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The Helfrich-Hurault (HH) elastic instability is a well-known mechanism behind pat-
terns that form as a result of strain upon liquid crystal systems with periodic ground
states. In the HH model, layered structures undulate and buckle in response to local,
geometric incompatibilities, in order to maintain the preferred layer spacing. Classic
HH systems include cholesteric liquid crystals under electromagnetic field distortions
and smectic liquid crystals under mechanical strains, where both materials are confined
between rigid substrates. However, richer phenomena are observed when undulation
instabilities occur in the presence of deformable interfaces and variable boundary con-
ditions. Understanding how the HH instability is affected by deformable surfaces is
imperative for applying the instability to a broader range of materials. In this review,
we re-examine the HH instability and give special focus to how the boundary conditions
influence the mechanical response of lamellar systems to geometrical frustration. We use
lamellar liquid crystals confined within a spherical shell geometry as our model system.
Made possible by the relatively recent advances in microfluidics within the past 15 years,
liquid crystal shells are composed entirely of fluid interfaces and have boundary condi-
tions that can be dynamically controlled at will. We examine past and recent work that
exemplifies how topological constraints, molecular anchoring conditions, and boundary
curvature can trigger the HH instability in liquid crystals with periodic ground states.
We then end by identifying similar phenomena across a wide variety of materials, both
biological and synthetic. With this review, we aim to highlight that the HH instability is
a generic and often overlooked response of periodic materials to geometrical frustration.

ar
X

iv
:2

10
9.

14
66

8v
1 

 [
co

nd
-m

at
.s

of
t]

  2
9 

Se
p 

20
21



2

CONTENTS

I. Introduction 2

II. The Dramatis Personæ 4

III. The classic Helfrich-Hurault instability 5
A. Cholesteric layer distortions from electric and

magnetic fields 6
1. Original model 6
2. Further theoretical refinements and experiments 7

B. Mechanical layer strain in smectics 8
1. Mechanically induced Helfrich-Hurault effect 8
2. The role of dislocations and disclinations 8

IV. Liquid crystal shells 9

V. Cholesteric shells 11
A. Planar cholesteric shells 11
B. Homeotropic cholesteric shells 13
C. Anchoring transitions 15

VI. Smectic shells 18
A. Planar smectic shells in experiments 18
B. Strain from boundary curvature 19
C. Cylindrical smectic shells 20
D. Spherical smectic shells 22

VII. Other mechanisms to the HH instability 24

VIII. Helfrich-Hurault: here, there, and everywhere 25
A. Twist-bend nematic phases 25
B. Lyotropic liquid crystals 27
C. Diblock copolymers & polymer bundles 28
D. Columnar liquid crystals 29
E. Biological materials 31
F. Magnetic systems 32

IX. Conclusion 33

X. Acknowledgments 34

References 34

I. INTRODUCTION

Subjected to shear, solids strain but fluids flow: what
else can happen? Between solid and liquid lie the liquid
crystalline phases of matter: like a crystal they transmit
torque and shear stresses but only in some directions and
geometries. For instance, the long-range orientational or-
der of a nematic liquid crystal, a phase where the rod-like
constituents tend to point in the same direction (the di-
rector), implies that if a rod is rotated away from its
preferred direction in one region, its surroundings will
rotate with it. Nematics do not have translational order,
so they do not support shear stresses. However, smectic
and cholesteric liquid crystals do. Smectics break trans-
lational symmetry by having the rod-like molecules sort
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into layers, resulting in a density modulation. Cholester-
ics form “pseudolayers”, maintaining a constant density
throughout the material, but break translational symme-
try due to a helical twisting of the director. The thick-
ness of a cholesteric pseudolayer is defined by a rotation
of the molecules by π, as represented in Fig. 1a. Both
smectics and cholesterics have one-dimensional periodic-
ity in three-dimensional samples, like a messy stack of
cards. When extensional shear is applied to a structure
with a preferred layer spacing, the layers can undulate
in order to maintain their preferred distance. This sort
of response was studied by W. Helfrich and J.P. Hurault
in the early 1970s within the context of electromagnetic
instabilities, depicted in Fig. 1b and 1c for a cholesteric
(Helfrich, 1971; Hurault, 1973). Today, we refer to all of
these undulating instabilities in layered systems as the
“Helfrich-Hurault” (HH) instability.

FIG. 1 The classic Helfrich-Hurault instability in a short-
pitched cholesteric. The mesophase is confined between solid
substrates with planar anchoring and can be described as a
lamellar system of period P0/2 (a). Undulation in the periodic
layers of the cholesteric along a single (b) or, more realisti-
cally, along two perpendicular directions (c) develops under
an applied magnetic field (H) of sufficient magnitude.

The undulatory deformations of the HH instability are
similar in spirit to the martensitic patterns seen in crys-
tals, where changes in a crystal structure require accom-
panying volumetric changes (Ball et al., 1992). Indeed,
smectic liquid crystals have even been described as “the
weirdest martensite.” (Liarte et al., 2016). Within a
smectic, layers can break and rejoin, creating topological
defects, localized regions of disorder, such as dislocations
and disclinations. In general, topological defects result
from system frustration that can arise from either local
geometrical effects, i.e., geometrical frustration, or global
geometrical effects, i.e., topological frustration.

For example, Frank-Kasper phases, which catalogue
the numerous possible arrangements of atoms in complex
alloys, are a renowned, historical illustration of structure
from frustration (Frank and Kasper, 1958). The most
locally compact packing of four rigid, identical spheres
is tetrahedral, in which each corner of the tetrahedron
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represents the center of each sphere. However, imper-
fections, i.e. defects, arise when the tetrahedron is the
unit structure for tiling space. Tetrahedrons cannot fill
space completely without distortion — their symmetry
conflicts with a translation symmetric tessellation since
the dihedral angle of a tetrahedron is not commensurable
with 2π (Kleman, 1989; Moessner and Ramirez, 2006).
Defects are necessarily present in the system because the
packing is “limited” by the shape of the packing unit.
Although tetrahedrons are unable to fill space, this “lim-
itation” actually has higher local densities and greater
vibrational entropy compared to face-centered-cubic or
hexagonal close-packings. This enables a wide array of
possible configurations that gives the packings of Frank-
Kasper phases freedom to deform in order to accommo-
date neighboring atoms (Kleman, 1989). Frank-Kasper
phases demonstrate that not only are defects often neces-
sary to stabilize systems, but that they can also be con-
structed from a purely geometrical argument. The reg-
ular network of disclinations in Frank-Kasper phases re-
quires only the tiling of polytetrahedra to be constructed.

It is not a coincidence that Sir F. Charles Frank is
the same “Frank” of both Frank-Kasper phases and the
Frank free energy density of a liquid crystal — under-
lying both formulations is the importance of geometry
in the description of material properties. Classic exam-
ples of geometrical frustration in liquid crystals are blue
phases — states that emerge when it is favorable to intro-
duce defects to minimize the chiral elastic energy of the
bulk. As it is for the network of defects in Frank-Kasper
phases, the defect networks in blue phases also emerge
from geometrical frustration (Sethna et al., 1983). Simi-
lar to how the imperfect packing of pentagons on a plane
can be made perfect when the plane is curved into a
spherical topology, the disclination line networks of blue
phases are removed from blue phases in the curved space
of S3. The defects in blue phases can be thought of as
the consequence of “folding out” the 3-sphere onto Eu-
clidean space. The conflict between local and global or-
der, as demonstrated by Frank-Kasper and blue phases,
is a signature of geometrical frustration. For a thorough
review of blue phases, we recommend (Wright and Mer-
min, 1989).

However, in these and countless other systems, geo-
metrical frustration is often accompanied by topologi-
cal frustration, depending on the global structure of the
phase. Using the Gauss-Bonnet theorem, for instance,
it is possible to locally measure the Gaussian curvature
of a patch of surface just by studying the curvature of
closed loops. If you can measure the curvature every-
where, it is then possible to deduce the global topology
of the surface only if it has no boundaries or if somehow
the boundary conditions are precisely defined. In some
cases, the boundary can be interpreted as yet another de-
fect at infinity. However, setting aside considerations of
the boundaries for now, the important issue here is that

geometrical frustration causes problems in your neigh-
borhood: even if the Earth were a hemisphere that ended
with a precipice at the equator, we would still not be able
to draw perfect polygons on it. Either the angles would
not be quite right, the edge lengths would be unequal,
or you could not get it to lie directly against the Earth.
This is geometrical frustration: a fundamental incom-
patibility between one set of shapes (the polygons) and
the others (the Earth). Topological frustration needs to
be solved somewhere; geometrical frustration has to be
solved everywhere.

Liquid crystals are the ideal systems to differentiate ge-
ometrical frustration from topological frustration. Most
liquid crystal systems have open boundaries and the no-
tion of global topology is moot – defects can end on the
interfaces between phases or at the sample wall, and they
can transform from bulk defects to boundary defects.
The frustration can come about because the geometric
parameters do not match (too many sardines in the can),
the shapes do not match (square peg, round hole), or, as
in the blue phase, there is a local geometry (double-twist)
that cannot be extended into the whole volume. The soft-
ness of liquid crystals, the ability to control and monitor
their boundary conditions, and the relatively straightfor-
ward method of real-space detection of defects allows us
to explore and differentiate local from global frustration.

Here, we focus specifically on lamellar liquid crystal
phases, where geometrical frustration is often relieved
through the HH instability. To apply the HH instabil-
ity beyond the classical systems, we also give additional
scrutiny to boundary conditions. Lamellar liquid crys-
tal phases that exhibit this instability are pervasive in
nature, seen within a wide array of biological materials
ranging from plant cell walls to arthropod cuticles (Be-
liaev et al., 2021; Bouligand, 1972b; Mitov, 2017; Rey,
2010; Roland et al., 1992; Srinivasarao, 2009). In the
first studies by Helfrich and Hurault in the 1970s, the
HH instability was examined in lamellar liquid crystals
confined between two solid substrates, with undulation
in the layers of liquid crystal induced by electromagnetic
fields (Helfrich, 1971; Hurault, 1973). Yet, many lamellar
liquid crystals, including those found in living matter, of-
ten have deformable boundaries at fluid interfaces, where
periodic layer undulations can occur in the absence of
external driving. Elucidating the coupling between such
boundaries and bulk deformations is necessary to apply
the HH instability to a broader class of materials that
undulate to relieve geometrical frustration, including in
the morphogenesis of biological liquid crystals.

To isolate the effects of a fluid boundary on liquid
crystals within the laboratory, a synthetic system must
have both deformable interfaces and tunable thicknesses
to control the balance between bulk and surface forces.
An experimental system ideal for this purpose is a liquid
crystal shell, made possible in 2005 by the seminal work
of Utada et al. on microfluidics (Utada et al., 2005). As
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first demonstrated by Fernandez-Nieves et al., using a
liquid crystal as the middle phase in the production of
water-in-liquid-crystal-in-water double emulsions, a thin
film of liquid crystal can be made free-standing and sta-
ble (Fernandez-Nieves et al., 2007). With simple adjust-
ments of flow rates and/or the addition of solutes in the
surrounding aqueous phases, both the thickness of the
liquid crystal shell and the molecular anchoring at the
shell interfaces can be dynamically varied at will. Liq-
uid crystal shells are then model systems for probing the
role of curved and possibly deformable boundaries both
in triggering the HH instability and in stabilizing the re-
sultant defect structures.

The purpose of this review is two-fold. First, the HH
instability is detailed as a mechanism of pattern forma-
tion that results from frustration in lamellar liquid crys-
tals, taking special care to distinguish geometrical versus
topological effects. Second, the HH instability is not only
historically reviewed, but recent work on cholesteric and
smectic liquid crystal shells is presented, to illustrate the
mechanisms through which deformable boundaries can
influence and trigger bulk layer undulations.

In the following section, we briefly review the elasticity
of liquid crystals. In Section III, we dive into the history
of the HH instability and detail the classic HH systems,
where lamellar liquid crystals are confined between solid
substrates. In Section IV, we consider liquid crystals with
free, deformable interfaces and describe our model sys-
tem: the liquid crystal shell. We then characterize the
HH instability in cholesteric shells in Section V, where
undulations can arise due to topological frustration and
surface anchoring. We then move to smectic shells in
Section VI, where the HH instability is triggered by geo-
metrical frustration due to boundary curvature. We end
by identifying the HH instability across a wide range of
elastic materials, both synthetic and biological.

II. THE DRAMATIS PERSONÆ

Before plunging in, we pause briefly to outline liquid
crystal elasticity. There are any number of excellent
and thorough textbooks (Chaikin and Lubensky, 1995;
de Gennes and Prost, 1993; Kleman and Lavrentovich,
2004), that cover this but here we offer the reader a
highly abridged review. The simplest of the liquid crys-
talline phases is the nematic. In this phase, a preferred,
“long”-axis of the molecules aligns along a local direction,
represented by a unit vector n. At first glance this would
appear to be equivalent to a magnet where n would take
the place of the local spin, m, but the nematic phase has
an additional symmetry: n and −n represent the same
structure – the nematic is a line field not a vector field.
According to Frank (Frank, 1958), distortions away from
the uniform nematic phase are measured through four ge-
ometric quantities that are invariant under the nematic

symmetry: ~S = n(∇·n), T = n·(∇×n), ~B = (n·∇)n,

and G = ∇· ( ~B − ~S) – splay, twist, bend, and saddle-
splay, respectively. The Frank free energy density is a
rotationally-invariant expression in terms of these two
vectors (~S, ~B), pseudoscalar (T ), and scalar (G):

f = 1
2K1

~S2 + 1
2K2(T + q0)2 + 1

2K3
~B2 +K24G. (1)

We note that ~S · ~B = 0 so there are no cross terms.
This free energy exhausts all the rotationally-invariant
groupings of terms up to quadratic order in single gra-
dients of n. The four elastic constants inherit their
names from the expressions they multiply so, for in-
stance, K2 is the “twist” elastic constant, and stabil-
ity implies that K1, K2, and K3 are positive. Finally,
because T is a pseudoscalar, q0 must be as well, and
the existence of a pseudoscalar quantity would imply
that the material is chiral. To rationalize the names of
these distortions, one can evaluate the splay for the two-
dimensional texture n = ρ̂ (~S = ρ̂/ρ) and evaluate the

bend for the two-dimensional texture n = θ̂ ( ~B = −ρ̂/ρ),
where ρ and θ are the standard polar coördinates. Both
twist and saddle-splay measure three-dimensional tex-
tures: if n = [cos(qz), sin(qz), 0] then T = −q, while if

n = [x,−y, 1]/
√

1 + x2 + y2, then G = 2/(1 + x2 + y2).
The result for G can be understood by viewing n as the
unit normal to the saddle surfaces of the surface family
z = 1

2 (y2−x2) and then G is the negative of the Gaussian
curvature at each point (Kamien, 2002).

In the absence of boundaries, the saddle-splay does
not contribute to the energy (via Stokes’ theorem).
When q0 = 0, a ground state is n = [0, 0, 1], while if
q0 6= 0 then it is straightforward to check that nc =
[cos(q0z), sin(q0z), 0] is a ground state. We call this he-
lically twisting ground-state the cholesteric or the chiral
nematic, and in this case, it has a pitch axis along ẑ.
By rotational invariance, these ground states can be ro-
tated in space, leading to a whole manifold of degenerate
ground states. The cholesteric ground state can then be
viewed in terms of pseudolayers of constant orientation.
Moreover, since a global rotation of n around the z axis
by an angle φ cannot change the energy, we know that at
long length scales, this global symmetry is promoted to a
Goldstone mode so that small ground state fluctuations
can be viewed as deformations of the pseudolayers. The
HH effect distorts these pseudolayers when the preferred
spacing π/q0 differs from a spacing imposed by fields or
boundary conditions.

We will also, in the following, discuss smectic phases.
In the smectic phase, translational symmetry is broken
and the molecules arrange themselves into actual layers,
creating a one-dimensional density wave with the ground
state being a set of uniformly-spaced, flat layers. These
layers generate a field of unit layer normals N . Since
the normals are only defined up to sign, the symmetry
of N is precisely that of the nematic director discussed
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above. We can thus create an energy in complete analogy
with the Frank free energy, where we substitute n with
N in the discussion of the last paragraphs. However, it
is important to note that twist necessarily vanishes if N
is normal to a surface from the Frobenius integrability
condition (Capasso, 2018). Yet, there must also be an
energy penalty for deformations away from the preferred
spacing. To measure this, we introduce a phonon field,
u(x, y, z) that measures the deviation from the ground
state.1 Because the sign of u has the same u → −u
ambiguity as the vector n, we will measure deviations of
u along N and define the strain as e = N ·∇u, invariant
under (N , u)→ −(N , u). The free energy density is

f = 1
2Be

2 + 1
2K1

~S2
sm + 1

2K3
~B2

sm +K24Gsm, (2)

where the subscript sm refers to the quantities with n
replaced with N and where B is known as the bulk mod-
ulus (and should not be confused with the bend vector
~B!). Since we can parameterize the smectic layers as
level sets of φ = z − u(x, y, z), N = ∇φ/|∇φ| can be
calculated from u. For instance, N ≈ (−∂xu,−∂yu, 1) to
lowest order in gradients of u. Because the phase is com-
prised of nematogenic molecules, we must also include
the Frank free energy for the nematic director and there
is a coupling between N and n. In the smectic-A phase,
n prefers to align with N , while in the smectic-C phase
the layer normal and director prefer a fixed, nonzero an-
gle between them. This leads to yet another director-like
field which is the component of n perpendicular to N :
the c-director.

The deformations of the smectic-A layers and of the
cholesteric pseudolayers are controlled by the same free
energy density (Kleman and Parodi, 1975; Oswald and
Pieranski, 2005):

fe =
B

2

(
1− 1

|∇φ|

)2

+
K

2
(∇ ·N)2 (3)

where the first term accounts for relative dilation of the
layers and the second term is the curvature energy of the
layers. In the long distance limit when the layers are
nearly-planar, this free energy reduces to

fe =
B

2

(
∂u

∂z

)2

+
K

2

(
∂2u

∂x2
+
∂2u

∂y2

)2

, (4)

where the average layer normal (or the pitch axis) is along
ẑ. The K3 and K24 contributions are higher degree in
a gradient expansion and are, in this simplest case, ne-
glected. In the case of the cholesteric, we would replace
u with the deviation of the angle of the director field

1 Unlike a crystal, however, u(x, y, z) only has one component re-
flecting the one-dimensional density wave.

in the plane perpendicular to the pitch axis. This ba-
sic free energy is the starting point for this review. Note
that this elastic free energy density applies to any system
with one-dimensional, periodic ground states. Without
loss of generality, the periodicity is along the ẑ-direction,
and we can write the density (or pseudo-density) as

ρ(x) = ρ0 + ρ1 cos
[
q (z − u(x))

]
, (5)

where q is the ground state wavevector magnitude. The
first term in (4) measures the energy penalty for chang-
ing the periodicity while the second term measures the
energy cost of bending the “layers.”

We now dive into the history of the HH instability.

III. THE CLASSIC HELFRICH-HURAULT INSTABILITY

As has been made evident from the success of liquid
crystals in the display industry, liquid crystal technology
relies upon the material’s interaction with external fields.
Recall that the simplest liquid crystalline phase, the ne-
matic, is characterized by long-range order of the orien-
tation of anisotropic molecules with one “long” axis and
two, equivalent “short” axes.2 These axes are geomet-
ric, dielectric, and optical, leading to birefringent optics.
The dielectric anisotropy of liquid crystals enables their
manipulation with electromagnetic fields, and their bire-
fringence renders optically detectable responses. System-
atic investigations of liquid crystals under these external
fields became of special interest in the 1960s, the decade
when liquid crystal displays were first conceptually con-
ceived, and regular textures were soon experimentally ob-
served and identified. Some patterns were related to flows
or to other dynamical aspects — such as electrohydro-
dynamic convection in nematics (Helfrich, 1969) — but
others, found especially in layered or quasi-layered sys-
tems, remained static and exhibited well-defined wave-
lengths that resulted from direct competition between
liquid crystal elasticity and its anisotropic, electromag-
netic properties.

The possibility of such an instability was predicted by
Helfrich in the case of cholesteric liquid crystals, where
the molecules have a tendency to twist in a helical fash-
ion, with the pitch defined as the distance required for
a 2π rotation of the molecule along the pitch axis (Fig.
1) (Helfrich, 1970). Note again that cholesterics have a
periodic ground state, with no density modulation, but
rather, a modulation in orientation and consequently in
the dielectric tensor. Because of this, the periodicity in
the system is often referred to as “pseudolayers”.

2 These are the so called, “calamitic” nematics. Discotic phases are
also nematic though they have one short axis and two, equivalent
long axes.
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Experimental data for the instability in cholesterics
emerged almost simultaneously in the early 1970s (Hel-
frich, 1970) and were followed by two successive theo-
retical papers, first by Helfrich in 1971 and later refined
by J.P. Hurault in 1973 (Helfrich, 1971; Hurault, 1973).
Initially associated with the cholesteric phase, as de-
picted in Fig. 1, the HH buckling instability was rapidly
identified as a generic mechanism to relieve stresses and
strains due to external stimuli in one-dimensional and
two-dimensional, periodic systems.

A. Cholesteric layer distortions from electric and magnetic
fields

The HH instability was first observed in cholesteric liq-
uid crystal cells (Gerritsma and Van Zanten, 1971a,b)
with strong planar anchoring, where the director n of
the molecules is aligned tangent to the top and bottom
walls. In this geometry, the cholesteric pitch axis, per-
pendicular to the nematic director n and along which
the director twists, has a uniform orientation perpendic-
ular to the parallel walls. The application of an elec-
tric field (Gerritsma and Van Zanten, 1971b; Rondelez
and Arnould, 1971) or a magnetic field (Rondelez and
Hulin, 1972; Scheffer, 1972) parallel to this helix gives
rise to square-grid patterns above a certain threshold
value (Fig. 2). Here, the driving force of the instabil-
ity is a gain in dielectric or diamagnetic energy when
the cholesteric helix begins to distort. In this geom-
etry, the HH instability occurs only in materials with
positive (nematic) diamagnetic susceptibility anisotropy
χa or dielectric anisotropy εa so that the director aligns
along the field, antagonizing the helix. The case of AC
electric fields is, however, more complex since the pres-
ence of conductivity and space charges can also lead to
frequency-dependent instabilities for both signs of dielec-
tric anisotropy εa (Hurault, 1973; Rondelez et al., 1972).

1. Original model

In the magnetic case, the threshold and the wavelength
of the patterns can be computed easily at the onset of un-
dulations with two assumptions: (1) the distortions are
small, and (2) the instability wavelength is much larger
than the cell thickness a, which is itself much larger than
the cholesteric pitch P0 = 2π/q0 (Ishikawa and Lavren-
tovich, 2001a). Recall that the continuous twist of the
director field is described as a pseudolayered structure of
P0/2 periodicity [Fig. 1(a)]. In the Lubensky-de Gennes
coarse-grained approach, the elastic free energy density
fe of a distortion from the planar texture is related to the
displacement u(x) of the pseudolayers along the z-axis,
corresponding to the direction of the initial helix (Brand
and Pleiner, 1981; de Gennes and Prost, 1993), yield-

FIG. 2 (Left) Planar texture of a cholesteric phase ob-
tained from mixing 4’-pentyl-4-biphenyl-carbonitrile (5CB)
and cholesteryl oleate in a planar-aligned cell. Grandjean
zones correspond to a slight gradient of thickness resulting
in a discrete change in the number of π-rotations of the di-
rector. (Right) Under large enough AC voltages (∼1 kHZ),
typical square grid patterns are observed. Here, a 9V electric
field is applied across a 20 µm thick cell. Images are captured
with polarizing optical microscopy under slightly uncrossed
polarizers. The scale bar is 50 µm.

ing a free energy density of the same form as Eq. 4, but
now with K rewritten as K̄ = 3K3/8 and B rewritten
as B̄ = K2q

2
0 . K̄ and B̄ are the effective elastic moduli

related to the Frank-Oseen elastic constants of twist K2

and bend K3 of Eq. 1. In the cholesteric, a distortion
u(x) leads to a tilt of the pitch axis N from ẑ. To lowest
order we get tan2 θ = (∇⊥u)2 where ∇⊥ = x̂∂x + ŷ∂y.
For small distortions we have

θ ≈

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

, (6)

with a concomitant change in the magnetic energy den-
sity of:

fm = −1

2
µ0χ̄aH

2θ2, (7)

where µ0 is the vacuum permeability and χ̄a = χa/2
accounts for the continuous twist of the director over a
pitch.

The HH model considers a simple undulation pattern
along one direction (x̂ here) and compatible with in-
finitely strong anchoring at the bounding surfaces z =
±a/2 [Fig. 1(b)]:

u(x) = u0 cos
(πz
a

)
sin(qx). (8)

The total free energy of such an undulation in a cell of
volume V can be computed from Eqs. (4)-(7):

Ft =

(
B̄π2

a2
+ K̄q4 − µ0χ̄aH

2q2
)
V

8
u20. (9)
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At low fields, undulations are unfavored. An instability
occurs for a critical field Hc when the sign of the mini-
mum of Ft (with respect to q) changes from positive to
negative:

H2
c =

2
√
K̄B̄π

aµ0χ̄a
=

√
6K2K3πq0
aµ0χa

. (10)

This first-order approach also allows to compute the wave
vector amplitude qc at the threshold:

q2c =
π

a

√
B̄

K̄
=

2πq0
a

√
2K2

3K3
. (11)

The main predictions of the wavelengths and the
threshold of the HH model were satisfactorily checked
experimentally soon after the development of the theory.
However, the original model was found to be limited for
some experimental situations and thus was amended in-
crementally over time. In the following we will show that
this basic free energy balance is recapitulated in layered
systems subject to stresses both internal and external. In
doing so, we gather all of these effects under the Helfrich-
Hurault umbrella.

2. Further theoretical refinements and experiments

Further examination of the HH phenomenon soon
showed that undulations along a single direction were
rarely observed at the threshold except in large pitch sys-
tems, where a ∼ P0 (Hervet et al., 1973). Well-defined
square grid patterns were observed for large ratios of
a/P0. Delrieu extended the HH theory to examine two-
dimensional distortions [Fig. 1(c)] and showed that the
square lattice was indeed the periodic structure of lowest
energy at the onset of the undulations (Delrieu, 1974).

The model outlined in the last section is also too rough
to describe the evolution of the patterns above Hc. The
total free energy scales as the square of the undulation
amplitude u20 in Eq. (9). Therefore, it is necessary to
compute Ft with higher order terms included in the strain
to get a consistent undulation amplitude. These terms
provide a better description of the compression term in
Eq. (4), accounting for the tilt of the pseudolayers. In
terms of the phase field, a rotationally-invariant strain is
e = [1 − (∇φ)2]/2 (Kamien et al., 2009). In two dimen-
sions this gives to next-to-leading order:

fe =
B̄

2

[
∂u

∂z
− 1

2

(
∂u

∂x

)2
]2

+
K̄

2

(
∂2u

∂x2

)2

, (12)

which yields, after minimization of the free energy Ft:

u0 =
8

3

√
K̄

B̄

(
H2

H2
c

− 1

)
. (13)

However, the exact shape of the experimental pat-
terns was not scrutinized in the 1970s because of a lack
of appropriate experimental techniques. It was only
later, in a different cell geometry, that Ishikawa and O.
Lavrentovich closely examined an undulation pattern de-
veloping along a single direction (Ishikawa and Lavren-
tovich, 2001b). The two-dimensional system consisted
of cholesteric stripes formed in a cell with homeotropic
(perpendicular) anchoring of the liquid crystal director,
generating a fingerprint texture. The periodic stripes
were horizontally sandwiched between parallel spacers in
the cell, and a magnetic field was applied in the plane
of the cell, perpendicular to the stripes, allowing direct
examination of the patterns above the HH instability.
The study emphasized the neglected role of anchoring on
the bounding substrates, where distortions could still be
observed. A finite anchoring yields amplitude undula-
tions much larger than the value predicted by Eq. (13),
as well as a reduced threshold value. This result was
later confirmed for the square lattice of the original ge-
ometry by Senyuk et al., who used fluorescence confo-
cal polarizing microscopy (FCPM) to image, in three-
dimensions, the distorted pseudolayers under an electric
field (Senyuk et al., 2006). We expound upon the influ-
ence of anchoring and other surface energies on the HH
mechanism when we discuss liquid crystal shells.

The powerful FCPM technique was also employed to
analyze the evolution of the patterns generated by the
HH instability, in detail and with increasing fields. It con-
firmed that the hypothesis of a single Fourier mode in the
plane was valid only in a small range above the thresh-
old. When the field increases, the sinusoidal profile of the
square grid pattern gradually changes to a sawtooth one,
as predicted by Singer (Singer, 1993, 2000). The study
also showed that other thresholds are present at higher
fields, since the two-dimensional, square grid pattern was
destabilized in favor of a 1D structure of parallel walls at
about twice the first threshold.

The cholesteric mesophase is the system in which the
HH effect was first discovered and theorized. Later,
cholesteric systems also enabled subtle experiments for
further fundamental studies of the instability. Indeed,
the resulting patterns have the advantages of being easily
controlled with an external field and of being very regular
and stable. This last point even suggested possible ap-
plications of these systems, such as the design of switch-
able two-dimensional, diffractive gratings (Ryabchun and
Bobrovsky, 2018; Senyuk et al., 2005). However, a
cholesteric phase strained by an external field is not the
only scenario leading to an HH instability. In the very
first studies, it was already noted that cholesterics ex-
hibit square-grid patterns transiently under temperature
changes or mechanical deformation (Gerritsma and Van
Zanten, 1971b) in the absence of external fields. More-
over, the mechanical-strain-induced HH instability is ob-
served in many other lamellar or columnar systems, in-
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cluding smectic liquid crystals.

B. Mechanical layer strain in smectics

In smectics, molecules align and arrange into equally-
spaced parallel planes, creating molecule-thick layers
measurable as a one-dimensional density modulation.
The buckling instability of smectic phases was identified
shortly after the HH effect was observed in cholesteric
phases, but now with pseudolayers replaced by actual
layers. Unexpected laser light scattering was observed
in a smectic-A system, in which the nematic director is
parallel to the smectic layer normal. The system was pre-
sumed to be well-oriented, with the smectic layers paral-
lel to the bounding, homeotropic glass substrates, where
the molecules anchored perpendicularly to the bound-
ing surfaces. Yet, the scattered pattern observed was
well-defined, indicating the presence of periodic struc-
tures in the cell. The intensity of the scattered light was
shown to be extremely sensitive to the strain of the sam-
ple, strongly increasing with dilation but decreasing un-
der compression (Clark and Pershan, 1973; Delaye et al.,
1973).

1. Mechanically induced Helfrich-Hurault effect

The presence of a periodic pattern in strained smectic-
A samples was explained by considering displacements of
layers with ground state spacing a of the form:

u(x, z) = αz + u0 cos
(πz
a

)
sin(qx) (14)

were α = δa/a � 1 is the global applied strain (Clark
and Meyer, 1973). Eq (12) still describes the elastic free
energy density of the smectic-A phase, where the mod-
ulus K̄ = K is now the splay modulus of the director
and B̄ = B the bulk compression modulus. Together,
they traditionally define the smectic penetration depth,
λ =

√
K/B, a length usually comparable to the molec-

ular size. Expanding in α gives an expression similar to
Eq. (9) for the total elastic energy:

Ft =

(
Bπ2

a2
+Kq4 −Bαq2

)
V

8
u20, (15)

showing the formal analogy between a uniform strain in
a layered system and the application of an external field.
Following the analysis in the previous section, α plays the
role of H2, and so the threshold strain is αc = 2πλ/a,
above which undulations ensue (Clark and Meyer, 1973;
Napoli and Nobili, 2009; Singer, 1993, 2000). Note that
α > 0 for the analogy to hold – compression does not lead
to buckling in this system. Since λ is a molecular length
scale, the instability appears for very small changes of

spacing, δa ≈ 2πλ and with wavevector amplitude q2c =
π/aλ, in concert with Eq. (11).

This analysis holds for lamellar phases under dilation,
including cholesterics, but a quantitative difference may
be present. A thermotropic smectic-A phase or a short-
period, lyotropic lamellar phase is a much stiffer material
than large pitched cholesteric phases, such as the ones
studied by Senyuk et al. with FCPM (Senyuk et al.,
2006). This implies that, for sample cells of comparable
thicknesses, the pattern wavelengths are much smaller
in a lamellar phase, but also that the sinusoidal pro-
file of the undulation is rapidly destabilized above the
HH threshold. Indeed, smectic-A layers are often consid-
ered to be almost incompressible (B →∞), as shown by
the ubiquitous presence of topological defects called fo-
cal conic domains in disordered samples (Friedel, 1922).
These macroscopic structures consist of curved but par-
allel layers whose common focal surfaces are degenerated
into three-dimensional curves, an ellipse and a conjugate
hyperbola (Bouligand, 1972a). However, in experiments,
the dilation of layers is not expected to be absent from
the bulk, but rather confined in curves or, eventually,
surface discontinuities (Bidaux et al., 1973; Blanc and
Kleman, 1999). Because of this, in smectic-A samples,
the simple undulation pattern can only be optically ob-
served just above αc, provided thick enough samples are
used. Increasing the strain slightly above ≈ 1.7αc in-
duces focal lines (Clark and Hurd, 1982; Rosenblatt et al.,
1977). Rosenblatt et al. have described an ideal four-fold
grid pattern in terms of ordered assemblies of geometri-
cal stacks of parallel layers, introducing parabolic focal
conic defects and their corresponding domains (Rosen-
blatt et al., 1977). Such a structure almost satisfies the
homeotropic anchoring at the bounding plates while the
distortions from dilation remain confined in the line de-
fects. While the ideal square-grid pattern is rarely ob-
tained in smectics with a simple strain [a polygonal struc-
ture is often observed, (Rosenblatt et al., 1977)] it should
be noted that the simultaneous application of a shear
flow may help the formation of very long-range, ordered
square lattices of parabolic, focal conic domains (Chat-
terjee and Anna, 2012; Oswald and Ben-Abraham, 1982).

2. The role of dislocations and disclinations

Although these results all support the analogy between
electromagnetic field-induced and mechanically-induced
HH effects, a major difference exists in the temporal evo-
lution of the textures. Field-induced patterns are caused
by a gain in energy accompanying the reorientation of
the layers and are stable. On the contrary, after a uni-
form strain, the planar texture remains most favorable
and can be achieved if layers can be added to the slab.
Mechanically-induced textures are therefore transient or
metastable, as was emphasized by Clark, Meyer, and De-
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laye in 1973 (Clark and Meyer, 1973; Delaye et al., 1973).
An efficient mechanism to relax the strain was expected
to be the climb of edge dislocations, which are unavoid-
ably present in a smectic slab (Bartolino and Durand,
1977b; Ribotta and Durand, 1977). Note that a smectic-
A wedge cell with a tiny angle on the order of 10−3

rad already gives rise to a linear density of about one
dislocation per micron. This mechanism is difficult to
observe directly in smectic-A systems. It can, however,
be studied in the vicinity of the smectic-A to smectic-C
transition (Blanc et al., 2004) and is easily observed in
cholesteric phases due to their larger, micron-scale peri-
odicities, as shown in Fig. 3. We note that, technically,
cholesterics do not have dislocations but χ-disclinations
since they do not have a density modulation (de Gennes
and Prost, 1993).

FIG. 3 Relaxation of a dilated region displaying the
square grid pattern through the climb of an edge dislo-
cation loop during a compression-dilation sequence. The
cholesteric phase was obtained from mixing 4’-pentyl-4-
biphenyl-carbonitrile (5CB) with the chiral dopant (S)-4-
cyano-4’-(2-methylbutyl)biphenyl (CB15, 2.8 wt-%). Images
are obtained from bright field optical microscopy. The scale
bar is 200 µm.

Finally, we point out that buckling instabilities are
not only found in lamellar systems, but also in other
modulated phases such as columnar phases (Livolant and
Bouligand, 1986; Oswald et al., 1996). We expound more
upon the HH instability in a broad range of materials in
the last section of this review.

IV. LIQUID CRYSTAL SHELLS

In the previous section, we reviewed the history of the
HH instability in both cholesteric and smectic liquid crys-
tals confined between glass plates. All of the previous ex-
amples have been in systems with solid boundaries. How-
ever, in sensing applications and in bio-materials, liquid
crystal systems with periodic ground states are often in
contact with fluid (liquid or gas) phases. The boundary
conditions are then deformable, resulting in an interplay
between bulk and surface energies that gives rise to more
complex dynamics and ground states.

Liquid crystal shells are attractive systems for investi-
gating the effect of fluid interfaces on the HH instability,
due to shell thickness tunability and fine control over

the system’s boundary conditions through a wide-array
of techniques, ranging from tuning the system temper-
ature to altering the system chemistry (Darmon et al.,
2016a,b,c; Fernandez-Nieves et al., 2007; Koning et al.,
2013; Liang et al., 2013, 2011, 2012; Lopez-Leon et al.,
2012a; Lopez-Leon and Fernandez-Nieves, 2009, 2011;
Lopez-Leon et al., 2011a, 2012b, 2011b; Noh et al., 2020;
Seč et al., 2012a; Tran et al., 2017; Zhou et al., 2016).
Shells are water-in-liquid-crystal-in-water double emul-
sions, where a thin liquid crystal layer is confined be-
tween an inner water droplet and a continuous water
phase, produced in microfluidic devices made of nested
glass capillaries [Fig. 4(a)]. In these devices, a water-in-
liquid-crystal compound jet is sheared by an outer aque-
ous solution, leading to its breakup into water droplets
that are encapsulated by liquid crystal (Fernandez-Nieves
et al., 2007; Utada et al., 2005). This technique en-
ables both the production of highly monodisperse sam-
ples and independent control over the size of the inner
and outer diameters. The thickness and curvature of the
shells can be selected by adjusting flow rates during mi-
crofluidic production. The shell thickness can also be
varied post-production through osmotic swelling or de-
swelling, accomplished by changing the concentration of
a solute, such as salt or sugar, in the surrounding aqueous
phases (Darmon et al., 2016b; Lopez-Leon et al., 2011b;
Seč et al., 2012a; Tran et al., 2017; Tu and Lee, 2012).
Osmotically swelling the liquid crystal shells is useful
for observing the temporal evolution of thickness- or
curvature-dependent phenomena (Darmon et al., 2016b;
Durey et al., 2020b; Lopez-Leon et al., 2011b; Tran and
Bishop, 2020; Urbanski et al., 2017).

Furthermore, the anchoring at the inner and outer
water-liquid crystal interfaces of the shell can be set in-
dependently. In the simplest case, shells of 4’-pentyl-4-
biphenyl-carbonitrile (5CB) in contact with pure water
have matching planar boundary conditions on both the
inner and outer shell surfaces. The planar anchoring is
degenerate, which means that the director is free to ro-
tate on the surfaces. The planar anchoring strength can
be increased with the introduction of polyvinyl alcohol
(PVA) in the aqueous phases. This polymer surfactant
also increases the shell stability by decreasing the water-
liquid crystal interfacial tension and by inducing a repul-
sive force – a disjoining pressure – when the inner and
outer interfaces get closer. [Fig. 4(b), left]. The increased
shell stability allows for the shell anchoring conditions to
be dynamically and gradually tuned with simple modifi-
cations to the system, mainly through two mechanisms.

The first method involves quasi-statically bringing the
system temperature a few tenths of a degree Celsius be-
low the clearing point of the bulk 5CB. The shells un-
dergo a series of anchoring transitions as the tempera-
ture rises, from matching planar anchoring on the inner
and outer shell surfaces, to hybrid anchoring, and then
to matching homeotropic anchoring, before fully transi-
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(a)

(b)

FIG. 4 (a) Microphotographs of capillary devices used to produce shells. The two photographs show the typical maximal (left)
and minimal (right) sizes one can attain with a given device geometry. Scale bar is 200 µm. (b) Diagrams for techniques used
to change the anchoring at a water / liquid crystal interface. In the presence of PVA, the anchoring is strongly planar (left).
The system transitions to a perpendicular orientation when its temperature is brought a couple tenths of a degree Celsius
below the clearing point of the bulk 5CB, resulting from the presence of an interfacial melted layer of 5CB and PVA (center).
Homeotropic anchoring can also be regulated by adding surfactants to the aqueous phase (right). The amount of adsorbed
surfactant to the water-liquid crystal interface determines the homeotropic anchoring strength.

tioning to the isotropic phase (Durey et al., 2020a). This
behavior has been linked to the PVA polymer at the shell
interfaces, which renders the liquid crystal more disor-
dered near the interfaces compared to the bulk. The
shell interfaces then favor the nucleation of the isotropic
phase. The melted layer and the bulk nematic create a
new, low-anchoring-strength interface accounting for the
changes in anchoring observed in the shell with increasing
temperature [Fig. 4(b), middle].

The second technique relies on the dissolution of sur-
factants in the water phases. As small amphiphilic
molecules adsorb on the shells’ interfaces, their aliphatic
tails force the liquid crystal molecules to reorient, perpen-
dicular to the boundary, as illustrated in the right-most
panel of Fig. 4(b) (Drzaic and Scheffer, 1997; Noh et al.,
2016; Poulin and Weitz, 1998; Sharma and Lagerwall,
2018). This yields homeotropic boundary conditions with
a tunable anchoring strength that increases with the sur-
factant surface coverage (Brake and Abbott, 2002; Brake
et al., 2003a,b; Carlton et al., 2012; Lockwood et al.,
2008; Ramezani-Dakhel et al., 2018). For a cholesteric
twisting along a water-liquid crystal interface, it has been
shown that surfactants localize in the homeotropic re-
gions and are excluded from planar regions (Fig. 5) (Tran
et al., 2018). This cross-communication between the bulk
and the surface results in patterned chemical heterogene-
ity at the cholesteric interface and could manifest in other
liquid crystal phases in which the bulk competes with the
surface anchoring. Responsive surfactants enable further
control of surfactant adsorption and conformation at the
interface with means beyond the surfactant concentra-
tion, such as through temperature, pH, and UV light
intensity (Dogishi et al., 2018; Kwon et al., 2016; Sakai

i

0.005 mM 
DLPC

ii

0.01 mM 
DLPC

iii

0.05 mM 
DLPC

FIG. 5 Laser scanning confocal micrographs of the lipid
surfactant 1,2-dilauroyl-sn-glycero-3- phosphocholin (DLPC),
labeled with 1 mol% Texas Red 1,2-dihexadecanoyl-sn-
glycero-3- phosphoethanolamine, triethylammonium salt
(TR-DHPE) demonstrates the cross-communication of the
liquid crystal and the adsorbed surfactant. The surfactant
causes homeotropic anchoring, inducing stripe patterns in the
cholesteric. The cholesteric subsequently patterns the surfac-
tant, causing them to segregate into stripes at the cholesteric-
water interface. As the surfactant concentration increases
from i to iii, surface stripes become wider and more disor-
dered (ii) until regions where the cholesteric twist violates
the homeotropic anchoring condition are forced away from
the surface, as a result of the lipids saturating the interface
(iii). Reproduced from (Tran et al., 2018).

et al., 2019; Sharma et al., 2019).

The flexibility of the shell system thus lends itself to
investigating the role of surface tension, anchoring, and
boundary curvature on the HH instability. In the follow-
ing sections, the outlined techniques are employed to in-
vestigate undulating instabilities in cholesteric and smec-
tic shells.
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V. CHOLESTERIC SHELLS

Since the classic HH instability was first discovered
in cholesterics, we begin by examining cholesteric shells
made of 5CB doped with a chiral dopant, (S)-4-cyano-4’-
(2-methylbutyl)biphenyl (CB15). In the following, we re-
view how undulations can develop in the cholesteric pseu-
dolayers in response to topological frustration, as well as
changes in the liquid crystal anchoring. We also review
how undulations occur not only within the bulk, but also
at the interface itself. Cholesteric shells demonstrate how
fluid boundaries play a significant role in the HH insta-
bility, while also illustrating that the instability is, at its
core, a response to local, geometrical frustration.

A. Planar cholesteric shells

FIG. 6 χ+1 disclination line in a planar cholesteric
shell: experiment and simulation. (a) Schematics of χ+1,

τ−1/2 and λ+1/2 disclinations in cholesterics. (b) A simulated
cross section of an m = +1 defect. Blue and yellow regions
respectively indicate zones of high splay and bend distortion;
red indicates director singularities. (c) Side view of a shell
with twom = +1 defects between crossed polarizers, revealing
a visible nonuniform structure of the defect core, which is
enlarged in (d). Scale bars are 20 µm. Reproduced from
(Darmon et al., 2016a).

Planar anchoring in cholesteric shells frustrates the
bulk ordering and induces structures that can be seen
as a manifestation of the HH instability, broadly con-
strued. Why is there frustration when the pitch axis
does not lie in the tangent plane of the shell? The an-
swer is topology! Since it is the director that lies in the
planar shell’s tangent plane, the Poincaré-Brouwer-Hopf
theorem requires that the sum of the indices of the zeros
of a line field is equal to the Euler character of the shell
(Brouwer, 1911; Hopf, 1927; Poincaré, 1885). Zeros of
the line field are topological defects – places where the
local orientation is undefined, while the index of the zero
is its signed winding. For a sphere, the Euler character
is 2, and so the net winding of the defects on the shell
surface must be 2 × 2π, manifesting as four +1/2 de-
fects, two +1 defects, or one +2 defect, two +1/2 defects
and a +1 defect, or three +1 defects and one −1 defect,
etc. Although the necessity of a minimum number of
defects can be thought of as topological frustration that
arises from the system’s global curvature, the defects can
also be viewed as manifesting from local incompatibili-
ties, i.e., as geometrical frustration. Moving inward from
the shell surface along its normal is equivalent to moving
along the cholesteric pitch axis, by definition. Thus there
is a slightly smaller sphere just below the outer surface
which also has planar anchoring and thereby must also
have these defects (note that the global rotation of the
director field does not contribute to the defect charge).
If the pitch axis remains radial from the outer to the in-
ner surface of the shell, then the shell would consist of
a series of concentric spheres each with two-dimensional
defects. From the three-dimensional perspective, these
defects are not independent and would connect up into
line defects with net winding 4π. This is seen in pla-
nar nematic shells, where the shell thickness controls
the amount and winding number of defects (Fernandez-
Nieves et al., 2007; Koning et al., 2016, 2013; Lopez-Leon
et al., 2011b; Vitelli and Nelson, 2006). Recall, however,
that in three dimensions, integer-winding defect lines are
not topologically stable: they can “escape into the third
dimension” (Meyer, 1973). Of course, this deformation
has an associated bend energy (and possibly twist) and
so for thin shells, this does not happen. However, as
the shells thicken, the director goes smoothly from being
horizontal (parallel to the tangent plane of the sphere) in
the periphery of the defect to being vertical at the core.
The only singularities left in the system after this escape
are point defects, or “boojums,” that have been “pushed
away” to the shell surfaces (Lavrentovich, 1998; Volovik
and Lavrentovich, 1983).

However, cholesteric defects are considerably more
complex than nematic defects. While a nematic is char-
acterized by a single director field, n, an unfrustrated
cholesteric is properly described at large scales by three,
mutually-orthogonal, line fields: the director n, the pitch
axis P̂, and their cross product /n ≡ n× P̂. Winding de-
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fects are now characterized by both their strength and
by the axis around which they rotate. Adopting the
notation by Friedel and Kleman (Friedel and Kleman,
1970), defects where the pitch axis and /n rotate around
the director are labeled λ. On the other hand, defects
where /n and the director axis rotate around the pitch
axis are labeled χ. Finally, defects in both the director
and pitch axis, where the two rotate about /n are labeled
τ . Examples of each of these defects are illustrated in
Fig. 6(a). Though similar in their algebra to defects in
biaxial nematics (Mermin, 1979), the existence of pseu-
dolayers spoils a precise correspondence (Beller et al.,
2014). However, just as in biaxial nematics, defects can-
not escape into the third dimension: as a defect in the
director attempts to escape, a new defect in either P̂
or /n appears. In the näıve mapping between cholesteric
pseudolayers and smectics, the χ defects correspond to
dislocations, while the λ and τ defects are the standard
disclinations. It should be noted that while the λ defects
do not have a singularity in the director field, they have
a singularity in the cholesteric structure since the pitch
axis is undefined.

To illustrate a χ defect, it is useful to view them as
line disclinations within a three-dimensional nematic, but
with an added modulation along their length due to the
cholesteric twist. Consider any point defect with m 6= 1
in a two-dimensional nematic: locally rotating the di-
rector by a constant angle at every point of the plane
will simply induce a global rotation of the defect. Thus,
a χ line disclination with m 6= 1 in a cholesteric can
be pictured as a two-dimensional point defect extended
in the third direction, which is then smoothly twisted
[Fig. 7(a)].

However, we see the possibility of a more complex χ
defect within a cholesteric shell that has (degenerate) pla-
nar anchoring on the inner and outer boundary. A cross-
polarized micrograph of a shell with this morphology is
in Fig. 6(c). The pseudolayers form concentric spheres
with the smallest and largest corresponding to the shell
boundaries. The signature of the pseudolayers is visible
as a series of concentric dark rings, spaced apart by half
of the pitch. The twist axis lies along the radial direction,
since it is perpendicular to those layers. One can imagine
that defects in cholesteric shells are radially-oriented, sin-
gular lines spanning the shell thickness. Structures that
seem like radial lines are visible in Fig. 6(c). However, at
higher resolution, the defects appear to be more complex
than a simple line, with periodic distortions along their
length. We can imagine the defect within the shell as a
charge +1 χ disclination running from the inner to the
outer surface, locally depicted in Fig. 7(b)-i. Compared
to χ disclinations with m 6= 1, rotating the director of a
+1 χ disclination produces an alternating pattern of pure
splay and pure bend defects separated by a quarter pitch.
Were we to trace out a surface of constant director orien-
tation, we would find something with the topology of a

helicoid – a dislocation in the pseudolayers, as promised.
However, the defects deform – in the plane perpendicular
to the disclination, the director field attempts to unwind.

Though in the nematic, escaping into the third dimen-
sion could lower the amount of elastic distortion in the
system and remove any singularities in the director, this
is not possible in a cholesteric. The cholesteric’s triad of
line fields prevents a full escape of the line singularity.
The singularity can only escape in alternating regions
with a periodicity set by the pitch. Regions of high splay
retain director discontinuities at their centers, while the
regions of high bend in between are escaped. By escap-
ing, these bend regions become λ+1 defects. At the core
of a λ+1 defect, the director is vertical (i.e., radial in
the reference frame of the shell), and moving away from
the core, the director twists smoothly in all directions,
becoming points of double twist. On both interfaces of
the shell, the semi-escaped χ+1 line terminates with a
boojum as in the nematic. This semi-escaped χ+1 line is
shown in Fig. 7(b)-ii.

Moreover, the singularity in Fig. 7(b)-ii can relax fur-
ther into the structure in Fig. 7(b)-iii, to reduce the over-
all amount of elastic distortion. +1 splay defects can
open up into looped +1/2 disclinations. Inside those de-
fect rings, the director field is uniformly vertical. The
vertically-oriented director field at the core of the λ+1 de-
fects similarly expands. The line singularity in Fig. 7(b)-
i is replaced by a vertically aligned director field (i.e.,
radially aligned in the reference frame of the shell), as
depicted in Fig. 6(b) (Darmon et al., 2016a,b; Seč et al.,
2012b).

With the singularity in Fig. 7(b)-iii being the most
energetically favorable, we can imagine how the defects
form in experimental systems. Looking at a vertical
cross-section of the relaxed, semi-escaped χ+1 line, there
is a clear incompatibility in the director orientation be-
tween the center of the singularity and the director field
far from it. To connect the vertical director lines at the
center of the relaxed, semi-escaped χ+1 line with the con-
centric planar layers that constitute the rest of the shell,
undulations along the singularity can result (Fig. 7(b)-
iii, right). The “crests” of the undulations can generate
λ+1/2 disclinations, while the “valleys” can create τ−1/2

disclinations, reminiscent of alternating λ±1/2 defects of-
ten seen in cholesterics (Beller et al., 2014). As this sys-
tem has rotational invariance around the axis of the orig-
inal χ+1 line, the τ−1/2 and λ+1/2 are looped defects, as
illustrated in Fig. 7(b), left (Darmon et al., 2016a,b; Seč
et al., 2012b).

The semi-escaped singularities in cholesteric shells can
be viewed through the lens of the HH instability. The
mismatch between the vertical director field lines and
the far-field, horizontal layers embodies geometrical frus-
tration that is topologically-induced. As in the classical
HH systems, the frustration is relieved through periodic
elastic distortions that can generate a regular array of



13

(a) (b)
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FIG. 7 (a) Schematic of the structure of a χ+1/2 line, which consists of a smoothly twisted m = +1/2 defect line. The red line
denotes the singularity, and the red dots mark the intersection of that line with the represented cross sections of the director
field. Blue lines are drawn to guide the eye towards the rotation of the m = +1/2 defects. (b) Schematics of the χ+1 line. i.
“Textbook” version of the χ+1 line seen as alternating bend and splay m = +1 director defects along a vertical singular line.
ii. Semi-escaped version of i., in which the line singularity “escapes” in between the splay defects, transforming regions of high
bend into λ+1 defects. iii. The line in ii. is further relaxed. In the left panel, the m = +1 splay point defects are relaxed into
m = +1/2 loops, and the core of the λ+1 defects also expand. This relaxation creates a column of vertically aligned nematic
in the center of the defect. This is apparent in the right panel, which depicts the director as black lines within a vertical cross
section. In the right panel, connecting the horizontal layers of the far field with the vertical layers in the center frustrates
the system, generating undulations reminiscent of the Helfrich-Hurault instability. The undulations produce periodic defects,
highlighted by dashed boxes (top box: λ+1/2, bottom box: τ−1/2).

defects. However, unlike the original HH analysis, the
undulation wavelength in planar cholesteric shells is set
by the pitch — the pseudolayer periodicity. This differ-
ence arises from how the geometrical frustration in pla-
nar cholesteric shells is induced by the system’s global
curvature, rather than by an external field. Defects in
planar cholesteric shells reveal how topology, i.e., global
curvature, can give rise to local, geometrical frustration
in layered liquid crystal systems. That the frustration in
planar cholesteric shells is relieved through periodic dis-
tortions demonstrates the ubiquity of the HH instability,
interpreted in this broad sense of relieving layer strain
through an undulation with its own periodicity. In this
case, the “undulation” is a periodic array of defects.

B. Homeotropic cholesteric shells

Beyond applied external fields and topological frus-
tration, the competition between the interface and the
bulk can also trigger the HH instability, exemplified by
cholesteric shells with homeotropic anchoring, shown in
Fig. 8. Homeotropic anchoring conditions are particu-
larly frustrating for cholesterics, as the anchoring always
favors an untwisted configuration of molecules and is in-
compatible with the pseudolayer structure preferred by
the bulk. This incompatibility induces defect structures
(arrays of disclination lines), much like the ones shown
in Fig. 7. However, unlike the case of planar anchor-
ing discussed in the previous subsection, the homeotropic
cholesteric shell typically has defects tiling the entire sur-

FIG. 8 (a) Polarizing micrograph of a cholesteric shell with
homeotropic anchoring, due to the presence of a surfactant
in the surrounding aqueous solution. (b) A polymerized and
dried cholesteric shell with homeotropic anchoring accentu-
ates interfacial deformations due to the underlying focal conic
domains. Scanning electron micrographs courtesy of Daeseok
Kim.

face – not just at a few, topologically-required points, ev-
idenced by the micrograph in Fig. 8(a). Indeed, the an-
choring incompatibility is an example of local frustration.
Additionally, the interface itself may locally undulate and
deform in response to these defects, to further accom-
modate the anchoring conditions, shown in the scanning
electron micrograph in Fig. 8(b). In this case, the surface
tension σ must necessarily play a role in establishing the
shape of the fluid interface.

Consider the energy contributions of the boundary. A
fluid interface introduces both an anchoring energy and
a surface tension σ that will generally compete with the
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bulk free energy. These boundary effects may be signifi-
cant, distorting the interface and modulating the order-
ing within the layered system (Meister et al., 1996a). As-
suming a simple model of the interface as a height field3

h ≡ h(x, y), a general surface energy at a fluid interface
would have the form

fs =

∫
d2x

√
1 + (∇h)2 [σ +A(ν̂,n)] , (16)

where σ is a surface tension and A(ν̂,n) is an anchoring
strength that will depend on the orientation between the
interface normal ν̂ and the nematic director n at the
surface. n is perpendicular to the pseudolayer normal N
in cholesteric phases, but Eq. 16 holds generally for all
lamellar liquid crystals (n can be parallel or at an angle
toN for smectic-A or other smectic phases, respectively).

FIG. 9 An undulated cholesteric fluid interface, showing how
the incompatible homeotropic anchoring at the surface forces
the bulk layers to undulate (orange line) and turn upward,
forming focal conic domain “hills”. Reproduced from (Agez
et al., 2011).

The anchoring term must be invariant under n→ −n,
so we can write A(ν̂,n) = W [1− (ν̂ ·n)2]/2, with an an-
choring strength W > 0 for homeotropic alignment and
W < 0 for degenerate planar alignment (Rapini and Pa-
poular, 1969). Note that this anchoring energy can com-
pete with the periodic ordering of the bulk. This is nec-
essarily the case for cholesterics (Meister et al., 1996a):
if the cholesteric pitch axis is oriented in any direction
away from the surface normal, the twist of the cholesteric
competes with the boundary condition of that surface,

3 Note that h(x, y) is a Lagrangian displacement variable of the
surface while u(x, y, z) is the Eulerian displacement of the layers.
The difference matters at nonlinear order, in principle (Kamien
and Lubensky, 1999).

whether planar or homeotropic. Indeed, when W > 0,
there is no configuration that is compatible with a pe-
riodic cholesteric and the surface would tend to unwind
the cholesteric, competing against the ground state pitch.
The anchoring therefore takes the role of an applied, elec-
tromagnetic field, but here, the reorientation of the di-
rector occurs only at the surface, instead of throughout
the entire system. Just as in the classic system, pre-
sented in Sec. III, anchoring can also trigger the HH-
instability, inducing undulations in the cholesteric pseu-
dolayers. These reorientations undulate the layers just
underneath the cholesteric surface, as indicated by the
orange line in Fig. 9.

The onset of undulations is not surprising when the
magnitudes of anchoring, surface tension, and bulk elas-
tic energies of typical systems are considered. For ex-
ample, in common cyanobiphenyl-type liquid crystals
with chiral dopants that induce micron-scale pitches,
the nematic-isotropic or aqueous interface has anchor-
ing strength W ∼ 102-105 kT/µm2 (Faetti and Palleschi,
1984) and surface tension σ ∼ 105-106 kT/µm2 (Kim
et al., 2004). The bulk elasticity terms have magnitudes
K1,2,3 ∼ 103 kT/µm (Bradshaw et al., 1985) and so when
the liquid crystal is forced to have defects (with cores
on the scale of 1-10 nm) to accommodate a frustrating
boundary condition, the defects can contribute energy
per unit area on the order of Ki/(10 nm) ∼ 105 kT/µm2.
Therefore, for the cholesterics considered here, all of these
energetic contributions can compete with one another.

In cholesterics, the ratio σ/W between the interface
surface tension σ and the homeotropic anchoring strength
W determines whether one finds a smooth (σ/W � 1)
or cusped (σ/W � 1) interface shape (Meister et al.,
1996a). Moreover, depending on how the cholesteric rear-
ranges near the interface, the interface shape will change
to accommodate any defect structures. For example, for
an array of disclination lines, the interface may buckle
into a wrinkled shape. These considerations also come up
near the interface between a cholesteric and an isotropic
phase, which favors homeotropic alignment, as discussed
in Sec. IV (Durey et al., 2020a; Silvestre et al., 2016).

When bulk layer distortions become large and one is far
above the threshold for the undulation instability, more
complex states emerge. Secondary instabilities are pos-
sible, where undulations develop on top of the original
undulations. For cholesterics, layers may undulate in two
orthogonal directions, creating an array of “focal conic”
domains (Meister et al., 1996b; Senyuk et al., 2006), seen
also in the classic smectic system detailed in Sec. III.B.
In extreme cases, such as with very strong incompati-
ble anchoring, the layer structure will strongly distort or
break up entirely, yielding intricate defect structures (Seč
et al., 2014; Yada et al., 2003).

Multi-scale simulation methods are often employed to
capture the interplay between the anchoring energy, the
bulk elasticity, and the interfacial surface energy (Lavren-
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FIG. 10 (a) Cross section through a cholesteric shell with a
free, isotropic-cholesteric interface. The layers are distorted
near the boundary and concentric in the bulk. Arrows indi-
cate “hills” formed by focal conic domains. The color indi-
cates the director n orientation relative to the radial direction
r̂. The pitch P0 to shell thickness t ratio is t/P0 ≈ 2. (b) The
distorted, outer interface is shown, with the director distribu-
tion just underneath the surface colored by |n·r̂|. Reproduced
from (Lavrentovich and Tran, 2020).

tovich and Tran, 2020; Rofouie et al., 2015; Tran et al.,
2017). An example is shown in Fig. 10. We simulate
a cholesteric liquid crystal near coexistence between a
cholesteric phase (with a pitch, P0) and an isotropic
phase. By initializing a shell of the cholesteric inside a
bulk isotropic phase, it is possible to generate isotropic-
cholesteric, fluid interfaces. As previously mentioned in
Sec. IV, these interfaces have a weakly homeotropic an-
choring for the cholesteric, creating an anchoring incom-
patible with the concentric spherical layer arrangement
in the droplet bulk. We see in Fig. 10 that there is
layer reorientation and formation of focal conic domain
“hills” at the shell surface. The parameters and details of
the simulation are described in (Lavrentovich and Tran,
2020). These focal conic domain hills are also visible in
the cholesteric surface relief, shown in Fig. 9. Accounting
for a deformable boundary and surface tension in the HH
instability allows us to capture the interfacial deforma-
tions seen in homeotropic cholesteric shells.

C. Anchoring transitions

The HH instability can also describe transient states
that arise from transitions between the planar and
homeotropic structures detailed in the preceding subsec-
tions. The changing anchoring is analogous to the appli-
cation of an external field, but with molecular realign-
ment occurring only at the confining surfaces. As in the
classical HH instability, transitioning from one type of
anchoring to another at an interface causes the cholesteric
pseudolayers to reorganize in order to accommodate the
new boundary condition, leading to frustration in the sys-

P0

CLC H2O

FIG. 11 Schematic of a cholesteric liquid crystal shell. The
red insets illustrate how changing the anchoring at the shell
interface alters the pitch axis orientation, which can lead to
a HH-like instability in the bulk (bottom right). Reproduced
from (Lavrentovich and Tran, 2020).

tem. As described in the previous subsection, the frus-
tration in the layers can be relieved by an HH-like, un-
dulation instability, as illustrated for a cholesteric shell
in Fig. 11 (Lavrentovich and Tran, 2020). In this subsec-
tion, we focus on modeling the onset of the HH instability
triggered by anchoring transitions.

i ii

i ii

FIG. 12 (a) An initially planar cholesteric shell (i) has 4
topological defects with charges totaling +2. After the shell
is introduced to a solution including 10 mM sodium dodecyl
sulfate, the anchoring at the outer shell surface transitions
from planar to homeotropic, tilting the pitch axis away from
the radial direction. Large stripes are generated at the shell
interface with a periodicity around 10 µm, twice the pitch
(ii). Arrows indicate defect locations. (b) An initially planar
cholesteric shell (i) with a 1.2 µm pitch, a 6.6 µm diameter and
a 2.1 µm thickness is minimized under moderate homeotropic
anchoring conditions (∼ 2×10−4 J/m2). After t = 5000 min-
imization steps, the cholesteric pseudolayers undulate (ii) and
generate stripes, shown in the inset. Adapted from (Lavren-
tovich and Tran, 2020).

As detailed in Sec. IV, the anchoring on a cholesteric
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FIG. 13 (a) A thick cholesteric shell in an aqueous solution with 7 mM sodium dodecyl sulfate, 1 wt % polyvinyl alcohol,
and 0.1 M sodium chloride has a focal conic domain texture initially. The pitch is 5 µm. The shell is transferred to another,
similar aqueous solution, but without sodium dodecyl sulfate, and the texture evolves over time (i-iv). As the outer interface
loses homeotropic anchoring strength with surfactant removal to the surrounding solution, the planar anchoring stripes widen
(i-ii). When the stripes widen to the point of becoming greater than around twice the pitch (∼ 10 µm), the planar stripes fill
in with perpendicular stripes of a second periodicity that is also around twice the pitch. Scale bars are 25 µm. (b) An initially
homeotropic cholesteric shell (i) with a 0.18 µm pitch, a 0.84 µm diameter and a 0.18 µm thickness has a pitch axis oriented
along the ẑ-axis. The shell is minimized under planar anchoring conditions (∼ 2 × 10−4 J/m2), resulting in a local energy
minimum in which the stripes are partially unwound (ii), with a side view on the left and a top view on the right. Undulations
are visible at the poles, where the stripes have unwound. Adapted from (Lavrentovich and Tran, 2020).

shell can be tuned experimentally by the addition or re-
moval of surfactant in the surrounding aqueous phases.
For the planar to homeotropic anchoring transition, in
which surfactant is added to the outer aqueous solu-
tion, stripes with a 2P0 periodicity cover the cholesteric
shell surface without forming a distinguishable pattern
(Fig. 12). Defects in the nematic director are still present
in the system but do not influence the conformation of
the stripes beyond their termination at said defects, seen
in Fig. 12(a)-ii. Similar stripe patterns are captured
in Landau-de Gennes simulations of an initially planar
cholesteric shell set to minimize under homeotropic an-
choring conditions [Fig. 12(b)]. Large, transient stripes
are formed on the shell surfaces in the beginning of
the minimization, similar to experimental observations.
Cross sections of the simulated shell reveal that the ori-
gin of the large stripes are undulations of the initially
concentric, cholesteric pseudolayers [Fig.12(b)-ii]. Fur-
thermore, layer undulations are greatest in cross sections
that intersect with the radial director defect, indicating
that defects are energetically preferred sites for pitch axis
and, consequently, cholesteric layer rearrangement.

The transition to planar anchoring similarly produces
large surface stripes, where surfactant is removed from
the outer aqueous solution. However, unlike for the
transition to homeotropic anchoring, the composition of
stripe instabilities for planar transitions is dictated by

the initial shell patterning, seen in Fig. 13(a). As sur-
factant leaves the interface, weakening the homeotropic
anchoring, the planar stripes of the focal conic domain
widen until they reach a width ∼ 2P0, after which the
planar stripes are filled by orthogonal stripes that have a
2P0 periodicity. The overall double spiralled structure of
the initial focal conic domain is preserved [Fig. 13(a)-iv].

We note that the curvature and composition of the or-
thogonal stripes in the planar transition is reminiscent
of Bouligand arches, illustrated in Fig. 14(a). Bouli-
gand’s 1968 work on the chromosomes of dinoflagellates
attributed bands of bow-shaped lines found in thin sec-
tions of chromosomes to the chiral ordering of filaments
in the chromosomes (Bouligand et al., 1968). The arches
that fill in the striped texture of chromosomes are a result
of viewing them on a surface that cuts the cholesteric at
an angle from the pitch axis.

Indeed, anchoring transitions force the pitch axis to
tilt at an angle to the interface, as illustrated in Fig. 11.
It is therefore plausible that the structure of the stripe
instability is influenced by Bouligand’s geometrical ar-
guments. Specifically, the micrograph of Fig. 13(a)-iv is
evocative of the 1984 study by Bouligand and Livolant
of cholesteric spherulites (Bouligand and Livolant, 1984).
Fig. 14 reproduces their illustration that describes the
origin of double spiralled structures seen in their exper-
iments. A cholesteric with a vertical, unfrustrated pitch
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side

top

FIG. 14 (a) Schematic of a cholesteric liquid crystal, with its
pitch axis oriented vertically. Planes S1 and S2 slice into the
cholesteric at an angle to the pitch axis. A curving, periodic
texture, called Bouligand arches, is apparent on the surfaces

of the planes. Plane S
′
1 simplifies the pattern on plane S1,

highlighting how Bouligand arches reveal cholesteric ordering
of the sliced material. Reproduced from (Bouligand et al.,
1968). (b) A cholesteric with a vertical pitch axis is cut into
a hill-like shape (side view). Viewing the hill from the top
reveals Bouligand arches that follow a double spiral pattern
(top). The double spiral pattern is emphasized by black lines.
Reproduced from (Bouligand and Livolant, 1984).

axis is drawn with an angled view in Fig. 14(b) and is cut
into the shape of a hill. Viewing this hill from the top
[Fig. 14(b), top] uncovers a double spiral pattern that is
filled in by Bouligand arches.

Although this geometrical model hints at the bulk
cholesteric arrangement, this description does not ac-
count for the periodicity of the orthogonal stripes
that appear to follow an arch-like pattern. As with
the homeotropic transition, the organization of the
cholesteric layers can also be examined through Landau-
de Gennes simulations (Lavrentovich and Tran, 2020).
Fig. 13(b) depicts a cholesteric shell with a pitch axis
oriented along the z-axis. The focal conic domains are
slightly stretched at the poles, resulting in greater regions
of planar anchoring that are marked in blue by the n · r̂
color map. Minimizing this shell under planar anchor-
ing conditions causes the stretched focal conic domains
to unwind, generating undulating, orthogonal stripes in
regions where the planar anchoring is increased, similar
to experimental observations, shown in Fig. 13(a). Cross
sections of the shell after minimization [Fig. 13(b)-ii] re-
veal that the orthogonal stripes arise from undulation of

the underlying cholesteric layers.

We can build a HH-type model of the planar anchor-
ing transition in cholesteric shells by estimating the en-
ergy scales associated with imposing an anchoring that
induces a tilt in the existing cholesteric pseudolayers on
a local patch of the emulsion surface. As detailed in
(Lavrentovich and Tran, 2020), the free energy of the
cholesteric pseudolayers in a small, flat area of the shell
surface can be written in the form given by Eq. (12).
Any antagonistic anchoring would tend to reorient the
pseudolayers. The associated anchoring energy would
have the form of Eq. (16). This anchoring energy in-
duces an undulatory instability (a modulation of u in a
direction perpendicular to the layers) whenever the an-

choring strength |W | > π
√
K̄B̄ [see Eq. (12)]. More-

over, the wavevector associated with the modulation is
qc = (B̄/K̄)1/4(π/2`)1/2, with ` being the size of the de-
formation region near the droplet surface (typically on
the order of the pitch). For the cholesteric shells shown
in Fig. 13(a), these heuristic arguments give reasonable
estimates for both the critical |W | ≈ 10−5 J/m2 and the
modulation wavelength 2π/qc ∼ 10 µm (Lavrentovich
and Tran, 2020).

For both the planar and homeotropic transitions, the
anchoring-induced, HH instability arises from local geo-
metrical frustration between the bulk layer arrangement
and the prescribed molecular orientation at the interface.
Yet, the conformation of the resultant stripes differs be-
tween the two anchoring transitions. For the transition to
homeotropic anchoring, the stripes are disordered, with
the topologically-required nematic defects serving as fa-
vorable sites for initial pitch axis reorientation. For the
homeotropic transition, the pitch axis is initially radial
and tilts to become tangent to the interface. Since all di-
rections away from radial are equivalent, the onset of the
stripe instability is disordered. For planar transitions,
pitch axis reorientation occurs first at the pitch defects,
evidenced by the unwinding of focal conic domains, where
the pitch axis begins to tilt towards radial. Unlike the
homeotropic transition, pitch axis reorientation is more
constrained. The shortest path for the initial position of
the pitch axis to tilt is along the plane orthogonal to the
interface that includes the pitch axis. This constraint re-
sults in the onset of stripes being orthogonal to, and thus
ordered by, the starting stripe pattern, set by the initially
tangent pitch axis. Note that the presence of topolog-
ical defects is not necessary for the anchoring-induced
instability to occur. Although the defects generated by
topological frustration influence the conformation of the
stripe instability, the root cause of the stripe instability
remains a local, geometrical incompatibility between the
bulk cholesteric layers and the anchoring condition.
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VI. SMECTIC SHELLS

In the previous section, we introduced the concept of
the HH instability in the context of cholesteric shells,
where the instability arises as a way of reconciling antag-
onistic boundary conditions. This is just one of the mul-
tiple ways in which geometrical frustration can perturb
the structure of a layered system embedded in a spherical
shell. Local curvature and global topological constraints
can also induce strain in the layers and set off an undula-
tion instability, exemplified by smectic shells with planar
boundary conditions.

A. Planar smectic shells in experiments

The first study of smectic shells involved bringing pla-
nar nematic shells close to the nematic/smectic phase
transition temperature, where the elastic ratio K3/K1

diverges (Liang et al., 2012; Lopez-Leon et al., 2011a).
This operation entails the formation of a bend-free state
in which the nematic defects relocate to the equator.
At the transition, a periodic pattern forms on the shell
surface. In Fig. 15(a) and (b) we show cross-polarized
micrographs of the lower and upper hemispheres of the
same shell. We see four +1/2 defects required by topol-
ogy and inherited from the nematic state, as described
in Sec. V.A. Here the four defects are equally spaced
along the equator. Additionally, two sets of longitudi-
nal stripes divide the shell into crescent domains. The
first set of stripes connects defects 3 and 4 by semi-
circles that run along the upper hemisphere of the shell,
while the second set of stripes connects defects 1 and

2 by semi-circles that run along the lower hemisphere
of the shell. The first set of stripes is visible on the up-
per hemisphere [see the highlighted crescent domain in
Fig. 15(b)]. The second set of stripes is also visible in
Fig. 15(a), especially in the top half of the photograph
[see the inset of Fig. 15(a)]. This second set of stripes
is faint because the bottom part of the shell is thinner
than the top. The two set of lines in each hemisphere are
orthogonal to each other.

This stripe texture results from an intricate interplay
between the curvature of shell, the local energetic con-
straint of equally spaced layers, global topological con-
straints, and anchoring conditions. To understand this,
first consider the limit of vanishing shell thickness where
there is no frustration of the smectic layers between the
inner and outer surface, as shown in Fig. 15(c). The
condition of equal spacing results in the layers becoming
lines of latitude (Blanc and Kleman, 2001). The director
aligns along the lines of longitude, tracing out geodesics
(Kamien et al., 2009; Santangelo et al., 2007), depicted
as dashed lines in Fig. 15(c-f). In this situation, there are
two +1 defects at the two poles. However, each +1 defect
can be split in half, and the upper and lower hemispheres

(a) (b) 3
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FIG. 15 Cross-polarized images of a smectic shell of radius
R = 98 µm and mean thickness h = 1.96 µm. (a) & (b) The
birefringent texture at the bottom of the shell (a) is differ-
ent from the birefringent texture at the top of the shell (b)
due to the different thickness of these two regions. The inset
reveals stripes on the lower hemisphere after image enhance-
ment. Two stripes are outlined at the bottom of the inset to
guide the eye. (c) For a two-dimensional smectic shell, theory
predicts a configuration with two s = +1 defects organized
in a bipolar fashion. (d) This configuration is energetically
equivalent to any other one that results from splitting the
bipolar shell into two halves by a plane Π that contain the
two s = +1 defects, and then, rotating one half with respect
to the other one by an angle that can have any value. (e)
All the configurations resulting from this transformation have
four s = +1/2 defects lying on a great circle. (f) This smooth
texture is only a first order description of the configuration
observed experimentally, where a periodic modulation of the
smectic layers is observed.

can be rotated independently, as shown in Fig. 15(c) and
(d) (Bates, 2008; Blanc and Kleman, 2001; Shin et al.,
2008). The four +1/2 defects resulting from this simple
surgery sit on a great circle of the sphere [Fig. 15(e)]. The
energy difference between the state with two +1 defects
and those with four +1/2 defects comes from the de-
fect core energies and is negligible for large system sizes.
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While there is a single state for two +1 defects, there
is an infinite number of states with four +1/2 defects.
Thus, generically, we expect to see four +1/2 defects in
the smectic shell, lying along a great circle. Further min-
imization of the director energy yields a rotation angle of
π/2, as depicted in Fig. 15(d). This configuration maxi-
mizes the distances between the +1/2 defects.

In experiments, however, the shells are three-
dimensional and have a thickness that leads to a frustra-
tion between the surface anchoring and the layer spac-
ing. Such frustration involves creating either disloca-
tions, layer dilation or anchoring violation, due to the
different curvatures of the inner and outer boundaries
(Lopez-Leon et al., 2012b). In a configuration without
dislocations, imposing planar anchoring at the bound-
aries necessarily implies layer dilation. Again, this frus-
tration is precisely the type that leads to the HH in-
stability – the smooth texture sketched in Fig. 15(e) is
disturbed by the presence of a set of periodic lines and
the rapid variation of n across these lines. By exam-
ining the birefringent texture of the experimental shells
under rotation, it has been observed that n is tilted by
an almost constant angle ±φ [by a few degrees for the
shell in Fig. 15(a)] with respect to the two-dimensional
director field sketched in Fig. 15(e). Since n is tilted
in opposite directions in two adjacent crescent domains,
the visible lines that separate them roughly correspond
to symmetric curvature walls (Blanc and Kleman, 1999).
The sawtooth periodic undulation of the smectic layers
schematically represented in Fig. 15(f) is yet another HH
instability pattern observed at large strains and is con-
nected to the three-dimensional nature of the shells.

A zero-strain, smectic texture is possible in thick smec-
tic shells provided that the director tilts away from the
outer shell surface, incurring an anchoring penalty (see
(Lopez-Leon et al., 2012b)). A first approach to re-
lax this additional surface energy has been developed
by Manyuhina and Bowick (Manyuhina and Bowick,
2015). They examined the influence of a finite anchor-
ing strength W on a nematic shell texture with large
bending modulus K3 � K1 that is expected to mimic
the smectic behavior. Within the frame of nematic elas-
ticity, they adopted a perturbative approach for thick
shells, starting from the ideal two-dimensional structure
in Fig. 15(d), while imposing infinitely strong anchoring
at the shell inner surface, as well as allowing the director
to tilt with respect to the tangent plane and to vary along
the shell thickness. The authors proposed a plausible cri-
terion for the onset of director tilting which should occur
when the shell mean curvature κ = 1/R gets larger than
W/K3. Moreover, they showed that the axisymmetric
texture is unstable beyond this same threshold, where a
spontaneous herringbone texture develops.

This first approach can be complemented with geo-
metrical considerations based on the elasticity of smectic
layers, more in line with the HH model. Indeed, the ex-

perimental results suggest that, in shells with strong pla-
nar anchoring, the strain associated to layer dilation γ is
released by undulations of the smectic layers, related to
a mechanical HH instability (Lopez-Leon et al., 2011a).

B. Strain from boundary curvature

Before delving into the specifics of the HH instabil-
ity in smectic shells, let us take a step back and con-
sider more generally how boundary curvature can strain
smectic layers. Consider an interface with some spatially
varying surface normal ν̂ ≡ ν̂(x, y), written in terms of
the height field h as ν̂ = (−∂xh,−∂yh, 1)/

√
1 + (∇h)2,

as depicted schematically in Fig. 16. For illustrative
purposes, consider a simple surface shape: h(x, y) =
d+ (2κ)−1[

√
1− (2κy)2− 1], where κ is the mean curva-

ture of the surface and d the film thickness at y = 0. For
|y| � 1/κ the surface has a parabolic profile h ≈ d−κy2
along the y direction. So, near the maximum of the
parabola, we expand in powers of y and consider the
interaction between the surface and the smectic layers in
the bulk.

FIG. 16 A schematic of a free-interface-induced instability
in which a curved, deformable interface (orange) described by
a height field h(x, y) induces undulations with characteristic
wavelength λ∗ in the blue layered system. At the interface,
the layer normals N prefer to be perpendicular to the in-
terface normal ν̂. As described in the main text, a curved
interface like this will dilate or compress the layers relative to
their preferred spacing t. The resultant strain may be relieved
via layer buckling in a perpendicular direction.

Using the phase field φ ≡ φ(x), the layered structure
is recovered by solving φ = na for x, where n ∈ Z labels
the layer and a is the layer spacing [see Fig. 16]. Sup-
pose that, in an unperturbed configuration, the layers are
stacked along the y-direction so that φ = y. The layer
normal, then, is N = ∇φ/||∇φ|| = ŷ. If we have pertur-
bations in the layer spacing, this may be captured by a
small deformation: u = y−φ. In this case, the layers are
still roughly stacked along the y-direction, as sketched in
Fig. 16, but with deviations described by δφ. Then, as-
suming planar boundary conditions at the interface that
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prefer an orientation N ⊥ ν̂, the surface free energy fs
at the interface for small δφ and small ∇h is given by

fs ≈
W

2

∫
dx dy (ν̂ ·N)2

∣∣
z=d

≈ W

2

∫
dx dy [∂z(δφ)− ∂yh]2

∣∣
z=d

, (17)

where W is an anchoring strength. We have substituted
ν̂ ≈ ẑ−∇h for the interface normal and N ≈ ŷ+∇(δφ)
for the layer normal. This surface free energy is mini-
mized for δφ(y, z) = −2κyz, representing a layer dilation
with increasing z. Therefore, at the top edge of the film,
the layer spacing experiences a dilating strain, γ ≈ 2κd
(relative to the spacing on the bottom of the film), with
d being the film thickness at y = 0. This dilation will
be energetically costly due to the bulk layer compression
elasticity. The system may relieve this energetic cost in
a variety of ways, including disrupting the layer struc-
ture via dislocations or developing layer undulations, as
illustrated for a generic curved surface in Fig. 16. Here,
one sees layers mostly stacked along that ŷ direction, but
undulating along x̂ to relieve the strain imposed by the
curvature of the interface.

The details of the layer relaxation are generally com-
plex, since the undulations will coexist with defects, and
the details of their interactions are subtle. Analogous
issues are seen in smectic systems confined to wedge ge-
ometries (Bartolino and Durand, 1977a). Yet, we can
make a basic estimate of the critical strain γ∗ (applied
along the layer normal N) required to induce an undu-
lation.

First, note that the layer compression and bending
moduli K and B, respectively, combine to yield a char-
acteristic length λ =

√
K/B, which governs the size of

deformations. This length scale is again the smectic pen-
etration depth, first introduced in Sec. III.B. Second, the
undulation instability occurs when the layer strain γ ex-
ceeds a critical value γ∗ ≈ 2πλ/` (or, equivalently, if the
layer stress exceeds Bγ∗), with ` being a characteristic
sample size in the direction of the applied strain. In the
case of our simple example of an interface h(x, y) = −κy2
with the layer normals along the ŷ direction and the di-
lation induced by an interface curvature, ` would be the
extent of the bent region in the ŷ direction. However,
the critical strain would also depend on the anchoring
strengthW and would generally have a complicated form.
Alternatively, if the layers are arranged such that N ‖ ν̂
and are dilated by a strain along that same direction (as
in the classic instability shown in Fig. 1), then ` would
be the film thickness d and γ∗ = 2πλ/d, as expected.
Furthermore, depending on the nature of the mechani-
cal deformation, there may be some modifications to γ∗

(Napoli and Nobili, 2009). For instance, the surface ten-
sion at a fluid interface may modify λ, introducing an
additional length λ→ λ+λs, with λs ∼ σ/B, with σ be-
ing the surface tension (Williams, 1995). Nevertheless,

the basic scaling γ∗ ∼ λ/` is predictive in a wide range
of cases in which this mechanical instability is observed.

Note that the critical strain γ∗ may be connected to the
usual HH critical fieldHc, since the strain γ introduces an
energy penalty due to the compression term proportional
to B. The coefficient |χa|H2 is completely analogous to
the stress γB (Delaye et al., 1973; Fukuda and Onuki,
1995). The critical field then is directly related to γ∗ as

|χa|H2
c = γ∗B =

2πK

λ`
, (18)

which reduces to the γ∗ = 2πλ/` result. The connection
to the usual HH scenario, described in Sec. III.A.1, also
allows us to extract the characteristic wavelength λ∗ of
the undulations, given by

λ∗ = 2
√
πλ`, (19)

which is consistent with Eq. (11). The instability has
the same character in smectics and cholesterics (Clark
and Meyer, 1973) and the discussion in Sec. III.A.1 can
be directly mapped to these strain-induced undulations.

The strain γ may be imposed externally due to a par-
ticular confinement, applied force, or thermal expansion.
If the strain occurs near a curved interface, the interface
geometry will modify the character of the instability. For
instance, in a smectic with concentric cylindrical layers,
a layer dilation induces an instability in which the layers
begin to undulate along the cylinder axis. Unlike a flat
geometry, the curvature makes the onset of the instabil-
ity more complex, with the shape of the layer playing an
important role (de Gennes and Pincus, 1976).

Now that we understand how boundary curvature can
strain smectic layers enough to trigger the HH instability,
we turn back to smectics in a shell geometry. In the fol-
lowing, we consider the simpler case of a cylindrical shell
and build on that to qualitatively interpret the spherical
shell data.

C. Cylindrical smectic shells

Consider a smectic slab confined between two cylinders
of radii R and R0 = R+ h, with h� R and with strong
planar anchoring, i.e. n lies parallel to the inner and
outer cylinders, along êθ [Fig. 17(a)]. The layers spacing
is a, and the appropriate smectic free energy is given by
Eq. (3), with N the layer normal which we call n in
this section and 1 − |∇φ|−1 = 1 − d/a, where d is the
layer thickness and a the equilibrium layer spacing. If
the layers were dilated but not curved [∇ · n = 0, as
schematically represented in Fig. 17(a)], their thickness
would increase as d(r) = rcRa/R, where cRa is the layer
thickness at the inner boundary. Note that the constant
cR is close to 1 and can be chosen to minimize the energy
for the bend-free state: for h � R, we have cR ≈ 1 −
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FIG. 17 Smectic phase confined between two cylinders of
radii R and R + h. The anchoring is planar on the confin-
ing boundaries. (a) In absence of dislocations, a radial tex-
ture necessarily induces some dilation in the thickness of a
smectic layer (shaded region). (b) The absence of dilation in
the bulk implies that the “orthoradial” thickness of a layer d
varies with the radial coordinate r. However, some dilation is
necessarily ejected to the outer surface.

h/2R with a smectic free energy per unit length of fe ≈
πBh3/12R.

(a)

(b)

(c)

compression

dilation

absence of strain

FIG. 18 (a) Tilt, (b) relative dilation, and (c) free energy
density of a smectic layer as a function of the radial coordinate
r for a shell of 2 µm thickness and inner radius R = 100 µm,
using λ = 3 nm.

Even with an infinite anchoring strength, the elastic
energy decreases when we consider a more general sce-
nario, where the smectic layers are allowed to curve into
an “S”-shape, as depicted in Fig. 17(b). Treating the
system as two-dimensional with no variation along the
cylinder, we consider the axially-symmetric director field
n(r, θ) = cosϑ(r)êr + sinϑ(r)êθ, where ϑ(r) is the tilt of
the director and the normal of the layers, with respect to
the unit radial vector êr, [Fig. 17(b)]. The width of the

layers is d(r) = sinϑ(r)rcRa/R [Fig. 17(b)] and the free
energy density is

fe =
B

2

(
1− cRr sinϑ(r)

R

)2

+
K

2
(∇ · n)2. (20)

The Euler-Lagrange equation reads

d2ϑ

dr2
=
c2Rr

4 −R2λ2 − cRr
3R

sinϑ

r2R2λ2 tanϑ
− dϑ

dr

(
1

r
+
dϑ

dr

1

tanϑ

)
,

(21)
where we impose the boundary conditions ϑ(R) = ϑ(R+
h) = π/2. The tilt angle ϑ(r) and the shape of layers can
then be obtained by numerically solving Eq. (21) using
standard two point boundary value methods and opti-
mizing the resulting elastic energy fe(cR) as a function
of cR. Fig. 18(a) shows the numerical solution, ϑ(r), for
R = 100 µm and h = 2 µm, which are typical values for
the shell radius and thickness of the experimental shells.
The relative dilation of the layers d/a and the free en-
ergy density fe(r) of the ground state configuration are
shown in Fig. 18. Three different regions can be dis-
tinguished: the layers are slightly compressed in a thin
inner region, highlighted in blue, while dilation is mostly
confined at the outer surface, highlighted in red. The
dilation is nearly vanishing in the yellow region, between
the two boundary layers.

FIG. 19 Curvature walls separate domains in which n dis-
plays opposite orientations ±ω. If ω is not too high, the
smectic layers undergo a continuous bend across the wall.

The fact that dilation is expelled from the bulk is a well
known phenomenon for layered systems (Blanc and Kle-
man, 1999). Indeed, comparing the two terms of Eq. (3)
reveals that dilation can be present only in regions where
the curvature of the layers (∇ · n) is of order λ−1, i.e.
where the layers rapidly reorient, or near the common fo-
cal surfaces of a set of equidistant layers. That is why the
macroscopic textures of layered systems can be described
by an extended geometrical description, based on a com-
bination of domains with equidistant layers separated by
curvature walls of varying shapes, as illustrated in Fig. 19
(Blanc and Kleman, 1999). If the “mis-orientation” angle
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2ω of a wall is not too high, the layers remain continuous.
The width of a wall is thereby 2λ/ω, and its free energy
per unit area is

fw ≈
2K

λ
(tanω − ω) ≈ 2Kω3

3λ
. (22)

Here, the geometrical construction driven by a strong
planar anchoring at the inner surface yields sinϑ(r) =
R/r in the bulk and a tilt ω0 = π/2−ϑ(R+h) ≈

√
2h/R

at the outer cylinder. The dilation is thus expelled in a
curvature wall that contains most of the elastic energy
per unit length:

fe =
4Kπh

3λ

√
2h

R
. (23)

With this two-dimensional approach, dilation is con-
fined to the neighborhood of the outer cylinder. How-
ever, three-dimensional distortions of the director field
are expected to further lower the resulting elastic energy.
For example, with degenerate planar anchoring on both
cylinders, the elastic energy can be entirely relaxed when
the director is oriented along the other principal curva-
ture direction, where curvature is null (Fig. 20).

(a) (b)

FIG. 20 In three dimensions, the distortion of the smectic
layers is efficiently relaxed by an overall rotation of the layers,
allowable when the anchoring is planar degenerate.

D. Spherical smectic shells

A similar geometrical frustration is present in spheri-
cal smectic shells of finite thickness, but contrary to the
cylindrical case considered in the previous section, the
elastic energy cannot be globally relaxed. Unlike a cylin-
der which only bends in one direction, the two princi-
pal curvatures on a sphere are nonvanishing (and equal).
Thus the geometrical strain remains, regardless of the
layer orientation. Let us first examine the vanishing
thickness limit shown in Fig. 15(c). Such an ideal smectic
sphere has two +1 defects located at the north and south
poles, and the surface director is given by n = êθ, written
with the usual spherical coordinates r, θ, ϕ and the corre-
sponding unit vectors êr, êθ, êϕ. For shells of finite thick-
ness, a geometrical construction from the inner sphere of

radius R, similar to that shown in Fig. 17(b) for the cylin-
drical case, is also possible, giving rise to a director field
n = sinϑ(r)êθ ± cosϑ(r)êr where sinϑ(r) = R/r. The
resulting angular misfit at the outer surface of a shell of
thickness h is still ω0 = arccosR/(R+ h) ≈

√
2h/R, but

now uniform all over the spherical system. Therefore, the
resulting half-curvature wall located at the outer sphere
has an elastic energy:

fe ≈
4πR2K

3λ
w3
o. (24)

Breaking of rotational invariance around the z-axis can
strongly reduce this elastic energy. A simple geometrical
construction, which shares many common features with
experimental shells, is detailed in Fig. 21.

FIG. 21 (a) Spherical coordinates used to describe the smec-
tic textures of a shell. (b) The director field n(r, θ, ϕ = 0)
defined on the ϕ = 0 plane is used to construct the direc-
tor field in its vicinity (blue lines). The region of the shell
near the inner surface can be complemented with a set of
lines (yellow line) tangent to each great circle parallel to
n(r = R, θ, ϕ = 0). (c) This defines parallel smectic lay-
ers (light and dark green surfaces) in a limited neighborhood
−χ < ϕ < χ but the process can be iterated periodically
along the azimuthal direction (as shown here for the region
−3χ < ϕ < −χ) at the cost of additional curvature walls Πχ

of tilt mis-orientation ∼ 2φ.

We first consider the following director field, defined in
the shell region R ≤ r ≤ R+ h of the half plane ϕ = 0:

n(r, θ, ϕ = 0) =
R cosφ

r
êθ +

√
1− R2 cos2 φ

r2
êϕ (25)
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where φ is nonvanishing. For the given azimuthal angle
ϕ = 0, this field ensures a strong planar anchoring on in-
ner and outer spheres. It is also compatible with smectic
layers since it defines a set of non-intersecting straight
lines, the common normals of a set of parallel layers, in
the neighborhood of ϕ = 0. The straight lines repre-
senting the smectic director field built in this way are de-
fined almost everywhere in the shell, excluding in a region
near the inner sphere. In this region, the set of straight
normals can be complemented with half-lines tangent to
great circles of the sphere, that are themselves tangent
to the director n(R, θ, 0) [Fig. 21(b)]. Since great circles
are geodesics of the sphere, this construction ensures that
the resulting layers are everywhere perpendicular to the
inner sphere (Blanc and Kleman, 2001). However, topol-
ogy comes into play: this geometric construction cannot
be extended to the whole sphere without additional de-
fects. For instance, the great circles will intersect at some
distance from ϕ = 0. The process is therefore limited in
the azimuthal direction up to angles ϕ = ±χ, but it can
be iterated periodically along ϕ with additional curva-
ture walls Πχ separating the crescent domains, as shown
in Fig. 21(a) and 21(c).

In this texture, the tilt of the layers at the outer surface
is much smaller than the uniform tilt ω0 of the rotational
invariant texture. By construction, the tilt is indeed zero
at ϕ = 0 and slowly increases when departing from this
azimuthal angle. The dilation in the curvature wall at
the outer sphere is thereby strongly reduced. We can
straightforwardly compute we(θ, ϕ) ≈ |ϕ| sin θ/ sinφ to
first order, which gives a maximal extension χ ≈ ω0 sinφ
for the crescent domains.

The gain in elastic energy at the outer wall is counter-
balanced by an energy cost of the π/χ additional curva-
ture walls, Πχ, located at the crescent boundaries. How-
ever, numerical computations of the energy FT resulting
from the combination of the energies at the outer sphere
and in the Πχ walls show a large net gain in elastic en-
ergy. A rough computation can also be obtained by con-
sidering that the mis-orientation angle of the Πχ wall is
2ωχ ≈ 2φ. Using Eq. (22) for wall density energy and
we(θ, ϕ) ≈ |ϕ| sin θ/ sinφ one obtains:

FT ≈
2π2K

3λχ
φ3Rh+

π2Kχ3

16λ sin3 φ
R2 (26)

which reduces to

FT ≈
2π2K

3λω0
φ2Rh+

π2Kω3
0

16λ
R2 (27)

when χ ≈ ω0 sinφ and φ � 1. For small enough values
of φ, the combined energy is much lower than that of the
global solution Eq. (24).

Note that these considerations are appropriate for
studying the ground state of a thick smectic shell for

which h/R > γ∗ is much above the critical strain to in-
duce the initial mechanical HH instability. It would also
be interesting to study very thin shells and to observe the
onset of the instability. The wavelength λ∗ of the initial
instability should be given by Eq. (19). For example,
at the equator, the relevant length scale over which the
mechanical deformation occurs is just the shell circumfer-
ence 2πR, so we would expect λ∗ ≈ 5 µm for the λ ≈ 30 Å
layer spacing of an 4’-octyl-4-biphenylcarbonitrile (8CB)
smectic liquid crystal confined to a shell with radius
R = 100 µm, for example. This is consistent with the
spacing of the initial curvature walls (see, e.g., Fig. 22).

Experimentally, the period and the amplitude of the
elastic instability are highly dependent on the shell thick-
ness. As the shell becomes thicker, the angular period
decreases, the wavelength of undulations increases, and
fewer domains are observed. This effect can be qualita-
tively seen in Fig. 22(a)-(c), where the number of cres-
cent domains dividing a shell decreases as the normalized
thickness, h/R, increases. Additionally, the tilt angle
φ inside the domains concomitantly increases with the
thickness. According to the geometrical considerations
described above, the width of the domains 2χ should
be related to the tilt angle φ as χ ≈ ω0 sinφ, where
ω0 = arccos(R/(R + h)) a linear dependence seen in ex-
periments [Fig. 22(d)].

In addition to the quantitative changes observed for
the amplitude and period of the instability, further in-
crease of the shell thickness entails deeper structural
changes. In very thin shells, only the primary curva-
ture walls discussed in the last section can be distin-
guished and the modulation is simple [Fig. 22(a)]. How-
ever, in thicker shells, primary curvature walls of large
tilt angle (φ > 10◦) are filled in with secondary curva-
ture walls of a few degrees of tilt to form a herringbone
texture [Fig. 22(b)], and the secondary curvature walls
can be further patterned by tertiary curvature walls with
increasing shell thickness [Fig. 22(c)]. Observations of
the light extinction between crossed polarizers show that
each set of walls are roughly perpendicular to the aver-
age orientation of the modulated layers. In very thick
shells, this hierarchical organization is broken and is re-
placed by a complex texture made of focal conic domains
[Fig. 22(c)-ii], reminiscent of the ones observed in large
single spherical droplets with planar anchoring (Blanc,
2001; Blanc and Kleman, 2001; Fournier and Durand,
1991).

The appearance of the secondary and tertiary patterns
in thick shells can be qualitatively understood in the ge-
ometrical framework examined in the previous section.
After the first instability, the tilt ωe of the layers at
the outer spheres has strongly decreased but is almost
nowhere null. The layers are roughly tilted with an an-
gle ±φ1 with respect to the latitude lines. Iterating the
process with smaller angles φ2 allows for the decrease of
ωe once again, at the cost of additional curvature walls
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FIG. 22 Effect of the shell thickness in the smectic texture. (a-c) Cross-polarized images of smectic shells with a normalized
mean thickness h/R = 0.020, h/R = 0.036, and h/R = 0.145, respectively. Polarizing optical microscopy; the focus is set
on the top of the shell (the thickest region). The insets highlight (a) primary curvature walls (h/R = 0.020), (b) secondary
curvature walls (h/R = 0.036), (c)-i tertiary curvature walls (h/R = 0.145), and (c)-ii focal conics (h/R ≈ 1) in smectic shells.
(d) Experimental data showing a linear dependence between χ and arccos(R/(R+h)) sinφ. The slope of the fitting line is 1.05,
consistent with the geometrical construction in Fig. 21, where χ ≈ arccos(R/(R+ h)) sinφ.

of smaller energy. The dilation that was localized only at
the outer sphere in the rotational invariant construction
is then strongly reduced, while a part of it is redistributed
in the whole shell in the form of mis-orientation walls.

The smectic layers, antagonized by the system’s spher-
ical geometry, undulate to maintain their preferred spac-
ing, patterning the shell with curvature walls. The wave-
length of the undulations increases and fills in with hier-
archical undulations with increasing shell thickness, sim-
ilar in spirit to the undulations observed in planar an-
choring transitions of cholesteric shells. The incompati-
bility of the shell curvature with the smectic layers and
the emergent, periodic textures that result exemplify how
geometrical frustration is at the core of the HH instabil-
ity.

VII. OTHER MECHANISMS TO THE HH INSTABILITY

The liquid crystal shells examined in this review un-
derwent the HH instability due to frustration from topo-
logical constraints, changes in anchoring conditions, and
boundary curvature. Other sources of frustration have
also been found in other systems, including changes in
layer spacing due to phase transitions and sample thick-
nesses incompatible with the layer spacing, which can be
described by the classic strain mechanism of HH. Before
reviewing other phenomena that fall into the HH um-
brella, we note that there are other possible contributions
to the HH instability in lamellar systems.

A striking example is the work of Loudet et al. on
smectic-C* films. Recall that unlike the smectic-A phase,
a smectic-C phase has its nematic director canted at a
non-zero angle with the layer normal and the projection

of the director onto the plane of the layers is referred to as
the c director. Finally, a smectic-C* phase has the same
geometry as smectic-C on each layer but, because of in-
trinsic chirality, the c director rotates from layer-to-layer;
like the cholesteric pitch, the period of the c rotation is
typically much longer than the period of the smectic lay-
ers and will not alter the ensuing discussion (Selmi et al.,
2017). A geometry mismatch occurs at the smectic-A to
smectic-C transition where the molecules tilt relative to
the smectic layer normal, decreasing the layer thickness.
Indeed in thin films of the smectic-C phase, the menis-
cus exhibited stripes that appeared to correlate to the
interface shape, and Loudet et al. hypothesized these
structures to be the result of the HH instability (Loudet
et al., 2011). A bright-field image in Fig. 23(a) shows the
meniscus of a compound in the smectic-C* phase (SCE-
9, from Merck, England, at 25◦C). Here, the stripes are
attributed to splay deformations of the c director, in-
duced by frustration from the surface (Meyer and Per-
shan, 1973). Note that particles within smectic-C thin
films are also found to induce similar structures, due
to thickness gradients created by wetting of the inclu-
sions (Conradi et al., 2006; Gharbi et al., 2018; Harth
and Stannarius, 2009).

Another effect is saddle-splay, though saddle-splay is
an oft-neglected term in the Frank free energy because it
is a total derivative. However, when topological defects
form they provide boundaries inside the sample. Classic
studies of the saddle-splay term in nematics use hybrid-
anchored nematic thin films with homeotropic and degen-
erate planar conditions on the two film surfaces. In this
case, the saddle-splay contributes to a stripe instability
(Sparavigna et al., 1992, 1994). We would expect analo-
gous contributions at, say, the interface of a cholesteric,
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if the interface prefers a different orientation of the lay-
ers than the bulk. The saddle-splay contribution in the
case of uniformly spaced smectic layers is proportional
to the Gaussian curvature of the layers and, according
to the Gauss-Bonnet theorem, becomes a purely topo-
logical contribution. As such, we do not expect it to be
pertinent for small undulation instabilities (Ishikawa and
Lavrentovich, 2001a), but it certainly contributes when
the layered system develops caustic-like cusps and folds
(DiDonna and Kamien, 2003). The saddle-splay term
also plays a role if the nematic order is distorted at a fluid
interface. For instance, in the case of thin nematic films
with deformable boundaries, the saddle-splay is also in-
volved in the onset of stripe instabilities, which have been
the subject of some interest since the early 1990s and re-
mains a topic of interest in the current millennium (Bar-
bero and Lelidis, 2015; Delabre et al., 2008; Manyuhina
and Ben Amar, 2013; Manyuhina et al., 2010; Sparavigna
et al., 1994).

FIG. 23 (a) Bright-field (transmitted light) optical micro-
graphs of the meniscus of a smectic-C* film (compound SCE-
9, T = 25 ◦C). (b) Interferogram of the sample at the same
location as in (a), obtained with phase shifting interferometry
(PSI), reveals distorted interference fringes. (c) Superposition
of the micrographs in (a) and (b), show how the c-director
splay distortions seen in bright-field correspond to the inter-
face undulations captured by the interferogram. (d) Polarized
micrograph of the smectic-C* meniscus reveals two regions:
region 1 exhibits radial stripes, shown also in (a) and region
2 shows a two-dimensional structure of focal conic domains.
(e) Schematic depicting the HH instability as a possible origin
of smectic layer undulations from the smectic-A—smectic-C
phase transition (left is before, right is after the transition).
After the phase transition, the director tilts with an angle θ,
causing the natural layer spacing of a0 to reduce to a0 cos θ.
Although the phase transition causes a decrease in the natu-
ral layer thickness, the gradient in meniscus thickness fixes in
a certain number of dislocations in the system, thereby fixing
in a certain number of layers and the thickness. A mechanical
stress analogous to a dilation of the smectic-C layers results
from this incompatibility, triggering undulations to accommo-
date the director tilt.

Finally, an incompatibility of the layer number and the
thickness can also trigger undulations. The boundary
condition may force the system to have an integer num-
ber of layers between the top and bottom of a film. This

creates an intrinsic strain on the layers if the film thick-
ness d is not an integer multiple of the preferred layer
size t. If the sample has a free surface, the surface itself
will undulate and the surface tension σ will play a role
in determining the onset of the instability, as shown for
the 1995 study by Williams of a block copolymer system
(Williams, 1995). Layer strain induced by the incompat-
ibility of the system thickness with the number of layers
has also been simulated in cholesterics (Machon, 2017).
The induced corrugations on the interface from undula-
tion instabilities are ubiquitous across systems with pe-
riodic ground states.

In summary, the interface plays an essential role in
undulation instabilities, as it provides a mechanism for
applying strains to a layered system through anchor-
ing conditions, surface tension, and boundary curvature,
amongst other sources. The instability, in turn, typically
modulates the shape of a free and deformable interface,
introducing corrugations. These features may be under-
stood by taking into account the basic elastic properties
of the layered system (i.e., layer bending and compres-
sion), along with the anchoring energy and surface ten-
sion at the interface. In any individual case of undu-
lation instabilities, the energetic contributions from the
anchoring conditions, the surface tension, and the bulk
elasticity must be accounted for. The complex interplay
between these various contributions generates an aston-
ishing number of variations on this theme of geometrical-
frustration-induced, undulation instabilities.

VIII. HELFRICH-HURAULT: HERE, THERE, AND
EVERYWHERE

As seen in the systems we have reviewed thus far, un-
dulation instabilities in smectics and cholesterics are in-
duced by geometrical frustration, with important and of-
ten neglected contributions from deformable boundary
conditions, interfacial curvature, and surface anchoring
conditions. However, similar responses to bulk and sur-
face incompatibilities are also prevalent in other materi-
als with periodic ground states. These same mechanisms
can be extended to account for phenomena seen in both
biological and other synthetic systems. In the final sec-
tion of this review, we briefly discuss undulation insta-
bilities across a wide array of materials to demonstrate
the ubiquity and utility of the HH mechanism, beyond
the traditional smectic and cholesteric phases.

A. Twist-bend nematic phases

Liquid crystals phases formed by banana-shaped, bent-
core mesogens undergo the HH instability through undu-
lation of their structures in response to mechanical stress,
such as applied electric and magnetic fields or a reduc-
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tion in layer-spacing with decreasing temperature. De-
pending upon their rigidity and the presence of system
chirality, bent-core molecules can form over 50 types of
liquid crystal phases, including a wide range of layered
liquid crystals, including smectic and cholesteric phases
(Fig. 24) (Jákli et al., 2018). Strains on the periodic
structure of these smectic and cholesteric phases will un-
dergo the HH instability, similar to systems discussed
previously. However, banana-shaped molecules can also
form a twist-bend nematic phase (Fig. 24(b)), in which
the director follows a helicoid at a constant oblique an-
gle with respect to the helical axis, resulting in twist and
bend deformations throughout the system. Twist-bend
nematics have a nanoscopic, molecular-scaled pitch but
can create periodic textures on the micron-scale, depend-
ing on the system thickness. We focus here on the HH
instability exhibited in twist-bend nematics.

FIG. 24 Schematics of bent-core molecules (left-most) form-
ing (a) a nematic, uniaxial liquid crystal (N), (b) a twist-bend
nematic with an oblique helicoid (Ntb), and (c) a cholesteric
(chiral nematic, N∗) liquid crystal with a right helicoid. The
pitch for Ntb phases is typically on the order of 10 nm. [Re-
produced from (Mandle, 2016).]

The model bent-core molecule first studied is 1”,7”-
bis(4-cyanobiphenyl-4-yl)heptane (CB7CB). CB7CB
within a glass cell treated for planar anchoring can form
focal conic domains that are reminiscent of those ob-
served in smectic phases, depicted in Fig. 25(b). Friedel
and Grandjean established that the presence of focal
conic domains represents a phase with one-dimensional
positional ordering (Friedel and Grandjean, 1910).
However, x-ray diffraction and deuterium magnetic
resonance measurements of CB7CB reveals no density
modulation, while suggesting some form of chirality in
the system (Cestari et al., 2011). These findings led
Cestari et al. to be the first to conclude that CB7CB is
a twist-bend nematic. Similar to cholesterics, twist-bend
nematics can form a pseudolayer structure defined by
the pitch [Fig. 24(b) and (c)].

Both CB7CB and KA(0.2) [another twist-bend ne-
matic material, composed of 20 mol% 1”,9”-bis(4-cyano-
2’-fluorobiphenyl-4’-yl)nonane (CBF9CBF) added to a
mixture of five odd-membered liquid crystal dimers with
ether linkages containing substituted biphenyl mesogenic
groups (Adlem et al., 2013)] can generate optically de-
tectable stripes within planar glass cells [Fig. 25(a)]. The

FIG. 25 Micrographs and schematic of stripes formed by
bent-core molecules in the nematic twist-bend phase, sand-
wiched between a 10-µm thick, planar cell. The micrographs
in (a) and (b) are KA(0.2) and CB7CB, respectively. (a)
KA(0.2) has stripes shown through crossed-polarized light
microscopy, distinguishable also by the diffraction pattern in
the top-most inset. The white arrow indicates the direction
of rubbing. The bottom inset depicts the modulation of the
helical axis of KA(0.2), made larger in (c). (b) The stripes
in CB7CB are more complex, generating arrays of focal conic
domains. The period of stripes in (a) and (b) are proportional
to the cell thickness. (c) The thickness-dependent stripes in
twist-bend phases are well-modeled by the HH model, illus-
trated in the schematic. The thickness of the pseudolayer, p,
is the pitch of the conical helix. The direction of the heli-
conical axes (short lines) undulate in the x-direction, with a
period `. [Reproduced from (Challa et al., 2014).]

stripe periodicity is micron-scaled, at least an order of
magnitude larger than the measured pitch of the twist-
bend nematic’s conical helix. The stripe periodicity also
depends on the system thickness, and the stripes are not
thermodynamically stable. For samples with dielectric
anisotropy both greater than and less than zero, the
stripes could be eliminated by applying an electric or
magnetic field. Only upon decreasing the temperature of
the system afterwards would the stripes return (Borshch
et al., 2013; Challa et al., 2014). That this periodicity is
larger than the phase’s intrinsic periodicity and that the
stripes are not thermodynamically stable are all prop-
erties reminiscent of the HH instability in smectics and
cholesterics.

Stripes and focal conic domains dependent upon sys-
tem thickness or process history are signatures of the
HH instability, as exemplified by smectic and cholesteric
shells and thin films. Challa et al. use a “coarse-grain”
model of twist-bend phases to describe the optical stripes
seen for both CB7CB and KA(0.2). The framework of the
HH instability is then applied (Fig. 25(c)) to capture the
critical magnetic field strength necessary for stripe elim-
ination, and to estimate the elastic properties of CB7CB
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and KA(0.2) (Challa et al., 2014). Notably, the undula-
tions in twist-bend phases are hypothesized to be created
by the shrinking of the pseudolayers from decreasing the
system temperature, reminiscent of the stripe formation
in smectic-C menisci.

Lastly, we note that twist-bend nematics are also the
first example of a fluid with local polar order without den-
sity modulation, and measurements on structures gener-
ated by the HH mechanism confirm this. Pardaev et
al. performed light scattering on a twist-bend nematic
sample exhibiting parabolic focal conic domains that nu-
cleated from the HH instability to detect the existence
of this local polar order, evidenced by a second harmonic
signal that is absent in the parabolic focal conic domains
of smectic-A phases (Pardaev et al., 2016). Again, struc-
tures attributed to the HH instability since the 1970s,
such as parabolic focal conic domains in smectics and
cholesterics, are being found in recent phases, like the
twist-bend nematic phase, illustrating the pervasiveness
and relevance of this mechanism in ordered systems.

B. Lyotropic liquid crystals

FIG. 26 Mean-field phase diagram, adapted from (Gompper
and Klein, 1992), of amphiphillic molecules in solution. The
various ordered phases are indicated. The dark regions have
two-phase coexistence. We will particularly focus on undula-
tional instabilities in the Lα lamellar phase and in the hexag-
onal columnar phase HI .

A significant class of materials that also exhibits spa-
tially modulated phases including cylindrical, layered,
and foam-like configurations are lyotropic liquid crystals,
which are typically collections of amphiphilic molecules
in a solvent. The mixtures can involve multiple compo-
nents, but typically include surfactant molecules and a
solvent mixture that may contain salts or organic com-
pounds, such as cyclohexane or alcohols. The ther-
modynamic phase of these materials is controlled by
the concentration of the solute (typically the surfactant

molecule), along with the temperature. An exemplary
phase diagram is shown in Fig. 26. Note that at suf-
ficiently low temperatures T , we transition between a
series of various ordered phases as we increase the con-
centration φ of the amphiphile in solution. The typical
sequence of phases starts with a dilute micellar solution
at low concentrations, transitioning to a hexagonal ar-
rangement of micellar cylinders at higher concentrations,
then to a lamellar arrangement (or a bicontinuous phase
Q as shown in Fig. 26), until finally transitioning to an
inverted micellar cylinder phase at high concentrations.
All of these ordered phases are spatially modulated struc-
tures with some characteristic length of spacing λ. As
such, frustration imposed on the system that competes
with the spacing λ may lead to undulation instabilities.

The aqueous nature of lyotropics allows one to strain
the system in a myriad of ways, including via shear flows
and doping with nanoparticles, which may in turn be
controlled with electric or magnetic fields. Many of these
perturbations result in the classic HH instability because
the lamellar phase (Lα in Fig. 26) is for all intents and
purposes equivalent to the layered smectics and cholester-
ics described previously in this review. For the lyotropic
lamellae, shear flow may be applied to induce layer un-
dulations (Diat et al., 1993; Marlow and Olmsted, 2002).
At small shear rates, the buckling instability may be di-
rectly related to an undulation produced by a dilative
strain, with a characteristic length given by λc ∼

√
λ`,

with λ being the lamellar spacing and ` being the sample
thickness (Zilman and Granek, 1999). It is also possi-
ble to induce an instability in these smectic-like states
via confinement that is incompatible with a particular
number of layers, which then reduces the problem to es-
sentially an identical analysis as a smectic liquid crystal
in a cell (MacKintosh, 1994).

FIG. 27 (a) Freeze fracture electron microscopy section of
a lyotropic lamellar phase after an applied shear, taken from
(Gulik-Krzywicki et al., 1996). The lamella turn into a dense
packing of multilamellar “vesicles”. (b) Polarized microscopy
image, taken from (Ramos et al., 1999), of a lyotropic colum-
nar phase (HI in Fig. 26) undergoing an instability to a her-
ringbone pattern. This is achieved by doping the material
with magnetic nanoparticles and applying a field B (blue ar-
row) which acts to reorient the cylinders.
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Under larger flows, the lamellar phase may break up
into a packing of multilamellar vesicles (Diat et al.,
1993; Gulik-Krzywicki et al., 1996; Sierro and Roux,
1997) or analogs of focal conic domains (Pommella et al.,
2013). An example of the resultant structure is shown in
Fig. 27(a). Under these more extreme shear conditions,
interesting intermediate phases may also form, including
a phase in which multilamellar cylinders orient along the
shear direction (Zipfel et al., 2001). These multilamellar
cylindrical structures may, in turn, also exhibit undula-
tory instabilities via, for example, the alteration of the
spacing between lamellae or an induced spontaneous cur-
vature (Santangelo and Pincus, 2002).

The cylindrical phases (HI and HII in Fig. 26) also
have interesting ground states that can undergo HH-like
instabilities. The characteristic size λ between adjacent
pairs of cylinders may be frustrated by an applied strain
or cylinder reorientations under flow or applied fields.
The cylinders may accommodate these strains by undu-
lating or buckling. It is also possible to induce undula-
tory instabilities in the cylindrical phases by, for example,
doping the phase with magnetic particles and then reori-
enting the phases with an applied magnetic field. At high
fields, a herring-bone structure is observed as shown in
Fig. 27(b), reminiscent of the herringbone structures we
see in smectic shells, described in Sec. VI.A.

Given the multi-component mixtures involved in form-
ing the lyotropic phases and the complex set of interac-
tions in forming the ground states with an associated
characteristic length λ, it is difficult to model these sys-
tems without resorting to a phenomenological descrip-
tion. One possibility is to use molecular dynamics simula-
tions. However, even simple, single lipid bilayers present
challenges, even with the rapid advance of computational
tools (Moradi et al., 2019). To our knowledge, there are
no existing detailed, microscopic models of these HH-like
instabilities in lyotropic materials.

C. Diblock copolymers & polymer bundles

Block copolymers also show ordered phases similar to
lyotropic liquid crystals (Fig. 26). However, unlike ly-
otropics, block copolymers typically have a fixed den-
sity. Therefore, tuning between different ordered phases
is achieved by changing the structure of the constituent
polymers themselves, instead of varying the concentra-
tions of system components, as is typically done for ly-
otropic systems. In this section, we focus primarily on
di -block copolymers, where two polymers of A and B-
type monomers are grafted together.

The two A and B segments of the copolymer typically
have some incompatibility, which is captured via a Flory-
Huggins term in the free energy: χ

∫
ψA(r)ψB(r) dr,

where ψA,B are the local volume fractions of A and B-
type monomers [taken to satisfy ψA(r) + ψB(r) = 1]. A

FIG. 28 (a) A TEM micrograph of a diblock copolymer under
a large uniaxial strain (300%), exhibiting a characteristic her-
ringbone structure. This structure may develop from an HH
instability. Results are taken from (Cohen et al., 2000). (b)
Two snapshots of a diblock copolymer lamellar phase shown
after the indicated number of minutes under an applied elec-
tric field E. The lamellae are initially oriented horizontally,
and the applied field reorients the layers. Three regions are
indicated, with different reorientation behaviors, including an
undulation-like mode, but with a sharp kink that is on the
order of the lamellar spacing. Results are taken from (Liedel
et al., 2015).

self-consistent mean-field analysis of the total free energy
does a reasonable job in predicting the observed phases of
these materials, which include a lamellar phase, a phase
with hexagonally-packed cylinders, and gyroid phases,
amongst others (Bates and Fredrickson, 1990; Mai and
Eisenberg, 2012). In the weak segregation limit, where
the A and B portions only weakly demix, the system
is effectively described by a Brazovskii-type free energy
(Brazovskĭı, 1996; Fredrickson and Helfand, 1987):

fcp =
1

2

∫
[r + (q − q∗)2][ψ(q)]2dq +

µ

6

∫
[ψ(x)]3 dx

+
u

24

∫
[ψ(x)]4 dx, (28)

where ψ(x) (and its Fourier transform ψ(q)) describes
the deviation of the relative A/B monomer density from
the well-mixed, disordered phase. The unstable mode q∗

is related to the wavelength λ∗ of the AB domains via
q∗ = 2π/λ∗. In the strong segregation limit, the (q−q∗)2
term has to be replaced with an appropriate interaction
term that couples the Fourier transformed fields ψ(q) at
different modes q (Kawasaki and Kawakatsu, 1990).

The phases of block copolymers are analogous to the
lyotropic phases, highlighted in Fig. 26. Although the ly-
otropics typically have more dilute phases, such as a sus-
pension of spherical vesicles, these phases are not achiev-
able in a block copolymer. The major difference between
the two systems is that the amphiphile concentration
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φ is replaced with the relative density of the A and B
monomers ψ, which always has some molecular variation
due to the block copolymer molecular structure. We fo-
cus primarily on the lamellar and cylindrical phases to
examine the HH instability in diblock copolymers. For
these phases, perturbations of the system away from the
ground state can be examined in both the weak- and
strong-segregation limits.

The lamellar phases of diblock copolymers exhibit the
same undulatory instabilities as discussed for the other
lamellar phases. Uniaxial strain applied perpendicular
to the lamellae leads to the HH instability, similar to the
classic smectic and cholesteric systems (Wang, 1994). At
large strains, the copolymer can develop a “herringbone”
structure, reminiscent of those observed in the smectic
shells of Sec.VI.D (Cohen et al., 2000). An important
difference, however, is that the phases of diblock copoly-
mers depend on an interaction parameter χ and can ex-
hibit a strong segregation regime, when the A and B
portions of the copolymer are highly repulsive, or a weak
segregation regime, when χ is small. Yet, it is possible
to perform a perturbative analysis to examine the HH
instability in both regimes. In the strong segregation
limit, the approach is the same as for magnetic systems,
which we detail later in this section (Asciutto et al., 2005;
Sornette, 1987). In the weak segregation limit, a smectic-
like free energy can be derived by perturbing away from
a uniform stripe phase ψ(x) = A cos(2πd̂ · x/λ), with d̂
being the direction of the stripes/lamellae. The details
of such an analysis are given in (Matsumoto et al., 2015).
It is also possible to model the HH instability by simu-
lating the relaxation of a system with the free energy in
Eq. (28) under an appropriate perturbation.

For diblock copolymers, a possible perturbation that
induces an undulation is a strain from an electric field
applied normal to the lamellae. Since the lamellae pre-
fer to lie along the field, the applied field rotates them.
The resultant undulations may be phenomenologically
described by a smectic-like free energy with an associated
HH-like instability (Onuki and Fukuda, 1995). We note
that such a phenomenological theory has some deviations
that are better captured by a self-consistent field theory
treatment (Matsen, 2005, 2006), where the basic predic-
tion λ∗ ∼

√
λ` holds (Matsen, 2006) under certain con-

ditions. However, it is also possible for the block copoly-
mers to develop an instability at a wavelength that is
close to the lamellar spacing itself (λ∗ ∼ λ). The undula-
tions may also occur in two-dimensions, creating a square
lattice of deformations that are reminiscent of parabolic
focal conic domains, detailed in Sec. III.B (Tsori and An-
delman, 2008; Xu et al., 2005).

In general, the layer reorientation mechanism of di-
block copolymer systems under an applied field is com-
plex, and there is a sustained interest in elucidating all of
the possible regimes (Orizaga and Glasner, 2016). One
may observe some of the subtleties in Fig. 28(b), where

three different regions are identified in a single sample,
under the same applied field. Despite the variety in the
morphology of the instability, in all cases, we observe a
frustration between some applied strain and the equal
layer spacing of the ground state, as with the other sys-
tems considered in this review.

FIG. 29 (a) Uniaxial strain γ applied perpendicular to the
cylinders in a hexagonal phase of the diblock copolymer re-
sults in a HH undulatory instability of the cylinders, similar to
the ones shown in (b) for bundles of elastic fibers. The bundles
exhibit undulation instabilities as in the columnar phases of
diblock copolymer (and discotic liquid crystals). The buckling
in the fiber bundles, with characteristic size λ∗, comes from
geometrical frustration resulting from the incompatibility of
disclinations in the cylindrical packing and the equal cylinder
spacing. Figure is adapted from (Bruss and Grason, 2018).

The columnar, or hexagonal, phases of diblock copoly-
mers also exhibit HH-like instabilities. Applying a uni-
axial strain perpendicular to the length of the cylinders
may induce undulations as the cylinders try to maintain
the same spacing under strain (Fig. 29(a)). The resul-
tant instability in the cylinders, illustrated schematically
in Fig. 29(b), may be analyzed in the same fashion as the
lamellar system (Hamley, 1994; Pereira, 2002).

A related instability is also found in bundles of elastic
filaments (Bruss and Grason, 2018). There, the instabil-
ity arises when one has a defect in the hexagonal packing
of fibers. The packing defect, a disclination, is incom-
patible with the equal spacing of the cylinders in the
packing. The cylinders then buckle to relieve this frus-
tration (Bruss and Grason, 2018). Depending on the type
of disclination, one can find various deformation modes,
two of which are shown in Fig. 29(b). This is yet another
example where geometrical frustration leads to a spatial
modulation – the central theme of this review.

D. Columnar liquid crystals

The HH instability has also been postulated as the stri-
ation mechanism for columnar phases. Cagnon, Gharbia,
et al. were the first to observe an undulation instability in
columns of a thermotropic, discotic liquid crystal form-
ing stripes under both compression and dilation of the
system, reminiscent of the HH instability of smectics un-
der dilation (Cagnon et al., 1984; Gharbia et al., 1985).
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They used the HH model to discover that the curvature
elastic modulus of thermotropic, columnar liquid crystals
can be six orders of magnitude larger than that of ther-
motropic smectics and nematics, possibly due to column
entanglements.

A decade after the work of Cagnon, Gharbia et al.,
Oswald, et al. observed similar undulatory behavior in
hexagonal, lyotropic liquid crystals, with strain intro-
duced by a directional growth apparatus, in which the
sample, sandwiched between two glass plates, is pulled
across a pair of hot and cold ovens (Oswald et al., 1996).
Compared to the dilation experiments, the lyotropic sys-
tem of Oswald et al. underwent undulatory instabilities
due to thermal effects, thereby experiencing mechanical
stress in both vertical and in-plane directions. Their
measurements and calculations further indicated that the
columns in their system are not correlated at large dis-
tances. However, whether that conclusion can be drawn
for thermotropic systems remains unknown due to ex-
perimental difficulty in obtaining thermally induced stri-
ations in thermotropic, discotic liquid crystals. Further-
more, isolating the formation of stripes through macro-
scopic dilation of lyotropic systems is also challenging
because of difficulties in mitigating water evaporation –
another major source of stripe instabilities.

FIG. 30 (a) Evaporation of a particle suspension within a ses-
sile droplet occurs more rapidly at the droplet edges, driving
particles to the contact line, resulting in the “coffee ring” ef-
fect. (Reproduced from (Larson, 2017).) The coffee ring effect
for an aqueous solution of Sunset Yellow results in phase coex-
istence, with isotropic (I) near the center, then nematic (N),
and finally columnar (C) when moving radially outward (bot-
tom). (b) Domain walls are formed visible under polarizing
microscopy (left), resulting from the buckling of columns (yel-
low line, right schematic). (Reproduced from (Davidson et al.,
2017).) (c) The coffee ring effect is slowed when the droplet is
immersed in oil instead of air, resulting in the columns form-
ing a neat nematic phase. (d) Further evaporation leads to a
controlled herringbone texture from the buckling of columns
(bottom schematics, reproduced from (Lydon, 2010)). Cross-
polarized micrographs courtesy of Kunyun He.

Water evaporation has been suggested as the source of
undulatory instabilities for lyotropic systems in more re-
cent experiments. Kaznatcheev et al. studied a lyotropic

liquid crystal that forms columns in the chromonic
phase (Kaznatcheev et al., 2007). Lyotropic chromonic
mesophases are typically formed by plank-like molecules
with aromatic cores surrounded by polar groups that
can also form columns. In water, the molecules form
charged columns by stacking face-to-face in order to hide
their aromatic cores. Because the inter-disk association
is through weak, noncovalent interactions, the assembled
columns are polydisperse, with their average lengths de-
pendent upon the molecular concentration of the disks,
the disk ionic strength, the depletant concentration, and
the temperature (Tortora and Lavrentovich, 2011).

Kaznatcheev et al. used a sulfonated
benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1] dye as
lyotropic, chromonic liquid crystal and observed stripes
appearing after film deposition, exposed to air. The
stripe direction was perpendicular to the column direc-
tion, indicating that the stripes resulted from buckling
of the columns. They described the striations with a
HH model, hypothesizing that the evaporation of water
creates mechanical stress in the system by decreasing
the separation between adjacent columns. The excess
space caused by the evaporation must be filled by
either new columns or by tilting the columns. Creating
new columns would generate dislocations that then
propagate throughout the system, which is energetically
costly and slow. However, tilting of the columns could
occur rapidly, so would then be more favorable, again
reminiscent of the classic HH instability.

Investigating lyotropic, chromonic systems with gra-
dients of concentration from water evaporation is de-
sirable to better validate the HH model as the mech-
anism of stripe formation. The so-called “coffee ring”
effect achieves this, in which a sessile droplet of a parti-
cle suspension has an evaporation rate dependent upon
the radial distance to the center of the droplet, with
the highest evaporation rate at the droplet’s contact line
(Fig. 30(a), top). This evaporation gradient drives par-
ticles towards the droplet’s outermost rim, subsequently
generating a radial concentration gradient of particles.
A sessile droplet of the lyotropic, chromonic dye, Sun-
set Yellow, undergoing the coffee ring effect exhibits a
concentration gradient of the mesogen, resulting in the
coexistence of phases within the droplet [Fig. 30(a), bot-
tom]. The columnar phase near the contact line has
radially-aligned stripes. Davidson et al. measured the
light adsorption due to linear dichroism, revealing that
the average director orientation is parallel to the contact
line, drawn in Fig. 30(b), right (Davidson et al., 2017).
Domain walls of the columnar phase are also visible in
Fig. 30(b), left, indicating the presence of undulations
that bend the columns during the evaporation process.

The evaporation of water can be slowed by replac-
ing the surrounding air with oil. This is accomplished
by introducing a non-ionic triblock polymer surfactant
with hydrophilic polyethylene oxide in the ends and a
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hydrophobic polypropylene oxide in the center, such as
Pluronic 31R1. The surfactant aids the wetting of the
aqueous Sunset Yellow droplet on glass within hexade-
cane. By slowing the water evaporation rate, a smooth
nematic phase of the columns can be obtained, shown
in Fig. 30(c). Further evaporation then generates a uni-
form, herringbone texture in the droplet [Fig. 30(d)]. As
the solution is progressively concentrated, the existing
columns are extended, creating a differential strain in
the mesophase that results in undulations and buckling
of the columns, illustrated at the bottom of Fig. 30(d).
The fracturing of columns is likely a consequence of bend
deformations being more energetically costly than discon-
tinuities, suggesting stronger inter-columnar association
at high dye concentrations.

FIG. 31 (a) Textures of the hexagonal columnar phase of
PBLG are shown in polarizing optical micrographs at 120×
magnification. From (i) to (iii), the texture evolves from un-
dulations to a herring-bone pattern. In (ii), regions of max-
imum curvature of the PGLA become walls of discontinuity,
and new undulations appear within elongated domains. (b)
Illustration of the textural transformation from an undulating
pattern (i) to a herring-bone pattern (iv). Molecular orienta-
tions are represented by thin, continuous lines, walls of bend
deformations (L) are indicated by dashed lines, and walls of
discontinuity (W) are drawn as thick lines. Bend walls, L1,
transform into domain walls, W1, as the molecular concen-
tration increases. The process is repeated to form secondary
domains, where bend walls L2 transform into secondary dis-
continuities, W2. Reproduced from (Livolant and Bouligand,
1986).

The herringbone texture can also be found in phases
of more complex molecules, like biological polymers,
including DNA. The polarized optical micrographs of
condensed xanthan, poly(γ-benzyl-l-glutamate) (PBLG),
and DNA have been investigated by Livolant and Bouli-
gand, where the transition from undulations to a herring-
bone pattern could be observed, shown for PBLG in
Fig. 31 (Livolant and Bouligand, 1986). The formation of
secondary domains of periodicity within the herring-bone
pattern as described by Livolant and Bouligand is evoca-
tive to the formation of secondary domains within smec-
tic shells, detailed in Sec. VI.A. Condensed DNA also
exhibits the herring bone texture (Livolant et al., 1989).
Livolant et al. confirmed with electron microscopy, and
x-ray diffraction that highly concentrated, 50-nm DNA
molecules have columnar longitudinal order and hexago-
nal lateral order, and can also form undulating patterns
(Livolant and Leforestier, 1996). Recent studies of the
evaporation of DNA suspensions, exemplified by (Sma-
lyukh et al., 2006) and (Cha and Yoon, 2017), further
produced DNA textures that should also be describable
with the HH model. The HH instability is prevalent even
in water-based liquid crystals.

E. Biological materials

Undulation instabilities can also be seen in biological
systems at intermediate length scales, such as within sys-
tems of particle-like fibrils, such as chitin, found in the
exoskeletons of beetles and crustaceans, and cellulose,
found within plants. Both chitin and cellulose, as with
the majority of biological materials, have chiral building
blocks. When concentrated beyond a threshold concen-
tration, these biopolymers can form particles that self-
assemble into colloidal, cholesteric liquid crystals (Bouli-
gand, 1972b; Rey et al., 2014). The cholesteric pseu-
dolayer reorientation and formation of focal conic do-
mains at a curved interface is seen on the surface of
jeweled beetle shells due to the cholesteric ordering of
the constituent chitin, providing a mechanism for their
structural coloring and optical response (Rey et al., 2014;
Srinivasarao, 2009). Cellulose nanocrystals, derivable via
acid hydrolysis from bacteria, cotton, wood, tunicate,
and more, can also be concentrated to form a cholesteric
phase (Lagerwall et al., 2014). Colloidal suspensions of
cellulose nanocrystals can be spread and evaporated to
form a solid, dry film with photonic properties, forming
a polydomain, cholesteric structure with a pitch in the
visible wavelength range. Large magnetic fields can be
used during evaporation to form a single domain, align-
ing the pitch along the direction of the magnetic field,
as shown in Fig. 32 (Frka-Petesic et al., 2017). When
Frka-Petesic et al. applied a horizontal magnetic field
during drying, aligning the cholesteric helix perpendic-
ular to the plane of evaporation, they found a zig-zag
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pattern in the film [Fig. 32(b)]. Although mechanical
stress in the system is applied parallel to the layers in
this case, the zig-zag pattern can also be thought of as
a result of an HH-type mechanism. Evaporation during
the processing of cellulose nanocrystal films could further
introduce hydrodynamic stresses that can undulate and
strain the cholesteric pseudolayers (Chu et al., 2018).

FIG. 32 Scanning electron micrographs of cross sections from
evaporated cellulose nanocrystal films. (a) Applying a ver-
tical magnetic field (indicated by H) upon drying yields a
single-domain, homogeneous cellulose nanocrystal film, with
the pitch axis parallel to the magnetic field direction. (b)
Applying a magnetic field to align the pitch axis horizon-
tally generates a zig-zag pattern after evaporation, indicating
buckling of the cholesteric pseudolayers. Reproduced from
(Frka-Petesic et al., 2017).

Generally, biological systems are not only often chiral,
but also active and thereby out-of-equilibrium (Beliaev
et al., 2021; Bouligand, 1972b; Mitov, 2017; Rey, 2010;
Roland et al., 1992; Srinivasarao, 2009). The develop-
ment of the primary cell walls of plants is a striking ex-
ample, shown in Fig. 33. Activity, including forces gener-
ated during growth processes, introduces hydrodynamic
stresses that strain the chiral ordering of the system
(Fig. 34(a)). Whitfield et al. investigated cholesterics
from the framework of active liquid crystals, integrating
force-dipole stresses into a passive, chiral nematic formu-
lation (Whitfield et al., 2017). In their work, Whitfield
et al. found that extensile stresses can trigger HH layer
undulations in cholesterics. The steady state director
fields and their corresponding velocity fields for varying
extensile activity levels are plotted in Fig. 34(b). Both
director fields exhibit pairs of λ± pitch defects, reminis-
cent of defects in cholesterics shells. Pairs of λ± defects
often result from the HH instability in cholesterics, as de-
tailed in Sec. V. Kole, et al. advanced this work by show-
ing how active stresses in a cholesterics couple uniquely
to the chirality of the material, generating elastic forces
tangent to the layers (Kole et al., 2021). This “odder
than odd” elasticity from chiral activity leads to HH-like
undulations that produce a two-dimensional array of hy-
drodynamic vortices. Whether passive or active, the HH
mechanism is a valid mechanism of pattern formation in

FIG. 33 Transmission electron micrograph of the elongating
zone of mung bean seedlings (Vigna radiata). The cholesteric
pseudolayers of the cell wall, visible through the Bouligand
arches of the cross section, undulate near the interface where
growth of the cell wall takes place (bottom). Reproduced
from (Roland et al., 1992).

biological materials.

F. Magnetic systems

Thin magnetic films present an interesting two-
dimensional version of the HH instability. Such films
can be fabricated from epitaxial garnet or a thin cobalt
slice (Demand et al., 2002). In certain cases, these films
form magnetic domains in the form of stripes or hexag-
onal arrays of bubbles with a characteristic size λ, anal-
ogous to the smectic layer spacing or the spacing be-
tween cylinders in a hexagonal phase of a block copoly-
mer. These domains form when long-range dipolar mag-
netic interactions, which favor antiparallel alignment of
magnetic spins, compete with the usual, short-range fer-
romagnetic interaction that tends to align neighboring
spins. This is a typical scenario of short-range, attrac-
tive and long-range repulsive interactions necessary to
form systems that exhibit modulated phases. The spa-
tial modulations may then take the form of stripes, with
properties analogous to smectic liquid crystals or block
copolymers. As we have previously summarized, such
modulated phases exist in a wide range of systems in-
cluding phase-segregating lipids, block copolymers, and
ferrofluids (Andelman and Rosensweig, 2009; Seul and
Andelman, 1995).

To understand the instability in a ferromagnetic film,
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FIG. 34 (a) Sketch of the HH mechanism in extensile, active
cholesterics. Black lines show the projection of the direc-
tor field onto the plane, while red lines represent the splayed
pitch axis. Blue arrows show the active flow direction, which
increases the distortion and drives the undulation instabil-
ity. (b) Simulation results for an extensile, active cholesteric
confined in a quasi-two-dimensional geometry with flat walls.
Homogeneous planar anchoring is set for both the top and
bottom surfaces. The rightmost column plots projections of
the director field onto the plane, and the leftmost column
plots the corresponding velocity fields. ζ is proportional to
the concentration of active particles, and is positive for ex-
tensile materials and negative in contractile ones. For both
ζ = 0.001 and ζ = 0.0025, the profiles are steady states of the
system. Reproduced from (Whitfield et al., 2017).

consider a coarse-grained magnetization field M(x) de-
scribing the magnetization in the thin film at some spa-
tial coordinate x = (x, y). The free energy for M(x) will
will have the general form

fM =

∫
d2x

[
D

2
|∇M |2 +

r

2
M2 +

u

4
M4

+ µ

∫
d2x′M(x)g(x− x′)M(x′)

] (29)

where g(x − x′) is a Green’s function for the dipolar
interactions, and D, r, u, and µ are phenomenological
constants related to the material properties. We expect
generally that its Fourier transform is g(q) ≈ −g1|q|,
which gives us the necessary instability for the forma-
tion of a modulated phase with characteristic wavelength
t = 2π/q∗ ≈ 16π3D/(g1µ) (Andelman and Rosensweig,

a) ferromagnetic films b) simulations

FIG. 35 (a) Undulating magnetic domains under the influ-
enced of a cycled magnetic field [top two panels from (Demand
et al., 2002)] and a temperature change [bottom panel from
(Seul and Wolfe, 1992)]. Changing the field or the tempera-
ture effectively dilates the magnetic stripe domains, inducing
an HH-like instability. (b) Simulations of thin ferromagnetic
films [left three panels from (Asciutto et al., 2005)] and two-
dimensional block copolymers with an analogous free energy
[right three panels from (Kodama and Doi, 1996)] .

2009). In general, there are two types of patterns: an ar-
ray of circular domains and uniform stripes. In the case
of the stripe ground state, the free energy in Eq. (29) can
be shown to be equivalent to the smectic free energy in
two dimensions (Asciutto et al., 2005; Sornette, 1987).
There is then an analogue of the HH instability where
a magnetic field is applied, which has the tendency to
change the characteristic size t of the domains. Cycling
this field has the same dilational effect as a mechanical
strain in a smectic system, reviewed in Sec. III.B. Thus,
the HH instability can be realized in thin magnetic films.
An example of the domain shapes one finds under such
magnetic field cyclings are shown in Fig. 35.

IX. CONCLUSION

With this review, we shine a spotlight on the applica-
bility of the HH instability to a broad range of materials
with periodic ground states. By surveying phenomena
in cholesteric and smectic liquid crystals, we illustrate
geometrical frustration in lamellar systems as a result
of sources ranging from applied fields to boundary con-
ditions. The frustration is then relieved by the HH in-
stability, where undulations produce periodic structures
with wavelengths orthogonal to and larger than that of
the ground state.

By considering examples of cholesteric and smectic
shells, where the liquid crystal is confined between two
concentric and spherical, fluid interfaces, we highlight
the role of topological constraints, anchoring conditions,
boundary deformability, and curvature. These factors
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can both trigger the HH instability and shape the result-
ing patterns. While topological frustration necessitates
the existence of discontinuities from the global curvature,
the HH instability only cares about how the system looks
locally. Topological constraints can dictate that a frus-
tration exists, but the exact reaction to the frustration is
a question of energetics and local geometric incompatibil-
ities. The HH instability is then, in its nature, a response
to local geometrical frustration.

The generality of the HH mechanism is evident from
undulation instabilities appearing in periodic systems be-
yond the classic thermotropic, lamellar phases. These in-
clude twist-bend nematics, lyotropic liquid crystals, and
polymers, as well as biological and magnetic materials.
After accounting for fluid boundaries, the HH instability
can also describe phenomena in living matter, where fluid
interfaces are pervasive and activity can strain lamellar
structures.

We anticipate the HH instability to become increas-
ingly valuable for understanding the organization of lay-
ered materials. The phases formed by bent-core rods are
an enduring area of investigation, newly invigorated by
the experimental realizations of the splay-bend nematic
(Chiappini and Dijkstra, 2021; Fernández-Rico et al.,
2020; Meyer et al., 2020). Future studies on the struc-
tures formed by these spatially modulated phases will
almost certainly rely upon the HH model, as exemplified
by the striations of twist-bend nematics. Moreover, as
the field of active liquid crystals progresses, experimen-
tal realizations of active cholesterics and active smectics
will emerge. The latest theoretical frameworks already
invoke the HH mechanism to characterize lamellar dis-
tortions from active stresses (Kole et al., 2021; Whit-
field et al., 2017). Furthermore, cholesteric liquid crys-
tals remain widely employed in optical and elastomeric
materials. With undulations being common in the dy-
namics of cholesterics, the HH instability has the poten-
tial to be leveraged for tunable properties in advanced
technologies. Indeed, recent work exploited the field-
induced undulations of cholesterics to develop dynamic
and switchable diffraction gratings and surface coatings
(Ryabchun and Bobrovsky, 2018; Ryabchun et al., 2015,
2021, 2019). The HH instability is a generic but often
overlooked method of pattern formation that has been
and will continue to be integral to the structuring of pe-
riodic systems.
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