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Abstract
We prove that the polar degree of an arbitrarily singu-
lar projective hypersurface can be decomposed as a sum
of non-negative numberswhich quantify local vanishing
cycles of twodifferent types. This yields lower bounds for
the polar degree of any singular projective hypersurface.
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1 INTRODUCTION

The notion of polar degree is primarily defined as the topological degree of the gradient mapping

grad 𝑓 ∶ ℙ𝑛 ⧵ Sing(𝑉) → ℙ̌𝑛, (1)

associated to a projective hypersurface 𝑉 ∶= {𝑓 = 0} ⊂ ℙ𝑛, for some homogeneous polynomial
𝑓 ∶ ℂ𝑛+1 → ℂ. Thus pol(𝑉) ∶= #(grad 𝑓)−1(𝑙) for any generic point 𝑙 ∈ ℙ̌𝑛.
It is known that pol(𝑉) depends only on 𝑉 and not on the defining polynomial 𝑓. This fact was

conjectured by Dolgachev [10], and proved in [9], who considered this invariant under the reason
that the gradient mapping (1) with pol(𝑉) = 1 is a Cremona transformation. The corresponding
hypersurfaces𝑉were calledhomaloidal, andDolgachev classified the projective plane curveswith
this property. The case pol(𝑉) = 0 had been studied long ago by Hesse [17, 18], and Gordon and
Noether [14]; see Example 6.10. We refer to [8] and [20] for several remarks about the historical
landmarks and for some recent bibliography.
In the beginning of the 2000s, Dimca and Papadima [9] gave the following topological inter-

pretation: For any projective hypersurface 𝑉, if  is a general hyperplane with respect to 𝑉, then
the relative homology 𝐻∗(ℙ

𝑛 ⧵ 𝑉, (ℙ𝑛 ⧵ 𝑉) ∩) is concentrated in dimension 𝑛, the homology
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1808 SIERSMA and TIBĂR

𝐻∗(𝑉 ⧵) is concentrated in dimension 𝑛 − 1, and one has the equalities:

pol(𝑉) = rank 𝐻𝑛(ℙ
𝑛 ⧵ 𝑉, (ℙ𝑛 ⧵ 𝑉) ∩) = rank 𝐻𝑛−1(𝑉 ⧵). (2)

By repeated slicing, the first equality in formula (2) might be expanded as a Cayley–Bacharach–
type formula with alternating signs, but such a formula is not expected to provide lower bounds
for pol(𝑉) that one would need for classifying hypersurfaces 𝑉 with low polar degree. As a
breakthrough, more recently June Huh [20] obtained positive lower bounds for pol(𝑉) by using
non-generic hyperplane pencils, a technique developed in the 2000s [40, 42, 43] which extends the
Lefschetz method to non-generic pencils having stratified isolated singularities in the base locus.
His main result says:

Theorem [20, Theorem 2 and its proof]. Let 𝑉 ⊂ ℙ𝑛 be a hypersurface with isolated singularities.
For any general hyperplane𝑝 passing through some singular point 𝑝 ∈ Sing(𝑉), such that𝑉 is not
a cone of apex 𝑝, one has:

pol(𝑉) = 𝜇⟨𝑛−2⟩𝑝 (𝑉) + rank 𝐻𝑛(ℙ
𝑛 ⧵ 𝑉, (ℙ𝑛 ⧵ 𝑉) ∩𝑝). (3)

Huh’s remarkable refinement of Dimca–Papadima’s formula (2) in the particular case of iso-
lated singularities presents pol(𝑉) as a sum of two non-negative numbers, one of which being the
localMilnor–Teissier number 𝜇⟨𝑛−2⟩𝑝 that is well defined whenever 𝑝 is an isolated singular point
of 𝑉.† Then Huh uses the following bound provided by (3):

pol(𝑉) ⩾ 𝜇⟨𝑛−2⟩𝑝 (𝑉) (4)

for showing that there are no homaloidal hypersurfaces with isolated singularities besides the
smooth quadric and the plane curves found byDolgachev, and thus confirming a conjecture stated
by Dimca and Papadima [8, 9].
More recently, the paper [34] confirmed the classification list conjectured by Huh [20, Con-

jecture 20] of projective hypersurfaces with pol(𝑉) = 2 and having isolated singularities. This list
consists of nine plane curves of degrees 3, 4 and 5, and three cubic surfaces. Moreover, [34, The-
orems 1.4, 4.5 and 4.1] proved yet another conjecture of [20] which says that for each fixed polar
degree value pol(𝑉), the degree 𝑑 of 𝑉 and the number of variables 𝑛 have upper bounds.
Stimulated by the formula (3), onemay ask the audacious question if there exists a split-formula

for pol(𝑉) into a sum of non-negative numbers which may predict and control lower bounds‡ for
pol(𝑉).
In our paper we take this challenge and, considering the general setting of 𝑉 with any singular

locus, we prove that the polar degree pol(𝑉) has a split formula into certain non-negative num-
bers which, remarkably, are all quantifiers of local vanishing cycles. More precisely, Theorem 5.4
presents a quantization of pol(𝑉) as the sum:

pol(𝑉) = 𝛼(𝑉,) + 𝛽(𝑉,), (5)

† 𝜇⟨𝑛−2⟩𝑝 denotes the Milnor number at 𝑝 of the generic hyperplane section through 𝑝.
‡As for an upper bound, we have pol(𝑉) ⩽ (𝑑 − 1)𝑛 for any 𝑉, which can be easily shown by using the definition (1) and
the behaviour of the degree of the gradient map under deformations.
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POLAR DEGREE AND VANISHING CYCLES 1809

where, as we will define in Section 5, each of the terms 𝛼(𝑉,) and 𝛽(𝑉,) is a sum of numbers
of local vanishing cycles, but of different types.
In order to define the local invariantswhich compose𝛼(𝑉,) and𝛽(𝑉,), all ofwhich depend-

ing on a projective hyperplane ⊂ ℙ𝑛, we need that this hyperplane is admissiblewith respect
to 𝑉. The set of admissible hyperplanes (see Definition 4.2) includes both the set of generic hyper-
plane slices considered in [9] and the set of non-generic hyperplanes considered in [20], see
Remark 4.3. Roughly, the admissible hyperplanes  should have a finite number of isolated
tangency points with 𝑉, in the stratified sense. Part of these may be special points. The set of
special points is a finite subset of 𝑉 (Definition 6.1) defined intrinsically, which extends natu-
rally to any hypersurface 𝑉 the notion of ‘isolated singularities’, and is defined in terms of local
vanishing cycles.
The admissibility condition has a second aspect (cf. Definition 4.2(ii)) whichmay be interpreted

topologically as the existence of a ‘singular polar degree relative to ’. Our new type of Polar
Curve Theorem 2.2 insures that the hyperplanes passing through a single special point of 𝑉 are
generically admissible.
Roughly speaking, the term 𝛼(𝑉,) collects the numbers of vanishing cycles of the isolated

stratified singularities of the slice 𝑉 ∩, whereas 𝛽(𝑉,) collects the numbers of the vanish-
ing cycles of the singularities of the 𝑛-variables polynomial 𝑃 ∶= 𝑓|ℙ𝑛⧵ which are outside 𝑉,
namely, of the singularities of 𝑃 in ℂ𝑛 ⧵ 𝑉 ∶= ℙ𝑛 ⧵ ( ∪ 𝑉), and of the singularities of 𝑃 ‘at
infinity’ outside𝑉. All these singularities outside𝑉 turn out to be isolated due to the admissibility
conditions (cf. Definition 4.2(i) and (ii)).
The change of paradigm in this paper consists in the presentation of the polar degree as the

sum of quantifiers of local vanishing cycles. Therefore a key role is played here by the enhanced
study of geometric vanishing cycles of polynomial functions done for the proof of Theorem 4.7.
Let us give a brief idea how these local invariants fit together in the above formula (5) of

our Theorem 5.4. Deleting an admissible hyperplane  yields an affine variety 𝑉 ⧵ of affine
equation 𝑃 = 0. It then turns out that the polynomial 𝑃 ∶ ℂ𝑛 → ℂ has only isolated singu-
larities outside 𝑉 ⧵, both on the affine part ℙ𝑛 ⧵ and at infinity (Corollary 4.4). This is
possible because we work in the context of singularities at infinity defined in the most general
setting of partial Thom stratifications at infinity, which avoids the use of the stronger condition
of Whitney (b) regularity, and in which one can still prove that the vanishing cycles are local-
izable at finitely many points (which are in fact the stratified singularities of a certain proper
extension 𝜏 of 𝑃). It further turns out that the isolated stratified singularities are detectable by
the presence of a certain local polar curve, with well-defined local polar multiplicities 𝜆(𝑝, 𝑡),
cf. Definition 4.5.
Concerning the term 𝛽(𝑉,) of (5), Theorem 4.7 shows that the reduced homology of a ‘thin

tube’ 𝑃−1

(𝐷) ⊂ ℙ𝑛 ⧵ around the fibre 𝑃−1


(0) = 𝑉 ⧵ is concentrated in dimension 𝑛 − 1. It

also shows that the top Betti number 𝑏𝑛(𝑃−1 (𝐷)) is the sum of the polar multiplicities 𝜆(𝑝, 𝑡) at
the isolated 𝑡-singularities at infinity outside 𝑉, and of the Milnor numbers of the affine isolated
singularities of 𝑃 outside 𝑉 ⧵.
As for the term𝛼(𝑉,) of (5), it is the sumof theMilnor–Lênumbers𝛼𝑝(𝑉,) > 0 of the hyper-

plane slice𝑉 ∩ at the isolated non-transversality points 𝑝 ∈ 𝑉 ∩, cf. Section 5.1. The number
𝛼(𝑉,) turns out to be the difference |𝜒(𝑉 ⧵) − 𝜒(𝑉 ⧵g𝑒𝑛)|, where the Euler characteristic
𝜒(𝑉 ⧵g𝑒𝑛) is morally the same thing as pol(𝑉) according to (9).
We give in Section 5.3 effective methods for computing the ingredients 𝛼(𝑉,) and 𝛽(𝑉,).

They are used in the explicit computations of several examples, see Examples 5.4 and 5.6.
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1810 SIERSMA and TIBĂR

In the last section, Section 6, we discuss lower bounds for the polar degree as a consequence of
the formula (23) of Theorem 5.4. These are extensions of Huh’s results to non-isolated singulari-
ties. In particular they yield severe obstructions for the existence of homaloidal hypersurface.
We finally come back to the case pol(𝑉) = 0 first studied by Hesse and Gordon–Noether. As an

application of our results, we show that in this case, if𝑉 is not a cone, then it has no special points.
Our study was also motivated by the rich list of examples of homaloidal hypersurfaces

with non-isolated singularities, see, for example, [5, 11–13, 19]. On the other hand, the polar
degree pol(𝑉) occurs under several more other significant avatars. The presentation pol(𝑉) =
rank 𝐻𝑛−1(𝑉 ⧵), for a general hyperplane , is equivalent to the presentation in terms of the
affine complement†, as observed in [9]:

pol(𝑉) = rank 𝐻𝑛(ℂ
𝑛 ⧵ 𝑉) + (−1)𝑛, (6)

where ℂ𝑛 = ℙ𝑛 ⧵. The topology of the affine complement ℂ𝑛 ⧵ 𝑉 has been studied notably by
Libgober in a series of papers [23–27] and the studywas extended to Alexandermodules, for exam-
ple, in [28, 29]. In the particular case of an arrangement of hyperplanes 𝑉 = 𝑉 ⊂ ℙ𝑛, it was
noticed in [9, Corollary 4] that one also has the presentation:

pol(𝑉) = rank 𝐻𝑛(ℙ
𝑛 ⧵ 𝑉).

The study of the complementℙ𝑛 ⧵ 𝑉, notably in relation to its combinatorics, is an ample branch
of research, with a lot of interesting contributions; the reader is referred to the relevant literature.
The number pol(𝑉) also appears in [30] as the middle 𝐿2 Betti number of the affine complement
ℂ𝑛 ⧵ 𝑉.

2 A CONSTRAINED POLAR CURVE THEOREM

Let 𝑓 ∶ ℂ𝑛+1 → ℂ be a non-identically zero homogeneous polynomial in fixed variables
𝑥0, 𝑥1, … , 𝑥𝑛. One may assume that 𝑓 is reduced since the polar degree depends on the reduced
structure only, as shown by Dimca and Papadima’s [9] formula (2). The singular set Sing𝑓
is a cone at the origin 0 ∈ ℂ𝑛+1, that is, a union of lines passing through the origin, with
dim0 ⩽ Sing𝑓 ⩽ 𝑛 − 1.
Let 𝑙 =

∑𝑛
𝑖=0 𝑎𝑖𝑥𝑖 ∈ ℙ̌𝑛 be a linear form.

Definition 2.1. One calls

Γ(𝑙, 𝑓) ∶=

{
𝑥 ∈ ℂ𝑛+1 ∣ rank

[
𝜕𝑓
𝜕𝑥0

(𝑥) 𝜕𝑓
𝜕𝑥1

(𝑥) ⋯ 𝜕𝑓
𝜕𝑥𝑛

(𝑥)

𝑎0 𝑎1 ⋯ 𝑎𝑛

]
< 2

}
⧵ {𝑓 = 0} (7)

the polar locus of 𝑓 with respect to 𝑙.

By definition pol(𝑉) ∶= #(grad 𝑓)−1(𝑙) for any general point 𝑙 ∈ ℙ̌𝑛, thus pol(𝑉) equals the
multiplicity mult0Γ(𝑙, 𝑓) at 0 ∈ ℂ𝑛+1 of the polar curve Γ(𝑙, 𝑓). Since 𝑓 is a homogeneous

† By the Lefschetz slicing method for quasi-projective spaces, one has that the reduced homology 𝐻∗(ℂ
𝑛 ⧵ 𝑉) is

concentrated in dimension 𝑛, and therefore 𝜒(ℂ𝑛 ⧵ 𝑉) = 𝜒(ℂ𝑛) − 𝜒(𝑉 ⧵).
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POLAR DEGREE AND VANISHING CYCLES 1811

polynomial, this multiplicity is also equal to theMilnor number of the complex linkℂlk0({𝑓 = 0})
of the hypersurface germ ({𝑓 = 0}, 0) ⊂ (ℂ𝑛+1, 0), and it is well known (cf. [22]) thatℂlk0({𝑓 = 0})
is homotopy equivalent to a bouquet of spheres of dimension 𝑛 − 1. Therefore pol(𝑉) is equal to
the number of these spheres:

pol(𝑉) = rank 𝐻𝑛−1(ℂlk0({𝑓 = 0})). (8)

Since𝑓 is homogeneous, the local complex linkℂlk0({𝑓 = 0}) is homeomorphic to the affine set
{𝑓 = 0} ∩ {𝑙 = 1} ⊂ ℂ𝑛+1 for some general 𝑙, which in turn identifies to 𝑉 ⧵gen, wheregen ∶=

{𝑙 = 0} is a general projective hyperplane. We thus get the equality†:

pol(𝑉) = rank 𝐻𝑛−1(𝑉 ⧵gen). (9)

In the following we shall identify a hyperplane ⊂ ℙ𝑛 to a point 𝑙 ∈ ℙ̌𝑛, also viewed as a linear
function 𝑙 ∶ ℂ𝑛+1 → ℂ (modulo multiplication by a non-zero complex number) such that 𝐻 ∶=
{𝑙 = 0} is the associated hyperplane in ℂ𝑛+1.
One says that 𝑉 ⊂ ℙ𝑛 is a cone of apex 𝑝, for some point 𝑝 = [𝑝0;⋯ ; 𝑝𝑛] ∈ 𝑉, if the derivatives

of 𝑓 satisfy the linear equation
∑𝑛
𝑖=0 𝑝𝑖𝜕𝑓∕𝜕𝑥𝑖 = 0 over all ℂ𝑛+1.

Modulo a linear change of coordinates, we can write 𝑝 = [1 ∶ 0 ∶⋯ ∶ 0] and then this con-
dition amounts to: ‘the polynomial 𝑓 does not depend on the coordinate 𝑥0’. In particular this
implies that pol(𝑉) = 0, directly from the definition. Note that a cone 𝑉 may have one apex or a
linear subspace of apex points in case it is an iterated cone.
We say thatgen ⊂ ℙ𝑛 is a generic hyperplane with respect to 𝑉 ifgen intersects 𝑉 transversely

in a stratified sense, namely: after endowing 𝑉 with some Whitney stratification, gen must be
transversal to all strata, in particular avoiding all the 0-dimensional strata. In particulargen con-
tains no isolated singular points of 𝑉. It is well known that the set of generic hyperplanes with
respect to 𝑉 is a Zariski-open subset of ℙ̌𝑛.
We are interested here in hyperplanes through some singular point 𝑝 ∈ Sing(𝑉). Let us write

ℙ̌𝑛−1𝐿 for the set of hyperplanes𝐻 ⊂ ℂ𝑛+1 containing a fixed line 𝐿 ⊂ ℂ𝑛+1 through the origin, and
denote by [𝐿] the corresponding point in ℙ𝑛.
We introduce a new polar curve theorem in such a non-generic setting:

Theorem 2.2 (Constrained polar curve theorem). Let 𝑓 ∶ ℂ𝑛+1 → ℂ, 𝑛 ⩾ 2, be a homogeneous
polynomial with dimSing𝑓 > 0. Let 𝐿 ⊂ Sing𝑓 be a singular line such that 𝑉 ∶= {𝑓 = 0} ⊂ ℙ𝑛 is
not a cone of apex [𝐿].
Then there is a Zariski open dense subset Ω̂𝐿 ⊂ ℙ̌𝑛−1𝐿 such that the polar locus Γ(𝑙, 𝑓) ⊂ ℂ𝑛+1 is

either a curve for all 𝑙 ∈ Ω̂𝐿, or it is empty for all 𝑙 ∈ Ω̂𝐿.

Remark 2.3. The classical local polar curve theorem‡ [16] says that if the hyperplane𝐻gen ∶= {𝑙 =

0} ⊂ ℂ𝑛+1 is general, then the germ at the origin Γ0(𝑙, 𝑓) ⊂ ℂ𝑛+1 of the polar locus is either a curve,
or it is empty. Our Theorem 2.2 involves non-general hyperplanes, but on the other hand it applies
to homogeneous polynomials only.

† This argument using the polar curve Γ(𝑙, 𝑓) is different than the proof developed in [9] for the corresponding part of the
equality (2).
‡ See [43, Chapter 7] for details and bibliography.
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1812 SIERSMA and TIBĂR

2.1 Proof of Theorem 2.2

By a linear change of coordinateswemay assume that 𝐿 = ℂ⟨(1, 0, … , 0)⟩. Consider the transversal
hyperplane 𝐾 ∶= {𝑥0 = 1} ⊂ ℂ𝑛+1 at the point 𝑝 = (1, 0, … , 0) ∈ 𝐿. Let 𝑙 =

∑𝑛
𝑖=1 𝑎𝑖𝑥𝑖 ∈ ℙ̌𝑛 be a

linear form which does not contain the variable 𝑥0.
We shall identify 𝐾 with ℂ𝑛, the point 𝑝 with the origin of ℂ𝑛, and the restriction 𝑓|𝐾 with a

polynomial g ∶ ℂ𝑛 → ℂ. We denote 𝑙 ∶= 𝑙|𝐾 = ∑𝑛
𝑖=1 𝑎𝑖𝑥𝑖 . Let

Γ(𝑙, g) ∶=

{
𝑥 ∈ ℂ𝑛 ∣ rank

[
𝜕g
𝜕𝑥1

(𝑥) ⋯ 𝜕g
𝜕𝑥𝑛

(𝑥)

𝑎1 ⋯ 𝑎𝑛

]
< 2

}
⧵ Singg

be the polar locus of g with respect to 𝑙.

Lemma 2.4. The polar locus Γ(𝑙, 𝑓) is the cone over its slice by𝐾, and the following equality holds:

𝐾 ∩ Γ(𝑙, 𝑓) = Γ(𝑙, g) ∩
{
𝜕𝑓

𝜕𝑥0
= 0

}
⧵ {𝑓 = 0}.

Proof. The first assertion follows from the remark that Γ(𝑙, 𝑓) ⊂ ℂ𝑛+1 is a homogeneous set and
that the hyperplane 𝐾 is transversal to it. Then the claimed equality follows from the definition
(7) of the local polar locus Γ(𝑙, 𝑓), which in our case is a homogeneous set. □

In order to pursue, we need to use certain details of the proof of the classical result, therefore
we outline the arguments and refer to [16, 38, 43] for the full discussion:

Lemma 2.5 (Generic Affine Polar Curve Lemma. [38], [43, Theorem 7.1.2]). Let g ∶ ℂ𝑛 → ℂ be a
polynomial function. There is a Zariski open dense subsetΩ ⊂ ℙ̌𝑛−1 such that the polar locus Γ(𝑙, g)
is either a curve for all 𝑙 ∈ Ω, or it is empty for all 𝑙 ∈ Ω.

Proof. The relative conormal of g is defined as:

𝑇∗g ∶=
{
(𝑥,) ∈ (ℂ𝑛 ⧵ Singg) × ℙ̌𝑛−1 ∣  = 𝑇𝑥g−1(g(𝑥))

}
⊂ ℂ𝑛 × ℙ̌𝑛−1 (10)

with projections 𝜋1 ∶ 𝑇∗g → ℂ𝑛 and 𝜋2 ∶ 𝑇∗g → ℙ̌𝑛−1.
Before taking the algebraic closure in (10) one has by definition a non-singular open variety of

dimension 𝑛 on which the projection 𝜋1 is one-to-one. It follows that 𝑇∗g is a (singular) variety of
dimension 𝑛 too.
As 𝜋2 is generically regular by the Morse–Sard theorem, we have two possibilities: either

(a) dim Im𝜋2 < 𝑛 − 1, thus 𝜋2 is totally singular. In this case the generic polar locus is empty,
that is, we may take as Ω the interior of the complement of Im𝜋2, or

(b) dim Im𝜋2 = 𝑛 − 1.

In case (b), Im𝜋2 contains a Zariski open dense subset Ω ⊂ ℙ̌𝑛−1 over which 𝜋2 is a submersion,
more precisely the restriction:

𝜋2|𝐺 ∶ 𝐺 ∶= 𝜋−12 (Ω) ∩ [(ℂ𝑛 ⧵ Singg) × ℙ̌𝑛−1] → Ω ⊂ ℙ̌𝑛−1 (11)
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POLAR DEGREE AND VANISHING CYCLES 1813

is a submersion. Consequently its fibre is a complexmanifold of dimension 1, hence a curve. Since
Γ(𝑙, g) = 𝜋1((𝜋2|𝐺)−1(𝑙)) for 𝑙 ∈ Ω, this proves our lemma. □

Consider now the image by 𝜋1 of the smooth algebraic set 𝐺 of dimension 𝑛 defined in (11).
Since 𝜋1 is generically one-to-one on it, the image 𝜋1(𝐺) contains an open subset of ℂ𝑛, hence we
have the following consequence of the above proof:

Corollary 2.6. Assume that dim Im𝜋2 = 𝑛 − 1. Let 𝑙0 ∈ Ω ⊂ ℙ̌𝑛−1 and let 𝐵𝜀(𝑙0) ⊂ Ω ⊂ Im𝜋2 be
a small enough ball centred at 𝑙0 ∈ ℙ̌𝑛−1. Then the image 𝜋1(𝜋2−1|𝐺 (𝐵𝜀(𝑙0))) ⊂ ℂ𝑛 contains an open
tubular neighbourhood of the curve 𝜋1(𝜋2−1|𝐺 (𝑙0)) ⊂ Γ(𝑙0, g) in ℂ𝑛.

2.2 End of the proof of Theorem 2.2

The idea is that a linear function 𝑙 ∈ Ω̂𝐿 should be a sufficiently general linear function 𝑙 = 𝑙|𝐾 on
the hyperplane 𝐾 ⊂ ℂ𝑛. This may be realized in all details, as follows.
By applying Lemma 2.5 to the restriction g = 𝑓|𝐾 , which is a polynomial function of 𝑛 variables,

we obtain the existence of a Zariski open dense subsetΩ ⊂ ℙ̌𝑛−1 such that Γ(𝑙, g) ⊂ ℂ𝑛 is either a
curve for all 𝑙 ∈ Ω, or empty for all 𝑙 ∈ Ω.
In case (a) of the proof of Lemma 2.5, the polar locus Γ(𝑙, g) is empty for all 𝑙 ∈ Ω. By Lemma 2.4

it then follows that the polar locus Γ(𝑙, 𝑓) is empty too, for any 𝑙 in the Zariski open dense subset
Ω̂𝐿 ∶= Ω ⊂ ℙ̌𝑛−1𝐿 , modulo the identification 𝑙(𝑥0, 𝑥1, … , 𝑥𝑛) = 𝑙(𝑥1, … , 𝑥𝑛) due to the definition of
Ω̂𝐿. This is the trivial case†.
In case (b) of the proof of Lemma 2.5, the polar locus Γ(𝑙, g) is a curve for all 𝑙 ∈ Ω. Then let us

consider the homogeneous set 𝑅 ∶= { 𝜕𝑓
𝜕𝑥0

= 0} ⊂ ℂ𝑛+1 which occurs in Lemma 2.4, and remark
that it contains the line 𝐿. There are two possibilities: either 𝑅 is the entire space ℂ𝑛+1, which is
equivalent to the fact that 𝑓 does not depend on 𝑥0, and which is excluded by the hypothesis that
𝑉 is not a cone of apex [𝐿], or 𝑅 is a homogeneous hypersurface germ, and thus of pure dimension
𝑛.
In this latter case, it then follows that the intersection 𝑅 ∩ 𝐾 ⊂ 𝐾 = ℂ𝑛 is of dimension 𝑛 − 1,

recalling that the affine hyperplane 𝐾 ∶= {𝑥0 = 1} ⊂ ℂ𝑛+1 is transversal to the ℂ∗-orbits of the
points of 𝑅, and that we have identified 𝐾 with ℂ𝑛.
By Corollary 2.6, for any 𝑙0 ∈ Ω, the space 𝜋1(𝜋2−1|𝐺 (𝐵𝜀(𝑙0))) ⊂ ℂ𝑛 contains an open set of

dimension 𝑛 and it is by definition the union of curves
⋃
𝑙∈𝐵𝜀(𝑙0)

Γ(𝑙, g) ⧵ Singg . Therefore
𝜋1(𝜋2

−1|𝐺 (𝐵𝜀(𝑙0))) contains an open tubular neighbourhood of the curve Γ(𝑙0, g) ⧵ Singg inℂ𝑛, thus
contains an open tubular neighbourhood of each irreducible component of the curve Γ(𝑙0, g) ⧵
Singg , as these components are finitely many.
Continuing the reasoning, since 𝑅 ∩ 𝐾 has dimension 𝑛 − 1 in 𝐾 = ℂ𝑛, the subset:

{𝑙 ∈ ℙ̌𝑛−1𝐿 ∣ some irreducible component of the curve Γ(𝑙, g) ⧵ Singg is contained in 𝑅 ∩ 𝐾}

is algebraic of dimension ⩽ 𝑛 − 2. Its complement is Zariski open, and we denote it by Ω̂𝐿 ⊂ Ω ⊂
ℙ̌𝑛−1𝐿 . Therefore the intersection Γ(𝑙, g) ∩ 𝑅 ⊂ 𝐾 is of dimension zero for any 𝑙 ∈ Ω̂𝐿.

† Let us remark that the polar curve Γ(𝑙, g) is not empty whenever the polynomial g has at least one isolated singularity,
since the generic local polar curve at an isolated hypersurface singularity is not empty. More generally, this holds at special
points of 𝑉, see Definition 6.1 and related results in Section 6.
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1814 SIERSMA and TIBĂR

By Lemma 2.4, it then follows that the polar set Γ(𝑙, 𝑓) is either a curve for all 𝑙 ∈ Ω̂𝐿 ⊂ Ω ⊂
ℙ̌𝑛−1, or it is empty.
This ends the proof of Theorem 2.2. □

Remark 2.7. By examining the impact of the ‘non-conical’ condition in the above proof, we
can deduce what is the complementary situation with respect to the statement of Theorem 2.2.
Namely:

If 𝑉 is a cone of apex [𝐿] then the polar set Γ(𝑙, 𝑓) is either of pure dimension 2 for all
𝑙 ∈ Ω̂𝐿 ⊂ Ω ⊂ ℙ̌𝑛−1, or it is empty for all 𝑙 ∈ Ω̂𝐿 ⊂ Ω ⊂ ℙ̌𝑛−1.

Indeed, in case 𝑉 is a cone of apex [𝐿], our polar set Γ(𝑙, 𝑓) is the cone over the generic polar
locus Γ(𝑙, g) in the slice 𝐾, and in this slice, the generic polar locus is either a curve or empty,
which yields the precise dimensions in the above statement.

Remark 2.8. The projective hypersurfaces 𝑉 which are not cones, but have polar degree pol(𝑉) =
0, are particularly interesting and of course related to the original studies by Hesse, Gordon and
Noether referred to in the Introduction. In this case one can have a dimension 1 generic polar
locus Γ(𝑙, g) ⊂ 𝐾 = ℂ𝑛, whereas the affine polar curve Γ(𝑙, 𝑓) ⊂ ℂ𝑛+1 is empty. See Example 6.10.

3 VANISHING CYCLES OF POLYNOMIAL FUNCTIONS

The proof of our polar degree formula of Theorem 5.4 relies on a key result, Theorem 3.5, that we
prove in this section. This is based on geometric vanishing cycles of polynomial functions. We use
the concept of ‘partial Thom stratifications’ (cf. [43]) in order to localize those vanishing cycles
which vanish asymptotically.
Let 𝑃 ∶ ℂ𝑛 → ℂ be a non-constant polynomial function of degree 𝑑. It is well known that there

is a finite subset of the target ℂ such that 𝑃 induces a locally trivial fibration over its complement.
The minimal such subset is called the set of atypical values Atyp 𝑃 ⊂ ℂ.
In our case we consider the polynomial 𝑃(𝑥0, … , 𝑥𝑛−1) ∶= 𝑓(𝑥0, … , 𝑥𝑛−1, 1), and we say that

�̃� = 𝑓 is the homogenized of 𝑃 of degree 𝑑 by the coordinate 𝑥𝑛
Let 𝕏 ∶= {𝑓(𝑥0, … , 𝑥𝑛) − 𝑡𝑥

𝑑
𝑛 = 0} = {�̃� − 𝑡𝑥𝑑𝑛 = 0} ⊂ ℙ𝑛 × ℂ. Let 𝜏 ∶ 𝕏 → ℂ be the projection

on the second factor, and let us denote by 𝕏𝑡 ∶= 𝜏−1(𝑡) its fibres.
The set 𝕏 is precisely the closure in ℙ𝑛 × ℂ of the graph {(𝑥, 𝑡) ∈ ℂ𝑛 × ℂ ∣ 𝑃(𝑥) = 𝑡} of 𝑃 and

𝕏∞ ∶= 𝕏 ∩ ( × ℂ) = (𝑉 ∩) × ℂ is the divisor at infinity, where ∶= 𝐻∕ℂ∗ and 𝐻 ∶= {𝑥𝑛 =
0} ⊂ ℂ𝑛+1. One may then identify ℂ𝑛 with 𝕏 ⧵ 𝕏∞ via the canonical map 𝑥 ↦ ([𝑥 ∶ 1], 𝑃(𝑥)). In
particular, 𝜏 is a proper extension of 𝑃. The hypersurface 𝕏 ⊂ ℙ𝑛 × ℂ is covered by affine charts
𝑈 × ℂ, where 𝑈 ⊂ ℙ𝑛 is some affine chart of ℙ𝑛.
The non-isolated singular locus of the fibre 𝕏0 = 𝑉 (if there is any) intersects the hyperplane

at infinity. Here we are interested in another type of singularities, the so-called singularities at
infinity of the fibres 𝕏𝑡 for 𝑡 ≠ 0.

3.1 Partial Thom stratifications

We use the following result, as a particular case of the more general result in reference:
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POLAR DEGREE AND VANISHING CYCLES 1815

Theorem 3.1 [3]†. Let 𝑋 ⊂ ℂ𝑁 be a complex space endowed with a Whitney stratification, and let
ℎ be a holomorphic function on 𝑋 such that its zero locus is a union of strata. Then this Whitney
stratification is also a Thom aℎ-regular stratification of ℎ−1(0).

The singular locus Sing(𝕏) of the set 𝕏 is included in the divisor at infinity 𝕏∞ and therefore
one may endow𝕏with a Whitney stratification such that𝕏∞ is a union of strata. By Theorem 3.1
applied to ℎ = 𝑥𝑛, thisWhitney stratification of𝕏 is Thom regular at𝕏∞ with respect to the levels
of 𝑥𝑛, in any local chart. This is a particular case of a partial Thom stratification at infinity like
introduced in [38], [39, Definition 2.1], see also [43, Appendix 1.1], [6], [1].

Definition 3.2 (Partial Thom stratification at infinity of 𝑃, [38], [39, Definition 2.1], [43, Defini-
tion 9.1.3]). A locally finite stratification of𝕏∞ such that each stratum is Thom (a𝑥𝑛 )-regular with
respect to the smooth stratum 𝕏 ⧵ 𝕏∞ is called a 𝜕-Thom stratification at infinity. This is inde-
pendent on the affine chart where one considers the function 𝑥𝑛 and its levels, cf. [38, Theorem
3.6].

The advantage in working with partial Thom stratifications is that one does not require the
more involved Whitney regularity, whereas one may still prove fibration theorems, cf [38] [43,
Appendix 1].

Definition 3.3 (𝑡-singularities at infinity, [35], [38], [43, Definition 1.2.10]). Let  be a 𝜕-Thom
stratification at infinity of 𝕏, and let 𝜂 ∈ 𝕏∞. If the map 𝜏 ∶ 𝕏 → ℂ is transversal to the stratifi-
cation  at 𝜂 then we say that 𝑃 is 𝑡-regular at infinity at this point. If non-transversality occurs
instead, then we say that 𝑃 has a 𝑡-singularity at infinity at 𝜂.
We say that 𝜂 is an isolated 𝑡-singularity at infinity of 𝑃 if the map 𝜏 ∶ 𝕏 → ℂ has an isolated

non-transversality at 𝜂 with respect to , and if moreover the map 𝜏 has no other singularity on
𝕏 ⧵ 𝕏∞ in the neighbourhood of 𝜂.

3.2 The isolated non-transversality condition, and Thom regularity

We fix a Whitney stratification  of the homogeneous hypersurface {𝑓 = 0} ⊂ ℂ𝑛+1. We may
and will assume that is a homogeneous stratification, and recall that the strata of the coarsest
Whitney stratification are ℂ∗-invariant.
We consider the origin of ℂ𝑛+1 as a point-stratum and denote by ∗ the union of all strata

different from {0}. Then the projectivized stratification ℙ ∶=∗∕ℂ∗ yields a Whitney stratifi-
cation of the projective hypersurface 𝑉. Let us also recall that the Whitney stratification ℙ of
the hypersurface 𝑉 ⊂ ℙ𝑛 depends on the reduced structure of 𝑉 only.
Let 𝐻 ∶= {𝑙 = 0} be a hyperplane through 0 ∈ ℂ𝑛+1, together with its associated projec-

tive hyperplane  ∶= 𝐻∕ℂ∗ ⊂ ℙ𝑛 which satisfies the following property with respect to the
stratification ℙ of 𝑉 that we will call isolated non-transversality:

 is transversal to all strata of ℙ except at finitely many points. (12)

Let us denote by Singℙ (𝑉 ∩) = {𝑝𝑖}
𝑟
𝑖=0

⊂ ℙ𝑛 the set of points of non-transversality in (12),
and by 𝐿𝑖 ⊂ ℂ𝑛+1 the line which corresponds to 𝑝𝑖 .

† See also [38], [43, Theorem A1.1.7].
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1816 SIERSMA and TIBĂR

By the transversality property (12), the induced stratification𝐻 ∩∗ on𝐻 ∩ {𝑓 = 0} ⧵
⋃𝑟
0 𝐿𝑖 is

Whitney regular. It extends to a homogeneousWhitney regular stratification of𝐻 ∩ {𝑓 = 0}where
the lines 𝐿𝑖 are the Whitney strata of dimension 1. We denote by𝐻 this Whitney stratification,
and by ℙ𝐻 ∶=𝐻∕ℂ

∗ the corresponding Whitney stratification of 𝑉 ∩. Its 0-dimensional
strata are precisely the points {𝑝𝑖}𝑟𝑖=0.
We consider the map (𝑙, 𝑓) ∶ (ℂ𝑛+1, 0) → (ℂ2, 0). Modulo a linear change of coordinates, one

may assume that 𝑙 = 𝑥𝑛. We thus consider the affine map (𝑥𝑛, 𝑓) ∶ ℂ𝑛+1 → ℂ2 and the Thom
regularity condition of this map at its central fibre.† One defines the Thom non-regularity locus‡
as the set of points of the central fibre of a map where the Thom regularity condition fails with
respect to some stratification defined in the preamble, which in our case is𝐻 .

Lemma 3.4. If the condition (12) holds, then the stratification𝐻 is a Thom a(𝑙,𝑓)-regular stratifi-
cation of the central fibre 𝐻 ∩ 𝑓−1(0) ⊂ ℂ𝑛+1 at all points outside the union of lines

⋃𝑟
0 𝐿𝑖 . In other

words, the Thom a(𝑥𝑛,𝑓) non-regularity locus of (𝑥𝑛, 𝑓) with respect to𝐻 is at most ∪𝑟
𝑖=0
𝐿𝑖 .

Proof. Point-strata of ℙ may be either outside , or inside it, and then these are among the
non-transversality points 𝑝𝑖 . Excluding the union of lines ∪𝑟𝑖=0𝐿𝑖 , we thus consider some point
𝑦0 ∈ 𝐻 ∩𝑊 ⊂ 𝐻 ∩ 𝑓−1(0), where 𝑊 ∈ is a stratum of dimension ⩾ 2. By the transversality
condition (12) we have 𝐻 ⋔𝑦0 𝑊, and so dim𝐻 ∩𝑊 ⩾ 1.
Let 𝑦𝑘 ∈ ℂ𝑛+1 ⧵ 𝑓−1(0) be some sequence of points 𝑦𝑘 → 𝑦0. Theorem 3.1 applied to 𝑓 and to

theWhitney stratification𝐻 implies that the limit of tangent hyperplanes lim𝑦→𝑦0
𝑇𝑦𝑓

−1(𝑓(𝑦)),
whenever it exists, contains𝑇𝑦0𝑊. Since𝐻 is transversal to𝑇𝑦0𝑊, it follows that the tangent space
of the fibre of (𝑙, 𝑓) passing through some point 𝑦 close enough to 𝑦0 is the transversal intersection
of two tangent spaces: the tangent space to the fibre of 𝑙, and the tangent space to the fibre of 𝑓,
since this converges to the intersection𝐻 ∩ lim𝑦→𝑦0

𝑇𝑦𝑓
−1(𝑓(𝑦)) which contains𝐻 ∩ 𝑇𝑦0𝑊.

Let us also consider a sequence 𝑦𝑘 → 𝑦0 with 𝑦𝑘 belonging to some stratum of the Whitney
stratification of {𝑓 = 0}. We then apply Theorem 3.1 to the function 𝑙 = 𝑥𝑛 on the space {𝑓 = 0}
and we conclude that the Thom regularity holds at the point 𝑦0.
This shows that 𝐻 ∩𝑊 is a Thom regular stratum for the map (𝑙, 𝑓). □

We shall call  = {𝑥𝑛 = 0} the hyperplane at infinity for the polynomial 𝑃 ∶=
𝑓(𝑥0, … , 𝑥𝑛−1, 1), such that 𝑃 ∶ ℂ𝑛 → ℂ is a polynomial of degree 𝑑. Thus 𝑓 = �̃� is the
homogenized of degree 𝑑 of 𝑃 by the variable 𝑥𝑛. Writing

𝑓(𝑥0, … , 𝑥𝑛) = 𝑓𝑑(𝑥0, … , 𝑥𝑛−1) + 𝑥𝑛𝑓𝑑−1(𝑥0, … , 𝑥𝑛−1) +⋯ ,

we have  ∩ Sing(𝑉) = {𝜕𝑓𝑑 = 0, 𝑓𝑑−1 = 0} ⊂  ≃ ℙ𝑛−1, and thus Sing(𝕏) = ( ∩ Sing(𝑉)) ×
ℂ ⊂ 𝕏∞. We therefore consider the product stratification ℙ𝐻 × ℂ of𝕏∞, the strata of which are
the products �̂� × ℂ for all �̂� ∈ ℙ𝐻 .
We are now ready to state our key result on the 𝜕-Thom stratification at infinity introduced in

Section 3.1, under the condition (12) given in Section 3.2, also expressed in terms of the 𝑡-regularity,
cf. Definition 3.3:

† It is the inverse image of the origin that is called here ‘central fibre’.
‡ See [31].
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POLAR DEGREE AND VANISHING CYCLES 1817

Theorem 3.5. If the isolated non-transversality condition (12) holds, then the product stratification
ℙ𝐻 × ℂ of 𝕏∞ is a partial Thom stratification at infinity of 𝑃 , possibly except at finitely many
points on the lines {𝑝𝑖}𝑟𝑖=0 × ℂ ⊂ 𝕏∞.
In particular, the polynomial 𝑃 is 𝑡-regular at infinity at all points of𝕏∞, except of finitely many

points on the lines {𝑝𝑖}𝑟𝑖=0 × ℂ ⊂ 𝕏∞, 𝑖 = 0, … , 𝑟.

Proof. Let (�̂�, 𝑡0) ∈ 𝕏∞, such that �̂� ∈  ∩ 𝑉 ⧵ {𝑝𝑖}
𝑟
𝑖=0
. Let �̂� ∈ ℙ𝐻 be the stratum containing

�̂�, where �̂� ∶= 𝑊∕ℂ∗ denotes the projective image of a stratum𝑊 ∈∗
𝐻 ∶= ∩ 𝐻. The strat-

ification ℙ𝐻 can have 0-dimensional strata other than† the points 𝑝𝑖 , but in any case we have
dim𝑊 ⩾ 1.
We recall that 𝐻 ∶= {𝑥𝑛 = 0}. We may and shall assume, possibly after a linear change of

coordinates, that �̂� = [1; 0; … ; 0].
In the affine chart ℂ𝑛 × ℂ defined by 𝑥0 ≠ 0, the hyperplane slice 𝕏 ∩ {𝑥𝑛 = 𝑠} is of pure

dimension 𝑛 − 1 and is defined as the intersection of two smooth spaces:

{𝑓(1, 𝑥1, … , 𝑥𝑛−1, 𝑥𝑛) − 𝑡𝑥
𝑑
𝑛 = 0} ∩ {𝑥𝑛 = 𝑠}. (13)

We claim that the above intersection (13) is transversal and that, if its tangent space along a
sequence of points (𝑦, 𝑡) → (�̂�, 𝑡0) ∈ �̂� × {𝑡0} ⊂ 𝕏∞ converges to a limit 𝑇 (which depends on the
chosen sequence of points), then 𝑇 ⊃ 𝑇�̂��̂� × ℂ.
The tangent space at some regular point (𝑦, 𝑡) of the hypersurface defined by (13) in the

hyperplane {𝑦𝑛 = 𝑠} has as normal vector:

𝑛(𝑦, 𝑠) ∶=

(
𝜕𝑓

𝜕𝑥1
(𝑦), … ,

𝜕𝑓

𝜕𝑥𝑛−1
(𝑦), −𝑠𝑑

)
∈ {𝑦𝑛 = 𝑠} × ℂ = ℂ𝑛−1 × ℂ.

The first part 𝑛′(𝑦) ∶= ( 𝜕𝑓
𝜕𝑥1

, … , 𝜕𝑓
𝜕𝑥𝑛−1

)(𝑦) of the vector 𝑛(𝑦) represents the normal direction at
𝑦 to the slice by the hyperplane {𝑥0 = 1} of the corresponding fibre (𝑥𝑛, 𝑓)−1(𝑠, 𝑡𝑠𝑑) of the map
(𝑥𝑛, 𝑓) considered in Lemma 3.4. Then Lemma 3.4 shows that, whenever the following limit of
tangent spaces exists:

lim
(𝑦,𝑡)→((0,…,0),𝑡0)

𝑇(𝑦,𝑡)(𝑥𝑛, 𝑓)
−1(𝑠, 𝑡𝑠𝑑),

it must contain the tangent space 𝑇(1,0,…,0)𝑊, which is of positive dimension. Since the slice {𝑥0 =
1} is transversal to the stratum𝑊, it is also transversal to the fibre (𝑥𝑛, 𝑓)−1(𝑠, 𝑡𝑠𝑑) at the point 𝑦,
for all (𝑦, 𝑡) → ((0, … , 0), 𝑡0).
This transversality shows that the derivatives 𝜕𝑓

𝜕𝑥1
, … , 𝜕𝑓

𝜕𝑥𝑛−1
are non-identically zero along the

chosen sequence of points (𝑦, 𝑡), and that the following limit direction is well defined:

𝑛 = lim
𝑦→0

(
𝜕𝑓
𝜕𝑥1

;⋯ ; 𝜕𝑓
𝜕𝑥𝑛−1

)
(𝑦)‖‖‖‖

(
𝜕𝑓
𝜕𝑥1

;⋯ ; 𝜕𝑓
𝜕𝑥𝑛−1

)
(𝑦)

‖‖‖‖
(14)

† Then these are by definition points on some 1-dimensional strata of ℙ to which is transversal.
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1818 SIERSMA and TIBĂR

and is normal to the slice𝑇(1,0,…,0)𝑊 ∩ {𝑥0 = 1}, since this is a transversal slice of the tangent space
𝑇(1,0,…,0)𝑊 and has positive dimension. Note that in case dim𝑊 = 1 the slice is one point only
(thus we do not have a normal vector anymore). In the general case dim𝑊 ⩾ 1 we have shown
that the limit direction 𝑛 exists. This is the only thing that we need, since now, by identifying
the general slice 𝑊 ∩ {𝑥0 = 1} of the homogeneous stratum 𝑊 with its projectivization �̂�, this
proves that the vector (𝑛, 0) is normal to the stratum 𝑇[1;0;…;0]�̂� × ℂ, which finishes the proof of
our claim.
To complete the proof of the first assertion of our theorem, it only remains to check the Thom

(a𝑥𝑛 )-regularity along the lines {𝑝𝑖} × ℂ ⊂ 𝕏∞, 𝑖 = 0, … , 𝑟. We claim that all the points of the lines
{𝑝𝑖} × ℂ ⊂ 𝕏∞, 𝑖 = 0, … , 𝑟 are 𝑡-regular except of finitely many.
Indeed, our stratification ℙ𝐻 × ℂ may be refined to a Whitney regular stratification of 𝕏

such that Sing(𝕏) is a union of strata. Since it is semi-algebraic, this stratification has finitely
many strata. By Theorem 3.1, this is also a Thom (a𝑥𝑛 )-regular stratification at infinity. Now any
line {𝑝𝑖} × ℂmay intersect only finitely many strata of this Thom–Whitney stratification, thus our
claim is proved.
The second assertion of the theorem is a consequence of the first, since the projection 𝜏 ∶ 𝕏 → ℂ

is transversal to the strata of dimension ⩾ 1 of ℙ𝐻 × ℂ. The only non-transversality points are
therefore the 0-dimensional strata of ℙ𝐻 × ℂ, and we have shown that they are included in the
lines ⊔𝑟

𝑖=0
{𝑝𝑖} × ℂ, and that they are finitely many. □

Remark 3.6. Under the supplementary condition ‘𝐻 is admissible’ whichwill be introduced below,
the finitely set of points {(𝑝𝑖, 𝑡𝑖𝑗 )}𝑖,𝑗 for 𝑡𝑖𝑗 ≠ 0will turn out to be isolated 𝑡-singularities. In this case
they can be precisely detected, and we refer to the criterion (15), as well as to Section 5.3.

4 ADMISSIBLE HYPERPLANES, AND VANISHING CYCLES
OUTSIDE THE CENTRAL FIBRE

The above Theorem 3.5 does not tell anything about the affine singularities of the polynomial 𝑃 .
This can have isolated or non-isolated singularities in a finite number of fibres. We outline a class
of polynomials 𝑃 , which translates into a class of hyperplanes , such that the homological
vanishing cycles which live outside the fibre 𝑃−1


(0) are concentrated in the top degree.

4.1 Admissible hyperplanes and 𝟎-type polynomials

Using the notations of Section 3, we introduce a class of polynomials which extends that of  -type
of [36], see also [43, Definition 2.2.2]:

Definition 4.1. We say that the polynomial 𝑃 ∶ ℂ𝑛 → ℂ is of 0-type if the following two
conditions are both satisfied:

(a) 𝑃 has only isolated affine singularities outside the fibre 𝑃−1(0), and
(b) 𝜏 has only isolated 𝑡-singularities† at infinity outside 𝑃−1(0).

†Cf. Definition 3.3.
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POLAR DEGREE AND VANISHING CYCLES 1819

As before, let 𝑓 ∶ ℂ𝑛+1 → ℂ be some non-constant homogeneous function, and 𝑉 ∶= {𝑓 =
0} ⊂ ℙ𝑛 is endowed with a Whitney stratification ℙ . Let also 𝑙 ∶ ℂ𝑛+1 → ℂ be a linear function
defining a hyperplane𝐻 ∈ ℂ𝑛+1 and let ⊂ ℙ𝑛 denote its corresponding projective hyperplane.

Definition 4.2. We say that the affine hyperplane 𝐻 ⊂ ℂ𝑛+1 through 0 (or that the projective
hyperplane ⊂ ℙ𝑛) is admissible for 𝑓 if:

(i) the isolated non-transversality condition (12) holds, namely:  is transversal to all strata of
ℙ except at finitely many points.

(ii) the polar locus Γ(𝑙, 𝑓) ⊂ ℂ𝑛+1 is either of dimension 1, or it is empty.

A hyperplane  which is admissible for 𝑓 and contains a certain point 𝑝 ∈ 𝑉 will be called
admissible for 𝑓 at 𝑝.

The above definition of ‘admissible hyperplanes’ takes into account all the singularities of the
slice𝑉 ∩, hence it is a global condition. The set of admissible hyperplanes contains by definition
the set of generic hyperplanes  relative to 𝑉, namely, hyperplanes which are transversal to all
strata of the stratification ℙ of 𝑉, since in this case the non-transversality locus is empty. It also
turns out that the polar locus Γ(𝑙, 𝑓) is 1-dimensional or empty for generic hyperplanes , thus
condition (ii) is fulfilled; we remind that in this case themultiplicity of Γ(𝑙, 𝑓) is precisely the polar
degree of 𝑉.
The condition (12) says that admissible hyperplanes  can be non-generic. We are actually

interested in admissible hyperplanes containing as many as possible non-transversality points,
because it will turn out in Section 5 that every such point contributes with a non-negative term
in the sums (23), and thus we get better bound results for the polar degree. Let us notice that
condition (ii) tells that the multiplicity of Γ(𝑙, 𝑓) can be viewed as a singular polar degree of 𝑉
relative to the admissible.
The next remark tells that hyperplanes which are admissible for 𝑓 at some singular point 𝑝 ∈ 𝑉

are generic among all hyperplanes containing 𝑝.

Remark 4.3. Let 𝑉 ∶= {𝑓 = 0} ⊂ ℙ𝑛 and let 𝑝 ∈ Sing𝑉 such that 𝑉 is not a cone of apex 𝑝. Then
the set of admissible hyperplanes for 𝑓 at 𝑝 contains a Zariski-open subset of the set ℙ̌𝑛

{𝑝}
≃ ℙ̌𝑛−1

of hyperplanes passing through 𝑝.
Indeed, let 𝐿 ⊂ ℂ𝑛+1 be the affine line through 0 which corresponds to the point 𝑝 ∈ Sing𝑉. By

our Polar Curve Theorem 2.2, there is a Zariski-open dense setΩ𝐿 ⊂ ℙ̌𝑛−1 of hyperplanes𝐻 ⊂ ℙ𝑛

satisfying condition (ii) of admissibility. The condition (12) is also a Zariski-open condition in ℙ̌𝑛
{𝑝}
.

The intersection of these two Zariski-open dense subsets of ℙ̌𝑛−1 is a solution to our claim. See
also Corollary 6.9.
Whatsoever, the existence of admissible hyperplanes with two isolated tangency points is not

insured, in the sense that the set of such hyperplanes is not a Zariski-open subset anymore. This
can be checked in the lists of pol(𝑉) = 1 or pol(𝑉) = 2, cf. [20] and [34]. In case of the plane
curve defined by 𝑥0𝑥1𝑥2 = 0, one has 3 singular points of type 𝐴1 but there is no admissible line
in ℙ2 passing through two of them because such a line is contained in the curve. In case of the
normal surface𝑥0𝑥1𝑥2 + 𝑥33 = 0with three singular points𝐴2 and pol(𝑉) = 2, any 2-plane passing
through two of these points is non-admissible.

By some linear change of coordinates, one may assume that the hyperplane  has equa-
tion 𝑥𝑛 = 0.We consider it as the hyperplane at infinity for the coordinate systemonℂ𝑛 = ℙ𝑛 ⧵,
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1820 SIERSMA and TIBĂR

and we identify with ℙ𝑛−1. We then consider, like before, the polynomial:

𝑃 ∶ ℂ𝑛 → ℂ, 𝑃(𝑥0, … , 𝑥𝑛−1) ∶= 𝑓(𝑥0, … , 𝑥𝑛−1, 1).

Let us remark that if our  is admissible then deg 𝑃 = deg 𝑓 = 𝑑. Indeed, deg 𝑃 < 𝑑 is
equivalent to 𝑥𝑛 being a factor of 𝑓, and therefore 𝑉 contains, which contradicts (12).
Recalling the Definition 4.1 of 0-type polynomials, and Definition 3.3 of isolated 𝑡-singularities

at infinity, we now can show:

Corollary 4.4. Let𝑉 ∶= {𝑓 = 0} ⊂ ℙ𝑛. If the hyperplane = {𝑥𝑛 = 0} is admissible for 𝑓, then the
polynomial 𝑃 is of 0-type, that is, outside 𝑃−1 (0) it has only isolated 𝑡-singularities at infinity and
only isolated affine singularities.

Proof. Since is admissible and thus verifies condition (12), Theorem 3.5 applies and shows that
the polynomial 𝑃 , outside the fibre 𝑃−1 (0), has 𝑡-singularities at infinity at only finitely many
points on 𝕏∞ = (𝑉 ∩) × ℂ, in the notations at the beginning of Section 3.
The affine singularities of 𝑃 outside the fibre 𝑃−1


(0) are precisely the set Γ(𝑥𝑛, 𝑓) ∩ {𝑥𝑛 = 1}.

By the admissibility condition (ii) of Definition 4.2, the polar locus Γ(𝑥𝑛, 𝑓) ⊂ ℂ𝑛+1 is a homoge-
neous curve (thus a collection of finitelymany lines through 0 ∈ ℂ𝑛+1) or it is empty, and therefore
its intersection with {𝑥𝑛 = 1} is of dimension ⩽ 0. This proves the property (a) of Definition 4.1.
Now, since the affine singularities of the polynomial 𝑃 outside 𝑃−1


(0) are isolated, it fol-

lows that the 𝑡-singularities at infinity of 𝑃 outside 𝑉 = 𝑃−1

(0) are also isolated in the sense

of Definition 3.3. □

4.2 The polar intersection multiplicities at isolated 𝒕-singularities at
infinity

If 𝑃 is a polynomial of 0-type then, outside 𝕏0 = 𝑉, the map 𝜏 has only isolated singularities of
two types: affine singular points and 𝑡-singularities at infinity, both sets being finite. Let us denote
by Sing∞𝑃 the set of 𝑡-singularities of 𝑃 at infinity. The image 𝑃 ∶= 𝜏(Sing∞𝑃 ∪ Sing𝑃) ⊂ ℂ is
a finite set by our assumption. It is actually finite for any polynomial 𝑃, without any assumption,
see [38, 43].
Let Γ(𝑝,𝑡)(𝑥𝑛, 𝜏) be the polar curve of the map germ (𝑥𝑛, 𝜏) ∶ (𝕏, (𝑝, 𝑡)) → ℂ × ℂ in some affine

chart𝑈 ⊂ ℙ𝑛 at the point𝑝. It has beenproved in [43, Theorem2.1.7] that in case the 𝑡-singularities
at infinity are isolated, we have the equivalence:

Γ(𝑝,𝑡)(𝑥𝑛, 𝜏) ≠ ∅⟺ (𝑝, 𝑡) is an isolated 𝑡-singularity at infinity of 𝑃. (15)

In our setting of 0-type polynomials, we apply this to 𝑡 ≠ 0.

Definition 4.5 [43, Corollary 3.3.1]. Let (𝑝, 𝑡) ∈ Sing∞𝑃 be an isolated 𝑡-singularity at infinity.
The local intersection multiplicity int(𝑝,𝑡)(Γ(𝑥𝑛, 𝜏), 𝕏𝑡) does not depend on the choice of the chart
𝑈. We then call

𝜆(𝑝, 𝑡) = int(𝑝,𝑡)(Γ(𝑥𝑛, 𝜏), 𝕏𝑡) (16)

the polar intersection multiplicity at (𝑝, 𝑡).
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POLAR DEGREE AND VANISHING CYCLES 1821

Remark 4.6. We shall see from the proof of the next theorem that 𝜆(𝑝, 𝑡) represents the number of
vanishing cycles of the general fibre of the polynomial map 𝑃 which disappear at the point (𝑝, 𝑡)
when this fibre converges to the fibre𝑃−1(𝑡). In the particular casewhen our 𝜕-Thom stratification
at infinity is aWhitney stratification and (𝑝, 𝑡) is an isolated singularity of the function 𝜏 ∶ 𝕏 → ℂ,
then it was shown in [43, Proposition 3.3.5] that 𝜆(𝑝, 𝑡) equals the Milnor–Lê number† of the
function 𝜏 at (𝑝, 𝑡).

It thus follows from (15) and (16) that:

(𝑝, 𝑡) is an isolated 𝑡-singularity at infinity of 𝑃⟺ 𝜆(𝑝, 𝑡) > 0. (17)

With all the above notations and preparations, recalling in particular 𝑃 ∶= 𝜏(Sing∞𝑃 ∪
Sing𝑃) ⊂ ℂ, the main result of this section is:

Theorem 4.7. Let 𝑃 ∶ ℂ𝑛 → ℂ, 𝑛 ⩾ 2, be a non-constant 0-type polynomial.
Then, for any disk 𝐷0 such that 𝑃 ∩ 𝐷0 = {0}, the relative ℤ-homology of the tube 𝑃−1(𝐷0) is

concentrated in dimension 𝑛 − 1. Its top Betti number 𝑏𝑛−1(𝑃−1(𝐷0)) is equal to the sumof allMilnor
numbers of the isolated affine singularities outside the fibre 𝑃−1(0), together with the sum of the polar
multiplicities 𝜆(𝑝, 𝑡) at the isolated 𝑡-singularities at infinity outside the fibre 𝕏0.

Proof. By [43, Corollaries 1.2.13, 1.2.14], the set𝑃 includes the set of atypical valuesAtyp 𝑃, which
means that one has a locally trivial topological fibration:

𝑃| ∶ ℂ𝑛 ⧵ 𝑃−1(𝑃) → ℂ ⧵ 𝑃. (18)

Therefore, if 𝑏 ∉ 𝑃, then the fibre 𝐹𝑏 ∶= 𝑃−1(𝑏) is non-singular and has no 𝑡-singularities at
infinity. Let 𝐷𝑏 denote a closed disk centred at 𝑏 ∈ 𝑃, small enough such that 𝐷𝑏 ∩ 𝑃 = {𝑏}.
Let 𝑡𝑏 ∈ 𝜕𝐷𝑏 denote a fixed point on the boundary of the disk. We employ the notation 𝐹𝐾 ∶=
𝑃−1(𝐾), for any 𝐾 ⊂ ℂ. By using excision in the locally trivial fibration (18) we get the homology
decomposition:

𝐻∗(ℂ
𝑛, 𝐹𝐷0) ≃ ⊕𝑏∈𝑃⧵{0}

𝐻∗(𝐹𝐷𝑏 , 𝐹𝑡𝑏 ). (19)

By Step 1 of the proof of [43, Bouquet Theorem 3.2.1]‡ under the hypothesis ‘the fibre 𝐹𝑏 has
isolated affine singularities and isolated 𝑡-singularities’ the relative homology𝐻∗(𝐹𝐷𝑏 , 𝐹𝑡𝑏 ) is con-
centrated in dimension 𝑛 essentially because it is localizable at the isolated singularities of the
fibre 𝕏𝑏. More precisely, denoting by 𝐵𝜀(𝑞) some small enough ball at 𝑞, the relative homology
𝐻∗(𝐹𝐷𝑏 , 𝐹𝑡𝑏 ) is the direct sum of the relative homology groups 𝐻∗(𝐵𝜀(𝑞) ∩ 𝐹𝐷𝑏 , 𝐵𝜀(𝑞) ∩ 𝐹𝑡𝑏 ) for
all singular points 𝑞 ∈ 𝐹𝑏 and all 𝑡-singularities 𝑞 ∈ 𝕏𝑏 ∩ 𝐻

∞, as done in the proof of Step 1 of
[43, Theorem 3.2.1], notably by [43, section 3.2, (3.16), (3.17), (3.21)]. This shows that the relative
homology 𝐻∗(𝐵𝜀(𝑞) ∩ 𝐹𝐷𝑏 , 𝐵𝜀(𝑞) ∩ 𝐹𝑡𝑏 ) is concentrated in dimension 𝑛. In loc.cit. the relative 𝑛-
cycles are called the ‘vanishing cycles at infinity’ at the point (𝑞, 𝑏) whenever 𝑞 ∈ 𝕏𝑏 ∩, and it

† The ‘Milnor-Lê fibration’ and its ‘Milnor-Lê number’ have been introduced by Lê D.T. in the setting of holomorphic
functions with isolated singularity on a Whitney stratified hypersurface germ, cf. [22], extending Milnor’s fibration on a
smooth space. It was used in [35] (and more other papers) as a measure of vanishing cycles at infinity.
‡A similar bouquet statement was shown by Parusiński [32, Theorem 2.1], with a different proof.
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1822 SIERSMA and TIBĂR

is shown in [43, section 3.3, (3.22), (3.23)] that the number of vanishing cycles is equal to the polar
intersection multiplicity 𝜆(𝑝, 𝑡) defined at (16).
It then follows from (19) that the relative homology 𝐻∗(ℂ

𝑛, 𝐹𝐷0) is concentrated in dimension
𝑛, and so the reduced homology �̃�∗(𝐹𝐷0) is concentrated in dimension 𝑛 − 1. □

Remark 4.8. The above result can be regarded as a far reaching global version of a local statement
known under the name of ‘special fibre theorem’, proved in [33].
In contrast to the local setting, the tube𝑃−1(𝐷0) is not necessarily contractible to its central fibre

𝑉 ⧵ 𝐻∞, and the equality 𝑏𝑛−1(𝐹0) = 𝑏𝑛−1(𝐹𝐷0) is also not true in general. This can be seen in the
simple example 𝑓(𝑥, 𝑦) = 𝑥 + 𝑥2𝑦. Nevertheless the Euler characteristics of the tube 𝑃−1(𝐷0) and
of its central fibre 𝑉 ⧵ 𝐻∞ are the same. Indeed we have 𝜒(𝑃−1(𝐷0)) = 𝜒(𝑃−1(𝐷0) ⧵ 𝑉) + 𝜒(𝑉 ⧵
𝐻∞). Then 𝑃−1(𝐷0) ⧵ 𝑉 retracts to 𝑃−1(𝜕𝐷0) due to the condition 𝑃 ∩ 𝐷0 = ∅, which is the total
space of a locally trivial over a circle and hence its Euler characteristic is 0.

The above proof may be extended at the homotopy type level. We then obtain the following
result, which will not be used here but we state it for the record. This extends [43, Theorem 3.2.1],
and in particular the bouquet theorem of [35]:

Theorem 4.9. If 𝑃 ∶ ℂ𝑛 → ℂ, 𝑛 ⩾ 2 is a non-constant 0-type polynomial, then the tube 𝐹𝐷0 is
homotopy equivalent to a bouquet of 𝑛 − 1 spheres, for any disk 𝐷0 such that 𝑃 ∩ 𝐷0 = {0}. The
number of these spheres is equal to the number 𝛽(𝑉,) defined at (22). □

5 QUANTIZATION OF THE POLAR DEGREE

In this section we describe the quantifiers of the polar degree pol(𝑉) and we prove the main
decomposition result for pol(𝑉). Firstly, let us recall a very well-known result due to Lê D.T.
[22] that a function with a stratified isolated singularity on a singular hypersurface of dimen-
sion 𝑛 − 1 has a local Milnor fibre (also called Milnor–Lê fibre) the homotopy type of which is
a bouquet of (𝑛 − 2)-dimensional spheres, where 𝑛 ⩾ 3, and that the number of these spheres is
called Milnor–Lê number.

5.1 The local Milnor–Lê number 𝜶𝒑(𝑽,)

In some affine chart ℂ𝑛 ⊂ ℙ𝑛 containing 𝑝 ∈ 𝑉, let us consider a linear function 𝑙 ∶ ℂ𝑛 → ℂ such
that 𝑙(𝑝) = 0, and let𝐻𝑠 ∶= {𝑙 = 𝑠} for 𝑠 ∈ ℂ, where𝐻0 ∶= 𝐻. In particular, the projective closure
of 𝐻 is a hyperplane  ∈ ℙ𝑛 which contains the point 𝑝. We assume that  is transversal to all
the strata of the stratification ℙ of𝑉 in the neighbourhood of 𝑝, except at the point 𝑝 itself. This
is equivalent to saying that the restriction of the function 𝑙 to some small neighbourhood𝐵𝜀 of 𝑝 in
ℙ𝑛 has a stratified isolated singularity at 𝑝 with respect to ℙ . Consequently, its local Milnor–Lê
fibre 𝐵𝜀 ∩ (𝑉 ∩ 𝐻𝑠), for some 𝑠 close enough to 0, has the homotopy type of a bouquet of spheres
of dimension 𝑛 − 2, cf. Lê’s results in [22]. We denote its Milnor–Lê number by 𝛼𝑝(𝑉,), and we
remark that ifgen is a general hyperplane through 𝑝, then 𝛼𝑝(𝑉,gen) is the Milnor number of
the complex link of 𝑉 at 𝑝, and thus we shall denote it simply by 𝛼𝑝(𝑉).
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POLAR DEGREE AND VANISHING CYCLES 1823

Remark 5.1. By its definition, the integer 𝛼𝑝(𝑉,) is non-negative, and depends only on the
reduced structure of 𝑉 at 𝑝, and on the chosen hyperplane . We send to Proposition 6.3 for
the proof that 𝛼𝑝(𝑉) ≠ 0 only for finitely many points 𝑝 ∈ 𝑉.
Let 𝑓𝑝 = 0 be a local equation of the reduced hypersurface germ (𝑉, 𝑝). Then 𝛼𝑝(𝑉,) equals

the polar multiplicity of 𝑓𝑝 with respect to 𝑙 at 𝑝:

𝛼𝑝(𝑉,) = int𝑝(𝐻0, Γ(𝑙, 𝑓𝑝)), (20)

This polar intersection multiplicity might be higher than the generic polar number
mult𝑝Γ(𝑙gen, 𝑓𝑝), which is equal to 𝛼𝑝(𝑉).
We refer to [41] for more details and for other results on the Milnor number of the hyperplane

slices to complex analytic space germs.

5.2 The impact of admissible hyperplanes

Let now be an admissible hyperplane for 𝑉 (cf. Definition 4.2). We define:

𝛼(𝑉,) ∶=
∑

𝑝∈𝑉∩

𝛼𝑝(𝑉,) (21)

as the sum of the sectional Milnor numbers 𝛼𝑝(𝑉,) that have been defined at (20). Let us show
that 𝛼(𝑉,) is a well-defined non-negative integer.

Lemma 5.2. One has 𝛼𝑝(𝑉,) > 0 only if 𝑝 belongs to the finite subset {𝑝𝑖}𝑟𝑖=0 ⊂ 𝑉 ∩ of non-
transversality from condition (12). In particular, 𝛼(𝑉,) =

∑𝑟
𝑖=0 𝛼𝑝𝑖 (𝑉,).

Proof. Our claim is equivalent to the following: the polar locus germ Γ𝑝(𝑙, 𝑓𝑝) is empty if 𝑝 ∉
{𝑝𝑖}

𝑟
𝑖=0
, and it is of dimension ⩽ 1 if 𝑝 ∈ {𝑝𝑖}

𝑟
𝑖=0
.

Indeed, if𝑝 is a point of stratified transversal intersection ⋔𝑝 𝑉, then the polar locus Γ𝑝(𝑙, 𝑓𝑝)
is empty as a direct consequence of its definition. If 𝑝 ∈ {𝑝𝑖}

𝑟
𝑖=0
, let 𝐵𝑝 denote a small enough ball

centred at𝑝. By the condition of isolated non-transversality (12), the polar locusΓ𝑝(𝑙, 𝑓𝑝) intersects
𝐵𝑝 ∩ 𝑉 at most at 𝑝, thus dimΓ𝑝(𝑙, 𝑓𝑝) ⩽ 1. □

The following non-negative integer is also well defined since each sum is finite, by
Corollary 4.4:

𝛽(𝑉,) ∶= 𝛽af f (𝑉,) + 𝛽∞(𝑉,), (22)

where

𝛽af f (𝑉,) ∶=
∑

𝑣∈(Sing𝑃 )⧵𝑉

𝜇𝑣(𝑃)

is the sum of all Milnor numbers of the isolated affine singularities outside the fibre 𝑃−1

(0) ⊂ 𝑉,

and

𝛽∞(𝑉,) ∶=
∑

𝑡≠0,𝑞∈𝑉∩

𝜆(𝑞, 𝑡)
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1824 SIERSMA and TIBĂR

denotes the sum of the numbers of vanishing cycles at infinity 𝜆(𝑞, 𝑡) of the isolated 𝑡-singularities
at infinity outside the fibre 𝕏0 = 𝑉, cf. Definition 4.5.

Remark 5.3. Under the admissibility condition, the number 𝛽(𝑉,) depends only on the reduced
structure of 𝑉, and on the chosen hyperplane . Indeed, by Remark 5.1 the integer 𝛼(𝑉,)
depends only on the reduced structure of 𝑉, and on the chosen hyperplane . We then get the
claimed independence of 𝛽(𝑉,) by the equality (23) of Theorem 5.4, since we already know that
pol(𝑉) depends on the reduced structure of 𝑉 only.
According to the formula (1) for pol(𝑉), the number 𝛽af f (𝑉,)may also be viewed as a singular

polar degree, that is,

pol(𝑉) ∶= #(grad 𝑓)−1(𝑙) = mult0Γ(𝑙, 𝑓),

for 𝑙 ∈ ℙ̌𝑛 defining the admissible.

With these notations, we may now give the following presentation of pol(𝑉) as a sum of local
non-negative invariants for hypersurfaces 𝑉 with any singular locus, extending Huh’s result for 𝑉
with isolated singularities [20, Theorem 2].

Theorem 5.4. Let 𝑉 ∶= {𝑓 = 0} ⊂ ℙ𝑛 be a projective hypersurface and let  be an admissible
hyperplane for 𝑉. Then:

pol(𝑉) = 𝛼(𝑉,) + 𝛽(𝑉,). (23)

Proof. By Theorem 4.7, which applies here via Corollary 4.4, the relative homology
𝐻∗(ℂ

𝑛, 𝑃−1

(𝐷0)) is concentrated in dimension 𝑛. Moreover, the top Betti number 𝑏𝑛−1(𝑃−1 (𝐷0)) =

𝑏𝑛(ℂ
𝑛, 𝑃−1


(𝐷0)) is a sum of certain Milnor numbers and intersections numbers at infinity, where

𝐷0 ⊂ ℂ is some disk such that 𝑃 ∩ 𝐷0 = {0}.
This is by definition our number 𝛽(𝑉,).
Since the tube 𝑃−1


(𝐷0) and the fibre 𝑃−1 (0) have the same Euler characteristic (Remark 4.8),

we get:

(−1)𝑛rank 𝐻𝑛(ℂ
𝑛, 𝑃−1


(𝐷0)) = 𝜒(ℂ𝑛, 𝑃−1


(𝐷0)) = 1 − 𝜒(𝑃−1


(𝐷0)) = 1 − 𝜒(𝑉 ⧵).

Consider the germ of a pencil 𝛿 of hyperplanes of ℙ𝑛 parametrized by an arbitrarily small disk
𝛿 ⊂ ℂ ⊂ ℙ1 centred at 0, where 𝜋 ∶ 𝛿 ⧵ 𝐴 → 𝛿 is the projection to the parameter, which contains
our admissible hyperplane and such that 𝜋() = 0. We require that 𝛿 is generic with respect
to𝑉, in the sense that the axis𝐴 of this pencil𝛿 (which is of dimension 𝑛 − 2) is transversal to the
Whitney stratification ℙ of 𝑉 ⊂ ℙ𝑛, and more precisely transversal to the induced stratification
ℙ𝐻 on the slice 𝑉 ∩. The choice of the axis covers a Zariski-open subset of all hyperplane
slices of 𝑉 ∩.
Since the general member gen of this pencil germ is a general hyperplane with respect to 𝑉,

by (9) we have:

(−1)𝑛pol(𝑉) = 1 − 𝜒(𝑉 ⧵gen).
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POLAR DEGREE AND VANISHING CYCLES 1825

Taking the difference, we obtain:

(−1)𝑛[pol(𝑉) − rank 𝐻𝑛(ℂ
𝑛, 𝑃−1


(𝐷0))]

= 𝜒(𝑉 ⧵) − 𝜒(𝑉 ⧵gen) = 𝜒(𝑉 ∩gen) − 𝜒(𝑉 ∩).

Since the axis 𝐴 of the pencil 𝛿 is stratified-transversal to ℙ and the stratified singularities
of the pencil 𝛿 outside 𝐴 are precisely the set of points of non-transversality Singℙ (𝑉 ∩) of
(12), it follows that the variation of the topology of the pencil 𝛿 at its fibre  is localizable, by
excision, at the points 𝑞 ∈ Singℙ (𝑉 ∩), the pencil being equisingular at the other points of
𝑉 ∩.
In homology, this variation is concentrated in dimension 𝑛 − 1, and its contribution is the

number 𝛼𝑞(𝑉,) defined at (5.1).
More precisely, for some small enough ball 𝐵𝑞 at 𝑞 ∈ 𝑉 ∩, we have the following trivial,

respectively, locally trivial, fibrations induced by pencil projection 𝜋, where ∗
𝛿
∶= 𝜋−1(𝛿 ⧵ {0}),

and where the radius of 𝛿 is much smaller than the radii of the balls 𝐵𝑞 such that they are Milnor
data of the function 𝜋 at each point 𝑞:

𝑉 ∩ (𝛿 ⧵ 𝐴) ⧵
⨆

𝑞∈Singℙ (𝑉∩)

𝐵𝑞 ⟶ 𝛿 and 𝐵𝑞 ∩ 𝑉 ∩ ∗
𝛿 ⟶ 𝛿 ⧵ {0}.

Since𝐵𝑞 ∩ 𝑉 ∩ 𝛿 is contractible for all 𝑞 ∈ Singℙ (𝑉 ∩), and since𝑉 ∩ 𝛿 contracts to𝑉 ∩,
we get, by excising the complement of

⨆
𝑞 𝐵𝑞 in the pair (𝑉 ∩ 𝛿, 𝑉 ∩gen):

𝜒(𝑉 ∩gen) − 𝜒(𝑉 ∩) = −
∑

𝑞∈Singℙ (𝑉∩)

𝜒(𝐵𝑞 ∩ 𝑉 ∩ 𝛿, 𝐵𝑞 ∩ 𝑉 ∩gen)

= (−1)𝑛
∑

𝑞∈Singℙ (𝑉∩)

𝛼𝑞(𝑉,).

From this we obtain:

𝛽(𝑉,) = rank 𝐻𝑛(ℂ
𝑛, 𝑃−1


(𝐷0)) = pol(𝑉) − 𝛼(𝑉,).

This ends the proof of our formula. □

One may derive lower bounds for the polar degree from (23) either from the contribution of
𝛼(𝑉,) or from that of 𝛽(𝑉,). We refer to Section 5.3 and Section 6.2 for more details on lower
bounds, and we give below some examples with explicit computations of 𝛼(𝑉,) and 𝛽(𝑉,).

5.3 On the effective computability of the numbers 𝜶(𝑽,) and
𝜷(𝑽,)

Our formula (23) compared to Huh’s (3), and to Dimca-Papadima’s (2), amounts to a quantiza-
tion of the relative homology group𝐻𝑛(ℙ

𝑛 ⧵ 𝑉, (ℙ𝑛 ⧵ 𝑉) ∩) into localized numerical invariants
depending on the admissible hyperplane . Each local invariant is the number of solutions
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1826 SIERSMA and TIBĂR

of a system of algebraic equations, and therefore computable, with help of adequate software,
as follows.
The local Milnor–Lê numbers 𝛼𝑝(𝑉,) which compose the term 𝛼(𝑉,) of (23) are com-

putable by the formula (20) as local polar multiplicities at each point 𝑝 ∈ 𝑉 ∩. Themore recent
paper [37] shows how the numbers 𝛼𝑝(𝑉,) occur in the particular case of dimSing𝑉 = 1.
The number 𝛽af f (𝑉,) represents the total Milnor number of the polynomial 𝑃 outside the

fibre 𝑃−1

(0), and is computable algebraically.

The number 𝛽∞(𝑉,) is the sum of polar intersectionmultiplicities at points at infinity, which
are computable by (16).
Moreover, due to the positivity characterization (17), and by the formula (23), the number

of 𝑡-singularities at infinity of a 0-type polynomial outside its fibre over 0 provides a lower
bound for pol(𝑉). In order to detect the set of 𝑡-singularities at infinity of a 0-type polynomial
𝑃 outside 𝑃−1(0) by using the characterization (15), we may do as follows. According to [43,
Proposition 2.1.3], in any chart 𝑈𝑖 ∶= {𝑥𝑖 ≠ 0} we consider the affine polar locus Γ(𝑝,𝑡)(𝑥𝑛, 𝜏)(𝑖),
and then we have for it the equality of polar germs at the point (𝑝, 𝑡) ∈ 𝕏∞ (in the notations of
Section 4.2):

Γ(𝑝,𝑡)(𝑥𝑛, 𝜏)
(𝑖) = Γ(𝑝,𝑡)(𝑥𝑖, 𝑃).

The affine polar curve Γ(𝑝,𝑡)(𝑥𝑖, 𝑃) is defined by a number of algebraic equations, and the
asymptotic values 𝑡 ≠ 0 as well as the points (𝑝, 𝑡) can be found effectively, as done in [21], [7].
These methods of computation are used in the examples displayed below.

5.4 Contributions of types 𝜶(𝑽,) and 𝜷(𝑽,)

Example 5.5 (Hypersurfaces with isolated singularities). Our first example is the hypersurface

𝑉 ∶= {𝑥(𝑥𝑦 + 𝑧2) = 0} ⊂ ℙ2.

We compute its polar degree by using the formula (23) of Theorem 5.4. It has a single isolated
singularity at the point [0; 1; 0], which is in particular the single special point† of 𝑉.
Let ∶= {𝑧 = 0} ⊂ ℙ2. Then𝑉 ⧵ = 𝑃−1


(0) for𝑃(𝑥, 𝑦) = 𝑥(𝑥𝑦 + 1). This polynomial has an

interesting behaviour at infinity, well known in the literature (for example, [4], [35]), and there-
fore we will extract here some results without giving the full details. The polynomial 𝑃 has no
affine critical points, hence 𝛽af f (𝑉,) = 0. At infinity, 𝑃 may have 𝑡-singularities only on the
line {[0; 1; 0]} × ℂ, and they are isolated. It turns out that the unique isolated 𝑡-singularity at infin-
ity of 𝑃 is the point {[0; 1; 0]} × {0}. Since this is on 𝕏0, it does not count in our computation of
vanishing cycles (cf. Theorem 4.7), and therefore 𝛽∞(𝑉,) = 0.
On the other hand, by computing the local polar curve at the special point 𝑝 = [0 ∶ 1 ∶ 0] ∈ 𝑉

we get 𝛼𝑝(𝑉,) = 𝛼𝑝(𝑉) = 1. By applying Theorem 5.4 we get pol(𝑉) = 1.
Let us now consider the modified projective curve

𝑉′ ∶= {𝑥(𝑥𝑦 + 𝑧2) − 𝑏𝑧3 = 0} ⊂ ℙ2

† See the next section for the definition of special points.
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POLAR DEGREE AND VANISHING CYCLES 1827

for 𝑏 ≠ 0, having a unique singularity at 𝑝 = [0; 1; 0]. Then 𝑉′ ⧵ is the fibre over 0 of the poly-
nomial𝑄(𝑥, 𝑦) = 𝑥(𝑥𝑦 + 1) − 𝑏, and𝑄 has still no affine critical points (thus 𝛽af f (𝑉′,) = 0).
But this time𝑄 has its single isolated 𝑡-singularity at infinity at the point {[0; 1; 0]} × {𝑏}which is
not on𝑄−1


(0), and we obtain 𝛽∞(𝑉′,) = 1. This can actually be computed (see Section 3 for the

notations, and [35], [43] for the details) as the jump𝐴2 ↦ 𝐴3 of the local type of the singularity of
the fibre 𝕏𝑡 at the point [0; 1; 0] ∈ 𝕏∞ at the value 𝑡 = 𝑏.
As above, we also get 𝛼𝑝(𝑉′,) = 1 from the unique special point 𝑝 ∈ 𝑉′. By applying

Theorem 5.4 we now have pol(𝑉′) = 1 + 1 = 2.

Example 5.6 (Non-isolated singularities). We consider the projective surface

𝑉 ∶= {𝑓 = 𝑥2𝑧 + 𝑥𝑦𝑤 + 𝑦3 = 0} ⊂ ℙ3

with singular locus the line 𝐿 ∶= {𝑥 = 𝑦 = 0}. This is mentioned in [5, section 3.2] as the ratio-
nal scroll 𝑌(1, 2), and it is related to a sub-Hankel surface [5, Example 4.7]. It is known to be a
homaloidal surface. Our approach to compute pol(𝑉) = 1 goes as follows.
The coordinates of ℙ3 are [𝑥; 𝑦; 𝑧; 𝑤] and we consider the hyperplane  ∶= {𝑙 = 𝑤 = 0}. Let

us first remark that is admissible since it has a tangency at the point 𝑝 ∶= [0; 0; 1; 0] ∈ 𝐿 only,
and since the polar locus Γ(𝑙, 𝑓) is empty. We may therefore apply Theorem 5.4 provided that we
compute its ingredients 𝛼 and 𝛽, which we shall do in the following.
We first compute 𝛼(, 𝑉). The line 𝐿 has a generic transversal type 𝐴1, which actually holds

at all points, except of the point 𝑝 = [0; 0; 1; 0] ∈ 𝐿 which is a non-isolated singularity of type
𝐽2,∞. This point 𝑝 is therefore the only candidate as a special point or 𝑉 (see the next sec-
tion for the definition), so let us check if 𝑝 is special or not. In the chart {𝑧 = 1}, we have
𝑓𝑝 ∶= 𝑓{𝑧=1} = 𝑥2 + 𝑥𝑦𝑤 + 𝑦3, and𝐻0 denotes a local representative of the projective hyperplane
. The polar locus Γ(𝑤, 𝑓𝑝) is a curve, and by solving equations we get its parametric presentation
as: (− 1

12
𝑤3, 1

6
𝑤2, 𝑤) ∈ ℂ3 for 𝑤 ∈ ℂ. The intersection multiplicity at the origin int0(𝐻0, Γ(𝑤, 𝑓𝑝),

which by definition is 𝛼𝑝(, 𝑉), is equal to 1. It is thus equal tomult0Γ(𝑤, 𝑓𝑝), and also equal to
the generic Milnor number 𝛼𝑝(𝑉). Therefore 𝑝 is indeed the unique special point of 𝑉.
We next show that 𝛽(𝑉,) = 0. Our  is the hyperplane ‘at infinity’ and the corresponding

polynomial 𝑃 defined onℂ3 = ℙ3 ⧵ is 𝑃(𝑥, 𝑦, 𝑧) = 𝑥2𝑧 + 𝑥𝑦 + 𝑦3. This polynomial has no sin-
gularities outside 𝑃−1


(0), thus 𝛽af f (𝑉,) = 0. Next, by Corollary 4.4, 𝑡-singularities at infinity

occur only on the line {𝑝} × ℂ ⊂ 𝕏∞, and that they are isolated. We then use Section 5.3 to detect
them. We compute Γ(𝑧, 𝑃), which is a curve. The restriction of 𝑃 on it detects asymptotically
all the values (𝑝, 𝑡) which are the 𝑡-singularities at infinity. In our case the only asymptotical
value is 𝑡 = 0, but this is not outside 𝑃−1


(0). So there are no isolated 𝑡-singularities at all, and thus

𝛽∞(𝑉,) = 0. Theorem 5.4 then gives pol(𝑉) = 1 + 0 = 1.
Let us consider the cubic surface:

𝑉 ∶= {𝑓 = 𝑥2𝑧 + 𝑦2𝑤 = 0} ⊂ ℙ3

with pol(𝑉) = 2. Its singular locus is the same line 𝐿 ∶= {𝑥 = 𝑦 = 0} of transversal type 𝐴1, now
except of two 𝐷∞-points 𝑝 = [0; 0; 1; 0] and 𝑞 = [0; 0; 0; 1]. By similar computations as above,
it turns out that these two points are the only special points of 𝑉 (see the next section for the
definition), with 𝛼𝑝(𝑉) = 𝛼𝑞(𝑉) = 1.
The above hyperplane {𝑤 = 0} is no more admissible since its non-transversality locus is a line.

We chose now ∶= {𝑤 − 𝑥 − 𝑦 = 0}. In order to compute the invariants, we apply a linear change
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1828 SIERSMA and TIBĂR

of variables such that 𝑙 is the new variable 𝑤 and the others do not move. In this new system of
coordinates we have 𝑉 ∶= {𝑓 = 𝑥2𝑧 + 𝑦2𝑤 − 𝑥𝑦2 − 𝑦3 = 0} and  ∶= {𝑙 = 𝑤 = 0} with a single
non-transversality point at 𝑝 = [0; 0; 1; 0].
By using Section 5.3 in the chart 𝑧 = 1, we get 𝛼𝑝(𝑉,) = 1, thus we have 𝛼(𝑉,) = 1.
For detecting 𝛽(𝑉,) we use again Section 5.3. We consider the polynomial 𝑃(𝑥, 𝑦, 𝑧) =

𝑥2𝑧 + 𝑦2 − 𝑥𝑦2 − 𝑦3 onℂ3 = ℙ3 ⧵ and check that it has no singularities outside the fibre𝑃−1

(0),

thus 𝛽af f (𝑉,) = 0. To find the 𝑡-singularities at infinity outside 𝑃−1

(0), we compute the affine

polar curve Γ(𝑧, 𝑃). It has the parametrization (1 −
3
2
𝑦, 𝑦, 𝑦2

2−3𝑦
) ∈ ℂ3 for 𝑦 ∈ ℂ. We compute the

asymptotic values of the restriction 𝑃|Γ for all branches which converge to infinity, and we find
that the only finite value different from 0 is lim𝑦→2

3
𝑃|Γ = 4

27
. The point (𝑝, 4

27
) ∈ 𝕏∞ is there-

fore the unique 𝑡-singularity at infinity outside 𝑃−1

(0). We then compute the local intersection

multiplicity int(𝑝, 4
27
)(Γ(𝑝,𝑡)(𝑧, 𝑃), 𝕏 4

27
) and find that its value is 1.

This yields 𝛽∞(𝑉,) = 1, hence we get 𝛽(𝑉,) = 1. Finally pol(𝑉) = 1 + 1 = 2 by Theo-
rem 5.4.

6 SPECIAL POINTS, AND LOWER BOUNDS FOR THE POLAR
DEGREE

6.1 The definition of special points of 𝑽

Recalling that the local numerical invariant 𝛼𝑝(𝑉) is defined in Section 5.1, let us introduce the
following:

Definition 6.1 (Special points of 𝑉). We say that 𝑝 ∈ Sing(𝑉) is a special point of 𝑉 if 𝛼𝑝(𝑉) > 0.

Remark 6.2. The notion of ‘special point’ can be defined not only for a hypersurface 𝑉 in ℙ𝑛 but
for any singular complex space 𝑋 of pure dimension 𝑛 − 1 such that the shifted constant sheaf
ℚ
𝑋
[𝑛 − 1] is a ℚ-perverse sheaf on 𝑋.

The next result tells that the set of all special points of 𝑉 is an intrinsic invariant.

Proposition 6.3. The set 𝑉spec ⊂ 𝑉 of special points is a finite subset of 𝑉 which is independent of
the stratification of𝑉. In particular,𝑉spec is included in the set of point-strata of the coarsestWhitney
stratification of 𝑉.

Proof. If the point𝑝 is on a stratumof dimension> 0 of someWhitney stratificationℙ of𝑉, then
𝛼𝑝(𝑉) = 0 since the complex link of any stratum of positive dimension is contractible†. Therefore
only point-strata of ℙ can be special points (according to Definition 6.1), and these point-strata
are finitely many since 𝑉 is compact. It also follows that only points 𝑝 which are point-strata of
any Whitney stratification of 𝑉 can be special points, thus our last assertion is proved. □

† This follows from the fact that 𝑉, at some point 𝑝 on a positive dimensional stratum of ℙ , is locally equivalent, up
to homeomorphisms, to a product of the stratum with a transversal hyperplane slice. See, for example, [15] for all these
well-known facts.
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POLAR DEGREE AND VANISHING CYCLES 1829

Remark 6.4. In case 𝑉 has non-isolated singularities, the inclusion in the statement of Propo-
sition 6.3 might be strict. As a local example, consider the Briançon-Speder [2] family of
hypersurface germs which is 𝜇-constant but not 𝜇∗-constant†; then the origin is a point-stratum
in the coarsest local Whitney stratification, but it is not a special point.

In case (𝑉, 𝑝) is an (at most) isolated singularity germ, we have 𝛼𝑝(𝑉) = 𝜇𝑝(𝑉 ∩gen) ⩾ 0 ,
with annulation 𝜇𝑝(𝑉 ∩gen) = 0 if and only if (𝑉, 𝑝) is non-singular.‡ Therefore we get:

Corollary 6.5. If 𝑉 has only isolated singularities, then 𝑉spec = Sing(𝑉).

6.2 On lower bounds for the polar degree

We have seen in Remark 4.3 that the set of admissible hyperplanes for 𝑓 at some point 𝑝 ∈ Sing𝑉
is a Zariski-open subset of the set of all hyperplanes through 𝑝. Therefore, if  is admissible for
𝑓 at 𝑝 ∈ Sing𝑉, then we obtain from Theorem 5.4:

pol(𝑉) ⩾ 𝛼𝑝(𝑉,) + 𝛽(𝑉,) ⩾ 𝛼𝑝(𝑉,) ⩾ 𝛼𝑝(𝑉) ⩾ 0, (24)

where the last inequality reads ‘> 0’ if and only if 𝑝 is a special point of 𝑉.
The following statement is a consequence of Theorem 5.4 via the inequality (24):

Corollary 6.6. Let 𝑉 ⊂ ℙ𝑛 be a projective hypersurface which is not a cone. Then:

pol(𝑉) ⩾ max
𝑝∈𝑉spec

𝛼𝑝(𝑉). (25)

Remark 6.7. Corollary 6.6 extends to any singular locus Huh’s result [20, Theorem 2] that holds in
the setting of𝑉 with isolated singularities only. More generally, if𝑉 has non-isolated singularities
and also isolated singular points, then our formula (25) implies that if 𝑉 is homaloidal, then its
isolated singularities must be of type 𝐴𝑘, just as in Huh’s setting.
Let us show here what Corollary 6.6 becomes in the particular case of 𝑉 with isolated singu-

larities only. A point 𝑝 ∈ Sing𝑉 is then a special point of 𝑉 (by Corollary 6.5). Since 𝛼𝑝(𝑉) =
𝜇⟨𝑛−2⟩𝑝 (𝑉), Corollary 6.6 yields the inequality:

pol(𝑉) ⩾ max
𝑝∈Sing (𝑉)

𝜇⟨𝑛−2⟩𝑝 (𝑉) (26)

which recovers the general formulation of Huh’s result [20, Theorem 2], stated in (4) in a
particular form.

Remark 6.8. If an admissible hyperplane has an isolated stratified tangency to 𝑉 at 𝑝 ∉ 𝑉spec,
then this tangency contributes to pol(𝑉) with the positive summand 𝛼𝑝(𝑉,). In case of a non-
degenerate quadratic contact, this contribution is 1, and in case of higher order tangency, it is

† Thenotation𝜇∗ is due to Teissier, and ‘𝜇∗-constant’means that allMilnor numbers of the linear sections of all dimensions
through some fixed point (here the point is the origin) are constant in the family.
‡ This is a well-known fact, see, for example, [41, Proposition 4.1] and more references therein.
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1830 SIERSMA and TIBĂR

2 or more. In particular homaloidal hypersurfaces may have such isolated tangency points for
admissible hyperplanes, but the orders of contact cannot be higher than 1.

6.3 On hypersurfaces with 𝐩𝐨𝐥(𝑽) = 𝟎

Let us observe that Huh’s result [20, Theorem 2] does not apply in this case. Indeed, the following
equivalence should be well known: if 𝑉 has at most isolated singularities, then pol(𝑉) = 0 if and
only if 𝑉 is a cone. If 𝑉 has isolated singularities only and it is a cone, then it has a unique apex 𝑞
which is moreover the unique singular point of𝑉 (since if not so, then𝑉 would have non-isolated
singularities in both cases). Precisely this case ‘𝑉 is a cone of apex 𝑞’ is excluded in Huh’s result
[20, Theorem 2].
In the same setting of 𝑉 with isolated singularities only, our formula (24) does not apply in

the case pol(𝑉) = 0 either. The reason is that the generic hyperplanes through the unique apex 𝑞
of the cone 𝑉 are not admissible. Indeed, if the cone 𝑉 is not smooth, then its apex is an isolated
singular point, thus a special point. For a generic linear 𝑙 form in the slice𝐾 = {𝑥0 = 1} at this point
𝑞, the polar locus Γ(𝑙, g) is of dimension 1 due to the fact the the apex 𝑞 is an isolated singularity of
𝑉. By Lemma 2.4, it then follows that dimΓ(𝑙, 𝑓) = 2. This proves our claim that that all general
hyperplanes through 𝑞 are non-admissible, and thus Theorem 5.4 does not apply.

Corollary 6.9. Let 𝑉 ⊂ ℙ𝑛 be any projective hypersurface with pol(𝑉) = 0, but not a cone. Then 𝑉
has no special points.

Proof. Since 𝑝 ∈ Sing𝑉 is not an apex of a cone, Theorem 2.2 shows, via Remark 4.3, that there
is a Zariski-open set of admissible hyperplanes through 𝑝. Therefore Theorem 5.4 applies and
yields the inequality:

pol(𝑉) ⩾ 𝛼𝑝(𝑉) ⩾ 0, (27)

where𝛼𝑝(𝑉) > 0whenever𝑝 ∈ 𝑉spec, by definition. But this contradicts our assumption pol(𝑉) =
0. □

We end by an interesting example of a projective hypersurface which is not a cone, but has
polar degree equal to 0. It has been believed long ago (see [17, 18]) that pol(𝑉) = 0 implies ‘𝑉 is
a cone’. Well known to be true for 𝑉 with isolated singularities, this is not true whenever 𝑉 has
non-isolated singularities, cf. [14].

Example 6.10. The projective hypersurface

𝑉 ∶= {𝑓 = 𝑧𝑑−13 𝑧0 + 𝑧
𝑑−2
3 𝑧4𝑧1 + 𝑧

𝑑−1
4 𝑧2 = 0} ⊂ ℙ4,

of degree 𝑑 ⩾ 3, is a well-known example of a hypersurface with vanishingHessian, thus pol(𝑉) =
0, which is not a cone, see, for example, [20].
Its singular locus is the 2-plane Sing𝑉 = {𝑧3 = 𝑧4 = 0} ⊂ ℙ4. This plane contains a curve 𝐶 of

degree 𝑑 − 1where the transversal type changes. This curve 𝐶 has a single singularity at the point
𝑝 = [0; 0; 1; 0; 0] of cusp type.
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POLAR DEGREE AND VANISHING CYCLES 1831

In the affine chart {𝑧2 = 1} ≃ ℂ4, we compute the generic affine polar curve Γ(𝑙, g) where
g ∶= 𝑓|{𝑧2=1} and 𝑙 ∶ ℂ4 → ℂ is a generic linear form. We get that dimΓ(𝑙, g) = 1 and that Γ(𝑙, g)
intersects 𝐶, but not at the point 𝑝 (which represents the origin of this chart). This shows that 𝑝 is
not a special point of 𝑉. Repeating the computation at the intersection points Γ(𝑙, g) ∩ Sing𝑉 by
using local generic linear forms at each such point, instead of the the affine generic 𝑙, we find that
there are no local polar curves, and therefore these points are not special points either. Altogether
this confirms Corollary 6.9.
Although the generic affine polar curve in this chart is empty at the origin, there are relatively

generic hyperplanes  = {𝑙 = 0} containing the singular point 𝑝 and satisfying condition (12).
But all these are not admissible because the polar locus Γ(𝑙, 𝑓) has dimension 2, and therefore
Theorem 5.4 does not apply.
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