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Bilayer quantum Hall system at v,=1: Pseudospin models and in-plane magnetic field
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We investigate two theoretical pseudomagnon-based models for a bilayer quantum Hall system (BQHS) at
total filling factor v,=1. We find a unifying framework which elucidates the different approximations that are
made. We also consider the effect of an in-plane magnetic field in BQHSs at »,=1, by deriving an equation for
the ground-state energy from the underlying microscopic physics. Although this equation is derived for small
in-plane fields, its predictions agree with recent experimental findings at stronger in-plane fields, for low
electron densities. We also take into account finite-temperature effects by means of a renormalization group
analysis, and find that they are small at the temperatures that were investigated experimentally.
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I. INTRODUCTION

Over the last two decades, numerous experiments have
been performed on bilayer quantum Hall systems (BQHSs)
at total filling factor v,=1, revealing a very rich physical
system. In a series of groundbreaking experiments in the
early years of the current decade, evidence was found for the
existence of an excitonic superﬂuid,l‘3 as well as of the as-
sociated Goldstone mode.* This phase is destroyed by in-
creasing the effective interlayer separation d//, where d is
the distance between the layers and [/ the magnetic length.
For small effective separations, the system is in an incom-
pressible phase and the Hall conductivity exhibits a plateau
at v=1, whereas at large effective separations, the layers de-
couple and the Fermi-liquid behavior of two independent
layers is recovered; here, the system is in a compressible
phase. The critical effective interlayer separation (d/[),. has
been shown to be sensitive to charge imbalance, tunneling
amplitudes and in-plane magnetic fields.’ In addition to the
compressible-incompressible transition discussed above, a
commensurate-incommensurate transition has been identi-
fied, driven by an in-plane magnetic field.%” Recently, de-
tailed measurements on this aspect of the system® have
become available.

This wealth of experimental findings has naturally re-
newed the theoretical interest in the system. At present, three
independent models of the neutral (spin-flip) excitations of a
bilayer system at v,=1 and the case of equal electron popu-
lations in each layer exist in the literature,>!! with three
different derivations and two different predicted spectra. This
state of affairs merits an investigation. That is the first aim of
this paper: to compare and contrast, and where possible to
link, the existing models. Random phase approximation
(RPA) calculations have revealed a linear Goldstone mode,’
in qualitative and even rough quantitative agreement with
experiment.* Subsequently, an approximation based on pseu-
dospin waves has been proposed for the system in the pres-
ence of strong tunneling,'® which reproduces the RPA result
from Ref. 9 in the nontunneling limit. Lastly, in recent years,
a bosonization method has been proposed!! to directly study
the Bose-Einstein condensate (BEC) of excitons detected
experimentally.'~* The same v;=1 system with unequal layer
electron populations has also been studied using similar tech-
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niques in Ref. 12. We will develop a unifying framework that
links all three models for the balanced case and allows for
further approximations.

This first aim is subsidiary to a second purpose: to create
a model for a bilayer system at v,=1 with an in-plane mag-
netic field B;. Apart from the above-mentioned experimental
findings, in-plane magnetic fields are often used to suppress
tunneling between the layers, in order to study the quantum
Hall effect (QHE) in bilayer systems without interlayer
tunneling.5!13

Early theoretical work in this area has led to the predic-
tion of a commensurate-incommensurate phase transition.”!#
We will revisit the problem, and derive an equation for the
ground-state energy from the underlying microscopic phys-
ics. This equation was proposed in Ref. 7, but is explicitly
derived here. Following the work by Hanna er al.'> we cal-
culate at which in-plane magnetic field strength the
commensurate-incommensurate transition should occur, with
the aim of comparing the theoretical prediction to recent ex-
perimental observations.® Although this model is based on
small in-plane fields, it turns out to agree with experiments in
the regime of low electron densities. Including finite-
temperature effects by means of a renormalization group
analysis (details of which are presented elsewhere)!® yields a
small change in critical in-plane field, which is not enough to
explain the difference between the theoretical predictions
and the experimental observations at larger electron
densities.

This paper is structured as follows. In Sec. II, we present
the BQHS and derive its microscopic Hamiltonian. In Sec.
III, we discuss the various models that exist in the literature,
present a bosonization approach in the symmetric/
antisymmetric basis and analyze the differences between the
models. This analysis results in a unifying framework where
all the models that are investigated here can be seen to be
variations of each other. In Sec. IV, we introduce an in-plane
field into the bilayer system and microscopically derive an
equation for the ground-state energy of the bilayer system
with in-plane field. We then present some results coming out
of that model, including a finite-temperature result obtained
by means of a renormalization group analysis. Section V
contains conclusions and a discussion.
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II. SYSTEM

A BQHS consists of two individual two-dimensional elec-
tron gas layers, parallel and at a distance d to each other. The
QHE occurs in such systems at low temperatures and under
strong perpendicular magnetic fields. In these circumstances,
the system is characterized by four parameters: the total fill-
ing factor v,, the interlayer separation d, the tunneling am-
plitude 7, and the charge imbalance Av. The total filling fac-
tor is given by the sum of the filling factors of the upper (v,)
and lower (v)) layers, v,=v,+ v, whereas the charge imbal-
ance Av=v,—v, is the difference between the individual
layer filling factors. The filling factor of an individual layer
v=n,/ny counts the number of filled Landau levels within
that layer. We will concentrate on a system with v,=1 and
zero charge imbalance such that each layer has filling factor
1/2. This restricts the dynamics to the lowest Landau level
(LLL), which means that we must project all operators into
the LLL. The other two important parameters are the effec-
tive interlayer separation d/I, where I=\#/eB is the mag-
netic length, and the ratio between the tunneling amplitude ¢
and the characteristic Coulomb interaction energy E.
=e?/€l. These two-dimensionless parameters can be tuned
experimentally through the magnetic-field strength B. By
varying d/I, the relative importance of the interlayer Cou-
lomb interaction is changed, since [ is proportional to the
average distance between two neighboring electrons within
one layer. Increasing ¢/ E~ enhances the interlayer coherence,
since the tunneling energy favors a coherent state.

We will take the temperature and Zeeman splitting to be
such that the electron spins are completely frozen. From a
single-particle viewpoint, the layer degree of freedom gives
rise to a two-state system, so the relevant Hilbert space is the
same as that of a spin-1/2 system. Using this similarity, we
map the system to a single-layer system where the layer de-
gree of freedom is described by a pseudospin variable. In the
absence of tunneling or a bias voltage, there is no energy
associated with the pseudospin of an electron. The Coulomb
interaction, however, is pseudospin dependent, since the in-
terlayer repulsion is weaker than the intralayer repulsion.

Orienting the axes of the spin*} system such that T (])
indicates an electron in a(n) (anti)symmetric superposition of
being in both layers, the Coulomb part of the Hamiltonian
takes the form

HC = 2 vo’,o”(k)po',—kpa",k' (1)
o' k

1
20’
where v, ,/(K) is the spin-dependent Coulomb interaction.
The density operator p, is given by

pox=e M2 G, ()t con 2)

m,n

where the operator cfi?n destroys (creates) an electron with
spin o in the guiding center m. The function G,,, is defined
in Appendix A. Similarly, we can define spin-density opera-

tors for later use:

| [?2

i = 5 2 Gl et = ey ), (3a)
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—|1k[?12 ] R
Sf( = 2 E Gm,n(k)(CTr:mClJl + CLWCTJI) : (3b)

m,n

The density operators defined in Egs. (2) and (3) obey the
LLL projection algebra, which is discussed in Appendix A.
The Coulomb Hamiltonian can be split up into total density
and spin parts by writing

1
Hc= 52 vo(K)pypy + 22 v.(K) S, Sk (4)
Kk K
where
Te?
vore(K) = ——(1 = ¢ M), (5)
elk|

(note that we are working in a unit area system: A=1). The
v, term measures the capacitive energy due to charge imbal-
ance between the layers, since S$* is proportional to the
charge imbalance. Interlayer tunneling adds a term Hrp,

HT=—tfd2rEe

mn

—[r[>2%

T +
2’7712 Gm,n(r) (cu,mcl,n + Cl,mcu,n) == tSf(:O’

(6)

where the relation between c,,; and c; | is given by ¢y
=2""2(¢,*¢)). Since the kinetic term is constant and there-
fore irrelevant in the »,=1 case, we now have the total
Hamiltonian

1
H=—1S;+ 52 oK) p_ypr + 22, v (K)S* L SE. (7)
k k

The v term is invariant under rotations of the spin, whereas
the v, term favors $*=0 due to the positivity of v,.. In other
words, it disfavors spin orientations that do not lie in the
plane parallel to the layers. In the absence of the tunneling
term, the spin orientation is constrained to lie in the plane but
is otherwise free.

Note that the orientation of the spin axes can be chosen
freely: for example, one can choose to use spin up (down) to
represent an electron in the upper (lower) layer. In that case,
the roles of S* and S° in Eq. (7) are inverted and it is the spin
z axis that is perpendicular to the layers.

II1. PSEUDOSPIN MODELS

To accommodate the presence of a strong tunneling term,
we will work in the symmetric/antisymmetric (S/AS) basis.
Starting from a symmetric ground state, we study the anti-
symmetric excitations, which are approximately bosonic in
nature. Defining the bosonic vacuum to be the ferromagnet,
we describe the excitations above the ferromagnet as a sys-
tem of noninteracting bosons.

A. Magnons

In the presence of tunneling, the symmetric state has the
lowest energy, since the single-electron wave function for
that state has no nodes in the direction perpendicular to the
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layers, whereas the one for the antisymmetric state has a
single node. The level splitting between the symmetric and
antisymmetric states is proportional to the tunneling ampli-
tude and allows us to represent the ground state as a ferro-
magnet, in which all spins point in the same direction. This
implies that a particular direction in spin space is selected. It
is the tunneling term that determines the preferred direction
and thus breaks the in-plane symmetry. In our chosen spin
orientation, its momentum space form is Hp=-tSj, which
favors a uniform state in which the spin is oriented in the
spin z direction everywhere, parallel to the plane of the lay-
ers.

We have chosen the spin orientation such that the result-
ing Hamiltonian is diagonal when v,.=0, which occurs when
the interlayer distance vanishes. In that case, the ground
state, which we denote by |x), is the state in which all spins
are oriented along the spin z-axis: [x)=|11...1). If, on the
other hand, v.# 0, the Hamiltonian is no longer diagonal,
because |x) is not an eigenstate of S*.

The excitations above this ferromagnet are magnons, cre-
ated by the operator S, =S} —iS;.. With the help of the LLL
projection algebra (Appendix A), it is easy to check that
(XI[Sq>SZplIx) < 8, 4- This implies that near the ground state,
modes created by S~ are approximately bosonic. Following
earlier work,'>!7 we can define a magnon operator m' by
normalizing S,

my = —=S5;, (8)

where N is the total number of electrons in the system. By
explicit calculation, the single-magnon modes |k)=m,|x) can
be seen to be exact orthonormal eigenstates of the v.=0
Hamiltonian. Hence, our choice of spin orientation is appro-
priate to study excitations above the small-v. limit of the
system.

B. Models

1. Single-mode approximation

MacDonald et al.'” have proposed a model based on the
magnon-like excitations mentioned above. Here, we briefly
repeat the main results of that study with the aim of compar-
ing them to the outcomes of other studies, as well as our own
findings. The calculation of the excitation spectrum is based
on a tried and tested method:'® assuming the magnon density
is low enough for the interaction to be negligible, one takes

e = (k|H|K) — (x|H|x). )

Ignoring the magnon-magnon interaction comes down to
computing the excitation spectrum as if there is only one
mode; hence, it is called the single-mode approximation.
Taking into account the off-diagonal elements of the Hamil-
tonian in the magnon basis, one obtains
l sma
H=E,+ 52 ™ mymy, + ; (mim’\ +mam_y) |,
k

(10)

where
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™ =1+ Ne ™2y (k) (11)

+ > e[y (q) +20,(q)sin(k A q/2)],
q

A" = Ne %72y (k) + > v (q)e 72 cos(k A q),
q

(12)

and we have used the shorthand notation kaq=/%Z-(k X q).
Diagonalizing Eq. (10) by means of a Bogolyubov transfor-
mation one obtains

1 .
H= 52 0"l ay, (13)
k

where a) are the quasiparticle excitations. The Bogolyubov
spectrum has the familiar form

o
O™ = (g2 = (™). (14)

Taking the limit 7—0, Q3™ reduces to the spectrum found
within the RPA formalism.’ Comparing the above calculation
of the spectrum to the one performed in Ref. 9, one sees that
up to a minus sign, the same pseudospin mapping is used.
The only difference is the manner of calculation: the former
uses Feynman diagrams, whereas the latter uses the approxi-
mately bosonic nature of the pseudospin waves. The pre-
dicted spectrum features a Goldstone mode at #=0, as found
experimentally,* but also a phase transition at (d/l),~1.2,
whereas experiments reveal the critical separation to lie at
(d/1),~1.8. Furthermore, the theoretically predicted phase
transition is induced by a roton minimum touching the axis,
whereas no roton has ever been observed, in spite of an
extensive search.!”

2. S/AS bosonization

Recently, another approach has been presented, called
bosonization, which is also based on a pseudospin mapping
and bosonic excitations.!' However, a different spin orienta-
tion is used: spin up (down) refers to an electron being in the
upper (lower) layer instead of an (anti)symmetric state. This
spin mapping is useful, since it allows one to describe very
directly the BEC of excitons that has been observed
experimentally.'-* However, after the bosonization proce-
dure, the Hamiltonian describes a system in which every
second electron is part of a boson. This is problematic be-
cause the bosonic operators were defined under the assump-
tion that there would be few bosons: so few that they would
locally only see the (ferromagnetic) ground state.

Here, we will present a bosonization scheme based on the
S/AS splitting discussed above, but still within the spin map-
ping used in Ref. 11. In this way, we end up with a system
containing few bosons, maintaining the validity of the ap-
proximation, but the bosons being described are no longer
the excitons observed in Refs. 1-4.

The ground state |) is given by Hmc?m|0), and antisym-
metric excitations are created by the operator
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Ry=e ™23 G, ()l cp0 (15)

m,n

Normalizing R~ in order to define a proper bosonic operator,
we find

by =—=Ry. (16)

Note that Ry is identical to S,. Now, following Ref. 20, we
find bosonic expressions for the operators p and S, which
appear in the fermionic Hamiltonian Eq. (7). To obtain these
expressions, we first calculate the commutators of the opera-
tors p and S¢ with bT. We find

[pis b1 = 2”4 sin(k A @/2)b 1

[Si.bil=e K14 o5k A a2)b) . (17)

With the commutators from Eq. (17) and the actions of p and
S on the ground state, we find the following bosonic expres-
sions for p and S° by means of the method outlined in Ref.
20:

Pr=Ndio+ 2ie ™S sin(k A q/2)b}, by
q

Noo  _
Si = 5 eI 4> cos(k A q/2)karq q- (18)
q

To obtain a bosonic expression for S$*, we note that S*
=(R*+R")/2, and simply invert the definition of 5", Inserting
the bosonic expressions for p and $ into the fermionic
Hamiltonian yields a quadratic, but nondiagonal bosonic
Hamiltonian

bos

1 A
=52 €] by + ; (bibl, +beby) | (19)

Again performing a Bogolyubov transformation to diagonal-
ize the Hamiltonian, we find a quasiparticle spectrum

S S

Qﬁo — \,(Ebo )2 _ ()\EOS)Z’ (20)
where

AL = Ne ™2y (k) and 212)
=4 Ne‘|lk\2/zvc(k) +2 e_llq‘z/zvo(q)smz(k ~q12).
q

(21b)

This result is similar to that of Sec. III B 1, but not identical,
even though the same excitations were studied, and the same
physical property (the approximately bosonic nature of the
excitations) was the starting point for the approximation. In
the following section, we explore the origin of this
unexpected difference.

C. Unification

In the two approaches outlined above, the bosonic excita-
tions being studied are the same (both are antisymmetric
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excitations above a symmetric ground state), and the method
is the same (both are based on a pseudospin mapping), yet
they yield different results. The origin of this apparent incon-
sistency can be found by expanding the Hamiltonian in
n-magnon states:

H=§ 2 élqlw--

n=0 qy,...,q,, m=0

><<qm+1’ sqn|‘ (22)

Having assumed a low enough magnon density for the
magnon-magnon interaction to be negligible, we need only
take this series up to n=2. From the truncated series, let us
investigate the term X, , or more specifically,

9qm><ql’ ’qm|H|qm+l’ ’qn>

the v, term
1 _
2> v (K){p|S*Stlq) = 2 > ve(K)(xX|bp(STi + ST
k.p.q k.p.q
X (Sy+Sbylx)-

Expanding the brackets yields four terms, of which the one
of interest is

—|1k\2/2

i3

2kpq

m@@MM@my

Calculatmg the ground state expectation  value
(x|by bkb1b | X) by means of the LLL projection algebra (i.e.,
commutlng §*) yields

13 c

kaq

iz

2kpq

1 e
=2 2 M5 k),
k.p.q

—\zk\z/z

v (K)XLop b1 b1 bl X0

—\1k|2/2

)by by llx)

which is precisely the difference between the two ap-
proaches. In the bosonization scheme, the commutator
[bk,b:;] is replaced with its ground-state expectation value,
which is a number. Hence, the outer commutators vanish,
and the term does not enter the spectrum. A similar explana-
tion holds for the difference between \J° and \{™.

In short: taking the series in Eq. (22) up to n=2, we
recover the results found by MacDonald et al.' The differ-
ence between the bosonization scheme presented above and
the one employed in Ref. 10 arises from the fact that the
former approximates the state of the system by the ground
state already when evaluating the series in Eq. (22), whereas
in the latter, this assumption is only made at the stage of the
Bogolyubov transformation.

It should be noted that the difference between the two
approaches has nothing to do with the different spin repre-
sentations used. They can be transformed into each other by
rotating the spins, but such a rotation does not have any
effect on the physical quantities that can be calculated from
the models. The representations are only different in the way
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in which they describe the physics, but not in the physical
approximation that is made. The difference in results be-
tween Secs. III B 1 and III B 2 is purely a consequence of the
different ways of calculating the bosonic Hamiltonian that
were used. In the following, we will use the single-mode
approximation described in Ref. 10.

IV. IN-PLANE MAGNETIC FIELD

Having established the method of choice, let us consider
the effect of an additional in-plane magnetic field B
=B sin 0 in the BQHS. Let us adopt a coordinate system
where B;=B,(0,-1,0).2* The vector potential corresponding
to By is Aj=B;(0,0,x); thus, a particle tunneling between the
two layers picks up a space-dependent phase. The tunneling
term takes the form'*

Hp=-— tf d*rh(r) - S(r),

h(r) =[0,sin(Qx),cos(Qx)], (23)

Q=2mB\d/ ¢, is the characteristic momentum introduced by
the in-plane field, and ¢y=rh/e is the magnetic flux quantum.
In momentum space, Hy is simply

t
Hy==[Sy+iSg+ 5= iSlg). (24)

where we have written Q=Qx%. From Eq. (23), it is obvious
that the tunneling term favors spin configurations in which
the spins align with h, and thus vary their orientation locally.
Allowing for a space-dependent orientation ¢(r) and then
calculating the ground state energy yields the Pokrovsky-
Talapov model, as shown below.

A. Pokrovsky-Talapov model

Let us construct a ground state with locally varying spin
orientation,

IX')= eXp(i f erS’“(r)czS(r)) X) = em(t‘E Sf,¢_q> X)-

q
(25)

We will use the shorthand notation I'=2S;#_q. The expo-
nential rotates the spin at position r by an angle ¢(r). It is
easy to check that the rotated spin state |y’) is properly
normalized.

We wish to calculate {x'|H|x’). Assuming that the spin
orientation rotates slowly as a function of position, we can
take q¢_q to be small. Expanding the exponentials, we ob-
tain a power series in ¢(r). Taking this series up to O(q>¢?),
we obtain for the Coulomb term

% (26)

(X'Hclx')= % d*r|V (r)

where
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1 2
P=5 f kdkv g(k)e™ ™72 (1k)?, (27)

as found in Ref. 21. Here, vg is the interlayer interaction,
given by vy—v,. For the details of the expansion, see Appen-
dix B 1. Evaluating (x'|H|x'), with H; as given in Eq. (24),
we find after a similar calculation that

Wity =~ [ dreotom - (8
ol

(see Appendix B 2 for the details). Combining Egs. (28) and
(26), we obtain the total ground-state energy in the presence
of tunneling and an in-plane field:

Ha)- | dzr{%lvqé(r)ﬁ—ﬁcosw(r)—o-r]}.

(29)

This is precisely the Pokrovsky-Talapov model. The Cou-
lomb interaction gives rise to a spin stiffness term: in order
to minimize the Coulomb energy, all spins should be aligned.
The combination of a nonzero tunneling amplitude and an
in-plane field results in a locally varying preferred spin ori-
entation. In the case of vanishing tunneling, r=0, all the
spins will be parallel to each other and aligned in some ar-
bitrary direction in the yz plane. If, on the other hand, # 0
but there is no in-plane magnetic field so that Q=0, the de-
generacy with respect to spin rotations is lifted and the spins
will point in the z spin direction.

B. Commensurate-incommensurate transition

If the spin stiffness is small, it costs little energy to have
neighboring spins with different orientations. In that case, the
system will minimize the tunneling energy by setting ¢(r)
=Q-r, i.e., the spins follow the rotation imposed by the tun-
neling term. This is called the commensurate phase. If, on
the other hand, the spin stiffness is large, the gradient term
represents a high energy cost associated with a nonuniform
spin orientation and the system will give up the tunneling
energy in favor of a better Coulomb correlation. In that case,
the spins do not follow the tunneling term; this is called the
incommensurate phase. The onset of this phase is character-
ized by the appearance of solitons: sudden rotations of the
spin orientation by 2. Figure 1 shows a sketch of the be-
havior of ¢(r) in the incommensurate phase, with two
solitons visible.

1. Zero temperature

The commensurate-incommensurate transition is gov-
erned by two quantities: the ratio ¢/ p, and the modulus of the
characteristic momentum |lQ|=(d/l)tan 6. In order to com-
pare the theory to experiments, we need an equation for the
critical in-plane field strength. Neglecting finite-temperature
effects, we obtain such an equation from the energy func-
tional given in Eq. (29). We consider the energy of a single
soliton in the system, i.e., a single rotation by 2. The phase
transition occurs when a finite soliton density is energetically
favorable compared to the commensurate (zero-soliton) state.
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P(x)

X

FIG. 1. (Color online) Sketch of ¢(x) in the incommensurate
phase. The gray (dashed) trace indicates Qx while the blue (solid)
indicates ¢(x). Two solitons (sudden rotations of the phase by 2)
are visible in the figure. In the commensurate phase, ¢ would ex-
actly follow Qx.

The critical value of |IQ| is then given by!>!6

3/2
Q.| = (%) \/pz. (30)

s

Recalling that Bj=B | tan 6 and that tan 6=|IQ|l/d, we find

L2y
C=BJ_;1<;) \/pZ (31)

Since p, depends on d/I and E., which in turn depend only
on B, and constants, this equation predicts the critical in-
plane field for a given perpendicular field. In order to com-
pare the theory to the experimental findings presented in Ref.
8, we need to express the total electron density ny as a func-
tion of the critical in-plane field. The total electron density is
related to B, by

1 eB |
nr= VTn(z,:m:ﬁ’ (32)
so we can simply invert Eq. (31) to obtain n; as a function of
B for the comparison.

2. Finite temperature

To include the effect of a finite temperature, one has to
consider the partition function'®

Z= f D e ELAVKST, (33)

where kp is Boltzmann’s constant and 7 the temperature. The
functional integral in Eq. (33) can be performed step by step,
using the renormalization group (RG) technique. In every
step, an infinitesimal part of the integration is carried out,
yielding an effective energy functional at an infinitesimally
lower momentum scale or cutoff. By computing the change
in the parameters in the energy functional under an infinitesi-
mal change in the cutoff, one obtains the flow equations for
p, and ¢.'° Integrating these equations over the cutoff running
from its initial value to zero, one obtains an effective energy
functional E'[ ¢] for which we have
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Commensurate
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o
‘§ Incommensurate
a0k phase
o M
= — T=130mK
Sos m
== T=0
0.6 @® Experimental data
| T T T
4 5 6 7 8
By (T)

FIG. 2. (Color online) In-plane field vs total electron density
phase diagram indicating the commensurate-incommensurate phase
transition. The experimental data are given by the (red) dots (the
trace is a guide for the eye). The theoretical predictions are given by
the (blue) dashed line (mean field) and the (green) solid line (finite
temperature). The experimental data are taken from Ref. 8.

Z= e FVkT, (34)

E’ contains the effective values of p, and ¢ at temperature 7,
allowing us to compute the renormalized value of the critical

Q|

32 /T
1Q./(0 =(%) —“’;((g’)( ), (35)

where e=In(Ay/A), with A, being the initial value of the
cut-off A. The RG procedure for the Pokrovsky-Talapov
model is discussed in detail in Ref. 16.

C. Comparison with experiment

In recent experimental work, a commensurate-
incommensurate phase transition has been accurately
measured.® Working at a temperature 7=130 mK, measur-
ing on a sample with d=23 nm and t=Ag,g/2=5.5 K, the
(red) dots in Fig. 2 were obtained. The parameter values
reported in Ref. 8 give a |IQ,| of about 2.1-2.2. This value
invalidates the assumption that |/Q| <€ 1, which was made to
derive the Pokrovsky-Talapov model. Nonetheless, it turns
out that Eq. (31) predicts the experimentally observed critical
in-plane fields in the regime of low electron densities, as can
be seen in Fig. 2. As the electron density increases, the ac-
curacy of the prediction decreases. This may be related to the
fact that increasing the electron density is equivalent to de-
creasing the magnetic length /, and hence, to increasing the
effective interlayer separation d/[, whereas the dependence
of p, on d/I was derived under the assumption that d// is
small.

Including finite-temperature effects in the manner de-
scribed in Sec. IV B 2 reduces the predicted critical in-plane
field (see Ref. 16). At the temperature reported in Ref. 8, we
find a very small change in the critical in-plane field strength
(see Fig. 2, green trace). On the other hand, the smallness of
the shift validates the assumptions made during the experi-
mental data analysis.??

Testing the theory on the experimental data provided by
Murphy et al.,® who measured on a sample with n;=1.26
X 10" m™2, r=0.4 K, and d=21 nm, we find a critical
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angle of inclination of 18°, about a factor of 2 off from the
reported value of 8 =2°, as already found by Kun Yang et
al.'* Taking finite-temperature (T=0.4 K) effects into ac-
count, this prediction improves to 15.7°: again a small
change in the right direction.

V. DISCUSSION & CONCLUSIONS

In this paper, our aim was twofold: first, to clarify the
situation of the many magnon models for a BQHS at v,=1;
and second, to study the effects of an in-plane field in such a
system. We have considered two models for a BQHS at zero
temperature and v,=1, both of which turn out to be variations
of the magnon model obtained by expanding the Hamil-
tonian in n-magnon states. We have also seen what the origin
of the difference between the two models is: it is the moment
in the calculation at which the magnons are approximated to
be bosonic.

We have derived the Pokrovsky-Talapov model for the
ground state energy of a bilayer QHS at v,=1 with an in-
plane field from the underlying microscopic physics, which
had been suggested earlier by Kun Yang et al.” We have seen
the phases predicted by this model in the weak in-plane field
limit: a commensurate phase, in which the pseudospin fol-
lows the underlying structure provided by the combination of
the tunneling term and in-plane field, and an incommensurate
phase, where the pseudospin rotates incommensurately with
the underlying structure. We observed that this model, al-
though derived for weak in-plane fields, predicts experimen-
tally measured values in the regime of low electron densities,
and we have offered an explanation for the loss of agreement
at higher electron densities. We have showed that the inclu-
sion of finite-temperature effects produces only small effects
at the temperatures reported in Refs. 6 and 8. Even though
the effects considered here are small, a finite-temperature-
adjusted theory is a potentially valuable asset in future
research.
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APPENDIX A: THE LLL PROJECTION ALGEBRA
The function G, (k) is given by
—ilk" Ik|?
ootm ] o)
n! 2
+6(n—m) (_ 2 ”L’”_” I
n—m m! \JE m ) 5

(A1)

where E=kx+iky. Making use of the Landau level basis, we
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can calculate the sum of the product of two G, , functions
[i.e., the matrix product G(k)G(q)]. We obtain

> GiK)G(q) = e KV KM2G (k1 q)  (A2)
l

where kaq=0%-(k X q). Equation (A2) gives rise to the
LLL projection algebra, which can be summarized as
follows:

2 o . .
[pK: Pl = € ¥22i sin(k A q/2) py.q

[Sk-pql = ka2, sin(k A q/2)Si,
. 2 5
[Sk.Sa] =Y 2( 5 sin(k A 4/12)piq

+ie"" cos(k A q/2)Sf(’+q> . (A3)

We can also derive the following commutators, for later use:

[S5,S5q1= €927 sin(k A 0/2)prq + 2 cos(k A q/2)Si,,),

[Sk Pl = K922 sin(k A 4/2)Skiq

[Sp,55]= = €292 cos(k A q/2)Si,q- (A4)
APPENDIX B: EXPECTATION VALUES IN THE

COMMENSURATE (ROTATING-SPIN) GROUND STATE

We are interested in expectation values of the form
(X'|Axlx"), where |x') is the rotating-spin ground state de-
fined in Sec. IV A. Hence, we need to evaluate terms of the
form e T Age™™. To this end, we use a simple generalization
of the Baker-Hausdorff lemma, and find

e A = C, (A (B1)
where
ClAy) = E (uﬁ_q.1 g )[Sq» - .[Sq Akl .
(B2)

1. Coulomb term
Using Eq. (A3), it is easy to verify that for odd n,
C,l(pk)OCSquﬁ,,,Jrqn, whereas for even n, C,(py)
% Pitq,+-+q,- FOT C,(Sy), we obtain the same solutions, but
even and odd n are inverted with respect to C,(py). Hence,
projecting the Coulomb term H, into the spin-rotating
ground state |x’), we obtain

WIHY) =3 S 0oBNCpa0Cor (P +2 S wK)

k,n,n' k,n,n'
X <X, |Cn(S{k)Cn’(Si(() |X’> .

In Ref. 21, this series is taken up to n+n’=2. In that case,
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with the assumption of a slowly varying spin orientation, one
obtains the result presented in Eq. (26).

2. Tunneling term

The tunneling term H; can be analyzed in the same way.
We need

Oy == 5 Ol S5) + (%) +C,(5)

-iC,(S2)x0)- (B3)

From Eq. (A3), we can deduce that the surviving terms are of
the form C,,(Sy) and iC,,,(S}). Repeated application of Eq.
(A3) yields

_cw
TR

2
X el 242,Q2 e

CZn(S z ¢—q2n

q1'(¢12+‘“+Q)/2cos(q2n AQ/2) ...
“+Q)2]SGq, 1 rqy, (BA)

and similarly for Cy,,,(Sg). Since we are assuming a slow

Xcos[qy A (qy+ -

PHYSICAL REVIEW B 80, 205315 (2009)

modulation, we are working at small /Q, and we may take
|Q||q|=0. Evaluating SQuq,+--+qy, N the uniform ground
state gives a Kronecker delta; inserting this into the sum
from Eq. (B4) and Fourier transforming back to real space,
we find

) 1
S e sl =] dre S S

The sum is an expansion in powers of ¢ of the function

cos(¢(r)). Similar calculations for the other three terms from
Eq. (B3) yield

A A f (e cos] ()] - i sinl ()]}
. e-"Q'f{cos[qs(r)] w1 sin[p(O)T}

=— d*r cos[p(r) - Q - r].

5 12 (B5)

This equation appeared first in Ref. 7, but since it was not
derived there, we include it here.
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