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ABSTRACT

Using a so-called hemispherical model we derive a general transport equation for cosmic ray and thermal particles scattered in pitch
angle by magnetic inhomogeneities in a moving collisionless plasma. The weak scattering through 90 degrees results in isotropic
particle distributions in each hemisphere. The consideration is not limited by small anisotropies and by the condition that particle
velocities are higher than characteristic flow velocity differences. For high velocities and small anisotropies the standard cosmic
ray transport equation is recovered. We apply the equations derived for investigation of injection and acceleration of particles by
collisionless shocks.
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1. Introduction

Progress in cosmic ray astrophysics has been made with the in-
troduction of the transport equation for cosmic rays (Krymsky
1964; Parker 1965; Dolginov & Toptygin 1966; Gleeson &
Axford 1969). It was successfully applied to many astrophysi-
cal problems: cosmic ray modulation in the solar wind, accel-
eration of particles at shock fronts, cosmic ray propagation in
the Galaxy etc. This equation implies that in the strong scatter-
ing approximation the particle distribution is almost isotropic,
which in particular implies that velocities of particles are higher
than the characteristic flow velocity differences in the plasma.
However, in several circumstances these conditions are violated
and more general kinetic equations should be used which also
deal with the evolution of the pitch angle distribution. Since the
solution of such equations is not a simple task, we would like
find a description that comes close to that implied by the stan-
dard transport equation.

Energetic particles are scattered in pitch angle relative to
the mean magnetic field direction by random magnetic inhomo-
geneities. It is well known that in the case of particle transport
along the mean magnetic field a so-called problem of scattering
through the pitch-angle of 90 degrees exist. According to quasi-
linear theory the resonant scattering of particles is weak at small
pitch-angle cosines (Jokipii 1966). The main reason for this phe-
nomenon is the small energy density of short waves propagating
along the magnetic field and scattering the particles with pitch
angles close to 90 degrees. These waves may be easily damped
by thermal ions. Even without such a damping, the scattering in
the vicinity of 90 degrees is depressed in the case of a power-
law spectrum of waves that is proportional to k−2 or steeper.
Here k is the wavenumber. This problem can be avoided if one
takes into account the scattering by oblique waves or nonlinear
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interactions, for example magnetic mirroring (see e.g. Völk
1973, 1975; Achterberg 1981). One can expect that the scatter-
ing efficiency is small near the pitch angle of 90 degrees.

Observations of suprathermal pick-up particles in the solar
wind suggest that this is the case (Fisk et al. 1997). If the scatter-
ing through 90 degrees is weak, the particle distribution is almost
isotropic in each hemisphere of the velocity directions parallel
or antiparallel to the mean field. So, in this case the angular de-
pendence of particle distribution is reduced to the two number
densities of forward and backward moving particles. The corre-
sponding equations were derived by Isenberg (1997) for the case
of pick-up ions in the solar wind.

We use this approach and derive general transport equations
for arbitrary nonrelativistic flow velocities. We use the particle
distributions in the frame moving with the medium. This permits
us to consider the case of arbitrary particle velocities. Since the
number density of particles in both hemispheres may substan-
tially differ, large anisotropies can also be taken into account.
The equations derived have a broad range of applicability: prop-
agation of solar energetic particles and pick-up ions in the so-
lar wind, injection into diffusive shock acceleration and other
processes.

As an example of the application of the equations derived,
we consider the problem of diffusive shock acceleration. Since
our equations describe propagation of thermal as well as ener-
getic particles in the vicinity of the collisionless shock front,
they can be used for the determination of the shock velocity pro-
file and the spectra of thermal and nonthermal particles without
any assumptions regarding the injection efficiency. One only has
to prescribe the scattering law. In this sense the approach is sim-
ilar to the one used by Ellison & Eichler (1984). They applied
a Monte-Carlo technique for the solution of the kinetic equation.

The basis of such an approach is the idea that the interaction
of upstream and downstream plasmas may result in instabilities
similar to firehose instability (Parker 1961; Quest 1988). The
magnetic inhomogeneities produced by such instabilities may
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play the role of scattering centers and provide the shock dissipa-
tion and heating. These ideas are also the basis of the so-called
hybrid simulations of collisionless shocks (Leroy & Winske
1983; Quest 1986). The ions move in self-consistent electro-
magnetic fields and the electrons are considered as a charged
neutralizing fluid in these simulations.

The equations are derived in the next two sections.
Application to the case of collisionless shock is considered in
Sects. 4 and 5. Section 6 contains a discussion of results obtained
and conclusions.

2. Basic equations

We start with the kinetic equation for the momentum distribu-
tion f (r, p) of charged particles

∂ f
∂t
+ u∇ f + FL

∂ f
∂p
= Ŝ t f . (1)

Here u and p are the particle velocity and momentum respec-
tively, FL = qE + (q/c)[u × B] is the Lorence force and the
operator Ŝ t describes the pitch angle scattering of particles by
random magnetic inhomogeneities in the fluid frame. We shall
further assume that the mean electric field E can be described as

E = E‖b − 1
c

[u × B], (2)

where b is the unit vector along the direction of the mean mag-
netic field B, u is the mass velocity and E‖ is the component of
the mean electric field which is parallel to the mean magnetic
filed.

It is convenient to perform a change of variable p to p′ that
formally coincides with the nonrelativistic Lorence transform

p′ = p− u
v

p. (3)

Averaging the particle gyrophase angle and neglecting terms of
the order u/c� 1 we find (cf. Skilling 1971; Kulsrud 1983):

∂ f
∂t
+ (v′µ′b + u)∇ f = Ŝ t f

+
∂ f
∂p′

[
3µ′2 − 1

2
p′b(b∇)u +

1 − µ′2
2

p′∇u − µ′F‖
]

+
∂ f
∂µ′

(1 − µ′2)

[
3
2
µ′b(b∇)u − v

′

2
∇b − µ

′

2
∇u − F‖

p′

]
(4)

here µ′ is the cosine of the pitch angle of the particle and F‖ is the
sum of the parallel components of the electric and inertia force:

F‖ = qE‖ − b
p′

v′

(
∂u
∂t
+ (u∇)u

)
. (5)

The scattering operator can be written as

Ŝ t f =
∂

∂µ′
1 − µ′2

2
ν(p′, µ′)

∂ f
∂µ′

(6)

here ν is the scattering frequency.
Let us assume that the scattering frequency is large for

pitch angle cosines |µ′| > µ0. The momentum distribution f is
then isotropic in these regions of the angle space. We introduce

distributions of particles in the backward and forward hemi-
spheres N±: f (p′, µ′) = N−(p′) for µ′ < −µ0 and f (p′, µ′) =
N+(p′) for µ′ > µ0. Integration of Eq. (4) from −1 to −µ0 and
from µ0 to 1 gives the equations for these distributions:

∂N±
∂t
+

(
u ± v

′

2
b
)
∇N± +

(
±1

2
F‖ − p′

3
∇u

)
∂N±
∂p′
=

∓ ν
2
∂ f
∂µ′

∣∣∣∣∣
µ′=±µ0

. (7)

It was assumed that µ0 � 1. Now we calculate the right-hand
side of these equations. For this we must find the solution of
Eq. (4) in the region |µ′| < µ0. Since µ0 � 1, we can leave only
the terms with derivatives on µ′ in this equation with the result:

−
(
v′

2
∇b +

F‖
p′

)
∂ f
∂µ′
=
∂

∂µ′
ν

2
∂ f
∂µ′
· (8)

This equation should be solved with the boundary conditions
f (p′,±µ0) = N±(p′). Substitution of the solution into the Eq. (7)
then gives

∂N±
∂t
+

(
u ± v

′

2
b
)
∇N± +

(
±1

2
F‖ − p′

3
∇u

)
∂N±
∂p′
=

∓ν∓(N+ − N−). (9)

Here the frequencies ν± describe the rate of particle exchange
between forward and backward hemispheres:

ν±(p′) = ±
F‖
p′ +

v′
2 ∇b

exp
[
±λ

(
2F‖
v′p′ + ∇b

)]
− 1
, (10)

and the mean free path λ of the particle in the uniform medium
is given by the expression:

λ = v′
∫ µ0

−µ0

dµ′

ν(p′, µ′)
· (11)

A very similar equation was derived by Isenberg (1997) for pick-
up ions in the solar wind. We found more accurate expressions
for the frequencies ν± and these coincide with the result of Kota
(2000) obtained for the case F‖ = 0.

We neglected the derivatives in time and space in Eq. (8).
This assumption is valid if the characteristic time τ and the char-
acteristic scale l of the problem considered are large enough:
τ, l/v′ � µ2

0/ν ∼ µ0λ/v
′. Since µ0 � 1, our derivation

is valid even if the scale l is comparable with the mean free
path λ. Equation (9) is exact in the mathematical limit µ0 → 0,
λ→ const.

Equations (9) can be rewritten in the conservative form:

∂N±
∂t
+ ∇

(
u ± v

′

2
b
)

N±

+
1

p′2
∂

∂p′
p′2

(
±1

2
F‖ − p′

3
∇u

)
N± = ν∓N∓ − ν±N±. (12)

Equations derived have a simple physical meaning. The second
term in the left hand side describes the transport of the particles
by the medium moving with velocity u and the proper motion
of particles along the magnetic field with the speed ±v′/2 (to be
compared with “coherent” propagation of solar energetic parti-
cles considered by Earl 1974). The third term describes the en-
ergy losses or gains in the inhomogeneous flow and electric field.
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The right hand side corresponds to the exchange of particles be-
tween forward and backward hemispheres.

It is clear that the system of Eq. (12) is hyperbolic. It can be
reduced to uncoupled equations for N+ and N−:

∂N±
∂t
+ u∇N± − p′

3
∂N±
∂p′
∇u = −

[
∂

∂t
+ ∇

(
u ∓ v

′

2
b
)

+
1

p′2
∂

∂p′
p′2

(
∓1

2
F‖ − p′

3
∇u

)]
1

2ν∓

×
[
∂N±
∂t
+

(
u ± v

′

2
b
)
∇N± +

(
±1

2
F‖ − p′

3
∇u

)
∂N±
∂p′

]
· (13)

In the case of high scattering frequencies the particle distribu-
tions in the different hemispheres are almost equal to each other,
N+ ≈ N− ≈ N. Assuming also a slow time evolution and parti-
cle velocities much larger than the medium velocity we come to
the standard transport equation for cosmic rays (Krymsky 1964;
Parker 1965; Dolginov & Toptygin 1966; Gleeson & Axford
1969):

∂N
∂t
+ u∇N − p′

3
∂N
∂p′
∇u = (∇b)D‖(b∇)N. (14)

Here the diffusion coefficient along the magnetic field D‖ =
v′λ/4.

Another interesting case is when the energy changes and
transport by the medium are negligible. Then Eq. (13) is reduced
to the so-called telegraph equation (cf. Fisk & Axford 1969):

∂N±
∂t
= −

[
∂

∂t
∓ v
′

2
(∇b)

]
1

2ν∓

[
∂N±
∂t
± v
′

2
(b∇)N±

]
. (15)

This equation describes propagation of cosmic ray particles with
finite velocity and can be reduced to the diffusion equation only
in the case of a slow time evolution.

3. Self-consistent closure

The equations derived in the previous section contain prescribed
values for the flow velocities u, the parallel force F‖ and the
magnetic field B. Such a description is a good approximation
for the investigation of propagation of test particles. However,
in many interesting cases these quantities should be determined
self-consistently, involving the distributions N+ and N−.

We treat electrons as a massless fluid. In this case the Euler
equation for electrons is reduced to an expression for the electric
field:

E + δE = −∇Pe

qne
− 1

c
[ue × (B + δB)], (16)

where ue and Pe are the velocity and the pressure of the electron
fluid respectively, ne is the electron number density, δE and δB
are the random components of the electric and the magnetic
fields respectively. The velocity ue can be found from Maxwell’s
equation

[∇ × (B + δB)] =
4πq

c

∫
d3 p(u − ue)( f + δ f ), (17)

where δ f is the random component of the ion distribution, and
we have neglected the displacement current by assuming a slow

time evolution. It was also assumed that the plasma is pure hy-
drogen and quasineutral. Substitution of ue from this equation
into Eq. (16) and averaging gives:

E = −1
c

[u × B] − 1
qni

(
1

4π
[B × [∇ × B]] + ∇Pe

+

∫
d3 ppŜ t f

)
. (18)

Here ni is the mean number density of ions and we have used the
formal definition of the scattering operator Ŝ t f = − q

c 〈 ∂∂p[(u −
u) × δB]δ f 〉, where the angle brackets mean the average over
the random fluctuations of δB and δ f of the magnetic field and
the momentum distribution. We also neglected the magnetic ten-
sion of the random component. Generally speaking, the scatter-
ing operator does not conserve momentum. Since the magnetic
inhomogeneities are frozen into the electron fluid, this additional
force acts on the electron fluid. As a result, an additional electric
field due to the charge separation appears. It is described by the
last term in the parentheses of Eq. (18). Such a field is indeed
observed in hybrid simulations of collisionless shocks (Quest
1988).

We multiply Eq. (1) containing the electric field (18) by pd3 p
and integrate over momentum space. This gives the Euler equa-
tion of motion:

ρ

(
∂u
∂t
+ (u∇)u

)
= − 1

4π
[B × [∇ × B]] − ∇(Pe + Pi). (19)

Here

Pi =
1
3

∫
d3 p′v′p′(N+ + N−) (20)

is the pressure of ions and ρ is the mean density. The parallel
electric field can be found from Eq. (18).

Since the Eq. (1) with the electric field (18) conserves mo-
mentum, the same is true for Eq. (9). Let us multiply them by p′,
integrate over p′2dp′ and subtract the first from the second. This
gives after some algebra

F‖ =
1
ni

[
2
3

∫
d3 p′p′(ν+ + ν−)(N+ − N−) + b∇Pi

+b
(
∂u
∂t
+ (u∇)u

) ∫
d3 p′′

(
p′′

v′′
− p′

v′

)
(N+ + N−)

]
. (21)

The last term term in the right hand side of this expression can be
neglected, since the force F‖ is essential only for nonrelativistic
particles which determine the plasma density.

We shall assume an adiabatic evolution of the electron
pressure

∂Pe

∂t
+ u∇Pe +

5
3

Pe∇u = 0, (22)

and frozen-in magnetic field. The last term in Eq. (18) is es-
sential for momentum conservation but can be neglected in
Faraday’s induction equation:

∂B
∂t
= [∇ × [u × B]]. (23)

We have thus obtained the closed system of Eqs. (12), (19), (22),
(23) with expressions (10) for the frequencies ν± and Eq. (21) for
the parallel force F‖. In the next sections we apply these equa-
tions to the combined problem of injection and nonlinear accel-
eration at a plane shock.
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Fig. 1. Characteristics of the hyperbolic system of Eq. (24) for the case
E‖ = 0. Characteristics for forward moving particles and backward
moving particles are shown by solid and dotted lines respectively.

4. Application for acceleration at the plane shock

Let us consider the acceleration at the parallel one-dimensional
shock. We can write the steady-state version of Eq. (9) for non-
relativistic particles in the shock frame as
(
u ± v

′

2

)
∂N±
∂z
+

(
± F‖

2m
− v
′

3
∂u
∂z

)
∂N±
∂v′
= ∓ν∓(N+ − N−). (24)

Here m is the mass of particles and the parallel force F‖ = qE‖ −
mu∂u/∂z.

The characteristics of this system of equations for the
case E‖ = 0 are given by

⎛⎜⎜⎜⎜⎝ v′u ±
4
3
+

√
7

3

⎞⎟⎟⎟⎟⎠
1
2∓ 1√

7
⎛⎜⎜⎜⎜⎝v′u ±

4
3
−
√

7
3

⎞⎟⎟⎟⎟⎠
1
2± 1√

7

= const. (25)

They are shown in Fig. 1. An upstream particle begins its mo-
tion with low velocity from the upper left part of this u− v′ plane
and goes down the characteristics. The forward moving particles
gain energy, backward moving ones lose energy. At any moment
the particle may change hemisphere and will continue the mo-
tion along another set of characteristics. If the compression ratio
of the shock is high enough, the forward moving particle can
change hemisphere in the vicinity of the line u = v′/2 (shown
by the dash-dotted line) and return upstream along the backward
characteristic with energy gain. It can again change the hemi-
sphere upstream and again move in a downstream direction etc.
This may be repeated many times and the accelerated particle
goes to the right beyond the part of u − v′ plane shown in Fig. 1.

There is an another possibility for the initial acceleration. If
the initial speed of the backward moving particle upstream is
high enough, say 0.7u1, it can reach the line u = v′/2 directly
and return upstream with an energy gain. However, the initial
speed is rather high. The number of such particles is small for
high Mach number shocks.

The characteristics of Eq. (24) depend on F‖. The charac-
teristics for the case F‖ = 0 are shown in Fig. 2. This case is
close to the real situation because the two first terms in Eq. (21)
almost cancel each other (see also the numeric modeling be-
low). In other words, the electric force qE‖ almost compensate
the inertia force −mu∂u/∂z in the second term on the left-hand
side of Eq. (24). This is not a simple coincidence. The elec-
tric force is the consequence of the momentum transfer and is

Fig. 2. Characteristics of the hyperbolic system of Eq. (24) for the case
F‖ = 0. Characteristics for forward moving particles and backward
moving particles are shown by solid and dotted lines respectively.

approximately −∂P/∂z/ρ that is exactly u∂u/∂z. The character-
istics are determined by expressions

v′4 ± 8
3

uv′3 = const. (26)

We find the analytical solution of Eq. (24) for the case when the
velocity profile is discontinuous: u(z) = u1, z < 0 and u(z) = u2,
z > 0. In the regions of constant velocity u the system (24) can
be rewritten as (to be compared with Gombosi et al. 1993)

u
∂N+
∂z
=
∂

∂z

(
v′2 − 4u2

) λ
4v′
∂N+
∂z

(27)

N− = N+ +
(
2u + v′

) λ
v′
∂N+
∂z
· (28)

It was also assumed that E‖ = 0. The solution of these equations
upstream (z < 0) is

N± = N∞ + (N1± − N∞) exp
4u1v

′z/λ
v′2 − 4u2

1

· (29)

Here N∞ is the distribution at z = −∞, N1+ and N1− are the
distributions N+ and N− just upstream the shock. According to
Eq. (28) they are related as

(v′ + 2u1)(N1+ − N∞) = (v′ − 2u1)(N1− − N∞), v′ > 2u1

N1+ = N1− = N∞, v′ < 2u1. (30)

The solutions downstream are given by

N± = N2+

(
1
2
+
v′

4u2

)
+ N2−

(
1
2
− v

′

4u2

)

+

(
v′

4u2
∓ 1

2

)
(N2− − N2+) exp

4u2v
′z/λ

v′2 − 4u2
2

· (31)

Here N2+ and N2− are the distributions just downstream. They
are related as

N2+ = N2−, v′ > 2u2. (32)

This means that distributions N+ and N− do not depend on z for
v′ > 2u2.
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We find the relation between the upstream and downstream
distributions N1± and N2±. It depends on the solution of Eq. (24)
in the transition region. We consider the case F‖ = 0. Then the
distributions upstream and downstream are related by character-
istics (26):

N1± = F±
(
v′4 ± 8

3
u1v
′3
)
, N2± = F±

(
v′4 ± 8

3
u2v
′3
)
. (33)

Here F± are two functions to be determined. Thus we have the
six Eqs. (30), (32), (33) for the six unknown functions N1±, N2±
and F±.

Let us consider the case N∞ = δ(v′ − v0)/(2v20). Since
the change of velocity in the transition region is governed by
the characteristics (26), the solution is the following sum of
δ-functions:

N1± = A0δ(v′ − v0)/(v0)2 +

2∑
j=1

∞∑
i=1

A j
i±δ(v

′ − v j
i )/(v

j
i )

2, (34)

N2± =
2∑

j=1

∞∑
i=0

B j
i±δ(v

′ − w j
i )/(w

j
i )

2. (35)

Here A j
i±, B j

i±, v
j
i and w j

i are sequences to be determined. The in-
dex j may have the values 1 and 2. These values correspond to
the two possibilities of injection of forward and backward mov-
ing particles. They were described after Eq. (25). The different
values of the index i correspond to consequent states of the one
particle moving between upstream and downstream regions of
the shock.

If the upstream sequences A j
i± are known for v′ > 2u1 the

downstream ones can be found from characteristics (26). Using
the properties of δ-functions we find that they are given by

B j
i± =

v
j
i + 2u1

w
j
i + 2u2

Ai+, w
j
i > 2u2 (36)

and the downstream velocity w j
i is the solution of equation

(v j
i )

4 +
8
3

u1(v j
i )

3 = (w j
i )

4 +
8
3

u2(w j
i )

3. (37)

The next A j
i+1± are

A j
i+1− =

w
j
i − 2u2

v
j
i+1 − 2u1

B j
i−, A j

i+1+ = B j
i−
w

j
i − 2u2

v
j
i+1 + 2u1

(38)

where the velocity v j
i+1 is the solution of the equation

(v j
i+1)4 − 8

3
u1(v j

i+1)3 = (w j
i )

4 − 8
3

u2(w j
i )

3. (39)

Equations (36)–(39) can be used recurrently to calculate the
sequences A j

i±, B j
i±, v

j
i and w j

i .
Let us introduce the critical velocities vc±. They are the solu-

tions of equations:

v3c±(3vc± ± 8u1) = (48 ± 64)u4
2. (40)

The initial velocity v0 and A0 = 1/2 are given. There are
four cases depending on the initial velocity v0 and velocities vc±.

1) v0 < vc−. Forward and backward moving particles reach
the downstream region with velocities smaller than 2u2 and are

further advected. The injection in acceleration does not occur.
The downstream coefficients B j

0± are given by

B1
0+ = A0

v0 + 2u1

w1
0 + 2u2

, B2
0− = 0

B2
0− = A0

v0 − 2u1

w2
0 − 2u2

, B1
0− = 0 (41)

where the velocities w1
0 and w2

0 are the solutions of equations:

(v0)4 +
8
3

u1(v0)3 = (w1
0)4 +

8
3

u2(w1
0)3

(v0)4 − 8
3

u1(v0)3 = (w2
0)4 − 8

3
u2(w2

0)3. (42)

All other coefficients A j
i± = 0, B j

i± = 0 for i > 0.
2)vc− < v0 < vc+. The most important case for injection. The

forward moving particle reaches the downstream region with
a velocity less than 2u2 and again is not injected into accelera-
tion. The coefficients B1

i± and A1
i± are the same as in the previous

case.
The backward moving particle goes along characteristics and

returns upstream (see Fig. 2). Using properties of δ-functions in
Eq. (33) and conditions (30) we found

A2
1− = A0

∣∣∣∣∣∣
v0 − 2u1

v21 − 2u1

∣∣∣∣∣∣ , A2
1+ = A2

1−
v21 − 2u1

v21 + 2u1
· (43)

Here the velocity v21 is the solution of the equation

(v0)4 − 8
3

u1(v0)3 = (v21)4 − 8
3

u1(v21)3. (44)

It is clear that v21 is close to 8u1/3 (see Fig. 2). The other
coefficients A2

i± and B2
i± can be found consecutively using

Eqs. (36)–(39).
3) vc+ < v0 < 2u1. Forward and backward moving particles

reach the downstream region with velocities greater than 2u2 and
are injected into acceleration. The coefficients A2

i± and B2
i± are the

same as in the previous case. The coefficients B1
0± are given by

B1
0± =

v0 + 2u1

w1
0 + 2u2

A0, (45)

and the downstream velocity w1
0 is the solution of the equation

(v0)4 +
8
3

u1(v0)3 = (w1
0)4 +

8
3

u2(w1
0)3. (46)

The coefficients A1
1± can be found from Eqs. (38) and (39). Now

the coefficients B1
i± at i > 0 and A1

i± at i > 1 can be found con-
secutively using Eqs. (36)–(39).

4) v0 > 2u1. The coefficients A j
i± and B j

i± at i > 0 can be
found consecutively using Eqs. (36)–(39).

Using Eqs. (36) and (38) one can relate A j
i+1+ and A j

i+:

A j
i+1+ = A j

i+

w
j
i − 2u2

v
j
i+1 + 2u1

v
j
i + 2u1

w
j
i + 2u2

· (47)

It is easy to show that for large w j
i and v j

i the change of velocity

w
j
i − v j

i ≈ v j
i+1 − w j

i ≈
2
3

(u1 − u2). (48)
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Fig. 3. The analytic solution for u1/u2 = 4 and v0 = 0.25u1 for the
case F‖ = 0. The downstream and upstream distributions are shown
by solid and dashed lines respectively. The height of the vertical lines
corresponds to the coefficients in Eqs. (34) and (35).

Using Eq. (47) we find that for high velocities

A j
i+/(v

j
i )

2 ∼ (v j
i )
−3u1/(u1−u2), v

j
i � u1, u2 (49)

that is exactly the spectrum of particles produced by diffusive
shock acceleration.

The solution for u1/u2 = 4 and v0 = 0.25u1 is shown in
Fig. 3. The critical velocities are vc− ≈ 0.2u1 and vc+ ≈ 0.35u1 in
this case. The far upstream distribution is shown by the dashed
line on the left. The forward moving particles of this distribution
reach the downstream region with slightly higher velocity (solid
line on the left). The backward moving particles are directly ac-
celerated along the characteristic and return upstream with a ve-
locity close to 8u1/3 (first dashed line on the right). Particles are
accelerated further, moving between downstream and upstream
regions of the shock (the other lines on the right). The similar
δ-function spectrum was obtained by Bogdan & Webb (1987)
for cosmic ray acceleration in the so-called two-streaming
approximation of Fisk & Axford (1969).

The spectrum will be smoother if one takes into account the
scattering of particles in the transition region.

5. Numeric modeling of collisionless shocks

We use the system of Eqs. (12), (19), (22), (23) for the modeling
of steady-state one-dimensional nonrelativistic shocks. We ne-
glect the dynamical effects of the magnetic field, which means
that the magnetic field produces only kinematic effects that are
essential for oblique shocks. The upstream plasma state is then
determined only by the sonic shock Mach number M and by the
ratio of electron and ion temperatures Te/Ti.

A so-called Alfvén heating is not included in our model. It is
well known that the energetic particles upstream of the shock can
effectively generate Alfvén waves due to streaming instability
(Wentzel 1969; Bell 1978). The damping of these waves results
in the heating of the shock precursor (Völk & McKenzie 1982;
McKenzie & Völk 1982). This heating is essential, since it de-
creases the effective Mach number and compression ratio of the
shock. As shown in the Appendix, this effect can be formally in-
cluded using the relation between sonic and Alfvén Mach num-
bers of the shock:

M2 =
M2

s Ma

Ma +
20
39 M2

s

(50)

The results obtained below for shocks with sonic Mach num-
ber M without Alfvé heating can be formally used for shocks
with Alfvén heating and with Alfvén and sonic Mach num-
bers Ma and Ms respectively.

The details of the numeric method are given in the Appendix.
The plasma flow with unity velocity and unity density enters the
simulation box from its left boundary. The pressure at the right
boundary was adjusted according to the motion of the shock in
order to reach the steady state. We used the free escape boundary
condition for the particle distribution at the left boundary.

We prescribe the dependence of the free path of particles on
the velocity v′ and space coordinate z. We used the free path λ
that is independent on z. This is not a strong limitation. Indeed,
in the rather general case of separable dependence of λ on v′
and z, the results obtained depend only on the integral

∫
dz/λ(z).

Thus our results can be used also for this more general case.
The energy dependence of the mean free path λ is determined

by the spectrum of magnetic inhomogeneities and by the mech-
anism of scattering in the vicinity of a pitch angle of 90 degrees.
Since the low frequency waves propagating along the magnetic
field are subject to nonlinear wave steepening, one can expect
that the magnetic spectra are close to k−2 and the corresponding
free path does not depend on energy. Such spectra (or slightly
flatter ones) were indeed observed in the hybrid plasma simu-
lations of parallel collisionless shocks (Giacalone et al. 1993;
Giacalone 2004) and in the vicinity of the Earth bow shock in
the solar wind. In the results presented here we used the energy
independent free path.

We limit ourselves to the case of cold electrons Te/Ti = 0, as
the dissipation of the Alfvén waves in the precursor may result
in the preferable heating of ions. The solar corona is an example
of this.

We start with the case of parallel shocks with Mach num-
bers 3.87 and 7.75. According to Eq. (50) the corresponding
Alfvén Mach numbers are 7.5 and 30 that can be applied to
the interplanetary and supernova shocks respectively. The down-
stream particle distributions are shown in the top panels of
Figs. 4 and 5. The velocity and gas pressure profiles are shown
in the bottom panels.

The simulated shocks demonstrate clear sub-shocks with a
width of about one half of the free path λ and a smooth precur-
sor produced by the particles in the high energy tail that is seen
in the top panels of Figs. 4 and 5. It was found that the main
part of the downstream distribution in Figs. 4 and 5 is the adia-
batically compressed far upstream distribution which was taken
to be Maxwellian. The total electric potential corresponding to
the electric force qE‖ is about 0.2–0.3 mu2

1 according to Figs. 4
and 5.

The total compression ratio of the shock can be found from
the following simple estimate.

In the precursor region the thermal particles are heated
adiabatically. When their velocities become comparable to the
plasma velocity, the backward moving particles are accelerated
more efficiently (see Fig. 2) and injected for further accelera-
tion. The compression ratio should be large enough for this to be
the case. For estimation we assume that distribution of upstream
particles is proportional to δ(v′ − vT), where vT =

√
3/5u1/M is

the thermal velocity of the plasma. The maximum shock down-
stream velocity u2 that is necessary for injection of such particles
according to Fig. 2 and characteristics (26) is

u2 =
1
2
vT

(
8

u1

vT
− 3

)1/4

. (51)
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Fig. 4. The results of simulation of the parallel shock with Mach num-
ber 3.77, Te/Ti = 0 and energy independent free path λ = 0.2. The
forward and backward particle distributions downstream N+ and N− are
shown on the top panel by solid and dashed lines respectively. Plasma
velocity u, pressure of ions P and electric force F = qE‖ are shown
on the bottom panel by solid, dashed and dotted lines respectively. The
total compression ratio r = 4.05 is obtained.

Thus the thermal velocity vT should be larger than the critical
velocity vc− (see Sect. 3). The second term in parentheses can
be neglected. Writing the thermal velocity vT in terms of Mach
number M we obtain:

r = 21/4
(√

5/3M
)3/4 ≈ 1.44M3/4. (52)

This formula is in good agreement with the simulated compres-
sion ratio. It was found that it is valid also for smaller free paths,
when the maximum energy of the high energy tail is larger.

This compression ratio is close to the maximum possible
compression ratio of the idealized system that includes the in-
finitely thin gas sub-shock and the viscous precursor produced
by energetic particles. Using the Ranke-Hugoniot conditions at
the thermal sub-shock one can obtain for this case:

r = 2.5
(
M2/5

)3/8 ≈ 1.37M3/4. (53)

This number is also close to the value found in numerical sim-
ulations of shock waves, modified by the cosmic ray pressure
(see e.g. Berezhko & Ellison 1999). The compression ratio of
the thermal sub-shock is 2.5.

Fig. 5. The results of simulation of the parallel shock with Mach num-
ber 7.75, Te/Ti = 0 and energy independent free path λ = 0.2. The
forward and backward particle distributions downstream N+ and N− are
shown on the top panel by solid and dashed lines respectively. Plasma
velocity u, pressure of ions P and electric force F = qE‖ are shown
on the bottom panel by solid, dashed and dotted lines respectively. The
total compression ratio r = 6.67 is obtained.

The comparison of our results and results obtained for this
simplified description are shown in Fig. 6. The Eq. (14) was
solved in the upstream region together with the Euler equations.
The top panel shows the comparison of downstream spectra ob-
tained in these approaches. The velocity profiles are compared
in the bottom panel. We find a very good agreement of these
two methods. We estimate the injection efficiency at injection
velocity vinj = 2usub to be about 0.024. Here usub is the sub-shock
velocity. This number is in reasonable agreement with results of
hybrid simulations (cf. Giacalone et al. 1993; Ellison et al. 1993)
and the Earth bow shock observations (cf. Ellison et al. 1990).

We have also performed modeling of a quasi-parallel shock.
The results obtained for a Mach number of 7.75 and an angle
between the shock normal and magnetic field of θ = 15◦ are
shown in Fig. 7.

For such oblique shocks the dip appears between the main
part of the thermal distribution and the high-energy tail (see the
top panel). The injection efficiency is the same as in the previ-
ous case. 15◦ is the maximal value of θ that allows us to model
steady state shocks with M = 7.75. Even this value is rather
large, because it corresponds to the normal angle 40◦ upstream
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Fig. 6. Comparison of our model with the cosmic ray modified shock
approach for a parallel shock with Mach number 7.75, Te/Ti = 0 and
energy independent free path λ = 0.2. The downstream distributions
for our model and for the cosmic ray approach are shown in the top
panel by solid and dashed lines respectively. Plasma velocity u from our
simulations, pressure of ions P and velocity profile for the cosmic ray
approach are shown in the bottom panel by dotted, dashed and solid
lines respectively.

of the thermal subshock. For larger θ this dip becomes more pro-
nounced and the thermal subshock width drops to a grid step.
In some cases some instability in the downstream region was
observed. It is possible to model the larger values of θ for the
smaller Mach numbers (e.g. θ = 30◦ for M = 3.87). Thus our
approach can be used only for quasiparallel shocks with the nor-
mal angle less than 40◦ just upstream of the thermal subshock.

If the magnetic field is oblique enough, it prevents particles
from returning from downstream along magnetic lines and the
heating of particles is impossible. Since it is necessary to have
the energetic particles downstream for the existence of a shock,
we expect that the transition region will be squeezed to widths of
the order of the ion gyroradius. Heating then may take place in
a different regime, where the drift motion of particles perpendic-
ular to magnetic field is essential. The injection efficiency also
may be very different.

Fig. 7. Simulation of the quasi-parallel shock with θ = 15◦, Mach num-
ber M = 7.75, Te/Ti = 0 and energy independent free path λ = 0.2.
The forward and backward particle distributions N+ and N− are shown
in the top panel by solid and dashed lines respectively. Plasma veloc-
ity u, pressure of ions P and electric force F = qE‖ shown in the bottom
panel by solid, dashed and dotted lines respectively. The total compres-
sion ratio r = 7.21 is obtained.

6. Conclusion

Many astrophysical problems deal with collisionless plasma.
Different low frequency instabilities may produce magnetic in-
homogeneities that can scatter particles and play the role of ther-
mal collisions. When unstable waves propagate preferably along
the mean magnetic field, the resonant scattering of particles is
weak in the vicinity of 90 degrees pitch angle. In this case it is
possible that particle distributions are almost isotropic in both
hemispheres.

Following the approach of Isenberg (1997) we derive the
general transport Eq. (12) (or equivalent Eq. (9)) which takes
into account the motion of the medium and energy changes of
particles. Our consideration is not limited by high particle ve-
locities and by small anisotropies of particle distribution.

In the case of high particle velocities and small anisotropies
the equation derived can be reduced to the standard cosmic ray
transport equation. In the case of negligible energy changes and
advective transport the equation may be transformed to the
so-called telegraph equation.
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The equations derived can be solved together with magneto-
hydrodynamic equations (see Sect. 3). We used the fluid approx-
imation for the electron transport. This is justified if electrons are
effectively scattered by magnetic inhomogeneities. If this is not
the case, one can use Eqs. (12) for electron transport. In this way
electron injection at collisionless shocks can be investigated.

The transport Eqs. (12) with Eqs. (19), (22) and (23) can be
used for the solution of different astrophysical problems when
the self-consistent determination of the flow velocity, magnetic
field etc. is necessary.

We apply the equation derived to investigate particle accel-
eration and injections at astrophysical shocks. For the prescribed
velocity profile we have found the exact analytical solution (see
Sect. 4).

We also have performed the modeling of collisionless shocks
and found a formula for the shock compression ratio (see
Eq. (52)). This ratio is very close to the maximal possible value
in the framework of the simplified approach used for cosmic ray
modified shocks. The corresponding thermal sub-shock ratio
is 2.5.

We found that this feature is universal and does not de-
pend on the maximum energy of the accelerated particles. This
was checked in our simulations up to the maximum momentum
pmax ∼ 100 mu1 which was limited by the step of our uniform
spatial grid. This property will not change for higher maximum
energies corresponding to the supernova environment. On the
other hand we found that the injection efficiency η is not univer-
sal. For pmax ∼ 10 mu1 it is about 0.024 for an injection veloc-
ity equal to two sub-shock velocities. It slowly decreased as the
maximum energy increases and is about 0.003 for young super-
nova remnants. This is because at small maximum energies the
thermal ions “feel” a larger compression ratio than the thermal
subshock compression ratio since the subshock and precursor
width are not strongly different.

We found that the equations derived can be used to investi-
gate injection and acceleration in quasiparallel shocks with the
subshock normal angle θ < 40◦. The dissipation at more oblique
shocks is described by a different mechanism which takes into
account the motion of particles in the direction perpendicular
to the magnetic field. The injection efficiency at such shocks
is unknown, but it is possible that it is rather low. We confirm
the previous findings that quasiparallel shocks are very efficient

accelerators with high injection efficiency (see e.g. Ellison &
Eichler 1984; Giacalone et al. 1993; Malkov & Drury 2001)
which does not depend on the angle θ (Giacalone et al. 1997).
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Appendix A: Formal inclusion of Alfvén heating

The heating of the cosmic ray precursor is described by the fol-
lowing equations (Völk & McKenzie 1982; McKenzie & Völk
1982):

∂

∂z
uρ = 0 (A.1)

ρu
∂u
∂z
= −∂Pg

∂z
− ∂Pc

∂z
, (A.2)

u
∂Pg

∂z
+ γgPg

∂u
∂z
= (γg − 1)Va

∂Pc

∂z
· (A.3)

Here Va is the component of Alfvén velocity parallel to the shock
normal, Pg and Pc are the pressure of the gas and cosmic rays
respectively, and γg is the gas adiabatic index. The third equation
describes the gas heating due to the damping of Alfvén waves
generated by the cosmic ray streaming instability. The second
equation is the Euler equation of motion.

The gradient of the cosmic ray pressure can be found from
Eq. (A.2) and substituted into Eq. (A.3). For high Mach number
shocks the solution can be written as

Pg =

⎛⎜⎜⎜⎜⎝Pg1 + ρ1u1Va1
γg − 1

γg +
1
2

⎞⎟⎟⎟⎟⎠
(u1

u

)γg

−ρ1u1Va1
γg − 1

γg +
1
2

(
u
u1

)1/2

· (A.4)

Here Pg1 and Va1 are the gas pressure and Alfvén velocity in the
medium, in which the shock propagates with speed u1.

For high Mach number shocks the Alfvén heating is essen-
tial only at the very beginning of the precursor. In the rest, the
gas is heated adiabatically and the last term in Eq. (A.4) can
be neglected. The gas pressure Pg1 and Alfvén velocity Va1 can
be expressed in terms of Alfvén and sonic Mach numbers Ma
and Ms respectively. As a result, we obtain the sonic Mach num-
ber M of the shock without Alfvén heating, which is equivalent
to the shock with the Alfvén heating:

M2 =
M2

s Ma

Ma + γg
γg−1

γg+
1
2

M2
s

· (A.5)

For γg = 5/3 we obtain the formula (50) from the main part.

Appendix B: Numeric method

We used the implicit finite difference scheme for the solution of
the one-dimensional version of Eq. (12):

∂n
∂t
= Lzn + Lvn. (B.1)

Here n describes the pair of forward and backward particle dis-
tributions n± = v′3N±, and Lz and Lv are the operators in the
coordinate and velocity space respectively:

Lzn = − ∂
∂z

(
u ± 1

2
v′bz

)
n±, (B.2)

Lvn = −v′ ∂
∂v′

(
±F‖
v′
− 1

3
∂u
∂z

)
n± + ν∓n∓ − ν±n±. (B.3)

The finite difference version of Eq. (B.1) was solved in two steps
(Godunov 1971):

ni, j
k+1/2 − ni, j

k

τ
= Ldif

v ni, j
k+1/2 + Ldif

z ni, j
k , (B.4)

ni, j
k+1 − ni, j

k+1/2

τ
= Ldif

z ni, j
k+1 − Ldif

z ni, j
k . (B.5)

Here ni, j
k is the value of distribution n(z, v′, t) at z = i∆z, v′ = v j,

t = kτ, where τ is the time step, ∆z is the grid size in z-direction
and v j is the value of velocity v′ at the knot of the velocity grid
with number j. We use the following finite difference analog Ldif

z
of the operator Lzn = −∂/∂zAn (Kota et al. 1982):

Ldif
z ni, j

k =

(
1
6

Ai+2
k ni+2, j

k − Ai+1
k ni+1, j

k +
1
2

Ai
kni, j

k

+
1
3

Ai−1
k ni−1, j

k

)
/∆z, Ai

k < 0, (B.6)

Ldif
z ni, j

k =

(
−1

6
Ai−2

k ni−2, j
k + Ai−1, j

k ni−1, j
k − 1

2
Ai

kni, j
k

−1
3

Ai+1
k ni+1, j

k

)
/∆z, Ai

k > 0. (B.7)

A similar operator was used for the finite difference analog Ldif
v

of the velocity operator (B.3).
The numeric scheme (B.4), (B.5) with these operators has

a third order accuracy on z and v′ and first order accuracy on t.
The parallel force F‖ was recalculated at each time step ac-

cording to Eq. (21). The medium velocity ui
k at each time step

was calculated according to the finite difference version of the
Euler Eq. (19):

ρi
k+1ui

k+1 − ρi
kui

k

τ
= −ρ

i
k+1(ui

k+1)2 − ρi−1
k+1(ui−1

k+1)2

∆z

+
Pi−1

k+1 − Pi+1
k+1

2∆z
. (B.8)

Here Pi
k is the sum of the ion and electron pressures. The ion

pressure and plasma density were calculated from the particle
distribution at the each time step. The electron pressure was
found from the adiabatic equation of state. Equation (B.8) is the
quadratic equation for the velocity ui

k+1. The gas pressure at the
right boundary Pb

k was prescribed in accordance with the shock
motion:

Pb
k = Pb

k−1 +
1
2

(Zs
k − Zs

k−1). (B.9)

Here Zs
k is the position of the shock. When the shock moves to

the right boundary, the pressure increases. This permits us to
reach steady state.

We use the hyperbolic tangent for the initial velocity pro-
file. The initial particle distribution was Maxwellian with a tem-
perature and density dependence corresponding to the mo-
mentum and mass conservation. At times of about 60–100 in
dimensionless units the system reaches the steady state. We use
200 grid points in the z-direction, 100 grid points for the loga-
rithmic v′ grid and the time step between 0.005 and 0.1 for dif-
ferent runs. We obtained the total momentum, energy and mass
conservation with several percent accuracy.


