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A B S T R A C T

An ensemble data assimilation method is proposed that is based on optimal control minimizing the cost
of mismatch in the Wasserstein metric on the observation space. The new method achieved the optimal
state without calculating the posterior distribution of the particle state and the particle states are evolved
deterministically, which is easy to be implemented. The method is appropriate for systems in which multiple,
noisy, partial observations are available (e.g. citizen weather stations or smart phones). The method is
demonstrated for: (i) deterministic dynamics with uncertain initial conditions, (ii) multiple noisy observations
of a randomly forced ordinary differential equation (ODE), (iii) observations from multiple sample paths from
a stochastic differential equation (SDE). A bi-modal measure and a measure supported on a strange attractor
are tested. The numerical results show that our method performs a relatively small Wasserstein distance
which measures the approximation performance. But numerical implementation is a bit expensive due to the
complexity of Wasserstein distance computation, especially with large set of particles.
1. Introduction

Data assimilation is a commonly used computational method for
combining dynamic model simulations and observational data to esti-
mate a state or trajectory of a dynamical system in fields as diverse as
weather forecasting, computer vision, robotics and navigation. In un-
certainty quantification, data assimilation may be used to approximate
an evolving probability measure expressing uncertainty in the model,
initial conditions or observations. Some references explaining the data
assimilation include [1–4].

A common method for data assimilation is ensemble data assim-
ilation, including the popular particle filter methods. Since particle
filters were introduced in [5], they have become a very popular class of
method that solve estimation problems in a recursive way depending on
the observation data [6,7]. Particle filter algorithms use a set of parti-
cles to represent the posterior distribution of the stochastic process and
they update their prediction in an approximate way. A common method
of particle filters is sequential importance sampling (SIS), which relates
all particles generated according to their importance weight at every
stage [8]. However, The main difficulty with particle filter algorithm
is that the particle weight would be unbalanced after a few steps, then
the SIS algorithm will have a significant weight-degeneracy after a large
number of iterations, i.e. all but one particle will be eliminated due to
the low weight [9,10]. To avoid this problem, Sampling Importance
Resampling (SIR) was introduced. The difference with SIS is that SIR
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resamples particles at every time stage, Specifically, it replicates the
high-weighted particles and eliminates low-weighted particles. This
approach is very useful and applied to solve many different kinds of
problems. However, the disadvantage of SIR algorithm is that most
resampled particles coincide, which leads to lower particle diversity
especially for deterministic dynamics. Some other particle filter tech-
niques have been developed to tackle the unbalanced weight problem.
Zhao et al. [11] proposed an improved particle filter which depends
on Pearson correlation coefficient to reduce the situation on particle
degeneracy. Pearson correlation coefficient is applied to determine
whether the particles are close to the true state or not, which is difficult
to be applied in high dimensional systems. Zhu et al. [12] introduced
an implicit equal-weights particle filter, which all particles are sampled
with equal weight. However, the implicit equal weight is very complex
to get. Frei et al. [13] tried to introduce a parameter 𝛾 ∈ [0, 1] to
bridge ensemble Kalman filter and particle filter by taking advantage
of the ensemble kalman filter’s nondegeneracy. But it is not very clear
about how to determine the parameter 𝛾. To obtain the estimation state,
the methods proposed in [11–13] all need to calculate the posterior
distribution.

In [14,15], the authors proposed a method to derive a particle filter
by applying optimal control techniques. The method has a self-oriented
formulation that provides a self-correcting feedback mechanism to
stabilize the particles around the posterior. Inspired by [14,15], in this
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paper, we introduce an alternative method to the construction of a
particle filter by adding a control in the particle states. In contrast
to [14,15], we evolve particle states deterministically. We obtain the
optimal control without calculating the posterior distribution of the
particle states. We employ a Wasserstein metric [16,17] in the cost
function to measure the distance between probability distributions in
the observation space.

Wasserstein distance arises from the optimal transport idea and
now it is becoming more popular in machine learning and statistics.
There are some references related to applying Wasserstein distance into
data assimilation. Reich [18] introduced optimal transport into particle
methods as a means of resampling. Sagar et al. [19] proposed an
ensemble data assimilation over Riemannian manifold with Wasserstein
distance. In paper [20], they proposed another new variation data as-
similation combining with Wasserstein distance. [21] proposed a robust
Kalman filter equipped with Wasserstein distance. Ning et al. [22] tried
to reduce the forecast uncertainty caused from parameter estimation er-
ror in dissipative evolutionary equations through applying Wasserstein
distance.

Although computationally complex, the Wasserstein distance is
more robust than, e.g., the Kullback–Leibler divergence [23,24]. Since
it relies on a metric equipped in a metric space, the Wasserstein
distance can be employed for two measures even if their supports are
mutually exclusive. As a result, the Wasserstein approach is applicable
to alternative measures besides absolutely continuous ones, e.g. em-
pirical measures or measures supported on strange attractors [25]. For
instance, Wasserstein metric could be implemented to compute the dis-
tance between continuous distribution and discrete distribution. Unlike
e.g. Euclidean distance and Helinger distance, Wasserstein distance has
the advantage to capture the position errors, and the date shape is
preserved during a morphing process [17,19,22].

This paper is organized as follows. Section 2 describes the ensemble
data assimilation method which is optimal control-based data assimi-
lation in detail. Lorenz 63 model and a bi-model system as numerical
implementation are discussed in Section 3.

2. Optimal control-based data assimilation method

2.1. Data assimilation problem

In this paper we study an optimal control-based particle filter
method for modeling uncertainty of a partially observed process. Our
starting point is an ensemble of possibly noisy observations given in the
form of 𝐾 discrete time series

�̂�𝑘
𝑛 = �̂�𝑘(𝑛𝛥𝑡) ∈ 𝐑𝓁 , 𝑛 = 0,… , 𝑁, 𝑘 = 1,… , 𝐾,

where 𝑘 denotes the ensemble index and 𝑛 the time index over an
interval 𝑇 = 𝑁𝛥𝑡.

We assume the underlying process 𝑋(𝑡), 𝑡 ∈ [0, 𝑇 ] is time-continuous
and is described by either a deterministic (case 𝜎 ≡ 0) or stochastic
differential equation

𝑑𝑋 = 𝑎(𝑋) 𝑑𝑡 + 𝛴 𝑑𝑊 , (1)

where 𝑋(𝑡) ∈  ⊂ 𝐑𝑑 is the state at time 𝑡, 𝑎(𝑋) ∶  → 𝐑𝑑 , 𝛴 ∈ 𝐑𝑑×𝑠

and 𝑊 (𝑡) is an 𝑠-dimensional Wiener process.
Let ℎ(𝑋) ∶  → 𝐑𝓁 be an observation function. Usually, one needs to

deal with partial observations: 𝓁 < 𝑑. An underlying assumption is that
the state 𝑋(𝑡) is detectable by the observation function ℎ. We assume
the state 𝑋(𝑡) is unknown, due to uncertainty in initial condition, model
error, or noise in the dynamics or measurements.

We distinguish three scenarios:
In the first scenario, we consider a deterministic system (i.e. 𝛴 ≡ 0

in (1)) with uncertain initial condition and partial observations. The
observations are given by

�̂�𝑘 = ℎ(�̂�𝑘(𝑛𝛥𝑡)), 𝑛 = 0,… , 𝑁, 𝑘 = 1,… , 𝐾, (2)
2

𝑛

where �̂�𝑘(𝑡), 𝑘 = 1,… , 𝐾, denotes an ensemble of solutions of the
deterministic differential equation (1), 𝜎 ≡ 0, with initial conditions
�̂�𝑘(0) drawn from a probability distribution.

In the second scenario, �̂�(𝑡) corresponds to a single sample path of
the SDE (1) for which multiple noisy observations are available. This
scenario models the case of weather measurements using a scattering
of imperfect personal devices such as smart phones or private weather
stations. The observations are given by

�̂�𝑘
𝑛 = ℎ(�̂�(𝑛𝛥𝑡)) + 𝜂𝑘𝑛 , 𝑛 = 0,… , 𝑁, 𝑘 = 1,… , 𝐾, (3)

where the 𝑘th time series {𝜂𝑘𝑛}
𝑁
𝑛=0 denotes the 𝑘th realization of the

discrete noise process, and 𝜂𝑘𝑛 ∼  (0, 𝑅), where 𝑅 ∈ 𝐑𝓁×𝓁 is the
covariance matrix of the observational noise.

In the third scenario we assume we are given 𝐾 sample paths of
(1), i.e., �̂�𝑘(𝑡), 𝑘 = 1,… , 𝐾, and the 𝑘th sequence {�̂�𝑘

𝑛 }
𝑁
𝑛=0 is observed

from 𝑋𝑘(𝑡), for 𝑘 = 1,… , 𝐾. This scenario models the case of (possibly
noisy) measurements of a repeated experiment with random forcing.
The observations are given by

�̂�𝑘
𝑛 = ℎ(�̂�𝑘(𝑛𝛥𝑡)) + 𝜂𝑘𝑛 , 𝑛 = 0,… , 𝑁, 𝑘 = 1,… , 𝐾.

In all three scenarios, our objective is to estimate the uncertainty
in our knowledge of the underlying process �̂�(𝑡) by approximating an
evolving probability measure 𝜇(𝑥, 𝑡) such that for measurable 𝐴 ⊂ ,

∫𝐴
𝜇(𝑥, 𝑛𝛥𝑡) 𝑑𝑥 = Prob{𝑋(𝑛𝛥𝑡) ∈ 𝐴}.

The measure 𝜇 will be approximated by an empirical measure 𝜈𝑛(𝑥)
supported on an ensemble of 𝐽 particles:

𝜈𝑛(𝑥) =
1
𝐽

𝐽
∑

𝑗=1
𝛿(𝑥 −𝑋𝑗

𝑛), (4)

where 𝛿 denotes the Dirac distribution. The motion of the 𝑗th particle
is governed by the drift vector field 𝑎(𝑋) and an optimal control via the
differential equation

𝑑𝑋𝑗

𝑑𝑡
= 𝑎(𝑋𝑗 ) + 𝐵𝑢𝑗 (𝑡), 𝑗 = 1,… , 𝐽 ,

𝑍𝑗 (𝑡) = ℎ(𝑋𝑗 (𝑡)), 𝑗 = 1,… , 𝐽 ,

where 𝐵 ∈ 𝐑𝑑×𝑚 and 𝑢𝑗 (𝑡) ∈ 𝐑𝑚 is the control input for 𝑗th particle at
time 𝑡, chosen to minimize a cost function that penalizes mismatch (in
the observation space) with respect to a Wasserstein metric. Of course,
optimizing the mismatch does not guarantee the convergence of the
measure 𝜈 to 𝜇. Nevertheless such a strategy is common in variational
data assimilation methods such as 4D-Var. The convergence question is
related to concepts such as the synchronization of chaos, detectability,
and Lyapunov stability theory [26–30]. By comparison with variational
data assimilation, we can view the controls 𝑢𝑗 (𝑡) as representing the
unknown model error required to explain the observations.

The particle motion is discretized in time using Euler’s method to
obtain the discrete dynamics

𝑋𝑗
𝑛+1 = 𝑋𝑗

𝑛 + 𝛥𝑡 𝑎(𝑋𝑗
𝑛) + 𝛥𝑡𝐵𝑢𝑗𝑛+1, 𝑛 = 0,… , 𝑁 − 1, 𝑗 = 1,… , 𝐽 , (5)

𝑍𝑗
𝑛 = ℎ(𝑋𝑗

𝑛), 𝑛 = 0,… , 𝑁, 𝑗 = 1,… , 𝐽 . (6)

2.2. Wasserstein cost function

In this paper we study numerically the use of a Wasserstein metric
to measure the mismatch in empirical distributions defined by the
measurement ensemble and particle filter. The Wasserstein metric has
found increased application in data assimilation, machine learning and
data science in general, due to a number of attractive properties. For
instance, the Wasserstein distance is well defined for singular measures
and distributions, e.g. for measuring distance between empirical dis-
tributions or measures supported on strange attractors. Also, in the
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Fig. 1. Comparison of Wasserstein particle filter (left) and ensemble Kalman filter (middle) and SIR (right) for the Lorenz attractor at time 𝑡 = 0.6. Partial observations (𝑥-component
nly) were generated from a sample ensemble of trajectories whose final states are indicated by purple circles. The final states of the filters are indicated with yellow circles.
a

𝐿

N

Fig. 2. The Wasserstein distance in full state (𝑥, 𝑦, 𝑧).

Wasserstein metric, the geodesic path between two distributions is the
optimal transport path, along which the deformation of a density is
minimal. Consequently, in the context of data assimilation when ob-
servations may be sparse, the probability density function will deform
in a minimal way between observation times.

Our goal is to choose the controls 𝑢𝑗𝑛 in (5) so that the particle
istribution 𝜈𝑛 approximates 𝜇(𝑥, 𝑛𝛥𝑡). Given that we only have access
o the sample observations {�̂�𝑘

𝑛 } we minimize a cost function that
penalizes mismatch in the Wasserstein metric. Let

𝜁𝑛(𝑧) =
1
𝐾

𝐾
∑

𝑘=1
𝛿(𝑧 − �̂�𝑘

𝑛 ), 𝜁𝑛(𝑧) =
1
𝐽

𝐽
∑

𝑗=1
𝛿(𝑧 −𝑍𝑗

𝑛) (7)

The cost function is defined as

𝐶 = 𝛥𝑡
𝑁−1
∑

𝑛=0

[ 𝐽
∑

𝑗=1

1
2
‖𝑢𝑗𝑛+1‖

2 +
𝛽
2
2

2 (𝜁𝑛+1, 𝜁𝑛+1)

]

, (8)

here 2 denotes the 2-Wasserstein distance (see below) and the
onstant 𝛽 ≥ 0 is a weight parameter.

.3. Calculation of Wasserstein distance

The Wasserstein distance is a metric on the space of probability mea-
ures. The 𝑝-Wasserstein distance between two probability measures 𝜇
nd 𝜈 on a metric space ( , 𝑑) is given by

𝑝(𝜇, 𝜈) =
(

inf
𝜋∈𝛱 ∫×

𝑑(𝑥, 𝑦)𝑝𝑑𝜋(𝑥, 𝑦)
)

1
𝑝

where 𝛱 denotes the set of transport couplings of 𝜇 and 𝜈, that is, 𝛱 =
{𝜋(𝑥, 𝑦)| ∫ 𝜋(𝑑𝑥, 𝑦) = 𝜇(𝑦), ∫ 𝜋(𝑥, 𝑑𝑦) = 𝜈(𝑥)}. In general, the Wasserstein
distance cannot be calculated analytically in most cases [23] and the
3

t

computational cost is higher than other distance, especially in high
dimensions. Hence, efficient algorithms for computing Wasserstein dis-
tance are needed. The straightforward way to solve the Wasserstein
distance is to use linear programming based algorithms such as network
simplex.

For empirical measures such as (4), computing the Wasserstein dis-
tance reduces to solving an optimal transportation problem of weighted
point sets, a special case of the minimum cost flow problem [31,32].
Given empirical measures

𝜇(𝑥) = 1
𝐽

𝐽
∑

𝑗=1
𝛿(𝑥 − �̂�𝑗 ), 𝜈(𝑥) = 1

𝐾

𝐾
∑

𝑘=1
𝛿(𝑥 −𝑋𝑘),

consider the space of finite transport maps:

 =

{

𝐹 = (𝑓𝑗𝑘) ∈ 𝐑𝐽×𝐾 |
|

|

|

𝑓𝑗𝑘 ≥ 0,
∑

𝑗
𝑓𝑗𝑘 = 1

𝐾
,
∑

𝑘
𝑓𝑗𝑘 = 1

𝐽

}

.

The 2-Wasserstein distance is equal to

2(𝜇, 𝜈) =

(

min
𝐹∈

∑

𝑗𝑘
𝑓𝑗𝑘𝑑

2
𝑗𝑘

)1∕2

, (9)

where we use a weighted norm

𝑑2𝑗𝑘 = ‖�̂�𝑗 −𝑋𝑘
‖

2
𝑀 = (�̂�𝑗 −𝑋𝑘)𝑇𝑀(�̂�𝑗 −𝑋𝑘). (10)

For instance, for noisy observations (3) with covariance matrix 𝑅,
we choose 𝑀 = 𝑅−1 to reflect our confidence/uncertainty in the
observations.

The minimization (9) constitutes a linear program. The Wasserstein
distance can be efficiently estimated using the Sinkhorn algorithm [33].

2.4. Optimal control

To determine the optimal control {𝑢𝑛𝑗} in (5), we minimize the
cost function (8) under constraints (5)–(6). We introduce Lagrange
multipliers {𝜆𝑗𝑛} and {𝛬𝑗

𝑛} and define a discrete Lagrangian functional:

𝐿 = 𝐶 + 𝐿0 + 𝐿𝜆,

where 𝐶 is the cost function (8), 𝐿0 enforces the constraint on the initial
conditions, 𝑋𝑗

0 = 𝜉𝑗0, presumed known (or sampled from a known initial
distribution),

𝐿0 =
𝐽
∑

𝑗=1

[

𝜆𝑗0(𝑋
𝑗
0 − 𝜉𝑗0) + 𝛬𝑗

0(𝑍
𝑗
0 − ℎ(𝜉𝑗0))

]

, (11)

nd 𝐿𝜆 defines the constraint relations:

𝜆 =
𝑁−1
∑

𝑛=0

𝐽
∑

𝑗=1

[

(𝜆𝑗𝑛+1)
𝑇 (𝑋𝑗

𝑛+1 −𝑋𝑗
𝑛 − 𝛥𝑡𝑎(𝑋𝑗

𝑛) − 𝛥𝑡𝐵𝑢𝑗𝑛+1)

+(𝛬𝑗
𝑛+1)

𝑇 (𝑍𝑗
𝑛+1 − ℎ(𝑋𝑗

𝑛+1))
]

. (12)

ote that we include the observation function (6) as a constraint, as

he observations appear implicitly in the cost function (8).
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Fig. 3. Noisy observations of a single sample path, particle number 𝐽 = 𝐾 = 30. The sample path is shown in red: 𝑞(𝑡) (upper two plots), �̂�(𝑡) (lower two plots). The observations
re indicated by the yellow dots in (a) and the observation sample mean by the yellow circles in (b). The particle filter trajectories are indicated by blue curves in (a) and (c),
nd the particle ensemble mean by the blue curves in (b) and (d). For this simulation 𝛽 = 4 was used.
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We demand that the Lagrangian be stationary under variations with
espect to 𝑋𝑗

𝑛 , 𝑍
𝑗
𝑛 , 𝜆𝑗𝑛 and 𝛬𝑗

𝑛. In addition we minimize 𝐿 with respect
to 𝑢𝑗𝑛. Assuming sufficient differentiability, we set derivatives of 𝐿 with
espect to these variables equal to zero. This approach is known to
ield a variational integrator [34] that defines a symplectic map. In
he context of optimal control, see for example [35,36].

Assuming the cost 𝐶 is differentiable with respect to 𝑢 at a (local)
minimum, from 𝜕𝐿∕𝜕𝑢𝑗𝑛 = 0 follows

𝑢𝑗𝑛 = 𝐵𝑇 𝜆𝑗𝑛, 𝑛 = 1,… , 𝑁, 𝑗 = 1,… , 𝐽 , (13)

Enforcing 𝜕𝐿∕𝜕𝜆𝑗𝑛 = 0 and 𝜕𝐿∕𝜕𝛬𝑗
𝑛 = 0, and making use of (13), we

obtain the filter relations (5)–(6):

𝑋𝑗
𝑛+1 = 𝑋𝑗

𝑛 + 𝛥𝑡 𝑎(𝑋𝑗
𝑛) + 𝛥𝑡𝐵𝐵𝑇 𝜆𝑗𝑛+1, 𝑛 = 0,… , 𝑁 − 1, (14)

𝑍𝑗
𝑛 = ℎ(𝑋𝑗

𝑛), 𝑛 = 0,… , 𝑁, (15)

𝑋𝑗
0 = 𝜉𝑗0. (16)

From 𝜕𝐿∕𝜕𝑍𝑗
𝑛 = 0, we obtain the definition

𝛬𝑗
𝑛 = −𝛥𝑡

𝛽
2

𝜕
𝜕𝑍𝑗

𝑛
2

2 (𝜁𝑛, 𝜁𝑛), 𝑛 = 1,… , 𝑁, 𝑗 = 1,… , 𝐽 , (17)

where 𝜁𝑛 and 𝜁𝑛 are given by (7).
Finally, from the condition 𝜕𝐿∕𝜕𝑋𝑗

𝑛 = 0, and making use of (17), we
obtain the adjoint relations:

𝜆𝑗 = 𝜆𝑗 − 𝛥𝑡∇𝑎(𝑋𝑗 )𝑇 𝜆𝑗 , (18)
4

1 0 0 1 (
𝜆𝑗𝑛+1 = 𝜆𝑗𝑛 − 𝛥𝑡∇𝑎(𝑋𝑗
𝑛)

𝑇 𝜆𝑗𝑛+1

+ 𝛥𝑡
𝛽
2
∇ℎ(𝑋𝑗

𝑛)
𝑇 𝜕
𝜕𝑍𝑗

𝑛
2

2 (𝜁𝑛, 𝜁𝑛), 𝑛 = 1,… , 𝑁 − 1, (19)

𝜆𝑗𝑁 = 𝛥𝑡
𝛽
2
∇ℎ(𝑋𝑗

𝑁 )𝑇 𝜕
𝜕𝑍𝑗

𝑁

2
2 (𝜁𝑁 , 𝜁𝑁 ). (20)

umerical evaluation of the gradient of Wasserstein distance. To
valuate the second term on the right of (19), we represent ∇ℎ(𝑋𝑗

𝑛) as
matrix of dimension 𝓁 × 𝑑. Denote the columns of this matrix by the

ectors ℎ̂1,… , ℎ̂𝑑 ∈ 𝐑𝓁 . We approximate the 𝛬𝑗
𝑛 in (17) numerically

sing a finite difference formula:
(

∇ℎ(𝑋𝑗
𝑛)

𝑇
𝜕2

2

𝜕𝑍𝑗
𝑛

)

𝑖

≈ 1
𝜀
[

2
2 (𝜁

(𝑗,𝑖)
𝑛 (𝜀), 𝜁𝑛) −2

2 (𝜁𝑛, 𝜁𝑛)
]

, (21)

here

(𝑗,𝑖)
𝑛 (𝜀) = 1

𝐽

[

𝛿(𝑧 − (𝑍𝑗
𝑛 + 𝜀ℎ̂𝑖)) +

∑

𝑘≠𝑗
𝛿(𝑧 −𝑍𝑘

𝑛 )

]

,

nd 𝜀 can be chosen to be the square root of machine precision.
onsequently, the second term on the right of (19) can be approximated
sing 𝑑 + 1 evaluations of the Wasserstein distance.

The complete set of equations that define the filter can be expressed
n terms of the variables 𝑋𝑗

𝑛 , 𝑍
𝑗
𝑛 and 𝜆𝑗𝑛 given by (14)–(16) and (18)–

20). Forward–backward sweep iteration proceeds by solving (14)–(16)
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Fig. 4. Same as Fig. 3, but with particle number 𝐽 = 10. The sample path is shown in red: 𝑞(𝑡) (upper two plots), �̂�(𝑡) (lower two plots). The observations are indicated by the
ellow dots in (a) and the observation sample mean by the yellow circles in (b). The particle filter trajectories are indicated by blue curves in (a) and (c), and the particle ensemble
ean by the blue curves in (b) and (d). For this simulation 𝛽 = 4 was used in the cost function (8).
orward in time, followed by (18)–(20) backward in time, and repeat-
ng. However, such iteration is not convergent in general, especially for
onlinear dynamics.

Instead, the regularized forward–backward sweep method [37] pro-
osed to augment the optimal control (13)

𝑗
𝑛 =

1
1 + 𝜌

[

𝜆𝑗𝑛 + 𝜌

(

𝑋𝑗
𝑛+1 −𝑋𝑗

𝑛

𝛥𝑡
− 𝑎(𝑋𝑗

𝑛)

)]

,

𝑛 = 1,… , 𝑁, 𝑗 = 1,… , 𝐽 . (22)

where 𝜌 > 0 is the regularization parameter. Convergence of the
resulting iteration for sufficiently large 𝜌 is proven for continuous
dynamics in [37]. The proof is confirmed for the discrete case with
symplectic discretization in [37]. In practice the convergence can be
greatly accelerated using Anderson acceleration with restart [38]. The
Wasserstein distance is Lipschitz continuous with respect to the state
variable [24,39]. Consequently, it satisfies the criterion for convergence
of the regularized forward–backward sweep algorithm [37,40].

3. Numerical experiments

In this section, we study numerically the properties of the proposed
filter for quantifying uncertainty in some simple differential equations.
We first study the propagation of uncertainty in the initial condition of
5

a deterministic differential equation, the Lorenz attractor model [41].
Subsequently, we consider stochastically forced motion in a double-well
potential, for which the equilibrium distribution is bi-modal. We study
both the case of a single sample path with noisy measurements and
the case of multiple samples. In all numerical experiments we directly
observe one dependent variable. Hence, the observations are partial
(𝓁 < 𝑑), but the observation operator is linear (corresponding to a row
of the identity).

For all experiments we computed the Wasserstein distance by solv-
ing the linear program (9), for which the complexity is unfavorable for
large ensemble size [42,43]. Improved performance could possibly be
achieved using the Sinkhorn iteration [33], especially given that the
many Wasserstein distances that need to be computed via (21). Note
that the transport paths in (21) are expected to be very similar, pro-
viding good starting values for the iterations. We have not investigated
this further.

3.1. Uncertainty in initial condition: deterministic Lorenz 63 model

In this section we study the behavior of the particle filter to ap-
proximate a probability measure relaxing onto the attractor of the
Lorenz 63 system [41]. The invariant measure of the Lorenz system
is a Sinai–Ruelle–Bowen (SRB) measure, which is a kind of invariant
measure [44], supported on a strange attractor of fractal dimension.
The dynamics is deterministic, but we introduce uncertainty in the

initial conditions by drawing an ensemble from a normal distribution.
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Fig. 5. Same as Fig. 4, but computed with 𝛽 = 200 in the cost function (8). The sample path is shown in red: 𝑞(𝑡) (upper two plots), �̂�(𝑡) (lower two plots). The observations are
indicated by the yellow dots in (a) and the observation sample mean by the yellow circles in (b). The particle filter trajectories are indicated by blue curves in (a) and (c), and
the particle ensemble mean by the blue curves in (b) and (d).

Fig. 6. Histograms of coordinate 𝑞(𝑡) of the sample ensemble (red) and filter (blue) at time 𝑡 = 5 for weight parameters 𝛽 = 4 (left) and 𝛽 = 200 (right) for a 200-member ensemble.
The yellow curve indicates the expected bin size based on a high-resolution sample of 20 000 members. The figure shows that the proposed method is effective at approximating
a bi-modal probability density function.
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Fig. 7. Time-evolution of Wasserstein distance between the particle ensemble 𝜈𝑛(𝑞, 𝑝)
and the sample ensemble 𝜇𝑛(𝑞, 𝑝) for 𝛽 = 4 and 𝛽 = 200.

e compare the particle filter to the SIR and another popular ensemble
ata assimilation: the ensemble Kalman filter (EnKF, [45]) to study
he potential advantage of optimizing with respect to mismatch in
he Wasserstein metric. The EnKF method focuses on properties of
volving Gaussian distributions (approximating the mean and covari-
nce matrices), which are smooth absolutely continuous measures. The
asserstein metric does not require differentiability of the evolving

ensity. Consequently, it is useful for comparing measures that evolve
n a strange attractor. Applying Euler’s method, the discrete Lorenz
ystem is given by

̂𝑛+1 = �̂�𝑛 + 𝛥𝑡 𝑐1(�̂�𝑛 − �̂�𝑛), (23)

�̂�𝑛+1 = �̂�𝑛 + 𝛥𝑡 (�̂�𝑛(𝑐2 − �̂�𝑛) − �̂�𝑛), (24)

�̂�𝑛+1 = �̂�𝑛 + 𝛥𝑡 (�̂�𝑛�̂�𝑛 − 𝑐3�̂�𝑛), (25)

ith the parameters 𝑐1 = 10, 𝑐2 = 28, 𝑐3 = 8∕3 as originally studied by
orenz. We employ step-size 𝛥𝑡 = 0.001.

To generate observations, we simulate an ensemble of 𝐾 = 100
rajectories over the time interval 𝑡 ∈ [0, 6], with initial conditions
𝑘
0 = (𝑥𝑘0 , 𝑦

𝑘
0 , 𝑧

𝑘
0) drawn from

𝑘
0 ∼  (1, 0.52), 𝑦𝑘0 ∼  (−1, 0.52), 𝑧𝑘0 ∼  (25, 0.52).

his initial condition was chosen with a small variance but rapidly
preading ensemble that splits across the two lobes of the Lorenz
ttractor. In the experiment, as an example to illustrate our method,
e assume the (partial) observable is the 𝑥-component

̂ 𝑘
𝑛 = �̂�𝑘𝑛 , 𝑘 = 1,… , 𝐾, 𝑛 = 1,… , 𝑁.

nd the control is applied only to the 𝑦-component. The particle dy-
amics satisfy

𝑛+1 = 𝑥𝑛 + 𝛥𝑡 𝑐1(𝑦𝑛 − 𝑥𝑛), (26)

𝑦𝑛+1 = 𝑦𝑛 + 𝛥𝑡 (𝑥𝑛(𝑐2 − 𝑧𝑛) − 𝑦𝑛) + 𝛥𝑡𝑢𝑛+1, (27)

𝑧𝑛+1 = 𝑧𝑛 + 𝛥𝑡 (𝑥𝑛𝑦𝑛 − 𝑐3𝑧𝑛). (28)

e select a particle filter ensemble size 𝐽 = 100. For the Wasserstein
etric (9)–(10) we choose 𝑀 = 𝐼 , and in the cost function 𝛽 = 60.
s for the ensemble Kalman filter algorithm (EnKF), ensemble size
nd initial error are same with particle filter and the observation is
on-perturbed. The Same particle number is in SIR. Since the initial
ondition in our implemented example is unknown in state dynamic,
ll particles update their state through the filter at initial time.

The states of the three methods are shown in Fig. 1. Even it is not
ery clear to see the difference between the three approaches related
o the state, it still can be seen that particles (yellow circles) under
7

asserstein particle filter appear similar probability with ensemble of i
trajectories in the right lobe of the attractor. This result is the best than
the other two methods because particles under EnKF method and SIR
method appear low probability with ensemble of trajectories.

The better approximation of the evolving measure by the Wasser-
stein particle filter is confirmed in Fig. 2, where we compare the
Wasserstein distances between the sample ensemble 𝜇𝑛 based on the full
states {�̂�𝑘

𝑛 } and the filter ensembles 𝜈𝑛(𝑋) computed using the Wasser-
tein particle filter, EnKF and SIR. We see that Wasserstein distances of
he empirical measures to that of the sample ensemble 2(𝜈0, 𝜇0) < 1
or both filters, the final distance 2(𝜈𝑁 , 𝜇𝑁 ) is approximately 0.5 for
he particle filter and 5 for the EnKF.

.2. Noisy observations: a randomly forced ODE

For the experiments in this and the next section we consider stochas-
ically forced motion in a double-well potential:

𝑞 = 𝑝 𝑑𝑡 + 𝜎𝑞 𝑑𝑊𝑞 ,

𝑑𝑝 = (𝑞 − 𝑞3 − 𝑟𝑝) 𝑑𝑡 + 𝜎𝑞 𝑑𝑊𝑝,

here 𝑟 > 0 is a damping parameter. For the numerical experiments we
hoose 𝑟 = 1, 𝜎𝑞 = 𝜎𝑝 = 0.1. Probability distributions transported by this
ystem converge to a bi-modal equilibrium state with peaks centered at
he stable equilibria (𝑞∗, 𝑝∗) = (±1, 0) of the drift vector field.

To generate samples of this system we discretize using the Euler–
aruyama method

𝑞𝑛+1 = 𝑞𝑛 + 𝛥𝑡 �̂�𝑛 + 𝜎𝑞𝛥𝑊𝑞,𝑛, (29)

�̂�𝑛+1 = �̂�𝑛 + 𝛥𝑡 (𝑞𝑛 − 𝑞3𝑛 − 𝑟�̂�𝑛) + 𝜎𝑝𝛥𝑊𝑝,𝑛, (30)

here 𝛥𝑊𝑝,𝑛, 𝛥𝑊𝑞,𝑛 ∼  (0, 𝛥𝑡) are independent and normally dis-
ributed. Noisy observations of the variable 𝑞 are obtained from

̂𝑛 = 𝑞𝑛 + 𝜂𝑛, 𝑛 = 0, 1,… , 𝑁, (31)

here 𝜂𝑛 ∼  (0, 𝜎2𝑛 ).
For the particle filter, the motion of the 𝑗th controlled particle is

iven by

𝑞𝑗𝑛+1 = 𝑞𝑗𝑛 + 𝛥𝑡 𝑝𝑗𝑛 + 𝛥𝑡 𝑢𝑗𝑞,𝑛+1, (32)
𝑗
𝑛+1 = 𝑝𝑗𝑛 − 𝛥𝑡 ((𝑞𝑗𝑛)

3 − 𝑞𝑗𝑛 + 𝑟𝑝𝑗𝑛) + 𝛥𝑡 𝑢𝑗𝑝,𝑛+1, (33)

or 𝑗 = 1,… , 𝐽 , and the observation function applied to the 𝑗th particle
ields
𝑗
𝑛 = 𝑞𝑗𝑛, 𝑛 = 0,… , 𝑁. (34)

For all experiments we choose step size 𝛥𝑡 = 0.01. In each com-
utation, the regularization parameter 𝜌 in (22) was experimentally
etermined as small as possible to still observe convergence of the
orward–backward sweep iteration.

We first investigate the scenario of noisy observations of a single
ample path of (29)–(30). We choose initial conditions 𝑞0 = 0.2, �̂�0 = 0.5
nd integrate to time 𝑡 = 5. The particle filter positions were sampled
rom initial distribution 𝜈0(𝑞, 𝑝) given by the product measure

0 ∼  (0.2, 0.042), 𝑝0 ∼  (0.5, 0.062). (35)

bservational noise was generated with standard deviation 𝜎𝑛 = 0.1,
nd for each time step we sample 𝐾 = 30 noisy observations. Wasser-
tein metric is given by (9)–(10) with 𝑀 = 𝑅−1 and 𝑅 = 𝜎2𝑛𝐼 , where 𝐼
s the identity matrix.

We apply the particle filter with particle number 𝐽 = 30 and
= 10. The results for 𝐽 = 30 are shown in Fig. 3. For these

imulations, we chose 𝛽 = 4 in the cost function (8). The red curves in
show the sample path 𝑞𝑛 (upper plots) and �̂�𝑛 (lower plots). The noisy
easurement data {�̂�𝑘

𝑛 }
𝐾
𝑘=1 is plotted in yellow in 3(a), and the sample

ean is plotted as yellow circles in 3(b). The particle trajectories are
lotted as blue curves in Fig. 3(a) and (c). The particle mean trajectory

s plotted in blue in Fig. 3(b) and (d). As expected, the pdf of the
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Fig. 8. Multiple sample paths of an SDE. An ensemble of 𝐾 = 30 sample paths of the system (29)–(30) are plotted as yellow curves in (a) (𝑞-component) and (c) (𝑝-component).
The corresponding particle filter paths (𝐽 = 30) are plotted as blue curves in (a) and (c). The ensemble means and particle filter means are compared in (b) and (d). For these
simulations, 𝛽 = 4.
h
d

observed 𝑞-component is approximately normally distributed about the
sample path. This is not the case for the unobserved 𝑝-component,
for which the marginal pdf is time-dependent. We see that the mean
particle motion is much smoother than the sample path. It also appears
as if the 𝑞-component, which is directly observed, is better estimated
than the 𝑝-component.

In Fig. 4 we repeat the above experiment, but for a smaller particle
size 𝐽 = 10 for the particle filter. The conclusions are similar. The
particle mean trajectory is of similar accuracy to the higher resolution
simulation in Fig. 3.

The parameter 𝛽 in the cost function (8) determines the relative
weight of the observations compared of the cost of controlling the
particle motion. In Fig. 5 we choose a much larger value 𝛽 = 200
nd repeat the experiment. We observe that the particle filter paths are
uch less smooth in the 𝑞-component in Fig. 5(a) and that the particle

nsemble mean closely follows the sample path in Fig. 5(b). There
s no noticeable improvement in the trajectories of the unobserved
omponent 𝑝.

.3. Multiple sample paths of a stochastic system

In this section we generate observations by simulating an ensemble
f sample paths of the stochastic double well potential (29)–(30). All
arameters are identical to those in the previous section unless stated
therwise.
8

We first study the approximation of the bimodal distribution at
igh resolution. For this example, we choose a deterministic (Dirac
istribution) initial condition 𝑞0 = −1, 𝑝0 = 0 for both the samples and

the filter particles. We generated a large number 𝐾 = 20000 of sample
paths to approximate the time evolving pdf, which is exhibited at time
𝑡 = 5 by the yellow curve in Fig. 6. We then generated observations
using an ensemble of size 𝐾 = 200 without noise (i.e. 𝜎𝑛 = 0 in (31)) and
applied the particle filter (14)–(20) with 𝐽 = 200 particles. Histograms
of the samples and particle filter pdfs are shown in Fig. 6 for parameter
values 𝛽 = 4 (left plot) and 𝛽 = 200 (right plot). The bi-modality of the
pdf is clearly noticeable, and the approximation more closely matches
the observations for 𝛽 = 200 as expected.

Fig. 7 shows the time evolution of the Wasserstein distance 2 over
the full state empirical measures 𝜈𝑛(𝑞, 𝑝) 𝜇𝑛(𝑞, 𝑝) for 𝛽 = 4 and 𝛽 = 200.
For 𝛽 = 200, the Wasserstein distance is bounded below 2 < 0.007
for most of the interval. For 𝛽 = 4 the distance is somewhat greater at
around 2 < 0.02 but decreases over time.

In Figs. 8 and 9 we compare the particle filter approximation of an
evolving measure with sample path ensemble size 𝐾 = 30 and particle
numbers 𝐽 = 30 and 𝐽 = 10. For both simulations we draw initial
distributions for both sample paths and particles from (35). The same
sample paths are used in both figures. We use 𝛽 = 4 and 𝑀 = (0.1)−2𝐼
in (10) (consistent with experiments in the previous section). We see
that the sample path means of both the 𝑞- and 𝑝-components are well

approximated.
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Fig. 9. Same as Fig. 9, but with 𝐽 = 10. An ensemble of sample paths of the system (29)–(30) are plotted as yellow curves in (a) (𝑞-component) and (c) (𝑝-component). The
corresponding particle filter paths with particle number 𝐽 = 20 are plotted as blue curves in (a) and (c). The ensemble means and particle filter means are compared in (b) and
(d). For these simulations, 𝛽 = 4.
4. Conclusion

In this paper, we construct a particle filter in the form of an optimal
control that minimizes mismatch in the Wasserstein distance on obser-
vation space. The particle states are evolved deterministically which is
easy to apply. This new data assimilation algorithm avoid weight de-
generacy, which is a main issue in conventional particle filter problems.
Comparing with the feedback particle filter proposed in [14,15], we
obtain the optimal control without calculating the posterior distribution
of the particle states. Numerical examples show that the Wasserstein
distance between the empirical measure on the whole state space is
well bounded over the assimilation window. We compared scenarios
with (i) deterministic (chaotic) dynamics with uncertainty in initial
conditions, (ii) a single sample path of an SDE with multiple uncertain
observations, and (iii) multiple sample paths of an SDE with accurate
(partial) observations. The method was shown to recover bi-modal
probability measures, compare favorably to the ensemble Kalman filter
for a SRB measure, and accurately reproduce the sample path mean
for latter scenario. The numerical computation is expensive due to the
Wasserstein distance calculation and the results are suboptimal, as is a
topic for future research. And the sinkhorn Iteration could be applied to
computed Wasserstein distance in the further to improve performance
9

with large ensemble size.
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