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Recently, strong evidence was found for the presence of higher-order modes in the gravitational wave
signals GW190412 and GW190814, which originated from compact binary coalescences with significantly
asymmetric component masses. This has opened up the possibility of new tests of general relativity by
looking at the way in which the higher-order modes are related to the basic signal. Here we further develop
a test which assesses whether the amplitudes of subdominant harmonics are consistent with what is
predicted by general relativity. To this end we incorporate a state-of-the-art waveform model with higher-
order modes and precessing spins into a Bayesian parameter estimation and model selection framework.
The analysis methodology is tested extensively through simulations. We investigate to what extent
deviations in the relative amplitudes of the harmonics will be measurable depending on the properties of the
source, and we map out correlations between our testing parameters and the inclination of the source with
respect to the observer. Finally, we apply the test to GW190412 and GW190814, finding no evidence for
violations of general relativity.
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I. INTRODUCTION

The Advanced LIGO [1] and Advanced Virgo [2]
gravitational wave (GW) observatories have by now
detected 90 candidate signals from coalescing binary black
holes [3–8], binary neutron stars [9,10], and neutron star–
black hole systems [11]. A battery of tests of general
relativity (GR) were performed [12–17], including tests
of the spacetime dynamics as inferred from the binary
coalescence process [18–24].
Recently, strong evidence was obtained for the pres-

ence of higher-order modes [25] in the gravitational
wave signals GW190412 and GW190814 [26–28], which
were emitted by coalescing binary compact objects with
significantly different component masses. Measuring
these sub-dominant harmonics of the basic signal enables
more precise measurements of the source parameters, and
can allow for stronger constraints on certain deviations
from GR [29,30]. Several tests of GR that directly probe
the harmonic structure for binary black hole (BBH)

coalescences1 were proposed in [33–36]. These fall into
two categories. In the first case, one tests the phase
evolution, e.g., by testing for deviations in the way
parameters like the chirp mass and symmetric mass ratio
enter into the expressions for the different harmonics
[33]. This kind of test has already been applied to
GW190412 and GW190814 in Ref. [37]. A second test
looks for anomalies in the amplitudes of the subdominant
modes [34]; the latter test is the focus of this paper.
Specifically, defining hðtÞ≡ hþðtÞ − ih×ðtÞ with hþ, h×

the two polarizations, the GW signal from a coalescing
binary can be written as

1Given the low mass of the lighter component of GW190814
(≃2.6 M⊙), there is a possibility that it was a signal from a
neutron star-black hole rather than a binary black hole coales-
cence [27], but studies based on the known properties of neutron
stars make a BBH origin much more likely [31,32]. For the
purposes of this paper we will assume that GW190814 came from
a BBH coalescence.
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hðt; ι;ϕ0; λ⃗Þ ¼
X∞
l¼2

Xl
m¼−l

Ylm
−2 ðι;ϕ0Þhlmðt; λ⃗Þ; ð1Þ

where the Ylm
−2 are spin-weighted spherical harmonics of

weight −2, ðι;ϕ0Þ indicate the direction of the radiation in
the source frame, and λ⃗ collects all other parameters in the
problem. The latter are the total mass M ≡m1 þm2 (with
m1, m2 the component masses), the mass ratio q≡m1=m2

(where we assume m1 ≥ m2), the dimensionless spin
vectors S1 and S2 at some reference time tref , a reference
phase φref , and the luminosity distanceDL. The hlm will be
referred to as the “modes” of the gravitational wave signal.
Taking the contribution with l ¼ 2, m ¼ �2 to constitute
the fundamental mode, the test of GR considered here
follows Ref. [34] to allow for deviations in the amplitudes
of the higher-order modes:

hðt; ι;ϕ0; λ⃗Þ ¼
X
m¼�2

Y2m
−2ðι;ϕ0Þh2mðt; λ⃗Þ

þ
X
HOM

Xl
m¼−l

ð1þ clmÞYlm
−2 ðι;ϕ0Þhlmðt; λ⃗Þ;

ð2Þ

where HOM stands for the l labels of the higher-order
modes. The clm are free parameters, to be measured
together with all other parameters in the problem; the case
where GR is valid corresponds to clm ¼ 0. Although for
precessing signals one does not have the symmetry hl−m ¼
ð−1Þlh�lm [38], for definiteness we set cl−m ¼ clm. Here
we will perform parametrized tests where the cljmj are
allowed to vary one by one, as in the phase-based tests
performed in [12–16], and we will focus on modes that
will usually be the strongest, namely the ones with
ðl; jmjÞ ¼ ð3; 3Þ and ðl; jmjÞ ¼ ð2; 1Þ. We will not only
perform parameter estimation, as was done in Ref. [34],
but also model selection; as we shall see, the latter will be
of particular importance here.
To leading order, the observed strengths of the higher

harmonics are set by the total mass M, the inclination
angle ι, and the relative mass difference Δ≡ ðm1 −m2Þ=M
[25,39]. One aim of this paper is to investigate to what
extent deviations in amplitudes of the harmonics can be
determined depending on the values of these parameters, in
terms of both parameter estimation and model selection.
Second, when performing tests that allow for nonzero clm,
there will be correlations between these and the angular
parameters, notably ι, which will affect both the measur-
ability of the deviations from GR and the shapes of the
posterior distributions. We will map out this interplay,
which is necessary to interpret the results of our tests.
Finally, for the first time we apply this test to GW190412
and GW190814.

The rest of this paper is structured as follows. In Sec. II
we recall the basic properties of higher harmonics, together
with the waveform model we will use. In Sec. III we set up
the Bayesian analysis framework used in this study, and
explain our choices for simulated signals (or injections),
which will be used to understand the behavior of our
analysis depending on the properties of the GW source.
Section IV shows the results of our simulations and of
measurements on GW190412 and GW190814. A summary
and conclusions are provided in Sec. V.

II. PROPERTIES OF HIGHER HARMONICS
AND WAVEFORM MODEL

Let us start by recalling some properties of the harmonics
hlm in Eq. (1), which we will need to interpret the results
in subsequent sections. In doing so we limit ourselves
to qualitative statements, mostly referring to the inspiral
regime; for explicit dependences on the parameters in the
problem we refer to Refs. [25,39]. The salient features
relevant to us here are as follows:

(i) At zeroth post-Newtonian order (0PN) in amplitude
there is the harmonic with l ¼ jmj ¼ 2, which is the
most dominant of all multipole modes.

(ii) At 0.5PN order in amplitude, harmonics with
ðl; jmjÞ ¼ ð2; 1Þ; ð3; 3Þ; ð3; 1Þ appear. In this paper
we will be the most interested in the (2, 1) and (3, 3)
harmonics, since the (3, 1) harmonic is suppressed
with respect to the others due to its small overall
numerical prefactor. For purposes of testing GR we
will also not consider harmonics that only appear at
higher PN order.

(iii) The (2, 1) and (3, 3) modes are proportional to the
relative mass difference Δ ¼ ðm1 −m2Þ=M, so that
they are more prominent for systems with a higher
value of q ¼ m1=m2.

(iv) The fact that the harmonics enter the polarizations
through the spin-weighted spherical harmonics
Ylm
−2 ðι;ϕ0Þ causes their prominence to depend sen-

sitively on the inclination angle ι, as illustrated in
Fig. 1. For systems that are “face-on” (ι ¼ 0) or
“face-off” (ι ¼ 180°), only the dominant harmonic is
visible. The subdominant harmonics on which we
will focus in this work are strongest around ι ≃ 50°
and ι ≃ 130°. In the figure we also indicate the
peak likelihood values of ι for GW190412 and
GW190814.

(v) Finally, the observed power in the subdominant
modes relative to that in the (2, 2) mode increases
with the total mass. During inspiral, at a given
frequency f the ratios of the subdominant mode
amplitudes to that of the dominant one grow withM
through powers of ðMfÞ1=3, though also the merger
part of the signal and the shape of the noise power
spectral density SnðfÞ will have an effect.
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To make the latter point more concrete, let us define the
quantities

αlm ≡
Z

fhigh

flow

jh̃lmðf; λ⃗Þj2
SnðfÞ

df=
Z

fhigh

flow

jh̃22ðf; λ⃗Þj2
SnðfÞ

df; ð3Þ

where h̃lmðf; λ⃗Þ is the ðl; mÞ mode in the frequency
domain, and SnðfÞ denotes the one-sided detector noise
power spectral density, which we take to be the one for
Advanced LIGO at design sensitivity [1]. The integrals are
evaluated from a lower cutoff frequency flow ¼ 20 Hz to
an upper cutoff frequency fhigh ¼ 2048 Hz, which amply
suffices for the kinds of signals considered in this
paper. The waveform model is taken to be the most up-
to-date phenomenological inspiral-merger-ringdown
model IMRPhenomXPHM [40,41], which incorporates
harmonics with ðl; jmjÞ ¼ ð2;2Þ; ð2;1Þ; ð3;3Þ; ð3;2Þ; ð4;4Þ
modes, as well as effects of spin-induced precession.
Figure 2 shows the dependence of the αlm on total mass
M and mass ratio q, for ðl; mÞ ¼ ð2; 1Þ; ð3; 3Þ, where for
simplicity we have focused on binaries composed of
nonspinning black holes. Note that q ¼ 3, 6, 9 correspond
to Δ ≃ 0.5, 0.71, 0.8, respectively, which explains why the
curves with q ¼ 6, 9 are closer to each other than to the
ones for q ¼ 3.

III. ANALYSIS FRAMEWORK AND SETUP
OF SIMULATIONS

We now explain our data analysis methodology for
measuring source parameters and to rank hypotheses based
on the available detector data. Next we will detail the

choices made for simulations that were performed to
understand the response of the analysis framework to
possible violations of GR in the amplitudes of different
harmonics.

A. Analysis framework

Consider detector data d and a hypothesis H, where, for
practical purposes, the latter corresponds to a waveform
model h̃ðf; θ⃗Þ; in our case this could be the GR model
for binary black hole coalescence, or one that allows
for deviations from GR in the amplitudes of one of
the harmonics. Then, in a Bayesian setting, measuring
the parameters θ⃗ of the source amounts to obtaining the
posterior probability density pðθ⃗jd;HÞ. From Bayes’s
theorem,

pðθ⃗jd;HÞ ¼ pðdjθ⃗;HÞpðθ⃗jHÞ
pðdjHÞ ; ð4Þ

where the evidence pðdjHÞ for the hypothesis H is
given by

pðdjHÞ ¼
Z

dθ⃗pðdjθ⃗;HÞpðθ⃗jHÞ: ð5Þ

In the above, pðθ⃗jHÞ is the prior probability density, and
the likelihood pðdjθ⃗;HÞ takes the form [42]

pðdjθ⃗;HÞ ∝ exp

�
−
1

2
hd − hðθ⃗Þjd − hðθ⃗Þi

�
; ð6Þ

FIG. 2. The relative signal power in the real part of hlm for
some of the higher-order modes with respect to the dominant
(2, 2) mode, as a function of the total mass M of the binary, for
three different values of the mass ratio q and assuming Advanced
LIGO at design sensitivity.

FIG. 1. The absolute values of spin-weighted spherical har-
monics of weight −2 as function of the inclination angle ι. The
vertical lines indicate the peak likelihood values of ι for
GW190412 (black dashed) and GW190814 (red dashed), located
at ≃47° and ≃49°, respectively [26,27].
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where the noise-weighted inner product h·j·i is given by

hajbi≡ 4Re
Z

fhigh

flow

ã�ðfÞb̃ðfÞ
SnðfÞ

df: ð7Þ

Equation (4) together with Eqs. (5)–(7) allow us to
calculate the posterior probability density pðθ⃗jd;HÞ from
the data. The posterior probability density pðθkjd;HÞ for a
particular parameter in θ⃗ is obtained by integrating out all
the other parameters ξ⃗ in θ⃗ ¼ ðθk; ξ⃗Þ:

pðθkjd;HÞ ¼
Z

dξ⃗pðθk; ξ⃗jd;HÞ: ð8Þ

Additionally, we will want to rank hypotheses: the GR
hypothesis HGR versus hypotheses HNonGR, which allow
one of the clm in Eq. (2) to be nonzero. To this end we
calculate Bayes factors, or ratios of evidences,

BNonGR
GR ≡ pðdjHNonGRÞ

pðdjHGRÞ
; ð9Þ

where pðdjHNonGRÞ and pðdjHGRÞ are obtained using
Eq. (5), taking H to be HNonGR or HGR, respectively. In
practice it is usually convenient to focus on the logarithm
of the Bayes factor, lnBNonGR

GR , as will also be done here.
To interpret the size of (log) Bayes factors, one could
make use of the Jeffreys scale [43], in which BNonGR

GR > 102

(or lnBNonGR
GR ≳ 4.6) would be deemed a “decisive” grade

of evidence. Alternatively one could construct a back-
ground distribution for lnBNonGR

GR from a large number of
injections that are in accordance to GR (see e.g., [21]),
though this is computationally costly. Here we mainly want
to show trends; a more extensive treatment of (log) Bayes
factors is left for future work.
It will also be important to consider the loudness of a

signal as it appears in a detector. The optimal signal-to-
noise ratio (SNR) is defined as ρ≡ hhðθ⃗Þjhðθ⃗Þi1=2. For a
network of detectors, the combined optimal SNR is
obtained by summing in quadrature the SNRs in the
individual detectors.
Finally, for estimating the evidence integrals as in

Eq. (5), and obtaining samples for posterior density
distributions pðθ⃗jd;HÞ, we used nested sampling [42,44]
as implemented in the LALinference package [45] of the
LIGO Algorithms Library software suite [46]. Both for
simulated signals and for template waveforms we use
IMRPhenomXPHM, with testing parameters clm added
as in Eq. (2) in the case of non-GR waveforms. For the
purpose of our analyses, the free parameters are then the
usual ones that enter a binary black hole signal, together
with one of the clm in the case of a non-GR hypothesis. The
posterior density distribution for a clm by itself is obtained

from the joint posterior distribution by integrating out all
other parameters, as in Eq. (8).

B. Setup of the simulations

To understand the response of our analysis pipeline to
GR violations in mode amplitudes with various strengths,
we add simulated signals, or injections, to synthetic sta-
tionary, Gaussian noise for a network of Advanced LIGO
and Virgo detectors following the predicted noise spectral
densities at design sensitivity [1,2]. Since higher-order
modes are more prominent for larger total masses, we will
start by considering heavier BBH systems. Later in the
paper we will analyze the real GW events GW190412 and
GW190814 to look for GR violations. To this end, for
lower-mass systems we will perform injections whose GR
parameter values and SNRs are set to the maximum-
likelihood values obtained from analyses on these events
that assumed GR to be correct. Specifically:

(i) We will inject signals with M ¼ 65 M⊙ and M ¼
120 M⊙, for mass ratios q ¼ 3, 6, 9. Here the
inclination angle is fixed to be ι ¼ 45°, and the
network SNR to 25. For simplicity, in these injec-
tions we set the spins to zero, although throughout
this paper the analyses allow for nonzero, precess-
ing spins.

(ii) For GW190412-like injections, M ¼ 46.6 M⊙,
q ¼ 4.2, ι ¼ 47°. Spin-related and other parameters
are set to their maximum-likelihood values for the
real event [26], so that in particular these injections
have precessing spins. The network SNR is 19.8.

(iii) For GW190814-like injections, M ¼ 27.6 M⊙,
q ¼ 9.3, ι ¼ 49°; here too all parameters are set
to the maximum-likelihood ones [27]. The network
SNR is 25.

We also need to choose values for the deviation param-
eters c33 and c21 in the injections. Since the (3, 3) mode will
tend to be the strongest (see Fig. 2), we can expect smaller
values of c33 to lead to detectable GR violations than for
c21, where “detectable” can be taken to mean that the 90%
credible region of the posterior density function has support
that excludes zero. We found that, at least for the higher
masses listed above, the following choices constitute
examples ranging from nondetectability to easy detect-
ability of the GR violations:

(i) c33 ¼ 0.5, 1.5, 3.
(ii) c21 ¼ 1, 3, 6.

Hence these are the values for which wewill show results in
the next section.

IV. RESULTS OF SIMULATIONS, AND ANALYSES
OF GW190412 AND GW190814

We now describe the results for our simulations, as well
as for the real events GW190412 and GW190814, in terms
of parameter estimation and hypothesis ranking. In doing
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so, it will be useful to make a distinction between the more
massive BBHs (M ¼ 65; 120 M⊙), the injections with
parameters similar to those of the real events, and of course
the real events themselves.

A. More massive binary black holes

Let us first look at results for injections with M ¼
65 M⊙ and M ¼ 120 M⊙. To have an easier overview it is
convenient to first look at the behavior of log Bayes factors,
lnBNonGR

GR , which we do in Fig. 3. The trends are as follows:
(1) As expected, for a larger injected clm, the log Bayes

factor is larger. The cases c33 ¼ 0.5 and c21 ¼ 1 lead
to lnBNonGR

GR that tend to be consistent with zero,
meaning that the data are not sufficiently informative
to clearly distinguish between hypotheses. However,
starting from c33 ¼ 1.5 or c21 ¼ 3, the lnBNonGR

GR are
significantly away from zero, and as will be seen in
terms of parameter estimation below, here the GR
deviations tend to be detectable.

(2) Higher values of M lead to higher lnBNonGR
GR ,

consistent with there being more power in the
higher-order modes relative to the (2, 2) mode;
see Fig. 2.

(3) Again as expected, on the whole a larger mass ratio q
tends to lead to a higher lnBNonGR

GR , consistent with
there being more power in the higher-order modes.
We do see that the lnBNonGR

GR tend to differ less
between q ¼ 6 and q ¼ 9 than between q ¼ 3 and
q ¼ 6; in fact, for M ¼ 65 M⊙ and c33, the log

Bayes factors for the higher two values of q are
nearly equal. Again pointing to Fig. 2, we note that
the cases q ¼ 6 and q ¼ 9 are closer to each other
than to q ¼ 3 in terms of the power present in
higher-order modes.

Figure 4 shows posterior probability densities for the
corresponding injections. The trends show broad consis-
tency with what we saw for the log Bayes factors. In
particular, for the injected values c33 ¼ 0.5 and c21 ¼ 1,
posterior densities either include the GR value of zero, or
extend to quite close to it, while for higher injected values,
the GR value tends to be outside the support of the
distribution. Also, the 90% confidence intervals tend to
be tighter for higher total mass and for higher mass ratio,
again consistent with the behavior of the lnBNonGR

GR in
Fig. 3, and indeed with Fig. 2.

B. Injections with parameters similar to those
of GW190412 and GW190814

Next we turn to injections with GR parameters close to
those of the real events GW190412 and GW190814.
Figure 5 shows results for lnBNonGR

GR . Here too the trends
are as expected: the log Bayes factor increases with
increasing injected values for c33 and c21. Note that
although GW190412 had a higher mass than GW190814
(M ¼ 46.6 M⊙ versus M ¼ 27.6 M⊙), the mass ratio
of GW190412 was considerably smaller than that of
GW190814 (q ¼ 4.2 versus q ¼ 9.3). The log Bayes
factors are higher for the latter event, consistent with

FIG. 3. lnBNonGR
GR for M ¼ 65 M⊙ (top row) and M ¼ 120 M⊙ (bottom row), for different mass ratios q indicated by the differently

shaped markers. The horizontal axes show the injected values of c33 (left column) and c21 (right column). In each case, the non-GR
hypothesis has the corresponding clm as free parameter.
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FIG. 4. Violin plots for the posterior density distributions of c33 (top two rows) and c21 (bottom two rows), forM ¼ 65; 120 M⊙, and
q ¼ 3 (left column), q ¼ 6 (middle column), and q ¼ 9 (right column). In each case the black horizontal bars indicate 90% confidence
intervals, and the red horizontal bar the injected value; the black vertical line shows the support of the posterior.
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Fig. 2. We see that for GW190412 one has lnBNonGR
GR < 0

for c33 ¼ 0.5, and the same is true for both injections in the
cases c21 ¼ 1 and c21 ¼ 3, presumably due to the lower
total masses. We note that uncertainties on log Bayes
factors can be expected to be of OðfewÞ [42]. Hence
the small negative values can be interpreted as being
consistent with zero, and the lnBNonGR

GR are uniformative
in these cases.

Figure 6 shows posterior probability distributions for the
same injections. In all cases, the injected value for c33 and
c21 lies within the support of the posterior. For c21 the
results look like what one might expect, but for c33 the
posteriors are bimodal, with the true value not always lying
in the strongest mode. As will be clarified in the next
section, this behavior results from a partial degeneracy
between c33 and the inclination angle ι.

FIG. 5. lnBNonGR
GR for injections with GR parameters similar to those of GW190412 and GW190814.

FIG. 6. Violin plots for the posterior density distributions of c33 (top row) and c21 (bottom row), for injections similar to GW190412
(left column) and GW190814 (right column). In each case the black horizontal bars indicate 90% confidence intervals, and the red
horizontal bar the injected value; the black vertical line shows the support of the posterior.
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C. Results for GW190412 and GW190814

Finally we turn to the real events GW190412 and
GW190814. Table I shows the results for lnBNonGR

GR when
comparing the hypothesis of a nonzero c33 or c21 with the
GR hypothesis. All the log Bayes factors are negative, so
we have no reason to suspect a violation of GR in the
amplitudes of subdominant modes.
More interesting are the posterior distributions for c21

and especially c33, which are shown in Figs. 7 and 8. For
both events, the posterior for c21 is unimodal, and con-
sistent with the GR value of zero. However, just like in the
simulations of the previous section, the posterior for c33 is
bimodal, also for both events.
As it turns out, this bimodality results from a degeneracy

between c33 and the inclination angle ι. The lower panels
of Figs. 7 and 8 show mismatches between (1) a reference

waveform h̃refðfÞ, which is a GR waveform with

maximum-likelihood parameters for the respective signals,
and (2) a waveform h̃ðclm; ι; fÞ in which clm and ι can
take on arbitrary values, but all other parameters are the
maximum-likelihood ones from the GR analysis.
Specifically, we compute

MM ¼ 1 −max
t0;φ0

hhref jhðclm; ιÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhref jhrefi
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihhðclm; ιÞjhðclm; ιÞi

p ; ð10Þ

where the maximization is over a rigid time shift and
overall phase.
In the bottom panels of Figs. 7 and 8, these mismatches

are indicated with color coding, with dark colors signifying
small mismatch. Overlaid are dashed lines indicating the
peak-likelihood values in the (bimodal) posterior distribu-
tion for ι obtained when analyzing the events with either c21
or c33 as additional free parameters. Focusing first on the
case of c33 and GW190412 in Fig. 7, we see that there are
two regions in the ðc33; ιÞ plane where mismatches are low:
one region that contains the GR value c33 ¼ 0 and is
consistent with the lower value of ι, and another region
consistent with the higher ι value and c33 ≠ 0. In either
region, waveforms hðc33; ιÞ are consistent with the refer-
ence waveform href , which explains the bimodality in the
posterior for c33. By contrast, based on the analogous plot

TABLE I. Values of lnBNonGR
GR for analyses of the real events

GW190412 and GW190814.

Event GW190412 GW190814

c33 −1.25 −3.96
c21 −2.48 −1.77

FIG. 7. Top panels: posterior density functions for c21 (left) and c33 (right) for GW190412. Bottom panels: contours of constant
mismatch between the maximum-likelihood GR waveform, and a waveform in which ι and c21 (left) or c33 (right) are varied while
keeping all other parameters the same. The dashed vertical lines indicate the GR values c21 ¼ 0 and c33 ¼ 0, respectively, and the
dashed horizontal lines indicate the peak-likelihood values for ι obtained from the analyses of GW190412 with respectively c21 and c33
as free parameters.
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for ðc21; ιÞ, no such bimodality is to be expected, and
indeed, the posterior for c21 is unimodal. The correspond-
ing Fig. 8 for GW190814 leads to similar conclusions.

V. SUMMARY AND CONCLUSIONS

We have set up a Bayesian analysis framework to test GR
by looking at the amplitudes of subdominant modes in GW
signals from BBH coalescences, using a state-of-the-art
waveform model. Specifically, we allow for modifications
in the amplitudes of the (3, 3) and (2, 1) modes, which tend
to be the strongest among the subdominant modes. Apart
from performing parameter estimation on the associated
testing parameters c33 and c21, this allows for hypothesis
ranking between the presence and absence of such anoma-
lies in the modes.
Results from simulations involving injected waveforms

in stationary, Gaussian noise largely follow the trends one
would expect based on the dependence of mode amplitudes
on total mass and mass ratio: for similar SNRs, heavier and
more asymmetric systems make it easier to find violations
of GR of the type studied here.
We then performed the first analysis of this kind on

the real events GW190412 and GW190814, which were
associated with significantly unequal component masses,
and in which strong evidence for subdominant mode
content had been found [26–28]. Log Bayes factors
indicated no evidence for a GR violation in either the
(2, 1) or (3, 3) mode. In the case where the (3, 3) mode was
being investigated, the posterior density function for c33,

while being consistent with the GR value c33 ¼ 0, did
exhibit bimodality, but this was shown to result from
correlations between c33 and the inclination angle ι.
Since the bimodality was also present in c33 posterior
densities for injections with parameters similar to the ones
of GW190412 and GW190814 and c33 ≠ 0, some caution
is called for in interpreting such posteriors, at least for
BBHs with total mass M ≲ 50 M⊙. However, our results
show that log Bayes factors lnBNonGR

GR , which were not
considered in previous work in this context [34], are robust
indicators for or against the presence of a violation of GR.
Even in systems with significantly asymmetric masses

and high total mass, with second-generation detectors,
GR violations have to be sizeable (c33 ≳ 1.5 and c21 ≳ 3)
in order to be confidently detected. It will be of interest
to see how the sensitivity of our method will improve going
towards Einstein Telescope [47–50], Cosmic Explorer
[50–53], and the space-based LISA [54], but this is left
for future work.
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