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The noise of gravitational-wave (GW) interferometers limits their sensitivity and impacts the data
quality, hindering the detection of GW signals from astrophysical sources. For transient searches, the most
problematic are transient noise artifacts, known as glitches, that happen at a rate around 1 min−1, and can
mimic GW signals. Because of this, there is a need for better modeling and inclusion of glitches in large-
scale studies, such as stress testing the pipelines. In this proof-of concept work we employ generative
adversarial networks (GAN), a state-of-the-art deep learning algorithm inspired by game theory, to learn the
underlying distribution of blip glitches and to generate artificial populations. We reconstruct the glitch in
the time domain, providing a smooth input that the GAN can learn. With this methodology, we can create
distributions of ∼103 glitches from Hanford and Livingston detectors in less than 1 sec. Furthermore, we
employ several metrics to measure the performance of our methodology and the quality of its generations.
This investigation will be extended in the future to different glitch classes with the final goal of creating an
open-source interface for mock data generation.
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I. INTRODUCTION

During the first observing run (O1), the existence of
gravitational-wave (GW) signals from binary black hole
(BBH) coalescence was successfully proven by the
advanced laser interferometer gravitational-wave observa-
tory (LIGO) [1]. After an upgrade of the detectors to
increase their sensitivity, advanced LIGO [2] started in
November 2016 the second observing run (O2), which
advanced Virgo [3] joined in August 2017 [4]. Following
significant upgrades, in April 2019, the third observing run
(O3) was initiated by advanced LIGO, and advanced Virgo
[5]. During O1 and O2, 11 candidates were detected and 74
were detected during O3 [6–8]. In the coming years, the
improvement of the second generation of interferometers
and the construction of the third generation of detectors,
such as cosmic explorer, LISA, and Einstein telescope, will
increase significantly the detection sensitivity [9–11].
While current GW search techniques for transient signals

(≲1 min) have been extremely successful, their sensitivity
continues to be hindered by the presence of transient bursts

of non-Gaussian noise in the detectors, known as glitches.
Glitches have durations typically on the order of sub-
seconds, and their causes can be environmental (e.g.,
earthquakes, wind, anthropogenic noise) or instrumental
(e.g., overflows, scattered light [12]), although in many
cases the cause remains unknown [13]. While much work
has been done to mitigate the effect of glitches on GW
searches [14,15], they remain one of the major limiting
factors in the detection and parameter estimation of
transient GW signals.
In this paper, we learn the underlying distribution of

glitches with machine learning (ML) methods for better
modeling an inclusion for large scales. For this aim, we
employ generative adversarial networks (GAN) [16] to
build an artificial population of glitches and we use several
metrics to test their similarity to the real input. This paper is
structured as follows. In Sec. II we introduce the current
state-of-the-art of glitch identification, as well as blip
glitches, which is the focus of this work. In Sec. III we
describe in detail the ML method employed and we give
details about the data acquisition. In Sec. IV we present
some examples of the generated data, we propose several
statistical tests to measure the performance of our meth-
odology and we comment on its limitations. In Sec. V we
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provide a description of several possible applications of the
generated data for future investigations and in Sec. VI we
conclude.

II. GRAVITATIONAL-WAVE
DETECTOR GLITCHES

A. Identification and classification

Because glitches can reduce the amount of analyzable
data, bias astrophysical detection, parameter estimation,
and even mimic GW signals, it is fundamental to develop
robust techniques to identify and characterize these sources
of noise for their possible elimination. In previous LIGO
and Virgo science runs, this classification was performed
by visual inspection, which soon proved to be slow and
inefficient [17].
During the O2 run, the detection rate of glitches was

≈1 min−1, due to the overwhelming amount of glitches
present in data. A promising option is to construct ML
algorithms to identify and classify glitches [17–19].
However, another challenge arises since a prelabeled
dataset is necessary to train such algorithms. With this
goal in mind, Zevin et al. [20] developed pioneering
work to classify transient noise, called Gravity Spy. In this
work, both problems are addressed: volunteers provide
large labeled datasets to train the ML algorithms through
Zooniverse infrastructure, while ML algorithms learn to
classify the rest of the glitches correctly, providing feed-
back to participants. In practice, a glitch time series that we
wish to classify is fed to the algorithm that generates the Q
transform of its input (see Ref. [20] for details). Then, the
Gravity Spy classifier assigns a class and a confidence value
cGS to the Q transform of the glitch, where cGS represents
the confidence of the label assigned. Gravity Spy uses a
multiclass classification, and it differentiates between 23
glitch classes and the absence of glitch inside the Q scan
in O2 [20].

B. Blip glitches

This work focuses on blip glitches due to their abun-
dance during O2 run and their simple morphology. Blip
glitches are short glitches (≲0.2 s) that have a characteristic
morphology of a symmetric “teardrop” shape in time
frequency in the range [30, 250] Hz, as we show in
Fig. 1 (left). They appear in both Livingston (L1) and
Hanford (H1) detectors, which is the focus of our work, but
there is also evidence of their presence in Virgo and GEO
600 [13]. Due to their abundance and form, blip glitches
hinder both the unmodeled burst and modeled CBC
searches [21,22], with particular emphasis in compact
binaries with large total mass, highly asymmetric compo-
nent masses, and spins anti-aligned with the orbital angular
momentum. For illustration, in Fig. 1, we can observe the
similarities between a blip of an intermediate binary black-
hole chirp surrounded by O2 noise. Moreover, since there is

no clear correlation to the auxiliary channels, they cannot
be removed from astrophysical searches yet.

III. METHODOLOGY

ML techniques have been very successfully applied for
solving a variety of tasks across different domains, and in
recent times they have sparked the interest of scientists in
the field of GW data analysis. A widely used ML method
for pattern recognition is convolutional neural networks
(CNNs), which present a gridlike topology, able to exhibit
strong local spatial dependencies, allowing faster evalu-
ation speeds [23]. CNNs have been successfully employed
in different tasks such as identification of BBH [24,25] and
binary neutron stars (BNS) [26,27], detection of the early
inspiral of BNS mergers [28,29], supernovae identification
[30–32] and glitch classification [20,33], among others. See
also [34] for an interesting review. CNNs can also be used
to achieve pixelwise identification of long-duration bursts
in the time-frequency plane. Indeed, authors in [35] built a
network that learns to identify the relevant pixels in the
image to later use this information to up sample [36] it into
the original size.
ML methods are not only limited to pattern recognition

tasks. GAN can learn the underlying distribution of a
population to produce artificial examples from Gaussian
noise. With this idea in mind, the authors in [37] employed
a conditional GAN to burst signals, allowing them to
generate multiple classes of signals with the same algo-
rithm and to interpolate through different classes, creating
mixed signals. The powerful generation capability of GAN
leads the authors to foresee that it could be applied to
generate artificial glitches. In the following subsection, we
provide more details about GAN methodology and the
architecture of our network.

A. Generative adversarial networks

GAN [16] are a class of generative algorithms in which
two neural networks compete with each other to achieve
realistic image generation. One network, known as the
generator, is responsible for generating new images from

FIG. 1. (Left) Q transform of a blip glitch retrieved from
Gravity Spy [20]. (Right) Q transform of an event with total mass
106.6þ13.5

−14.8M⊙.
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random noise, while the other, known as the discriminator,
tries to discriminate the generated images from the real
training data. The generator progressively learns which
features of the real images should be mimicked to fool the
discriminator and save them into the latent space, which
can be understood as a compressed representation of the
input data learned by the generator. At the end of the
training, new images are drawn by randomly taking a latent
space vector and passing it to the generator, which has
learned to translate it into a realistic image. Figure 2 shows
an overview of the original architecture of GAN for
generating 2D data, but all the forthcoming developments
still hold for 1D data. This early approach has been shown
to work well under some hyperparameter configura-
tions [38]. However, early GAN architecture [16] suffers
from the significant problems of vanishing gradients and
meaningless loss function [39]. Wasserstein GANs [40]
(WGAN) were developed to address these issues by
making use of the Earth’s mover distance estimator, or
Wasserstein-1 distance (W1) [41], which computes the
similarities between two distributions. W1 is evaluated
through the discriminator as the training progresses and
increases monotonically while never saturating, providing a
meaningful loss metric even for two disjoint distributions.
SinceW1 is continuous and differentiable, it yields reliable
gradients, allowing us to train the discriminator until
optimality to obtain high-quality generations. This change
of paradigm led Arjovsky et al. [40] to reformulate the
optimization problem as

θopt ¼ argmin
θ
W1ðPxkPx̃Þ; ð1Þ

whereW1 is evaluated between the real distribution Px and
generated distribution Px̃. Equation (1) can be written as

θopt ¼ argmin
θ

max
ϕ∶kDðx;ϕÞkL≤1

Lðϕ; θÞ; ð2Þ

with the discriminator loss

Lðϕ; θÞ ¼ −Ex∼Px
½Dðx;ϕÞ� þ Ex̃∼Px̃

½Dðx̃;ϕÞ�; ð3Þ

where D and G refer to the discriminator and the generator
with parameters ϕ and θ, respectively. Ex∼Px

indicates that
the expression has been averaged over a batch of real
samples x, while Ex̃∼Px̃

has been averaged over a batch of
generated samples x̃. The new condition over ϕ in
expression (2) imposes a constraint on the discriminator
D, which must be 1-Lipschitz continuous [40].
In practice, this can be achieved in two ways: clipping

the weights of the discriminator beyond a specific value c
[40], or adding a regularization term to the discriminator
loss, defined in Eq. (3), known as the gradient penalty (GP).
While the first solution is a poor way to enforce the
Lipschitz condition, the second solution has been widely
accepted. The mathematical formulation of GP is as
follows:

Ltot ¼ Lðϕ; θÞ þ λGPðϕÞ ð4Þ

with

GPðϕÞ ¼ Ex̂∼Px̃
½ðk∇xDðx̂;ϕÞk2 − 1Þ2�; ð5Þ

where λ is known as the regularization parameter, k·k2
stands to the L2-norm and x̂ is evaluated following

x̂ ¼ x̃tþ xð1 − tÞ ð6Þ

with t uniformly sampled ∼½0; 1�. This method has shown
impressive applications such as [43], but it is not restricted
to WGANs [44,45]. Nonetheless, unlike weight clipping,
GP cannot enforce the Lipschitz condition everywhere,
particularly at the beginning of the training. This can pre-
vent the generator from converging to the optimal solution.
To overcome this obstacle,Wei et al. have proposed a second
penalization term to add to the loss from Eq. (3), called the
consistency term. They applied their new constraint to two
perturbed versions of the real samples x, introducing dropout
layers into the discriminator architecture. This ultimately
leads to two different estimates notedDðx0Þ andDðx00Þ. The
consistency term is defined as follows:

CTðϕÞ ¼ Ex∼Px
½maxð0; dðDðx0;ϕÞ; Dðx00;ϕÞÞ

þ 0.1dðD ðx0;ϕÞ; D ðx00;ϕÞÞ −M0Þ�; ð7Þ

wheredð:; :Þ is the L2metric,D stands for the second-to-last
layer output of the discriminator, andM0 is a constant value.
Wei et al. found that controlling the second-to-last layer
output helps improve the performance of theWGANs. Thus,
the final discriminator loss is then [46]

Ltot ¼ Lðϕ; θÞ þ λ1GPðϕÞ þ λ2CTðϕÞ; ð8Þ

with λ2 being the consistency parameter. This type ofWGAN
was called CT-GAN, which is the one that we employ in
this work.

FIG. 2. Typical GAN architecture retrieved from [42].
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B. Network architecture

The architecture of the networks has been inspired by the
work presented in [38] but nearest-neighbor (NN) sampling
layers have been preferred over strided convolution layers
in the generator structure. The convolution parameters were
chosen to be fixed through the generator and discriminator
layers with kernel k ¼ 5, no padding and stride s ¼ 1.
Leaky ReLUð·; α ¼ 0.2Þ has been chosen as the activation
layer for both discriminator and generator, with the
exception of the output layer of the generator, that uses
a Tanhð·Þ activation, allowing values ∼½−1; 1�.
In the generator structure (see Fig. 3), we also employ a

dilation factor of 2, 4, 6, 8, and 16 for successive layers to
enlarge its receptive field and, in turn, its expressivity
power, at the exact computational cost [47]. Batch nor-
malization (BN) [48] has been added to the generator
architecture to make it both stable and faster to learn. The
discriminator structure (see Fig. 4) is composed of con-
volutions on which spectral normalization [49] is employed

to stabilize the training. Dropout layers are added, exclud-
ing the first and last layers, which is required by the
consistency term [Eq. (7)].

C. Training data and procedure

1. Preprocessing

The construction of our dataset strongly relies on the
confidence provided by Gravity Spy. Thus, to create a
high confidence dataset, we select the blip glitches from
L1 (Livingston) and H1 (Hanford) detectors of O21 run
that have a confidence c1GS ≥ 0.9. Glitches are surrounded
by stationary and uncorrelated noise, which will hinder
the learning of our machine learning method. Therefore, it
is necessary to extract glitches from the stream data
maintaining their original morphology. For this aim, we
employ BayesLine [50] to whiten the glitches locally and

FIG. 3. Generator structure including NN up sampling, convolution layers, and LeakyReLU activation.

FIG. 4. Discriminator architecture showing strided convolutions, dropout layers, and LeakyReLU activations.

1Data from GWOSC https://www.gw-openscience.org/data/.
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BayesWave (BW) [51] to extract the glitches from the
uncorrelated noise. BW uses nonorthogonal continuous
Morlet-Gabot wavelets to fit and reconstruct the input
signal, but the selection of the model is made with a trans-
dimensional reversible jump Markov chain Monte Carlo
[52] that acquires a trade-off between the complexity of
the model and the quality of the fit. The input signal is
represented as a set of wavelets whose reconstruction is
their addition.
In our particular framework, the input provided to BW

is a time series containing the blip glitch that is 2.0 sec
long. However, to avoid training the CT-GAN algorithm
in irrelevant data and speed up the training phase, the
samples of the final training set have 938 data points
sampled at 4096 Hz, constituting 0.23 sec of data. Since the
reconstruction is not perfect, we lose around 2% and 18%
of the data for L1 and H1, respectively (see Table I).
To assess the quality of the reconstructions, we inject them
in real whitened noise and evaluate it with Gravity Spy
classifier, selecting blips with a c2GS ≥ 0.9 to generate high-
quality input data. After this heavy preprocessing, the
training dataset is composed of around 66% and 50% of
the initial data for L1 and H1, respectively.
Moreover, as it was previously mentioned, blips can be

found in the frequency band [30, 250] Hz, but BW might
introduce certain high-frequency contributions that will
hinder the learning of our machine learning algorithm.
For illustration, in Fig. 5 (left) we plot BW reconstruc-
tion (gray), where we colored the characteristic blip peak
(blue) and the high frequency contribution (light blue).
To eliminate the high-frequency contribution, we initially
set an empirical threshold to remove power excess in
the surroundings of the peak. Nonetheless, some high-
frequency contributions overlap with the blip and cannot be
removed with this method. Thus, to minimize this con-
tribution and generate a smoother input to enhance the
learning of our model, we employ regularized Rudin-
Osher-Fatemi (rROF) proposed in [53].
This algorithm solves the denoising problem, s ¼ gþ n,

where g is the smooth reconstruction of glitch and n is the
noise, as a variational problem. The solution g is computed
as follows:

gλ ¼ argmin
g

�
RðgÞ þ λ

2
F ðgÞ

�
; ð9Þ

where RðgÞ is the regularization term that constrains
the data, which refers to the quality of the smooth
reconstruction g. F ðgÞ is the fidelity term, which mea-
sures the L2 distance between the g glitch and the observed
signal s. λ regularizes and controls the relative weight of
both terms in the equation. It is important to note that
his parameter needs to be tuned manually to achieve the
desired level of denoising.
To assess the quality of the denoised blip glitches, we use

the Gravity Spy classifier for different λ parameters again,
and we found λ ¼ 0.5 to be a trade-off between preserving
the structure of the glitch and removing the nonsmooth
high-frequency contribution. In Fig. 5 (right), we plot the
BW reconstruction denoised with rROF (dashed orange),
and the denoised characteristic blip (green). In Fig. 5
(bottom), we show the amplitude spectral density (ASD)
of the BW reconstruction with and without denoising
(gray and dashed orange), as well as the characteristic
peak with and without denoising (blue and green) and the
original high-frequency contribution (light blue). We can
observe that we are able to maintain the structure of the

TABLE I. Size of the blip set for each detector in the different
phases of the preprocessing: selection, reconstruction, and
evaluation.

Preprocessing Livingston Hanford

Num. blips 5540 6768
c1GS ≥ 0.9
BW output 5461 5612
Num. blips 3654 3407
c2GS ≥ 0.9
Num. blips 3291 2587
c2GS; c

3
GS ≥ 0.9

FIG. 5. (Top left) Blip glitch reconstructed with BW (gray),
where we color the characteristic blip peak (blue) and the
undesired high frequency contribution (light blue). (Top right)
Blip glitch reconstructed with BW (gray) and denoised with
λ ¼ 0.5 (dashed orange). We color in green the denoised char-
acteristic blip peak. (Bottom) Resulting amplitude spectral density
(ASD) for the reconstructed blip with BW (gray) and its denoised
versionwith λ ¼ 0.5 (dashedorange).We also show theASDof the
characteristic peak with (blue) and without denoising (green), as
well as the high frequency contribution (light blue).
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characteristic peak by damping the power of the high-
frequency contribution.
To verify that we are able to preserve the structure of

blips according to the current state of the art, we compare in
Fig. 6 theGravity Spy confidence of reconstructed blips c2GS
(blue), against denoised reconstructed blips c3GS (orange)
from L1. As we can observe, both distributions are similar
since they have similar means μGS and standard deviations
σGS. Finally, we select the blip glitches with c2GS ≥ 0.9 and
c3GS ≥ 0.9, to ensure the high quality of the input data of the
algorithm.

2. CT-GAN training procedure

During the training of the CT-GAN algorithm, both the
generator and the discriminator need to be updated at
similar rates to acquire stability and guarantee convergence.
The task of the discriminator is more difficult since the
generated samples that the discriminator intends to classify
can be anywhere in the data space and change for each
new iteration [54]. Hence, to assure the stability of both
networks, we update the discriminator 5 times per update
of the generator, for each epoch. We employ RMSProp
optimizer [55] with a learning rate ¼ 10−4 for both dis-
criminator and generator, and we train the CT-GAN for
500 epochs, where we define an epoch as the number of
times the network has passed through the whole data-
set. Employing GPU TITAN V with a memory of 96 Gb
allowed us to use train our model in ≈7.75 h.
To monitor the behavior of the CT-GAN during the

training phase, we represent the generator and the dis-
criminator loss as a function of the epochs in Fig. 7. We can
observe that both networks stabilize around epoch 100 and
continue to oscillate around values close to zero until the
training is complete. After several experiments, we con-
cluded that while CT regularized the generator, dropout
regularized the discriminator and GP balanced both. This
stability can also be observed in the behavior of the CT and

GP penalizations in Fig. 7, where both terms tend to zero as
the network stabilizes. The values that helped the CT-GAN
to converge were CT ¼ 5 and GP ¼ 5, with a dropout rate
of 0.6. These values were obtained after several experi-
ments, but in future works it would be interesting to employ
Optuna [56], which is a hyperparameter optimization
framework used to automate hyperparameter searches.

IV. RESULTS

A. Blip generation

After the training of the CT-GAN, and given a 100-
dimensional vector drawn from a normally distributed
latent space (as it common in other GAN related works),
we are able to generate 103 blips a blip from the input
distribution of H1 and L1 in ≈5 sec for both interefer-
ometers. It is relevant to note that each blip has a length
≈0.23 sec with an amplitude ∈ ½−1; 1�, whitened and
sampled at 4096 Hz. In Fig. 8 we represent the peak
frequency (top panel) and the duration (bottom panel) for
the fake population from L1, and we compare it with Tomte
and Blips. As an example, we present in Fig. 9 different
artificial blips from L1 in the time domain, and for
visualization, we also compute their Q transform as in
[20]. In the time-frequency representation, we can see that
CT-GAN has been able to capture the distinct symmetric
“teardrop” of blips in the expected frequency range [30,
250] Hz. In Fig. 8, we compare the peak frequencies of real
Tomte and Blip glitches from L1 against our artificial
population, where we can observe that the bulk of the
distribution of fake blips is aligned with the real blip
population. Furthermore, we can observe that in the time
representation, we are able to reproduce different morphol-
ogies of the characteristic central peak. Even if by visual
inspection it would seem that the artificial generations are
closely related to the real blips from O2, it is necessary to
perform a statistical test to assess the performance of
CT-GAN.

FIG. 7. Graph representing the discriminator loss (blue), gene-
rator loss (pink), CT (green), and GP (orange) penalization as a
function of the epochs.

FIG. 6. Comparison between the reconstructed and the
denoised population of blip glitches for L1. For the reconstructed
set c2GS ¼ 0.892� 0.003 and for the denoised set c3GS ¼ 0.874�
0.004 at 95% confidence level.
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B. Assessing performance

We employ four different methods to assess the quality
of the population. On the one hand, we employ theirQ-scan
representation to evaluate our artificial population with the
current state-of-the-art. On the other hand, we analyze their
morphology in the time domain to take into account the
phase information:

(i) Gravity Spy classifier: In order to assess perfor-
mance using an independent ML classifier, we can
inject the generated glitches in real whitened noise
from O2 (see Fig. 9) and evaluate them with Gravity
Spy, which will return a confidence value cGS and a
class label. We use the same noise strain for each
generated glitch to provide the classifier with a fair
comparison. Since the generated blip has an ampli-
tude ∈ ½−1; 1�, we can rescale it according to a
desired optimal signal-to-noise ratio (ρopt). For this

aim, we relate ρopt to the scaling parameter α by
modifying Eq. 4.3 from [58] as

ρopt ¼ 4α

Z
fmax

fmin

jg̃ðfÞj2
SnðfÞ

df; ð10Þ

where g̃ðfÞ represents the artificial blip and Sn is
the power spectral density (PSD) of the fixed real
whitened noise. One of the main drawbacks of
this method is that it is computationally intensive
(≈90 sec =glitch) because it is necessary to calculate
the Q transform of the input time series.

(ii) Wasserstein distance (W1): As explained in sub-
section IV. B. 2, the Wasserstein distance is continu-
ous and never saturating, allowing us to keep track
of the quality of the generated samples during the
training. For further mathematical details, a formal
definition can be found in [40]. This metric is then
an adequate tool to compare real and generated
glitches. This method is fast and efficient since
the computation is performed in the time domain
(≈0.0026 s=glitch).

(iii) Match function ðMfÞ: To compute the similarity
between two signals, we can also use the match
function, which returns the match between both
signals [59]. The match can be defined as the inner
product between two normalized signals maximized
over time (t) and phase (ϕ) [60],

Mfða; bÞ ≔ max
t;ϕ

hâ; b̂i: ð11Þ

Since the signals are noise-free, we do not employ
any PSD for normalization. This calculation is
performed in the frequency domain, and it is also
fast and efficient (≈0.0032 s=glitch).

FIG. 9. (Top row) Generated blip of L1 plotted as a function of time. In red we represent the rescaled whitened blip and in blue we plot
its injection, both in the time domain. (Bottom row) We show the Q-transform representation of the generated injected glitches.

FIG. 8. (Top) Peak frequency for Tomte (pink) and Blip (green)
from L1 retrieved from Gravity Spy [20], measured with Omicron
spectrograms [57]. In blue we plot the peak frequency of the
artificial blips from L1.
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(iv) Normalized cross covariance (kðX; YÞ): Assuming
two random processes X and Y, their cross covari-
ance between time t1 and t2 is defined as

KX;Yðt1; t2Þ≡E½ðXt1 −μðXt1ÞÞðYt1 −μðYt1ÞÞ�: ð12Þ

To obtain the normalized cross-covariance coeffi-
cient, we divide the cross covariance over the
standard deviation of each random process. The
maximum value of this magnitude is the metric
employed to measure the similarity between two
signals, as defined below:

k ¼ max

�
KX;Yðt1; t2Þ

σXσY

�
: ð13Þ

This calculation, which is also in time domain, is
most efficient (≈0.0011 sec=glitch).

1. Gravity Spy

For this procedure, we inject each generated blip in real
whitened detector noise and re-scale it according to
Eq. (10) to fix ρopt. We can compute the confidence
of Gravity Spy as a function of the optimal SNR
ρopt ∈ ½0.1; 18.2�. This process is conducted on 103 blip
glitches of each detector population.
In Fig. 10, we plot the classification labels, with

maximum classification probability, for different ρopt of
the H1 population, while we present the results of L1 in
Appendix. We can observe that the dominant class is Blip
and that the number of glitches in this class increments by
increasing ρopt, in opposition to other classes. Interestingly,
when ρopt ¼ 0.947, meaning that the artificial blip is not
visible by eye in the Q transform, around 500 artificial
glitches are labeled as Blip.
One could think that this type of behavior would be

expected since CNNs are able to “see” patterns that are
invisible to the human eye, but the classifier is able to
recognize glitches up to a certain threshold (Omicron

SNR ≥ 7.5 [57]). Another reason might be that the training
set of Gravity Spy is imbalanced, so the classifier is biased
towards the larger classes such as Blip. Hence, it seems
thatGravity Spy has a certain degree of misclassification, so
we employ other metrics to test the performance of our
CT-GAN. In the future we will revisit the performance
evaluation with independent ML classifiers. For now we
focus mainly on similarity metrics as we explain in the
following section.

2. Wasserstein distance, match function,
and normalized cross covariance during testing

To measure the performance of the network, we use
some alternative methods, namely, Wasserstein distance
(W1), match function (Mf), and normalized cross covari-
ance (k). These metrics are employed to calculate the
similarity between two different artificial blips b1 and b2,
but we can also use them to calculate the similarity between
a single artificial blip bF and the real population (BR) or the
artificial population (BF) from each detector. Such proce-
dure is as follows:
(1) We use a certain similarity distancem to measure the

distance between blip bj and a population B.
(2) For each blip bi ∈ B we computemj;iðbj; biÞ, which

yields a set of measurements Mj.
(3) We obtain the mean and the standard error of the

previous set as μðMjÞ � ϵðMjÞ at 99.7% confidence
interval.

The latter is the measure of similarity between the pop-
ulation B and bj. Note that the numerical meaning of
Wasserstein distance, match function, and normalized cross
covariance are different. For the previous example,

(i) If bj is a reliable generation then W1ðB; bjÞ ≈ 0,
while MfðB; bjÞ ≈ 1 and kðB; bjÞ ≈ 1.

(ii) If bj is an anomalous generation thenW1ðB; bjÞ ≫ 0,
while MfðB; bjÞ ≪ 1 and kðB; bjÞ ≪ 1.

Since we are dealing with real data, the real population BR
contains not only blips but also certain misclassifications.
If the CT-GAN had learned the underlying distribution of
the data, we would expect that the real population BR and
the artificial populationBF had a similar distribution, where
reliable generations would be located in the bulk of the
distribution. In contrast, anomalous blips would be located
in the tails. Hence, under this assumption, we would expect
that, given a metric m, the similarity distance between
the real and artificial distribution mðBR; BFÞ, should be
linearly related to the similarity distance of the artificial
distribution against itself, mðBR; BFÞ. In Fig. 11, we plot
the joint and marginal distribution of both comparisons for
different similarity distances: Wasserstein distance (W1),
match function (Mf), and normalized cross covariance (k),
and present the results from the least-squares estimate
for each detector. Furthermore, in Table II we present
the Pearson coefficient resulting from the least-squares

FIG. 10. Histogram of predicted Gravity Spy classes for 103

generated blips from H1.
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estimate, which represents the linear correlation between
both variables [61].
We observe that the resulting slopes (Fig. 11) and the

Pearson coefficients (Table II) for each metric and each
detector are close to 1.0, meaning that both variables have a
very strong linear relationship and compatibility. Thus, all

similarity distances indicate that the bulk of the population
is constituted by reliable blips, with the presence of some
anomalous generations that can be identified by fixing an
empirical threshold. Therefore, since the generated blips
represent the artificial and real populations, we conclude
that the CT-GAN has learned the underlying distribution of
blips from L1 and H1.

C. Assessing poor generations

When dealing with real data, one must bear in mind
that certain anomalies might be present in the data. In our
particular context, our datasets might contain glitches
that have a distinct morphology from the mean of the
population. Such differences might not be visible in a
Q-transform representation, soGravity Spymight introduce
certain misclassifications that contaminate the input data-
set. Since CT-GAN is able to learn the underlying dis-
tribution, it can also generate nonblip glitches that are in
the tails of the distribution. For certain studies, the pre-
sence of anomalies might be counterproductive, so differ-
entiating reliable from anomalous generations is crucial.
For this aim, we propose several metrics to identify these
misgenerations.
To use the Gravity Spy classifier, we inject the gen-

erated blips in real whitened noise with a fixed optimal
SNR ρopt ¼ 18.46, according to Eq. (10). From the
classification, we select the generated blips that belong
to the three dominant classes: Blip, Repeating Blips,
and No Glitch.
In Fig. 12 we plot the joint and marginal distribution as

probability densities of Gravity Spy confidence against the
alternative metrics for H1 (see Appendix for details about
L1). We can observe that according to Gravity Spy Blip,
Repeating Blips, and No Glitch seem to belong to
distinct probability densities. However, according to the
alternative metrics, the probability densities remain cen-
tered according to a certain value for different classes.
Furthermore, there seems to be no correlation between
Gravity Spy confidence and other metrics in the joint
distribution, so to further understand our results, we
proceed to inspect the results by selecting examples.

(i) Glitch A: This glitch is labeled as a Blips
with a high confidence according to Gravity Spy
(cGS ≈ 0.99). Furthermore, the chosen metric has
situated this glitch in the bulk of the distribution,
meaning that it is a reliable blip generation.

FIG. 11. (Top)We represent the joint and marginal distributions
of W1ðBR; BFÞ and W1ðBF; BFÞ for L1 (blue) and H1 (orange)
and their best fit. (Bottom) We represent the joint and mar-
ginal distributions of the pairs ½MfðBR; BFÞ;MfðBF; BFÞ� and
½kðBR; BFÞ; kðBF; BFÞ� for L1 (blue and pink) and H1 (orange
and green), as well as their best fit. The colored regions in the
marginal distributions represent the confidence interval at 6
standard deviations.

TABLE II. Pearson coefficient for different metrics and
detectors.

Livingston Hanford

Wasserstein distance 0.993 0.999
Match function 0.999 0.999
Normalized cross covariance 0.996 0.999
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(ii) Glitch B: This glitch is labeled as a Repeating
Blips with a confidence cGS ≈ 0.72. However,
according to our metrics, it is a reliable generation.

(iii) Glitch C: This glitch is labeled as a No Glitch with
a confidence cGS ≈ 0.59. However, according to our
metrics, it is also a reliable generation.

(iv) Glitch D: This glitch is labeled as a Blips
with a high confidence according to Gravity Spy
(cGS ≈ 0.89). Nonetheless, the chosen metric has
situated this glitch in the tail of the distribution,
meaning that it is an anomalous blip generation.

In Fig. 12, we can observe that according to the alternative
metrics, glitchesA, B, and C are situated around the center of
the probability density, while glitch D is located in the tails.
Moreover, for further visualization in Fig. 13, we present the
selected in the time domain, and we also plot their Q
transforms. We can observe that while glitches A, B, and
C seem to have a similar shape and magnitude, they differ
from anomalous glitch D. Moreover, with these metrics, we
are able to identify anomalous generations that deceive
Gravity Spy classifier, and their exclusion from the generated
dataset can be performed by imposing a threshold.

FIG. 12. Joint and marginal distribution of Gravity Spy confidence cGS at ρopt ¼ 18.46 against different metrics for different glitch
classes for H1: Blip, Repeating Blips, and No Glitch. We mark in the marginal distributions selected generated glitches A (solid
blue), B (dotted pink), C (dashed green), and D (dash dotted blue).

FIG. 13. Time series representation (top row) and Q-scan representation of selected glitches from H1.

LOPEZ, BOUDART, BUIJSMAN, REZA, and CAUDILL PHYS. REV. D 106, 023027 (2022)

023027-10



D. Limitations

The main shortcoming that we encountered when train-
ing the CT-GAN was the limited amount of data pre-
served after the heavy preprocessing. CT-GAN needs a
large amount of samples to learn the underlying distribu-
tion, which might be a limitation when extending our
methodology to other classes of glitches that are less
common in the LIGO/Virgo streams. Nonetheless, some
researchers are developing techniques to tackle this limi-
tation that we will explore in future works [62].
Another relevant shortcoming of this study is the fact

that the quality of our input dataset strongly relies on
BW reconstruction and Gravity Spy classification. In our
particular case, blip glitches have a simple morphology,
but some undesired contributions were introduced by BW,
and some misclassifications were introduced by Gravity
Spy. Other glitches might be even harder to extract and/or
classify with the current state of the art due to their complex
form, which in turn will hinder the performance of our
CT-GAN. Moreover, longer and more complex glitches
will need better architectures to be able to learn the
underlying distribution of the data.

V. APPLICATIONS

In the following we provide examples of possible
applications that can be explored in future works:
(A) Glitch population statistics: Learning the distri-

butions of glitches allows us to understand their
populations further and compare their different char-
acteristics. In this way, we can develop statistics to
analyze their morphologies, populations, and produc-
tion rates inmore detail as it was discussed in [63]. For
illustration in Fig. 14, employing generated blips, we
have reduced the dimensionality of the artificial
population of L1 with principal component analysis
(PCA) [64]. By visual inspection, we can see three
main clusters that we classify with Gaussian mixture2

[66]. Each point represents a single fake blip in PCA
space colored according to their cluster label. Fur-
thermore, we have marked with a star 5% of the most
anomalous blips present in the population, according
to their distanceW1ðBF; BFÞ. It would be interesting
to investigate the differences between the clusters in
these distributions in future work. Another possibility
would be to link the features of the blip glitches with
their representation in the latent space of theCT-GAN,
as it was proposed in [67].

(B) Glitch template banks: It is well known that blip
glitches have a similar morphology to intermediate
black holes (IMBH), which hinders the detection of
such events. With our generator, we could create

glitch templates to use matched-filtering techniques
in unknown signals to compute a ranking statistic
and weight it in the likelihood function of detection
pipelines. In this way, we would provide another
metric to distinguish blip glitches from IMBH. We
could use the standard matched-filter method [68]
[see Eq. (14)] to compute the SNR time series for a
specific glitch template. However, performing a
matched filtering operation for a large glitch bank
will be a huge task as computational time will
increase drastically. We need to handle the scal-
ability issue of the computational time of performing
matched filtering with the increased number of
glitch templates as we would expect to manage
many glitch templates. We can resolve this scal-
ability issue if we adapt the matched filtering
framework used in the GstLAL [69,70] pipeline for
the searches of GW signals from CBC sources. We
observed that a few numbers of basis obtained using
singular value decomposition (SVD) [71–74] can
also represent the glitch templates, and those basis
can be used to get the matched filter output quickly.
The computational time complexity of matched
filtering can be reduced as the required number of
basis vectors is much less than the number of glitch
templates. To show the efficacy of this framework,
we generated 103 glitches for the L1 detector using
our proposed CT-GAN-based glitch generator. We
used 1 sec data, sampled at 4096 Hz for this study.
The data contains an injected glitch and colored
Gaussian noise with aLIGO zero detuned high
power (ZDHP) noise power spectral density [75].
Since the generated glitches are around 0.23 sec (938
data points) sampled at 4096 Hz, we padded them
with zero and made them 1 sec long to generate the
noisy data. The amplitudes of the injected glitch
were adjusted for a target signal to noise ratio (SNR)
of 10. Further, we used ZDHP to whiten the data and
the glitch templates. We computed the SNR time
series for each glitch template based on the (a) stan-
dard matched-filter method [68] as follows:

hsðtÞ; gðtÞi ¼ 4Re
Z

∞

0

s̃ðfÞg̃�ðfÞ
SnðfÞ

df; ð14Þ

where the term SnðfÞ is defined as the one-sided
power spectral density. The square root of Eq. (14) is
termed as SNR.
(b) SVD based matched filter [72] in which a set

of a few top basis vectors have been computed from
glitch-matrix first. Since each glitch template has
4096 data points, therefore the dimension of the
glitch matrix is of size 103 × 4096 after stacking all
the glitches together. After that, the basis vectors are
matched filter against data, and the SNR time series

2For both algorithms, we employ SCIKIT-LEARN implementa-
tion [65].
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has been computed by combining coefficients of
each glitch and matched filter output obtained based
on basis and data. For our example, we obtained that
10 top-basis vectors are sufficient to represent those
103 glitches, as can be observed in Fig. 15. It shows
that the singular values of a set of 103 glitches are
falling steeply, which implies a few top basis (e.g.,
10,20) can be used to represent those glitches. We
have chosen the number of top basis ðlÞ ¼ 1; 5; 10
and reconstructed the glitches in our analysis. We
have computed the reconstruction error for each
glitch as follows:

ϵα ¼
kgα − ĝαk2

kgαk2
; α ¼ 1; 2;…; 103; ð15Þ

where ĝα is the reconstructed whitened glitch based
on l ¼ 1, 5, 10 basis vectors, respectively, and kk2
represents the L2 norm, and α is the number of total
glitch templates. We also computed the fractional
SNR loss [72] for each glitch template based on the
following definition:

δρα
ρα

¼ jραj − jρ̂αj
jραj

; α ¼ 1; 2;…; 103: ð16Þ

With the increasing number of basis, the relative
reconstruction error should be decreased. To estab-
lish this statement, in Fig. 16, we choose three
different cases with varying l ¼ 1, 5, 10. Figure 16
shows the probability density of the relative error ϵα
for l ¼ 1, 5, 10, respectively. The figure shows that
relative error is less for l ¼ 10, whereas the relative
error is high for l ¼ 1. Similarly, we obtained the
fraction SNR loss for all glitch templates for these
three cases. Figure 17 shows the construction of the
glitch and SNR time series based on l ¼ 1, 5, 10

FIG. 14. PCA representation of fake blip population of H1,
clustered with Gaussian mixture. The 5% most anomalous blips
according to the distance W1ðBF; BFÞ are marked with a star.

FIG. 15. The singular values (σ) are obtained from a set of 103

whitened glitches using SVD [71], normalized by the maximum
singular values (σmax). The glitches are generated from CT-GAN.
The spectrum of singular values is seen to fall sharply, implying
only a few singular values (e.g., l ¼ 10), and corresponding basis
vectors are sufficient to represent the glitches. See Fig. 16 in
which the relative reconstruction error for these glitches has been
shown based on l ¼ 1, 5, 10. For performing SVD based
matched filtering for glitch templates, we followed the framework
presented in [72].

FIG. 16. The plot shows the distribution of relative errors for
the reconstruction of the 103 whitened glitches generated using
CT-GAN. The relative error (ϵα) is calculated for each case.

FIG. 17. The histogram based on the fractional SNR loss (δραρα
)

for a set of glitches (103). For each glitch template, the SNR time
series were obtained based on the (a) standard matched-filter
scheme and (b) SVD based matched filtering framework pre-
sented in [72] by varying the top-basis numbers as l ¼ 1, 5, 10,
respectively.
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number of basis, respectively. Both plots show that
l ¼ 10 is sufficient to reconstruct the whitened
glitches and represent the SNR time series. If we
increase the number of basis, the reconstruction
errors (δραρα

, ϵα) can be reduced but matched filtering
cost would increase. Hence, we need to choose a
minimal set of the basis for which computation cost
and also the reconstruction errors are low. We have
chosen l ¼ 10 as that minimal number for this
specific example.
In a follow-up work, we will explore the pos-

sibility the construction of a glitch bank construc-
tion, with a discussion on how to obtain ranking
statistics, and signal consistency tests.

(C) Mock data challenges: With our methodology, we
are able to generate glitches in the time domain. The
user could generate as many glitches as necessary,
selecting the ones that represent best the real dis-
tribution and injecting them in real detector noise to
create a realistic data challenge. Moreover, since
certain anomalies are generated, those can also be
selected to stress-test analysis algorithms. As a
preliminary test, we inject some blip glitches in
the O3a data to evaluate how they will impact the
long-duration analysis with a dedicated neural net-
work called ALBUS [35]. For visualization, we
present the output in the right panel of Fig. 18.
Since a time resolution is much larger than the glitch
duration (i.e., <0.3 s), the injected glitch appears as
a vertical line. The structure of the glitch is fully
recovered and allows us to reveal the detection
capability of ALBUS. As suggested in [37], when
learning different classes of glitches, we could also
interpolate between them to generate hybrid classes.
This hybrid dataset could be employed to discover
unknown classes of glitches and improve the effi-
ciency of detection algorithms.

(D) New glitch detection: Once the network has learned
the underlying distribution of the data, with certain
modifications, it can output how likely it is for an
unknown signal to belong to the known distribution.
This metric can detect anomalous generations and
provide feedback to classification algorithms. For
example, with this information Gravity Spy could
reclassify certain anomalies, which could imply the
definition of new glitch classes and their further
characterization.

(E) Improving glitch classification: One of the main
challenges of working with real data is to deal with
imbalanced datasets. With our methodology, once
more classes are learned, we could generate bal-
anced datasets to improve the accuracy of classi-
fication algorithms.

VI. CONCLUSION

In this work, we have developed a methodology to
generate artificial blip glitches from real data using a ML
algorithm known as GAN. To be able to generate these
glitches, the input blips need to be processed: the signals
are selected from Gravity Spy data to be reconstructed with
BayesWave and smoothed with the rROF algorithm.
Because of this heavy processing, only around 66% and
50% of the initial data from L1 and H1 is preserved.
Due to the instability of GAN algorithms, in this

particular research, we trained a CT-GAN [46]. The net-
work uses Wasserstein distance as a loss function, which
allows it to train its discriminator to optimality. The
network is penalized heavily to avoid training instabilities
and to learn the underlying distribution of blips accurately.
To assess the performance of CT-GAN, we generate a

population of 103 blip glitches for both H1 and L1. The
quality measurements employed are Gravity Spy classifier
and similarity distances, namely, the Wasserstein distance
(W1), match function (Mf), and normalized cross covari-
ance (k). The results of these metrics indicate that the neural
network was able to learn the underlying distribution of
blip glitches from H1 and L1, despite the presence of some
anomalous generations due to imperfections of the input
dataset. Furthermore, it has been observed that the sim-
ilarity distances are able to detect misclassifications from
glitch classifiers.
In this proof-of-concept investigation, we have demon-

strated that it is possible to isolate blip glitches from their
surrounding noise and learn their underlying distribution
with an ML-based method in the time domain, providing
several examples of its usage. This methodology allows us
to generate better quality data, and it provides us with
flexibility that would be challenging to achieve with Q
transforms. The long-term goal of this investigation is to
learn other classes of glitches and create an open-source
interface for producing real data in the time domain.

FIG. 18. Example of glitch injection. The left image shows the
input time-frequency map while the right panel shows the output
of ALBUS.
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APPENDIX: RESULTS FOR BLIP
DISTRIBUTION FROM L1

This appendix presents the results of blips from the L1
distribution, which are compatible with the H1 population.

In Fig. 19, we present a histogram of the classes assigned by
Gravity Spy to a population of 103 artificial blips. As in
Sec. IV, we can also observe that the three dominant classes
are Blip, Repeating Blips, and No Glitch, and as we
increase the optimal SNR ρopt, the number of artificial
glitches classified as Blip increases. As we stated before,
Gravity Spy classifier seems to be biased towardsBlip class,
since at very low ρopt, the network will be unable to see the
glitches. Another interesting question would be to assess the
influence of the detector noise in the classification task of
Gravity Spy. Similarly to Fig. 12, we present in Fig. 20 the
confidence ofGravity Spy as a function of alternativemetrics
for the dominant classes. In Fig. 20, we can also observe that
there is no apparent correlation between the measurements
and the confidence provided by Gravity Spy classifier. To
inspect the results, we select certain glitches according to the
definitions in Sec. IV B. Note that the anomalous glitch
found by Wasserstein distance (labeled as D) does not
coincide with the one found by match function and norma-
lized cross covariance (labeled as D’). Gravity Spy was able
to correctly classify with a high confidence glitch A and B,
but glitches C, D, and D’ are misclassified. For visualization
and a better understanding of the results, we plot in Fig. 21
theQ transforms and the time series injected in real whitened
noise of the selected glitches. While glitch A is classified by
Gravity Spy as a perfect glitch, glitch C is misclassified as
No Glitch, although their Q transforms look similar. It is
interesting to mention that the GAN was able to generate a
Repeating Blip because some repeating blips are present in
the input dataset.
Glitches D and D’, which are misclassified by Gravity

Spy, are situated in the tail of the distribution of the
similarity distances. While glitch D has a shape very
different from a standard blip, glitch D’ has a very narrow
peak.

FIG. 19. Histogram of predicted Gravity Spy classes for 103

blips from L1.

FIG. 20. Joint and marginal distribution of Gravity Spy confidence cGS at ρopt ¼ 18.46 against different metrics for different glitch
classes for L1: Blip, Repeating Blips, and No Glitch. We mark in the marginal distributions selected glitches A (solid blue),
B (dotted pink), C (dashed green), and D (dash dotted blue).
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Cuoco, M. Cavaglià, I. S. Heng, and J. A Font, Classifica-
tion methods for noise transients in advanced gravitational-
wave detectors II: Performance tests on Advanced LIGO
data, Classical Quantum Gravity 34, 034002 (2017).

[20] M. Zevin et al., Gravity spy: Integrating advanced
ligo detector characterization, machine learning, and

FIG. 21. Time series representation (top row) and Q-scan representation of selected glitches from L1.

SIMULATING TRANSIENT NOISE BURSTS IN LIGO WITH … PHYS. REV. D 106, 023027 (2022)

023027-15

https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.3847/2041-8213/ab75f5
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.11.021053
https://arXiv.org/abs/2111.03606
https://arXiv.org/abs/1702.00786
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/0264-9381/27/19/194002
https://doi.org/10.1088/1361-6382/abc906
https://doi.org/10.1088/1361-6382/abc906
https://doi.org/10.1088/1361-6382/ab2e14
https://doi.org/10.1088/1361-6382/abfd85
https://arXiv.org/abs/2205.01555
https://arXiv.org/abs/2205.01555
https://doi.org/10.1088/0264-9381/32/21/215012
https://doi.org/10.1088/0264-9381/32/21/215012
https://doi.org/10.1088/1742-6596/243/1/012006
https://doi.org/10.1088/1361-6382/34/3/034002


citizen science, Classical Quantum Gravity 34, 064003
(2017).

[21] B. P.Abbott et al., Effects of data quality vetoes on a search for
compact binary coalescences in advanced LIGO’s first
observing run,ClassicalQuantumGravity35, 065010 (2018).

[22] B. P. Abbott et al. (LIGO Scientific, Virgo Collaborations),
Characterization of transient noise in Advanced LIGO
relevant to gravitational wave signal GW150914, Classical
Quantum Gravity 33, 134001 (2016).

[23] Y. Bengio, I. Goodfellow, and A. Courville, Deep Learning
(MIT Press, Cambridge, MA, 2016).

[24] D. George and E. A. Huerta, Deep neural networks to enable
real-time multimessenger astrophysics, Phys. Rev. D 97,
044039 (2018).

[25] H. Gabbard, M. Williams, F. Hayes, and C. Messenger,
Matching Matched Filtering with Deep Networks for
Gravitational-Wave Astronomy, Phys. Rev. Lett. 120,
141103 (2018).

[26] A. Menéndez-Vázquez, M. Kolstein, M. Martínez, and
Ll. M. Mir, Searches for compact binary coalescence
events using neural networks in the LIGO/VIRGO second
observation period, Phys. Rev. D 103, 062004 (2021).

[27] P. Krastev, Real-time detection of gravitational waves from
binary neutron stars using artificial neural networks, Phys.
Lett. B 803, 135330 (2020).

[28] G. Baltus, J. Janquart, M. Lopez, A. Reza, S. Caudill, and
J.-R. Cudell, Convolutional neural networks for the detec-
tion of the early inspiral of a gravitational-wave signal,
Phys. Rev. D 103, 102003 (2021).

[29] H. Yu, R. X. Adhikari, R. Magee, S. Sachdev, and Y.
Chenet al., Early warning of coalescing neutron-star and
neutron-star-black-hole binaries from the nonstationary
noise background using neural networks, Phys. Rev. D
104, 062004 (2021).

[30] M. López, I. Di Palma, M. Drago, P. Cerdá-Durán, and F.
Ricci, Deep learning for core-collapse supernova detection,
Phys. Rev. D 103, 063011 (2021).

[31] I. Heng, M. Chan, and C. Messenger, Detection and
classification of supernova gravitational waves signals:
A deep learning approach, Phys. Rev. D 102, 043022
(2020).

[32] G. Nurbek, S. Mukherjee, and O. Valdez, Study of efficient
methods of detection and reconstruction of gravitational
waves from nonrotating 3d general relativistic core collapse
supernovae explosion using multilayer signal estimation
method, Phys. Rev. D 103, 103008 (2021).

[33] M. Razzano and E. Cuoco, Image-based deep learning
for classification of noise transients in gravitational
wave detectors, Classical Quantum Gravity 35, 095016
(2018).

[34] E. Cuoco et al., Enhancing gravitational-wave science with
machine learning, Mach. Learn. 2, 011002 (2020).

[35] V. Boudart and M. Fays, A machine learning algorithm for
minute-long Burst searches, Phys. Rev. D 105, 083007
(2022).

[36] J. Long, E. Shelhamer, and T. Darrell, Fully convolutional
networks for semantic segmentation, IEEE Trans. Pattern
Anal. Mach. Intell. 39, 640 (2017).

[37] J. McGinn, C. Messenger, M. J. Williams, and I. S. Heng,
Generalised gravitational wave burst generation with

generative adversarial networks, Classical Quantum Gravity
38, 155005 (2021).

[38] L. Metz, A. Radford, and S. Chintala, Unsupervised
representation learning with deep convolutional generative
adversarial networks, (2016).

[39] L. Weng, From gan to wgan, arXiv:abs/1904.08994.
[40] M. Arjovsky et al., Wasserstein generative adversarial

networks (2017).
[41] L. V. Kantorovich, Mathematical methods of organizing and

planning production, Manage. Sci. 6, 366 (1960).
[42] S. Harada et al., Biosignal generation and latent variable

analysis with recurrent generative adversarial networks,
IEEE Access 7, 144292–144302 (2019).

[43] T. Karras et al., Progressive growing of GANs for improved
quality, stability, and variation (2018).

[44] T. Salimans et al., Improved techniques for training GANs,
in Advances in Neural Information Processing Systems,
edited by D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett (Curran Associates, Inc., Red Hook, USA, 2016).

[45] A. Geiger, L. Mescheder, and S. Nowozin, Which training
methods for GANs do actually converge?, in Proceedings of
35th International Conference on Machine Learning (ICML
2018), Vol. 80, edited by J. Dy et al.(Curran Associates,
Inc., 2018).

[46] X. Wei et al., Improving the Improved Training of Wasser-
stein GANS: A Consistency Term and its Dual Effect (2018).

[47] N. Kalchbrenner, A. Van Den Oord, and K. Kavukcuoglu,
Pixel recurrent neural networks (2016).

[48] S. Ioffe and C. Szegedy, Batch normalization: Accelerating
deep network training by reducing internal covariate shift,
arXiv:abs/1502.03167.

[49] I. Gulrajani et al., Improved training of Wasserstein GANS,
in Proceedings of the 31st International Conference on
Neural Information Processing Systems (Curran Associates
Inc., Red Hook, USA, 2017).

[50] T. B Littenberg and N. J. Cornish, Bayesian inference for
spectral estimation of gravitational wave detector noise,
Phys. Rev. D 91, 084034 (2015).

[51] N. J. Cornish and T. B. Littenberg, Bayeswave: Bayesian
inference for gravitational wave bursts and instrument
glitches, Classical Quantum Gravity 32, 135012 (2015).

[52] J. P. Green, Reversible jump Markov chain Monte Carlo
computation and Bayesian model determination, Biome-
trika 82, 711 (1995).

[53] A. Torres, A. Marquina, J. A. Font, and J. M. Ibáñez, Total-
variation-based methods for gravitational wave denoising,
Phys. Rev. D 90, 084029 (2014).

[54] N. Kodali et al., How to train your dragan, arXiv:abs/
1705.07215.

[55] T. Tieleman et al., Lecture 6.5-rmsprop: Divide the gradient
by a running average of its recent magnitude, COURSERA
4, 26 (2012).

[56] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru
Ohta, and Masanori Koyama, Optuna: A next-generation
hyperparameter optimization framework, Proceedings of
the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining (Association for
Computing Machinery, New York, 2019).

[57] F. Robinet, N. Arnaud, N. Leroy, A. Lundgren, D. Macleod,
and J. McIver, Omicron: A tool to characterize transient

LOPEZ, BOUDART, BUIJSMAN, REZA, and CAUDILL PHYS. REV. D 106, 023027 (2022)

023027-16

https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1088/1361-6382/aa5cea
https://doi.org/10.1088/1361-6382/aaaafa
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.1088/0264-9381/33/13/134001
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevLett.120.141103
https://doi.org/10.1103/PhysRevLett.120.141103
https://doi.org/10.1103/PhysRevD.103.062004
https://doi.org/10.1016/j.physletb.2020.135330
https://doi.org/10.1016/j.physletb.2020.135330
https://doi.org/10.1103/PhysRevD.103.102003
https://doi.org/10.1103/PhysRevD.104.062004
https://doi.org/10.1103/PhysRevD.104.062004
https://doi.org/10.1103/PhysRevD.103.063011
https://doi.org/10.1103/PhysRevD.102.043022
https://doi.org/10.1103/PhysRevD.102.043022
https://doi.org/10.1103/PhysRevD.103.103008
https://doi.org/10.1088/1361-6382/aab793
https://doi.org/10.1088/1361-6382/aab793
https://doi.org/10.1088/2632-2153/abb93a
https://doi.org/10.1103/PhysRevD.105.083007
https://doi.org/10.1103/PhysRevD.105.083007
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1088/1361-6382/ac09cc
https://doi.org/10.1088/1361-6382/ac09cc
https://arXiv.org/abs/abs/1904.08994
https://doi.org/10.1287/mnsc.6.4.366
https://doi.org/10.1109/ACCESS.2019.2934928
https://arXiv.org/abs/abs/1502.03167
https://doi.org/10.1103/PhysRevD.91.084034
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1093/biomet/82.4.711
https://doi.org/10.1103/PhysRevD.90.084029
https://arXiv.org/abs/abs/1705.07215
https://arXiv.org/abs/abs/1705.07215


noise in gravitational-wave detectors, SoftwareX 12,
100620 (2020).

[58] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and
J. D. E. Creighton, Findchirp: An algorithm for detection of
gravitational waves from inspiraling compact binaries,
Phys. Rev. D 85, 122006 (2012).

[59] A. Nitz et al., gwastro/pycbc (2021), 10.5281/zenodo
.5347736.

[60] S. A. Sengupta, S. Roy, and P. Ajith, Effectual template
banks for upcoming compact binary searches in advanced-
ligo and virgo data, Phys. Rev. D 99, 024048 (2019).

[61] R. E. Walpole et al., Probability and Statistics for Engineers
and Scientists (Pearson Education, Boston, 2007).

[62] T. Karras et al., Training generative adversarial networks
with limited data, arXiv:abs/2006.06676.

[63] G. Ashton et al., Parameterised population models of
transient non-Gaussian noise in the LIGO gravitational-
wave detectors, arXiv:2110.02689.

[64] I. Jolliffe and J. Cadima, Principal component analysis: A
review and recent developments, Phil. Trans. R. Soc. A 374,
20150202 (2016).

[65] F. Pedregosa et al., SCIKIT-LEARN: Machine learning in
PYTHON, J. Mach. Learn. Res. 12, 2825 (2011).

[66] D. Reynolds, Gaussian mixture models, in Encyclopedia of
Biometrics, edited by Stan Z. Li and Anil Jain (Springer US,
Boston, MA, 2009) pp. 659–663.

[67] Y. Shen et al., Interpreting the latent space of GANS for
semantic face editing, Proceedings of the 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition
(CVPR) (IEEE Computer Society, Los Alamitos, 2020),
9240–9249.

[68] B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown, and
J. D. E. Creighton, Findchirp: An algorithm for detection of
gravitational waves from inspiraling compact binaries,
Phys. Rev. D 85, 122006 (2012).

[69] K. Cannon et al., GstLAL: A software framework for
gravitational wave discovery, SoftwareX 14, 100680
(2021).

[70] C. Hanna et al., Fast evaluation of multidetector consistency
for real-time gravitational wave searches, Phys. Rev. D 101,
022003 (2020).

[71] G. H. Golub and C. F. Van Loan, Matrix computations
(Johns Hopkins University Press, Baltimore, 1996).

[72] K. Cannon, A. Chapman, C. Hanna, D. Keppel, A. C.
Searle, and A. J. Weinstein, Singular value decomposition
applied to compact binary coalescence gravitational-wave
signals, Phys. Rev. D 82, 044025 (2010).

[73] S. Kulkarni, K. S. Phukon, A. Reza, S. Bose, A. Dasgupta,
D. Krishnaswamy, and A. S. Sengupta, Random projections
in gravitational wave searches of compact binaries, Phys.
Rev. D 99, 101503 (2019).

[74] A. Reza et al., Random projections in gravitational-wave
searches from compact binaries II: Efficient reconstruction
of the detection statistic, arXiv:2101.03226.

[75] D. Shoemaker et al., Advanced LIGO anticipated sensitivity
curves, LIGO Document LIGO-T0900288-v3, 2010.

SIMULATING TRANSIENT NOISE BURSTS IN LIGO WITH … PHYS. REV. D 106, 023027 (2022)

023027-17

https://doi.org/10.1016/j.softx.2020.100620
https://doi.org/10.1016/j.softx.2020.100620
https://doi.org/10.1103/PhysRevD.85.122006
https://doi.org/10.5281/zenodo.5347736
https://doi.org/10.5281/zenodo.5347736
https://doi.org/10.1103/PhysRevD.99.024048
https://arXiv.org/abs/abs/2006.06676
https://arXiv.org/abs/2110.02689
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1098/rsta.2015.0202
https://doi.org/10.1103/PhysRevD.85.122006
https://doi.org/10.1016/j.softx.2021.100680
https://doi.org/10.1016/j.softx.2021.100680
https://doi.org/10.1103/PhysRevD.101.022003
https://doi.org/10.1103/PhysRevD.101.022003
https://doi.org/10.1103/PhysRevD.82.044025
https://doi.org/10.1103/PhysRevD.99.101503
https://doi.org/10.1103/PhysRevD.99.101503
https://arXiv.org/abs/2101.03226

