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Abstract
The polynomial combination (PC)method, proposed byVink andVanBuuren, is a hot-
deckmultiple imputationmethod for imputationmodels containing squared terms. The
method yields unbiased regression estimates and preserves the quadratic relationships
in the imputed data for both MCAR and MAR mechanisms. However, Vink and Van
Buuren never studied the coverage rate of the PC method. This paper investigates the
coverage of the nominal 95% confidence intervals for the polynomial combination
method and improves the algorithm to avoid the perfect prediction issue. We also
compare the original and the improved PCmethod to the substantivemodel compatible
fully conditional specification method proposed by Bartlett et al. and elucidate the two
imputation methods’ characters.

Keywords Multiple imputation · Missing data · Quadratic relation · Squared terms

1 Introduction

Squared terms are often included in real-life data models to accommodate some form
of nonlinearity. When the analysis model contains the partially observed covariates
and corresponding squared terms, some challenges arise:

1. The analysis and imputation models should accommodate squared terms, i.e., the
squares themselves should be considered in the imputation procedure of corre-
sponding linear terms.

2. The relation between the square term and its lower-order polynomial should be
preserved.

3. The analysis model parameter estimates should be unbiased.
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Toobtain unbiased estimates, one could impute the squared termas if itwere another
variable. We will refer to this as Transform, then Impute (TTI; Von Hippel 2009).
However, this approach distorts the relationship between the original variable and its
square. A straightforward process to preserve the quadratic relation during imputation
is calculating the squared term only after imputation (Impute, then Transform, ITT).
However, ITT biases estimates of regression coefficients, as its contribution during
imputation is ignored (Von Hippel 2009; Vink and van Buuren 2013). Moreover, both
these partial fixes only work when the missingness is completely random.

To solve these issues for a more general class of missingness mechanisms, Vink
and van Buuren (2013) propose to impute the combination of the original variable
and its square and decompose it into distinct roots. This polynomial combination
approach (PC) is built around predictive mean matching, a nonparametric imputation
hot-deck technique that does not assume a specific distribution for the data (Rubin
1987; Little 1988). Seaman et al. (2012) demonstrated that predictive mean matching
gives biased estimation when the analysis is a linear regression with a quadratic term
and the missingness mechanism is missing at random. However, PC yields unbiased
estimates for MCAR and MAR missingness mechanisms by applying a reasonable
donor selection procedure on the polynomial combination instead.

More recently, Bartlett et al. (2015) proposed a substantive model compatible
approach (SMC-FCS), which generalizes the imputation of nonlinear covariates
beyond the squared term model. The SMC-FCS technique is efficient but needs the
correct data analysis model during imputation to obtain draws of values that conform
to this model. It yields unbiased estimates if 1) the substantive model is correctly
specified and 2) the normality assumption of missing variables with quadratic effects
is tenable because of a restriction of the software (the package smcfcs (Bartlett et al.
2021) in R (R Core Team 2021)). When the missing variable with quadratic effects
does not follow the normal distribution, one could apply an appropriate transformation
tomake the normality assumption plausible (e.g., log-normal distribution).More inter-
estingly, Bartlett et al. (2015) suggest that the SMC-FCS estimates can yield unbiased
inference, meaning that estimates are both unbiased and properly covered cf. Neyman
(1934). Such an investigation into coverage of multiply imputed parameters was not
part of the study by Vink and van Buuren (2013).

We now have two techniques that seem promising in imputing squared terms:
the polynomial combination method and SMC-FCS. Both approaches have appealing
properties, preserve the relationship between the square and its base, andyield unbiased
estimates. However, both techniques differ fundamentally in their approach. SMC-
FCS is a strictly model-based technique that requires the correct specification of the
complete-data model and the substantive model. On the other hand, PC is a hot-deck
technique with a data-driven estimation procedure that only requires the specification
of the polynomial combination.Wehighlighted themost used properties and promising
methods in Table 1 (VonHippel 2009; Vink and van Buuren 2013; Bartlett et al. 2015).

The interpretation of Table 1, taking the SMC-FCS approach as an example, should
be as follows:

1. SMC-FCS yields unbiased regression estimates β provided that the missing mech-
anism isMAR;
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Table 1 Summary of properties of four squared term imputation methods

TTI ITT PC SMC-FCS

Unbiased estimates of β MCAR only – MCAR & MAR MCAR & MAR

Quadratic relationship Not preserved Preserved Preserved Preserved

Coverage rate of β Poor Poor Unknown Correct

Violation of normality Robust Somewhat robust

Model specification Non-parametric Parametric

2. SMC-FCS does preserve the quadratic relationship between the original variable
and its square;

3. SMC-FCS produces correct coverage rates of corresponding regression estimates
β;

4. SMC-FCS is somewhat robust against the violation of normality assumption of the
covariates with quadratic effects;

5. SMC-FCS is a parametric imputation approach, which means SMC-FCS requires
an explicit specified imputation model.

The “ - ” sign in a cell indicates that the method cannot produce unbiased estimates.
Whether the PC method has a correct coverage rate is not thoroughly studied and will
be investigated in the following section. There are four blank cells left because the
TTI and ITT methods cannot produce unbiased regression estimates or preserve the
quadratic relationships; it is redundant to investigate the violation of normality and
model specification for them.

In this manuscript, we evaluate the performance of imputing squared terms with
SMC-FCS and the PCmethod to investigate these techniques’ strengths and limitations
in different scenarios. In the next section, we briefly discuss the SMC-FCS and PC
methodology and propose a minor adjustment to the PC method.

2 Polynomial combination

In this section we detail both the original polynomial combination (OPC) approach
proposed by Vink and van Buuren (2013) and a modification that is robust against
perfect prediction issues. We refer to the modified polynomial combination approach
as MPC.

2.1 Original polynomial combination

Suppose the model of scientific interest is

Y = α + Xβ1 + X2β2 + ε (1)

with ε ∼ N (0, σ 2). We assume that Y is complete and that X = (Xobs, Xmis) is
partially missing.
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The original polynomial combinationmethod first performs predictivemeanmatch-
ing (PMM; Little 1988) on the combined variable Z = Xβ1 + X2β2, and then
decomposes Z into components X and X2. Under the model in Eq. (1), two roots
of variable X are:

X− = − 1

2β2
(

√
4β2Z + β2

1 + β1)

X+ = 1

2β2
(

√
4β2Z + β2

1 − β1) (2)

where the discriminant 4β2Z + β2
1 should be larger than 0. For any imputed Z , we

select either X = X− or X = X+ and square it to derive the square term X2.
The choice between the roots X− and X+is made by random sampling, conditional

on Y , Z , and their interaction Y Z . The binary random variable V is defined as 0 if
X < Xmin and 1 if X > Xmin , where the minimum of the parabola Xmin = −β1/2β2.
We model the probability P(V = 1) by logistic regression as

logitP(V = 1) = YβY + ZβZ + Y ZβYZ (3)

on the observed data, where logitP(V = 1) = log(P(V = 1)/P(V = 0)) is the
logistic function. Under the assumption of ignorability, we apply the same model
to calculate the predicted probability P(V = 1) for Zmis , where Zmis denotes the
polynomial combination of Xmis and X2

mis . Finally, a random draw from the binomial
distribution is made (V = 0 or 1), and the corresponding (negative or positive) root is
selected as the imputation.

2.2 Modification of polynomial combination

Since we estimate binary variables V in the OPC imputation procedure, it is necessary
to avoid bias due to perfect prediction. When imputers apply the original polynomial
combination method, perfect prediction occurs when all the observed binary variables
Vobs are equal to one (or zero). In this case, the likelihood tends to a limit as one
or some regression coefficients tend to infinity, which leads to seriously implausible
imputations of the binary variable V (White et al. 2010).

Suppose all observed X are located on the parabolic function’s right arm, then
the perfect prediction arises. If no corrections are performed, the coefficients of the
logistic function logitP(V = 1) = YβY + ZβZ + Y ZβY Z will have extremely wide
and flat posterior distributions, which tends to derive extremely positive or negative
estimates of coefficients. Provided all observed X are located on the right arm of the
parabolic function, some missing values of X would be addressed incorrectly on the
left arm, as shown in Fig. 1a.

A computationally convenient approach to avoid perfect prediction is data aug-
mentation (van Buuren 2018, section 3.6.2). We augment the data with a few extra
observations and add a small weight to these observations (White et al. 2010, section
5.2). To improve the polynomial combination method, we calculate any unobserved
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Table 2 Augmented data V Y Z

1 1 E(Yobs ) + SD(Yobs ) E(Zobs )

2 1 E(Yobs ) − SD(Yobs ) E(Zobs )

3 0 E(Yobs ) + SD(Yobs ) E(Zobs )

4 0 E(Yobs ) − SD(Yobs ) E(Zobs )

5 1 E(Yobs ) E(Zobs ) + SD(Zobs )

6 1 E(Yobs ) E(Zobs ) − SD(Zobs )

7 0 E(Yobs ) E(Zobs ) + SD(Zobs )

8 0 E(Yobs ) E(Zobs ) − SD(Zobs )

dichotomous outcomes (whether to take the positive or negative distinct real root for
Xmis) Vmis by logistic regression of V given Y, Z, and YZ (i.e., Eq. 3) with the aug-
mented data instead of the observed data. More specifically, based on the observed V ,
Y and Z , the augmented data adds eight subjects shown in Table 2, with the weight
3/8, to the observed data.When the population estimation of the probability P(V = 1)
equals one (or zero), we expect the modified polynomial combination method would
provide more plausible imputations, as shown in Fig. 1b.

2.3 SMC-FCS

The substantive model compatible fully conditional specification (SMC-FCS) is a
parametric imputation method proposed by Bartlett et al. (2015). In general, the
missing predictor is imputed based on other predictors. A rejection sampling (e.g.,
Metropolis-Hastings algorithm) is used where the acceptance ratio is generated based
on the likelihood of the substantive model. Suppose φ is a vector containing the coeffi-
cients of the model f (Y |X) and θi , i = 1, . . . , p is a vector containing the coefficients
of the model f (Xi |X−i ), where X−i are all the other covariates excluding Xi . The
parametric density function of the partially observed variable Xi is proportional to
f (Y |X , φ) f (Xi |X−i , θi ), rooted in the Bayesian rule:

f (Xi |X−i ,Y ) = f (Xi , X−i ,Y )

f (Y , X−i )

∝ f (Y |Xi , X−i ) f (Xi |X−i ). (4)

Since the density generally does not follow a standard parametric family, the rejection
sampling is necessary to draw coefficients from the posterior distributions of φ and θi .
With the assumption of independent priors f (φ) and f (θi ), the posterior distributions
of φ and θi would be:

φ ∼ f (Y |Xi , X−i , φ) f (φ)

θi ∼ f (Xi |X−i , θi ) f (θi ). (5)
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Fig. 1 Imputations (triangles) generated by OPC and MPC. We see that in a some imputations fall outside
of the range of the observed (circle) and unobserved values (square), due to the OPC algorithm assigning
the donor values to the incorrect distinct real root. In b the MPC approach assigns the imputations to the
distinct real root that corresponds to the observed and unobserved data

The statistical property of this approach is that if the substantive model f (Y |X)

is correctly specified, the imputation model will be congenial to the analysis model
(Meng 1994). The lack of congeniality can sometimes produce implausible imputa-
tions that result in biased inferences in the downstream analysis (Robins and Wang
2000).
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3 Evaluation

We evaluated the average biases across all simulations, the coverage of nominal 95%
confidence intervals, and the average width of corresponding confidence intervals of
the regression weights β1 and β2.

3.1 Simulation setup

The outcome Y was simulated according to the scientific model:

Y = α + Xβ1 + X2β2 + ε (6)

with α = 0, β1 = 1, β2 = 1 and ε ∼ N (0, σ 2
ε ). The value of σε varied according

to different distributions of X so that the coefficient of determination R2 was always
equal to 0.75.

The predictor X was generated from a normal, a skew-normal, or a normal mixture
distribution. The mean of X was either 0 or 1, and the variance was 1 for all three
distributions. The abscissa at the parabolic minimum was X = −1/2. Hence, when
the location of X was 0, there was a strong U-shaped association between Y and X .
If X had location 2, the relationship between Y and X would be somewhat linear. For
the skew-normal distribution, we set the slant parameter to be 6 when the mean of X
equaled 0 and−3 when the mean of X equaled 2. For the normal mixture distribution,
X was drawn from N (−0.875, 0.234) and N (0.875, 0.234) with equal probability to
have mean 0 and N (1.125, 0.234) and N (2.875, 0.234)with equal probability to have
mean 2.

We generated a sample of size n = 100 and repeated 1000 simulations for each
missingness scenario. For each simulation scenario, 30 percent missingness was
induced jointly in X and X2 for five missingness mechanisms: MCAR, MARleft,
MARmid, MARtail, and MARright. Specifically, MCAR denotes that the probabil-
ity of X being missing is the same for all cases. While with a left-tailed (MARleft),
centered (MARmid), both tailed (MARtail) or right-tailed (MARright) missingness
mechanism, a higher probability of X being missing is assigned to the units with low,
centered, extreme and high values of Y respectively. Let R be the response indicator
for X , where R equals 0 if X is missing and 1 otherwise. ForMARleft, themissingness
probability is defined as logitP(R = 0) = −X + x̄ +γl , where γl was chosen to make
the probability of missing X equal to 0.3. Similarly, the missingness probability is
defined as logitP(R = 0) = −|X − x̄ | + γm , logitP(R = 0) = |X − x̄ | + γt and
logitP(R = 0) = X − x̄ + γr for MARmid, MARtail and MARright, where γm , γr
and γt were chosen to make corresponding probabilities of missing X equal to 0.3
((van Buuren 2018), section 3.2.4). All missingness was generated with the ampute
function (Schouten et al. 2018) from the package MICE (van Buuren and Groothuis-
Oudshoorn 2011) in R. The mice.impute.quadratic function in the package
MICE was modified by including data augmentation.
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3.2 Simulation results

We compared five approaches: TTI, ITT, OPC, MPC and SMC-FCS and focused on
some remarkable findings of OPC, MPC and SMC-FCS. The results of the TTI and
ITT simulations reiterated the corresponding conclusions in Table 1. In general, TTI
did not preserve the quadratic relation, even though it gave unbiased and confidence-
valid estimates in some cases (e.g., with MCAR and standard normal distribution X ).
Furthermore, ITT had considerable bias under nearly all combinations of missingness
mechanisms and distributions of X .

Table 3 shows the average biases, the coverage of the nominal 95% confidence
intervals, and the average width of confidence intervals for β1 and β2 when E(X)

equals 0. The outcome Y follows a U-shape. With MCAR, MARleft and MARmid
and when X is distributed as normal, skewed normal or a mixture of two normals,
OPC and MPC gave unbiased estimates and correct CI coverage. The CI coverage
of SMC-FCS was close to 95%. However, with X skew-normal distributed MCAR
and MARmid, SMC-FCS was slightly biased. With MARtail and MARright, SMC-
FCS outperformed OPC andMPC when X followed a normal distribution or a normal
mixture distribution.OPC andMPChad slight bias and somewhat reducedCI coverage
(approximately 85%) with X distributed according to a normal, a skewed normal or a
mixture of two normals. SMC-FCS was unbiased and had CI coverage close to 95%
with normal and mixture normal. However, with skewed normal X , SMC-FCS was
somewhat biased and the CI had slightly lower than nominal coverage.

Table 4 demonstrates the mean biases of β1 and β2, the empirical coverage and the
mean width of the corresponding 95% CIs where X is location 2 and scale 1. Almost
all observed values of Y are on the right arm of the quadratic function. With normal
X , SMC-FCS consistently yielded confidence-valid estimates because of the conge-
niality of the analysis model and imputation model. However, with MAR (MARleft,
MARmid, MARtail and MARright), SMC-FCS gave a slightly biased estimate for
β1. OPC and MPC gave unbiased results and the CI had approximately 95% cover-
age under MCAR and MARmid. With MARleft, OPC and MPC were slightly biased
for β1, but the 95% CI for β1 and β2 had the correct coverage. With MARtail and
MARright, OPC and MPC were unbiased. The CI of MPC (around 90%) had higher
nominal coverage than OPC (around 80%). With X distributed according to a skewed
normal, OPC andMPC yielded unbiased estimates under MCAR,MARmid, MARtail
and MARright but slightly biased estimates under MARleft. The CI coverage of OPC
and MPC was close to 95% under MCAR, MARleft and MARmid. Like the case with
normal X , the CI of MPC (around 90%) had better coverage than OPC (around 85%).
With X distributed as a mixture of two normals, SMC-FCS gave biased results under
all missingness mechanisms and its CI had somewhat reduced coverage under MAR-
right. OPC and MPC were unbiased under MCAR, MARmid and MARtail but biased
under MARleft and MARright. MPC had CI coverage close to 95% under all miss-
ingness mechanisms. The CI from OPC had correct coverage under MCAR, MARleft
and MARmid, but approximately 85% coverage under MARtail and MARright.

We investigated if the biases of SMC-FCS were caused by Monte Carlo error.
Figures 2a, b demonstrate that the bias is due to simulation error. The estimates for β1
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Fig. 2 The plot of means and confidence intervals of β1 and β2 from the first 100 simulations. The model
of interest is Y = X + X2 + ε, where X ∼ 1

2 N (1.125, 0.234) + 1
2 N (2.875, 0.234). The missingness

mechanism is MARright and the imputation approach is SMC-FCS. The imputations seem to primarily
overestimate the true parameter estimate of β1 in (a) and underestimate the true parameter estimate of β2
in (b)
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and β2 show primarily overestimation and underestimation, respectively. This implies
that, when applying SMC-FCS, the explicit specification of the distribution of the
incomplete variable with the quadratic effect may need careful consideration.

4 Conclusion

We evaluate the performance of four imputation approaches for incomplete data prob-
lems where the model of scientific interest contains squared terms. We improve the
performance of the polynomial combination method by incorporating a data augmen-
tation step, thus realizing more plausible imputations when the missingness covariate
relates almost exclusively to one arm of the quadratic curve.

In our simulation studies, although ITT preserves the quadratic relations, it gives
biased estimates under almost all combinations of experimental factors. Oppositely,
TTI provides unbiased estimates in some cases but fails to keep the quadratic relations
in the imputed data. With normally distributed predictors and right-tailed missingness
mechanisms, the performance of SMC-FCS is superior to that ofMPC, with coverages
closer to the nominal level. However, when the normality assumption is violated, the
polynomial combination yields less biased estimates. Overall, both the SMC-FCS and
polynomial combination methods produce plausible imputations of squared terms and
outperform TTI and ITT. Differences between the approaches only become apparent
under intense MARtail and MARright scenarios in simulation. However, these two
mechanisms are more extreme than we are likely to see in practice since there is a
strong relationship between the outcome Y and the probability of the variable X being
unobserved in the tail. All in all, when differences in performance are found, such
differences are small, and it may be challenging to interpret them as meaningful. This
means that, in practice, the choice for an imputation approach could largely be a choice
of preference.

If there is a solid, well-known scientific model, we highly recommend using SMC-
FCS to sharpen results. The substantive model would then be correctly specified,
ensuring that the distribution from which imputations are generated is compatible.
SMC-FCS is a reliable model-based method to impute predictors with quadratic
effects. It is theoretically well-grounded, and procedures are available for substan-
tive models based on standard regression, discrete outcomes and proportional hazards
van Buuren (2018). However, with an increasing number of variables in the dataset,
it becomes increasingly challenging to infer the correct substantive model based on
the incomplete data a priori. The strategy of applying SMC-FCS in practice is per-
forming model selection once imputed datasets are generated to ensure the accuracy
of substantive model specification, which is not a trivial process (Bartlett et al. 2015).
Usually, the substantive model is specified according to prior studies or assumptions.

In contrast, we advise using the polynomial combination approach when the sci-
entific model is less specific or when modeling efforts are challenging. It is proven to
be a valid data-driven imputation method that is flexible in applying because we only
need to specify the quadratic term. This makes it straightforward to implement in any
imputation effort. The polynomial combination method is based on predictive mean
matching, and the performance of imputation procedures involving PMM are proven
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to work well in a wide range of research problems (Vink et al. 2015; Rubin 1986;
Little 1988). Therefore, we expect that the polynomial combination approach could
be of great practical importance in incomplete data analyses with squared terms.
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