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Using a lattice-based Monte Carlo code for simulating self-avoiding flexible polymers in three
dimensions in the absence of explicit hydrodynamics, we study their Rouse modes. For
self-avoiding polymers, the Rouse modes are not expected to be statistically independent;
nevertheless, we demonstrate that numerically these modes maintain a high degree of statistical
independence. Based on high-precision simulation data we put forward an approximate analytical
expression for the mode amplitude correlation functions for long polymers. From this, we derive
analytically and confirm numerically several scaling properties for self-avoiding flexible polymers,
such as �i� the real-space end-to-end distance, �ii� the end-to-end vector correlation function, �iii� the
correlation function of the small spatial vector connecting two nearby monomers at the middle of a
polymer, and �iv� the anomalous dynamics of the middle monomer. Importantly, expanding on our
recent work on the theory of polymer translocation, we also demonstrate that the anomalous
dynamics of the middle monomer can be obtained from the forces it experiences, by the use of the
fluctuation-dissipation theorem. © 2009 American Institute of Physics. �doi:10.1063/1.3244678�

I. INTRODUCTION

Polymer dynamics is a field where first-principle analyti-
cal derivations of most quantities of interest from micro-
scopic monomeric movements are difficult to come by. In-
deed, the answer to the question why phantom polymers
�theoretical realizations of polymers that can intersect them-
selves� remain, to this day, the central pillar for studying
polymer dynamics is easily traced to the fact that they allow
full analytical calculations of essentially all of their dynami-
cal properties. In the absence of explicit hydrodynamics, a
phantom polymer’s dynamics is described by the so-called
Rouse equation that forms the basis of all analytical
calculations.1,2 The Rouse equation holds in the high-
viscosity limit of the surrounding medium, and the dynamics
of the monomers are “overdamped,” i.e., the velocity of each
monomer at any given time is proportional to the total force
it experiences. In the Rouse equation the total force in any
monomer is comprised of the spring forces due to its neigh-
boring monomers, and the random thermal forces from the
surrounding medium. The linearity of the Rouse equation
allows one to decompose it into linear dynamical equations
of independently evolving �Rouse� modes, which are the
Fourier transforms of the monomer coordinates in three di-
mensional space. In detail, we consider a polymer of length
N, consisting of �N+1� monomers connected sequentially by
N bonds �harmonic springs�. The positions R� n�t� of mono-
mers n=0, . . . ,N at time t can then undergo Fourier transfor-
mation, yielding for the amplitude of the pth mode �p is an
integer �0�

X� p�t� =
1

N + 1�
n=0

N

cos���n + 1/2�p
N + 1

�R� n�t� . �1�

The cornerstone of all analytical calculations for phantom
polymer dynamics is the following relation for p ,q�0, de-
rived exactly from the Rouse equation:

Xpq�t� = �X� p�t� · X� q�0�	 �
N

p2exp�− A
p2

N2 t��pq, �2�

where �pq is the Kronecker delta function and A is a con-
stant. All throughout this paper, the angular brackets repre-
sent an average over the equilibrium ensemble of polymers.
Equation �2� is further supplemented by X0p�t�=0 for p�0
and X00�t�=m��t�, where X� 0�t� is the location of the center-
of-mass of the polymer at time t, and m�1 /N is the mobility
of the center-of-mass of the polymer. The Kronecker delta
terms signify the statistical independence of the modes of a
phantom polymer. Using these mode amplitude correlation
functions, the quantities of interest for a phantom polymer
can be analytically tracked by reconstructing them from the
modes.1,2 However, in reality, a polymer is not phantom, but
is self-avoiding. The self-avoidance property introduces
long-range correlations along the backbone of the polymer,
and it destroys the linearity of the Rouse equation, making a
similar �to Eq. �2�� equation for the mode amplitude correla-
tion functions impossible to derive from the appropriately
formulated Rouse equation. Because of this reason, it comes
as no surprise to us that for self-avoiding polymers we have
not been able to find, in published literature, a comprehen-
sive study of the mode amplitude correlations that connects
to the scaling properties of self-avoiding polymers.

The purpose of this paper is to put forward an approxi-a�Electronic mail: d.panja@uva.nl.
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mate analytical expression for the mode amplitude correla-
tion functions for long polymers, which is then corroborated
with extensive simulations of a lattice-based model for the
dynamics of self-avoiding flexible polymers in three dimen-
sions in the absence of explicit hydrodynamics. To be more
precise, with �
0.588 �the Flory exponent in three dimen-
sions�, and A1 and A2, two constants, we demonstrate that for
a self-avoiding Rouse polymer of length N,

Xpq�t� = �X� p�t� · X� q�0�	 
 A1
N2�

p1+2�exp�− A2
p1+2�

N1+2� t��pq,

�3�

for p ,q�0 holds up to a very good approximation for long
polymers, while X0p�t�=0 for p�0 and X00�t�� �1 /N���t�
holds exactly. The reasons why Eq. �3� is not exact are the
following: �a� although numerically the modes maintain a
high degree of statistical independence, the mode amplitude
correlation functions are not exactly statistically independent
�we do not expect to be so anyway�; and �b� for higher
modes �p ,q�6� there are small deviations from exponential
behavior at long times. Nevertheless, given that Xpp�0� is a
rapidly decaying function of p, the dominant contribution of
the modes to quantities of interest for the polymer at long
time-scales come from the lower modes. As a result, such
quantities can be analytically reconstructed from Eq. �3�. We
demonstrate this by using Eq. �3� to derive several scaling
properties for self-avoiding polymers, such as �i� the real-
space end-to-end distance, �ii� the end-to-end vector correla-
tion function, �iii� the correlation function of the small spa-
tial vector connecting two nearby monomers at the middle of
the polymer, and �iv� the anomalous dynamics of the middle
monomer. Some of these scaling laws can also be obtained
from the dynamic scaling law.1 Note that except the case for
characterizing the anomalous dynamics of the middle mono-
mer, all the other quantities �as above� concern only the poly-
mer’s internal structure; implying that for �i-iii� we only need
Eq. �3�, while for the anomalous dynamics of the middle
monomer we also need X00�t� and X0p�t� for p�0. Note also
that the standard Rouse result Eq. �2� is recovered when we
simply replace � by 1/2 for a phantom polymer. Apparently,
the dominant consequence of volume exclusion is the differ-
ent size scaling of the self-avoiding chains. The inability for
polymers to cross each other does not seem to cause large
cross correlations between different modes. Thus, given the
content of this paper, we expect that Eq. �3� will provide
researchers a way forward for analytical treatment of the
properties of self-avoiding polymers.

The structure of this paper is as follows. In Sec. II we
describe our polymer model and demonstrate the scaling
property Eq. �3�. In Sec. III we use Eq. �3� to obtain the
scaling properties for the real-space end-to-end distance and
the end-to-end vector correlation function. In Sec. IV we
derive the scaling properties of the small spatial vector con-
necting two nearby monomers. In Sec. V we derive the
anomalous dynamics of the middle monomer and by expand-
ing our recent work on the theory of polymer translocation,

show that the anomalous dynamics of the middle monomer
can also be obtained by using the fluctuation-dissipation
theorem. Our conclusions are then summarized in Sec. VI.

II. OUR POLYMER MODEL AND THE SCALING
PROPERTIES OF THE MODE AMPLITUDE
CORRELATION FUNCTIONS

A. Our polymer model and the calculation
of the mode amplitudes

Over the past years, we have developed a highly efficient
simulation approach to polymer dynamics. This is made pos-
sible via a lattice polymer model, based on Rubinstein’s rep-
ton model3 for a single reptating polymer, with the addition
of sideways moves �Rouse dynamics�. A detailed description
of this model, its computationally efficient implementation
and a study of some of its properties and applications can be
found in Refs. 4 and 5.

In this model, each polymer is represented by a sequen-
tial string of monomers, living on a face-centered-cubic lat-
tice with periodic boundary conditions in all three spatial
directions. Monomers adjacent in the string are located either
in the same, or in neighboring lattice sites. The polymers are
self-avoiding: multiple occupation of lattice sites is not al-
lowed, except for a set of adjacent monomers. The polymers
move through a sequence of random single-monomer hops to
neighboring lattice sites. These hops can be along the con-
tour of the polymer, thus explicitly providing reptation dy-
namics. They can also change the contour “sideways,” pro-
viding Rouse dynamics. Each kind of movement is attempted
with a statistical rate of unity, which provides us with the
definition of time. This model has been used before to simu-
late the diffusion and exchange of polymers in an equili-
brated layer of adsorbed polymers.6 Recently, we have used
this code extensively to study polymer translocation under a
variety of circumstances,7–12 and also to study the dynamics
of polymer adsorption.13

Given that our model has periodic boundary conditions
in all three spatial directions, we use the following definition
for the mode amplitude:

X� p�t� =
1

N + 1�
n=0

N

�R� n�t� − R� 0�t��cos���n + 1/2�p
N + 1

� , �4�

where R� 0�t� is the location of the zeroth monomer at time t.
In this definition we only need the spanning vectors, i.e.,
monomer coordinates with respect to that of monomer zero.
These spanning vectors are obtained from a summation over
the bond vectors between monomers adjacent in the string.
This completely avoids the invocation of periodic images,
and allows for spanning distances which exceed half the box
size. Note that Eq. �4� can be derived from Eq. �1� as fol-
lows. First we use
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1

N + 1�
n=0

N

cos���n + 1/2�p
N + 1

�cos���n + 1/2�p�

N + 1
� =

1

2
�pp�,

�5�

in order to express R� n�t�, the location of the nth monomer
with respect to that of the center-of-mass R� cm�t��X� 0�t� from
the inverse Fourier transform of Eq. �1�, as

R� n�t� = R� cm�t� + 2�
p=1

�

X� p�t�cos���n + 1/2�p
N + 1

� . �6�

Then we write

R� 0�t� = R� cm�t� + 2�
p=1

�

X� p�t�cos� �p

2�N + 1�� , �7�

i.e.,

R� n�t� − R� 0�t� = 2�
p=1

�

X� p�t��cos���n + 1/2�p
N + 1

�
− cos� �p

2�N + 1��
 , �8�

from which Eq. �4� follows with the use of Eq. �5�. Equation
�4� shows that the modes q�0 relate only to the polymers’
structural configuration, as remarked earlier.

B. The scaling properties of the mode amplitude
correlation functions

We start with the behavior of X00�t�. We note that the
internal forces over the entire polymer at any time sum to
zero, and therefore, �for the overdamped dynamics in the
Rouse model� the motion of its center-of-mass is simply pro-
portional to the average thermal fluctuating force on the en-
tire polymer. This force is �-correlated in time, which im-
plies that the center-of-mass of the polymer simply performs
a random walk. In fact, X00�t�=m���t�, and the mobility m�
�1 /N. This leads us to the result that X00�t�� �1 /N���t�. We
will return to the motion of the center-of-mass in Sec. V.

Next, for the behavior of X0p�t� for p�0 we proceed as
follows. We note that X0p�0�=0. Indeed, X0p�0� is the equi-
librium average over the dot product of X� 0 and X� p at zero
time difference, for which, for any given value of X� p, the
center-of-mass is equally likely to be present at any location
within the periodic box. For the calculation of X0p�t�, having
summed over all the locations of X� 0 for a given value of X� p

at the first step, and then having summed over the configu-
rations X� p at the second step, we obtain X0p�0�=0 �from the
first step�. Thereafter, we use the result that the center-of-
mass performs a simple random walk, further implying that
X0p�t�=X0p�0�, which equals zero.

Finally, we demonstrate the scaling property of Xpq�t� for
p ,q�0 in Figs. 1 and 2. In Fig. 1�a� we present the data for
p=1, . . . ,10 for N=200, 400, 600, and 1000, and demon-
strate that Xpp�0��N2� / p1+2� up to a high precision. In Fig.
1�b� we plot the matrix �pq�0��Xpq�0� /�Xpp�0�Xqq�0� in
logarithmic gray scale for p ,q=1, . . . ,10 for N=1000,
wherein the diagonal elements are unity by construction. The

off-diagonal elements of �pq�0� are typically three or more
orders of magnitude smaller than the diagonal ones. Cross
correlations between two even or between two odd modes
are strictly not zero. Cross correlations between even and
odd modes are much smaller, and it is likely that these are
also strictly not zero, but we cannot ascertain that within our
numerical precision. We emphasize that the off-diagonal el-
ements of �pq�0� not being zero is not caused by the lack of
numerical precision, or is due to artifacts of our model—
similar features have been found in Ref. 14 for single poly-
mers and in Ref. 15 for polymer melts; the modes are simply
not statistically independent for self-avoiding polymers.
Nevertheless, the precision with which the modes remain
statistically independent is remarkable.

In Fig. 2 we plot −ln�Xpp�t� /Xpp�0�� as a function of
�p /N�1+2�t for p=1, . . . ,7, and N=200, 400, 600, and 1000,
and obtain a data collapse. The collapsed data are well fitted
by an exponential behavior of Xpp�t� /Xpp�0�; however, we
note that there are small �but systematic� deviations from the
exponential behavior for p�6. These deviations are larger
for larger p, although this fact is not very clearly discernible
in Fig. 2.
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FIG. 1. �a� The scaling Xpp�0��N2� / p1+2� demonstrated for p=1, . . . ,10
for N=200, 400, 600, and 1000. The solid line corresponds to
NXpp�0���N / p�−�1+2��
�N / p�−2.176. �b� The matrix �pq�0�
�Xpq�0� /�Xpp�0�Cqq�0� in logarithmic gray scale for p ,q=1, . . . ,10 for N
=1000 in a square checkerboard plot. See text for details.
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FIG. 2. Data collapse for −ln�Xpp�t� /Xpp�0�� as a function of �p /N�1+2�t, for
p=1 �stars�, 2 �triangles down�, 3 �crosses�, 4 �triangles up�, 5 �diamonds�,
6 �pluses�, 7 �circles�, and N=200 �red�, 400 �blue�, 600 �green�, and 1000
�orange�. The collapsed data are fitted well with an exponential;
however, we note that there are small �but systematic� deviations from the
exponential behavior for p	1. The solid �black� line corresponds to
−ln�Xpp�t� /Xpp�0����p /N�1+2�t.
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As remarked before Eq. �3�, Figs. 1 and 2 collectively
demonstrate that the scaling behavior Eq. �3� is not exact;
instead, it is a rather good approximation. In the following
sections we will use the approximate scaling behavior of Eq.
�3� and demonstrate that it reproduces the scaling behavior of
several observables for self-avoiding polymers.

III. SCALING OF THE END-TO-END DISTANCE AND
THE END-TO-END VECTOR CORRELATION
FUNCTION

In order to calculate the equilibrium end-to-end distance
we use Eq. �8� and write

R� N�t� − R� 0�t� = 2�
p=1

�

X� p�t��cos���N + 1/2�p
N + 1

�
− cos� �p

2�N + 1��
 , �9�

from which, using the scaling relation �3� we extract

��R� N�t� − R� 0�t��2	 
 16A1N2� �
p�odd

1

p1+2�sin2� �Np

2�N + 1��
= 16A1N2� �

p�odd

1

p1+2�


�1 − sin2� �p

2�N + 1��
 . �10�

On the right-hand side �rhs� of Eq. �10� the first term
�

p�odd

p−�1+2�� sums up to a numerical constant, and the second

term �
p�odd

p−�1+2�� sin2��p /2�N+1�� can be converted to an

integral

8A1�
0

�

dx
sin2��x/2�

x1+2� ,

with an integrable singularity at x=0. The first term produces
the well-known Flory scaling behavior ��R� N�t�−R� 0�t��2	
�N2�, while the second term provides a correction of O�1�
to the scaling which can be neglected in the scaling limit.

The end-to-end vector correlation function can be simi-
larly expressed in terms of the mode amplitude correlation
functions; however, in order to obtain its scaling behavior we
do not need to do so. The point is that at long times the
dominant contribution of the end-to-end vector comes from
the mode p=1, and thus the approximate scaling �3� confirms
that the end-to-end vector correlation function decays expo-
nentially in time, for which the characteristic time for the
decay is given by the Rouse time �R�N1+2�.

IV. THE CORRELATION FUNCTION OF THE SMALL
SPATIAL VECTOR CONNECTING TWO NEARBY
MONOMERS AT THE MIDDLE OF THE POLYMER

Consider the small spatial vector r�n�t� from monomer
�N−n� /2 to monomer �N+n� /2 with n�N. In this section
we study the behavior of Cn�t���r�n�t� ·r�n�0�	.

By expanding in terms of modes, we have

r�n�t� = 2�
p=1

�

X� p�t��cos���N + n + 1�p
2�N + 1� �

− cos���N − n + 1�p
2�N + 1� �


= − 4 �
p�odd

X� p�t�sin� �np

2�N + 1�� . �11�

Thereafter, using the approximate scaling �3� we obtain

Cn�t� 
 16A1N2� �
p�odd

1

p1+2�sin2� �np

2�N + 1��

exp�− A2

p1+2�

N1+2� t�

 8A1n2��

0

� dx

x1+2�sin2��x/2�exp�− A2x1+2��t/n1+2��� .

�12�

We did not find a closed-form expression for the integral
in Eq. �12�; hence, in order to obtain the scaling behavior of
�r�n�t� ·r�n�0�	 with time, we proceed with an approximation
in the following manner. First, we note that at long times
the dominant contribution to the integral comes from
x
A2�t /n1+2��1/�1+2��. This observation allows us to write

Cn�t� 
 8A1n2��
0

�A2/n�t1/�1+2�� dx

x1+2�sin2��x/2� . �13�

Next, for such �small� values of x in the integral �13�, we can
approximate sin��x /2� by �x /2, leading to

Cn�t� 
 2A1�2n2��
0

�A2/n�t1/�1+2�� dx

x1−2�


 2�2A1A2
2�1−��n2�2�−1�t−2�1−��/�1+2��. �14�

The behavior Cn�t�� t−2�1−��/�1+2�� only lasts until the
Rouse time, the lifetime of the lowest mode �p=1� in the
summation of Eq. �12�. In Fig. 3 we numerically confirm this
behavior of Cn�t� for N=390 and n=6.
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FIG. 3. Plot of Cn�t� for N=390 and n=6. The solid line corresponds to
Cn�t�� t−2�1−��/�1+2��
 t−0.378. The steep drop in the data at very long times
corresponds to the terminal �exponential� Rouse relaxation.
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V. ANOMALOUS DYNAMICS OF THE MIDDLE
MONOMER

A. Mean-square displacement of the middle monomer

To obtain the mean-square displacement of the middle
monomer we first use Eq. �6� to write

�r�N/2 � R� N/2�t� − R� N/2�0�

= X� 00�t� − X� 00�0� + 2 �
p�even

�X� p�t� − X� p�0�� . �15�

We then use X0p�t�=0 and the approximate scaling relation
�3� to obtain

��rN/2
2 	 
 ��R� cm�t� − R� cm�0��2	 + 8 �

p�even
Xpp�0��1 −

Xpp�t�
Xpp�0��


 ��R� cm�t� − R� cm�0��2	 + 8A1N2� �
p�even

1

p1+2�


�1 − exp�− A2
p1+2�

N1+2� t�
 . �16�

Given that the center-of-mass performs a random walk, the
first �center-of-mass� term on the rhs of Eq. �16�, as argued in
Sec. II, increases linearly with t, while in the limit N→� the
second term can be converted to an integral

�
p�even

1

p1+2��1 − exp�− A2
p1+2�

N1+2� t�

= 8A1�

0

� dx

x1+2� �1 − exp�− A2x1+2�t��


 8A1t2�/1+2��
0

� dx

x1+2� �1 − exp�− A2x1+2��� , �17�

which, up to some constant factor, scales with time as
t2�/�1+2��. Once again, the t2�/�1+2�� behavior of the mean-
square displacement of the middle monomer will only hold
until the lifetime of the lowest mode in the summation of Eq.
�17� �p=2� scaling as the Rouse time �R�N1+2�, after which
��rN/2

2 	 has to increase linearly with t. Note that Eqs. �16�
and �17� confirm the well-known result that by the Rouse
time, the middle monomer typically displaces itself by the
spatial extent of the polymer �N2�.

In Fig. 4, we confirm the above behavior of the mean-
square displacement of the middle monomer and that of the
center-of-mass. We have also checked, in support of X00�t�
���t�, that the probability distribution of the displacement of
the center-of-mass of the polymer along all three spatial di-
rection is Gaussian with the width scaling ��t �data not
shown�.

B. Fluctuation dissipation theorem and the anomalous
dynamics of the middle monomer

In Secs. II and V we argued that the force on the center-
of-mass of the polymer is the average over all the thermal
forces on the monomers, leading us to X00�t����t�, which
yielded the �t behavior of the mean-square displacement of
the center-of-mass. This raises the natural question, namely:

is it possible to derive the anomalous dynamics of the middle
monomer—i.e., the ��rN/2

2 	� t2�/�1+2�� up to the Rouse time
and �t thereafter—from the combined forces �internal and
external� that act on the middle monomer?

We trace back the formulation of this problem to our
recent work on unbiased polymer translocation through a
narrow pore in a membrane.8 Therein we showed, in the
following manner, that the anomalous dynamics of
translocation—essentially that of the translocating
monomer—can indeed be derived from the forces it experi-
ences. The velocity of translocation v�t� �along the direction
perpendicular to the membrane� is related to the force ��t�
�also acting upon it along the direction perpendicular to the
membrane�, via the “impedance” memory kernel ��t� and
“admittance” memory kernel a�t�, by

��t� = �
0

t

dt���t − t��v�t�� + g�t� , �18�

and

v�t� = �
0

t

dt�a�t − t����t�� + h�t� . �19�

In Eqs. �18� and �19�, g�t� and h�t� are the noise terms sat-
isfying �g�t�	= �h�t�	=0, and the corresponding fluctuation-
dissipation theorems �g�t�g�t��	= ���t���t��	v=0= ���t− t���
and �h�t�h�t��	= �v�t�v�t��	�=0= �a�t− t���. Moreover, the
uniqueness of the relation between v�t� and ��t� dictates that
their Laplace transforms must satisfy the condition
��z�a�z�=1. Finally, we characterized the anomalous dynam-
ics of translocation by integrating �v�t�v�t��	�=0 twice in
time: we obtained the mean-square displacement �s2�t�	 of
the translocating monomer to behave as t�1+��/�1+2�� until the
Rouse time �R, beyond which �s2�t�	 increases linearly with t.
We showed that the memory kernel scheme works beauti-
fully for translocation out of planar confinements,9 transloca-
tion by a pulling force at the head of the polymer10 �and
additional back-pulling voltage11�, field-driven
translocation,12 and polymer adsorption.13

It is easy to see in the above analysis that if
���t���t��	v=0= ���t− t���� t−� for some �, then the mean-
square displacement of the translocating monomer has to in-
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crease as t�. We now show that the above scheme established
for the anomalous dynamics of polymer translocation also
works with the modification that we now have to deal with
vector velocity v��t� of the middle monomer and vector force

f��t� on it, for the anomalous dynamics of the middle mono-
mer of a self-avoiding polymer; namely that we will show
that ���t− t���� t−2�/�1+2��, which would imply ��rN/2

2 	
� t2�/�1+2��. Of course such power-law behavior would only
hold until the Rouse time.

In order to do so, we first argue, following Eq. �18�, that
the impedance memory kernel ��t� that connects the forces
on and the velocities of the middle monomer scales
�t−2�/�1+2��. Consider the thought experiment in which we

grab the middle monomer and move it by a small distance �r�

and hold it at its new position; this corresponds to v��t�
=�r���t�. In time, the “information” that the middle monomer
has moved to a new position at t=0 will propagate along the
backbone of the polymer, and at time t, all the monomers
within a backbone distance nt� t1/�1+2��—following the
Rouse scaling—will equilibrate to this new situation. These
nt equilibrated monomers are however stretched by an

amount �r�. With the entropic spring constant of n equili-
brated monomers scaling �n−2�, the �restoring� force the
middle monomer would experience at its new position

is given by f��t��nt
−2��−�r��� t−2�/�1+2���−�r�� �force

= �spring constant�
 �stretching distance��. In other words,
��t�� t−2�/�1+2��. The fluctuation-dissipation theorem then

dictates that �f��t� · f��t��	 �v�=0= ���t− t�����t− t��−2�/�1+2�� and
�v��t� ·v��t��	 � f�=0= �a�t− t�����t− t��−2�1+��/�1+2��. Note once
again that these relations only hold until the Rouse time; by
the Rouse time the entire polymer is equilibrated to the new
position of the middle monomer, and beyond that time the
forces on the middle monomer are uncorrelated. Finally, the
anomalous dynamics of the middle monomer—��rN/2

2 	
� t2�/�1+2�� up to the Rouse time and �t thereafter—is re-
trieved by integrating �v��t� ·v��t��	 f�=0 twice in time.

Implementing the above thought experiment into prac-
tice and thereby tracking the restoring force on the middle
monomer in order to determine ��t� is a complicated task.

Instead, we focus on the relation �f��t� · f��t��	v�=0� t−2�/�1+2��.
We fix the position of the middle monomer of a self-avoiding
polymer �this corresponds to v� =0� and take snapshots of it at
equal intervals of time. We then take the snapshot at time t,
evolve the entire polymer with its middle monomer free over
�t=1 unit of time for a multiple number of times and obtain
the average displacement vector u��t� of the middle monomer.
Note that �t=1 is small enough such that the corresponding

Eq. �19� with ��t� and v�t� replaced by f��t� and v��t�, respec-

tively, and �h��t�	=0—shows that u��t�� f��t� �v�=0. The behavior
of �u��t� ·u��t��	 in time then yields the behavior of

�f��t� · f��t��	 �v�=0= ���t− t���. Determined in the above manner,
we confirm ���t��� t−2�/�1+2�� exp�−t /�R� in Fig. 5 with
2� / �1+2��
0.54 from which, as described in the above
paragraph, the scaling ��rN/2

2 	� t2�/�1+2�� can be derived.

VI. CONCLUSION

To conclude, in this paper we put forward an approxi-
mate analytical expression �3� for the mode amplitude corre-
lation functions Xpq�t� for long polymers, and corroborate its
accuracy using lattice-based Monte Carlo simulations of self-
avoiding flexible polymers in three dimensions in the ab-
sence of explicit hydrodynamics. We report that �a� the mode
amplitude correlation functions are not exactly
statistically independent �we do not expect them to be so
anyway�; instead, numerically the modes maintain a high
degree of statistical independence, and �b� for higher modes
�p ,q�6� there are small deviations from the exponential be-
havior �3� at long times. Nevertheless, given that Xpp�0� is a
rapidly decaying function of p as per Eq. �3�, the dominant
contribution of the modes to quantities of interest for the
polymer at long time-scales come from the lower modes. As
a result, such quantities can be analytically reconstructed
from Eq. �3�. We demonstrate this by using Eq. �3� to derive
several scaling properties for self-avoiding polymers, such as
�i� the real-space end-to-end distance, �ii� the end-to-end vec-
tor correlation function, �iii� the correlation function of the
small spatial vector connecting two nearby monomers at the
middle of the polymer, and �iv� the anomalous dynamics of
the middle monomer. Given the content of this paper, we
expect that Eq. �3� will provide researchers a way forward
for analytical treatment of the properties of self-avoiding
polymers.

Importantly, expanding on our recent work on the theory
of polymer translocation, we also demonstrate that the
anomalous dynamics of the middle monomer can be ob-
tained from the forces it experiences, by the use of the
fluctuation-dissipation theorem. Our hope is that in cases
where a polymer’s anomalous dynamics exponents are diffi-
cult to identify, use of the fluctuation-dissipation theorem
will prove to be an indispensably useful tool; first such cases
were our recent work on the theory of polymer translocation
as well as above.

In experimental situations, the polymer dynamics is of-
ten dominated by hydrodynamic interactions. In future work,
we therefore intend to extend this study to polymer models
with explicit hydrodynamics.
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