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1. Introduction

Abelian varieties over C can easily be described in terms of tori. Indeed for a com-
plex abelian variety A of dimension d we have an isomorphism A(C) � Cd/L,
where L is a Z-lattice of rank 2d. This association does not hold on the whole
category of abelian varieties when we move to the wilder realms of positive charac-
teristic. The reason is that there are objects such as the supersingular elliptic curves
with quaternionic endomorphism algebra, which does not admit a two-dimensional
representation over Q.

Nevertheless, if we restrict our attention to the ordinary abelian varieties (that
is, having p-torsion of maximal rank) over a finite field Fq of characteristic p, then
we can still mimic the result from the complex world. More precisely, Deligne in [6]
proved that the category AVord(q) of ordinary abelian varieties over Fq is equivalent
to the category Mord(q) of Z-modules with a “Frobenius endomorphism”. We recall
the precise statement of Deligne’s theorem in Sec. 2.

Fix an isogeny class of ordinary abelian varieties over Fq, which by Honda–Tate
theory is uniquely determined by a q-Weil polynomial h. The subcategory M(h) of
modules in Mord(q) whose characteristic polynomial of Frobenius is h, under some
assumptions on h, becomes easy to describe in terms of categories of modules and
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fractional ideals overorders in product of number fields. Such descriptions are given
in [17, 19] and are recalled in Theorem 5.3.

In this paper, we use these module-theoretic descriptions and the related com-
putational tools to study the functor associating to an abelian variety A in AVord(q)
its base extension A ⊗Fq Fqr in AVord(qr), for a fixed positive integer r. In partic-
ular, if A is a simple abelian variety in AVord(q) with characteristic polynomial of
Frobenius h, then the characteristic polynomial of A⊗Fq Fqr will be of the form gs

for some irreducible qr-Weil polynomial and positive integer s, as we recall in Sec. 3.
See also Remark 4.3 for a generalization to non-simple abelian varieties.

Section 4 contains the main results of the paper, namely Theorem 4.1 and Corol-
lary 4.2 which describe the functor − ⊗Fq Fqr : AV(h) → AV(gs) in terms of a
functor E2 defined on the category of modules. The definition of E2 is well suited
for computations on the isomorphism level, as we explain in detail in Sec. 5. In
particular, it allows us to explicitly compute twists of abelian varieties and their
(minimal) fields of definition. These two applications are discussed in Secs. 6–8. The
algorithms developed, which are available on the webpage of the author, allow us to
compute explicit examples, which we include in the various sections of the paper.
In particular, see Examples 5.5, 6.3, 6.4, 7.5, 8.1, 8.3–8.5.

It is worth mentioning that there are other descriptions of subcategories of
the category of abelian varieties over finite fields in terms of modules with extra
structure other than the one of Deligne. More precisely [3] deals only with abelian
varieties over prime fields Fp, while in [15, Appendix; 11, 12] discuss functors on
categories of abelian varieties isogenous to powers of elliptic curves. Moreover, in
[26] the author studies the behavior of the functor introduced in [11] in relation
to Galois field extensions. An equivalence of categories for almost ordinary simple
abelian varieties over finite fields of odd characteristic similar to one of Deligne
has been described in [21]. We chose to work with Deligne’s equivalence because
it allows us to deduce results also about powers of abelian varieties of dimension
greater than 1.

2. Preliminaries

Let AVord(q) be the category of ordinary abelian varieties over Fq. Consider the
category Mord(q) consisting of pairs (T, F ) where T is a finitely generated free
Z-module and F is an endomorphism of T such that

• F ⊗ Q is semisimple with eigenvalues of complex absolute value
√
q.

• The characteristic polynomial h of F is ordinary, that is, exactly half of the roots
of h are p-adic units and

• There exists an endomorphism V of T such that FV = q.

Theorem 2.1 ([6, Théorème]). There is an equivalence of categories

Ford : AVord(q) → Mord(q).
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If Ford(A) = (T, F ) then rankZ(T ) = 2 dim(A) and F corresponds to the Frobenius
endomorphism of A.

Let A be an abelian variety over Fq. Denote by hA the characteristic polynomial
of Frobenius of A. Recall that hA is a q-Weil polynomial, that is, a monic polynomial
of even degree with integer coefficients and with complex roots of absolute value
equal to

√
q. By Honda–Tate theory, the polynomial hA uniquely determines the

isogeny class of A, in the sense that, for an abelian variety B over Fq,

A ∼Fq B ⇔ hA = hB,

where hB is the characteristic polynomial of the Frobenius of B, see [24]. Moreover,
by [8, 25], one can use q-Weil polynomials to list all isogeny classes of abelian
varieties over Fq of given dimension.

Let h be the characteristic polynomial of Frobenius of an ordinary abelian variety
over Fq and let AV(h) be the full subcategory of AVord(q) consisting of abelian
varieties in the isogeny class determined by h. Denote by M(h) the image of AV(h)
under Ford.

For a squarefree q-Weil polynomial g ∈ Z[x] we put Kg = Q[x]/(g) and α =
x mod g. Let Rg be the order Z[α, q/α] in Kg and denote by B(g, s) the category
of torsion free Rg-modules M of rank s, that is, such that M ⊗Kg � Ks

g . In what
follows, we will always think of such a module as embedded in Ks

g . Note that the
objects of the category B(g, 1) are just fractional Rg-ideals.

Theorem 2.2 ([17, Theorem 4.1]). Assume that h = gs for some squarefree
polynomial g. There is an equivalence of categories

Gh : M(h) → B(g, s).

We briefly describe the functor Gh. Given a pair (T, F ) ∈ M(h) we have a natural
identification between Rg and Z[F, V ] given by α 	→ F , which induces an Rg-module
structure on T . Denote by M this module and set Gh((T, F )) = M .

Definition 2.3. The functor Fh : AV(h) → B(g, s) is defined as the composition
Gh ◦ Ford.

3. Isogeny Classes and Field Extensions

Let A be an abelian variety over Fq of dimension g, let h = hA be the characteristic
polynomial of Frobenius of A. Let r be a positive integer and put Ar = A ⊗Fq

Fqr and denote by hr the characteristic polynomial of Frobenius of Ar. Explicitly,
if dim(A) = d and

h = (x− α1) · · · · · (x− α2d)

over the complex numbers, then

hr = (x− αr
1) · · · · · (x− αr

2d).
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One has hr ∈ Z[x] and, in particular, hr is a qr-Weil polynomial of degree 2d. All
these results are well known, see, for example, [23, Theorem 5.1.15].

Recall that an abelian variety A is isotypic if A is isogenous to Bn for some
simple abelian variety B and positive integer n.

Proposition 3.1 ([4, Proposition 1.2.6.1]). If A is isotypic then Ar is isotypic
for every r ≥ 1.

The statement does not hold over an arbitrary field, see [4, Example 1.2.6]. Also,
the converse does not hold: if Ar is isotypic then A does not need to be so, as the
next example shows.

Example 3.2. If A is an abelian surface over F31 with characteristic polynomial

hA = (x2 − 3x+ 31)(x2 + 3x+ 31)

then A is isogenous to the product of two non-isogenous elliptic curves E1 and E2.
On the other hand E1 and E2 become isogenous over F312 and indeed the charac-
teristic polynomial of A2 = A⊗ F312 is

hA2 = (x2 + 53x+ 961)2.

An isotypic abelian variety A over Fq has characteristic polynomial of Frobenius
of the form h = gs, where g is an irreducible q-Weil polynomial. The next result is
well known and we include a proof for completeness.

Proposition 3.3. Let h be the characteristic polynomial of Frobenius of a simple
ordinary abelian variety A over Fq. Then for every r > 0 we have hr = gs for
some irreducible polynomial g and some positive integer s, both depending on r.
Moreover, s = 1 if and only if Ar is simple.

Proof. Recall that a simple ordinary abelian variety has an irreducible charac-
teristic polynomial, see [9, Theorem 3.3]. By Proposition 3.1, the extension Ar is
isotypic, which is isogenous to Bs for some positive integer s and some simple ordi-
nary abelian variety B over Fqr . Let g be the characteristic polynomial of Frobenius
of B. Note that g is irreducible. Then hr = gs, as required. The last statement fol-
lows immediately.

4. Isomorphism Classes and Field Extensions

Let h be the characteristic polynomial of a simple ordinary abelian variety A

over Fq and hr the characteristic polynomial of Ar = A⊗ Fqr . By Proposition 3.3,
we know that hr = gs for some irreducible polynomial g. Put Kg = Q[x]/(g)
and Kh = Q[x]/(h), and denote by αg and αh the classes of x modulo g and mod-
ulo h, respectively. Define

Rg = Z[αg, q
r/αg] ⊂ Kg and Rh = Z[αh, q/αh] ⊂ Kh.
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Since h is irreducible, by Theorem 2.2 the abelian varieties isogenous to A cor-
respond via the functor Fh to the fractional ideals of the order Rh and the abelian
varieties isogenous to Ar functorially correspond to the modules in B(g, s). We want
to understand how the functor −⊗Fq Fqr acts on these categories.

The field Kg is naturally a subfield of Kh where the inclusion is given by
αg 	→ αr

h. Equivalently, we have that Kh is a field extension of degree

[Kh : Kg] =
deg(h)
deg(g)

= s.

So in particular there exists a polynomial l ∈ Kg[y] of degree s such that

Kg � �

���
��

��
��

�
� � �� Kh

Kg[y]
(l)

ϕ�

��

where the isomorphism ϕ is given by

y 	→ αh,

αg 	→ αr
h,

where y = y mod l. Observe that

Kg[y]
(l)

= Kg ⊕ yKg ⊕ · · · ⊕ ys−1Kg

and that there is a natural isomorphism of Rg-modules

ψ : Kg ⊕ yKg ⊕ · · · ⊕ ys−1Kg
∼→

s-times︷ ︸︸ ︷
Kg × · · · ×Kg

s−1∑
i=0

biy
i 	→ (b0, . . . , bs−1).

Consider the functors

E1 : M(h) → M(hr)

(T, F ) 	→ (T, F r)

and

E2 : B(h, 1) → B(g, s)

I 	→ ψ(ϕ−1(I)),
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the action on morphisms being the obvious one. Let Gh : M(h) → B(h, 1) and
Ghr : M(hr) → B(g, s) be defined as in Theorem 2.2.

Theorem 4.1. We have a commutative diagram of functors:

AV(h)

−⊗Fqr

��

Ford
��

Fh

��M(h)

E1

��

Gh

�� B(h, 1)

E2

��
AV(hr)

Ford
��

Fhr

��M(hr)
Ghr �� B(g, s)

Proof. Let A be an abelian variety in AV(h) and put Ford(A) = (T, F ). As usual
denote A⊗Fqr by Ar. Then Ford(Ar) = (T, F r) which proves the commutativity of
the left square of the diagram. The commutativity of the right square follows from
the above discussion.

A straightforward generalization of the previous result leads to the following
corollary.

Corollary 4.2. Let t be a positive integer. We have a commutative diagram of
functors :

AV(ht)

−⊗Fqr

��

Ford
��

Fht

��M(ht)

E1

��

Ght

�� B(h, t)

E2

��
AV(ht

r)
Ford

��

Fht
r

��M(ht
r)

Ght
r �� B(g, ts)

Remark 4.3. In this section, and in the following ones, we assume that the q-Weil
polynomial h is irreducible, that is, that AV(h) is a simple isogeny class. If we relax
this assumption and instead assume that h is squarefree then the extension AV(hr)
might fail to be a “pure power”. More precisely, if A ∈ AV(h) has isogeny decom-
position

A ∼Fq B1 × · · · ×Bt,

where B1, . . . , Bt are simple abelian varieties over Fq, then

Ar ∼Fqr C
s1
1 × · · · × C

st′
t′ , (∗)

where C1, . . . , Ct′ are simple abelian varieties over Fqr and s1, . . . , st′ are positive
integers, not necessarily equal. Nevertheless, we can still apply all the results devel-
oped in this section and in the following ones if we assume that hr = gs for a
squarefree qr-Weil polynomial, that is, in (∗) we have s1 = · · · = st′ = s.
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5. Computations in B(g, s)

Let the notation be as in Sec. 4. In this section, first, we describe how to compute
representatives of the isomorphism classes of B(g, s) and the functor E2 in the cases
when hr is irreducible or the order Rg is Bass, see Secs. 5.1 and 5.2, respectively.
In practice, most isogeny classes AV(hr) fall into one of these two cases.

Second, in Sec. 5.3, we focus on the problem of determining when two modules
in B(g, s) are isomorphic. We present efficient solutions to the problem in the cases
described in Secs. 5.1 and 5.2. Moreover, we describe a general method to solve
the isomorphism problem for modules in B(g, s), which in practice turns out to be
slower than the previous two, and cannot be used to list the representatives of the
isomorphism classes.

Finally, in Sec. 5.4, we give examples of computations of base field extension of
abelian varieties.

5.1. Isomorphism classes when hr is irreducible

Assume that the polynomial hr is irreducible, that is, hr = g or equivalently s = 1.
We fix once and for all an isomorphism Kh � Kg. This allows us to identify Rg with
a finite index order contained in Rh and consequently we can identify the objects
of the category B(g, 1) with fractional Rg-ideals. Moreover, the operation of ideal
multiplication induces the structure of a commutative monoid on B(g, 1). The set
of ideal classes inherits such a structure: we call it the ideal class monoid of Rg and
denote it by ICM(Rg). In [18], we give an effective algorithm to compute ICM(Rg).
Moreover, it is easy to determine if two fractional Rg-ideals I1 and I2 define the
same class in ICM(Rg). Recall the definition of colon ideal

(I1 : I2) = {a ∈ Kg : aI2 ⊆ I1}.
Theorem 5.1 ([18, Corollary 4.5]). The fractional Rg-ideals I1 and I2 are iso-
morphic if and only if the following two conditions hold:

(1) 1 ∈ (I1 : I2)(I2 : I1);
(2) The fractional ideal (I1 : I2) is a principal (I1 : I1)-ideal.

If Part (1) of Theorem 5.1 is satisfied then (I1 : I2) is an invertible fractional
(I1 : I1)-ideal, and there are well-known algorithms to check whether it is principal.
See also [18, Algorithm 5].

Remark 5.2. Observe that the ideal class monoid of the maximal order coincides
with the class group. In particular, if Rg = OKg then the number of isomorphism
classes of abelian varieties in AV(g) is just the class group of Kg.

5.2. Isomorphism classes when Rg is Bass

Recall that an order S in a number field K is Bass if every overorder is Goren-
stein, or equivalently, if the maximal order OK has cyclic index in S, that is, the
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finite S-module OK/S is cyclic. For the proofs of these statements and other equiv-
alent definitions, see, for instance, [16, Theorem 2.1]. Examples of Bass orders are
maximal orders and orders in quadratic number fields.

If the order Rg is Bass, the modules in B(g, s) can be written up to Rg-linear
isomorphism as a direct sum of fractional Rg-ideals. More precisely, we have the
following theorem, see [1] or [2].

Theorem 5.3. Assume that Rg is a Bass order and let M be in B(g, s). Then there
are fractional Rg-ideals J1, . . . , Js satisfying

(J1 : J1) ⊆ · · · ⊆ (Js : Js)

and elements v1, . . . , vs in M such that

M = J1v1 ⊕ · · · ⊕ Jsvs.

Moreover, given another module N in B(g, s) with decomposition

N = I1u1 ⊕ · · · ⊕ Isus,

we have that M and N are Rg-isomorphic if and only if

(Jk : Jk) = (Ik : Ik)

for each k and

J1 · · · · · Js � I1 · · · · · Is.
Let M be in B(g, s), with Rg Bass. We can explicitly compute a decomposition

M = J1v1 ⊕ · · · ⊕ Jsvs

by following the proof of [2, Lemma 7]. For completeness we briefly recall the
method. We start with a Z-basis of M

M = a1Z ⊕ · · · ⊕ alZ,

where l = deg hr = dimQK
s
g . Let S be the multiplicator ring of M in Kg, that is,

S = {a ∈ Kg : aM ⊆M}.
By [2, Lemma 6], there exists φ ∈ HomZ(M,Z) such that aφ �∈ HomZ(M,Z) for
every a ∈ OKg\S. Let e1, . . . , es be the orthogonal idempotents of Ks

g and define vi

in Ks
g to be the dual basis with respect to φ, that is, (eiφ)(vj) = 1 if i = j and 0

otherwise. Put v = v1 + · · · + vs. Now, each element w of M in Ks
g can be written

in a unique way as

w = ξv + y

for ξ ∈ Kg and y orthogonal to v. Let I be the subset of coefficients ξ in Kg when w
runs over all elements of M . Observe that I is a fractional Rg-ideal and one can
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prove that the multiplicator ring of I is S. We then have a decomposition

M = Iv ⊕M1,

where M1 is an object of B(g, s− 1) with multiplicator ring containing S. We can
then proceed recursively to obtain the whole decomposition of M .

5.3. Isomorphism testing

Let M1 and M2 be two modules in B(g, s). If s = 1 we can use [18, Algorithm 5]
to check if they are isomorphic. If Rg is Bass, for any s ≥ 1, we can use the
algorithm described in Sec. 5.2 to compute the decompositions of M1 and M2 and
then conclude by using Theorem 5.3 together with [18, Algorithm 5].

If s > 1 and Rg is not Bass we can use the following method. Observe that M1

and M2 are isomorphic as Rg-modules if and only if they are so as Z[αg]-modules,
since Z[αg ] has finite index in Rg. Let m1 (respectively, m2) be the matrix that
represents multiplication by αg with respect to any Z-basis ofM1 (respectively,M2).
Observe that m1 and m2 are N × N matrices with integer entries and the same
characteristic polynomial gs and minimal polynomial g, where N = s deg(g).

Theorem 5.4. The modules M1 and M2 are isomorphic in B(g, s) if and only
if m1 and m2 are conjugate over the integers, that is, if there exists a matrix U

in GLN(Z) such that

m1 = Um2U
−1.

Proof. The theorem is a direct consequence of generalizations of [14]. Such gener-
alizations can be found in [18, Theorem 8.1] and in [10].

The algorithm described in [7] allows us to test whetherm1 andm2 are conjugate
over Z. Such an algorithm has the advantage of being very general, at the cost of
being slower than the methods described above for the particular cases when s = 1
or Rg is Bass.

5.4. Applications to abelian varieties

The algorithms described above allow us to explicitly compute base field extensions
of abelian varieties as we show in the next example.

Example 5.5. Consider the polynomial h = x6 − x3 + 8 corresponding to an
isogeny class of ordinary abelian three-folds over F2. Denote by Kh the number
field Q[x]/(h) and by αh the class of x in Kh. It turns out that the order Rh =
Z[αh, 2/αh] is maximal and has Picard group of order 3 generated by the prime ideal
ph = 2Rh + αhRh. So in particular, by Remark 5.2, there are three isomorphism
classes of abelian varieties in this isogeny class, corresponding to Rh, ph and p2

h.
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We now extend the isogeny class to the field F26 , which means that we look at
the polynomial

h6 = x6 + 45x5 + 867x4 + 9135x3 + 55488x2 + 184320x+ 262144.

Observe that h6 = g3, where

g = x2 + 15x+ 64.

Put Kg = Q[x]/(g), αg = x mod g and Rg = Z[αg, 64/αg]. Note that Rg is
the maximal order of Kg and that it has a Picard group of order 3 generated
by pg = 2Rg + αgRg. Since Rg is Bass, using Theorem 5.3, we can see that the
isomorphism classes of abelian varieties in the isogeny class determined by h6 cor-
respond to the direct sums in B(g, 3)

M1 = Rg ⊕Rg ⊕Rg,

M2 = Rg ⊕Rg ⊕ pg,

M3 = Rg ⊕Rg ⊕ p2
g.

Moreover, using the same notation as in Theorem 2.2, we can verify that

E2(Rh) = M1,

E2(ph) = M2,

E2(p2
h) = M3.

6. Twists

Recall that two abelian varieties A and A′ over Fq are twists of each other if there
exists some r > 1 such that Ar �Fqr A′

r. If this is the case we say that A and A′

are r-twists. We say that A′ is a trivial twist of A if A �Fq A
′.

Assume now that A and A′ are simple and ordinary. A necessary condition for A
and A′ to be r-twists is hAr = hA′

r
. For simplicity of exposition we assume that A

and A′ are isogenous, say both in AV(h). See Remark 6.2 for an explanation about
how to adapt the method descried to the general case.

Proposition 6.1. Let A and A′ be simple and ordinary abelian varieties, both in
the isogeny class AV(h). Let r > 1 and write hr = gs, with g irreducible.

(1) The abelian varieties Ar and A′
r are isomorphic if and only if Fhr(Ar) and

Fhr(A′
r) are isomorphic in B(g, s).

(2) Moreover, if s = 1, that is, hr is irreducible then Ar and A′
r are isomorphic if

and only if A and A′ are.

Proof. Part (1) follows from Theorem 4.1. To prove (2) observe that if hr = g then
the inclusion Kg ↪→ Kh given by αg 	→ αr

h (discussed in Sec. 4) is an isomorphism.
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This implies that the functor E2 : B(h, 1) → B(hr, 1) from Theorem 4.1 is fully
faithful and hence

HomFq(A,A
′) � HomFqr (Ar , A

′
r).

We can use the results contained in Sec. 5.3 in order to test the isomorphisms of
Proposition 6.1, that is, we have an algorithm to test whether two abelian varieties
given as modules in the appropriate category B(h, 1) are r-twists, for a fixed r > 0.
The implementation of such an algorithm is available on the author’s webpage.

Remark 6.2. The assumption that A and A′ are isogenous is made to simplify the
exposition. If A and A′ are r-twists but not necessarily isogenous, say A ∈ AV(h)
and A′ ∈ AV(h′) with hr = h′r, then we can still use the theory developed in
the previous sections to explicitly compute the corresponding modules and isomor-
phisms, but we will have to work with the two functors Fhr : AV(hr) → B(g, s)
and Fh′

r
: AV(h′r) → B(g, s). The implementation of our algorithms includes this

case and it is demonstrated in Example 7.5.

In the reminder of this section, we give examples of concrete computations.

Example 6.3. Let h = x4 − 205x2 + 1032 and consider the isogeny class of ordi-
nary simple abelian surfaces AV(h) over F103. Note that Rh is maximal. Hence by
Remark 5.2, in AV(h) there are 12 isomorphism classes which are represented by
the fractional Rh-ideals

pi
3p

j
5

for i = 0, 1 and j = 0, . . . , 5, where p3 is the unique prime of Rh above 3
and p5 = (5, 1 + αh). Observe that h2 = g2, where g = x2 − 205x + 1032. More-
over, by looking at the square roots of the roots of h2 one can easily verify
that there is no 103-Weil polynomial other than h whose extension gives h2. The
order Rg is maximal and has cyclic Picard group of order 6, generated by the class
of P = (5,−1 + αg). In particular, the objects of B(g, 2) can be represented by

Rg ⊕ Pk for k = 0, . . . , 5.

Using the methods described in Sec. 5.3 we compute

E2(p
j
5) � E2(p3p

j
5) � Rg ⊕ Pj for j = 0, . . . , 5.

This tells us that for each j = 0, . . . , 5 the only nontrivial two-twist of the abelian
variety corresponding to pj

5 is the abelian variety corresponding to p3p
j
5. In other

words, if we denote by Ai,j the abelian variety such that Fh(Ai,j) = pi
3p

j
5 then we

have

A0,j ⊗F103 F1032 � A1,j ⊗F103 F1032 .

Example 6.4. Let h = x4 − 18x2 + 169 and g = x2 − 18x + 169. The isogeny
class AV(h) of abelian surfaces over F13 extends to the isogeny class AV(g2). By
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looking at the complex roots of the polynomial g, one can easily check that h is the
only 13-Weil polynomial for which this happens. The order Rh is not Bass and it
has three proper overorders:

S := Rh +
(

1 + α2
h

2
+
α2

h − 5
26

αh

)
Rh,

T := Rh +
α2

h − 5
26

αhRh,

and the maximal order OKh
. Among these orders, the only non-Gorenstein one is

S. One computes using the methods described in Sec. 5.1 that the 12 isomorphism
classes of B(h, 1) are represented by the following set of ideals:{

Rh, I, I
2, I3, S, IS, St, ISt, T, IT,OKh

, IOKh

}
,

where I is a generator of Pic(Rh) � Z/4Z and St is the trace dual ideal of S, that is,

St =
{
z ∈ Kh : TrKh/Q(zS) ⊆ Z

}
.

The order Rg is Bass and has only one proper overorder, the maximal order OKg .
Observe that by [17, Corollary 4.3] we have that each abelian variety in AV(g2) is iso-
morphic to a product of isogenous elliptic curves. We have Pic(Rg) � Z/2Z × Z/2Z.
We denote by I the generator isomorphic to any of the two prime ideals above 47
and by A the other generator. The isomorphism classes of modules in B(g, s) are
represented by

M1 = Rg ⊕ Rg, M2 = Rg ⊕ I,

M3 = Rg ⊕ A, M4 = Rg ⊕ IA,

M5 = Rg ⊕OKg , M6 = Rg ⊕ IOKg ,

M7 = OKg ⊕OKg , M8 = OKg ⊕ IOKg .

We compute that the following isomorphisms of Rg-modules hold:

M2 � E2(I) � E2(I3), M3 � E2(Rh) � E2(I2),

M5 � E2(ISt) � E2(IS), M6 � E2(St) � E2(S),

M7 � E2(IT ) � E2(OKh
), M8 � E2(T ) � E2(IOKh

),

which allows us to identify the two-twists in the isogeny class AV(h).

Remark 6.5. In Example 6.4, we notice several interesting behaviors. Since the
order S is the unique non-Gorenstein overorder of Rg we deduce that it must be CM-
conjugate stable, that is, S = S and in particular, we have that St = St is not iso-
morphic to S. This tells us that the abelian variety corresponding to S is not
isomorphic to its own dual, which corresponds to St and in particular, it is not
principally polarizable. But the extension E2(S) �M6 corresponds to a product of
two elliptic curves which has the product principal polarization.
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Moreover, since S is not Gorenstein, St and S are not even weakly equivalent,
that is, there exist a prime p of S such that St

p �� Sp. The notion of weak equivalence
was introduced in [5] and in [18] we give effective algorithms to check whether two
fractional ideals are weakly equivalent. Since E2(S) � E2(St) we deduce that the
weak equivalence class of an abelian variety does not correspond to a geometric
invariant of the corresponding abelian varieties.

Also, the abelian varieties corresponding to IT and OKh
which have, respec-

tively, endomorphism rings isomorphic to T and OKh
are two-twists.

7. Galois Cohomology

In this section, we explain the connection between the set of isomorphism classes
of twists of a given abelian variety and its torsion automorphisms. In the square-
free ordinary case, this connection can be made explicit by use of the machinery
developed in the previous section, see Corollary 7.4 and Example 7.5.

Put K = Fp and G = Gal(K/Fq). Write Fr for the Frobenius element of G.
Let A be an abelian variety over Fq and put AK := A ⊗K. Observe that Fr acts
on AutK(A) by the following rule: given τ ∈ AutK(A) write τFr for the twisted
automorphism of AK defined by

τFr = (idA ⊗Fr) ◦ τ ◦ (idA ⊗Fr−1).

Such an action turns AutK(A) into a topologicalG-module. Recall that a cocycle
of G with values in AutK(A) is a G-linear map ε : G→ AutK(A) such that

ε(g1g2) = ε(g1)( ε(g1)g2 ),

for every g1, g2 ∈ G. We denote by Z1(G,AutK(A)) the set of cocycles of G with
values in AutK(A). We say that ε1, ε2 ∈ Z1(G,AutK(A)) are cohomologous if there
exists σ ∈ AutK(A) such that

ε1(g) = σε2(g)σ−1,

for every g ∈ G. Observe that being cohomologous defines an equivalence
relation on Z1(G,AutK(A)). The corresponding set of equivalence classes is
denoted H1(G,AutK(A)).

Denote by Θ(A/Fq) the set of Fq-isomorphism classes of twists A′ (over Fq)
of A. The class of A′ in Θ(A/Fq) is represented by a geometric isomor-
phism φ : AK → A′

K . Given such φ : AK → A′
K define the map εφ : GFq →

AutK(A) by

εφ : α 	→ φ−1 ◦α φ.

It is an easy verification that εφ ∈ Z1(G,AutK(A)).
Two automorphisms τ1, τ2 ∈ AutK(A) are called Fr-conjugate if there exists

σ ∈ AutK(A) such that

τ1 = σ−1τ2(Frσ).
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Being Fr-conjugate is an equivalence relation. Let S be the set of automor-
phisms τ ∈ AutK(A) such that there exists n for which

(i) τFrn

= τ and
(ii) (τ · τFr · · · τFrn−1

) has finite order.

Observe that (i) is equivalent to saying that τ lies in AutFqn (A) and that the set
S contains Tors(AutK(A)). Denote by S the set of Fr-conjugacy classes of elements
of S.

Proposition 7.1. The maps φ 	→ εφ and ε 	→ ε(Frq) yield bijections:

Θ(A,Fq) → H1(GFq ,AutK(A)) → S.

Proof. By [22, Proposition 5, §1.3, Chap. III], the map φ 	→ εφ induces a bijection

Θ(A,Fq) → H1(GFq ,AutK(A)).

Moreover, by [22, §5.1, Chap. I], the map ε 	→ ε(Fr) induces a bijection

H1(GFq ,AutK(A)) → S.

Remark 7.2. Compare Proposition 7.1 with [13, Proposition 3.5; 20, Proposi-
tions 5 and 9], where there are analogous results for principally polarized abelian
varieties and curves over finite fields, respectively. The main difference with our
result is that since we consider unpolarized abelian varieties the automorphism
groups are infinite if dim(A) > 1.

Corollary 7.3. Let A be an abelian variety over Fq such that AutK(A) =
AutFq(A). Let τ ∈ Tors(AutFq(A)). Assume that τ lies in the center of AutK(A)
and has order r. Then there exists a twist φ : Ar → A′

r such that if we denote by π
and π′ the Frobenius endomorphisms of A and A′, respectively, we have

φ−1 ◦ π′ ◦ φ = π ◦ τ−1. (7.1)

In particular, π ◦ τ−1 and π′ have the same characteristic polynomial.

Proof. Since all automorphisms are defined over the base field, Fr-conjugacy coin-
cides with usual conjugacy. Moreover, the conjugacy class of τ contains only τ .
By the bijections described in Proposition 7.1, the automorphism τ defines a
twist φ : AK → A′

K . Since τ is defined over Fq then for every positive integer n
we have

τ · τFr · τFr2 · · · τFrn−1
= τn

and hence by [13, Remark 3.7] the twist φ : AK → A′
K is defined over Fqr . Moreover,

by [13, Proposition 3.9] the twist φ : Ar → A′
r satisfies

φ−1 ◦ π′ ◦ φ = π ◦ τ−1,

as required.

In
t. 

J.
 N

um
be

r 
T

he
or

y 
20

22
.1

8:
19

57
-1

97
4.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
T

R
E

C
H

T
 U

N
IV

E
R

SI
T

Y
 o

n 
02

/0
6/

23
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 3, 2022 12:33 WSPC/S1793-0421 203-IJNT 2250100

Computing base extensions of ordinary abelian varieties 1971

Corollary 7.4. Let A be a squarefree ordinary abelian variety over Fq. If the simple
isogeny factors of A are absolutely simple, then the association

Tors(AutFq(A)) −→ Θ(A,Fq),

τ 	−→ φ

of Corollary 7.3 is a bijection.

Proof. By the hypothesis onA we have that AutFq(A) lies in the center of EndK(A)
and EndFq(A) = EndK(A). Moreover, the set S equals Tors(AutFq(A)). Proposi-
tion 7.1 and Corollary 7.3 yield the desired bijection.

Corollary 7.4 allow us to identify which twist is induced by τ by means of the
relation (7.1), as we show in Example 7.5.

Example 7.5. Consider the 54-Weil polynomial

h4 = x6 − 112x5 + 5872x4 − 184786x3 + 5872 · 54x2 − 112 · 58x+ 512.

The corresponding isogeny class AV(h4) can be attained as base field extension of
4 primitive (see the beginning of Sec. 8 for the definition) absolutely simple isogeny
classes determined by the following 5-Weil polynomials:

h(1) = x6 + 4x5 + 12x4 + 36x3 + 60x2 + 100x+ 125,

h(2) = x6 − 4x5 + 12x4 − 36x3 + 60x2 − 100x+ 125,

h(3) = x6 − 4x4 − 2x3 − 20x2 + 125,

h(4) = x6 − 4x4 + 2x3 − 20x2 + 125.

The isogeny classes AV(h(1)),AV(h(2)),AV(h(3)) and AV(h(4)) contain 1, 1, 14
and 14 isomorphism classes of abelian varieties, respectively. Each isogeny
class AV(h(i)) contains a single abelian variety with four distinct torsion auto-
morphisms, which we will denote by 1,−1, ιi and −ιi, with orders 1, 2, 4, 4, respec-
tively. All the other 26 isomorphism classes have only two torsion automorphisms,
namely 1 and −1. We do not add a pedix to the automorphisms 1 and −1 since all
abelian varieties considered have only one automorphism of order 1, the identity,
and one automorphism or order 2, so no confusion can arise. In the following 30×30
matrix in the entry (i, j) we write “·” if the ith and jth isomorphism classes are
not four-twists and, otherwise, 1,−1, ιi or −ιi for the torsion automorphism of the
ith abelian variety which induces the twist.
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 · · · · · · · · · · · · · ι1 · · · · · · · · · · · · · −ι1−1 1 · · · · · · · · · · · · · ι2 · · · · · · · · · · · · · −ι2· · 1 · · · · · · · · · · · · · −1 · · · · · · · · · · · · ·
· · · 1 · · · · · · · · · · · · · −1 · · · · · · · · · · · ·
· · · · 1 · · · · · · · · · · · · · −1 · · · · · · · · · · ·
· · · · · 1 · · · · · · · · · · · · · −1 · · · · · · · · · ·
· · · · · · 1 · · · · · · · · · · · · · −1 · · · · · · · · ·
· · · · · · · 1 · · · · · · · · · · · · · −1 · · · · · · · ·
· · · · · · · · 1 · · · · · · · · · · · · · −1 · · · · · · ·
· · · · · · · · · 1 · · · · · · · · · · · · · −1 · · · · · ·
· · · · · · · · · · 1 · · · · · · · · · · · · · −1 · · · · ·
· · · · · · · · · · · 1 · · · · · · · · · · · · · −1 · · · ·
· · · · · · · · · · · · 1 · · · · · · · · · · · · · −1 · · ·
· · · · · · · · · · · · · 1 · · · · · · · · · · · · · −1 · ·
· · · · · · · · · · · · · · 1 · · · · · · · · · · · · · −1 ·
ι3 −ι3 · · · · · · · · · · · · · 1 · · · · · · · · · · · · · −1
· · −1 · · · · · · · · · · · · · 1 · · · · · · · · · · · · ·
· · · −1 · · · · · · · · · · · · · 1 · · · · · · · · · · · ·
· · · · −1 · · · · · · · · · · · · · 1 · · · · · · · · · · ·
· · · · · −1 · · · · · · · · · · · · · 1 · · · · · · · · · ·
· · · · · · −1 · · · · · · · · · · · · · 1 · · · · · · · · ·
· · · · · · · −1 · · · · · · · · · · · · · 1 · · · · · · · ·
· · · · · · · · −1 · · · · · · · · · · · · · 1 · · · · · · ·
· · · · · · · · · −1 · · · · · · · · · · · · · 1 · · · · · ·
· · · · · · · · · · −1 · · · · · · · · · · · · · 1 · · · · ·
· · · · · · · · · · · −1 · · · · · · · · · · · · · 1 · · · ·
· · · · · · · · · · · · −1 · · · · · · · · · · · · · 1 · · ·
· · · · · · · · · · · · · −1 · · · · · · · · · · · · · 1 · ·
· · · · · · · · · · · · · · −1 · · · · · · · · · · · · · 1 ·

−ι4 ι4 · · · · · · · · · · · · · −1 · · · · · · · · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

8. Field of Definition

Let A be an abelian variety over Fq and k be a subfield of Fq. We say that A
is defined over k if there exists an abelian variety A′ over k such that A′ ⊗k Fq

is isomorphic to A over Fq. We say that an abelian variety A over Fq is primitive
if there is no proper subfield k of Fq such that A is defined over k. Moreover, for
a q-Weil polynomial h, we say that isogeny class AV(h) is primitive if every abelian
variety A in AV(h) is so.

Let h be an irreducible ordinary q-Weil polynomial. By looking at the complex
roots of h it is easy to list all q0-Weil polynomials h0, with Fq0 ⊆ Fq, that give h
after a base field extension to Fq. Observe that each such h0 is irreducible and
for any subfield Fq0 ⊆ Fq there might be more than one q0-Weil polynomial that
extends to h.

Example 8.1. The isogeny class of elliptic curves over F16 determined by
h16 = x2 − x+ 16 is not primitive and can be attained as a base extension of the
primitive isogeny classes h4 = x2 − 3x + 4 over F4 and of both h2,1 = x2 + x + 2
and h2,2 = x2 − x+ 2 over F2.

Corollary 8.2. Let h be an irreducible ordinary q-Weil polynomial. Let t be some
positive integer. For A in AV(ht), consider the Rh-module M = Fht(A) in B(h, t).
Let h0 be a q0-Weil polynomial that extends to h. The abelian variety A can be
defined over Fq0 if and only if M is an Rh0-module, that is, there exists M0

in B(h0, t) such that E2(M0) �M .

Proof. This is a consequence of Corollary 4.2.

Example 8.3. Using the same notation as in Example 8.1, we fix isomorphisms
between Kh16 , Kh4 , Kh2,1 and Kh2,2 so that we can work in Kh16 , which we will
denote by K.
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The order Rh16 has index 3 in the maximal order OK . Moreover, the images in
K of the orders Rh4 , Rh2,1 and Rh2,2 all equal the maximal order OK . Since the
Picard group of Rh16 has order 4 and OK is a principal ideal domain, we see that
there are five isomorphism classes of elliptic curves in AV(h16). The first four have
endomorphism ring isomorphic to Rh16 and so by Corollary 8.2 cannot be defined
over any proper subfield of F16. On the other hand, the unique isomorphism class
with maximal endomorphism ring can be defined over F4 or over F2. It is not hard
to determine equations of the representatives of these classes. Write F16 = F2(T )
and F4 = F2(S), for T 4 +T +1 = 0 and S2 +S+1 = 0. Consider the elliptic curves

E16,i : y2 + xy = x3 + T 2i ∈ AV(h16) for i = 0, 1, 2, 3, 4,

E2,1 : y2 + xy = x3 + 1 ∈ AV(h2,1),

E2,2 : y2 + xy + y = x3 + 1 ∈ AV(h2,2),

E4 : y2 + xy + Sy = x3 + S ∈ AV(h4).

We have that E16,0 is isomorphic to E2,1 ⊗F2 F16, E2,2 ⊗F2 F16 and E4 ⊗F4 F16.
We deduce that E16,0 has maximal endomorphism ring, while E16,i for i = 1, . . . , 4
represent the isomorphism classes with endomorphism ring isomorphic to R16.

Example 8.4. Consider the situation of Example 6.3. From the computations
described, we see that the six isomorphism classes of abelian varieties in AV(h2)
are extensions of abelian varieties from AV(h), that is, they can all be defined over
F103.

Example 8.5. Consider Example 6.4. Here, we see that not all isomorphism classes
in AV(h2) are extensions. Indeed the varieties corresponding to the modules M1

and M4 cannot be defined over the prime field F13.
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[6] P. Deligne, Variétés abéliennes ordinaires sur un corps fini, Invent. Math. 8 (1969)
238–243.

[7] B. Eick, T. Hofmann and E. A. O’Brien, The conjugacy problem in GL(n, Z), J.
Lond. Math. Soc. (2) 100(3) (2019) 731–756.

[8] T. Honda, Isogeny classes of abelian varieties over finite fields, J. Math. Soc. Japan
20 (1968) 83–95.

[9] E. W. Howe, Principally polarized ordinary abelian varieties over finite fields, Trans.
Amer. Math. Soc. 347(7) (1995) 2361–2401.

[10] D. Husert, Similarity of integer matrices, Ph.D. thesis, University of Paderborn
(2016).

[11] B. W. Jordan, A. G. Keeton, B. Poonen, E. M. Rains, N. Shepherd-Barron and J. T.
Tate, Abelian varieties isogenous to a power of an elliptic curve, Compos. Math.
154(5) (2018) 934–959.

[12] E. Kani, Products of CM elliptic curves, Collect. Math. 62(3) (2011) 297–339.
[13] V. Karemaker and R. Pries, Fully maximal and fully minimal abelian varieties, J. Pure

Appl. Algebra 223(7) (2019) 3031–3056.
[14] C. G. Latimer and C. C. MacDuffee, A correspondence between classes of ideals and

classes of matrices, Ann. of Math. (2) 34(2) (1933) 313–316.
[15] K. Lauter, The maximum or minimum number of rational points on genus three

curves over finite fields, Compos. Math. 134(1) (2002) 87–111. With an appendix by
Jean-Pierre Serre.

[16] L. S. Levy and R. Wiegand, Dedekind-like behavior of rings with 2-generated ideals,
J. Pure Appl. Algebra 37(1) (1985) 41–58.

[17] S. Marseglia, Computing abelian varieties over finite fields isogenous to a power, Res.
Number Theory 5(4) (2019) Paper No. 35.

[18] S. Marseglia, Computing the ideal class monoid of an order, J. Lond. Math. Soc. (2)
101(3) (2020) 984–1007.

[19] S. Marseglia, Computing squarefree polarized abelian varieties over finite fields, Math.
Comp. 90(328) (2021) 953–971.

[20] S. Meagher and J. Top, Twists of genus three curves over finite fields, Finite Fields
Appl. 16(5) (2010) 347–368.

[21] A. Oswal and A. N. Shankar, Almost ordinary abelian varieties over finite fields,
J. Lond. Math. Soc. (2) 101(3) (2020) 923–937.

[22] J.-P. Serre, Galois Cohomology, Springer Monographs in Mathematics, Engl. edition
(Springer-Verlag, Berlin, 2002). Translated from the French by Patrick Ion and revised
by the author.

[23] H. Stichtenoth, Algebraic Function Fields and Codes, 2nd edition, Graduate Texts in
Mathematics, Vol. 254 (Springer-Verlag, Berlin, 2009).

[24] J. Tate, Endomorphisms of abelian varieties over finite fields, Invent. Math. 2 (1966)
134–144.

[25] J. Tate, Classes d’isogénie des variétés abéliennes sur un corps fini (d’après T. Honda),
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