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A B S T R A C T

Reliable estimates and forecasts of Photovoltaic (PV) power output form a fundamental basis to support its
large-scale integration. This is recognized in literature, where a growing amount of studies deal with the
development of PV power estimation and forecasting models. In particular, machine learning techniques
received significant attention in the past decade. Yet, the importance of predictor variables are consistently
ignored in such developments and as a result those models fail to acknowledge the value of including
physics-based models. In this study we quantify the value of predictor variables for PV power estimation
and forecasting, assess deficiencies in estimation and forecasting models, and introduce a number of pre-
processing steps to improve the overall estimation or forecasting performance. To this end, we use common
physical models to create so-called expert variables and test their impact on the performance of single-point
and probabilistic models. In addition, we investigate the optimal selection of predictor variables for PV power
estimation and forecasting. By means of a sensitivity analysis, the paper shows how the value of expert variables
is affected by the tilt angle of the PV system. To allow for a deeper insight into the importance of predictor
variables, two case studies in different climate regions are considered in the numerical evaluation.
1. Introduction

Accurate estimates and forecasts of potential power production of
Photovoltaic (PV) systems are essential to host their rapidly growing
capacity in the electricity grid (IEA, 2020). Solar power estimates are
needed to foresee the potential contribution of new PV systems to the
(local) power supply, and calculate its impact on the electricity grid.
Forecasts can improve the dispatch of electricity generation, and sub-
sequently limit the reserve capacity needed to maintain grid stability.
Hence, reliable PV power estimation and forecasting models play a
vital role in cost-effective grid operation (Visser et al., 2022e). There
is a growing body of literature that recognizes the importance of such
models for effective large-scale integration of PV systems into the grid.
Several methods for solar power estimation and forecasting have been
developed so far. State-of-the-art solar estimation models typically rely
on weather measurements and/or reanalysis data. The main source of
information of solar forecasting models depends on the time horizon
of interest, and typically consider weather data from all-sky imaging,
satellite imaging and/or Numerical Weather Predictions (NWP). The
most successful models post-process such data using a wide variety
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of models (e.g. physical, regression/statistical and machine learning
models), possibly combining them together resulting in ensemble or
hybrid forecast approaches (Nguyen and Müsgens, 2022). The preferred
approach, i.e. the optimal combination of data source and model, is
highly dependent on the forecast horizon of interest (Yang et al., 2022).

Three main directions in the field of solar forecasting can be identi-
fied, namely: (i) advanced forecast models, which focus on machine
learning, extensive data collection and/or data manipulation tech-
niques (Rana and Rahman, 2020), (ii) probabilistic models that de-
scribe the forecast uncertainty (Van der Meer et al., 2018) and (iii)
relative new approaches like firm power forecasts, which aim to elimi-
nate the forecast uncertainty by considering a PV–battery system (Perez
et al., 2020). These study directions share a common foundation, which
is to establish a relation between a (number of) predictor variable(s)
and the target variable, i.e. the PV power output. Despite their pivotal
role, to the authors’ best knowledge, hardly any studies have dealt
with the relative contribution or importance of (specific) predictor
variables (Yang and van der Meer, 2021). In related fields to solar
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forecasting, such as wind and electricity price forecasting, predic-
tor variables receive more attention. For example, Díaz et al. (2019)
and Visser et al. (2020) performed a comprehensive study into the
importance of a set of predictor variables related to the formation of
electricity spot market prices in Spain and the Netherlands, respec-
tively. Alternatively, power curves that establish a relation between
a predictor and target variable (i.e. wind speed and wind power),
gained significant attention in the field of wind forecasting (Jeon and
Taylor, 2012; Xu et al., 2016; Yang and van der Meer, 2021). Similar
studies are absent in the present literature on solar estimation and
forecasting (Yang and van der Meer, 2021). An exemption is found
in AlSkaif et al. (2020), where the interdependence of a number of
variables and their importance for solar power estimation is studied.
Yet, this study does not cover the contribution of amongst others
global horizontal irradiance (𝐺𝐺𝐻𝐼 ), which may be the single most
used variable in solar estimation and forecasting. Other commonly
consulted variables include temperature, cloud cover, precipitation and
wind speed (Singla et al., 2021; Ahmed et al., 2020; Sobri et al., 2018).

Another aspect that is commonly overlooked in the development
of (regression/statistical and machine learning based) solar estimation
and forecasting models is the creation of additional variables that carry
potential value to the model, but are commonly not readily available.
The power output of a PV system is directly dependent on the direct
normal irradiance (𝐺𝐷𝑁𝐼 ) and diffuse horizontal irradiance (𝐺𝐷𝐻𝐼 )
received on the plane of the PV array. Nevertheless, measurements
at weather stations and weather forecasts are usually limited to the
𝐺𝐺𝐻𝐼 received per square meter of surface. The in-plane irradiance
variables can easily be created, as a result of the efforts made by the PV
community in the past decades. A number of models were developed
that have proven to be very effective in: decomposing the 𝐺𝐺𝐻𝐼 into
𝐺𝐷𝑁𝐼 and 𝐺𝐷𝐻𝐼 , transposing these into irradiance that is received at
the plane of the array and converting this information into the expected
PV power output (Mayer and Gróf, 2021). We refer to the variables
outputted by these models as expert variables. Solar engineers have
made many of these decomposition (also referred to as separation),
transposition and PV models available in an extensive open-source
library called pvlib (Holmgren et al., 2018).

Apart from a more accurate performance in terms of classic error
metrics, it is expected that including these expert variables in the set-up
of estimation and forecasting models improves the models’ explainabil-
ity and predictability. This is because these expert variables improve
the representation of the underlying physical and statistical dynamics
in PV power generation. In particular, they enable the model to better
capture the seasonality, which is a non-stationary time-dependent vari-
ation in the PV power output. There are three conventional approaches
to account for seasonality in PV power output simulations i.e. through
introducing seasonal dummy variables, by considering harmonic re-
gression models or by using the clearness index (Boland, 2020; Lauret
et al., 2015; Akhter et al., 2019; Nguyen and Müsgens, 2022). The
first two approaches directly introduce seasonal components into the
estimation or forecasting model, but they also treat seasonality in a
deterministic manner (Young et al., 1999). Harmonic regression with
e.g. Fourier terms is particularly good at capturing long-term seasonal
cycles, but it also incurs greater mathematical complexity (Hyndman
and Athanasopoulos, 2018). Alternatively, seasonality can be removed
by replacing the irradiance variables by corresponding indices, which
describe the seasonality. For example, by replacing the 𝐺𝐺𝐻𝐼 with the
clearness index, being the ratio between 𝐺𝐺𝐻𝐼 and clear sky irradiance.
After the estimation or forecasting process, the clearness index can
be converted back into PV power outputs. However, this approach is
particularly susceptible to data input errors, because close-to-zero clear
sky irradiance values at and around sunrise and sunset can artificially
inflate the calculated clearness index and is in these cases thus very
sensitive to small deviations of input values. Compared with these
87

conventional approaches, the direct employment of expert variables in
the forecasting and estimation models is suggested to avoid these dis-
advantages. With this approach, the aim is to describe the seasonality
in the model rather than removing it.

As mentioned above, very few studies are found to leverage the
value of expert variables for PV power estimation and forecasting,
thus ignoring the potential effect on the model performance. Examples
of studies that leverage expert variables include (Pombo et al., 2022;
Visser et al., 2022a). Both studies evaluated the optimal combination
of features with the purpose of PV power forecasting. Nevertheless, the
number of features considered is limited and NWP forecasts are, for
instance, not included in Pombo et al. (2022). Similarly, Markovics
and Mayer (2022) studied the effect of different predictor variable
selections, but without consulting physical models to generate the
expert variables. Besides, similar to Pombo et al. (2022), Visser et al.
(2022a), the total number of predictor variables considered is limited.
In contrast, Mayer (2022) presented a very comprehensive analysis
of the contribution of adopting decomposition, transposition and PV
models as pre-processing steps by feeding the expert variables to an
artificial neural network model. In the study, Mayer (2022) evaluated
the forecast quality improvement for a single-point forecast model by
incorporating these expert variables.

This paper aims to build upon the work presented in Mayer (2022),
by assessing the impact of including expert variables in both prob-
abilistic and single-point, estimation and forecasting models. Similar
to Mayer (2022), specific attention is given to the contribution of expert
variables, i.e. variables outputted by the decomposition, transposition
and PV models, to the performance of the forecasting and estimation
models. In this context, linear regression and nonlinear machine learn-
ing models are tested and compared to two benchmark models. While
the work of Mayer (2022) is limited to evaluating the performance im-
provement by including such expert variables in a single-point forecast
model, the work in this paper considers single-point and probabilistic,
estimation and forecasting models. Next, this study exposes the under-
lying model dynamics that explain the improvement. In addition, we
evaluate the optimal selection of predictor variables for the purpose
of PV power estimation and forecasting. Since the contribution of
including a transposition model is in particular dependent on the tilt
angle of the PV system, a sensitivity analysis of the model improvement
to expert variables as a function of the tilt angle is conducted. In order
to enhance the robustness and interpretability of the paper results, two
different case studies with different climates are considered. Conse-
quently, all experiments are simultaneously conducted for Utrecht, the
Netherlands, and Bolzano, Italy, representing a temperate oceanic and
a humid subtropical climate, respectively.

The structure of the paper is organized as follows. Section 2 presents
the research methods. The data is described in Section 3. Section 4
presents and discusses the main findings of this research. Lastly, the
paper is concluded in Section 5.

2. Methods

2.1. Data manipulation

The collected data per case study span a period of three years and
are represented as a matrix X. All night time values are discarded from
X by filtering for positive clear sky irradiance values. Next, to improve
the model accuracy and reduce computational demands, all predictor
variables are normalized to values between 0 and 1. The target variable,
i.e. the PV power output (p), is normalized to the reported installed
AC capacity. Then, X is split into training and test sets, where the
training set holds all values in the first two years of the dataset and
the test set contains the last year of the dataset. In this research, all
models are fitted to the training data and evaluated using the test
data. Where relevant, the training data is further split into training
and validation sets for the purpose of hyperparameter tuning, using k-
fold cross-validation (𝑘 = 8) (Raschka and Mirjalili, 2019). The data

collection for both case studies is discussed in Section 3.
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2.2. Estimation and forecasting models

2.2.1. Single-point models
To explore the value of (expert) variables in solar estimation and

forecasting, linear, nonlinear and benchmark models are considered
to produce both single-point and probabilistic estimates and forecasts
of the PV power output given a variety of predictor variables. Single-
point models are also referred to as single-valued models, i.e. models
that output a single value. The first model that is considered in this
study is a Multivariate Linear Regression (MLR) model. MLR is a simple
yet effective model that is widely adopted to forecast and estimate the
PV power output (AlSkaif et al., 2020; Visser et al., 2022b; Markovics
and Mayer, 2022). Based on training data, the MLR model uses a loss
function to determine the coefficients that explain a linear relation
between the predictor variables and the target variable, i.e. the PV
power output. In this study, the least squares loss function is used.

Secondly, we include a Random Forest regression (RF) model, which
is a nonlinear model that has proven its value in the field of solar
estimation and forecasting in previous studies (AlSkaif et al., 2020;
Visser et al., 2022b; Pombo et al., 2022). RF is an ensemble based
model that consists of a number of trees, each made up of 𝑡 layers and
2𝑡 decision nodes. The decision trees are created independently and are
built by considering bootstrap samples of the training dataset. Next, for
each tree a random subset of the predictor variables is considered to
construct the decision nodes by optimizing on a loss function, e.g. least
squares (Breiman, 2001). The output of an RF model is equal to the
conditional mean of all constructed trees.

The performance of the single-point forecast models mentioned
above is benchmarked using a clear sky persistence (CSP) and a phys-
ical PV model (PV𝑙𝑖𝑏). The output of the CSP model is set equal to the
most recent observation of the same time in a previous day, corrected
by the change in clear sky irradiance. Since the estimation models
consider current observations instead of predictions, this benchmark
model would give perfect estimates of the PV power generation and is
therefore not included in the evaluation of the solar estimation models.

The use of a PV model to obtain the PV power output involves few
sub-steps (Visser et al., 2022e). First, the Erbs decomposition model
is employed to extract the 𝐺𝐷𝑁𝐼 and 𝐺𝐷𝐻𝐼 from the 𝐺𝐺𝐻𝐼 (Erbs
et al., 1982). Second, with the Perez transposition model we obtain
respectively the global, direct, diffuse, ground diffuse and sky dif-
fuse irradiance received on the plane of the PV array (𝐺𝐴.𝐺𝐼 , 𝐺𝐴.𝐵𝐼 ,
𝐺𝐴.𝐷𝐼 , 𝐺𝐴.𝐷𝐼𝐺 and 𝐺𝐴.𝐺𝐼𝑆 ), which requires 𝐺𝐷𝑁𝐼 , 𝐺𝐷𝐻𝐼 and 𝐺𝐺𝐻𝐼
as input (Perez et al., 1990). Finally, the CEC PV (Holmgren et al.,
2018) and Sandia inverter (Boyson et al., 2007) models are used to
subsequently model the DC (𝑃𝑃𝑉 .𝐷𝐶 ) and AC (𝑃𝑃𝑉 ) power output
of a PV system based on the system’s characteristics and relevant
weather variables, including the irradiance components, temperature
and wind speed (Holmgren et al., 2018). In addition, the Sandia model
is used to generate the operating cell temperature of the PV module(s)
(𝑇𝑃𝑉 ) (Kratochvil et al., 2004). An overview of all the variables and the
models used to create these is given in Table 2.

2.2.2. Probabilistic models
The first probabilistic model we consider in this study is quantile

regression (QR). Similar to the MLR model, QR establishes a linear
relationship between the predictor and target variables. In QR, the
coefficients are learned independently per percentile 𝜏 by minimizing
the sum of absolute residuals over the asymmetrically applied weights
error (Koenker and Hallock, 2001). QR is widely applied and proved
its value in the field of solar forecasting (Lauret et al., 2017; Brinkel
et al., 2021). In this study we consider a 99% prediction interval using
a total of 21 quantiles, these describe an interval of 5% from 5 to 95%
and include a lower and upper bound of 0.5 to 99.5%.

Secondly, we consider a quantile regression forest (QRF) model. The
QRF model operates similarly to the RF model, where the mean value
88

per node is replaced by the distribution of observations. As a result,
Table 1
Overview of the predictor variables considered per estimation and forecasting
model configuration. Note that the written abbreviations can be found in Table 2.

Model
configuration

Variable category Variables included

1 Standard variables 𝐴𝑀𝐴, 𝐴𝑀𝑀𝑆𝐿, 𝐶𝐶𝑇 , 𝐺𝐺𝐻𝐼 ,
𝑊𝑆𝑢10, 𝑊𝑆𝑣10, 𝑇𝐴, 𝑇𝐷 , 𝑇𝑃

2 Decomposition variables 1 & 𝐺𝐷𝑁𝐼 , 𝐺𝐷𝐻𝐼 , 𝐴𝑀𝑎, 𝐴𝑀𝑟

3 Transposition variables 2 & 𝐺𝐴.𝐵𝐼 , 𝐺𝐴.𝐷𝐼 , 𝐺𝐴.𝐷𝐼𝐺 ,
𝐺𝐴.𝐷𝐼𝑆 , 𝐺𝐴.𝐺𝐼

4 PV model variables 3 & 𝑇𝑃𝑉 , 𝑃𝑃𝑉

the QRF model gives the conditional distribution function or weighted
distribution of observations (Meinshausen and Ridgeway, 2006). The
value of adopting a QRF model for the purpose of PV power forecasting
is shown by Tripathy et al. (2020).

Finally, the clear sky persistence ensemble (CSPE) model is used
to benchmark the results obtained by the probabilistic models (Pedro
et al., 2018). The output of the CSPE model is obtained similar to
the CSP model, where instead of a single value the 21 most recent
observations are considered that together form a distribution.

2.2.3. Model input
The value of expert variables (which are discussed in more detail

in Section 3.2) in this study is primarily quantified by considering the
performance improvement of the estimation and forecasting models
using the error metrics presented in Section 2.3. The value is assessed
by introducing the expert variables in the models step by step, denoting
these as model configurations 1 to 4 respectively. First, a reference
model configuration 1 is tested, which relies on standard weather vari-
ables only. Next, the outputted variables of the decomposition model
are added, resulting in model configuration 2. In model configurations
3 the variables generated by the transposition model are incorporated.
Model configuration 4 incorporates the PV power output and cell
temperature, which are produced using the CEC and Sandia models.
These steps are summarized in Table 1. Note, the number of predictor
variables are reduced for the 𝑄𝑅3 and 𝑄𝑅4 models, see Section 3.3.

2.3. Error metrics

2.3.1. Single-point models
The models that produce single-point estimates and forecasts are

evaluated on the mean absolute error (MAE), root mean square error
(RMSE) and bias, see Eq. (1), (2) and (3). These metrics are considered
as they are commonly used for evaluating single-point forecasting and
estimation models (Ahmed et al., 2020).

𝑀𝐴𝐸 = 1
𝑇

𝑇
∑

𝑡=1
𝑦𝑡 − 𝑦𝑡, (1)

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑇

𝑇
∑

𝑡=1
(𝑦𝑡 − 𝑦𝑡)2, (2)

𝐵𝑖𝑎𝑠 = 1
𝑇

𝑇
∑

𝑡=1
𝑦𝑡 − 𝑦𝑡, (3)

where 𝑦 and 𝑦̂ present the observations and estimated or forecasted
normalized PV power output per time-step 𝑡 in 𝑇 .

2.3.2. Probabilistic models
The statistical metrics presented above can also be adopted for eval-

uating probabilistic estimates and forecasts if a single value, e.g. mean
or median, is extracted. However, to evaluate the model output on their
ability to quantify the uncertainty, other metrics must be adopted. The
performance of probabilistic models is typically characterized by its
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Table 2
Overview of the collected and constructed variables. The collected variables present weather variables that are directly retrieved from its source,
e.g. weather forecasts. Constructed variables are processed variables, derived through the use of physical models.

Abbreviation Variable Unit Type Method Reference

1. 𝐴𝑀𝐴 Absolute air mass – Constructed 𝐴𝑀𝑅
𝑃𝐴

101325
Holmgren et al. (2018)

2. 𝐴𝑀𝑅 Relative air mass – Constructed Kastenyoung model Kasten and Young (1989)

3. 𝐶𝐶𝑇 Total cloud cover [0-1] Collected ECMWF (2020) (Muñoz Sabater, 2019)

4. 𝐺𝐶𝑆𝐼 Clear sky irradiance W/m2 Constructed Ineichen model Ineichen and Perez (2002)

5. 𝐺𝐷𝑁𝐼 Direct normal irradiance W/m2 Constructed Erbs model Erbs et al. (1982)

6. 𝐺𝐷𝐻𝐼 Diffuse horizontal
irradiance

W/m2 Constructed Erbs model Erbs et al. (1982)

7. 𝐺𝐸𝑇𝑅 Extraterrestrial irradiance W/m2 Constructed Spencer method Spencer (1982)

8. 𝐺𝐺𝐻𝐼 Global horizontal
irradiance

W/m2 Collected ECMWF (2020) (KNMI, 2020)

9. 𝐺𝐴.𝐺𝐼 Total in-plane irradiance
(i.e. Global tilted
irradiance)

W/m2 Constructed Perez model Perez et al. (1990)

10. 𝐺𝐴.𝐵𝐼 Total in-plane beam
irradiance

W/m2 Constructed Perez model Perez et al. (1990)

11. 𝐺𝐴.𝐷𝐼 Total in-plane diffuse
irradiance

W/m2 Constructed Perez model Perez et al. (1990)

12. 𝐺𝐴.𝐷𝐼𝑆 In-plane diffuse irradiance
from sky

W/m2 Constructed Perez model Perez et al. (1990)

13. 𝐺𝐴.𝐷𝐼𝐺 In-plane diffuse irradiance
from ground

W/m2 Constructed Perez model Perez et al. (1990)

14. 𝑃𝑃𝑉 Inverter model estimated
AC power output of a PV
system

W Constructed Sandia model Boyson et al. (2007)

15. 𝑃𝑃𝑉 .𝐷𝐶 PV model estimated DC
power output of a PV
system

W Constructed CEC model Holmgren et al. (2018)

16. 𝑃𝐴 Atmospheric pressure Pa Collected ECMWF (2020) (Muñoz Sabater, 2019)

17. 𝑃𝑀𝑆𝐿 Mean sea level pressure Pa Collected ECMWF (2020) (Muñoz Sabater, 2019)

18. 𝑇𝐴 Ambient temperature ◦C Collected ECMWF (2020) (Muñoz Sabater, 2019)

19. 𝑇𝐷 Dewpoint temperature ◦C Collected ECMWF (2020) (Muñoz Sabater, 2019)

20. 𝑇𝑃𝑉 Cell temperature ◦C Constructed Sandia model Kratochvil et al. (2004)

21. 𝑇𝑃 Total precipitation m Collected ECMWF (2020) (Muñoz Sabater, 2019)

22. 𝑊𝑆𝑢10 Zonal wind speed at 10 m
height

m/s Collected ECMWF (2020) (Muñoz Sabater, 2019)

23. 𝑊𝑆𝑣10 Meridional wind speed at
10 m height

m/s Collected ECMWF (2020) (Muñoz Sabater, 2019)

24. 𝑊𝑆 Wind speed m/s Constructed
√

𝑊𝑆𝑢10
2 +𝑊𝑆𝑣10

2

25. 𝜃𝑧 Solar zenith angle ◦ Constructed NREL solar position
method

Reda and Andreas (2004)

26. 𝜎𝐴 Solar azimuth angle ◦ Constructed NREL solar position
method

Reda and Andreas (2004)
Table 3
The top five most important predictor variables for the single-point estimation and forecasting models
at de Bilt and Bolzano. The most important variable is ranked No. 1. The values overlap with the
order of included predictor variables as depicted on the x-axis in Fig. 7. A complete overview is
given in Table B.1 in Appendix B.

No. Estimation Forecasting

De Bilt, NL Bolzano, IT De Bilt, NL Bolzano, IT

MLR RF MLR RF MLR RF MLR RF

#1 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉
#2 𝐺𝐺𝐻𝐼 𝐺𝐴.𝐷𝐼𝐺 𝐺𝐺𝐻𝐼 𝐺𝐺𝐻𝐼 𝑊𝑆𝑢10 𝐺𝐴.𝐷𝐼𝐺 𝐺𝐺𝐻𝐼 𝐴𝑀𝑅
#3 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐺𝐴.𝐺𝐼 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐶𝐶𝑇
#4 𝐺𝐴.𝐺𝐼 𝑃𝑀𝑆𝐿 𝑇𝐷 𝑇𝐷 𝐺𝐴.𝐺𝐼 𝐶𝐶𝑇 𝐶𝐶𝑇 𝑃𝑀𝑆𝐿
#5 𝑊𝑆𝑣10 𝐴𝑀𝐴 𝐺𝐷𝐻𝐼 𝐶𝐶𝑇 𝐴𝑀𝐴 𝑇𝑃 𝐴𝑀𝐴 𝐺𝐴.𝐷𝐼𝑆
reliability and sharpness (Van der Meer et al., 2018). The reliability
of the model is assessed in this study using the prediction interval
coverage probability (PICP), which indicates the rate at which the
forecast covers the observations, see Eq. (4). A high PICP indicates that
89
more values lie within the bounds of the prediction interval. A PICP
value that is approximately equal to the prediction interval is preferred.

The PICP metric is complemented with the prediction interval nor-
malized average width (PINAW), see Eq. (5). In contrast to the PICP,
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Fig. 1. Cross-correlation values for the forecasted predictor variables at de Bilt,
considering three years of data.

PINAW evaluates the width, i.e. the range between the lower and upper
bound, of the model output. Consequently, PINAW assesses the width
of the prediction intervals.

Unlike the PICP and PINAW, the continuous ranked probability
score (CRPS) captures both the reliability and sharpness of a probabilis-
tic model, see Eq. (6). 𝐹𝑡(𝑥) and 𝐹̂𝑡(𝑥) are the cumulative distribution
functions of the observations and estimates or forecasts of the PV power
output at time-step 𝑡 in 𝑇 . Note that 𝐹𝑡(𝑥) is a cumulative-probability
step function as it describes a single-value, which jumps from 0 to
1 where the forecast variable 𝑥 is equal to the observation (Lauret
et al., 2019). Particularly, CRPS rewards a high concentration of the
estimated or forecasted probability around the target value. Therefore,
the CRPS may be used as a global metric, where a lower CRPS value
is an indicator for a more accurate model. Besides, for a single-point
model, the CRPS reduces to the MAE (Yang and van der Meer, 2021).
The CRPS is therefore comparable to the MAE.

𝑃𝐼𝐶𝑃 = 1
𝑇

𝑇
∑

𝑡=1
𝜖, ⟼ 𝜖 =

{

1 if 𝑦𝑡 ∈ [𝐿𝑡, 𝑈𝑡]
0 if 𝑦𝑡 ∉ [𝐿𝑡, 𝑈𝑡]

}

, (4)

𝑃𝐼𝑁𝐴𝑊 = 1
𝑇𝑅

𝑇
∑

𝑡=1
(𝑈𝑡 − 𝐿𝑡), (5)

𝐶𝑅𝑃𝑆 = 1
𝑇

𝑇
∑

𝑡=1
∫

∞

−∞
(𝐹𝑡(𝑥) − 𝐹̂𝑡(𝑥))2𝑑𝑥, (6)

where 𝑅 is equal to the difference between the maximum and minimum
estimated or forecasted value. 𝑈 and 𝐿 present the upper and lower
bound of the prediction interval.

2.4. Feature selection

The optimal selection of features for solar estimation and forecasting
is obtained by means of forward feature selection (Bemister-Buffington
et al., 2020). Forward feature selection comprises an iterative process
where the model is firstly fit with each single feature, separately. The
feature, i.e. predictor variable, that supports the best performing model
is kept in a selected feature list and considered the most valuable fea-
ture. As a next step the model is fit with two features, i.e. a combination
of the most valuable feature listed in the selected feature list and each
remaining feature. The second feature of the best performing model
is identified and added to the list of selected features. This process is
repeated until all features are included in the model.
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The forward feature selection is performed separately for the MLR,
RF, QR and QRF model, for the purpose of solar power estimation and
forecasting in both case studies. The selection is based on the (lowest)
obtained MAE or CRPS score (see Section 2.3).

2.5. Sensitivity analysis

In the sensitivity analysis we evaluate how the value of considering
expert variables in the estimation and forecasting models is affected by
the tilt angle of the PV system. This analysis is conducted for both case
studies, considering a tilt angle interval of 10◦ ranging from 0◦ to 90◦.
Instead of actual PV power measurements, this analysis relies on the
PV power output estimates generated using the PV model introduced
in Section 2.2.1, with the reason being the unavailability of PV power
measurements at the same site with varying tilt angles. This means that
for the sensitivity analysis, 𝑦 is, for both estimation and forecasting, set
equal to 𝑃𝑃𝑉 calculated using weather measurements.

3. Data collection and analysis

3.1. PV power output

For Utrecht, the PV power output is collected from a 2.7 kWp DC,
2.6 kWp AC PV system (data from PV system with ID107 in Visser et al.
(2022d,c)). The orientation of this PV system is defined by a tilt angle
of 32◦ and an azimuth angle of 180◦, the optimal orientation for a PV
system in the Netherlands was previously identified with a tilt angle of
37◦ and an azimuth angle of 180◦ (Louwen et al., 2017). For Bolzano,
the PV power output is collected from a 4.2 kWp DC, 4.0 kWp AC PV
system. The orientation of the PV system is defined by a tilt angle of
30◦ and an azimuth angle of 188.5◦, the optimal orientation for a PV
system in Northern Italy was previously identified with a tilt angle of
35–40◦ and an azimuth angle of 180◦ (Louwen et al., 2017). For both
systems, the power values are normalized to the installed AC capacity,
to obtain only production values between 0 and 1.

3.2. Predictor variables

An overview of the variables considered in this study is presented
in Table 2. The variables can be split in two main categories, namely:
(i) variables that are openly available and can be retrieved online in
the form of measurements and forecasts; and (ii) variables that are
constructed using open access models developed by solar engineers and
recorded in the python package pvlib (Holmgren et al., 2018). In this
study, all the variables are collected four times in total. Namely, for
each study location (i.e. de Bilt and Bolzano), both measurements and
forecasts of the variables are collected.

The retrieved predictor variables for the PV power forecasting
models concern NWP. For both case studies these variables are re-
trieved from the European Centre for Medium-Range Weather Forecasts
(ECMWF) weather archive (ECMWF, 2020). The predictions are gener-
ated by the high resolution (HRES) forecast model of the Integrated
Forecast System (IFS) developed by ECMWF.

The variables considered in the PV power estimation models are, ex-
cept for 𝐺𝐺𝐻𝐼 , collected from the ERA5 database provided by ECMWF
(Muñoz Sabater, 2019). For accuracy reasons, we collect 𝐺𝐺𝐻𝐼 values
from local measurements. For Utrecht, hourly 𝐺𝐺𝐻𝐼 measurements are
retrieved from a KNMI (Royal Netherlands Meteorological Institute)
weather station in De Bilt (located in the province of Utrecht, 52◦10'N,
5◦18'E) (KNMI, 2020), at circa 9 kilometers from the PV system. For
Bolzano, 𝐺𝐺𝐻𝐼 values are obtained with a 15-min temporal resolution
from a pyranometer located less than 50 meters away from the PV
system.

The expert variables comprise the (intermediate) outputs of the
decomposition, transposition and PV model, which were introduced in
Section 2.2.1 for the construction of the PV model, i.e. 𝑃𝑉 . Thus,
𝑙𝑖𝑏
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Fig. 2. Predictor variable importance defined as feature permutation importance (Altmann et al., 2010). The 𝑦-axis value presents the loss in model performance as a result of
randomly shifting the test data of a single predictor variable.
the decomposition variables are the 𝐺𝐷𝑁𝐼 , 𝐺𝐷𝐻𝐼 , absolute air mass
𝐴𝑀𝐴 and relative air mass 𝐴𝑀𝑅. The transposition variables are the
ounterparts of the irradiance variables that describe the irradiance re-
eived in the plane of the PV array, i.e. total in-plane irradiance 𝐺𝐴.𝐺𝐼 ,
otal in-plane beam irradiance 𝐺𝐴.𝐵𝐼 , total in-plane diffuse irradiance
𝐴.𝐷𝐼 and its components: the in-plane diffuse irradiance from the sky
𝐴.𝐷𝐼𝑆 and the in-plane diffuse irradiance from the ground 𝐺𝐴.𝐷𝐼𝐺 . The

PV model variables include the modeled PV power output 𝑃𝑃𝑉 and
the modeled cell temperature of the PV module 𝑇𝑃𝑉 . An overview of
all these constructed variables and the models used to create them is
presented in Table 2. In addition, the table presents all other interme-
diate variables that were needed to create these constructed (expert)
variables including the models used to generate them.

3.3. Data analysis

The cross-correlation between predictor variables presents a mea-
sure of their linear dependence (AlSkaif et al., 2020). For the devel-
opment of estimation and forecasting models it is key to be aware of
the cross-correlation values amongst the predictor variables as severe
multicollinearity between predictor variables may interfere with the
model accuracy. Multicollinearity can lead to predictor variables be-
coming insignificant, whereas their influence on the target variable may
be significant. Alternatively, the contribution of two predictor variables
can be significant when they balance each other out. Multicollinearity
is particularly an issue for models that describe a linear relationship
between the predictor and target variables, e.g. MLR and QR. Such
cases can easily be identified by observing changes in regression co-
efficients while changing the selection of predictor variables. To this
end, this study investigates the optimal feature selection per model, see
Section 2.4.

The cross-correlation values for the entire study period (i.e. three
years) is computed between all the predictor variables using Pearson
correlation. The correlation values for the forecasted predictor variables
at de Bilt are depicted in Fig. 1. The figure presents high positive
correlations between the several irradiance variables. Similarly, 𝐴𝑀𝐴
and 𝐴𝑀𝑅 are highly correlated. Besides, different correlations amongst
the temperature variables are noticed, i.e. a significant higher positive
correlation between 𝑇𝐴 and 𝑇𝐷 compared to 𝑇𝑃𝑉 . The cross-correlations
figures for the other estimation and forecasting applications are in-
cluded in Appendix A. These are accompanied with general statistics
of the data.

An example of a multicollinearity issue identified during exper-
iments performed in this study concerns the (high) importance of
variables 𝐴𝑀𝑅 and 𝐴𝑀𝐴 for the 𝑀𝐿𝑅 forecasting model at de Bilt (see
Fig. 2). The importance of these variables is exaggerated as further anal-
ysis shows that the variables cancel each other out. This observation is
explained by the high positive correlation (∼ 1.0) of these variables in
combination with large opposing regression coefficients, 3.51 and −3.58
for 𝐴𝑀 and 𝐴𝑀 . This problem was also observed for 𝑃 and 𝑃 .
91

𝑅 𝐴 𝐴 𝑀𝑆𝐿
The statsmodels Python package used to build the 𝑄𝑅 model does
not allow for strong multicollinearity, i.e. near perfect correlation,
between the predictor variables. Therefore, in the remainder of this
study the least informative predictor variable is dropped when running
𝑄𝑅 simulations.

4. Results

4.1. Model performance

4.1.1. Single-point models
Fig. 3 shows the performance of the single-point models. The figure

presents the results of all single-point models for both applications
(i.e. solar PV power output estimation and forecasting) and the two
locations (i.e. de Bilt and Bolzano). For both case studies the MAE of
all forecast models except 𝐶𝑆𝑃 lies between 0.06 and 0.10 kW/kWp.
The RMSE takes values between 0.10 and 0.13. The forecast models sig-
nificantly outperform the 𝐶𝑆𝑃 model, whereas the second benchmark
model 𝑃𝑉𝑙𝑖𝑏 performs equivalent. As expected, the estimation models
perform significantly better than the forecast models. Here, an MAE and
RMSE of 0.01 to 0.07 and 0.03 to 0.10 kW/kWp are found, respectively.
Note that no results are displayed for the 𝐶𝑆𝑃 estimation model (as
discussed in Section 2.2.1). Significantly better results are obtained for
the estimation models in Bolzano compared to de Bilt. This is explained
by a higher temporal resolution of the 𝐺𝐺𝐻𝐼 measurements at Bolzano
and a smaller distance from the location of these measurements to
the PV system (see Sections 3.1 and 4.2). Lastly, although the biases
are marginal, i.e. for most models between −0.01 and 0.01 kW/kWp,
a remarkable pattern is observed for both sites. Except for the 𝑃𝑉𝑙𝑖𝑏
model, a general positive bias is found for all forecast models and a
negative bias is observed for all estimation models.

From the results discussed above and presented in Fig. 3, a number
of conclusions can be drawn regarding the contribution of expert pre-
dictor variables to the estimation and forecasting model performance.
The first stage of adding expert variables considers the addition of
decomposition variables (see Table 2 for specifications), the impact
of including these variables is reflected by the performance difference
between model configurations 1 and 2, i.e. the models with subscript
1 and 2. The performance improvement in terms of the MAE and
RMSE is notable but gradual for the 𝑀𝐿𝑅 and 𝑅𝐹 forecast models at
both locations. For example, as a result of including the decomposi-
tion variables in 𝑀𝐿𝑅2, the MAE reduces from 0.098 for 𝑀𝐿𝑅1 to
0.093 kW/kWp at Bolzano. Such improvement is present to a lesser
extent for the estimation models. In particular, the 𝑀𝐿𝑅 estimation
model applied to de Bilt does not profit from the added variables
in configuration 2. The contribution of the transposition variables,
presented in Table 2, is captured in the performance difference between
models 2 and 3. The contribution of these variables to the estimation
and forecasting models is significant for all models at both locations.
For example, the MAE of the PV power output forecast model 𝑀𝐿𝑅
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De Bilt (NL) Bolzano (IT)

De Bilt (NL) Bolzano (IT)

De Bilt (NL) Bolzano (IT)

Fig. 3. Performance of the single-point estimation and forecasting models, expressed in the MAE (a,b), RMSE (c,d) and MBE (e,f) for de Bilt (a,c,e) and Bolzano (b,d,f). Different
model configurations for incorporating expert variables are considered (see Table 2).
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applied at Bolzano reduces from 0.093 for 𝑀𝐿𝑅2 to 0.075 kW/kWp
for 𝑀𝐿𝑅3 (see Fig. 3(b)). Lastly, the inclusion of PV model variables
in 𝑀𝐿𝑅4 does not significantly improve the estimation or forecasting
performance at both locations. For instance, an improvement of 0.001
in MAE was found for the MLR forecast model at Bolzano. Overall, the
transposition variables have the most significant (positive) effect to the
model performances.

Nonlinear and machine learning models such as RF used for PV
power estimation and forecasting are in many studies found to signifi-
cantly outperform 𝑀𝐿𝑅 models (Hong et al., 2020; AlSkaif et al., 2020;
Visser et al., 2022b). Similar results are found in this study, where
model configurations 𝑅𝐹1 to 𝑅𝐹4 outperform their 𝑀𝐿𝑅 counterparts
in terms of the MAE and RMSE. Nevertheless, the results presented in
Fig. 3 show that the integration of the decomposition and transposition
model variables is relatively more valuable than using a machine learn-
ing model. This is substantiated by the performance results obtained for
the 𝑀𝐿𝑅3 estimation and forecasting models compared to 𝑅𝐹1 at both
locations.

4.1.2. Probabilistic models
The performance of the probabilistic estimations and forecasting

models is summarized in Fig. 4. Since we consider a prediction interval
of 99% we expect a similar PICP score for each model. This is true for
all models except the 𝐶𝑆𝑃𝐸 forecast model at both locations and the
𝑄𝑅1 and 𝑄𝑅2 forecast models at Bolzano. The results show that most
PICP scores range between 0.98 and 0.99. Interestingly, the PICP of the
𝑄𝑅𝐹3 and 𝑄𝑅𝐹4 forecast models are higher than the 𝑄𝑅𝐹3 and 𝑄𝑅𝐹4
estimation models. However, this is explained by a higher prediction
interval, i.e. a higher PINAW value (see Figs. 4(c) and 4(d)). The
PINAW scores range between 0.39 and 0.55 kW/kWp for the forecast
models. The only exception is the 𝐶𝑆𝑃𝐸 model, where a relative low
PINAW score is found of 0.28 kW/kWp. The overall performance of
the probabilistic models is best captured by the CRPS. The CRPS of the
forecast models range between 0.04 and 0.08 kW/kWp. For de Bilt, all
forecast models are found to outperform the benchmark model 𝐶𝑆𝑃𝐸
substantially. At Bolzano the 𝑄𝑅1 performs similar to the 𝐶𝑆𝑃𝐸 model.
The CRPS of the estimation models is significantly better and varies
between 0.008 and 0.0045 kW/kWp.

In general, the CRPS values of the probabilistic models follow the
same trend as the MAE scores obtained for the single-point models.
Remember, the CRPS reduces to the MAE for single-point values. The
introduction of the variables produced by the decomposition model
improves the performance of all models at both locations. In contrast
to single-point models, this also covers the estimation models’ per-
formance. The value of the decomposition model is demonstrated by
the performance differences between model configurations 1 and 2.
For example, at Bolzano the CRPS of the 𝑄𝑅𝐹 model improves from
0.076 for 𝑄𝑅1 to 0.067 kW/kWp for 𝑄𝑅2. The value of including
the transposition model is reflected in the performance differences of
models 2 and 3. Overall, the contribution of the transposition variables
is larger compared to the decomposition variables. For instance, the
𝑄𝑅 model improves by 0.015 kW/kWp. Similar to the single-point
models, the contribution of the PV model is limited. The CRPS of the
𝑄𝑅 forecast model at Bolzano decreases by less than 0.001 kW/kWp as
a result of including the PV model variables.

Similar to the single-point model performance evaluation, it can be
observed from Fig. 4(e) and 4(f) that the machine learning models are
superior to regression ones. This is evident by comparing the estimation
and forecasting results for 𝑄𝑅𝐹1 to 𝑄𝑅𝐹4 to their 𝑄𝑅 counterparts.
Similarly, the inclusion of the decomposition and transposition vari-
ables in the 𝑄𝑅 model is more valuable than implementing the 𝑄𝑅𝐹
model. This observation is identical to the results for the single-point
models except that the 𝑄𝑅𝐹1 forecast model at Bolzano is now found
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to outperform the 𝑄𝑅3 model in terms of the CRPS.
4.2. Contribution of expert variables

4.2.1. Correlations
A simple explanation for the improved performance as a result of

including the expert variables created by the decomposition, trans-
position and PV models concerns the correlation between the con-
structed variables and the PV power output. Accordingly, the three
main variables that are typically of interest to PV power estimation
and forecasting applications because of their high correlation to the PV
power output are presented in Fig. 5. The sub-figures present scatter
plots of the predictor variables 𝐺𝐺𝐻𝐼 , 𝐺𝐴.𝐺𝐼 and 𝑃𝑃𝑉 and the PV power
output. In addition, the Pearson correlation coefficients are included
on the top left corner of the figures. From Fig. 5 it is evident that
the correlation with the registered PV power output, and therewith the
linear relationship between the predictor and target variable, is signif-
icantly higher for 𝐺𝐴.𝐺𝐼 (e.g 0.95 for estimates at de Bilt) than 𝐺𝐺𝐻𝐼
(0.90 for estimates at de Bilt). This holds for estimates and forecasts
at both locations, explaining the increased performance of the model
configuration 3 compared to configurations 1 and 2. The correlation
between the PV power output and 𝑃𝑃𝑉 is only slightly higher. This also
explains the limited or absence of the model performance improvement
as observed in Fig. 3 and 4 for model configuration 3 to 4.

Another clear observation from Fig. 5 is the across the board in-
creased correlation for estimates at Bolzano compared to de Bilt. This
difference is due to the quality of 𝐺𝐺𝐻𝐼 recordings at both locations.
𝐺𝐺𝐻𝐼 measurements at Bolzano feature a higher temporal resolution
and were in contrast to de Bilt recorded on the same site as where the
PV system is located. The difference in correlation between forecasts
at both locations is limited but is likely the result of more accurate
weather forecasts at Bolzano. This difference can also be observed in
Fig. 3 and 4.

4.2.2. Model dynamics
A better understanding of the improved model performance for the

model configurations 3 and 4 can be observed from plotting the auto-
correlation function (ACF) of the residuals. Since the ACF of residuals
gives insights into the white noise properties of the residual, it can
reveal model deficiencies and help identify missing elements in the
model (Hyndman and Athanasopoulos, 2018; Martin et al., 2017) that
might be overcome by introducing a single additional variable (Bacher
and Madsen, 2011). Since the ACF relies on a complete time series,
nighttime values were filled with zeros for the purpose of this eval-
uation. The ACF of the residuals for the single-point forecast models
at de Bilt are presented in Fig. 6. The sub-figures present the lag (in
hours) correlation of the residuals for all forecast horizons. Since the
forecast time horizon varies between 12 and 36 hours-ahead, informa-
tion captured in the lags up to 12 h is unavailable and availability
for lags between 12 and 36 h is limited (plotted in gray). The ACF
plots show a high lag dependency around lag values of 24, 48 and
76 h, for the 𝑀𝐿𝑅1 and 𝑅𝐹1 models. This characterizes the typical
diurnal pattern that defines the PV power output. The introduction of
the decomposition variables improves the dynamics of the models, but
fails to reach the assumption of white noise properties as the sub-figures
still show a high lag correlation. The introduction of the transposition
variables resolves the high lag correlation, i.e. the models now do not
reject the assumption of white noise. This indicates that the forecast
models 𝑀𝐿𝑅3 and 𝑅𝐹3 are capable of describing the time-dependent
dynamics of the power output of a PV system. The introduction of
the PV model variables show little to no further improvement. In
conclusion, this means that model configurations 3 and 4 are capable
of describing the seasonality. Note, however, although these models
now adequately describe the dynamics in the PV power output, the
performance of these models may still be further improved. Similar
results were found for the other single-point estimation and forecasting

models tested in this study.
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Fig. 4. Performance of the probabilistic PV power output estimation and forecasting models, expressed in the PICP (a,b), PINAW (c,d) and CRPS (e,f) for de Bilt (a,c,e) and
Bolzano (b,d,f). Different model configurations for incorporating expert variables are considered (see Table 2).
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Fig. 5. Scatter plots between the predictor and target variable for estimating (a,c) and forecasting (b,d) the PV power output at De Bilt, Netherlands (a,b) and Bolzano, Italy (c,d).
he plots are complemented with the Pearson correlation values (𝑟) between predictor and target variable on the top left corner.
.3. Selection of predictor variables

.3.1. Single-point models
This section evaluates the optimal selection of predictor variables

er model and case study by means of forward feature selection. These
esults provide insights into the most valuable predictor variable(s) and
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the ultimate set of predictor variables per model. The results for the
single-point models are presented in Fig. 7. The figure shows that an
optimal model performance for estimation models is reached at 3–5
predictor variables, i.e. the accuracy does not improve further after
adding another variable. The forecasting models require more, namely
7–12 predictor variables to reach the optimal model performance. This
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Fig. 6. Autocorrelation for single-point model forecasts at de Bilt, similar findings were obtained for the other single-point estimation and forecasting model applications.

Fig. 7. Single-point estimation and forecasting model performance at de Bilt (a) and Bolzano (b) expressed as MAE to the number of variables selected according to the ranking
presented in Tables 3 and B.1.
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Table 4
The top five most important predictor variables for the probabilistic estimation and forecasting models
at de Bilt and Bolzano. The most important variable is ranked No. 1. The values overlap with the
order of included predictor variables as depicted on the x-axis in Fig. 8. A complete overview is
given in Table B.2 in Appendix B.

No. Estimation Forecasting

De Bilt, NL Bolzano, IT De Bilt, NL Bolzano, IT

QR QRF QR QRF QR QRF QR QRF

#1 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉
#2 𝐺𝐺𝐻𝐼 𝐺𝐷𝑁𝐼 𝐺𝐴.𝐵𝐼 𝐴𝑀𝐴 𝐺𝐴.𝐵𝐼 𝐺𝐷𝑁𝐼 𝐺𝐴.𝐵𝐼 𝐴𝑀𝑅
#3 𝐺𝐴.𝐵𝐼 𝐴𝑀𝐴 𝐺𝐺𝐻𝐼 𝑇𝐷 𝐺𝐷𝑁𝐼 𝐴𝑀𝐴 𝐺𝐷𝑁𝐼 𝐶𝐶𝑇
#4 𝐺𝐷𝑁𝐼 𝐶𝐶𝑇 𝑃𝐴 𝐺𝐷𝑁𝐼 𝐺𝐺𝐻𝐼 𝐶𝐶𝑇 𝐺𝐺𝐻𝐼 𝑃𝑀𝑆𝐿
#5 𝑊𝑆𝑣10 𝑊𝑆𝑢10 𝐺𝐷𝐻𝐼 𝐶𝐶𝑇 𝑃𝐴 𝑃𝐴 𝐺𝐷𝐻𝐼 𝐺𝐴.𝐷𝐼
Fig. 8. Probabilistic estimation and forecasting model performance at de Bilt (a) and Bolzano (b) expressed as CRPS to the number of variables selected according to the ranking
presented in Tables 4 and B.2. Note the limited number of predictor variables in case of the 𝑄𝑅 models, which is due to a multicollinearity issue (see Section 3.3).
difference is explained by the inherent uncertainty in the predictor
variables used for forecasting, which translates into a larger number
of predictor variables needed to reach optimal model performance.

The forward feature selection approach selects the single most
important predictor variable, and then step by step adds the next most
important predictor variable. The top five most important predictor
variables for all models, and both case studies, is presented in Table 3
and a complete overview is given in Table B.1 in Appendix B. When
studying these results, it is essential to consider that sometimes the
differences between selecting two variables is insignificant, but due to
high cross-correlation this could result in a predictor variable to be
considered less valuable. An example is the variable 𝐺𝐺𝐻𝐼 in the 𝑀𝐿𝑅
forecasting model at de Bilt, which is ranked as the tenth variable.
Nevertheless, its correlation with the fourth ranked variable 𝐺𝐴.𝐺𝐼 is
extremely high, see Fig. 1. As a result, 𝐺𝐺𝐻𝐼 would likely receive a
higher ranking in case 𝐺𝐴.𝐺𝐼 was unavailable. 𝑃𝑃𝑉 is found to be the
most important predictor variable in all models. This is in line with the
results presented in Section 4.2.1, where the 𝑃𝑃𝑉 is shown to have the
highest correlation with the target variable.

Another observation that stands out in Fig. 7 is the performance
of the 𝑀𝐿𝑅 models compared to their 𝑅𝐹 counterparts. The results
once again show the superiority of the machine learning model over the
𝑀𝐿𝑅 model, except for the case where only one predictor variable is
considered. This holds for the single-point models at both locations. The
superiority of the 𝑅𝐹 models is explained by their nonlinear nature.
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4.3.2. Probabilistic models
The results for the probabilistic models correspond to the findings

presented for the single-point models. The probabilistic estimation
models require 3–5 predictor variables to achieve an optimal perfor-
mance, see Fig. 8. In case of forecasting, a total of 6–11 predictor
variables are required depending on the model and case study. Thus,
the probabilistic forecasting models require a larger set of predictor
variables, which is needed to describe the uncertainty in the forecasts.
Similar to the single-point models, 𝑃𝑃𝑉 was found to be the most
important predictor variable for all the estimation and forecasting
models in both case studies. The top five most important predictor
variables for all probabilistic models is given in Table 4, Table B.2
presents a complete overview of the ranking of all predictor variables.
Finally, regarding the probabilistic models, the machine learning model
(𝑄𝑅𝐹 ) outperforms the linear regression model (𝑄𝑅) in estimation and
forecasting for all sets of predictor variables at both case studies.

4.4. Sensitivity analysis

4.4.1. Single-point models
The results of the sensitivity analysis show how the tilt angle of the

PV system affects the value of the expert variables. Fig. 9 presents the
model performance in MAE as a function of the tilt angle, for the single-
point models at both case studies. From Fig. 9 a couple of trends can
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Fig. 9. Tilt dependency of the single-point estimation (c,d) and forecasting (a,b) models for de Bilt (a,c) and Bolzano (b,d). The performance is expressed in terms of the MAE.
Note the different 𝑦-axis values.
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be distinguished. As the results only differ in terms of the magnitude
of the MAE per location, these trends can be generalized to both case
studies. The sub-figures that present the results for the forecast models
show a parabolic trend for all models. The performance of each forecast
model deteriorates as the tilt angle increases up to 50−60◦, after which
he performance improves. This general parabolic trend is observed for
ll forecast models, including configurations 3 and 4. Since the expert
ariables are expected to correct for the influence of the tilt angle, the
ain driver of this parabolic trend is found in the specific yield of the
V system. Fig. 10 shows how the performance of the model differs
hen we correct the MAE for the specific yield, i.e. express the MAE in

erms of kW/MWh on an annual basis. These results show a positive
inear relationship between the forecast model performance and the
ilt angle, where a larger slope is observed for the forecast models 1
nd 2. For all forecast models, this indicates a growing model forecast
ncertainty with an increasing tilt angle.

The difference between the MAE values of model configurations 1
98

nd 2 in Fig. 9 marks the value of the decomposition variables, which is p
ignificant for most tilt angles. The value of including the transposition
ariables in the estimation models is characterized by comparing the
odels 2 and 3. Its value is considerable for tilt angles that exceed 10◦

nd increases sharply with an increasing tilt angle. By comparing the
odel configurations 3 and 4 we find the contribution of the PV model

ariables, which is significant for the 𝑀𝐿𝑅 model and marginal for the
𝐹 model.

.4.2. Probabilistic models
The results of the sensitivity analysis for the probabilistic estimation

nd forecasting models are summarized in Fig. C1 and C2, see Ap-
endix C. By comparing these to Fig. 9 and 10 similar trends are found
n terms of the tilt dependency of the single-point and probabilistic
stimation and forecasting models. The main difference concerns the
xtent of the errors, where lower error values are observed for the
robabilistic models. Since the difference between the single-point and

robabilistic models is limited to the magnitude of the error metric, it
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Fig. 10. Tilt dependency of the single-point estimation (c,d) and forecasting (a,b) models for de Bilt (a,c) and Bolzano (b,d). The performance is expressed in terms of the MAE
corrected for the specific yield, i.e. kW/MWh on an annual basis. Note the different 𝑦-axis values.
an be concluded that the impact of the tilt angle on the model perfor-
ance does not depend on the type of model of interest, i.e. single-point

r probabilistic.

. Conclusions

This study evaluates the value of predictor variables for the purpose
f PV power estimation and forecasting. In particular, it quantifies the
ontribution of introducing expert variables in regression and machine
earning models, which can easily be created using a decomposition,
ransposition and physical PV model in separate pre-processing steps.
he results show the performance improvement of introducing each
f these steps to single-point and probabilistic regression and machine
earning models that estimate and forecast the PV power output for two
ifferent case studies. The performance of the estimation and forecast-
ng models improve significantly after introducing the expert variables
enerated by the decomposition model. The variables generated by the
ransposition model are even more valuable. A closer look into the
99

esiduals reveal that the introduction of the variables outputted by the
transposition model in particular improves the ability of the models to
describe the diurnal dynamics a PV system is exposed to. In addition,
per model and case study, the study identifies the optimal set of
predictor variables. The forecasting models are found to require a larger
set of predictor variables compared to the estimation models in order to
describe the uncertainty. A sensitivity analysis shows the dependence
of the contribution of expert variables for different tilt angles, whose
value is significant for all tilt angles in case of the decomposition model
and for tilt angles larger than 0◦ for the transposition model. Lastly, the
results in this study demonstrate the superiority of the 𝑅𝐹 and 𝑄𝑅𝐹
models compared to the 𝑀𝐿𝑅 and 𝑄𝑅 models. Yet, the results also
indicate that the inclusion of expert variables can be more valuable
compared to using a more advanced model.
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Bolzano are confidential.
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Appendix A. Statistical properties

Similar to Figs. 1, A1, A3 and A2 hold the cross-correlation values
of the predictor variables included in the measurements matrices for de
Bilt and Bolzano, and the forecasting matrix for Bolzano. The depicted
cross-correlation values are computed using the Pearson correlation
coefficient between each pair of predictor variables. Although some
differences are present, the cross-correlation values are very similar
for both locations. The cross-correlation values found for the mea-
surements matrices per location are almost identical to the forecast
matrices.

The statistical properties of all matrices are summarized in Ta-
bles A.1 and A.2. Amongst others, these explain the higher annual yield
of a PV system in Bolzano compared to de Bilt.

By comparing the results for the single-point forecast model con-
figurations 1 and 2 as presented in Fig. 9 and 10, we can identify the
tilt dependency of the value of including the decomposition variables.
For the 𝑀𝐿𝑅 model, this value is most significant for small tilt angles,
i.e. 0 − 40◦. Alternatively, the performance improvement for the 𝑅𝐹
model is large for all tilt angles. The contribution of the transposition
variables is presented by the performance difference between model
configurations 2 and 3. The value of the transposition variables is
significant for both models at a tilt angle of at least 10◦, where a larger
tilt angle increases the value of including these transposition variables.
Since hardly any difference is found between the MAE values of the
model configurations 3 and 4, we can conclude that the PV model
variables do not improve the performance of the single-point forecast
models, regardless of the tilt angle of interest.

The results of the estimation models deviate slightly from the fore-
casting models. Fig. 9 shows that the performance of model config-
urations 1 and 2 deteriorate rapidly with an increasing tilt angle.
Instead of a parabolic relation as was found for the single-point forecast
models, with an increasing tilt the MAE increases linearly at first, and
then flattens. Similar to the single-point forecast models, for estimation
model configurations 1 and 2 we find a positive linear relation between
the MAE and the tilt angle when the MAE is corrected for the specific
yield. The MAE values of the model configurations 3 and 4 remain
constant, and thus their performance is indifferent to the tilt angle (see
Fig. 9 and 10). Note that model configuration 4 is fed with the true
value, i.e. 𝑦 is equal to 𝑃𝑃𝑉 . This also explains the good performance
of model configuration 3.
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Fig. A1. Cross-correlation for the estimated values of the weather variables at de Bilt.

Fig. A2. Cross-correlation for the forecasted values of the weather variables at Bolzano.

Fig. A3. Cross-correlation for the estimated values of the weather variables at Bolzano.
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Table A.1
Statistical properties of the employed predictor variables, Measurements (M) and Forecasts (F) of the weather variables, for de Bilt.

Mean Median Standard dev. Minimum Maximum Unit

M F M F M F M F M F

𝐴𝑀𝐴 0.05 0.05 0.05 0.05 0.04 0.04 0.01 0.01 0.38 0.38 [–]
𝐴𝑀𝑅 4.7 4.7 4.7 4.7 4.0 4.0 1.1 1.1 37.9 37.9 [–]
𝐶𝐶𝑇 0.67 0.65 0.82 0.82 0.35 0.37 0.0 0.0 1.0 1.0 [–]
𝐺𝐺𝐻𝐼 123 125 5.1 4.9 190 192 0.0 0.0 887 878 W∕m2

𝐺𝐷𝑁𝐼 112 117 0.00 0.00 221 227 0.00 0.00 1320 1255 W∕m2

𝐺𝐷𝐻𝐼 70 69 5.1 4.9 99 97 0.00 0.00 395 394 W∕m2

𝐺𝐴.𝐺𝐼 145 148 0.41 0.40 233 239 0.00 0.00 1045 1034 W∕m2

𝐺𝐴.𝐵𝐼 70 74 0.00 0.00 153 160 0.00 0.00 855 842 W∕m2

𝐺𝐴.𝐷𝐼 74 75 0.40 0.41 105 106 0.00 0.00 406 408 W∕m2

𝐺𝐴.𝐷𝐼𝑔 2.4 2.4 0.10 0.09 3.6 3.7 0.00 0.00 17 17 W∕m2

𝐺𝐴.𝐷𝐼𝑠 72 72 0.09 0.09 103 101 0.00 0.00 397 395 W∕m2

𝑃𝐴 1014 1015 1015 1015 10 10 971 972 1044 1044 mbar
𝑃𝑀𝑆𝐿 1015 1015 1016 1016 10 10 972 972 1045 1045 mbar
𝑃𝑃𝑉 287 293 0.00 0.00 461 470 0.00 0.00 1929 1913 W
𝑇𝐴 11 11 11 11 6.2 6.2 −6.4 −7.0 33 33 ◦C
𝑇𝐷 7.6 7.3 7.5 7.3 5.3 5.4 −8.3 −11 22 23 ◦C
𝑇𝑃𝑉 18 18 14 13 16 16 −6.4 −7.0 85 85 ◦C
𝑇𝑃 0.10 0.09 0.00 0.00 0.31 0.34 0.00 0.00 11 11 mm
𝑊𝑆𝑢10 0.94 1.1 1.0 1.2 2.8 3.0 −8.5 −9.8 12 13 m/s
𝑊𝑆𝑣10 0.91 1.0 1.1 1.2 2.7 2.9 −7.8 −8.9 11 12 m/s
Table A.2
Statistical properties of the employed predictor variables, Measurements (M) and Forecasts (F) of the weather variables, for Bolzano.

Mean Median Standard dev. Minimum Maximum Unit

M F M F M F M F M F

𝐴𝑀𝐴 0.04 0.04 0.04 0.04 0.04 0.04 0.01 0.01 0.3 0.3 [–]
𝐴𝑀𝑅 4.3 4.3 4.35 4.35 4.02 4.02 1.09 1.09 38 38 [–]
𝐶𝐶𝑇 0.5 0.6 0.6 0.65 0.39 0.37 0.00 0.00 1.0 1.0 [–]
𝐺𝐷𝑁𝐼 173 160 0.00 0.00 292 279 0.00 0.00 1482 1611 W∕m2

𝐺𝐷𝐻𝐼 72 76 6.1 6.76 99 103 0.00 0.00 414 1632 W∕m2

𝐺𝐺𝐻𝐼 159 155 6.1 6.79 230 223 0.00 0.00 944 1632 W∕m2

𝐺𝐴.𝐺𝐼 198 190 0.4 0.43 288 278 0.00 0.00 1098 1128 W∕m2

𝐺𝐴.𝐵𝐼 118 108 0.00 0.00 212 200 0.00 0.00 910 936 W∕m2

𝐺𝐴.𝐷𝐼 80 82 0.4 0.43 107 111 0.00 0.00 421 421 W∕m2

𝐺𝐴.𝐷𝐼𝑠 78 80 0.2 0.11 105 108 0.00 0.00 414 414 W∕m2

𝐺𝐴.𝐷𝐼𝑔 1.9 1.9 0.07 0.08 2.78 2.69 0.00 0.00 11.38 20 W∕m2

𝑃𝐴 909 906 908 906 9.2 7 867 867 938 924 mbar
𝑃𝑀𝑆𝐿 1017 1017 1017 1017 7.5 7 976 978 1041 1040 mbar
𝑃𝑃𝑉 681 659 0.00 0.00 988 958 0 0 3526 3597 W
𝑇𝐴 10 10 10 9.4 7.6 8 −10 −17 33 32 ◦C
𝑇𝐷 3.1 3.2 3.6 3.7 7.4 7 −22 −23 20 19 ◦C
𝑇𝑃𝑉 21 21 14 14 21 20 −9.4 −17 89 88 ◦C
𝑇𝑃 0.1 0.1 0.00 0.00 0.4 0.4 0.00 0.00 14 6 mm
𝑊𝑆𝑢10 0.06 −0.08 0.00 −0.1 0.6 0.3 −2.3 −1.2 2.8 1.8 m/s
𝑊𝑆𝑣10 −0.12 −0.06 −0.1 −0.2 0.7 0.7 −4.6 −4.0 3.0 3.0 m/s
Appendix B. Ranking of predictor variables

Table B.1 and B.2 present the most important predictor variables
for all single-point and probabilistic estimation and forecasting models
at de Bilt and Bolzano.
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Appendix C. Sensitivity

Fig. C1 and C2 present the probabilistic model performance for
varying tilt angles, which relate to the results discussed in Section 4.4.2.
The results are similar to the single-point models, as discussed in
Section 4.4.1.



Solar Energy 251 (2023) 86–105L. Visser et al.
Table B.1
Overview of the ranking of the most important predictor variables for the single-point estimation and forecasting
models at de Bilt and Bolzano. The most important variable is ranked No. 1. The values overlap with the order of
included predictor variables as depicted on the x-axis in Fig. 7.

No. Estimation Forecasting

De Bilt, NL Bolzano, IT De Bilt, NL Bolzano, IT

MLR RF MLR RF MLR RF MLR RF

#1 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉
#2 𝐺𝐺𝐻𝐼 𝐺𝐴.𝐷𝐼𝐺 𝐺𝐺𝐻𝐼 𝐺𝐺𝐻𝐼 𝑊𝑆𝑢10 𝐺𝐴.𝐷𝐼𝐺 𝐺𝐺𝐻𝐼 𝐴𝑀𝑅
#3 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐺𝐴.𝐺𝐼 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐺𝐷𝑁𝐼 𝐶𝐶𝑇
#4 𝐺𝐴.𝐺𝐼 𝑃𝑀𝑆𝐿 𝑇𝐷 𝑇𝐷 𝐺𝐴.𝐺𝐼 𝐶𝐶𝑇 𝐶𝐶𝑇 𝑃𝑀𝑆𝐿
#5 𝑊𝑆𝑣10 𝐴𝑀𝐴 𝐺𝐷𝐻𝐼 𝐶𝐶𝑇 𝐴𝑀𝐴 𝑇𝑃 𝐴𝑀𝐴 𝐺𝐴.𝐷𝐼𝑆
#6 𝑊𝑆𝑢10 𝑊𝑆𝑢10 𝐴𝑀𝑅 𝑊𝑆𝑣10 𝐶𝐶𝑇 𝑃𝐴 𝑃𝑀𝑆𝐿 𝑊𝑆𝑢10
#7 𝑃𝑀𝑆𝐿 𝐶𝐶𝑇 𝑊𝑆𝑣10 𝐴𝑀𝐴 𝑃𝐴 𝑊𝑆𝑢10 𝐴𝑀𝑅 𝑇𝑃
#8 𝑃𝐴 𝐺𝐴.𝐷𝐼 𝑇𝑃 𝑇𝑃 𝐴𝑀𝑅 𝐺𝐴.𝐵𝐼 𝐺𝐷𝐻𝐼 𝐴𝑀𝐴
#9 𝑇𝑃 𝑃𝐴 𝐶𝐶𝑇 𝐺𝐴.𝐷𝐼𝑆 𝑃𝑀𝑆𝐿 𝐺𝐴.𝐺𝐼 𝐺𝐴.𝐷𝐼 𝐺𝐺𝐻𝐼
#10 𝐴𝑀𝐴 𝑊𝑆𝑣10 𝐴𝑀𝐴 𝐺𝐴.𝐵𝐼 𝐺𝐺𝐻𝐼 𝑇𝑃𝑉 𝑊𝑆𝑣10 𝐺𝐴.𝐷𝐼𝐺
#11 𝐴𝑀𝑅 𝐺𝐴.𝐷𝐼𝑆 𝐺𝐴.𝐷𝐼𝐺 𝐴𝑀𝑅 𝐺𝐷𝐻𝐼 𝐺𝐺𝐻𝐼 𝑇𝑃𝑉 𝐺𝐴.𝐷𝐼
#12 𝐺𝐴.𝐷𝐼𝐺 𝐺𝐷𝐻𝐼 𝑃𝐴 𝐺𝐴.𝐷𝐼 𝐺𝐴.𝐷𝐼𝑆 𝑃𝑀𝑆𝐿 𝑇𝐷 𝐺𝐷𝐻𝐼
#13 𝑇𝑃𝑉 𝐺𝐺𝐻𝐼 𝑃𝑀𝑆𝐿 𝐺𝐴.𝐷𝐼𝐺 𝑊𝑆𝑣10 𝑇𝐴 𝐺𝐴.𝐺𝐼 𝑇𝐴
#14 𝑇𝐷 𝐴𝑀𝑅 𝑊𝑆𝑢10 𝐺𝐷𝐻𝐼 𝑇𝑃 𝑇𝐷 𝑇𝐴 𝑇𝑃𝑉
#15 𝑇𝐴 𝑇𝑃𝑉 𝐺𝐴.𝐷𝐼 𝑊𝑆𝑢10 𝐺𝐴.𝐷𝐼 𝐺𝐴.𝐷𝐼𝑆 𝑊𝑆𝑢10 𝐺𝐴.𝐺𝐼
#16 𝐺𝐷𝐻𝐼 𝑇𝐷 𝐺𝐴.𝐷𝐼𝑆 𝐺𝑎𝐴.𝐺𝐼 𝐺𝐴.𝐷𝐼𝐺 𝐺𝐷𝐻𝐼 𝑇𝑃 𝑇𝐷
#17 𝐺𝐴.𝐵𝐼 𝑇𝐴 𝐺𝐴.𝐵𝐼 𝑇𝑃𝑉 𝐺𝐴.𝐵𝐼 𝐴𝑀𝑅 𝐺𝐴.𝐷𝐼𝑆 𝑃𝐴
#18 𝐺𝐴.𝐷𝐼 𝑇𝑃 𝑇𝐴 𝑇𝐴 𝑇𝑃𝑉 𝐴𝑀𝐴 𝐺𝐴.𝐵𝐼 𝐺𝐷𝑁𝐼
#19 𝐺𝐴.𝐷𝐼𝑆 𝐺𝐴.𝐵𝐼 𝑇𝑃𝑉 𝑃𝐴 𝑇𝐷 𝐺𝐴.𝐷𝐼 𝐺𝐴.𝐷𝐼𝐺 𝐺𝐴.𝐵𝐼
#20 𝐶𝐶𝑇 𝐺𝐴.𝐺𝐼 𝐺𝐷𝑁𝐼 𝑃𝑀𝑆𝐿 𝑇𝐴 𝑊𝑆𝑣10 𝑃𝐴 𝑊𝑆𝑣10
Table B.2
Overview of the ranking of the most important predictor variables for the probabilistic estimation and forecasting
models at de Bilt and Bolzano. The most important variable is ranked No. 1. The values overlap with the order of
included predictor variables as depicted on the x-axis in Fig. 8.

No. Estimation Forecasting

De Bilt, NL Bolzano, IT De Bilt, NL Bolzano, IT

QR QRF QR QRF QR QRF QR QRF

#1 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉 𝑃𝑃𝑉
#2 𝐺𝐺𝐻𝐼 𝐺𝐷𝑁𝐼 𝐺𝐴.𝐵𝐼 𝐴𝑀𝐴 𝐺𝐴.𝐵𝐼 𝐺𝐷𝑁𝐼 𝐺𝐴.𝐵𝐼 𝐴𝑀𝑅
#3 𝐺𝐴.𝐵𝐼 𝐴𝑀𝐴 𝐺𝐺𝐻𝐼 𝑇𝐷 𝐺𝐷𝑁𝐼 𝐴𝑀𝐴 𝐺𝐷𝑁𝐼 𝐶𝐶𝑇
#4 𝐺𝐷𝑁𝐼 𝐶𝐶𝑇 𝑃𝐴 𝐺𝐷𝑁𝐼 𝐺𝐺𝐻𝐼 𝐶𝐶𝑇 𝐺𝐺𝐻𝐼 𝑃𝑀𝑆𝐿
#5 𝑊𝑆𝑣10 𝑊𝑆𝑢10 𝐺𝐷𝐻𝐼 𝐶𝐶𝑇 𝑃𝐴 𝑃𝐴 𝐺𝐷𝐻𝐼 𝐺𝐴.𝐷𝐼
#6 𝐺𝐷𝐻𝐼 𝑃𝐴 𝑇𝐷 𝐺𝐺𝐻𝐼 𝐴𝑀𝐴 𝑇𝑃 𝐺𝐴.𝐺𝐼 𝑇𝐷
#7 𝐺𝐴.𝐺𝐼 𝐺𝐴.𝐷𝐼 𝐺𝐷𝑁𝐼 𝑊𝑆𝑣10 𝐺𝐷𝐻𝐼 𝑊𝑆𝑢10 𝐶𝐶𝑇 𝑇𝑃
#8 𝑊𝑆𝑢10 𝐺𝐺𝐻𝐼 𝐺𝐴.𝐺𝐼 𝑇𝑃 𝐺𝐴.𝐺𝐼 𝐺𝐴.𝐵𝐼 𝑃𝑀𝑆𝐿 𝑊𝑆𝑢10
#9 𝑇𝐷 𝑇𝐷 𝑇𝑃 𝐺𝐴.𝐷𝐼𝑆 𝑃𝑀𝑆𝐿 𝑇𝑃𝑉 𝑊𝑆𝑣10 𝐺𝐺𝐻𝐼
#10 𝑇𝐴 𝑇𝐴 𝐴𝑀𝐴 𝐺𝐴.𝐵𝐼 𝐶𝐶𝑇 𝐺𝐺𝐻𝐼 𝐴𝑀𝐴 𝐴𝑀𝐴
#11 𝐴𝑀𝐴 𝑇𝑃 𝐶𝐶𝑇 𝐴𝑀𝑅 𝐴𝑀𝑅 𝐺𝐴.𝐷𝐼𝐺 𝐴𝑀𝑅 𝐺𝐴.𝐷𝐼𝐺
#12 𝑇𝑃 𝐺𝐴.𝐷𝐼𝐺 𝐴𝑀𝑅 𝐺𝐴.𝐷𝐼𝐺 𝑇𝑃𝑉 𝑃𝑀𝑆𝐿 𝑇𝑃𝑉 𝐺𝐴.𝐷𝐼𝑆
#13 𝐴𝑀𝑅 𝐺𝐴.𝐷𝐼𝑆 𝑊𝑆𝑣10 𝐺𝐴.𝐷𝐼 𝑇𝐷 𝑇𝐷 𝑇𝐴 𝐺𝐷𝐻𝐼
#14 𝐶𝐶𝑇 𝐴𝑀𝑅 𝑃𝑀𝑆𝐿 𝑇𝐴 𝑇𝑃 𝐺𝐴.𝐺𝐼 𝑇𝐷 𝑇𝑃𝑉
#15 𝑃𝑀𝑆𝐿 𝑃𝑀𝑆𝐿 𝑊𝑆𝑢10 𝐺𝐷𝐻𝐼 𝑊𝑆𝑢10 𝐴𝑀𝑅 𝑇𝑃 𝑃𝐴
#16 𝑇𝑃𝑉 𝐺𝐴.𝐵𝐼 𝑇𝑃𝑉 𝑇𝑃𝑉 𝑊𝑆𝑣10 𝑇𝐴 𝑊𝑆𝑢10 𝐺𝐷𝑁𝐼
#17 𝑃𝐴 𝐺𝐷𝐻𝐼 𝑇𝐴 𝑊𝑆𝑢10 𝑇𝐴 𝐺𝐷𝐻𝐼 𝑃𝐴 𝐺𝐴.𝐺𝐼
#18 𝑇𝑃𝑉 𝐺𝐴.𝐺𝐼 𝐺𝐴.𝐷𝐼𝑆 𝑇𝐴
#19 𝑊𝑆𝑣10 𝑃𝐴 𝐺𝐴.𝐷𝐼 𝐺𝐴.𝐵𝐼
#20 𝐺𝐴.𝐺𝐼 𝑃𝑀𝑆𝐿 𝑊𝑆𝑣10 𝑊𝑆𝑣10
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Fig. C1. Tilt dependency of the probabilistic estimation (c,d) and forecasting (a,b) models for de Bilt (a,c) and Bolzano (b,d). The performance is expressed in terms of the CRPS.
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c

Fig. C2. Tilt dependency of the probabilistic estimation (c,d) and forecasting (a,b) models for de Bilt (a,c) and Bolzano (b,d). The performance is expressed in terms of the CRPS
orrected for the specific yield, i.e. kW/MWh on an annual basis.
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