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Featured Application: The presented paper conducted a comparative analysis based on well-known
MLP, SVM, DT, and RF learning methods to assess/predict the safety factor (F.S) of earthslopes.

Abstract: Earth slopes’ stability analysis is a key task in geotechnical engineering that provides a
detailed view of the slope conditions used to implement appropriate stabilizations. In the stability
analysis process, calculating the safety factor (F.S) plays an essential part in the stability assessment,
which guarantees operations’ success. Providing accurate and reliable F.S can be used to improve the
stability analysis procedure as well as stabilizations. In this regard, researchers used computational
intelligent methodologies to reach highly accurate F.S calculations. The presented study focused on
the F.S estimation process and attempted to provide a comparative analysis based on computational
intelligence and machine learning methods. In this regard, the well-known multilayer perceptron
(MLP), decision tree (DT), support vector machines (SVM), and random forest (RF) learning algo-
rithms were used to predict/calculate F.S for the earth slopes. These machine learning classifiers have
a strong capability predict the F.S under certain conditions for slope failures and uncertainties. These
models were implemented on a dataset containing 100 earth slopes’ stabilities, recorded based on F.S
from various locations in the provinces of Fars, Isfahan, and Tehran in Iran, which were randomly
divided into the training and testing datasets. These predictive models were validated by Janbu’s
limit equilibrium analysis method (LEM) and GeoStudio commercial software. Regarding the study’s
results, MLP (accuracy = 0.901/precision = 0.90) provides more accurate results to predict the F.S
than other classifiers, with good agreement with LEM results. The SVM algorithm follows MLP
(accuracy = 0.873/precision = 0.85). Regarding the estimated loss function, MLP obtained a 0.29 av-
erage loss in the F.S prediction process, which is the lowest rate. The SVM, DT, and RF obtained 0.41,
0.62, and 0.45 losses, respectively. This article tried to fill the gap in traditional analysis procedures
based on advanced procedures in slope stability assessments.

Keywords: machine learning; slope stability; predictive models; limit equilibrium analysis; factor
of safety

1. Introduction

Slope stability is a crucial representation of rock, soil, or combined mass under various
failures that lead to moving removable masses on a slope downstream [1]. Slope failures
lead to ground deformation on a different scale and cause damage to facilities, roads,
railways, infrastructures, and foundations [2,3]. The instabilities occurred under certain
conditions or triggering factors, which can be related to the slope mass geometry, stress–
strain history, geo-material status, external loadings, regional climate, seismic activity,
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pore water pressure conditions, and geo-structures. These triggering factors are used to
determine the behavior of sliding mass and the potential slip surface expansion in slopes [4].
Slope mass geometry, or slope topography, can provide favorable conditions for slope mass
sliding, falling, and overturning. In general, the likelihood of sliding rises as the slope
angle gets steeper [2]. The presence of stress–strain history in a slope can cause ground
movements, such as plastic slips and creep, which are mainly a time-dependent behavior
of loose soils. Geo-material status is one of the well-known conditions that might provide a
suitable condition for slope instabilities. The existence of loose layers or clay lenses, organic
soils, marl, and glacial deposits are always considered essential drivers in slope failures [1].
External loadings and seismic activities can trigger the slope to failure under dynamic
conditions, especially in an earthquake event, liquefaction, sand boils, dewatering of dams,
tunnel boring, or heavy machinery. Regional climate responsibility for slow changes in
slope conditions is known as weathering.

Weathering can be caused a decrease in the shear strength and durability of soil
grains, which is considered a trigger for sliding in the slope [5,6]. Pore water pressure
is one of the well-known motivating factors that leads slopes to failure. Most stability
analysis equations consider the pore water pressure as one of the critical parameters in
their calculations [1]. Pore water pressure is the pressure of groundwater held in soil (or
rocks) at the pores between particles, increasing the fluidization of particles and reducing
soil interparticle friction [4]. Finally, geo-structures are mostly related to faults, folding,
and complex geological deformations that make ground changes. These structures provide
appropriate conditions for particular failures such as debris, slope toe erosion, or side-base
instabilities. Although many of these failures are related to rock slopes, numerous cases
have also been observed in earth slopes [7,8].

In slope stability analysis, the slip surface that is considered as keyline between stable
and unstable masses in a slope can be calculated based on the safety factor (F.S) index [1].
Regarding the geological composition of slopes, failures can be classified as earth slope
and rock slope instabilities. Earth slopes act as homogeneous masses, which leads to the
generation of the rotational (or massive failure) and planar forms. In rock slopes, the
failure types are more varied, and the slope condition can be categorized as planar, wedge,
toppling, and rotational failures [9,10]. Regardless of the type of failure that occurs in
slopes, using the possible slippery mass condition can lead to the calculation of the F.S
for the slope. F.S can be estimated by closing the polyhedral forces’ vectors or moments
in an equilibrium state at the assumed sliding surface regarding dynamic and/or static
conditions for two- and/or three-dimensional spaces [4].

F.S =
∑ Resistance forces or moments
∑ Activation forces or moments

(1)

If all assumptions and requirements are met, and these polyhedral force vectors are
closed, the slope mass must be in equilibrium, and the stability analysis must be reliable.
The non-closure polyhedral vectors (forces and/or moments) are exemplified by the failure
to satisfy several key requirements [9].

In earth slopes, in the absence of resistant surfaces or bedrock or layering with high
strength, the sliding surface passes through locations with the lowest resistance, and F.S
will be at its minimum. Thus, the slope will be stable if the F.Smin is over the critical state
(F.S = 1). On the other hand, if the F.Smin value is less than the critical state, the slope is
unstable. Accurate estimation of the F.S value can be used for stabilizations and provide
reliable stability analysis for the slopes. Various stability analysis techniques have been
developed over 300 years to calculate the F.S and identify the probable slip surface, the
instability scale, and failure mechanism, which are categorized as routine evaluations,
limit state criteria, planar failure, limit equilibrium, numeric, hybrid, high-order, and
intelligent methods [10–13]. Each of these approaches has its benefits and limitations; some
of them, such as limit equilibrium methods (LEMs), have been of more interest due to their
simplicity in implementation, fewer assumptions, and the capability of generalization and
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inoculation with other methods. Varied types of LEMs were used in stability analysis with
a historical background, but Fellenius [14] is one of the pioneers of stability analysis by
engineering and computational methods. The Fellenius method is an established stability
analysis based on the moment equilibrium around the failure circle center was applied
on a circular slip surface, which is correct for rotational failures. Bishop [15] provides a
vertical force equilibrium and moment equilibrium-based method to quantify rotational
failures. Nonveiller [16] extended Bishop’s method for the more complicated condition of
massive failures. Fredlund et al. [17] introduce a simplified methodology based on slicing
a main movable mass on an earth slope, which is used to calculate the F.S in rotational
failures with circular slip surfaces. Janbu and his colleagues [18,19] provide detailed
LEMs-based methods for analyzing the stability conditions of earth slopes, which are
capable of implementation in the general shape of slip surfaces. After these, researchers
developing LEMs-based stability methods received considerable attention, which led to
the introduction and application of various LEMs in stability analysis. Several of the
well-known methods can be mentioned, such as the Swedish [20], USACE [21], Lowe–
Karafiath [20], Sarma [22], Spencer [23], Morgenstern–Price [24], and Correia [25] methods.
LEMs provide close results in calculating F.S, and the difference in the estimated values
for F.S is generally about 6% [26]. Zhu et al. [27] stated that the LEM-based methods
could be generalized for all types of methods, which can be applied to all kinds of slip
surfaces for different failure mechanisms. The conventional LEMs methods perform the
progressive instability analysis using iterative processes due to the limitations of the
assumed surface for slip parameter evaluations. By advancing computer application in
slope stability analysis, the LEM-based methods are significantly improved and capable of
solving more complicated equations regarding F.S, which cover the traditional procedures
in LEM analysis. Particularly, computational intelligent methods provide a highly accurate
prediction about the slope condition, failure mechanism, and risk potential to slip [5,27–30].

Advanced technologies including artificial intelligence, especially machine learning,
have provided significant help in the stability analysis of earth slopes regarding F.S estima-
tion using predictive models. Predictive models attempt to forecast and evaluate the F.S
according to the machine learning rate and specific accuracy. Machine learning algorithms
attempt to build methods to understand the current circumstance of target data, learn,
and operate to learn using training data. Machine learning uses different applications of
various algorithms, which are classified as shallow, and deep learning techniques also
attempt to make predictions or decisions [31]. The predictions’ accuracy directly depends
on the learning rate of the algorithms, which can correspond to learning paradigms, such as
supervised, unsupervised, or reinforcement learning [32]. No matter what type of learning
is utilized in predictions, each algorithm can be analyzed for performance to understand
its precision and accuracy [33].

The main ideas of using machine learning techniques to provide a safety factor or F.S
for slopes can be classified based on several motivations: (i) F.S is a crucial value to the
safety design, and an essential reliance of innovation and reliability against slope failure is
directly related to this factor. Therefore, providing a reliable F.S with a low error rate and
high precision is crucial. Traditional procedures are primarily based on simplified analyses
and certain assumptions, which increase the error rate of calculations. (ii) In slope stability
analysis, there are typically uncertainties in the evaluation process, which reduces the
precision of calculations. Traditional methods usually do not have the possibility to cover
such uncertainties. However, machine learning, with the amount of repetition in learning,
can cover these uncertainties laterally and improve performance. (iii) The important point
of reliance in machine learning analysis is the possibility of measuring the accuracy and
performance of learning models during prediction processes, which can be estimated by
the confusion matrix, error table, or loss function. There is no such capability in the usual
stability analysis methods. Assessing the model’s accuracy can be very useful in decision-
making and conducting optimal stabilization strategies. Therefore, in traditional methods,
stabilization strategies are made based on experience.
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Generally, machine learning techniques can effectively be used to develop robust
predictive models for slope stability and to predict key parameters and stabilize behaviors
in geotechnical engineering applications where uncertainty is inherent. Uncertainty con-
siderations are the main deficiency in empirical and statistical assessments, leading to an
increased error rate for stability analysis. The most significant uncertainties in estimating
the slope safety coefficient (F.S) for various indicators include pore water pressure, geo-
material characteristics, slope geometry, and slope strength properties [4]. Therefore, it
is considered a priority to use approaches that can best cover the uncertainties or have a
better ability and performance than these uncertainties. Machine learning procedures are
strong tools to reach that goal.

The present study attempted to use several well-known machine learning algorithms
to provide highly accurate predictive models to estimate the F.S for earth slopes. In this
regard, the multilayer perceptron (MLP), decision tree (DT), support vector machines (SVM),
and random forest (RF) learning algorithms were considered as the primary analysis core.
These algorithms have features and advantages that have caused researchers to use them
in different works, especially geotechnical analysis and domain stability. These benefits are
summarized as follows:

They can handle both classification and regression on linear and non-linear data;

- They use hyperplane, nodes, and neurons, which act like a decision boundary between
different classes;

- Options and choices are set out logically at the same time, and costs are considered as
well as potential benefits, which leads to calculating the capabilities and errors;

- There is the possibility of measuring the amount of error and the accuracy of calcula-
tions depending on the complexity level of the analysis;

- There is a reduction of calculation time and the possibility of using it in all stages of
evaluation and stabilization;

- They provide a higher level of accuracy in predicting outcomes, which automatically
reduces the error rate;

- They are easy to understand and provide tangible results.

2. Analysis Methods Principles

Machine learning is a field of artificial intelligence study devoted to understanding
and developing “learn” methods or techniques that use data to enhance performance on
a particular set of tasks. To make predictions, classifications, or decisions without being
explicitly programmed to do so, machine learning algorithms construct a predictive model
from training data and test from testing data. These processes help in understanding the
models regarding learning stages, which are presented as ‘learning rate’. By increasing
the learning rate of the predictive model, it is expected that the accuracy will increase and
the calculation error will decrease [33]. The model performance was controlled using a
confusion matrix and loss functions, the main controlling criteria in machine learning-
based evaluations. Optimization is also closely related to machine learning: many learning
problems are formulated on a training set to minimize loss function [31].

The confusion matrix is liable to evaluate the performance of the predictive models,
and the loss function represents the learning rate and the model’s capability to operate
accordingly. In both the matrix and loss table, criteria are varied from 0 to 1, 0 being the
lowest performance and 1 being the highest performance. Thus, the models that reach 1
or near it obtain reliable operation. On the other hand, reaching 0 represents unreliable
modeling. The loss function provides information about mathematical optimization and
seeks to minimize errors regarding the prediction and measured values. Therefore, there is
a difference between estimated and valid values for a data instance [31]. The matrix has
calculated precision, recall, f1-score, and accuracy elements, known as evaluation criteria.
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3. Methods and Materials
3.1. Analysis Method

The stability analysis of the earth slopes, MLP, SVM, DT, and RF classifiers are utilized,
which are considered benchmark algorithms in machine learning. MLP is a fully-connected
feed-forward type of artificial neural network (ANN) classifier that refers to an ANN-based
net consisting of multiple perceptron layers. MLP contains at least three layers of nodes
as input, hidden, and output, which are supervised learning techniques [31]. MLP mainly
uses fully connected activation functions such as sigmoids or rectifier linear units (ReLU)
to join the nodes in different layers and supervise learning techniques. Learning in the
perceptron net occurred by changing connection weights after data processing according to
the error rate in the output as opposed to the expected result [34]. The SVM is a supervised
model for data analysis for regression and classification objectives [35]. SVM is a prediction
procedure built on statistical learning frameworks or the Vapnik–Chervonenkis theory [36].
SVM can effectively carry out a linear or non-linear classification by kernel tricks that
implicitly translate their inputs into feature spaces with high dimensions [35]. An SVM
constructs hyperplane(s) in a high- or infinite-dimensional space, which is utilized for
prediction, classification, regression, and outlier detection [37]. A decision tree (DT) is a
tool for decision support that uses a tree-like model of decisions and the potential outcomes
of those decisions. An algorithm that only contains conditional control statements can be
displayed in this manner. DT is frequently applied in operations, primarily in decision
analysis, to assist in determining the most effective strategy for achieving a goal, but it is
also a well-liked machine learning tool. DT is a flowchart-like structure whose internal
nodes each represent a “test” on an attribute; the closely related influence diagram is used
as a visual and analytical tool to help make decisions that can be linearized into decision
rules [38]. Many decision trees are built during training to carry out the classification,
regression, and prediction steps of the random forest (RF) algorithm, an ensemble-based
learning technique [39].

Precision can be estimated as true positive/(true positive + false positive); recall
is true positive/(true positive + false negative); accuracy is (true positive + true neg-
ative)/(true positive + true negative + false positive + false negative); and f1-score is
2 × (precision × recall)/(precision + recall). The coordination of the positivity and nega-
tivity of the variables is presented in Figure 1 [40]. The models learned under specific
optimizing functions that improve the learning rates. The learning rate is a configurable
hyperparameter utilized in the training procedures for machine learning algorithms. Table 1
provides information about the utilized hyperparameters in different applied classifiers.
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Table 1. The hyperparameters used in the utilized models.

Classifier Hyperparameters Elements

MLP
Hidden layers’ size
Learning rate
Optimization

Activation = ’relu’;
Optimization = rmsprop;
Loss_function = ’mse’;
Metrics = ’mae’

SVM Kernels
C value

Kernel =‘poly’; Degree = 2
C = 100; Epsilon = 0.1

DT Max depth
Random state

Criterion = ‘gini’; Max_depth = 5
Ccp_alpha = 0.0;
Min_samples_leaf = 1
Random_state = 100

RF Number of estimators
Max depth

Criterion = ‘entropy’;
N_estimators = 10;
Max_depth = 5;
Min_samples_leaf = 1;
Min_sanmples_split = 2

3.2. Data Preparations

To utilize the benchmark learning algorithms that were carried out in the Python
programming language, an extensive primary dataset was used. The main dataset contains
100 earth slope stability records based on F.S from various locations in Fars, Isfahan, and
Tehran in Iran. The mentioned dataset was randomly divided into a training set (70%
of the primary dataset) and a testing set (30% of the primary dataset). All predictive
models were trained by the training set and validated with the testing set. The training set
contains 70 slope stability records and the testing set contains 30 remaining slope data. The
coefficient of Determination (R2) was used to establish correlations between the predicted
and measured data during the evaluation steps.

3.3. Model Implementations

The first step in modeling is providing the primary dataset, which plays a key role
in the prediction process. The main dataset provided actual data from the different earth
slope investigations and was utilized in the preparation of testing and training sets. Models
were trained with a training set and tested with a testing set regarding the accuracy,
model performance, and capability, which were estimated by the confusion matrix and
loss function.

3.4. Models Validations

The ROC (receiver operating characteristic) curve is applied to validate the predictive
models. ROC is a diagram made by plotting the true positive rate against the false positive
rate, which represents an overall accuracy, and it shows the diagnostic capacity of a
binary classifier system, as well as the range of its discrimination threshold. In this study,
comparative verification was also provided by the ROC curve. On the other hand, it is
necessary to provide the reliability of the estimated F.S the models, which were justified by
limit equilibrium analysis methods (LEMs). The entire database was analyzed regarding
slope stability by LEMs and GeoStudio commercial software. The results of the LEMs were
used to trace the degree of reliability for predicted F.S by the machine learning methods.

4. Results and Discussion

Slope stability analysis evaluates the stability condition of a slope undergoing move-
ment. F.S is a crucial aspect of a numerical description of slope stability. Various method-
ologies are used to investigate slope stability conditions, which have a background of up to
300 years [6]. With the advancement of technology, these methods have become more com-
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plex and their accuracy has increased. Generally, all applied/introduced methods require
several input data which are measured by geotechnical procedures and tests known as
geotechnical characteristics of the slope, and output became F.S. using artificial intelligence
(machine learning) approaches, which are one of the most recently developed techniques
that have received remarkable attention from geo-engineers, due to their capability for
accurate evaluations of stability and F.S. Typical machine learning methods are utilized in
this article to process and predict the F.S for earth slopes.

The predictive models were implemented on actual data to construct the primary
dataset. The dataset belongs to 100 stability analyses recorded from the Fars, Isfahan,
and Tehran provinces in Iran. The slopes are mainly selected from the road cut projects
concerned about stability condition and its effects on roads. Therefore, the study results
are susceptible to stabilization methods that imply rectification of the situation. All slopes
were investigated and the geotechnical properties of earth slopes were estimated during
field surveys and laboratory experiments. Tables 2 and 3 provide information about the
analyzed slopes’ geometrical and geotechnical properties.

Table 2. Studied slopes’ geometrical properties.

Parameter Unit Max Min Mean St.Dv.

Slope height (H) m 25 5.5 15.25 9.75
Slope angle (β) Degree 73 30 51.5 21.25
Slope topography * - Rough Smooth - -
Water level in slope m 3 0 1.5 1.5
Layers number - 1 1 1 0
Tensile crack depth m 1.75 0.12 0.935 0.815
Sliding surfaces depth ** m 27.4 1.3 14.35 13.05

* Slope topography is estimated by intuitive mean ** Sliding surface is estimated by GeoStudio.

Table 3. Studied slopes’ geotechnical properties.

Parameter Unit Max Min Mean St.Dv.

Water content % 37.2 5.44 21.32 22.457
Specific gravity (Gs) - 2.63 2.60 2.61 0.0212
γd kN/m3 19 17 18 1.4142
Slope height m 25 12 18.5 9.1923
Slope angle Degree 72 40 56 22.627
Cohesion (c) kPa 185 93 139 63.053
Friction (ϕ) Degree 35 32 33.5 2.1213
Poisson’s ratio (υ) - 0.35 0.33 0.034 0.0141

To obtain the geotechnical characteristics of the earth slope mass, some specimens
were taken and moved to the geotechnical laboratory. The index geotechnical tests, such
as uniaxial compression strength, UCS [41], direct-shear [42], and physical properties [43],
are directly used in the stability analysis of slopes. Physical properties of the soils can be
categorized as water content, specific gravity, and density (γd), which has a standard proce-
dure for estimation developed by the American Society for Testing and Materials (ASTM).
The density (γd) is the fundamental physical properties used in stability assessment as well
as soil strength parameters, which include cohesion (c), soil internal friction (ϕ), Poisson’s
ratio (υ), and stiffness indexes. The stiffness indexes are the soil’s deformational modulus,
such as young or elastic modulus (E), shear modulus (G), and bulk modulus (k). The
stiffness parameters can be calculated by using empirical equations, which are presented as
follows [1]:

G = E/2 (1 + v) (2)

K = E/3 (1 − 2v) (3)
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The properties of the slope materials estimated by these tests used to investigate the
general stability of the earth slope are based on computer-based calculations. The index
geotechnical properties of the slope mass that are considered for calculation are presented
in Table 3. These data were used for stability analysis in both machine learning-based and
LEMs modeling as input data, which led to obtaining F.S as output. The information about
the geotechnical properties of earth slopes builds the primary dataset used in predictions.
The training set is utilized for training the models, and the test set is applied to validate the
predictions. Measured and predicted values obtained from LEM and predictive models
were correlated by the R2 index. R2 is the link between the actual outcomes and the
prediction values that generally range from 0 to 1, where if the value is closer to 1, a
higher accuracy of the data overlap appears. Figure 2 provides the prediction results
of F.S by different machine learning classifiers on recorded samples in different earth
slope training and testing sets. According to this figure, generally, predictive models have
learned the process at an appropriate rate. In the meantime, the MLP classifier reaches
more predictability for F.S estimation.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 
Figure 2. Measured and predicted results’ correlation on different classifiers based on (a) training 
and (b) testing sets. 

The results of the prediction process that led to evaluating the F.S were controlled by 
GeoStudio commercial software. GeoStudio is a two-dimensional, fully integrated 
software suite with LEM-based stability analysis and six finite element applications in 
various sub-models. Utilizing Janbu’s method, the SLOPE/W was used in this study to 
determine the F.S. Table 3 provides the geotechnical properties of the main slopes used in 
the stability analysis. The data from this table were entered into machine learning 
algorithms and the SLOPE/W program. SLOPE/W followed the several-stage modeling 
process, which can be categorized as geometric modeling, assignment of behavioral and 
materials characteristics, boundary conditions, and stability solutions. These steps are 
performed for the entire dataset (100 different slopes) and solved to calculate the 
minimum F.S of slopes. The calculated F.S was compared with the results of the machine 
learning predictive models. During geometric modeling, the geometry and topography of 

Figure 2. Measured and predicted results’ correlation on different classifiers based on (a) training
and (b) testing sets.



Appl. Sci. 2023, 13, 1555 9 of 14

The results of the prediction process that led to evaluating the F.S were controlled
by GeoStudio commercial software. GeoStudio is a two-dimensional, fully integrated
software suite with LEM-based stability analysis and six finite element applications in
various sub-models. Utilizing Janbu’s method, the SLOPE/W was used in this study to
determine the F.S. Table 3 provides the geotechnical properties of the main slopes used
in the stability analysis. The data from this table were entered into machine learning
algorithms and the SLOPE/W program. SLOPE/W followed the several-stage modeling
process, which can be categorized as geometric modeling, assignment of behavioral and
materials characteristics, boundary conditions, and stability solutions. These steps are
performed for the entire dataset (100 different slopes) and solved to calculate the minimum
F.S of slopes. The calculated F.S was compared with the results of the machine learning
predictive models. During geometric modeling, the geometry and topography of the
slope, such as height, slope angle, layers, thickness of layers, slope surface conditions,
and other (any) morphological complications, are designed and simulated. The studied
earth slopes are composed of Quaternary alluvium, and no special layering or unique
feature has been observed. Therefore, the main variables in geometric modeling are height
and slope angle, which are illustrated in Table 2. Using this information helps to provide
appropriate geometrical modeling for slopes. After preparing the slope geometry, the
boundary conditions and behavioral model must be assigned to the model. The boundary
conditions are easily defined in SLOPE/W. The Mohr–Coulomb (MC) failure criteria were
selected as a behavioral model for stability analysis. The Mohr–Coulomb criteria, which
represent the linear envelope obtained from a plot of the shear strength of a material versus
the applied normal stress, are used to define the shear strength of soils at various effective
stresses [44–48]. Table 3 is the index geo-materials properties used in modeling that are
estimated based on ground survey and laboratory experiments assigned into the model as
‘material’ specifications. When the models are prepared, they are solved based on Janbu’s
method for slope stability analysis, and results are reported as F.S for slopes. Table 4
summarizes the ten studied slope stability calculations conducted by GeoStudio software
as an illustration of the primary database used in predictive and LEM-based modeling.

Table 4. Studied slopes’ geometrical properties.

No. Slope Location Gs γd (kN/m3) H (m) β (o) c (kPa) ϕ (o) F.S

1 Tehran 2.62 18.22 12 45 124 35 1.65
2 Fars 2.63 18.71 10 60 117 33 1.57
3 Fars 2.60 18.20 7 63 93 33 0.98
4 Isfahan 2.60 18.20 15 52 117 35 1.54
5 Tehran 2.62 17.93 17 45 128 35 1.42
6 Fars 2.62 18.00 20 63 155 32 1.57
7 Fars 2.60 18.22 10 67 155 32 1.65
8 Tehran 2.60 18.70 15 40 142 33 1.25
9 Tehran 2.60 17.57 7 45 120 35 1.73
10 Isfahan 2.63 18.00 17 52 117 35 1.33

Figures 3 and 4 provide the results of the prediction process by the different classifiers
plotted against measured data obtained from the LEM method via GeoStudio commercial
software. The R2 coefficients are estimated for both training and testing sets for all predictive
algorithms with LEMs. According to these figures, MLP with R2 = 0.951 in training and
R2 = 0.937 in testing stages reached the highest correlation with LEMs’ results. This shows
that the MLP classifier can effectively and accurately evaluate the F.S coefficient for earth
slopes and provides more reliable results. A look at other class clauses, such as SVM, shows
that this classifier is in second place after the MLP method in the prediction of F.S. The
SVM provides R2 = 0.930 in training and R2 = 0.905 in the testing process, which can be
considered as near approximations of F.S values to actual data. DT and RF provide less
correlation with the LEMs-based results.
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A confusion matrix verified the entire predictive models and evaluation criteria (accu-
racy, precision, and recall), and the models’ loss rates were also estimated. Tables 5 and 6
provide information about the confusion matrix and loss function for different classifiers.
Results of the confusion matrix approved the R2 coefficient results, which show that the
MLP operates with high accuracy (0.901) and precision (0.90). The SVM algorithm follows
the MLP with accuracy (0.873) and precision (0.85). Regarding the estimated loss function
results, it can be mentioned that MLP obtains a 0.29 average loss or cost in the prediction
process, which is the lowest rate among the machine learning classifiers. The SVM, DT,
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and RF obtain 0.41, 0.62, and 0.45 losses, respectively. In Figure 5, the ROC curve analysis
results of all models to evaluate the degree of the capability, which indicates that MLP
provided the highest overall accuracy regarding the AUC (area under the curve) in the ROC
curve, are illustrated. Based on the ROC curve results, MLP and SVM are reliable machine
learning methods that can estimate F.S for earth slopes and provide suitable results. In
the meantime, MLP can be recommended as an alternative technique that provides results
that are appropriate and accurate. Referring to the ROC curve, MLP reaches an overall
accuracy of up to AUC = 0.901 as the highest rank for the performance analysis of the ma-
chine learning classifier compared to the other classifiers. SVM and RF reach AUC = 0.873
and AUC = 0.835 as well. The lowest overall accuracy belongs to DT, with AUC = 0.812.
In this regard, it is possible to say that the application of MLP can provide reliable and
accurate results for F.S with good agreements with LEMs. Using such machine learning
algorithms can help to develop an optimized method to understand the stability condition
of earth slopes and suggest appropriate stabilization techniques to stabilize the slope. Other
benefits of applying such techniques are reducing the cost of surveys, reducing calculation
time, and increasing accuracy in complex stability analysis. Using these advantages helps
geo-engineers to proceed with the stability analysis in the initial time of earthwork and the
conduction of on-time stabilizations.

Table 5. The evaluation criteria estimate for predictive models.

Classifier Dataset
Assessment Score

Accuracy
Precision Recall F1-Score

MLP
Training 0.90 0.90 0.91

0.901Testing 0.91 0.85 0.91

SVM
Training 0.85 0.85 0.87

0.873Testing 0.85 0.87 0.87

DT
Training 0.81 0.83 0.83

0.812Testing 0.80 0.80 0.80

RF
Training 0.85 0.83 0.83

0.835Testing 0.83 0.83 0.85

Table 6. Estimated loss functions for used models.

Classifier Maximum Loss Minimum Loss Mean Loss

MLP 0.4873650 0.1104769 0.298921
SVM 0.5798631 0.2546394 0.417251
DT 0.7506439 0.4934867 0.622065
RF 0.6007535 0.3010182 0.450886

Compared to traditional methods, using machine learning techniques to develop an
accurate prediction of F.S has a number of advantages and limitations. An advantage of the
predictive models offered in this study is that they predicted a suitable and trustworthy
estimate of F.S that could be applied to an analysis of the stability of an earth slope.
Additionally, the comprehensibility and quickness of the achievements for prediction and
classification have made it possible for users and personnel with low experience to use
it well. Increases in the estimation’s accuracy for predicted outcomes can be presented
by lowering error rates capable of being implemented in less time. An attitude towards
the achievements of this research can state that the use of machine learning algorithms
(mentioned classifiers) for predictions is independent of the sliding surface types and related
to the input–output parameters for each stability class. Thus, it is possible to develop an
extension method for other slope instabilities such as rock falls, shallow movements, debris,
and toppling.
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On the other hand, using machine learning algorithms has some limitations that
should always be considered. The most important limit of machine learning algorithms
is the database. A more extensive database is better and increases the learning rate. In
geotechnical engineering, the input parameters are usually broad, with many uncertainties,
so the development of highly accurate models must always have sufficient coverage in its
database (both in the training and testing sets). The other limitation usually faced in the
implementation process of predictive models is related to hardware and system analysis
power. The higher system power is responsible for higher accuracy, higher complexity, and
speed of analysis. Nevertheless, for future scientific research that might be conducted using
machine learning applications by various researchers, it is recommended that scholars give
specific attention to these limitations when they want to utilize machine learning methods.

5. Conclusions

The purpose of the presented study was to provide a comparative assessment of earth
slope stability using benchmark learning classifiers. The objective of the study was to
provide a more reliable and accurate procedure that can be used to estimate F.S for earth
slope instability assessments. The MLP, SVM, DT, and RF algorithms were used to predict
the F.S value as the primary variable or output of the models for the earth slopes. The
primary database was prepared based on 100 records of earth slopes in Iran’s Fars, Isfahan,
and Tehran provinces. The dataset contains records and geotechnical investigations of
the slopes that were used in stability analysis. The main dataset was randomly divided
into training and testing sets, which included 70% and 30% of the primary dataset. The
classifiers were learned with a training set and validated with a testing set. Models were
controlled by LEM-based stability analysis and measured F.S with GeoStudio software. For
performance and capability analysis of the machine learning algorithms, confusion matrix,
loss function, and ROC curves were utilized for all models and implemented in the Python
programming language. As modeling results showed, MLP reached the highest accuracy
(0.901) and precision (0.900). SVM and RF with accuracy = 0.873/precision = 0.850; and
accuracy = 0.835/precision = 0.850 are ranked as the second and third algorithms that
are properly used in F.S prediction. DT obtains the lowest accuracy in the confusion
matrix, with accuracy = 0.812/precision = 0.810. The results were approved based on
overall accuracy with ROC. The estimated losses for the models revealed that MLP is
associated with the lowest loss rate (0.298921) and DT is associated with the highest loss
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rate (0.622065). This article tried to fill the gap in traditional analysis procedures based on
advanced procedures in slope stability assessments.
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