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Abstract. Predictive mean matching (PMM) is an easy-to-use and ver-
satile univariate imputation approach. It is robust against transforma-
tions of the incomplete variable and violation of the normal model. How-
ever, univariate imputation methods cannot directly preserve multivari-
ate relations in the imputed data. We wish to extend PMM to a mul-
tivariate method to produce imputations that are consistent with the
knowledge of derived data (e.g., data transformations, interactions, sum
restrictions, range restrictions, and polynomials). This paper proposes
multivariate predictive mean matching (MPMM), which can impute
incomplete variables simultaneously. Instead of the normal linear model,
we apply canonical regression analysis to calculate the predicted value
used for donor selection. To evaluate the performance of MPMM, we
compared it with other imputation approaches under four scenarios: 1)
multivariate normal distributed data, 2) linear regression with quadratic
terms; 3) linear regression with interaction terms; 4) incomplete data
with inequality restrictions. The simulation study shows that with mod-
erate missingness patterns, MPMM provides plausible imputations at
the univariate level and preserves relations in the data.

Keywords: Missing data · Multiple imputation · Block imputation ·
Predictive mean matching · Multivariate analysis · Canonical
regression analysis

1 Introduction

Multiple imputation (MI) is a popular statistical method for the analysis of miss-
ing data problems. To provide valid inferences from the incomplete data, the
analysis procedure of MI consists of three steps. First, in the imputation step,
missing values are drawn from a plausible distribution (e.g., posterior distribu-
tions for Bayesian model-based approaches and a cluster of candidate donors
for non-parametric approaches) to generate several (m) complete datasets. The
value of m commonly varies between 3 to 10. Second, in the analysis step, com-
plete data analysis are used to estimate the quantity of scientific interest for
each imputed data set. This step yields m separate analyses because imputed
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datasets are different. Finally, in the pooling step, m results are aggregated into
a single result by Rubin’s rules, accounting for the uncertainty of estimates due
to the missing data [1].

Two widely used strategies for imputing multivariate missing data are joint
modeling (JM) and fully conditional specification (FCS). Joint modeling was pro-
posed by Rubin [1] and especially developed by Shafer [2]. Given that the data is
assumed to follow a multivariate distribution, all incomplete variables are gener-
ally imputed by drawing from the joint posterior predictive distribution condi-
tional on other variables. Fully conditional specification, which was developed by
Van Buuren [3], follows an iterative scheme that imputes each incomplete vari-
able based on a conditionally specified model [3]. Fully conditional specification
allows for tremendous flexibility in multivariate model design and flexibility in
imputing non-normal variables, especially discrete variables [4]. However, FCS
may suffer from incompatibility problems, and computational shortcuts like the
sweep operator cannot be applied to facilitate computation [5]. On the other
hand, joint modeling possesses more solid theoretical guarantees. With increas-
ing incomplete variables, JM may lead to unrealistically large models and a lack
of flexibility, which will not occur under FCS.

In practice, there are often extra structures in the missing data which are
not modelled properly. Suppose there are two jointly missing variables X1 and
X2. There may be restrictions on the sum of X1 and X1 (e.g., X1 + X1 = C,
where C is a fixed value) and the rank of X1 and X2 (e.g., X1 > X2), data
transformations (e.g., X2 = log(X1), X2 = X1

2) or interaction terms included
in the data (X1, X2, X3 are jointly missing, where X3 = X1 ∗ X2). In this
paper, we would focus on the setting of structures between two jointly missing
variables, which is a simple scenario to illustrate.

The two popular approaches of MI mentioned before may not be appropriate
for modeling the relations among multiple variables in the missing data. Joint
modeling may lack the flexibility of modeling the relations explicitly, and FCS
imputes each missing variable separately, which may not ensure that the impu-
tation remains consistent with the observed relations among multiple variables.

Van Buuren [5] suggested block imputation, which combines the strong points
of joint modeling and fully conditional specification. The general idea is to place
incomplete variables into blocks and apply multivariate imputation methods to
the block. Joint modeling can be viewed as a “single block” imputation method.
In contrast, FCS is strictly a multiple blocks imputation method, where the
number of blocks equals the number of incomplete columns in the data. It is
feasible to consider the relations among a set of missing variables if we specify
them as a single block and perform the MI iteratively over the blocks.

Based on the rationale of block imputation, we extend univariate predictive
mean matching to the multivariate case to allow for the joint imputation of
blocks of variables. The general idea is to match the incomplete case to one
of the complete cases by applying canonical regression analysis and imputing
the variables in a block entirely from the matched case [6]. We shall refer to
the multivariate extension of PMM as multivariate predictive mean matching
(MPMM).
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Predictive mean matching (PMM) is a user-friendly and versatile non-
parametric imputation method. Multiple imputation by chained equation
(MICE), which is a popular software package in R for imputing incomplete mul-
tivariate data by Fully Conditional Specification (FCS), sets the PMM as the
default imputation approach [7]. We tailor PMM to the block imputation frame-
work, which will widen its application. More computational details and proper-
ties of PMM would be addressed in Sect. 2.

For a comprehensive overview of missing data analysis, we refer to Little and
Rubin [8] for a comparison of approaches to missing data other than multiple
imputation (e.g., ad-hoc methods, maximum likelihood estimation and weight-
ing methods). Schafer [9], Sinharay et al. [10] and Allison [11] introduced basic
concepts and general methods of MI. Schafer and Graham [12] discussed practi-
cal issues of application of MI. Various sophisticated missing data analysis were
developed on the fields of multilevel model [13], structural equation modeling
[14,15], longitudinal data analysis [16,17] and meta-analysis [18]. Schafer [19]
compared Bayesian MI methods with maximum likelihood estimation. Seaman
and White [20] gave an overview of the use of inverse probability weighting in
missing data problems. Ibrahim et al. [21] provided a review of various advanced
missing data methods. Because an increasing number of missing data methodolo-
gies emerged, MI as well as other approaches were applied in many fields (e.g.,
epidemiology, psychology and sociology) and implemented in many statistical
software packages (e.g., mice and mi in R, IVEWARE in SAS, ice in STATA and
module MVA in SPSS) [7].

The following section will outline canonical regression analysis, introduce
predictive mean matching (PMM), and connect the techniques to propose mul-
tivariate predictive mean matching (MPMM). Section 3 provides a simple com-
parison between PMM and MPMM. Section 4 is a simulation study investigat-
ing whether MPMM yields valid estimates and preserves functional relations
between imputed values. The discussion closes the paper.

2 Multivariate Predictive Mean Matching

2.1 Canonical Regression Analysis (CRA)

Canonical regression analysis is a derivation and an asymmetric version of canon-
ical correlation analysis (CCA). It aims to look for a linear combination of covari-
ates that predicts a linear combination of outcomes optimally in a least-squares
sense [22]. The basic idea of canonical regression analysis is quite old and has
been discussed under different names, such as Rank-reduced regression [23] and
partial least squares [24].

Let us consider the equation

α′Y = βX + ε. (1)

We aim to minimize the variance ε with respect to α and β under some restric-
tions. CRA can be implemented by maximizing the squared multiple correlation
coefficient for the regression of α′Y on X, which can be written as
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R2
α′y.x =

α′ΣyxΣ−1
xx Σxyα

α′Σyyα
, (2)

where R2
α′y.x is the ratio of the amount of variance of α′Y accounted for by the

covariates X to the total variance. According to McDonald [25], maximization
of the above equation leads to eigenvalue decomposition. The solution is that α
is the right-hand eigenvector of Σ−1

yy ΣyxΣ−1
xx Σxy corresponding to its great-

est eigenvalue. After reducing the rank of α′Y to 1, we could estimate β by
multivariate regression analysis.

2.2 Predictive Mean Matching (PMM)

PMM was first proposed by Rubin [26]and formalized by Little [6]. It can be
viewed as an extension of the k nearest neighbor method. PMM calculates the
estimated value of the missing variable through a specified imputation model
(e.g., linear imputation model). The method selects a set of candidate donors
(typically, the number of candidate donors is 5) from all complete cases whose
estimated values are closest to the estimated value of the missing unit. The
unobserved value is imputed by randomly drawing one of the observed values of
the candidate donors [5].

Computational Details. We elaborate the algorithm of predictive mean
matching for the clear illustration of its merger with canonical regression anal-
ysis [27]. Xobs , a Nobs × j matrix, denotes the observed part of predictors and
Xmis , a Nmis × j matrix, denotes the missing part of predictors.

1. Use linear regression of Yobs given Xobs to estimate β̂ and ε̂ through ordinary
least squares

2. Draw σ2∗ = ε̂Tε̂/A, where A is a χ2 variate with Nobs − j degrees of freedom
3. Draw β∗ from a multivariate normal distribution with mean vector β̂ and

covariance matrix σ2∗(XT
obsXobs)−1

4. Calculate V̂obs = Xobsβ̂ and V̂mis = Xmisβ
∗

5. For each missing cell ymis,n, where n = 1, · · · , Nmis

(a) Find Δ = |v̂mis,n − v̂obs,k| for all k = 1, · · · , Nobs

(b) Pick several observed entries yobs, 5 as default in mice.impute.pmm, with
the smallest distance defined in step 5(a)

(c) Randomly draw one of the yobs which are picked in the previous step to
impute ymis,n

6. Repeat steps 1–5 m times and save m completed datasets.

Predictive mean matching has been proven to perform well in a wide range
of simulation studies and is an attractive way to impute missing data [7,27–30].
More precisely, PMM has the appealing features that the imputed values 1) fol-
low the potential distributions of the data and 2) are always within the range of
observed data because imputed values are replaced by real observed values [5].
For the same reason, PMM yields acceptable imputations even when normality
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assumptions are violated [30]. In cases where the observed values follow a skewed
distribution, the imputations will also be skewed. If observations are strictly pos-
itive, so will the imputations from PMM be. Furthermore, since PMM does not
rely on model assumptions, it alleviates the adverse impact when the imputation
model is misspecified [31].

Although PMM was developed for situations with only a single incomplete
variable, it is easy to implement it under a fully conditionally specification frame-
work for imputing multivariate missing data. However, the application of PMM
under FCS framework is only limited to univariate imputation. Therefore, it may
distort the multivariate relations in the imputations and narrow the application
of the method to more complex data structures. For example, Seaman et al.
[32] concluded that a univariate implementation of predictive mean matching
is not advised to produce plausible estimates when the analysis model contains
non-linear terms. As a multivariate extension to PMM, we expect that MPMM
could yield plausible and consistent imputations when missing covariates include
polynomial or interaction terms.

2.3 Multivariate Predictive Mean Matching (MPMM)

For illustration, we present the algorithm with one missing data pattern. The
appendix discusses the extension to cases with multiple missing patterns. Let
Y = (Y1, · · · , YI ) and X = (X1, · · · , XJ ) be two sets of I jointly incom-
plete variables and J complete quantitative variables, respectively. Let V = αY
denotes the linear combination of multiple response variables and X denotes
predictors with j dimensions.

1. Use the observed data to estimate the (I + J) × (I + J) covariance matrix(
Σyo b s yo b s

Σyo b s xo b s

Σxo b s yo b s
Σxo b s xo b s

)

2. Find the largest eigenvalue λ2 of Σ−1
yo b s yo b s

Σyo b s xo b s
Σ−1

xo b s xo b s
Σxo b s yo b s

and
its corresponding right-hand eigenvector α

3. Calculate the linear combination α′Y for all completely observed individuals
in the sample: Vobs = α′Yobs

4. Use linear regression of Vobs given Xobs to estimate β̂ and ε̂ through ordinary
least squares

5. Draw σ2∗ = ε̂Tε̂/A, where A is a χ2 variate with Nobs − j degrees of freedom
6. Draw β∗ from a multivariate normal distribution with mean vector β̂and

covariance matrix σ2∗(XT
obsXobs)−1

7. Calculate V̂obs = Xobsβ̂ and V̂mis = Xmisβ
∗

8. For each missing vector ymis,n , where n = 1, · · · , Nmis

(a) Find Δ = |v̂mis,n − v̂obs,k| for all k = 1, · · · , Nobs

(b) Pick several observed components yobs = {y1,obs, · · · , yI,obs}, 5 as default,
with the smallest distance defined in step 8(a)

(c) Randomly draw one of the yobs which are picked in the previous step to
impute ymis,n

9. Repeat steps 5–8 m times and save m completed datasets.
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We also tried other methods of multivariate analysis, such as multivariate
regression analysis (MRA) [33] and redundancy analysis (RA) [34]. However,
imputation models specified by MRA or RA are not appropriate because of the
assumed independence between missing variables. The violation of this assump-
tion leads to less sensible imputations when there are extra relations among
missing covariates.

3 Comparison Between PMM and MPMM

We shall illustrate that although MPMM is a multivariate imputation method,
where the whole missing component is assigned entirely from the matching donor,
the derived imputed datasets are also plausible at the univariate level.

3.1 Simulation Conditions

The predictors were generated by a multivariate distribution
⎛
⎝X1

X2

X3

⎞
⎠ ∼ N

⎡
⎣

⎛
⎝2

2
2

⎞
⎠ ,

⎛
⎝12 0 0

0 12 0
0 0 12

⎞
⎠

⎤
⎦ .

The responses were generated based on the multivariate linear model
⎛
⎝Y1

Y2

Y3

⎞
⎠ ∼ N

⎡
⎣

⎛
⎝3X1 + X2 + 2X3

X1 + 5X2 + 2X3

5X1 + 3X2 + X3

⎞
⎠ ,

⎛
⎝ 4 4ρ 4ρ

4ρ 4 4ρ
4ρ 4ρ 4

⎞
⎠

⎤
⎦ ,

where ρ denotes the correlation between the predictors X. Let R be the vector
of observation indicators whose values are zero if the corresponding variable is
missing and one if observed. We simulated missingness such that rows in the
set (Y1, Y2, Y3) were always either observed or completely missing. This joint
missingness was either completely at random (MCAR) with P (R = 0|X,Y) =
0.4 or right-tailed missing at random (MARright) with P (R = 0|X,Y) = ea

1+ea ,
where a = α0+X1/SD(X1) and α0 was chosen to make the probability of jointly
missing Y equal to 0.4. Missing values were induced with the ampute function
[35] from the package MICE [7] in R [36]. The correlation ρ was simulated from 0.2,
0.5 or 0.8 corresponding to a weak, moderate and strong dependence between
predictors. The sample size was 2000, and 1000 simulations were repeated for
different setups.

For reasons of brevity, we focused our evaluation on the expectation of Y1

and the correlation between Y1 and Y2. We studied the average bias over 1000
simulations with respect to the designed population value and the coverage rate
of nominal 95% confidence interval. Within each simulation, we generated five
imputed datasets and combined the statistics into a single inference by using
Rubin’s combination rules [1].
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3.2 Results

Table 1. Simulation results for evaluating whether MPMM provide valid imputations
at the univariate level.

ρ scenario E(Y1) ρ(Y1, Y2)

PMM PMM-CRA PMM PMM-CRA

bias cov bias cov bias cov bias cov

0 MCAR 0 0.94 0 0.95 0 0.95 0 0.94

MAR 0 0.93 0 0.94 0 0.96 0 0.94

0.5 MCAR 0 0.95 0 0.93 0 0.95 0 0.95

MAR 0 0.94 0 0.94 0 0.94 0 0.94

0.8 MCAR 0 0.93 0 0.94 0.01 0.91 0 0.95

MAR 0 0.93 0 0.93 0.01 0.93 0 0.94

Table 1 shows the simulation results. In general, MPMM yielded no discernible
difference with PMM when focusing on the correlation coefficient ρ(Y1,Y2).
Under the MCAR missingness mechanism, both methods yielded unbiased esti-
mates and displayed coverage rates close to the nominal 95%, and even there was
40% missingness in the joint set (Y1, Y2, Y3). It is notable to see that with MAR-
right and high correlation between Y1 and Y2, PMM had a somewhat reduced
coverage rate, which suggests that MPMM yielded more robust results against
various correlation coefficients. For estimation of the mean value E(Y1), MPMM
performed similarly to PMM. Both methods yielded plausible imputations with
various missingness scenarios and different pre-assumed correlation coefficients.

These initial results suggested that multivariate predictive mean matching
could be an alternative to predictive mean matching. If PMM yields sensible
imputations, so will PMM-CRA.

4 Evaluation

To investigate the performance of MPMM when there are relations in the incom-
plete data, we performed the following simulation studies carried out in R 4.0.5
[36].

4.1 Linear Regression with Squared Term

We first simulated from a linear regression substantive model with a squared
term.
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Simulation Conditions. The dependent variable Y was generated according
to the analysis model

Y = α + β1X + β2X
2 + ε (3)

where α = 0, β1 = 1, β2 = 1, both predictor X and error term ε were assumed
as standard normal distributions. These coefficients lead to a strong quadratic
association between Y and X. A large sample size (n = 5000) was created.
Simulations were repeated 1000 times so that we could achieve more robust
and stable analyses. Forty percent of X and X2 were designed to be jointly
missing under five various missingness mechanisms: MCAR, MARleft, MARmid,
MARtail, and MARright1, which means no cases with missing values on either
X or X2 for each mechanism. Missing values were again created with the ampute
function from the package MICE in R.

Estimation Methods. We compared the performance of MPMM to four
other approaches: ‘transform, then impute’ (TTI), ‘impute, then transform’
(ITT), polynomial combination method (PC) and substantive model compatible
FCS (SMC-FCS). ‘Impute, then transform’, also named as passive imputation,
excludes X2 during imputation and appends it with the square of X after-
wards. ‘Transform, then impute’, also known as just another variable (JAV),
treats the squared term as another variable to be imputed. Both aforementioned
methods are proposed by von Hippel [37]. We also apply polynomial combina-
tion proposed by Vink and Van Buuren [38]. PC imputes the combination of
X and X2 by predicted mean matching and then decomposes it by solving a
quadratic equation for X. The polynomial combination method is implemented
by mice.impute.quadratic function in the R MICE package. Finally, SMC-FCS
is proposed by Barlett et al. [39]. In general, it imputes the missing variable
based on the formula:

f(Xi |X−i ,Y ) = f(Xi ,X−i ,Y )

f(Y ,X−i )

∝ f(Y |Xi ,X−i)f(Xi |X−i).
(4)

Provided the scientific model is known and the imputation model is specified
precisely (i.e., f(Y |Xi fits the substantive model), SMC-FCS derives imputa-
tions that are compatible with the substantive models. SMC-FCS is implemented
by smcfcs function in the R smcfcs package and a range of common models (e.g.,
linear regression, logistic regression, poisson regression, Weibull regression and
Cox regression) are available.

1 With left-tailed (MARleft), centered (MARmid), both tailed (MARtail) or right-
tailed (MARright) missingness mechanism, a higher probability of X being missing
are assigned to the units with low, centered, extreme and high values of Y respec-
tively.
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Results. Table 2 displays the results of the simulation, including estimates of
α, β1, β2, σε, R2 and the coverage of nominal 95% confidence intervals of β1

and β2. In general, MPMM performed similarly to the polynomial combination
method. There were no discernible biases for both approaches with five types
of missingness mechanisms (MCAR, MARleft, MARmid, MARtail, and MAR-
right). The coverage of the CIs for β1 and β2 from MPMM and PC was close to
95% with MCAR, MARleft, and MARmid. However, MPMM and PC had low
CI coverage with MARtail and MARright. The undercoverage issue is due to the
data-driven nature of predictive mean matching. PMM might result in implau-
sible imputations when sub-regions of the sample space are sparsely observed or
even truncated, possibly because of the extreme missing data mechanism and
the small sample size. In such a case, two possible results may occur. First, the
same donors are repeatedly selected for the missing unit in the sparsely popu-
lated sample space, which may lead to an underestimation of the variance of the
considered statistic [40]. Second, more severely, the selected donors are far away
from the missing unit in the sparsely populated sample space, which may lead
to a biased estimate of the considered statistic.

Although ‘impute, then transform’ method preserved the squared relation-
ship, it resulted in severely biased estimates, even with MCAR. The CI coverage
of β2 was considerably poor, with all cases of missingness mechanisms. With
MCAR, ‘transform, then impute’ method yielded unbiased regression estimates
and correct CI coverage for β1 and β2. However, TTI distorted the quadratic
relation between X and X2. It also gave severely biased results, and the CIs
for β1 and β2 had 0% coverage with MARleft, MARtail, and MARright. Since
we knew the scientific model in the simulation study and specified a correct
imputation model, SMC-FCS provided unbiased estimates and closed to 95% CI
coverage with all five missingness mechanisms. Furthermore, It was noteworthy
that with MARtail and MARright, MPMM and PC yielded relatively accurate
estimations for σε and R2 compared with the model-based imputation method.

Overall, the multivariate predictive mean matching yielded unbiased esti-
mates of regression parameters and preserved the quadratic structure between
X and X2. Figure 1 shows an example of the observed data and imputed data
relationships between X and X2, generated by the multivariate predictive mean
matching method.

4.2 Linear Regression with Interaction Term

This section considers a linear regression substantive model, which includes two
predictors and their interaction effect.
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Table 2. Average parameter estimates for different imputation methods under five
different missingness mechanisms over 1000 imputed datasets (n = 5000) with 40%
missing data. The designed model is Y = α + β1X + β2X

2 + ε, where α = 0, β1 = 1,
β2 = 1 and ε ∼ N(0, 1). The population coefficient of determination R2 = .75.

Missingness mechanism

MCAR MARleft MARmid MARtail MARright

Transform, then impute

Intercept (α) 0 0.15 −0.04 0 −0.11

Slope of X (β1) 1(0.93) 0.93(0.02) 0.97(0.68) 1.13(0) 1.27(0)

Slope of X2 (β2) 1(0.92) 0.93(0) 0.96(0.13) 1.13(0) 1.27(0)

Residual SD (σε) 1 0.96 1 1.06 1.13

R2 0.75 0.77 0.75 0.72 0.68

Impute, then transform

Intercept (α) 0.32 0.22 0.2 0.45 0.49

Slope of X (β1) 0.94(0.62) 0.97(0.91) 0.89(0.08) 1(0.99) 1.04(0.92)

Slope of X2 (β2) 0.68(0) 0.68(0) 0.74(0) 0.62(0) 0.7(0)

Residual SD (σε) 1.41 1.36 1.35 1.52 1.57

R2 0.5 0.54 0.55 0.42 0.38

PC

Intercept (α) 0 0 0 −0.05 −0.06

Slope of X (β1) 1(0.93) 1(0.93) 1(0.93) 1(0.85) 1(0.82)

Slope of X2 (β2) 1.01(0.9) 1(0.94) 1(0.93) 1.07(0.12) 1.09(0.09)

Residual SD (σε) 1 1 1 1.05 1.07

R2 0.75 0.75 0.75 0.72 0.71

PMM-CRA

Intercept (α) 0 0 0 −0.03 −0.03

Slope of X (β1) 1(0.93) 1(0.93) 1(0.91) 1.04(0.47) 1.06(0.4)

Slope of X2 (β2) 1(0.91) 1(0.95) 1(0.93) 1.05(0.25) 1.07(0.23)

Residual SD (σε) 1 1 1 1.05 1.07

R2 0.75 0.75 0.75 0.72 0.71

SMC-FCS

Intercept (α) 0.01 0 0 0.03 0.05

Slope of X (β1) 1(0.96) 1(0.95) 1(0.95) 1(0.97) 1.01(0.97)

Slope of X2 (β2) 1(0.95) 1(0.96) 1(0.94) 1(0.96) 1.01(0.93)

Residual SD (σε) 1.04 1 1 1.11 1.12

R2 0.73 0.75 0.75 0.69 0.68
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Fig. 1. Predictive mean matching based on canonical regression analysis. Observed
(blue) and imputed values (red) for X and X2.

Simulation Conditions. The dependent variable Y was generated according
to the analysis model

Y = α + β1X1 + β2X2 + β3X1X2 + ε (5)

where α = 0, β1 = 1, β2 = 1, β3 = 1, two predictors X1, X2 and error term
ε were assumed as standard normal distributions. Under five types of missing-
ness mechanisms: MCAR, MARleft, MARmid, MARtail, and MARright, the
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probability of jointly missing X1 and X2 was set to 0.4. There were no units
with missing values on either X1 or X2. Missing values were amputed with
the ampute function from the package MICE in R. For each simulation scenario,
n = 5000 units were generated and 1000 simulations were repeated.

Estimation Methods. We evaluated and compared the same methods as under
Sect. 4.1, except the polynomial combination method. The model-based impu-
tation method ensures a compatible imputation model by accommodating the
designed model

Results. Table 3 shows the estimates of α, β1, β2, β3, σε, R2 and the coverage
of the 95% confidence intervals for β1, β2 and β3. With MCAR, MARleft, and
MARmid, MPMM was unbiased, and the CI coverage for regression weights
was at the nominal level. While similar to the linear regression with quadratic
term situation, with MARtail and MARright, MPMM yielded unbiased estimates
but had relatively reduced confidence interval coverage. The reason is explained
in Sect. 4.1.2. ‘Transform, then impute’ method did not preserve the relations
even though it resulted in plausible inferences in cases of MCAR and MARmid.
The imputations were not plausible. Moreover, with MARleft, MARtial, and
MARright, ‘transform, then impute’ method gave severely biased estimates and
extremely poor CI coverage. ‘Impute, then transform’ method generally yielded
biased estimates, and the CI for coefficients β1, β2 and β3 had lower than nominal
coverage with all five types of missingness. SMC-FCS yielded unbiased estimates
of regression weights and had correct CI coverage in all simulation scenarios. The
only potential shortcoming of the model-based imputation method was that the
estimates of σε and R2 showed slight deviations from true values with MARtail
and MARright.

4.3 Incomplete Dataset with Inequality Restriction X 1 + X 2 � C

Multiple predictive mean matching is flexible to model relations among miss-
ing variables other than linear regression with polynomial terms or interaction
terms. Lastly, we would evaluate the inequality restriction X1 +X2 � C, which
is relatively difficult for the model-based imputation approach to specify. One
application of such inequality restriction would be the analysis of the academic
performance of qualified students. For example, the sum score of mid-term and
final exams should exceed a fixed value.

Simulation Conditions. The data was generated from:(
X1

X3

)
∼ N

[(
0
1

)
,

(
4 3.2

3.2 4

)]
,

X2 = 3 − X1 + ε, where ε followed a standard uniform distribution. The
sum of X1 + X2 � 3 was the restriction in the generated data. We simulated
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Table 3. Average parameter estimates for different imputation methods under five
different missingness mechanisms over 1000 imputed datasets (n = 5000) with 40%
missing data. The designed model is Y = α+β1X1 +β2X2 +β3X1X2 + ε, where α = 0,
β1 = 1, β2 = 1, β3 = 1 and ε ∼ N(0, 1). The population coefficient of determination
R2 = .75.

Missingness mechanism

MCAR MARleft MARmid MARtail MARright

Transform, then impute

Intercept (α) 0 0.05 −0.05 0.06 0.05

Slope of X1 (β1) 1(0.93) 0.96(0.4) 1(0.94) 1.05(0.42) 1.08(0.05)

Slope of X2 (β2) 1(0.94) 0.96(0.4) 1(0.96) 1.05(0.38) 1.09(0.02)

Slope of X1X2 (β3) 1(0.94) 0.96(0.53) 0.95(0.25) 1.06(0.31) 1.09(0.02)

Residual SD (σε) 1 0.97 1 1.02 1.04

R2 0.75 0.76 0.75 0.74 0.73

Impute, then transform

Intercept (α) 0 −0.04 −0.01 0.01 0.11

Slope of X1 (β1) 0.98(0.88) 1.05(0.51) 0.96(0.71) 0.98(0.9) 0.95(0.69)

Slope of X2 (β2) 0.98(0.88) 1.05(0.48) 0.96(0.73) 0.98(0.92) 0.95(0.69)

Slope of X1X2 (β3) 0.64(0) 0.64(0) 0.7(0) 0.54(0) 0.61(0)

Residual SD (σε) 1.25 1.18 1.22 1.28 1.37

R2 0.61 0.65 0.63 0.59 0.53

PMM-CRA

Intercept (α) 0 0 0 0.01 0.02

Slope of X1 (β1) 1(0.93) 1(0.86) 1(0.92) 1.02(0.8) 1.02(0.73)

Slope of X2 (β2) 1(0.93) 1(0.84) 1(0.93) 1.02(0.8) 1.02(0.77)

Slope of X1X2 (β3) 1(0.94) 1.01(0.86) 1(0.93) 1.02(0.71) 1.03(0.68)

Residual SD (σε) 1 1.01 1 1.03 1.03

R2 0.75 0.74 0.75 0.74 0.74

SMC-FCS

Intercept (α) 0 −0.01 0 0.01 0.03

Slope of X1 (β1) 1(0.95) 1.01(0.95) 1(0.95) 1(0.96) 0.99(0.95)

Slope of X2 (β2) 0.99(0.94) 0.99(0.93) 1(0.97) 1(0.96) 0.99(0.96)

Slope of X1X2 (β3) 1(0.95) 1(0.96) 1(0.95) 1(0.97) 1.01(0.93)

Residual SD (σε) 1.02 1.02 1 1.07 1.06

R2 0.74 0.74 0.75 0.71 0.72

missingness such that rows in the block (X1, X2,) were always either observed
or completely missing. We considered 30% joint missingness of X1 and X2. 2000
subjects were generated and 1000 simulations were performed for two missingness
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mechanisms : MCAR and MARright. We evaluated the mean of X1 and X2 and
the coverage of nominal 95% CIs.

Estimation Methods. We compared MPMM with PMM to illustrate the lim-
ited performance of univariate imputation approaches when there are relations
connected to multiple missing variables. We did not apply joint modeling and
univariate model-based imputation methods because it is hard to specify the
designed inequality restriction.

Table 4. Average parameter estimates for MPMM and PMM under MCAR and MAR-
right over 1000 imputed datasets (n = 2000) with 30% missing data. The designed
model is introduced in Sect. 4.3.1. The true values of E(X1) and E(X2) are 0 and 3.5.

MPMM PMM

MCAR MARright MCAR MARright

MEAN COVERAGE MEAN COVERAGE MEAN COVERAGE MEAN COVERAGE

E(X1) 0 0.95 0.01 0.94 0 0.92 −0.3 0

E(X2) 3.5 0.95 3.51 0.95 3.5 0.92 3.8 0

Results. Table 4 shows the mean estimates of X1 and X2 and coverage of the
corresponding 95% CIs. The true values for E(X1) and E(X2) are 0 and 3.5.
MPMM yielded unbiased estimates with MCAR and MARright and had the
correct CI coverage. However, PMM was unbiased with close to 95% when the
missingness mechanism is MCAR. It had considerable bias and extremely poor
coverage with MARright. The reason is that the relations between X1 and X2

are not modeled [29].

5 Conclusion

Predictive mean matching is an attractive method for missing data imputa-
tion. However, because of its univariate nature, PMM may not keep relations
between variables with missing units. Our proposed modification of predictive
mean matching, MPMM, is a multivariate extension of PMM that imputes a
block of variables. We combine canonical regression analysis with predictive
mean matching so that the models for donors selection are appropriate when
there are restrictions involving more than one variable. MPMM could be valu-
able because it inherits the advantages of predictive mean matching and pre-
serves relations between partially observed variables. Moreover, since predictive
mean matching performs well in a wide range of simulation studies, so can the
multivariate predictive mean matching.

We assess the performance of the multivariate predictive mean matching
under three different substantive models with restrictions. In the first two sim-
ulation studies, MPMM provides unbiased estimates where the scientific model
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includes square terms and interaction terms under both MCAR and MAR miss-
ingness mechanisms. However, with MARtail and MARright, MPMM suffers the
undercoverage issue because the density of the response indicator is heavy-tailed
with our simulation setup. It makes units with large Y almost unobserved and
more missing than observed data in the tail region. The missingness mechanism
is commonly moderate in practice, unlike MARtial and MARright in simulation
studies. Overall, when no sub-regions of the sample space are sparsely observed,
the multiple predictive mean matching analysis will provide unbiased estimates
and correct CI coverage.

SMC-FCS yields better estimates and CI coverage of regression weights, but
MPMM provides relatively accurate σε and R2. The comparison is not entirely
fair because SMC-FCS, as used here, requires the correct substantive model for
the data. In practice, we often do not know the model, and MPMM becomes
attractive. MPMM is an easy-to-use method when increasing variables in the
datasets or only the estimates are of interest.

The third simulation shows the appealing properties of MPMM. When rela-
tions of missing variables are challenging to model, MPMM becomes the most
effective approach to imputation. We expect that MPMM could be applied to
other relations not yet discussed in Sect. 4.

We limited our calculations and analyses to normal distributed X. However,
since Vink [30] concluded that PMM yields plausible imputations with non-
normal distributed predictors, we argue that distributions of predictors will not
significantly impact the imputations. We focus on the simple case with one miss-
ing data pattern. One possible way to generalize MPMM to more complicated
missing data patterns is proposed in the appendix. The general idea is to parti-
tion the cases into groups of identical missing data patterns in the block imputed
with MPMM. We then perform the imputation in ascending order of the fraction
of missing information, i.e., we first impute cases with relatively small missing
data problems. Considering to impute partially observed covariates for linear
regression with a quadratic term Y = X + X2, we first impute cases with only
missing value in X2 by square the observed X. Then cases with only missing
value in X are imputed with one square root of Y = X + X2. However, the
selection of roots should be modeled with logistic regression. Finally, we impute
cases with jointly missing X and X2 with MPMM. The comprehensive under-
standing of MPMM with multiple missing data patterns is an area for further
research.

Appendix

The MPMM algorithm with multiple missing patterns:

1. Sort the rows of Y into S missing data patterns Y[s], s = 1, · · · , S.
2. Initialize Ymis by a reasonable starting value.
3. Repeat for T = 1, · · · , t.
4. Repeat for S = 1, · · · , s.
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5. Impute missing values by steps 1–8 of PMM-CRA algorithm proposed in
Sect. 2.3.

6. Repeat steps 1–5 m times and save m completed datasets.
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