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The collateral choice option gives the collateral posting party the opportunity to switch between
different collateral currencies which is well-known to impact the asset price. Quantification of the
option’s value is of practical importance but remains challenging under the assumption of stochastic
rates, as it is determined by an intractable distribution that requires involved approximations. Indeed,
many practitioners still rely on deterministic spreads between the rates for valuation. We develop a
scalable and stable stochastic model of the collateral spreads under the assumption of conditional
independence. This allows for a common factor approximation that admits analytical results from
which further estimators are obtained. We show that in modelling the spreads between collateral
rates, a second-order model yields accurate results for the value of the collateral choice option. The
model remains precise for a wide range of model parameters and is numerically efficient even for a
large number of collateral currencies.

Keywords: Collateral choice option; Currency spreads; Conditional independence; Factor model;
CSA

JEL Classifications: C63, G13

1. Introduction

Collateralization describes a market mechanism in which out-
standing exposure is covered by low-risk securities, usually
in the form of cash or bonds. This effectively reduces coun-
terparty credit risk (Simmons 2018) but adds new challenges
and features to the mathematical principles of asset pricing.
Interest is paid on the posted collateral, determined by the
contractually agreed collateral rate. When frictionless collat-
eralization in continuous time is assumed, it can be shown that
this collateral rate is exactly the funding rate of the collateral-
ized asset (Piterbarg 2010, Macey 2011). This idea has been
fully formalized in Bielecki and Rutkowski (2014), which
also feature an analysis of most collateral conventions. When
the Credit Support Annex (CSA) of the trade allows for dif-
ferent collateral securities, the choice of collateral creates an
optionality: the selection of the optimal collateral security,
referred to as the cheapest-to-deliver (CTD) collateral.

Consequently, this collateral choice option should be con-
sidered in the pricing of the collateralized asset. In this article,
we introduce a novel approach for the pricing of the collateral

∗Corresponding author. Email: felix.wolf@ulb.be

choice option, which allows for fast and accurate valuation,
particularly, when many collateral currencies are available.

Pricing the collateral choice option first found wide atten-
tion in the literature in the contributions (Fujii and Taka-
hashi 2011, Piterbarg 2012, 2013, McCloud 2013, Antonov
and Piterbarg 2014, Sankovich and Zhu 2015). This hap-
pened in the aftermath of the global financial crisis, which
makes it plausible to connect the sudden interest in this option
with two main changes brought about. First, the deteriora-
tion of interest rates reduced profit margins in the interest
rate sector (Bikker and Vervliet 2017), which prompted the
search for even small contributions to profitability. Secondly,
cross-currency basis spreads widened during the crisis and
afterwards, which pointed to increased differences in the
costs of currencies and directly affected the collateral choice
option.

Throughout the article, we assume that the collateral secu-
rities are paid in cash. Then, the associated collateral rates
are usually determined by proxies for a minimum-risk interest
rate, for example, the OIS rate. The model developed here can
be applied to other securities on condition that the associated
collateral rate can be expressed in a short rate framework. We
further assume that collateralization happens in continuous

© 2021 Informa UK Limited, trading as Taylor & Francis Group
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time without frictions such as payment thresholds. Discount-
ing practices have been revised in many places after the global
financial crisis. Discounting rates need to live up to higher
scrutiny as the assumption of risk-free lending and borrow-
ing is reexamined. In the case of collateralized trades, default
risks are theoretically removed and discounting only needs
to consider the time value of money. Then, the appropriate
discounting rate is determined by the posted collateral.

When there is only one collateral rate, c0, available, Piter-
barg (2012) shows that the measure Q0, under which the
valuation takes place, is determined by the collateral rate c0.
Hence the price of an asset V with single pay-off V (T) at time
T > 0 is given by

V (0) = EQ0

[
exp

(
−
∫ T

0
c0(s) ds

)
V (T)

]
. (1)

The collateral choice option arises, when there are multiple
currencies i ∈ {0, . . . , N} in which the collateral can be paid.
Each of these currencies is associated with its own collateral
rate ci, which are currency-specific interest rates. To make
these rates directly comparable, they need to be adjusted to
act on a common base currency. Further, as the measure is
determined by the collateral rate, the presence of multiple
collateral rates implies that for each collateral rate ci, there
is a measure Qi, under which rate ci is the appropriate dis-
counting rate. A consistent model is obtained by fixing one
measure under which all other collateral rates are considered.
Typically, the measure chosen is determined by the domestic
currency associated with the collateral rate c0, corresponding
to, for example, USD. Then, the dynamics of the remaining
rates must be taken under this measure Q0 and, additionally,
they must be translated to the domestic currency. We directly
consider such comparable, FX-adjusted collateral rates under
the domestic measure Q0 and denote these by {r0, . . . , rN },
where the domestic rate r0 = c0. A more detailed framework
permitting different payment and collateral currencies is given
in McCloud (2013).

The exact value of the collateral choice option depends
on the constraints given by the credit support annex (CSA)
of the collateralized asset. Assuming that the entire collat-
eral account can be switched from one collateral security to
another at any time, results in the least restrictive scenario
of full substitution rights. This scenario can be considered
the base case, which allows any collateral posting strategy
and as such yields a maximal estimate for the value of the
collateral choice option. In this broader generalization, the
collateral choice option can be detached from the collateral-
ized asset, which is desirable as the valuation methods tends
to be too involved to be computed for every collateralized
asset individually. This formulation is considered in Piter-
barg (2012), Antonov and Piterbarg (2014), and Sankovich
and Zhu (2015). A more realistic scenario is given under
sticky collateral rules, where existing collateral cannot be
exchanged, but newly posted collateral may be paid in the
form of a different security. In this case, the value of the col-
lateral choice option takes dynamics similar to an American
option and becomes asset-specific. Mathematically, this sce-
nario extends the question to a (stochastic) control problem
and is analysed in Piterbarg (2013).

In this article, full substitution rights and an instantaneous
exchange of collateral in continuous time are assumed, dif-
ferentiating the problem under consideration from margin
valuation type problems.

Assume there are N + 1 currencies available, each asso-
ciated with an FX-adjusted collateral rate ri, i ∈ {0, . . . , N},
in which the collateral can be posted and substituted freely.
Given this optionality, the optimal strategy, i.e. the strategy
yielding the highest interest on posted collateral, clearly con-
sists of exchanging all collateral to the highest paying rate
at any time. In other words, the valuation of aforementioned
single payment asset V at time T is now

EQ0

[
exp

(
−
∫ T

0
max (r0(t), . . . , rN (t)) dt

)
V (T)

]
, (2)

with expectation taken under the fixed domestic measure Q0.
Accurately, the value of the collateral choice option still

depends on each asset, due to interdependencies between the
cashflows of the collateralized asset and the collateral rates.
To alleviate this situation and obtain a single value, it is
common to assume independence between the asset and the
collateral rates (Piterbarg 2012), such that (2) can be factored
into

EQ0

[
e− ∫ T

0 max(r0(t),...,rN (t))dtV (T)
]

≈ EQ0

[
e− ∫ T

0 max(r0(t),...,rN (t))dt
]

EQ0 [V (T)] . (3)

We emphasize that this is a strong assumption, as the collat-
eralized asset will often not be independent of the collateral
rates. This is particularly evident in the case of interest rate
products. Nevertheless, it is a pragmatic assumption that
practitioners utilize. The resulting CTD discount factor,

DF(0, T) = EQ0

[
exp

(
−
∫ T

0
max (r0(t), . . . , rN (t)) dt

)]
,

(4)
offers a first estimate of the collateral choice option’s value.

The inherent convexity of the discount factor formula (4)
implies that the result obtained from a deterministic model
of the (FX-adjusted) collateral rates systematically differs
from the result of a stochastic model. This is illustrated in
Figure 1, where an example of deterministic and stochas-
tic collateral rates is given, chosen such that the expectation
of the stochastic rates equals the deterministic rates. As a
direct consequence of Jensen’s inequality, the maximum of
the stochastic rates is always greater or equal to the maximum
of the deterministic rates,

EQ0 [max (r0(t), . . . , rN (t))]

≥ max
(
EQ0

[
r0(t)

]
, . . . , EQ0

[
rN (t)

])
. (5)

When these maxima are non-negative, as in the collateral
spread formulation introduced in the following section, the
discount factor produced by the deterministic model is always
greater or equal to the discount factor obtained from the
stochastic model.
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Figure 1. Trajectories of stochastic and deterministic collateral rates.
The expectation of the stochastic rates equals the deterministic rates,
but the expectation of the maximum over the stochastic rates is larger
than the maximum of the deterministic rates.

1.1. From collateral rates to collateral spreads

A difficulty in the stochastic modelling of (4) lies in the low
analytical tractability of the distribution of the integral of
the maximum of collateral rates,

∫ T
0 max(r0(t), . . . , rN (t))dt.

In Sankovich and Zhu (2015), an approximation scheme is
developed, which matches an analytically tractable distribu-
tion, a quadratic polynomial of the normal distribution, to
the first three moments of the integral of the maximum. This
method focuses in particular on the preservation of the third
moment of the integral, as the authors notice a significant
skewness in the distribution of the integral of the maximum
of FX-adjusted collateral rates. To obtain the three required
moments of the integral of the maximum, an extension of
the Clark procedure (Clark 1961) for the maximum of normal
distributions is developed.

In this article, we consider a model based on collat-
eral spreads, which are the difference processes between
FX-adjusted collateral rates. We will show in this article, that
they can be captured accurately by a model based on only two
moments. The collateral spread approach was introduced in
Piterbarg (2012), where the differences between the collateral
rates and a selected base collateral rate are modelled directly.
To this end, we fix the base collateral rate r0 and define the
collateral spreads qi, i ∈ {1, . . . , N} by

qi := ri − r0. (6)

This allows for the transformation of the maximum of the
collateral rates into a maximum of spreads,

max (r0(t), . . . , rN (t)) = r0(t) + max (0, q1(t), . . . , qN (t)) .
(7)

Applying this transformation to (4) yields

DF(0, T)

= EQ0

[
exp

(
−
∫ T

0
r0(t) + max (0, q1(t), . . . , qN (t)) dt

)]

= P0(0, T)ET

[
exp

(
−
∫ T

0
max (0, q1(t), . . . , qN (t)) dt

)]
,

(8)

where ET denotes expectation under the T-forward mea-
sure with numéraire P0(0, T) := EQ0 [exp(− ∫ T

0 r0(t) dt)]. In
this setting, typically the spreads qi, not the collateral rates,
are provided with stochastic dynamics. Whilst the collateral
spread maximum in (8) differs from the collateral rate max-
imum in (4) by an additional constant zero component, the
problem of low tractability persists.

In Antonov and Piterbarg (2014), the special case of exactly
two collateral currencies is covered. Besides approximation
schemes based on the first and second-order Taylor expan-
sions, a conditional independence approach for the valuation
of the collateral choice option is introduced, in which the
distributions of the maximum process at different times are
assumed conditionally independent.

In this article, we develop an alternative approximation
scheme for collateral spreads suitable to the case when more
than two collateral currencies are available.

From a practical and risk management perspective, this
is an essential advance over approximation of the multi-
currency option with a carefully calibrated two-currency
setup, as contributions of the individual currencies can be sep-
arated. Furthermore, it is not given that the high-dimensional
multi-currency problem can generally be projected down to
the one-dimensional problem solved by a two-currency spread
setup.

The collateral spread method proposed in this article is
based on the observation that the volatilities of the collat-
eral spreads qi, i ∈ {1, . . . , N} are significantly smaller than
the volatilities of the FX-adjusted collateral rates considered
in Sankovich and Zhu (2015). This can be attributed to high
correlations between the FX-adjusted collateral rates, which
results in low volatility of their difference processes, the col-
lateral spreads. As a result, the third moment of the integral∫ T

0 max(0, q1(s), . . . , qN (s)) ds is significantly smaller than

the third moment of the integral
∫ T

0 max(r0(s), . . . , rN (s)) ds.
This allows us to create a stochastic model based on
only two moments of the underlying distribution, which
achieves high precision within a short computation time, even
in the presence of a large number of available collateral
currencies.

In this procedure, the marginal distributions of the max-
imum max(0, q1(t), . . . , qN (t)) at each time t ∈ (0, T] are
approximated by a conditionally independent model. This
allows for direct computation of the first two moments,
E[max(0, q1(t), . . . , qN (t))] and Var[max(0, q1(t), . . . , qN (t))],
on which the second-order model is built. It is important to
note differences to the conditional independence assumption
proposed in Antonov and Piterbarg (2014). Here, we assume
that at fixed times, the components of the maximum, the col-
lateral spreads, are conditionally independent from another.
Antonov and Piterbarg (2014), however, assume conditional
independence between the maximum process distributions at
different times to approximate the process structure. In the
approach presented here, this particular obstacle is treated by
two different estimators, which approximate the behaviour of
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the maximum process along time with a standard Itô diffusion
and a mean-reverting process, respectively.

In Section 2, we introduce the underlying collateral spread
model and the first and second-order approximations of the
CTD discount factor used. In Section 3, a conditional inde-
pendence model called the common factor approximation
is defined, which directly results in a first-order estimator
of the CTD discount factor. Section 4 extends this result
by two types of second-order estimators based on the com-
mon factor approximation. Section 5 and Appendix 1 outline
a model extension that supports more general correlation
structures between the collateral currencies. In Section 6 we
consider accuracy, model parameter sensitivity, robustness in
a stressed scenario and speed of these first and second-order
approximations of the collateral choice option.

2. The CTD model

2.1. Collateral spread model

We model the collateral spreads qi, i ∈ {1, . . . , N} between the
FX-adjusted collateral rates ri and the designated base collat-
eral rate r0. These spreads are directly modelled under the T-
forward measure, where P0(0, t) = EQ0 [exp(− ∫ t

0 r0(s) ds)] is
the numéraire. In the following, all probabilities, expectations
and variances are taken with respect to this measure.

The spreads qi are modelled with Hull–White dynamics of
the form

dqi(t) = κi (θi(t) − qi(t)) dt + ξi dWi(t),

i ∈ {1, . . . , N}, t ∈ (0, T], (9)

with initial values qi(0) ∈ R, speed of mean reversion param-
eters κi ∈ R+, long-term means {θi(t) ∈ R : t ∈ (0, T]} and
volatility parameters ξi ∈ R+. The driving stochastic pro-
cesses Wi are Brownian motions under the T-forward mea-
sure and correlated such that their quadratic covariation
is d[Wi, Wj]t = ρi,jdt for some value ρi,j ∈ [0, 1) for i, j ∈
{1, . . . , N} and i �= j. From the well-known solution of (9),
given in Oosterlee and Grzelak (2019),

qi(t) = qi(0)e−κi t + κi

∫ t

0
θi(s)e

−(t−s)κi ds

+ ξie
−κi t

∫ t

0
eκis dWi(s), (10)

it is clear that, at each time t ∈ (0, T], the spread qi(t) is
normally distributed with expectation

μi(t) := E[qi(t)] = qi(0)e−κi t + κi

∫ t

0
θi(s)e

−(t−s)κi ds, (11)

and variance

σ 2
i (t) := Var[qi(t)] = ξ 2

i

2κi

(
1 − e−2κi t

)
. (12)

Further, at any t ∈ (0, T] the linear correlation between two
different spreads qi(t) and qj(t) is given by

corr(qi(t), qj(t)) := Cov
[
qi(t), qj(t)

](
Var[qi(t)]Var[qj(t)]

)1/2

= 2ρi,j

√
κiκj

κi + κj

1 − e−(κi+κj)t√
(1 − e−2κi t)(1 − e−2κj t)

.

(13)

Remark 2.1 The correlation of Hull–White processes qi and
qj is only constant in time when they have the same speed of
mean reversion parameter, κi = κj. Otherwise, the correlation
slowly decreases in time.

2.2. Approximating the CTD

The cheapest-to-deliver problem in (8) is characterized by the
term

E

[
exp

(
−
∫ T

0
max(0, q1(t), . . . , qN (t)) dt

)]
, (14)

for which no analytical solution is known when the spreads
qi are modelled with Hull–White dynamics. In the follow-
ing, we will introduce approximations that lead to analyti-
cally tractable formulas. First, we establish some additional
notation.

Definition 2.1 Let M be the maximum process defined for
every t ∈ (0, T] as

M (t) = max (0, q1(t), . . . , qN (t)) . (15)

Let Y(T) be the integral of the maximum process until matu-
rity T,

Y (T) =
∫ T

0
M (t) dt. (16)

The object of interest is the first moment of the random
variable exp(−Y(T)), which is equivalent to the expression
in (14). An approximation of this first moment can be found
by the delta method, in which the expectation E[exp(−Y(T))]
is replaced by the expectation of a polynomial approximation
of exp(−Y(T)). Applications of this method can be found in
Grzelak and Oosterlee (2011), Amstrup (2005) and an analyti-
cal study of the method is given in Oehlert (1992). The Taylor
approximation of exp(−Y(T)) of order � around expansion
point E[Y (T)] is given by

eE[−Y (T)] +
�∑

m=1

(−1)m

m!
eE[−Y (T)] (Y (T) − E[Y (T)])m , (17)

and depends on central moments of the integral, E[(Y (T) −
E[Y (T)])m], of orders m ∈ {1, . . . , �}. We focus on approxi-
mation schemes up to the second order, as these already yield
very precise results which is shown in Section 6.
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In the first-order Taylor approximation, it holds

E
[
exp (−Y(T))

]
≈ E

[
exp

(
E
[−Y(T)

])− exp
(
E
[−Y(T)

])
(Y − E[Y (T)])

]
= exp

(−E
[
Y (T)

])
. (18)

That is, the first-order approximation is equivalent to
exchanging the exponential and expectation operators. Anal-
ogously, the second-order approximation is given by

E
[
exp (−Y(T))

]
≈ E

[
exp (E[−Y(T)]) − exp (E[−Y(T)]) (Y − E[Y (T)])

+1

2
exp (E[−Y(T)]) (Y − E[Y (T)])2

]
= exp (−E[Y(T)])

(
1 + 1

2
Var[Y(T)]

)
. (19)

We use the first and second-order approximations in (18)
and (19), respectively, to estimate the cheapest-to-deliver
discount factor in (8).

The first-order model is introduced in Section 3. Its essen-
tial term E[Y (T)] is obtained from a common factor approxi-
mation, which admits a semi-analytical expression by the use
of conditional independence.

Two different second-order models are considered in
Section 4. Therein, the additionally required term Var[Y (T)]
is approximated by two different estimators, both based on the
previously established common factor model. The first esti-
mator, denoted diffusion estimator, is treated in Section 4.1
and the second estimator, denoted mean-reverting estimator,
in Section 4.2.

3. First-order model with a common factor
approximation

We need to find the first moment of the integral Y (T). By use
of Fubini’s theorem, it is possible to exchange integration and
expectation to obtain

E
[
Y (T)

] = E

[∫ T

0
M (t) dt

]
=
∫ T

0
E
[
M (t)

]
dt. (20)

In consequence, the expectation E[M (t)] can be consid-
ered individually at every time t. As the model is intended
for numerical implementation, we define it directly over a
time discretization T = {tk : 0 ≤ k ≤ R} of [0, T] with R ∈ N

many steps and uniform step size �t = T/R.
The first-order approximation is thus obtained from a

pointwise evaluation of E[M (tk)] at each time tk ∈ T . For
each such time, a common factor approximation of the
random vector (q1(tk), . . . , qN (tk)) is defined, which admits
a semi-analytical solution. The common factor approxi-
mation belongs to the class of Gaussian copula models,
which are widely used in financial applications (Cherubini et

al. 2004, Meissner 2014). In a Gaussian copula model, com-
ponents xi are weighted sums of independent normal random
variables. Exemplarily, xi could be expressed as the sum of
a shared random variable C which appears in every compo-
nent with a component-specific weight αi, and an individual
random variable Ai, which is specific to the component:

xi = αiC + Ai. (21)

This shared random variable C is often called the common
factor. It is central to our model that each component places
equal weight αi = 1 on the common factor, as this enables
the core argument in (38). To emphasize this fact, we under-
line the importance of the common factor in the name of the
approximation.

3.1. Common factor approximation

At every time tk ∈ T the spreads (q1(tk), . . . , qN (tk)) form
a multivariate normal random vector. We introduce a com-
mon factor approximation (̃q1(tk), . . . , q̃N (tk)) of this ran-
dom vector which allows us to compute moments of
the maximum of these approximations and zero, M̃ (tk) =
max(0, q̃1(tk), . . . , q̃N (tk)). These moments approximate the
desired moments of M (tk) = max(0, q1(tk), . . . , qN (tk)).

The use of a common factor approximation is motivated
by the fact that the distribution of the maximum of cor-
related normal distributions is computationally demanding.
A sufficiently general analytical solution was only recently
obtained in Nadarajah et al. (2018) and still depends on infi-
nite sums. On the other hand, the distribution of the maximum
of independent random variables is simply the product of the
involved marginal distributions as recalled in Lemma 3.2.
However, market observations show that the involved collat-
eral spreads are correlated. Therefore, we assume conditional
independence, which lets us express the required maximum in
terms of independent components, leading to a model which
allows for correlations between the spreads while admitting a
fast solution.

The common factor approximation is defined pointwise at
each time tk ∈ T , and must be repeated at any such time in the
time discretization.

We formalize the model in the following definition.

Definition 3.1 (Common factor approximation) Let qi(tk)
∼ N (μi(tk), σ 2

i (tk)), i ∈ {1, . . . , N} be normal random vari-
ables. The common factor approximation of (q1(tk), . . . ,
qN (tk)) is given by the random vector (̃q1(tk), . . . , q̃N (tk)),
defined componentwise as

q̃i(tk) = C(tk) + Ai(tk), i ∈ {1, . . . , N}, (22)

where C(tk), A1(tk), . . . , AN (tk) are independent random vari-
ables with distributions

C(tk) ∼ N
(
0, σ 2

min(tk)|γ (tk)|
)

, γ (tk) ∈ [0, 1), (23)

Ai(tk) ∼ N
(
μi(tk), σ

2
i (tk) − Var[C(tk)]

)
, i ∈ {1, . . . , N}.

(24)

Here, σ 2
min(tk) = min(σ 2

1 (tk), . . . , σ 2
N (tk)) denotes the smallest

variance occurring among the random variables qi(tk).
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The parameter γ (tk) ∈ [0, 1) is called the correlation opti-
mization parameter of the common factor approximation
and controls the correlation structure of the common factor
approximation.

Lemma 3.1 (Properties of the common factor approximation)
Let (̃q1(tk), . . . , q̃N (tk)) be the common factor approxima-
tion given in Definition 3.1. The marginal distributions of
the common factor approximation (̃q1(tk), . . . , q̃N (tk)) and the
random variables (q1(tk), . . . , qN (tk)) coincide:

q̃i(tk)
d= qi(tk) ∼ N (μi(tk), σ

2
i (tk)), i ∈ {1, . . . , N}. (25)

The correlations of the common factor approximation depend
only on the correlation optimization parameter γ (tk) and the
standard deviations (σ1(tk), . . . , σN (tk)):

corr
(̃
qi(tk), q̃j(tk)

) = σ 2
min(tk)|γ (tk)|
σi(tk)σj(tk)

, i �= j. (26)

The correlations of the common factor approximation are
bounded from above by the ratio

0 ≤ corr(̃qi(tk), q̃j(tk)) <
σ 2

min(tk)

σi(tk)σj(tk)
. (27)

In particular, this lemma shows that the correlations
of the common factor approximation are different from
the correlations of the approximated random variables,
corr(qi(tk), qj(tk)). They only depend on the correlation opti-
mization parameter γ (tk), which has to be chosen appropri-
ately.

Proof (i) By definition, the marginal distributions of the
components q̃i(tk), i ∈ {1, . . . , N} are sums of normal
distributions and thus normally distributed. It further
holds for all i ∈ {1, . . . , N}:

E
[̃
qi(tk)

] = E
[
C(tk) + Ai(tk)

] = E
[
Ai(tk)

] = μi(tk),
(28)

and by independence of C(tk) and Ai(tk),

Var
[̃
qi(tk)

] = Var
[
C(tk)

]+ Var
[
Ai(tk)

] = σ 2
i (tk).

(29)
(ii) For all i �= j ∈ {1, . . . , N} it holds by independence of

C(tk), Ai(tk) and Aj(tk) that

corr(̃qi(tk), q̃j(tk))

= Cov[C(tk) + Ai(tk), C(tk) + Aj(tk)](
Var[̃qi(tk)]Var[̃qj(tk)]

)1/2

= Var[C(tk)](
Var[̃qi(tk)]Var[̃qj(tk)]

)1/2 = σ 2
min(tk)|γ (tk)|
σi(tk)σj(tk)

.

(30)

(iii) The correlation bounds follow immediately from
the bounds on the correlation parameter γ (tk).
To see that |γ (tk)| < 1 is a necessary condition,
assume that qj(tk), 1 ≤ j ≤ N is the random vari-
able with minimal variance, σ 2

j (tk) = σ 2
min(tk). For the

variance Var[Aj(tk)] to be positive, it must hold that
|γ (tk)| < 1.

�

The correlation matrix of the spreads at time tk , denoted by
R(tk), with entries

Ri,j(tk) = corr
(
qi(tk), qj(tk)

)
, i, j ∈ {1, . . . , N}, (31)

is determined by the correlation formula for Hull–White
processes in (13). In general, the correlation matrix of the
common factor approximation, R̃(tk), with entries

R̃i,j(tk) = corr
(̃
qi(tk), q̃j(tk)

)
, i, j ∈ {1, . . . , N}, (32)

which are determined by (26), need not coincide with the
correlation matrix R(tk) for any value of the correlation
optimization parameter γ (tk).

However, an optimal parameter γ ∗(tk) can be found which
minimizes the distance between these two correlation matri-
ces. If this distance is chosen as the Frobenius matrix norm,
the minimization becomes equivalent to the convex optimiza-
tion problem

min
γ (tk)

⎛⎝ N∑
i=1

N∑
j=1

(
corr

(̃
qi(tk), q̃j(tk)

)

−corr
(
qi(tk), qj(tk)

))2

⎞⎠1/2

. (33)

In order to find the optimal parameter γ ∗(tk), we apply a
numerical solver to

γ ∗(tk) = arg minγ (tk)

⎛⎝ N∑
i=1

N∑
j=1

(
σ 2

min(tk)|γ (tk)|
σi(tk)σj(tk)

−corr
(
qi(tk), qj(tk)

) )2
⎞⎠1/2

. (34)

In the important case of three available collateral curren-
cies, one currency is encoded in the zero component of the
maximum and N = 2 spreads remain, with one correlation
to consider between them. Then, at every time tk , the com-
mon factor correlation matrix R̃(tk) can be matched exactly to
the spread correlation matrix R(tk), by setting the correlation
optimization parameter γ (tk) to

γ (tk) = corr (q1(tk), q2(tk))
max (σ1(tk), σ2(tk))

min (σ1(tk), σ2(tk))
. (35)

Within the bounds given in Lemma 3.1, this choice ensures
equal correlations

corr (q1(tk), q2(tk)) = corr (̃q1(tk), q̃2(tk)) . (36)

We recall that the distribution of the maximum M (tk) =
max(0, q1(tk), . . . , qN (tk)) at time tk is not suitably tractable.
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By replacing the random variables qi(tk) with the compo-
nents of the common factor approximation, a semi-analytical
expression is obtained. To this end, define the common factor
maximum

M̃ (tk) = max (0, q̃1(tk), . . . , q̃N (tk)) . (37)

The common factor maximum can be rewritten as

M̃ (tk) = max (0, C(tk) + A1(tk), . . . , C(tk) + AN (tk))

= C(tk) + max (−C(tk), A1(tk), . . . , AN (tk)) , (38)

where the last term is a maximum over independent random
variables. In the following lemma, we recall that the cumu-
lative distribution function of such a maximum is available
in closed form. With the cumulative distribution function at
hand, arbitrary moments, including the expectation, can be
computed. In particular, an expression for the common fac-
tor maximum E[M̃ (tk)] is found, which approximates the
expectation of the maximum of the spreads, E[M (tk)].

Lemma 3.2 (The maximum of independent random variables)
Let Z1, . . . , ZN be independent random variables. The cumula-
tive distribution function of the maximum over all the random
variables Zi, i ∈ {1, . . . , N} is given by

P[max(Z1, . . . , ZN ) ≤ x] =
N∏

i=1

P[Zi ≤ (x)]. (39)

Proof It holds P[max(Z1, . . . , ZN ) ≤ x] = P[Z1 ≤ x, . . . ,
ZN ≤ x] = ∏n

i=1 P[Zi ≤ x] which factorizes by indepen-
dence. �

Applying Lemma 3.2 to max(−C(tk), A1(tk), . . . , AN (tk))
in (38) yields that its distribution function, denoted by Fk , is
given by

Fk(x) := �

⎛⎝ x√
σ 2

min(tk)|γ (tk)|

⎞⎠
N∏

i=1

�

⎛⎝ x − μi(tk)√
σ 2

i (tk) − σ 2
min(tk)|γ (tk)|

⎞⎠ , (40)

where � denotes the standard normal cumulative distribu-
tion function. The following lemma recalls the well-known
result that the cumulative distribution function can be used to
compute moments of a random variable.

Lemma 3.3 (Moments from the CDF) Let Z be a random
variable with cumulative distribution function FZ : R →
[0, 1] and let m ∈ N. When the mth moment of Z is finite, it
is given by

E[Zm] =
∫ 0

−∞
(−1)mmxm−1FZ(x) dx

+
∫ ∞

0
mxm−1 (1 − FZ(x)) dx. (41)

By setting m = 1, Lemmas 3.2 and 3.3 yield an expression
for the expectation of the common factor maximum.

Corollary 3.4 (Expectation of the common factor maximum)
The expectation of the common factor maximum M̃ (tk) at
times tk ∈ T is given by

E[M̃ (tk)] = E
[
max(0, q̃1(tk), . . . , qN (tk))

]
=
∫ 0

−∞
−Fk(x) dx +

∫ ∞

0
(1 − Fk(x)) dx. (42)

We approximate the expectation of the collateral spread
maximum M (tk) by the expectation of the common factor
maximum M̃ (tk),

E
[
M (tk)

] ≈ E
[
M̃ (tk)

]
, (43)

and repeat these steps at all times tk ∈ T . Thus, we arrive at
a common factor estimator for the first-order approximation
in (18).

Definition 3.2 (First-order common factor estimator) The
first-order approximation derived in Section 2.2 of the spread
based CTD discount factor in (8) is

exp

(
E

[
−
∫ T

0
M (t) dt

])
≈ E

[
exp

(
−
∫ T

0
M (t) dt

)]
,

(44)
where M (t) = max(0, q1(t), . . . , qN (t)) is the maximum of the
collateral spreads and zero.

If at every time tk in a time discretization T of [0, T],
the collateral spreads q1(tk), . . . , qN (tk) are approximated by
the conditionally independent common factor approximation
q̃1(tk), . . . , q̃N (tk) given in Definition 3.1, then the first-order
common factor estimator is given by

CF1(T) = exp

(
−
∫

tk∈T
E[M̃ (tk)] dtk

)
, (45)

where E[M̃ (tk)] = E[max(0, q̃1(tk), . . . , q̃N (tk))] is the expec-
tation of the common factor maximum given in Corollary 3.4.
Here the integral over discrete times tk indicates the use of a
suitable discretization.

In the implementation of Section 6, we will use a simple
discretization in terms of left sums:

CF1(T) ≈ exp

⎛⎝−
∑
tk∈T

E[M̃ (tk)]�tk

⎞⎠ . (46)

4. Second-order models with the common factor
approximation

Having obtained the first-order common factor estimator (45),
the second-order approximation in (19),

E
[
exp (Y (T))

] ≈ exp
(
E
[
Y (T)

]) (
1 + 1

2
Var

[
Y (T)

])
, (47)

additionally requires the variance of the integral, Var[Y (T)] =
Var[

∫ T
0 M (t) dt].
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An explicit solution of this variance depends on covariance
terms across times,

Cov[M (t), M (s)], s, t ∈ (0, T], (48)

which are not available in closed form for the maximum
of Hull–White processes. We will therefore introduce two
different approximations of the variance Var[Y(T)].

The first estimator, called diffusion-based estimator, builds
on a model which neglects the mean reverting dynamics of
the collateral spreads and approximates the variance of the
integral of the maximum with the variance of the integral
of a related Itô process, an approach which turns out to be
numerically very efficient.

The second, mean-reversion-based estimator builds on the
approximative variance of the integral expression developed
in Sankovich and Zhu (2015) and accounts for the mean-
reverting structure of the involved processes. Difficulties arise
because the speed of mean reversion of the maximum process
M (t) is a stochastic quantity that depends on the component
which is largest at the considered time. To solve this, an aver-
age speed of mean reversion κ(t) is attributed to the maximum
process, which weights the different speed of mean reversion
parameters of the components with their probability of being
the maximum,

κ(t) =
N∑

i=1

P
[
qi(t) = max(0, q1(t), . . . , qN (t))

]
κi. (49)

Within the framework of the common factor approximation,
these probabilities become analytically tractable at inter-
polation times tk ∈ T . The mean-reversion-based estimator
achieves higher accuracy, in particular in the presence of
large speed of mean reversion parameters, at the expense of
additional computational complexity. Accuracy of these two
approaches under different model parameters is studied in
Section 6.

4.1. The diffusion-based estimator

The diffusion-based estimator approximates the variance of
the integral of the maximum with the variance of the integral
of a standard Itô process (X (t))t∈[0,T]:

Var

[∫ T

0
M (t) dt

]
≈ Var

[∫ T

0
X (t) dt

]
. (50)

The process X is defined such that it approximates the vari-
ance of the maximum process M. This is achieved by match-
ing the marginal distributions of X (tk) to the variance of the
common factor maximum M̃ (tk) for all times tk ∈ T . That is,
we require Var[X (tk)] = Var[M̃ (tk)].

Definition 4.1 (Auxiliary Itô process) Define

dX (t) = h(t) dW X (t), t ∈ (0, T], X (0) = 0, (51)

with driving Brownian motion W X independent of the Brow-
nian motions Wi, i ∈ {1, . . . , N}. The volatility coefficient h

is defined piecewise constant between interpolation points
tk ∈ T by

h2(t) = 1

�t

(
Var

[
M̃ (tk+1)

]− Var
[
M̃ (tk)

])
, t ∈ (tk , tk+1].

(52)

As a consequence of (52), at all interpolation points tk ∈ T
the desired property holds:

Var[X (tk)] =
∫ tk

0
h2(s) ds = Var[M̃ (tk)]. (53)

The next lemma expresses the integral variance Var[
∫ T

0 X (t)
dt] as a function of the volatility coefficient h.

Lemma 4.1 (Integral variance of X (t)) Let X (t) be the Itô
process given in Definition 4.1. The variance of its integral
is given by

Var

[∫ T

0
X (t) dt

]
=
∫ T

0

∫ s

0

(∫ t

0
h2(u) du

)
dt ds

+
∫ T

0
(T − s)

(∫ s

0
h2(t) dt

)
ds. (54)

Proof This result follows directly from the solution X (t) =∫ t
0 h(u) dW X (u). By Itô isometry it holds that

∫ T

0

∫ T

0
E

[∫ t

0
h(u) dW X (u)

∫ s

0
h(v) dW X (v)

]
dt ds

=
∫ T

0

∫ T

0

∫ t∧s

0
h2(u) du dt ds

=
∫ T

0

∫ s

0

(∫ t

0
h2(u) du

)
dt ds

+
∫ T

0

∫ T

s

(∫ s

0
h2(u) du

)
dt ds. (55)

The second term in the sum equals∫ T

0

∫ T

s

(∫ s

0
h2(u) du

)
dt ds

=
∫ T

0
(T − s)

(∫ s

0
h2(u) du

)
ds, (56)

which concludes the proof. �

In the numerical evaluation over the time discretization T ,
the formula for the variance of the integral of X can be further
simplified by replacing the inner integrals with (53).

It follows from Lemma 4.1, that the variance of the inte-
gral of X depends only on the volatility coefficient h, which is
determined by the variance of the common factor maximum,
Var[M̃ (tk)] at the interpolation times tk ∈ T . In the following
lemma, we show how this variance can be computed. This
result is comparable to Corollary 3.4 in the first-order approx-
imation, which gave the expectation of the common factor
maximum.
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First, we introduce additional notation. Recall that under
the common factor approximation of Definition 3.1, the com-
mon factor C(tk) is a centred normal random variable, whose
density function we denote by

fC(tk)(x) = 1√
2π |γ (tk)|σ 2

min(tk)
exp

⎛⎝− x√
|γ (tk)|σ 2

min(tk)

⎞⎠ ,

x ∈ R. (57)

We further denote the cumulative distribution function
of the maximum of the individual random variables,
max(A1(tk), . . . , AN (tk)) by Fmaxi(Ai(tk)). With the help of
Lemma 3.2 it is found to be

Fmaxi(Ai(tk))(x)

=
N∏

i=1

�

⎛⎝ x − μi(tk)√
σ 2

i (tk) − σ 2
min(tk)|γ (tk)|

⎞⎠ , x ∈ R. (58)

These two functions in place, we can give the variance of the
common factor maximum.

Lemma 4.2 (Variance of the common factor maximum) Let
M̃ (tk) = max(0, q̃1(tk), . . . , q̃N (tk)) be the common factor
maximum at time tk ∈ T . The variance of M̃ (tk) is given by

Var
[
M̃ (tk)

] =
∫ ∞

0
2x
(
1 − (

fC(tk) ∗ Fmaxi(Ai(tk))
)
(x)
)

dx

−
(∫ ∞

0
1 − (

fC(tk) ∗ Fmaxi(Ai(tk))
)
(x)dx

)2

,

(59)

where ∗ denotes the convolution operator.

Proof Let tk ∈ T be fixed. The common factor maximum
M̃ (tk) can be expressed as

M̃ (tk) = max(0, q̃1(tk), . . . , q̃N (tk))

= max(0, max(̃q1(tk), . . . , q̃N (tk)))

= max(0, C(tk) + max(A1(tk), . . . , AN (tk))). (60)

Let Gk denote the cumulative distribution function of the ran-
dom variable max(0, C(tk) + max(A1(tk), . . . , AN (tk))) and
let Hk denote the cumulative distribution function of the
random variable C(tk) + max(A1(tk), . . . , AN (tk)). Then,

Gk(x) =
{

0, x < 0,

Hk(x), x ≥ 0.
(61)

As it holds Var[M̃ (tk)] = E[M̃ (tk)2] − E[M̃ (tk)]2, it suffices
to obtain the first two moments of M̃ (tk) from the cumulative
distribution function with Lemma 3.3. These are given by

E[M̃ (tk)
2] =

∫ 0

−∞
2xGk(x) dx +

∫ ∞

0
2x (1 − Gk(x)) dx

=
∫ ∞

0
2x (1 − Hk(x)) dx. (62)

and

E[M̃ (tk)] =
∫ 0

−∞
−Gk(x) dx +

∫ ∞

0
(1 − Gk(x)) dx

=
∫ ∞

0
1 − Hk(x) dx. (63)

It remains to show that Hk(x) = (fC(tk) ∗ Fmaxi(Ai(tk)))(x). As
C(tk) and Ai(tk) are independent for all i, C(tk) is also
independent of max(A1(tk), . . . , AN (tk)) and thus it holds that

Hk(x) = P[C(tk) + max(A1(tk), . . . , AN (tk)) ≤ x]

=
∫ ∞

−∞

∫ x−z

−∞
fC(tk),maxi(Ai(tk))(z, y) dy dz

=
∫ ∞

−∞

∫ x−z

−∞
fC(tk)(z)fmaxi(Ai(tk))(y) dy dz

=
∫ ∞

−∞
fC(tk)(z)Fmaxi(Ai(tk))(x − z) dz

= (
fC(tk) ∗ Fmaxi(Ai(tk))

)
(x). (64)

Here, fC(tk),maxi(Ai(tk)) denotes the joint density of C(tk) and
max(A1(tk), . . . , AN (tk)) which factors into the marginal den-
sities fC(tk) and fmaxi(Ai(tk)) by independence. �

We call the variance of the integral of the auxiliary Itô pro-
cess the diffusion-based variance estimator of the variance of
the integral of the maximum of the collateral spreads, and
denote it by (T):

(T) := Var

[∫ T

0
X (t) dt

]
≈ Var

[∫ T

0
M (t) dt

]
. (65)

This allows us to define a first, diffusion-based CTD estimator
of the second-order approximation in (19).

Definition 4.2 (The second-order common factor estimator 1)
The second-order approximation derived in Section 2.2 of the
spread based CTD discount factor in (8) is

exp

(
E

[
−
∫ T

0
M (t) dt

])(
1 + 1

2
Var

∫ T

0
M (t) dt

)
≈ E

[
exp

(
−
∫ T

0
M (t) dt

)]
, (66)

where M (t) = max(0, q1(t), . . . , qN (t)) is the maximum of the
collateral spreads and zero.

Let the conditional independence assumptions hold as in
Definition 3.2 and let CF1(T) denote the first-order common
factor estimator,

CF1(T) = exp

(
−
∫

tk∈T
E[M̃ (tk)] dtk

)
, (67)

where tk ∈ T are times in a suitable time discretization of
[0, T].

Assume that the variance of the integral of the maximum
process can be approximated by the variance of the integral
of the Itô process X, given in Definition 4.1, with variance
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Var[X (tk)] = Var[M̃ (tk)] obtained from the common factor
maximum in Lemma 4.2.

Then the second-order common factor estimator with a
diffusion-based integral variance estimator is given by

CF(1)
2 (T) := CF1(T)

(
1 + 1

2
(T)

)
, (68)

where (T) = Var[
∫ T

0 X (t) dt] is the diffusion-based vari-
ance estimator given by Lemma 4.1.

4.2. The mean-reversion-based estimator

A more accurate approximation of Var[
∫ T

0 M (t) dt] can be
found on the basis of the dynamics of the maximum pro-
cess M (t). In Sankovich and Zhu (2015), an estimator is
developed for the maximum of Hull–White collateral rates,
a setting where no constant zero process is part of the max-
imum. We briefly outline the argument in our setting of
collateral spreads, referring to the aforementioned reference
for a detailed proof and details of all technical assumptions.

For the moment, assume that the spread q0 is also a Hull–
White process with a speed of mean reversion parameter κ0 >

0, in line with the remaining spreads qi, i ∈ {1, . . . , N}. Then,
the dynamics of the maximum process max(q0(t), . . . , qN (t))
can be obtained by the Itô-Tanaka formula (see e.g. Revuz
and Yor (1999)). However, these dynamics are not of a
closed, purely analytical form but instead, they contain addi-
tional stochastic terms, which create a path dependence to
whichever component of the maximum is the maximal com-
ponent at a time. As a consequence, the mean reversion speed
of the maximum process max(q0(t), . . . , qN (t)) takes the form
of a random variable:

N∑
i=0

1{max(q0(t),...,qN (t))=qi(t)} κi. (69)

Define the event that qi is the maximal spread at time t as
Di(t) = {max(q0(t), . . . , qN (t)) = qi(t)} for all i ∈ {0, . . . , N}.
Then analytic tractability is restored by replacing the stochas-
tic expression (69) with its expectation. This defines a
weighted speed of mean reversion κ(t) given by

κ(t) =
N∑

i=0

E
[
1Di(t)

]
κi =

N∑
i=0

P
[
Di(t)

]
κi. (70)

With additional simplifying assumptions (we again refer to
Sankovich and Zhu (2015)), an estimator for the variance of
the integral of the maximum is found, which takes the form

Var

[∫ T

0
max(q0(t), . . . , qN (t)) dt

]
≈ 2

∫ T

0
e− ∫ t

0 κ(u) du
∫ t

0
e
∫ s

0 κ(u) du

Var
[
max (q0(s), . . . , qN (s))

]
ds dt. (71)

We return to our setting of the maximum process M (t) =
max(0, q1(t), . . . , qN (t)). In particular, the first component

q0 = 0 is not a mean-reverting process any longer. Thus, in
the weighted mean reversion function

κ(t) =
N∑

i=0

P
[
M (t) = qi(t)

]
κi, (72)

there is no natural candidate for what should be the speed of
mean reversion κ0 of the zero spread. Therefore, we remove
this component from the weighted mean reversion function
κ(t) by setting κ0 = 0.

The probabilities P[M (t) = qi(t)] in the weighted mean
reversion function can be estimated with the common fac-
tor approximation by substituting P[M̃ (t) = q̃i(t)], which is
easily computed, as the next lemma shows.

Lemma 4.3 (Common Factor Maximum Probabilities) Under
the assumptions of Definition 3.1, for all times tk ∈ T and
i ∈ {1, . . . , N}, the probability that the common factor spread
q̃i(tk) equals the common factor maximum M̃ (tk) is given by

P
[
M̃ (tk) = q̃i(tk)

] =
∫

R

fAi(tk)(x)FC(tk)(x)
N∏

j=1
j �=i

FAj(tk)(x) dx,

(73)
where fAi(tk) denotes the density of the normal random variable
Ai(tk) and FC(tk), FAj(tk) the cumulative distribution functions
of the normal random variables C(tk) and Aj(tk), respectively.

Proof By definition of the common factor approximation, it
holds

P
[
M̃ (tk) = q̃i(tk)

]
= P

[
C(tk) + max (−C(tk), A1(tk), . . . , AN (tk))

= C(tk) + Ai(tk)
]

= P
[
max (−C(tk), A1(tk), . . . , AN (tk)) = Ai(tk)

]
= P

[
C(tk) ≤ Ai(tk), A1(tk) ≤ Ai(tk), . . . , AN (tk) ≤ Ai(tk)

]
,

(74)

where we used equal distributions C(tk)
d= −C(tk) in the final

step, as C(tk) is a centred normal random variable. The events
in (74) are independent from another when conditioned on
Ai(tk), and all involved random variables are independent
from another. Thus it follows

P
[
M̃ (tk) = q̃i(tk)

]
= E

[
E
[
1{C(tk)≤Ai(tk)}∩{A1(tk)≤Ai(tk)}∩···∩{A1(tk)≤Ai(tk)} | Ai(tk)

]]
=
∫

R

P
[
C(tk) ≤ x | Ai(tk) = x

]
×

N∏
j=1
j �=i

P
[
Aj(tk) ≤ x | Ai(tk) = x

]
fAi(tk)(x) dx

=
∫

R

fAi(tk)(x)FC(tk)(x)
N∏

j=1
j �=i

FAj(tk)(x) dx, (75)
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which finishes the proof. �

We can thus define the weighted mean reversion function
κ̃(t) of the common factor maximum, given by

κ̃(t) =
N∑

i=1

P[M̃ (t) = q̃i(t)]κi. (76)

We again estimate the variance of the maximum Var[M (tk)]
with the variance of the common factor maximum, given in
Lemma 4.2. Then, the mean-reversion-based estimator for
the variance of the integral of the maximum of the collateral
spreads, which we denote by χ(T), is obtained:

χ(T) := 2
∫ T

0
e− ∫ t

0 κ̃(u) du
∫ t

0

(
e
∫ s

0 κ̃(u) duVar
[
M̃ (s)

])
ds dt

≈ Var

[∫ T

0
M (t) dt

]
. (77)

This allows us to define a second, mean-reversion-based CTD
estimator for the second-order approximation in (19).

Definition 4.3 (The second-order common factor estimator 2)
The second-order approximation derived in Section 2.2 of the
spread based CTD discount factor in (8) is

exp

(
E

[
−
∫ T

0
M (t) dt

])(
1 + 1

2
Var

∫ T

0
M (t) dt

)
≈ E

[
exp

(
−
∫ T

0
M (t) dt

)]
, (78)

where M (t) = max(0, q1(t), . . . , qN (t)) is the maximum of the
collateral spreads and zero.

Let the conditional independence assumptions hold as in
Definition 3.2 and let CF1(T) denote the first-order common
factor estimator,

CF1(T) = exp

(
−
∫

tk∈T
E[M̃ (tk)] dtk

)
, (79)

where tk ∈ T are times in a suitable time discretization of
[0, T].

Assume at every time tk that the probability of the common
factor estimates being the common factor maximum approx-
imates the probability of each spread being the maximal
spread,

P
[
M̃ (tk) = q̃i(tk)

] ≈ P
[
M (tk) = qi(tk)

]
, i ∈ {1, . . . , N},

(80)
and assume further that the variance of the maximum of the
spreads can be approximated by the variance of the common
factor maximum, Var[M (tk)] = Var[M̃ (tk)].

Then the second-order common factor estimator with a
mean-reversion-based integral variance estimator is given by

CF(2)
2 (T) := CF1(T)

(
1 + 1

2
χ(T)

)
, (81)

where χ(T) ≈ Var[
∫ T

0 M (t) dt] is the mean-reversion-based
variance estimator given by (77).

Table 1. Spread parameters.

κ1 0.0078 ξ1 0.0018 q1(0) 0.000845
κ2 0.0076 ξ2 0.0023 q2(0) 0.001514

In summary, we obtain two different estimators for the
second-order approximation of the CTD. The first, CF(1)

2 (t)
defined in Definition 4.2, bases the variance of the integral
on diffusion dynamics, and the second, CF(2)

2 (T) defined in
Definition 4.3, bases the variance of the integral on mean-
reverting dynamics.

5. Model extension

As mentioned above, so far the common factor approxima-
tion introduced in Section 3.1 is limited in the correlation
structures it can model, due to the critical step in (38),

max (0, C(tk) + A1(tk), . . . , C(tk) + AN (tk))

= C(tk) + max (−C(tk), A1(tk), . . . , AN (tk)) , (82)

and the equivalent step in (60). All common factor approxima-
tions q̃i(tk) need to contain the common factor C(tk) with the
same sign and magnitude, so that C(tk) can be fully subtracted
from each component. Consequently, as the common fac-
tor determines the correlation structure, the components will
always be positively correlated. This issue can be resolved by
extending the model to multiple subcategories with category-
specific common factors C(1)(tk), C(2)(tk), and so on. By intro-
ducing correlations between these category-specific common
factors, various correlation structures emerge in the common
factor approximation. This is shown in detail in Appendix 1.

6. Numerical results

In this section, we present insights into the numerical compu-
tation of the common factor approximation models and further
analyse their sensitivity to changes in the input parameters.
This consideration is done for a three-currency setup, where
the parameters of the collateral spread model, defined in
Section 2.1, are given in Table 1. Note that only two collateral
spreads need to be defined, as the third currency is embedded
in the constant zero spread. The collateral spread parame-
ters used here are derived from the collateral rate parameters
given in Sankovich and Zhu (2015), where also calibration is
discussed. The exact details of this conversion from rates to
spreads are given in Appendix 3. For each spread, the long-
term mean levels θi are chosen such that the expectations of
the spreads equal their initial value.

The algorithm for computing the first and second-order
common factor estimators, initialized with the Hull–White
parametrization of the spreads qi, is outlined in Appendix 2.

Before discussing the accuracy results of the common fac-
tor CTD estimators, we first focus on some specific points
in the numerical implementation. At each interpolation time
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Table 2. In the computation of the expectation and variance of the common factor maximum M̃ (tk) at inter-
polation times tk , a continuous convolution needs to be evaluated numerically. For different step sizes δ of
the discretizing grid and maturities T, we give the relation between this step size and the resulting first and

second-order estimators of the maximum integral
∫ T

0 max(0, q1(t), q2(t)) dt.

T = 5 T = 10 T = 15 T = 20

δ = 5 × 10−4 No. points in [0, L(T)] 83 117 140 158
Error of expectation integral 0.001052 0.002049 0.003011 0.004003
Error of estimator (T) 0.000016 0.00011 0.000354 0.000831

δ = 5 × 10−5 No. points in [0, L(T)] 818 1109 1318 1483
Error of expectation integral 0.000106 0.000194 0.000295 0.000429
Error of estimator (T) 0.000012 0.000086 0.000287 0.000691

δ = 5 × 10−6 No. points in [0, L(T)] 7563 10442 12490 14219
Error of expectation integral 0.000012 0.000012 0.000032 0.000064
Error of estimator (T) 0.000012 0.000084 0.000279 0.000675

tk ∈ T , both moments of the common factor maximum,
M̃ (tk) = max(0, q̃1(tk), . . . , q̃N (tk)), depend on the same con-
tinuous convolution fC(tk) ∗ Fmaxi(Ai(tk)) between the density of
the common factor and the cumulative distribution function of
the maximum of individual factors, defined in (57) and (58),
respectively. That is, at each time tk , we need to compute the
integrals

E[M̃ (tk)] =
∫ ∞

0
1 − (

fC(tk) ∗ Fmaxi(Ai(tk))
)
(x) dx, (83)

Var
[
M̃ (tk)

] =
∫ ∞

0
2x
(
1 − (

fC(tk) ∗ Fmaxi(Ai(tk))
)
(x)
)

dx

−
(∫ ∞

0
1 − (

fC(tk) ∗ Fmaxi(Ai(tk))
)
(x) dx

)2

,

(84)

derived in (63) and (59). These indefinite integrals appear
computationally demanding but can be efficiently imple-
mented: The convolution (fC(tk) ∗ Fmaxi(Ai(tk)))(x) quickly con-
verges to 1 as x increases, which makes the integrands of (83)
and (84) numerically distinguishable from zero only on a
small domain [0, L(tk)] for some L(tk) ∈ R. Then, given a
discretization of [0, L(tk)], the convolution can be evaluated
efficiently with the Fast Fourier Transform algorithm (Cooley
and Tukey 1965).

In Table 2, we assess an appropriate step size δ for the
discretization of [0, L(tk)], under the parameters of Table 1
with instantaneous correlation ρ1,2 = 0.3. Note that the width
of the domain, L(tk), increases with time as the variances of
the collateral spreads increase. We obtain precise results for
the integral moments E[

∫ T
0 M (t) dt] and Var[

∫ T
0 M (t) dt] by

Monte Carlo simulation and compare these to the common
factor estimators for the first and second integral moment,

∑
tk∈T

E[M̃ (tk)]�tk ≈ E

[∫ T

0
M (t) dt

]
, (85)

(T) ≈ Var

[∫ T

0
M (t) dt

]
, (86)

where (T) is the diffusion-based integral variance estimator
given in (65). In both computations we consider a time dis-
cretization of step size �tk = 0.1. We find that δ = 5 × 10−5

in the convolution grid offers a good compromise between
computational speed and precision, and use this grid in the
convolution for the remainder of the section.

6.1. Model accuracy

We remain in the three-currency setup of Table 1 and consider
the model accuracy for different values of the characterizing
Hull–White parameters. Throughout this section, a maturity
of T = 20 years and a time discretization of step size �tk =
0.1 remain fixed. For reference values, we use Monte Carlo
simulation over the same time discretization to compute pre-
cise estimates of the approximated object of interest, given
by

ET

[
exp

(
−
∫ T

0
max (0, q1(t), q2(t)) dt

)]
(87)

in (8). These reference values are compared to the first-order
common factor estimator CF1(T), the second-order com-
mon factor estimator with diffusion-based variance CF(1)

2 (T)

and the second-order common factor estimator with mean-
reversion-based variance CF(2)

2 (T), defined in (45), (68)
and (81), respectively.

We begin by considering different values for the instanta-
neous correlation parameter ρ1,2. By Lemma 3.1, the correla-
tion of common factor approximations corr(̃q1(tk), q̃2(tk)) is
bounded, thus there is a maximal value of the instantaneous
correlation parameter, above which the correlation cannot be
expressed by the common factor model any longer because
the correlation optimization parameter γ (tk) has reached its
maximum of 1. For our chosen parameters, this boundary is
at ρ1,2 = 0.78, as shown in Figure 2. As the error graph to the
right shows, the quality of the second-order approximations is
uniformly very good for admissible correlation values.

We turn to the effect of the speed of mean reversion param-
eter. In Figure 3, an instantaneous correlation value of ρ1,2 =
0.3 is fixed and the speed of mean reversion parameters κ1

and κ2 is varied. To obtain a two-dimensional graph, both
parameters are scaled with the same factor and their aver-
age, (κ1 + κ2)/2, is drawn on the horizontal axes. The error
graph demonstrates the advantage of the mean-reversion-
based second-order estimator, which is very accurate even
in the presence of large speed of mean reversion parameters.
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Figure 2. Common factor approximations for three currencies are plotted against variation in the instantaneous correlation parameter ρ1,2.
The collateral spreads are modelled with the parameters in Table 1.

Figure 3. Common factor approximations for three currencies are plotted against variation in the mean reversion parameters. The mean
reversion parameters κ1 and κ2 are varied at the same rate, the horizontal axes show the average speed of mean reversion (κ1 + κ2)/2 on a
logarithmic scale.

However, this comes at the cost of a higher numerical com-
plexity which will be demonstrated in Section 6.3.

As discussed in Section 1, collateral spreads exhibit less
volatility than their associated, highly correlated collateral
rates. This results in the maximum distribution of the spreads
having less skewness than the maximum distribution of
the rates, and therefore their distribution can be accurately
approximated with a second-order model. This is illustrated
in Figure 4, which shows that increasing the volatility back
to levels expressed in the collateral rate formulation (where
volatility parameters are around 0.007), drastically increases
the error of the second-order approximations.

6.2. Robustness in a stressed market

In the spring of 2020, in the wake of the COVID-19 pan-
demic, cross-currency spreads widened, which registered in
the collateral spread projections, as depicted in Figure 5.
Compared to previous projections, the spreads both widened
in the short and medium term and became more ambiguous
in the long term. Given this term structure, Figure 5 demon-
strates robustness of the common factor approximation in a
stressed scenario. The error over different maturities increases

mildly under the parameters of Table 1. Even doubling the
volatility coefficient to reflect a surge in market turbulence
only results in a 20-year difference of 9, respectively 12,
basis points for the mean-reverting-based and diffusion-based
second-order estimators. The deterministic approach is not
included in the graphical representation, as the difference to
the exact result is well above 5%.

6.3. Computation time

A large advantage of the diffusion-based second-order esti-
mator lies in its computation speed, which scales extremely
well with the number of currencies. In Table 3, we compare
the computation times of the diffusion-based and the mean-
reversion-based estimator by adding additional collateral
spreads with randomized parameters of the same magni-
tude as given in Table 1. In the base-case of 3 curren-
cies, we have computation times of 1.1 and 2.5 seconds
for the diffusion-based and mean-reversion-based estimator,
respectively. These computations are performed on an ordi-
nary consumer device where the calculations over the time-
discretization tk ∈ T are handled sequentially, this can be
fully parallelized. Once the moments of the common factor
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Figure 4. Common factor approximations for three currencies are plotted against variation in the volatility parameters. The volatility
parameters ξ1 and ξ2 are varied at the same rate, the horizontal axes show the average volatility parameter (ξ1 + ξ2)/2.

Figure 5. Stressed collateral spreads under market turbulence as observed in April 2020. Long-term mean dynamics are displayed on the
left, the resulting error over time of the common factor second-order approximations with these means is given on the right.

Table 3. Relative increase in computation time of the second-order estimators over the base-case of 3 currencies. For each number
of currencies, the proportion of time spent on computing the moments of the common factor maximum M̃ (t) from the convolution

integrals is given.

No. Currencies
Relative time

CF(1)
2 (20)

Relative time
CF(2)

2 (20)

Moment proportion
CF(1)

2 (20)

Moment proportion
CF(2)

2 (20)

3 1 1 99.2% 43.9%
4 1.38 1.50 93.1% 37.7%
5 1.80 2.08 94.3% 35.9%
6 2.11 2.68 95.0% 32.9%
7 2.40 3.31 95.5% 30.6%
8 2.79 3.99 95.9% 29.7%

maximum M̃ (tk) are computed for all interpolation times tk ∈
T , the diffusion-based estimator CF(1)

2 requires only a con-
stant number of additional operations. The computation time
of the common factor maximum moments increases linearly
with the number of currencies, since for each currency added,
only the cumulative distribution function of the independent
maximum, defined in (58) by

Fmaxi(Ai(tk))(x)

=
N∏

i=1

�

⎛⎝ x − μi(tk)√
σ 2

i (tk) − σ 2
min(tk)|γ (tk)|

⎞⎠ , x ∈ R, (88)

has one factor added. The steep decline in the proportion of
computation time used on the moments from 3 to 4 currencies
is explained by the time spent on computing the common fac-
tor parametrization. In the case of 3 currencies, the correlation
optimization parameter γ (tk) can be computed analytically
(at a proportion of 0.8% of the diffusion-estimators compu-
tation time), whereas from 4 currencies onwards a numerical
solver is needed which takes a proportion of around 5% com-
putation time in this example. In contrast, computing the
mean-reversion-based estimator CF(2)

2 get significantly more
demanding as the number of additional currencies increases.
This is rooted in the common factor maximum probabilities of
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Lemma 4.3: whenever an additional collateral spread is added,
not only do we need to compute the probability over time that
this new spread is the maximal spread, also computing the
probabilities with which the already existing spreads are the
maximal ones gains complexity.

7. Conclusion

Translating FX-adjusted collateral rates to collateral spreads
is an effective method to reduce the model volatilities, which
allows for precise pricing of the collateral choice option with
a second-order approximation. By imposing conditional inde-
pendence on the collateral spreads, by means of a common
factor approximation, a semi-analytical solution is obtained
for the moments of the maximum of the collateral spreads.
From these, precise second-order estimators are developed.
In particular, the diffusion-based second-order common fac-
tor estimator admits precise results which can be computed
very efficiently, particularly for a large number of available
currencies.
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Appendices

Appendix 1. Model extension

Assume that the correlation spreads (q1, . . . , qN ) can be ordered
into two groups, (q1, . . . , qn) being group 1 and (qn+1, . . . , qN )
being group 2. Then, for all tk ∈ T , define the common factor
approximations by group affiliation,

q̃i(tk) = C(1)(tk) + A(1)
i (tk), i ∈ {1, . . . , n}, (A1)

q̃j(tk) = C(2)(tk) + A(2)
j (tk), j ∈ {n + 1, . . . , N}, (A2)

where all involved random variables are independent, except for the
common factor pair (C(1)(tk), C(2)(tk)), which follows a specified
joint distribution. In the resulting model, common factor approxima-
tions from the same group will be positively correlated with the usual
covariance,

Cov(̃qi(tk), q̃�(tk)) = Var[C(1)(tk)], for 1 ≤ i, � ≤ n, (A3)

Cov(̃qj(tk), q̃m(tk)) = Var[C(2)(tk)], for n < j, m ≤ N . (A4)

If they stem from different groups, the covariance will now be deter-
mined by the joint distribution of (C(1)(tk), C(2)(tk)), which allows
for negative covariances:

Cov(̃qi(tk), q̃j(tk)) = Cov[C(1)(tk), C(2)(tk)],

for 1 ≤ i ≤ n < j ≤ N . (A5)

http://orcid.org/0000-0001-5238-7372
http://orcid.org/0000-0003-2329-5254
http://orcid.org/0000-0002-7379-5508
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The maximum of this extended common factor model still offers
a decomposition akin to (38), from which a cumulative distribu-
tion function is analytically available. Denote the maxima over the
idiosyncratic factors by

H (1)(tk) := max(A(1)
1 (tk), . . . , A(1)

n (tk)), (A6)

H (2)(tk) := max(A(2)
n+1(tk), . . . , A(2)

N (tk)). (A7)

Then, the common factor maximum can be rewritten as

max(0, q̃1(tk), . . . , q̃N (tk))

= max(0, max(̃q1(tk), . . . , q̃n(tk)), max(̃qn+1(tk), . . . , q̃N (tk)))

= max
(

0, C(1)(tk) + H (1)(tk), C(2)(tk) + H (2)(tk)
)

(A8)

Expression (A8) still admits a cumulative distribution function:

P

[
max

(
0, C(1)(tk) + H (1)(tk), C(2)(tk) + H (2)(tk)

)
≤ z

]

=

⎧⎪⎨⎪⎩
0, z < 0,

P

[
max

(
C(1)(tk) + H (1)(tk),

C(2)(tk) + H (2)(tk)
) ≤ z

]
, z ≥ 0.

(A9)

Further, it holds that

P

[
max

(
C(1)(tk) + H (1)(tk), C(2)(tk) + H (2)(tk)

)
≤ z

]
= P

⎡⎣ ⋃
x1,x2∈R

{
C(1)(tk) ≤ x1, H (1)(tk) ≤ z − x1, C(2)(tk)

≤ x2, H (2)(tk) ≤ z − x2

}⎤⎦
=
∫

R

∫
R

(∫ z−x1

−∞

∫ z−x2

−∞
f(C(1)(tk),C(2)(tk))(x1, x2)fH (1)(tk)(u)

fH (2)(tk)(v)dudv

)
dx1 dx2

=
∫

R

∫
R

f(C(1)(tk),C(2)(tk))(x1, x2)FH (1)(tk)(z − x1)

FH (2)(tk)(z − x2) dx1 dx2. (A10)

Here, f(C(1)(tk),C(2)(tk)) denotes the pre-specified density of the com-
mon factors and FH (1)(tk), FH (2)(tk) are the cumulative distribution
functions of the maximum over the idiosyncratic factors, which can
be obtained from Lemma 3.2.

In general, this extension is not limited to two groups, allow-
ing for further correlation structures at the cost of an increasingly
sophisticated cumulative distribution function of the common factor
maximum.

Appendix 2. Algorithm

We outline the necessary computations to obtain the first and second-
order common factor approximations. Note that the diffusion and
mean-reverting estimators can be computed independently from
another. Inputs:

(i) Maturity T and number of additional currencies N
(ii) Time discretization T = {0 = t0 < t1 < · · · < tR = T}

(iii) Hull–White parametrization of collateral spreads: (κi, ξi,
θi(tk), qi(0)) for all i ≤ N and tk ∈ T

(iv) Instantaneous correlations (ρi,j) for all i, j ≤ N .

Common factor approximation:

(v) Common factor parameters for every tk ∈ T :
(a) Compute correlation parameter γ (tk) (from (34))
(b) Compute means and variances of C(tk), Ai(tk) for all

i ≤ N (from (23)–(24))
(vi) Moments of the maximum for every tk ∈ T :

(a) Compute convolution (Fmaxi(Ai(tk)) ∗ fC(tk))(x) over
domain (0, L) large enough that (Fmaxi(Ai(tk)) ∗
fC(tk))(L) ≈ 1

(b) Compute E[M̃ (tk)] = ∫∞
0 (1 − (Fmaxi(Ai(tk)) ∗

fC(tk))(x) dx
(c) Compute E[M̃ (tk)2] = ∫∞

0 2x(1 − (Fmaxi(Ai(tk)) ∗
fC(tk))(x) dx

(vii) Second-order estimators
(a) Diffusion estimator

(i) Compute (T) = Var[
∫ T

0 X (t)dt] from (54)
(b) Mean-reverting estimator:

(i) Compute P[M̃ (tk) = qi] for all i ≤ N and tk ∈ T
with (73)

(ii) Compute χ(T) estimator from (77)

Outputs:

(viii) First-order estimator: CF1(T) = exp(−∑
tk E[M̃ (tk)]�tk)

(ix) Second-order estimators
(a) Diffusion based: CF(1)

2 (T) = CF1(T)(1 + 1
2 (T))

(b) Mean-reversion based: CF(2)
2 (T) = CF1(T)(1 +

1
2 χ(T))

Appendix 3. From rate to spread parameters

In the following, we show how collateral rate parameters can be
translated to collateral spread parameters. To this end, let r0 and r1
be the collateral rates of two currencies with Hull–White dynamics

dr�(t) = κr
�

(
θ r
�(t) − r�(t)

)
dt + ξ r

� dWr
� (t), (A11)

r�(0) = r�,0, (A12)

d[W0(t), W1(t)] = ρr
0,1 dt, (A13)

where the superscript r underlines that these are the Hull–White
parameters of FX-adjusted collateral rates and � ∈ {0, 1}. We aim
to explain the choice of our parameters of the difference processes,
namely the collateral spreads in Table 1,

d(r1 − r0)(t) = (
κr

1

(
θ r

1(t) − r1(t)
)− κr

0

(
θ r

0(t) − r0(t)
))

dt

+ (
ξ r

1dWr
1(t) − ξ r

0dWr
0(t)

)
. (A14)

The drift part of the dynamics can be expressed as((
κr

1θ
r
1(t) − κr

0θ
r
0(t)

)− κr
0 + κr

1

2(
2κr

1

κr
0 + κr

1
r1(t) − 2κr

0

κr
0 + κr

1
r0(t)

))
dt (A15)

Table A1. Rate parameters.

κr
0 0.0072 ξ r

0 0.0073 r0(0) 0.000845 ρr
0,1 0.97

κr
1 0.0083 ξ r

1 0.0073 r1(0) 0.001514 ρr
0,2 0.95

κr
2 0.0080 ξ r

2 0.0074 r2(0) 0.002265 ρr
1,2 0.95
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which, if the mean reversion speeds κr
0, κr

1 are similar, is closely
approximated by((

κr
1θ

r
1(t) − κr

0θ
r
0(t)

)− κr
0 + κr

1

2
(r1(t) − r0(t))

)
dt. (A16)

This corresponds to the drift part of a Hull–White process with an
averaged speed of mean reversion (κr

0 + κr
1)/2. Analogously, for the

volatility term it holds approximately

ξ r
1 dWr

1(t) − ξ r
0 dWr

0(t) ≈ ξ r
1 + ξ r

0

2
d
(
Wr

1(t) − Wr
0(t)

)
, (A17)

when the volatility parameters are similar. The difference of corre-
lated Brownian motions can be expressed as an independent, scaled
Brownian motion U,

d
(
W r

1(t) − Wr
0(t)

) =
√

2 − 2ρr
0,1 dU(t). (A18)

In summary, the difference process q1(t) = (r1 − r0)(t) can be
well approximated by a Hull–White process with a speed of
mean reversion parameter κ1 = (κr

1 + κr
0)/2 and volatility parameter

ξ1 =
√

2 − 2ρr
0,1(ξ

r
1 + ξ r

0)/2, given that the collateral rate param-

eters are not largely different. The initial spread value is directly
obtained from the difference of initial values, q1(0) = r1(0) − r0(0).
Using this approximation, we translate the estimated parameters of
Sankovich and Zhu (2015) (Table A1) to exemplary spread param-
eters (Table 1). It is important to note that the collateral rates are
parametrized under the Q0 measure, whilst the collateral spreads are
parametrized under the T-forward measure. This change of measure
is expressed by a shift in the drift term, which can be included in the
long-term means θi(t).


	1. Introduction
	1.1. From collateral rates to collateral spreads

	2. The CTD model
	2.1. Collateral spread model
	2.2. Approximating the CTD

	3. First-order model with a common factor approximation
	3.1. Common factor approximation

	4. Second-order models with the common factor approximation
	4.1. The diffusion-based estimator
	4.2. The mean-reversion-based estimator

	5. Model extension
	6. Numerical results
	6.1. Model accuracy
	6.2. Robustness in a stressed market
	6.3. Computation time

	7. Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


