is transcribed from DNA in the nucleus
ribosomes. tRNA molecules serve as the link between mRNA and the riboso
elongation of the nascent polypeptide chain, generating a newly synthesized
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polypeptide chain extension and causing premature
termination of protein translation. The development of
various puromycin-based reagents with additional fea-
tures, such as fluorophores, photocaging groups, and
radiolabels, has allowed spatiotemporal visualization of
protein synthesis with applications both in vitro and
in vivo [8]. In contrast to radiolabeling and fluorescence
microscopy, the use of puromycin-based derivatives in

combination with MS-based proteomics allows
proteome-wide analysis of protein synthesis at an indi-
vidual protein level resolution.

A biotin conjugate of puromycin has recently been
introduced to facilitate puromycin-associated nascent
chain proteomics (PUNCH-P) [9,10]. PUNCH-P
allowed the detection of thousands of NSPs derived
from cells or tissue. Cell cycleespecific fluctuations in
protein synthesis in cell lines were monitored, and the
so-called ‘translatome’ of a whole mouse brain could be

charted [10]. Because puromycinebiotin presents poor
cell permeability, ribosome isolation is required before
puromycinebiotin labeling. In contrast, the puromycin
analog O-propargyl-puromycin (OPP), that is puromycin
conjugated with an alkyne, is cell-permeable and thus
compatible with live-cell labeling and has been used to
analyze NSPs in living early erythroid progenitor cells
[11]. OPP was subsequently used in combination with
pulsed SILAC (pSILAC), which is the pulsed metabolic
incorporation of stable isotope-labeled amino acids in
NSPs. The addition of pSILAC allows controlling for the

background caused by nonspecific binders during
enrichment, providing a more accurate quantification of
protein synthesis [12]. The cell-permeable feature of
OPP is a significant advantage over PUNCH-P, where
subtleties of the cellular context may become lost on
before it is transported to the cytosol where it is translated into protein by
me by presentation of mRNA-encoded amino acids to the ribosome for
protein.
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Figure 2

Mass spectrometry–based methods for analysis of newly synthesized proteins. (a) Currently used MS-based methods to analyze NSPs can be
categorized into three main strategies. 1. The puromycin-based strategy relies on the aminonucleoside antibiotic, puromycin (Puro), which inhibits protein
synthesis and couples to the C-terminus of nascent polypeptide chains (NPCs). Biotinylated and alkynylated variants of puromycin enable targeted
enrichment and measurement of NPCs by LC-MS; 2. BONCAT-based methods rely on the methionine surrogates AHA, HPG, or ANL to enrich for NSPs.
After their metabolic incorporation in NSPs, a copper (I)-catalyzed alkyne–azide cycloaddition (CuAAC) can be used to functionalize labeled NSPs with
affinity handles, such as biotin, to enable enrichment; 3. SILAC relies on metabolic labeling of NSPs with isotopically labeled amino acids. The strategy
does not contain an enrichment step, but NSPs can be identified by LC-MS/MS detection of the isotopically labeled amino acids. (b) Combinations of
BONCAT with other quantitative techniques to enhance the accuracy and temporal resolution of NSP analysis. QuaNCAT combines BONCAT with
pSILAC, to discriminate between bona fide NSPs and false positives. Heavy isotope-labeled AHA quantification (HILAQ) uses stable isotope-labeled AHA
and nonlabeled AHA for relative quantification of two different conditions. MITNCAT (multiplex isobaric tagging/noncanonical amino acid tagging)
combines QuaNCAT and TMT multiplexing to reduce labeling time and allows detection of small changes in protein synthesis in short timeframes.
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ribosome isolation. However, extended in situ labeling
times with OPP results in the accumulation of truncated
puromycin-bound peptides, and inhibition of protein
translation can affect the cellular processes under
investigation. To alleviate these issues, Tong et al. [13]
developed quantitative OPP tagging, a combination of
OPP with TMT labeling which enabled a substantial
reduction in labeling time, to 15 min, and the quanti-

tation of over 3000 NSPs. Quantitative OPP tagging
could track dynamic changes in protein synthesis in
THP-1 macrophages after lipopolysaccharide treatment.
Photocaged puromycin analogs, which do exist but have
not been implemented for MS applications yet, have the
potential to provide an additional level of spatial reso-
lution in studying protein synthesis [8].

Puromycin-based approaches in vivo
Although incorporation of puromycin analogs in nascent
polypeptide chains is a powerful approach, it can be
challenging to apply in vivo because prolonged puromy-
cin incubation time causes toxicity in animals because of
inhibited translation and truncated puromycinylated

peptides. Despite previous success in studying protein
synthesis in tissue and hematopoietic stem cells by
fluorescence microscopy and western blot, coupling
in vivo puromycin labeling to MS-based proteomics to
study protein synthesis at a proteome-wide level at the
resolution of single proteins remains a significant chal-
lenge [14e16].
BONCAT
Bio-orthogonal noncanonical amino acid tagging
(BONCAT) relies on pulsed metabolic incorporation of
noncanonical amino acids (NCAAs) in NSPs. Alkyne or
azide ligation handles in NCAAs enable bio-orthogonal
ligation to reporter groups and subsequent enrichment
of NSPs. Multiple L-methionine analogs have been used
for BONCAT, such as L-azidohomoalanine (AHA), L-
homopropargylglycine (HPG), and L-azidonorleucine
(ANL) (Figure 2) [17e20]. From these reagents, AHA is
the most used and translationally active with incorpo-
ration rates of 400 times lower than methionine,
whereas HPG has an incorporation rate that is 500 times
lower than methionine, and ANL is not incorporated in
wild-type cells and requires expression of a mutant
methionine-tRNA synthetase for incorporation
[17,19,21].

Since its introduction in 2006 as an MS-based approach

to measure protein synthesis, BONCAT has been widely
used to investigate protein synthesis in physiological
and disease processes. BONCAT has been deployed to
analyze protein synthesis in tumor necrosis factor
alphae and interleukin 1 betaedependent inflamma-
tory response, Tcell activation, oxytosis, and in neurons
Current Opinion in Chemical Biology 2022, 66:102074
[22e27]. BONCATwas also used successfully in vivo in
Caenorhabditis elegans, zebrafish, and Xenopus [28e30].
Despite the wide recognition and success of BONCAT-
based methods, some challenges remain. About 6% of
the proteome is undetectable for BONCAT, as these
proteins do not contain any methionine residues or
solely a methionine which is directly cleaved after
release from the ribosome [20,31]. In addition, enrich-

ment with streptavidin for biotinylated proteins is prone
to undesired binders, such as endogenously biotinylated
proteins, hampering unambiguous identification of bona
fide NSPs [32]. Finally, measurement of protein syn-
thesis with high temporal resolution or in challenging
systems with low metabolic rates is challenging when
using BONCAT because of the often low levels of
tagged proteins.

Direct detection of labeled peptides
To alleviate the problem of falsely identified NSPs due to
enrichment of endogenously biotinylated proteins and
nonspecific binding to immobilized streptavidin, direct
detection of NCAA-containing peptides should be used.

Detection of NCAA-labeled peptides can be achieved
using desthiobiotin, biotinylation site identification
technology, or direct detection of biotin-containing tags,
which allow the elution and analysis of (desthio)bio-
tinylated peptides by LC-MS [32e34]. In addition,
various cleavable biotin linkers have been introduced
which could directly detect BONCAT-labeled peptides
derived from NSPs [20,35]. Alkynylated resin presents a
viable option as well [36]. A novel enrichment approach,
PhosID, for the enrichment of AHA-labeled peptides was
recently reported [37]. The phosphonic acid handle,

inspired on an enrichable crosslinker for MS termed
PhoX, enables automated Fe3þeimmobilized metal af-
finity chromatography enrichment and direct analysis of
labeled peptides by LC-MS/MS [38]. A total of 176 NSPs
were found to be significantly regulated by treatment of
interferon-g in HeLa cells, of which many had been
previously reported to be interferon responsive genes
[37].

Combining BONCAT with stable isotope labeling
techniques
Another strategy to differentiate between bona fideNSPs
and nonspecific binders is the combination of BONCAT

and pSILAC, analogous to the combination of OPP and
pSILAC [12]. In this strategy, both NCAAs and stable
isotope-labeled amino acids are metabolically incorpo-
rated in the cell in a pulsed fashion. BONCATcombined
with pSILAC labeling, termed quantitative NCAA
tagging (QuaNCAT), has been used to reveal alterations
in protein synthesis upon T cell activation [23]. In
addition, using a combination of pSILAC and BONCAT
allowed the study of brain-derived neurotrophic factore
www.sciencedirect.com
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induced protein synthesis in hippocampal mouse brain
slices [39]. As an alternative, heavy isotope-labeled AHA
quantification was found to be more sensitive than
QuaNCAT, as the biotinylated peptides were directly
detected by means of the direct detection of biotin-
containing tags protocol [24]. The heavy labeled AHA
allowed for relative quantification of NSPs expressed
during oxytosis in HT22 and HEK293T cells. Of note,

combining QuaNCATwith TMT labeling enables highly
multiplexed quantitative measurements of protein
synthesis across multiple time points (multiplex isobaric
tagging/noncanonical amino acid tagging). Using this
additional quantitative technique allowed to study the
rate of protein synthesis over time upon epidermal
growth factor stimulation with a 15 min resolution [40].
Another study combined pSILAC with BONCAT and
TMT labeling to investigate the half-lives of NSPs in
MCF-7 cells after bortezomib (proteasome inhibitor) or
3-methyladenine (lysosome inhibitor) treatment [41].

These innovations demonstrate that stable isotope
Figure 3

Dynamic SILAC-based methods. Dynamic SILAC uses pulsed SILAC to iden
is proportional to protein degradation. Multiplexed enhanced protein dynamics
methods that combine TMT multiplexing with dynamic SILAC. mePROD also i
to improve the accuracy of quantification. mPDP creates signal amplification i
switch for each condition, resulting in robust detection and quantification of s

www.sciencedirect.com
labeling techniques combined with BONCAT enable
higher sensitivity, temporal resolution, and produce
fewer false positives.

BONCAT in illustrative challenging systems
The high sensitivity of the current mass spectrometers
now enables the analysis of NSPs in systems with low
metabolic rates and consequently low protein synthesis.
A combination of BONCATwith isobaric tags for relative
and absolute quantitation was used to monitor protein
synthesis in the parasite Leishmania mexicana during

starvation to uncover the underlying molecular mecha-
nisms facilitating adaptation to stressful conditions [42].
The starvation time-dependent increase of expression
of several proteins that potentially play crucial roles in
the endoplasmic reticulum stress response pathways in
the parasite was identified. These data show that
BONCAT is suited to probe the response of parasites to
external stimuli and can aid the discovery of new drug
targets in parasites. Van Gelder et al. [26] studied
tify isotopically labeled proteins as NSPs, and the decrease of nonlabeled
(mePROD) and multiplexed proteome dynamics profiling (mPDP) are both
ncludes a ‘heavy’ booster and ‘light’ ‘noise’ channel for MS1 triggering and
n the MS1 channel by using both a ‘light’ to ‘heavy’ and a ‘heavy’ to ‘light’
ynthesis and degradation by means of the individual TMT channels.
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protein synthesis dependent on metabotropic glutamate
receptor activation in primary hippocampal neurons. It
is anticipated that the study of protein synthesis in even
more challenging systems is within reach using
BONCAT-based approaches, combined with stable
isotope labeling, especially as mass spectrometers
become even more sensitive.

Cell type–specific protein synthesis
In contrast to AHA or HPG, labeling with ANL provides
the opportunity to retain some spatial information inMS-

based NSP analysis, as a prerequisite for the metabolic
incorporation of ANL is the (cell-specific) expression of a
mutant methionine-tRNA ligase that recognizes ANL.
Several studies have used this technique to monitor cell
types of interest in vivo [43,44]. A tumor-specific prote-
ome was consequently labeled and identified by using
ANL in vivo [44]. Importantly, with this method, syn-
thesis events in cell types of interest could be studied as
well. This has been demonstrated by Alvarez-Castelao
et al. [45] and Evans et al. [46] who performed in vivo
cell typeespecific labeling of NSPs in hippocampal

neurons in mice. Cell typeespecific NSP analysis is the
first step toward obtaining spatial resolution in BONCAT
experiments, and subcellular expression of tRNA-
synthetase mutants might provide further spatial infor-
mation of synthesis events.
Dynamic SILAC-based approaches
Protein levels are regulated by the interplay of protein
synthesis and degradation. Therefore, to obtain a
comprehensive view of protein dynamics, it is also
important to monitor protein degradation and measure
the half-life of individual proteins. Compared with the
aforementioned techniques, labeling of cells or
Table 1

Discussed approaches and their characteristics.

Strategy Method Invasiveness Labeling time Enrichm

Puromycin-based PUNCH-P – 15 min +
OPP – 2 h +
OPP-pSILAC – 2 h +
QOT + 15 min +

BONCAT-based AHA/HPG ++ Hrs/days +
ANL – Days (in vivo) +
QuaNCAT ++ 2–4 h +
MITNCAT ++ 15 min +
HILAQ ++ 1 h ++
PhosID ++ 4–24 h ++

SILAC-based Dynamic SILAC +++ 6 h/days N/A
mPDP +++ 3–48 h N/A
MePROD +++ 2 h N/A

QOT, quantitative OPP tagging; MITNCAT, multiplex isobaric tagging/noncanon
mPDP, multiplexed proteome dynamics profiling; MePROD, multiplexed enhan
Beneficial attributes are represented with ‘+’, whereas limitations are indicated
system under investigation.

Current Opinion in Chemical Biology 2022, 66:102074
organisms using exclusively pSILAC is less invasive to
the biological system under investigation. After pulsed
labeling of nonlabeled proteomes with isotopically
labeled amino acids, labeled proteins can be identified
as NSPs, and the concurrent decrease of nonlabeled
proteins is proportional to protein degradation. Thereby,
pSILAC allows in vitro and in vivo monitoring of both
protein synthesis and degradation simultaneously,

termed ‘dynamic SILAC’ (Figure 3). A limitation of this
method is the inability to enrich for these isotope-
labeled proteins or peptides. Therefore, substantially
longer labeling time are required compared to
BONCAT- or puromycin-based approaches, and conse-
quently, rapid synthesis and degradation events are
challenging to monitor with this method.

Dörrbaum et al. [47] used dynamic SILAC to investi-
gate protein synthesis and degradation in drug-induced
homeostatic upscaling or downscaling of primary

cultured neurons. The study design included a stable
isotope-labeled internal standard, allowing high preci-
sion quantification of small changes in protein synthesis
and degradation. Consequently, a comprehensive profile
of protein dynamics in neurons during upscaling or
downscaling was obtained [47]. Furthermore, pSILAC
was used to investigate translation of proteins in
neuronal injury and consequent regenerative axon
regrowth [48]. Of note, pSILAC is challenging in these
nondividing cell lines as the labeling was barely suffi-
cient to distinguish between injured cells and the con-

trol groups.

Combining dynamic SILAC with isobaric labeling
Multiplexed enhanced protein dynamics adds multi-
plexing by TMT labeling to allow the analysis of acute
ent Multiplexing Degradation analysis Spatial resolution Reference

No – −− [10]
No – −− [11]
No – −− [12]
Yes – −− [13]
No + −− [17]
No + + [43–46]
No + −− [23]
Yes + −− [40]
No + −− [24]
No + −− [37]
No ++ −− [47,48]
Yes ++ −− [50]
Yes ++ −− [49]

ical amino acid tagging; HILAQ, heavy isotope-labeled AHA quantification;
ced protein dynamics.
as ‘−’. ‘Invasiveness’ describes the adverse effect of the technique on the
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changes in protein synthesis and enables detection of
minor differences in protein synthesis after only 2 h in
fewer than 100,000 cells. Signal amplification was
achieved by the inclusion of an isotopically labeled
booster channel for MS1 triggering (Figure 3). Although
booster channels enable the identification of more pep-
tides, high levels of booster proteome may adversely
affect quantitative accuracy [49]. Multiplexed enhanced

protein dynamics was used to study the eIF2alpha- and
mTOR-dependent pathways in the integrated stress
response. Crosstalk between these two pathways was
observed [50]. Savitski et al. used dynamic SILAC
combined with TMT labeling, called ‘multiplexed pro-
teome dynamics profiling’, to investigate the effects of
estrogen receptor modulators on protein homeostasis in
MCF-7 cells, and differential effects on protein synthesis
and degradation between various modulators were
observed [51,52]. These studies demonstrate the power
and potential of combining dynamic SILAC with isobaric

labeling for concomitant analysis of protein synthesis and
degradation.
Conclusions
MS-based proteomics in various combinations with

stable isotope labeling and affinity enrichment has led to
a powerful toolbox to study NSPs. The recent advances
in these methodologies, including completely novel
enrichment strategies, and the application and combi-
nation of multiple (stable isotope-based) quantitative
techniques allow the investigation of NSPs with
increasing accuracy, temporal, and spatial resolution in
ever more challenging systems. Puromycin-based ap-
proaches, BONCAT, and pulsed/dynamic SILAC are
currently still the core techniques used to study NSPs.
These orthogonal techniques all have their own unique
strengths and weaknesses, as we aimed to summarize in

Table 1. The extensive toolbox available to study NSPs
allows researchers the selection of suitable methods for
specific research questions. We anticipate that the field
will develop further toward methods with an even
higher sensitivity, temporal resolution, and spatial
resolution and to the level of detail whereby newly
synthesized proteoforms can also be analyzed. As
studying NSPs is key to understanding changes in the
proteome in health and disease and enables the dis-
covery of new therapeutic targets, further development
of such tools remains essential.
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