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From Feynman graphs to Witten diagrams
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Netherlands
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Abstract. We investigate the possibility of generalizing Gopakumar’s microscopic derivation
of Witten diagrams in large N free quantum field theory [1] to interacting theories. For simplicity
we consider a massless, matrix valued real scalar field with Φh interaction in d-dimensions.
Using Schwinger’s proper time formulation and organizing the sum over Feynman graphs by
the number of loops `, we show that the two-point function can be expressed as a sum over
boundary-to-boundary propagators of bulk scalars in AdSd+1 with mass determined by `.

This manuscript is intended as a contribution to the festschrift of prof. Tekin Dereli’s on
the occasion of his 72nd birthday1.

1. Introduction

Gauge-string correspondence [2, 3, 4], despite all the successful checks it goes through and the
plethora of work that applied it to study, again successfully, both strongly interacting QFTs
and quantum gravity, lacks a satisfactory microscopic derivation and a deeper understanding
thereof. A basic question is how to reformulate holographic QFT correlation functions, in
particular Feynman graphs, such that emergence of gravitational dynamics becomes manifest,
for example how the gravitational field propagators in the dual curved space-time arise from
field theory amplitudes. Another question is, how to determine which QFTs are holographic
which are not. Given a holographic QFT and assuming a limit where the dual geometry is well
defined, is there an algorithm to determine this dual background precisely?

Among all the different approaches that have been suggested in the literature, entanglement
entropy [5], geometrization of RG flows [7, 6, 8], bulk reconstruction [9], quantum error
correction [10], tensor networks [11], etc., there is one which stands out as the most fundamental:
deriving dual gravity propagators directly from the QFT Feynman graphs. As far as we know,
for field theories in d > 2 this approach was first proposed by R. Gopakumar in the case of free
field theory [1]. Gopakumar considered matrix valued free field theories and studied n-point
function of composite single-trace operators in Schwinger’s proper time formulation [13]. In
the particular case of the three-point function he noticed a change of variables involving the
moduli (Feynman parameter’s of a given graph) that is called the star-triangle duality2. The
name derives from an analogous relation that involves electric circuits3 which relates the total
effective impedance of a triangle shaped electric circuit to that of a tri-star circuit, see fig. 2. In
Schwinger’s formulation the total proper time of the graph is in one-to-one correspondence with

1 I congratulate prof. Dereli on his birthday for his prolific career and for setting up an example with high
standards for the younger generations of mathematical physicists.
2 Earlier work relating matrix quantum mechanics and 2D non-critical string theory [12] relies on a similar type
of duality.
3 See for example, [14] for a precise account of the map between Feynman graphs and electric circuits.
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the holographic direction of the dual gravity theory4 [1] and the star-triangle relation becomes
a clear manifestation of the gauge-string duality, or open-closed duality in string theory where
the gauge theory 3-point function is represented by the triangle and the corresponding Witten
diagram [3] in the dual theory is represented by the tri-star. See [18] for a more recent work,
based on a different approach, that also derives dual gravity theory directly from field theory,
in the case of vector models [19].

In this paper we suggest that a generalization of the star-triangle type duality of Feynman
graphs into interacting field theories might be a fundamental manifestation of the gauge-string
duality and a key to generalize it beyond the known specific cases5. In particular, we generalize
Gopakumar’s derivation of Witten’s diagrams from free field theory to interacting theories. As
a prototype, we take a real, massless N×N matrix-valued scalar field Φ with Φh interaction,
for integer h > 2, in d-dimensions, and consider the two-point function 〈Φ(x1)Φ(x2)〉. The
two-point function in the large N limit is given by Feynman graphs summed over the number
of independent quantum loops ` which, in the large N limit, can further be classified in terms
of 2D Euclidean Riemann surfaces embedded in d-dimensions. We show that each term in the
sum over ` can be mapped onto a boundary-to-boundary propagator of a scalar field with mass
m related to `, in d+ 1 dimensional AdS space. This provides a dual “closed string” picture of
the two-point function in terms of a generalized Witten diagram given by sum over AdS Witten
diagrams. Even though we perform our calculations in a simple scalar ungauged theory, we
will be assuming that our findings generalize to theories like N = 4 super-Yang-Mills without
conceptual difficulties.

In the next section we review Gopakumar’s construction in free field theory. In section 3 we
first review Schwinger’s proper time formulation for interacting field theories and then generalize
Gopakumar’s computation to finite coupling. We end in section 4 by discussing open issues,
generalization to higher point functions and an overlook.

2. Open-closed and star-triangle

The AdS/CFT correspondence originates from an equivalence between open and closed string
descriptions of a set of D3 branes in IIB string theory [2]. Loosely speaking, and in the simplest
case, this can be understood geometrically as in fig. 1 which depicts an equivalence between
one-loop partition function of open strings in d-dimensions and propagation of a closed string
in d+ 1 dimensions [23]. In the low energy limit where the massive string states decouple, open
strings on N coincident D3 branes are effectively described by 4D U(N) Yang-Mills gauge theory
theory. On the other hand the closed string in fig. 1 turns out to propagate in the AdS5 × S5

geometry which is generated by the backreaction of the brane system. More precisely, the n-
point function of gauge invariant operators in the Yang-Mills theory is given in terms of the
closed string world-sheet path integral

〈O1(k1) · · · On(kn)〉g =

∫

Mg,n

〈V1(k1, z1) · · · Vn(kn, zn)〉w.s. , (1)

where the subscript g on the RHS denotes the genus-g contribution to the Feynman graphs and
Vs are the closed string vertex operators which correspond to gauge theory operators on the
LHS. The integral is over the moduli of Riemann surfaces with genus g and n punctures.

To demonstrate this equivalence at the level of Feynman graphs, one must show, how the
holes on the open string (gauge theory) side are glued together and generate closed string
world-sheets with n-punctures. This mechanism was first proposed by ’t Hooft [24] in the
double scaling limit,

gYM → 0 , N →∞ , g2
YMN = λ , (2)

4 See also [15, 16, 17].
5 e.g. based on D-brane descriptions [20], lower dimensional examples [21, 22] and vector models [18, 19].
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Gauge-string duality
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G. ’t Hooft ‘74
Figure 1. Equivalence between one-loop diagram of an open string and tree level propagation
of a closed string.

where gYM is the Yang-Mills coupling constant. Emergence of a dual description in this limit
can be made explicit in 2D string theory, where the quantum mechanics of N × N hermitean
matrices become dual to 2D non-critical string theory, see for example [21].

A strong indication that the same “gluing” happens in higher dimensional free field theories
was noted in [1] utilising the proper time formulation of n-point functions, which we review
below.

Schwinger’s proper time formulation makes the point-like feature of QFT manifest. In
particular, correlators of a quantum field are represented by propagation of quantum mechanical
particle in proper time τ embedded in space-time as world-line xµ(τ). To see this one
exponentiates the denominator in the two-point function

〈Φ(x1)Φ(x2)〉 = i

∫
ddk

eik(x1−x2)

k2 +m2 − iε =

∫ ∞

0
dτ〈x1|e−iτ(−∂2+m2)|x2〉 . (3)

The RHS is nothing else but the path integral of a particle propagating in τ with hamiltonian
Hpp = k2 + m2. The integral over τ is moduli — a consequence of the reparametization
invariance of the worldsheet 6. A generalization of this representation to n-point functions in a
free field theory involves introduction of vertex operators inside the path integral

〈φ(x1) · · ·φ(xn)〉 =

∫ ∞

0

dτ

τ

n∏

i=1

dτi〈eik1X̂(τ1) . . . eiknX̂(τn)〉q.m. (4)

where the RHS is the path integral with the point particle hamiltonian Hpp = k2 + m2. The
integral is over the moduli of the Feynman graph given by the total proper time for the process
and proper times at insertions of the vertex operators. Note the structural similarity between
(1) and (4) which already implies the utility of the Schwinger’s formulation to explore the basic
mechanism behind the gauge-string duality.

As the path integral in (4) is Gaussian for free field theory, one can compute it explicitly
[25] and express the result solely in terms of moduli integrals. More interestingly, one can find
a judicious change of variables of moduli to reformulate the result in terms of propagators of
scalar fields in AdSd+1 [1, 17]. Consider N = 4 super-Yang-Mills at large N and in the free limit
λ = 0, see (2). For the purpose of demonstration let us consider the simplest non-trivial case of
the 3-point function and the operator tr Φ2 where Φ is one of the 6 scalars in the theory. There
is a single diagram that contributes to the connected 3-point function 〈tr Φ2(k1)Φ2(k2)Φ2(k3)〉
that is shown on the left figure in fig. 2.

Introducing a change of variables [1] αi = εijk|τj − τk|/τ from the moduli τi to Schwinger
parameters one can rewrite the connected 3-point function as follows

Ω(k1, k2, k3) ∝ δd(
∑

ki)

∫ ∞

0
dτ

∫ 1

0

3∏

i=1

dαi δ(
∑

αi − 1) e−τ(k21α2α3+k22α3α1+k23α1α2) (5)

6 which can be removed by introducing an auxiallry worldsheet einbein gττ in the path integral.
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Figure 2. Star-triangle duality in free field theory. LHS shows the only Feynman graph that
contributes to the 3-point function of tr Φ2 where ki are external momenta, τi are the moduli
and αi are the Schwinger parameters. RHS shows its equivalent under the duality.

This is precisely in the form given by product of three propagators with dual Schwinger
parameters α1α2 etc. as shown on the RHS of fig. 2. This procedure explicitly achieves
the “gluing” mentioned above in the sense that the hole on the “open string side” i.e. the LHS
of fig. 2 is closed up on the “closed string side” i.e. the RHS of fig. 2. The RHS also resembles
the Witten diagram for the 3-point function in AdS and this resemblance can be made precise
by another change of variables αi = ρi/

∑3
j=1 ρj [1] and defining the radial coordinate of the

AdS space z0 in terms of these Schwinger moduli as

z2
0 = 4τ

(
3∑

i=1

ρi

)
3∏

i=1

αi . (6)

This results in the final expression after Fourier transforming to space-time as

Ω(x1, x2, x3) ∝
∫ ∞

0

dz0

zd+1
0

∫
ddz

3∏

i=1

K∆i(xi; z, z0) (7)

where K∆(xi, y; z) are the boundary-to-bulk propagator for a scalar with mass m2 = ∆(d−∆),
with ∆ = 2, corresponding to tr Φ2 operator in AdSd+1 on the Poincaré patch

ds2 =
1

z2
0

(
dz2

0 + ηab dz
adzb

)
. (8)

This computation can be generalized to an arbitrary string of Φ fields [15], presumably to other
N = 4 super-Yang-Mills operators and higher point functions [17].

3. Generalization to interacting theories

The derivation of AdS propagators from Feynman graphs in the free case, presented above,
carries over to the interacting QFTs [26] to a large extent. For simplicity, we will discuss two-
point functions in a massless matrix valued scalar field Φ in d-dimensions with an interaction
potential Φh. The action is

S =

∫
ddxTr

(
−1

2
(∂Φ)2 + gΦh

)
, (9)
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where h > 2 is the coordination number of the vertex associated with the interaction term Φh

and g is the coupling constant analogous to g2
YM in (2). After the rescaling Φ →

√
NΦ one

obtains

S = N

∫
ddxTr

(
−1

2
(∂Φ)2 + λΦh

)
, (10)

where λ ≡ N (h−2)/2g is the ’t Hooft coupling.
We are interested in computing correlation functions of scalar fields in (10). We consider

a Feynman diagram F of genus g0, with I internal lines, V vertices and ` = I − V + 1 − 2g0

independent loops7.
Schwinger’s proper time formulation can be generalized [14] to express the value, ΩF , of this

generic graph F in terms of integrals of Schwinger parameters ar, r = 1, · · · I introduced for
each internal line8 (analogous to τ in (3)):

ΩF (~k) = δ(d) (k1 + · · ·+ kne)

∫ ∞

0

(
I∏

r=1

dar

)
U(ar)

−d/2 e−P(ar;~k) . (11)

This is the expression for the amputated graph in Euclidean time with ne external momenta
which we collectively denote as ~k = (k1, . . . , kne). The non-trivial ingredients here are the
Symanzik polynomials

U(a) ≡
∑

T1∈T1

∏̀

r 6∈T1

ar , P (ar;~k) ≡ 1

U(ar)

∑

T2∈T2




`+1∏

r 6∈T2

ar



(∑

b∈J
kb

)2

, (12)

with T1, T2 being the sets of trees and 2-trees respectively9, and J is one of the two disconnected
components of a 2-tree.

Applying this to the connected two-point function and after a series of change of variables
[26] and Fourier transform to position space one arrives at the following compact expression

ΩF (x, y) = 4∆−2πd/2Γ(∆)
VF

|x− y|2∆
. (13)

This has precisely the same form as a CFTd two-point function 〈O∆O∆〉 of a conformal field
O∆ with the scaling dimension

∆ =

(
d

2
− h

h− 2

)
`+

d

2
+ 1 , (14)

where we expressed the variables I and V in terms of ` using Euler’s theorem for genus-0 graphs
and an additional relation between I, V and the coordination number of the vertex h. It is
tempting to call this quantity as the “conformal dimension of the Feynman graph” `. Note that
it does not depend on the detailed structure of the graph but only on the number of independent
loops `.

Moreover, the entire dependence on the moduli ar is contained in the overall coefficient VF
in (13) that is given by

VF ≡ `
∫ ∞

0

(
I∏

r=1

dar

)
δ (1− UF (a))AF (a)∆−d/2 , AF (a) ≡

∑

T2∈T2

`+1∏

r 6∈T2

ar . (15)

7 We use the double line notation of ’t Hooft implicitly. A “line” actually refers to a double-line in the discussion
below.
8 We suppress the matrix indices in what follows.
9 If one removes ` internal lines from F such that there are no loops left, the remaining graph can be shown to
be a simply-connected subgraph of F , which is called a tree, T1. If ` + 1 lines are removed then one is left with
two disconnected components (trees) with no loops, called a 2-tree, T2.
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Full 2-point function

x1

x2

x2

Δ(d-Δ) = M2

Σ Σ
Δ,F M

• Open-closed duality seems to generalize to interactions 
• Tempting to interpret as sum over closed string states 
• Vl contains information on the dual geometry 
• Possible to include higher genus 
• Discussion generalises to higher point functions  

x1

Figure 3. A schematic description of the duality between Feynman graphs and Witten
diagrams. On the LHS the sum is over the scale dimension of a graph ∆, equivalently over the
number of loops `, see equation (14), and over all Feynman graphs with the same ∆. On the RHS
the sum is over two-point Witten diagrams that invovle a bulk scalar with mass M = ∆(d−∆).

This coefficient depends on the particular Feynman graph through the sets T1, T2 in the
Symanzik polynomials specific to a given graph F .

The fact that the contribution to the two-point function is in the CFT form (13) immediately
suggests, through the standard AdS/CFT prescription, that the full two-point function can be
written as a sum over two-point Witten diagrams as shown in fig. 3. This can indeed be shown
explicitly [26] again following a judicious change of variables similar to section 2. The Witten
diagram corresponding to the graph F, equation (13) reads10

ΩF (x1, x2) = V ′F lim
ε→0

ε

∫
dz0d

dz

z1+d
0

z2εK∆+ε(x1; z, z0)K∆+ε(x2; z, z0) , (16)

where we defined a new coefficient V ′F = VFπd4∆Γ(∆ − d
2) and introduced the AdS bulk-to-

boundary propagator

K∆(x; z, z0) =
Γ(∆)

πd/2Γ(∆− d
2)

z∆
0(

z2
0 + (x− z)2

)∆ , (17)

of a bulk field with mass M = ∆(d−∆). It is straightforward to check that the limit in (16) is
finite.

The full perturbative two-point function is then given by the sum over the number of
independent quantum loops ` of the contributing connected Feynman graphs

Ω(x1, x2) = N lim
ε→0

∞∑

`=0

λ2`/(h−2) C` ε
∫

AdS
z2ε

0 K∆+ε(x1; z, z0)K∆+ε(x2; z, z0) , (18)

where the coefficient

C` ≡
∑

F∈F`

V ′F
σF

(19)

is given by the sum over all connected Feynman graphs with ` independent loops and the
symmetry factor σF . This is our final expression for the two-point function expressed in terms
of AdS propagators. It is a strikingly simple expression where all the complication from distinct
Feynman graphs is absorbed in a single coefficient C`.

10 The proportionality constant involves a UV cut-off, for the more precise expression we refer to [26].
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4. Discussion

Our final result (18) contains divergences and should be understood as a formal expression.
Apart from the standard issue of Borel summability of perturbative expansion in QFT,
summands in (18) contain multiple UV and IR divergences contained in the coefficients V ′F . The
UV divergences all arise from independent loops in the Feynman graphs, in the limit ar → 0
of Schwinger parameters. These can be regulated in the standard manner by renormalizing
the two-point function. The IR divergences, on the other hand, arise from the other boundary
limits ar → ∞ which can also be regularized by introducing a small mass term in (10). These
issues will be detailed in [26].

Independent of its holographic interpretation, (18) is interesting in the sense that it
corresponds to an alternative form of the Källén-Lehmann representation of the two-point
function in massless QFT. Indeed the sum over ` can easily be turned into an integral over
∆ which labels excitations in the Hilbert space. Then the density of these states are determined
by the coefficient in (19). The results we obtained here for the two-point function seem to
generalize to higher point-functions barring some technical difficulties that will be addressed
in [26]. In case of the three-point function this construction implies an interacting field theory
analog of the star-triangle duality, fig. 2, which could be playing a central role in derivation of
the gauge-string correspondence for generic holographic QFTs.

It is also tempting to speculate on the holographic interpretation of this formula. Assuming
that the QFT we started with is holographic — for example N = 4 super-Yang-Mills or its
marginal or relevant deformations — then the RHS of (18) would correspond to a closed string
propagator in a curved space-time that is asymptotically AdSd+1. In the large N limit we are
considering here, this is given by the genus-0 contribution to the world-sheet path integral in (1).
Is it then possible to interpret the sum, (18), over ` as contribution of different string states to the
string propagator in this curved spacetime? Is this space-time a solution to (d+ 1) dimensional
non-critical string theory? Is there a saddle point in this sum (which can be expressed as an
integral over ∆) that corresponds to the gravity limit analogous to λ → ∞ in N = 4 super-
Yang-Mills? Can we then read off the metric in this space-time from the coefficients C`? Would
it then be possible to use our approach as an operational definition of the holographic dual to
a given QFT e.g. QCD?

These are fascinating questions answers to which lie beyond our reach today. We hope that
the approach we outlined in this paper will be instrumental for a deeper understanding of
holographic duality and will shed new light on these questions.
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