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1 Introduction 

Phonological processes are typically defined over (natural) classes (Chomsky & Halle 1968). These 

classes are motivated by the desire to write compact grammars (Chomsky & Halle 1968) and generalization 

of processes to novel segments: for instance, generalization to non-native segments (e.g., Halle 1978); and 

generalization to segments not seen in the training phase in artificial language learning experiments (e.g., 

Cristia et al. 2013). 

While many models of phonological representation work from the assumption that the set of (potential) 

natural classes is language-universal (e.g., Chomsky & Halle 1968), there is evidence for some arbitrary 

and language-specific aspects to class behavior (e.g., Mielke 2004). If segment classes that participate in 

phonological processes can be language-specific, then there must be a learning procedure by which 

language-learning infants induce these segment classes using ambient linguistic data. 

One way to model this learning process is through contrast detection (Dresher 2014, Sandstedt 2018), 

whereby an infant detects contrasts in the lexicon, and uses these to find which classes of sounds are in 

contrast in the language. However, the existing approaches that use contrast (Dresher 2014, Sandstedt 

2018, Mayer 2020) are outside of Optimality Theory (OT). In addition, they use at least some domain-

specific methods (i.e., learning methods that only apply to linguistic data, which arguably should be 

specified inside of Universal Grammar (UG)) for detecting contrast rather than domain-general ones (i.e., 

learning methods that could potentially be applied to all kinds of data and need not be specified in UG): 

they use “micro-cues” to contrast (Sandstedt 2018) or phonological contrast detection mechanisms 

(Dresher 2014). 

The question explored in this paper is whether segment class induction can be implemented in standard 

OT using domain-general methods. I will propose (natural) classes can be seen as a consequence of 

resolving inconsistency with locally indexed constraints (Temkin-Martínez 2010, Round 2017), and I will 

test this proposal on a set of natural classes included in transparent, opaque, and exceptionful processes. 

This is done because natural classes do not always present themselves on the surface, but may be obscured 

by other, (morpho)phonological factors: interacting phonological processes and exceptions can make a 

process non surface-true (there are surface forms that should undergo the process but do not) or non 

surface-apparent (there are surface forms that undergo the process but should not; McCarthy 1999), 

meaning that the set of segments in the data that undergo the process not simply defined by phonetics but 

also by interactions with (morpho)phonology. 

Section 2 will present the OT learning implementation (including (locally) indexed constraints) used to 

test whether this can be done, while section 3 will lay out the toy language case studies used here. Section 4 

will show the results of applying the OT learner to the case studies, while section 5 will discuss the 

implications of these. Finally, section 6 will conclude. 

 
* Many thanks to Adam Albright, Ricardo Bermúdez-Otero, Stuart Davis, Elan Dresher, Gaja Jarosz, Peter Jurgec, 

Michael Kenstowicz, Athina Kikiopoulou, John McCarthy, Marc van Oostendorp, Joe Pater, Nathan Sanders, Mirella 

De Sisto, Brian Smith, Nina Topintzi, audiences at the University of Toronto, UMass Amherst, and MIT, and at the 

27th Manchester Phonology Meeting. All errors are my own. 
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2  OT approach(es) to contrast 

In OT, the concept of contrast has been implemented in various ways: as constraints that refer to 

contrast between specific morphemes (e.g., Lubowicz 2003), as anti-faithfulness (Alderete 2001), as 

phonotactic rankings in Stratal OT (Mackenzie 2016), or as mechanisms that divide words into groups that 

contrast in their phonological behavior: cophonologies (Inkelas & Zoll 2007) or indexed constraints 

(Kraska-Szlenk 1995, Pater 2000, 2010). Of these, indexed constraints have been the most explicitly linked 

to contrast induction. Becker (2009), Pater (2010) propose that indexed constraints are induced by the 

language learner whenever there is an inconsistency in ranking requirements between various inputs (see 

Tesar 1995 for inconsistency). This idea of two morphemes’ having inconsistent ranking requirements 

essentially means that there is contrast between these two morphemes: there is no phonological factor that 

can distinguish between the behaviors of these two morphemes, so therefore these morphemes contrast with 

each other. In this sense, inconsistency detection can be seen as a cue to contrast: whenever we see 

inconsistency in Tesar’s (1995) sense (i.e., two morphemes with mutually incompatible ranking 

requirements), we know there must be some contrast between these morphemes that we have not yet 

acknowledged. Crucially, this cue is domain-general, since it is computed based on constraint violations 

only. While OT-constraints are normally used for linguistic applications, it is possible to apply them to 

non-linguistic data, as well (e.g., Parker & Parker 2004), which means that inconsistency detection could 

also be used to find contrast in non-linguistic data.  

In section 2.1, I will explain how various types of contrast can be expressed in indexed constraint 

grammars, and I will introduce segmentally local indexation. Then, in section 2.2, I will explain the 

learning mechanisms that allow to induce segmentally local indexation to encode segment-level contrast. 

Finally, section 2.3 will show the general setup of the learner. 

 
2.1    Global vs. local indexation    Indexed constraints as defined by Pater (2000) – i.e., constraints that 

are violated only for certain lexical items or morphemes – encode contrast at the morpheme level: one 

group of morphemes, indexed i, undergoes a certain process (Ai >> B), while all other morphemes, not 

indexed i, do not undergo it (B >> A), or vice versa if A is a faithfulness constraint. While contrast at the 

morpheme level is a useful and economical concept, encoding classes of segments requires contrast 

between specific segments within morphemes, which standard indexed constraints cannot encode.  

However, the concept of locally indexed constraints (Temkin-Martínez 2010, Round 2017) provides a 

solution. Locally indexed constraints are constraints that are violated only for particular segments in 

particular morphemes: for instance, in the hypothetical morpheme /maknan/, only the first vowel /ak/ might 

be indexed to the markedness constraint *V[-nas]kN, which prohibits oral vowels indexed k before nasal 

consonants given the ranking *V[-nas]kN >> IDENT(nas) >> *V[-nas]N, meaning that only the first vowel 

gets nasalized on the surface: [mãnan]. This constitutes a contrast between two types of vowels: potentially 

nasalizing /ak/ and never nasalizing /a/. In standard (“globally”) indexed constraints, this contrast between 

the first and second vowel cannot be made: if we have the morpheme /manank/, all of its segments are 

equally subject to *V[-nas]Nk, and the ranking *V[-nas]Nk >> IDENT(nas) >> *V[-nas]N leads to 

nasalization of both vowels: [mãnãn].   

In addition to local indexation, I will also treat indexation as being binary (which is inspired by 

Becker’s 2009 constraint cloning approach): all segments that are not k = [+k] are explicitly marked as [-k]. 

This means that the example from the preceding paragraph will be represented /m[-k]a[+k]n[-k]a[-k]n[-k]/ – and 

this makes indexation equivalent to so-called alphabet features (non-phonetic binary features a value for 

which is assigned to every individual segment) from SPE (Chomsky & Halle 1968). Binary local 

indexation thus forms “proto-features” of sorts: indices may be linked to a high-ranked markedness 

constraint, which assigns all segments with that index some phonetic property, which means that this index 

defines a natural class. For instance, if the constraint *V[+m] is undominated, all underlying segments with 

the index [+m] must surface as consonants or be deleted, which means that, on the surface, [+m] stands for 

the class of consonants and is a “proto-feature” that can form the basis of a [syllabic] distinction. Once such 

“proto-features” that define natural classes are learned, these may be the basis for constructing a language-

specific phonological feature system (see Mayer & Daland 2020 for an algorithm to construct a feature 

system from natural classes). 

At the same time, the set of segments that carries a particular index may also be indexed to a lower-
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ranked markedness constraint or to a faithfulness constraint, in which case a different type of segment class 

may be found: a class of random segments, or a class that is only “phonologically natural” (see section 4), 

or perhaps even a class of unnatural segments. This means that discussion of learning is important: how 

plausible is it that learners will learn representations of natural classes given data that support these classes? 

  

2.2    Learning mechanisms    Binary local indices, as described above, lead to a significant increase in 

the number of grammar hypotheses compatible with any given dataset: instead of just multiple rankings of 

a fixed set of constraints’ being compatible with the same data, we now have multiple rankings of multiple 

constraint sets (various combinations of indexed constraints + a fixed set of universal constraints) along 

with multiple assignments of indices to specific morphemes. Given this explosion of the learning space, can 

an appropriate grammar still reasonably be found given a plausible dataset? Can a grammar that encodes 

appropriate “proto-features” be found given data that contain various types of segment classes? 

To explore these questions, we need an explicit learner with plausible assumptions that would induce 

indexed constraints and sets of segments associated with them as well as give these constraints an 

appropriate ranking. Such learners exist in the form of existing indexed constraint learners (Becker 2009, 

Pater 2010, Round 2017), in particular, Round’s (2017) segmentally local indexed constraint learner. 

This latter learner is an extension of a pre-existing categorical (=non-probabilistic) OT learner: Biased 

Constraint Demotion (BCD; Prince & Tesar 2004). This learner takes pre-defined OT tableaux with 

underlying representations (URs), winning (observed) and losing (non-observed) candidates, and constraint 

violations as input, and it gradually builds a ranking of the pre-defined constraints from high to low based 

on ranking requirements derived from the constraint violations of winning and losing candidates. The 

procedure ends once the ranking correctly eliminates all losing candidates and all constraints are 

incorporated into the ranking.  

However, there is a possibility that the pre-defined tableaux will contain contradictory ranking 

requirements. For instance, if there is a word where a prenasal vowels undergoes nasalization (/pan/ → 

[pãn]) and another word where the same prenasal vowel remains oral in the same phonological context 

(/apan/ → [apan]), this leads to contradictory ranking requirements *V[-nas]N >> IDENT(nas) and 

IDENT(nas) >> *V[-nas]N, respectively. Whenever the learner encounters this situation, this is called 

inconsistency (Tesar 1995). Becker (2009), Pater (2010) propose to use inconsistency in constraint 

demotion as a diagnostic that an indexed constraint is necessary. An indexed constraint that applies only to 

inputs that require one of the rankings is inserted, which resolves the inconsistency. For instance, if all 

words that require *V[-nas]N >> IDENT(nas) are indexed to the constraint *V[-nas]Nk, the ranking *V[-

nas]Nk >> IDENT(nas) >> *V[-nas]N leads to nasalization in nasalizing words and non-nasalization in other 

words. 

Round (2017) extends their proposals to apply to specific loci (specific underlying segments in the 

lexicon). Whenever inconsistency is detected, all underlying segments that require one of the contradictory 

rankings involved are indexed to a relevant constraint (see Round 2017 for the selection mechanism), 

which leads to constraints that are violated only for specific segments in the lexicon. For instance, in the 

word /manan/ → [mãnan], the first vowel requires the ranking *V[-nas]N >> IDENT(nas) while the second 

vowel requires IDENT(nas) >> *V[-nas]N. This is solved by giving the first vowel the index [+k]: /ma[+k]na[-

k]n/, adding the locally indexed constraint *V[-nas][+k]N, and building the ranking *V[-nas][+k]N >> 

IDENT(nas) >> *V[-nas][-k]N. Thus, Round’s learner, an implementation of which will be used in my 

learning setup (see section 2.3), starts out with pre-defined universal constraints and a pre-defined set of 

URs and winning and losing candidates, and ends up with a ranking of universal constraints and locally 

indexed versions of these universal constraints (i.e., version of these constraints that are violated only by 

certain underlying segments in the lexicon). 

 

2.3    Learning setup    The goal of the current learning setup are to account for the (transparent, opaque, 

exceptionful) patterns in the data and to simulate the induction of language-specific (natural) classes in 

these data using constraint indexation. To allow natural classes to be induced, this learning setup assumes 

that no phonological features as such as available: these features, as suggested in section 2.1, are taken to 

be induced at the next step. 

Since no features are assumed during the simulations, I assume that there are no faithfulness 

constraints, since these, for segmental phenomena, refer to phonological features. Rather, the tableaux 
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given to the learner are purely phonotactic, i.e., feature only markedness constraints; URs only consist of 

unspecified segment slots that have identifiers on them that are unique to that morpheme (similar to the 

idea of “colors” in Colored Containment, Van Oostendorp 2008): /X1X2X3X4X5/ → [mãnan]. Since, again, 

no features are assumed, the markedness constraints in the simulations (defined in section 3.2) are based on 

articulatory and perceptual factors, conceptually similar to Boersma’s (2007) cue, sensorimotor and 

articulatory constraints.  

The goal of this stage is to rank (indexed versions of) these articulatory and perceptual constraints such 

that this will account for the pattern in the data. The formation of features, plausible URs, and faithfulness 

is seen as a next step that would build on the output of the step modeled here. Thus, only “proto-features” 

are induced in the current simulations rather than true phonological features, and the reason why the 

simulations do not start with universal features in the first place is to make room for language-specific 

(natural) classes. The schema in (1) summarizes the learning setup used in this paper: 

 

(1) Learning setup summary 

 

START   

Data:    /X1X2-X3/→[efe]   

    /X4X5-X6/→[ifi]   etc. 

Natural classes:   none             

Universal constraints: *f, *{sʃ}, *{iu}…{eo} etc. (see section 3.2) 

Indexed constraints: none 

Ranking: none               

 

PROCEDURE     

 

Rank constraints high to low (BCD, Prince & Tesar 2004);    

     If inconsistency detected: add locally indexed constraint (Round 2017) 

 

RESULT   

Data:    /X1
[-i,-j]X2

[-i,+j]-X3
[-i,-j]/→[efe]1   

    /X4
[-i,-j]X5

[-i,+j]-X6
[+i,-j]/→[ifi] etc. 

Natural classes:   {i}=[+i] vs.{u}=[-i] 

    {f}=[+j] vs.{sʃ}=[-j]   etc.      

Universal constraints: *f, *{sʃ}, *{iu}…{eo}  etc. (as above) 

Indexed constraints: *f[-j], *{sʃ}[+j],*{iu}[+i]…{eo}[-i],  

Ranking: *{iu}[+i]…{eo}[-i], … >> *{sʃ}[+j] >> …   

           >> *{iu}…{eo}, *{sʃ }     

 

     

3  Data used for simulations 

3.1    Toy languages    The learner described in sections 2.2-3 is applied to three different toy data case 

studies based on similar toy data case studies from Prickett & Jarosz (2021). These case studies illustrate 

transparent, opaque, and exceptionful application of a process, which illustrate the potential of the current 

natural class induction procedure to analyze cases where natural classes are obscured by other 

(morpho)phonological processes. 

Each case study is based on two potentially interacting processes: 

 

  

 
1 For the sake of legibility, segment identifiers are shown as superscripts rather than subscripts here. 
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(2) Processes involved in case studies 

a. Vowel Harmony (VH; dominant/recessive):  

 raise mid vowels (e) to high vowels (i) in the presence of a high vowel  

  

 Rule        Examples 

 e → i / {_ C0 i/u, i/u C0 _}    ef- + -i → [ifi]  ef- +-e → [efe] 

           uf- + -i → [ufi]   uf- + -e → [ufi] 

b. Palatalization (Pal) 

 palatalize s to ʃ before the high vowel i  

   

 Rule        Examples        

 s → ʃ / _ i       is- + -i → [iʃi] 

                 

c. Interaction 

 VH potentially feeds Pal    is- + -e → isi → [iʃi] (feeding) OR  

          is- + -e → [isi] (counterfeeding) 

 

Three toy languages are constructed based on different interactions between these two processes: 

transparent palatalization (feeding interaction, 2c), opaque palatalization (counterfeeding interaction, 2c), 

and exceptionful palatalization (transparent palatalization in some stems, no palatalization in others). These 

interactions are shown over a small set of stems and suffixes listed in (3a). The interactions are illustrated 

in (3b) (stems ending in /f/ are not shown, since these have no palatalization). In all three languages, the 

data points /es-e/ (does not trigger either process), /es-i/ (harmony and palatalization target different 

vowels), and /us-i/ (only triggers palatalization) show up the same. However, the outcomes for /is-e/, /is-i/, 

and /us-e/ differ. In the transparent language, /is-e/ and /us-e/ undergo palatalization, because the raising of 

/-e/ feeds palatalization, and /is-i/, like all /si/ sequences, also undergoes palatalization. In the opaque 

language, these forms do not undergo palatalization, because raised /-e/ does not feed palatalization, while 

/is-i/, like all /si/ sequences, does undergo palatalization. Finally, in the lexically specific language, the /is-/ 

forms do not undergo palatalization because /is-/ is marked as not undergoing this process, while /us-e/ 

does undergo palatalization through feeding because /us-/ is marked as undergoing palatalization. 

 

(3) Processes involved in case studies 

a. Stems: es-, ef-, is-, if-, us-, uf-        Suffixes:  -e, -i, -u 

b.  Transparent palatalization  Opaque palatalization           Lexically specific palatalization 

  es- + -e → [ese]   es- + -e → [ese]      es- + -e → [ese] 

  es- + -i →  [iʃi]    es- + -i → [iʃi]    es- + -i → [iʃi] 

  is- + -e →  [iʃi] (feeding) is- + -e → [isi] (counterf.) is- + -e → [isi] (/is-/: no Pal)  

 is- + -i →  [iʃi]    is- + -i → [iʃi]          is- + -i → [isi] (/is-/: no Pal) 

 us- + -e → [uʃi] (feeding) us- + -e → [usi] (counterf.) us- + -e → [uʃi] (feeding) 

  us- + -i → [uʃi]    us- + -i → [uʃi]            us- + -i → [uʃi] 

 

These data contain various natural classes that a class/index induction algorithm would be expected to 

internalize. The most obvious classes, shared by all three datasets, are a class of high vowels {i,u} as 

opposed to the mid vowel {e}, a class of front vowels {e,i} as opposed to the back vowel {u}, and a class 

of coronal consonants {s,ʃ} as opposed to the labial consonant {f}. For the opaque dataset, there is an 

additional class of palatalizing vowels ([i] deriving from -i: is-i [iʃi]) as opposed to non-palatalizing vowels 

([i] deriving from -e: is-e [isi]); see also Dresher (2009) for another case of a contrast between palatalizing 

versus non-palatalizing [i]. For the lexically specific dataset, there is an additional class of palatalizing [s] 

(the s in es- and us-: es-i [iʃi], us-i [uʃi]) as opposed to non-palatalizing [s] (the s in is-: is-i [isi]). These 

additional classes of segments are defined by a combination of a phonetic description and participation in a 

process; in this paper, I call these “phonologically natural classes” (see section 4.2 for more detail). 

 

3.2    URs, candidates, and constraints    For each of the languages described in section 3.1, a training 

dataset is made by setting up URs, winning and losing candidates, and constraint violations, as required by 
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the learner (section 2.2). As mentioned in section 2.3, the URs for this approach do not have any feature 

content, but do contain segment locus identifiers, so that the learner can distinguish between segments 

within a single morpheme (e.g. e vs. s in es-) and between the segments in different morphemes (e.g. s in 

es- vs. s in is-). 

Each input is mapped to the same set of 48 different candidates, which consist of all possible 

combinations of {e, i, o, u} × {f, s, ʃ} × {e, i, o, u}. Most of these candidates do not occur as surface forms 

in the three languages, which means that these can be excluded by universal constraints. However, 

whenever there are differences between morphemes (e.g., us- is always realized with [u] while is- is always 

realized with [i]), these differences must be accounted for by indexed constraints. 

At the outset, each of the 48 candidates receives violations of the 11 universal constraints shown in (4). 

During learning, indexed versions of these constraints are made according to the procedure sketched in 2.2. 

As required by this procedure, the violations defined for the 48 candidates and 11 constraints are also 

linked to specific segment locus identifiers. For example, candidate /X1X2-X3/ [isi] violates the constraint 

*si, which is notated as “X2” in the violation column (for constraints that cover multiple segments, a 

violation is assessed for the leftmost segment); it also violates the constraint *{iu} twice, which is notated 

as “X1,X3”. The full list of universal constraints used in the simulation is as follows: 

 

(4) Universal constraints used in the simulations 

a. Context-free:    *{iu}  (no low F1)    *{eo}  (no mid-range F1) 

       *f   *s   *ʃ  *{sʃ}  (no coronal fricatives) 

b.  Harmony-triggering:  *{iu}...{eo}  *{eo}...{iu}   

       *{ie}...{uo}  *{uo}...{ie}  (no F1 differences if low F1 is present) 

c. Palatalization-triggering: *si  (no narrow constriction at alveolar ridge followed by  

         palatal vocalic gesture) 

 

Though these constraints are notated as applying to segments and classes of segments, their definition is 

actually given in terms of acoustics or articulation. The context-free constraints on vowels in (4a) may be 

defined in terms of acoustics (ranges of F1, as indicated in (4a)); the context-free constraints on consonants 

in (4a) may also receive an acoustic definition (ranges of Center of Gravity), or, alternatively, an 

articulatory definition (no labiodental fricatives, no alveolar fricatives, etc.). The harmony-triggering 

constraints in (4b) may be defined acoustically (in terms of F1 differences, as indicated in (4b)). Finally, 

the palatalization constraint in (4c) may be defined in terms of articulation, as indicated in (4c). 

4 Simulations and results 

4.1    Simulation setup    The three languages described in section 3.1 are learned using Nazarov’s (2021) 

implementation of Round’s (2017) local indexation induction procedure (section 2.2), written in R (R core 

team 2021). 10 runs were performed for each language. This is because Nazarov’s (2021) implementation 

contains some elements of random choice, so that it is important that the learner explore all options. 

 For this paper, the interest is whether and how the learner picks up the classes described in section 3.1. 

Therefore, the evaluation of the simulation focuses on which segments in the lexicon are connected to 

which indices. The algorithm described in Nazarov (2021) induces a separate index for every new indexed 

constraint. To make the resulting data better interpretable, indices are consolidated as follows. 

 For each induced indexed constraint, the set of loci in the dataset may be divided into three categories: 

the crucially [+i] segments, which must be indexed to the current constraint for the training data to be 

learned correctly, the crucially [-i] segments, which may not be indexed to the current constraint, and the 

neutral segments, which might be indexed either [+i] or [-i] based on the constraint definition. Two 

constraints are seen as referring to the same index if they share the same + or – value for at least one locus, 

and there are no mismatches between their + and – values: all the loci for the + value of constraint A have a 

+ or neutral value for constraint B and vice versa, and all the loci for the – value of constraint A have a – or 

neutral value for constraint B and vice versa.2  

 
2 If the + value of constraint A consistently corresponds to the – or “unknown” value of constraint B and vice versa, 

this is also accepted as evidence that A and B refer to the same index, since these +/– values have no intrinsic meaning. 
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4.2    Phonetic vs. phonological natural classes    The index consolidation procedure described above 

yields a number of segment classes for each run of the algorithm. These classes will be classified as 

phonetically natural or phonologically natural, terms which I use as follows. A phonetically natural class is 

a natural class according to the classic definition (e.g., Chomsky & Halle 1968): a class of segments that is 

at the intersection of a set of phonetic properties (reified as classificatory phonological features, Chomsky 

& Halle 1968). Examples of relevant phonetically natural classes in the current datasets include: all high 

vowels {i,u}, all high back vowels {u}, and all coronal consonants {s,ʃ}. What is meant by a 

“phonologically natural” class is a class defined by a mix of phonetic properties (as in phonetically natural 

classes) and phonological properties: undergoing particular phonological processes. Examples of such 

classes in the current data are palatalizing [i] (all instances of [i] that trigger palatalization of a preceding 

/s/), palatalizing [s] (all instances of /s/ that undergo palatalization).  

Traditionally, such “phonologically natural” classes are not seen as natural classes at all, but rather as 

an epiphenomenon of natural classes and opaquely or exceptionally applying rules: if [i] fails to palatalize a 

preceding /s/ in the current opaque dataset (second column in (3b)), this is because palatalization applied 

before the rule that created the [i]; if [s] fails to palatalize before [i] in the current lexically specific dataset 

(third column in (3b)), this is because the   However, works such as Mielke (2004) and Dresher (2009) do 

conceptualize sets of segments that are “active” in phonological processes as being relevant to the 

grammar. Furthermore, representational approaches to opacity like Van Oostendorp (2008) and Nazarov 

(2021), do conceptualize the set of segments that does or does not undergo a particular segment as a natural 

class: in Van Oostendorp (2004), undergoers of an opaque or exceptionally applying process can be defined 

as a combination of a set of features and a set of morphological colors; in Nazarov (2021), indexed 

constraints are used, where indices correspond to the set of undergoers of an opaque or exceptionally 

applying process. 

 

4.3    Summary of results    Table (5) shows the results of the procedure in section 3, implemented as in 

section 4.1, applied to the data in section 3.1, and interpreted as in section 4.2. The columns of the table 

shows the expected natural class oppositions that might be found from the data in section 3.1. In terms of 

phonetic natural classes, we may expect a mid-versus-high opposition, a back-versus-low opposition 

among the high vowels, and a labial-versus-coronal opposition in the consonants. In terms of phonological 

natural classes, we may expect a palatalizing versus non-palatalizing [i] opposition for the opaque case, and 

a palatalizing versus non-palatalizing [s] opposition for the lexically specific case. The rows of the table 

stand for each of the three toy languages, and the cells of the table indicate how many of the 10 runs for a 

particular language yield a particular (type of) class. 

 

(5)  Table of results: types of natural classes found for each language. Cells indicate numbers of runs. 

 Language i,u vs. e u vs. e,i s/ʃ vs. f -Vpal vs. -Vnonpal /es-,us-/ vs. /is-/ Other phonological 

Transparent 10 10 10 0 0 0 

Opaque 10 10 10 10 0 10 

Lexical 10 10 10 0 10 10 

 

As can be seen in (5), all 10 runs for each language behave entirely consistently. There is some variation 

between the actual grammars learned for each language, but these grammars yield largely equivalent sets of 

classes. As is guaranteed by Constraint Demotion-based approaches (Tesar 1995), all grammars are 100% 

successful in accounting for the training data. 

 As may be expected (see section 4)., the transparent language only yields phonetic natural classes. The 

algorithm finds exactly those classes that are expected: high versus mid vowels: {i,u} vs. {e}, back versus 

front vowels: {u} vs. {e,i}, and coronal versus labial consonants: {s,ʃ} vs. {f}. 

 For the opaque and lexically specific languages, the same phonetic natural classes are found, but in 

addition, appropriate phonological natural classes are also found. For the opaque language, as predicted, 

palatalizing and non-palatalizing (suffix) vowels are distinguished (-Vpal vs. -Vnonpal), where -i (and 

sometimes -u) is/are contrasted to -e. Strictly speaking, this can be unified with the high vs. mid distinction, 

a phonetically natural class, since the class of palatalizing suffixes does not conflict with the class of high 
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vowels (there are no vowels among the high vowels in the data that must be excluded from the class of 

palatalizing vowels). For the lexically specific case, as predicted, palatalizing and non-palatalizing 

consonants are distinguished (palatalizing: es-, us-; non-palatalizing: is-; the stems ef-, if-, uf- are classed 

with the palatalizing consonants since they never surface with [s] before [i]). The exact same phonetic 

natural classes are found as for the transparent language: high versus mid vowels, back versus front vowels, 

and coronal versus labial consonants.  

As indicated in the last column of the table, additional phonological natural classes are found. For the 

opaque language, the other phonological natural class is that of the consonants in the stems ef-, if-, uf-, es- 

to the exclusion of is-, us-, indexed to the first position in the constraint *si, to whose second the suffixes -i 

(and for some runs, -u) is/are indexed (which form the set of high/potentially palatalizing suffix vowels, see 

above). This is because the algorithm always finds two indices for constraints that encompass two 

positions, like *si: one set of for the first position, and another set for the second position (see also Nazarov 

2021). The set of stems ef-, if-, uf-, es- as followed by -i is chosen for a highly ranked indexed *s[+i]i[+j] 

because these stems never surface with the configuration [si] (cf. is-e [isi], us-e [usi]). 

For the lexically specific language, the other phonological natural class is the class of consonants that 

never surface as [ʃ] – thus, those consonants in which we do not see the effects of palatalization. This 

encompasses the consonants in ef-, if-, uf-, is- to the exclusion of those in es-, us-; these former consonants 

are indexed to the constraint *ʃ. This phonologically natural class is a pseudo-complement of the natural 

class of palatalizing consonants; only es-, us- undergo palatalization, so ef-, if-, uf-, is- is the complement 

of this, but, as indicated above, the algorithm actually classes all instances of f with the palatalizing 

consonants, since these have in common with es-, us- that they conform to the constraint *si (i.e., never 

show up as [s] before [i]). 

5 Discussion/conclusion 

The question asked in the introduction is whether natural class induction through contrast detection is 

possible in standard OT As can be gleaned from the results in section 4.3, natural classes can indeed be 

accurately diagnosed using inconsistency resolution (see section 2.2), which is a domain-general technique 

used in the learning of standard OT grammars. These natural classes can be found even when the contrasts 

are tied up with processes that are opaque or exceptionful. The phonetically natural classes in the data (high 

vs. mid, front vs. back, coronal vs. labial) are found, and both phonologically natural classes that are 

expected (palatalizing/non-palatalizing vowels for the opaque dataset, palatalizing/non-palatalizing 

consonants for the lexically specific dataset) are also found by the algorithm. The algorithm does find a one 

additional phonologically natural class each for the opaque and the lexically specific dataset, respectively. 

For the opaque case, this is a set of consonants created sympathetically during the creation of the 

palatalizing vowels class (see section 4.3), while for the lexically specific case, this is a pseudo-

complement of the set of consonants necessary to account for the lexically specific pattern (see section 4.3). 

As indicated in section 2.3, the sets of segments thus found can be used as the basis for building a set 

of formal features (Mayer & Daland 2020), on the basis of which a more traditional OT grammar can be 

build. Alternatively, a model such as this, in which all contrasts are explicitly expressed through indexed 

constraints, could also be taken as an inspiration for a different, more parallel and multilevel account of 

phonology (cf., e.g., Boersma 2007, Boersma & Van Leussen 2017). Either direction would need further 

working out and testing. 

The current results, while not yet a full-scale case study on real language data, do have interesting 

implications for the role of contrast in phonological systems. While contrast has previously been 

conceptualized as a something external to the grammar (e.g., Dresher 2009), something defined over 

specific words in the lexicon (e.g., Lubowicz 2003, Flemming 2017), or something defined over existing 

features (e.g., Mackenzie 2016), this paper shows the feasibility of seeing contrast as an emergent property, 

which comes about as a side effect of learning constraint-based grammars. The added benefit of such an 

approach is that contrasts are not merely stated, but also automatically incorporated into a grammatical 

analysis. 

Two important directions for future work are working this methodology out to a real language data 

case study and incorporating statistics into the learner, which will give the learner more flexibility in 

extracting trends from the lexicon. Statistical models for indexed constraint induction do exist (e.g., 



 Learning phonetically and phonologically natural classes through constraint induction 

 9 

Nazarov 

Nazarov 2018), and further developing these and adapting them to the local contrast detection/natural class 

learning task would be a natural direction to pursue. However, apart from these immediate direction for 

development, a step beyond the narrow confines of indexed constraint theory could be a productive 

direction, as well. For instance, working out similar contrast detection models in the context of 

Cophonology Theory (Inkelas and Zoll 2007), Harmonic Grammar with Scaling Factors (Hsu & Jesney 

2016) and/or mixed effect models (Zymet 2018) would be a very important and worthwhile effort, the 

results of which would shine more light on the nature of contrast detection and natural classes as arising 

from general-purpose learning strategies and concurrent learning of representations and grammars. Finally, 

working out the steps leading from initial phonotactic grammars as learned within the current simulations 

to a fully fledged OT grammar (as alluded to above) would be a very important step to further contextualize 

the current work and connect it to other approaches. 
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