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Abstract

Black holes are more than just odd-looking curiosities in gravity theory. They
uniquely intertwine the basic principles of General Relativity with those of
Quantum Theory. Just by demanding that they nevertheless obey acceptable
laws of dynamics, just like stars and planets, we hit upon strange structures
that must play key roles in the quantum effects that we expect in the gravi-
tational force at ultrashort distance scales.
It is explained why, in our approach to address the problem of information
conservation, the usual expression for the temperature of Hawking’s radiation
is off by a factor 2.
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1 Introduction

Gravitation is arguably the most elementary force in physics. It appears to be directly
linked to a fundamental principle:

Invariance of physical laws under general coordinate transformations in space
and time.

As is well-known, other forces among the elementary particles of matter are based on very
similar symmetry principles, notably those of local gauge theories, but the symmetry
principle that governs the gravitational force seems to be at the basis of all symmetries in
nature, that of general transformations among all coordinates for space and time. And
more remarkably, Combining this symmetry principle with quantum mechanics seems
to lead to novel and unique clashes with what we thought we knew about forces and
dynamics.

It was thought that history of science had given us a significant clue: “We will get
this thing done within half a century or so !

Unfortunately, in spite of a tremendous amount of work and numerous essential,
novel pieces of insight, we still are confronted with mysteries at this point. What are we
doing wrong?

Most conventional theories, focussing either on physics at the Planck scale (some
10−33 cm or 10−44 seconds, or on the scale of cosmological theories (ranging up to the
size of the universe), assume that the quantum formalism is mandatory:

Start with the existence of a Hilbert space, formulate a law for computing quantum
amplitudes, and assume that all physical phenomena covered by the theory can be de-
scribed in terms of these amplitudes, even if there is no need to agree on what it
is that these amplitudes actually describe. According to many researchers, discussions
on the foundations of quantum mechanics itself have come to a dead end. Here how-
ever, we emphasise that quantum amplitudes can actually be reduced to being a vector
representation of phenomena based on extremely mundane forms of logic. [?] One may
ignore the usual conundrums of the ‘collapse of the wave function’, the role played by
‘pilot waves’, and even the existence of uncountably many distinct universes (the ‘many
world’ hypothesis).

And indeed we must worry about the nature of general coordinate transformations
that we thought to have under control.

A deeper study of black holes [1], and their relation with the laws of quantum me-
chanics [2], may teach us new and very important things. Black holes seem to be just
the most basic solutions of Einstein’s field equations, but it is not automatically guar-
anteed that their connection with quantum mechanics will be anything ordinary. In our
telescopes it seems that black holes may be just a special kind of burnt-out stars. But
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if conventional theories for the quantum treatment are not completely wrong, one does
not get ‘ordinary behaviour’ from our equations. Something is wrong. So, we advertise
a closer look at those laws. Just by postulating that everything hangs together in a very
orderly manner, may force us to rephrase those equations, in a way that might become
very revealing.

2 Schwarzschild and the tortoise metric

Much of the material described in this section and the next one has appeared in several
previous reports by this author.[10, 11, 12] Readers familiar with is can just briefly scan
this part of the paper, but we shall refer to it when we continue.

Shortly after Einstein published his theory of General Relativity, the astronomer Karl
Schwarzschild [1] realised that assuming spherical symmetry enables us to write down an
exact solution of these equations. The metric one arrives at, in modern notation, reads

ds2 = −dt2
(

1− 2GM

r

)
+

dr2

1− 2GM
r

+ r2dΩ2 , (2.1)

where r represents distance from the origin, t is a time coordinate, and Ω stands for the
solid angle coordinates (θ, ϕ). The variables dr and dt stand for infinitesimal differences
for the coordinates of two adjacent points in space-time, and dΩ stands short for their
infinitesimal angular separation, dΩ2 = dθ2 + sin2 θ dϕ2 . M is a parameter that stands
for the total mass as would be perceived by an observer at infinity. See Fig. 1a.

This metric is independent of time t , and we see that the contributions from dr
and dt , as given in the first two terms in (2.1) both switch signs when r crosses the
point r = 2GM . Here, G is Newton’s gravitational constant, and the freely adjustable
parameter M represents the mass of this object. Much later, it would become known
as a ‘black hole’.

The apparent singularity at r = 2GM is not real, it is a coordinate artefact. One
can replace the longitudinal coordinates r and t by a new set, x and y , see Fig. 1b, as
follows:

x y =
( r

2GM
− 1
)
er/2GM ; (2.2)

y/x = et/2GM . (2.3)

These coordinates are called after Kruskal [3] and Szekeres [4], and shall be referred to
here as ‘tortoise coordinates’ for short, just because they replace the infinitely slow
geodesics to and from the horizon, by ordinary geodesics crossing a light front.
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Figure 1: a: The Schwarzschild metric. Vertical dashed lines: the event horizon. Curved
lines: light like radial geodesics: y = const (smooth), and x = const (dashed). Cones:
the orientation of the local light cones. Angular coordinates (θ, ϕ) are not shown. b:
The Tortoise coordinates (x, y), showing regions I − IV and the orientations of the
local light cones. Curves show r = const. lines.

In these coordinates, the singularities at r → 2GM disappear:

ds2 =
32(GM)3

r
e−r/2GMdx dy + r2dΩ2 . (2.4)

However, here we discover that there are two horizons, not one: the future event horizon,
at x = 0, to which all absorbed matter particles move, and the past event horizon, at
y = 0, which may emit particles. The tortoise coordinates show that the Schwarzschild
space-time has a natural extension, from region I , where x > 0 and y > 0, to regions
II, III, and IV . Region I is the physical region. Here, we can draw the geodesics for
all in-going particles, and all out-going particles, see Fig. 2.

Believing that black holes should not be approached as magic wands, but should be
understood as normal physical objects that can absorb things and emit things, leads
one to believe that in-particles (short for particles going into the black hole) transmit all
information they contain towards the out-particles. At first sight, this seems to violate
causality, since the points where in-particles cross the future event horizon lie in the far
future while the out-particles emerge in the far past (see Fig. 2).

However, they meet each other half way, and if this point lies much further away
than a Planck length from the horizon crossing point (point 0 in the figure), then the
contradiction becomes insignificant. This separation decreases exponentially with the
time span lying between the in-orbit and the out-orbit, so the Planck domain is reached
quite quickly. But more to the point, we can compute what happens here. It is the
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Figure 2: Region I , the physical region (see Fig. 1b), showing early and late particles
going in and out. Everywhere in this region the light cones are oriented as the one
shown.

gravitational force between in-particles and out-particles that does the job of information
transfer (as soon as their longitudinal coordinates meet), and, it acts locally as a sonic
boom; there is no contradiction with causality at all.

3 The Shapiro effect

How, by gravity, an in-particle 1 affects an out-particle 2 – and vice versa – is an
elementary exercise in General Relativity. Consider first a flat background. One can
take particle 1 to be at rest, and consider its metric as a Schwarzschild metric. Then
let this particle move with a velocity close to c . Suppose now another light particle,
2, moves in the opposite direction. It experiences the gravitational field of particle 1
as being highly compressed by the Lorentz transformation. Immediately before, and
immediately after the encounter, space-time is experienced as being flat (in the home
frame of particle 1, the particles are then far apart). So the gravitational field of particle
1 is experienced as a sonic boom, comparable to Cherenkov radiation.[5]

During this encounter, what happens is closely related to the Shapiro effect [6] when
a light ray grazes past the Sun or another heavy body. The geodesic of the light ray is
delayed. An elementary calculation [8] shows that this amounts to a shift δuµ of particle
2 in the light cone direction of the motion of particle 1. If particle 1 has a light cone
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momentum pµ then one finds

δuµ = −4Gpµ log |x̃− x̃′| . (3.1)

Here, x̃− x̃′ is the transverse separation at the closest encounter (impact parameter).

This was the effect in a flat background space-time. Now consider particles moving
in and out of a black hole [9], entirely in the longitudinal direction (close to the horizons,
the transverse motion, and shift, are neglected for the time being). For a particle 1
moving in the longitudinal p− direction, this shift can be written as [10, 11]

δu−(Ω) = 8πGf(Ω,Ω′) , (3.2)

where δu− is the shift in the orbit of particle 2. The function f replaces the logarithm
in Eq. (3.1). It is a Green function obeying

(1−∆Ω)f(Ω,Ω′) = δ2(Ω, Ω′) . (3.3)

An in-particle with momentum p− at solid angle Ω′ causes a shift δu− at solid angle
Ω . This Shapiro effect has a very important property: it is linear : the effects of all
in-particles is just the sum of the contributions of every single one. At the same time,
it displaces all out-particles by the same position-dependent amount δu−(Ω).

This enables us to write the combined effect as a property of functions on the angles
Ω, Ω′ . Write a single function p−(Ω) as

p−(Ω) ≡
∑
i

p−i δ
2(Ω,Ωi) , (3.4)

where Ωi are the spots where the in-particles enter the future event horizon; for all
out-particles we write:

u−(Ωi) = u−i . (3.5)

The Shapiro effect can now be written as follows: if we add an in-particle with momen-
tum δp−i at solid angle Ωi then it modifies the position u−(Ω) of all out-particles, in
accordance with the equations

u−(Ω) = 8πG

∫
d2Ω′) f(Ω,Ω′) p−(Ω′) , (3.6)

where the Green function f(Ω,Ω′) obeys (3.3). We can write

(1−∆Ω)u−(Ω) = 8πGp−(Ω) . (3.7)

Notice that we replaced the shift equation (3.2) for one particle going in and one particle
going out, by a single functional equation (3.6) for all particles in and all particles out.
The only difference this makes is that we could omit the symbol δ that indicates change.
Before and after any change, out-positions relate to in-momenta in the same way. The
equation suggests that the origin, where all positions are zero and no particles are going
in at all, should be chosen as the origin of this space.
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4 Quantum mechanics

In the previous section, we encountered fundamental new equations relating positions
and momenta of in and out going particles. This begs for an investigation as to what
happens when we introduce quantum mechanics. Close to the origin1, all particles obey

[u±i , p
∓
j ] = iδij , [u±, p±] = 0 , (4.1)

so that, for the functions u±(Ω) and p±(Ω), we can write

[u±(Ω), p∓(Ω′)] = iδ2(Ω, Ω′) , (4.2)

[u±(Ω), p±(Ω′)] = 0 . (4.3)

In combination with Eqs. (3.6) and (3.7), these equations become very powerful. The
equations are local now, and, most important, they are linear. Linearity and locality
might get broken when we refine these equations for large transverse momenta, but we
believe that the section for sufficiently low transverse momenta can be kept by itself as
the dominant contribution to the information processing mechanism. Due to linearity,
it is meaningful to expand the functions u± and p± in spherical harmonics:

u±(Ω) ≡
∑
`,m

u±`mY`m(Ω) , p±(Ω) ≡
∑
`,m

p±`mY`m(Ω) , (4.4)

where the sum goes over all nonnegative integer values of ` , and −` ≤ m ≤ ` .

For the spherical harmonics, the operator ∆ diagonalises into −`(`+ 1), so that we
can write

u−out, `m =
8πG

`2 + `+ 1
p−in,`m , u+

in, `m = − 8πG

`2 + `+ 1
p+

out,`m , (4.5)

where we wrote the subscripts ‘in’ and ‘out’, to indicate that these operator refer to in- or
out-particles. The minus sign in the last equation is understood as a consequence of the
antisymmetry of the commutator while no minus signs had been inserted in Eqs (4.1):

[u+
`m, u

−
`′m′ ] =

8πiG

`2 + `+ 1
δ``′δmm′ . (4.6)

Important remarks:

• There is only one real independent dynamical variable u+ , and a variable p−

canonically associated to it, at every value of the pair of integers (`, m). So the
variables in Eq. (4.1) are replaced by a one-dimensional quantum mechanical pair
at each ` and m .

1The process of information transfer, in which we are now interested, takes place at Planckian
distance scales. As long as the Schwarzschild metric parameters, typically in the order of GM , are
large compared to this, our analysis applies.
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• Different (`, m) values all commute. Therefore, in the approximations used, the
complete set of all quantum states will be just the product of all quantum states
|u+〉`m at all (`, m). By taking their one-dimensional Fourier transforms, one gets
the states |p−〉`m instead.

Thus, the out-particles emerge as being the Fourier transforms of the in-particles, a very
simple algebra at this stage.

Note that, replacing one single species of matter by a set of multiple matter species,
would lead to contradictions (there exists only one type of gravitational force). There
exists only one form of matter which we subject to the rules (4.1), and therefore we
cannot apply second quantisation in the longitudinal direction; only the Ω dependence
can be viewed as a reduced, two-dimensional second quantisation process. Having single
particle states only for the u± dependence, but second quantisation only in the θ, ϕ
direction could be called ‘1.5 th quantisation’.
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Figure 3: Penrose diagram generated from the tortoise coordinates x and y , by mapping
these both on a compact segment [−1, 1]. See text.

Everything seems to come together, but there are still some hurdles to take. By
mapping the Kruskal-Szekeres coordinates onto compact segments, one gets the Penrose
diagram for an eternal black hole, see Fig. 3. It was shown above that the out-particles
are obtained from the in-particles by Fourier transforming the wave functions, call these
〈u+|ψ〉`,m . The Fourier transformation is a unitary process, so one might think that
we obtained the complete black hole evolution operator U(t). The fact that, so-far, we
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concentrated only on eternal black holes, is not a problem. At time scales longer than
O(M logM) in Planck units, the wave functions get completely scrambled by the Shapiro
process, and the component of Hilbert space that would represent either collapse, or a
final evaporation event, is expected to be small compared to the one spanned by the
states that we do take into account.

A problem that we still have, at this stage, is that there are two asymptotic regions,
I and II . Physically, we need unitarity only for one single domain, region I itself. But
by generating the shifts δu , the Shapiro process will transport states right across the
horizon, and when we attempt to calculate the combined effects, we find that unitarity
is violated by that proces: particle wave functions in region I will generate Fourier
transforms that cover both regions I and II .

It is true that, most of this process takes place in a Planckian domain close to the
origin as indicated in Figure 3, but, as time goes on, local Lorentz boosts will quickly
send these out-states to infinity, spreading themselves both over regions I and II .

In the past, we proposed to cure this problem by assuming region II to correspond
to the antipodes (in terms of the angles θ and ϕ) of region I . But this did not work
as assumed. In terms of the harmonic functions Y`m(Ω), going to the antipodes means
multiplying the angular wave functions by (−1)` . For odd ` , this actually cancels the
minus sign transporting us from region I to region II or back, causing our calculations
to fail.

We now believe that region II is an exact quantum copy [12] of all states in region
I . This means that we would limit ourselves to wave functions that are even under the
interchange I ↔ II This could also mean that all information in region I is accurately
copied into region II , and this remains to be the case for the Fourier transforms (the
Fourier transform of an even function is even as well.

This brings us very close to an ancient proposal by the author [13], to identify the
states in region II as the set of bra states associated to the kets in region I . At first
sight this still may generate problems, since energy reversal from I to II requires us
to take real functions to be even but imaginary functions to be odd. This property
however, would not be passed on correctly by the Fourier transforms. We suspect that
this problem can be solved by restricting ourselves to real wave functions only.

Limiting ourselves to real wave functions only, now leads to serious questions con-
cerning the very foundations of quantum mechanics. The picture we obtained so-far is
that there are three representations for the wave functions of the in- and out-particles:
first, we have the original Schwarzschild metric, and all in- and out-going particles can
be represented as wave functions depending on r, t, θ, and ϕ . We subsequently write
the same metric in terms of the tortoise coordinates x, y, θ, and ϕ . Using the same
wave functions, this gives us the quantum states in region I when x and y are positive.
Finally, we have the negative values of x and y . Again, the same wave functions now
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represent what goes on in region II .

The equations for these wave functions in (x, y) space will be as usual. The problems
just mentioned above concern the time reversal in region II . It is more than just an
administrative difficulty. It seems that the concepts lowest energy state and highest
energy state are interchanged there. If this is allowable then we can treat he entire
system in terms of a single set of quantum field theoretical equations, where the technical
difficulties in gluing the positive and negative values of x and y together must be more
carefully addressed than we were able to do here.

5 On the Hawking temperature

An issue not yet addressed in detail is the value of Hawking’s temperature,

kTHawking =
1

8πGMBH

. (5.1)

It is connected to the calculation of the Hawking entropy,

β =
1

kT
=
∂S

∂E
= 8πGM . (5.2)

Now these values represent the contributions of the quantum states both in regions I
and II . If however, if region II is nothing but a quantum clone of region I then it
should not contribute to the entropy at all, so that only half of the entropy is left:

S = 1
2
· 4πGM2 ; β = 1

2
βHawking , kT = 2kTHawking . (5.3)

This happens to be the temperature we anticipated in our treatment of Ref. [13] using
different arguments: the picture of regions I and II together as representing bras and
kets, turns our expressions into a density matrix. to arrive at expectation values one
should not take the absolute square of a density matrix element but instead, trace it
with the relevant operators. Replacing the quadratic expressions by linear ones reduces
the entropy by a factor 2.

Now both arguments mentioned above, to indicate that the value of the temperature
is affected by a factor 2, seem to be mostly hand-waving. Author warns Reader against
believing that N hand-waving arguments may add up to something more believable
than a single one. But we have a more powerful argument, using the periodicity of
the evolution operator in the Euclidean time direction. This was the calculation first
employed by Hawking [2] and others.

Consider an outside observer A , and an observer B in the effectively flat spacetime
at the origin of the Penrose diagram, Figs. 1b and 3. If the outside observer A performs
a time translation by a constant amount,

U(δt) = e−iδtH. (5.4)
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The tortoise variable x in Eqs. (2.3) is multiplied by e δt / 4GM and y is divided by
the same amount. For observer B that is a Lorentz transformation at the origin. Now
take the same transformation but replace δt by an imaginary number −iβ . This is a
rotation:

x→ x e−iβ/4GM , y → y eiβ/4GM . (5.5)

Writing

x = % eiϕ , y = % e−iϕ , (5.6)

one gets a real, Euclidean spacetime in polar coordinates (by using the coordinates
x + y and −i(x − y)). The standard calculation, computing the free energy F from

Tr (e−βH ), now assumes that only full rotations, ϕ → ϕ + 2πn lead spacetime back
to its original orientation. The Green functions to be considered are therefore periodic
with period 2π in ϕ . This is how β takes the value 8πGM , The identification of
the Euclidean periodicity β with 1/kT is well-known in condensed matter physics and
in lattice theories for elementary particles, Thus one gets Eq. (5.2) and (5.1) for the
Hawking temperature.

Now in our theory, we have that region II has x and y replaced by −x and −y .
There, it is a quantum clone of region I . All our green functions must be the same in
region II and in region I Thus, our Green functions must return to their original values
when ϕ is replaced by ϕ+ π . This gives us the temperature (5.3).

6 Conclusion

In some sense, our theory for black holes is extremely conservative. In our treatment
there is no place for ‘entanglement’ issues, and not even for attaching significant roles
for the ‘Page time’ [14]. Page asks for explicit attention to very large time scales, where
a significant fraction of the initial entropy is carried away by the radiated particles. But
as soon as the radiated particles have moved further than a few Planck lengths away
from the horizon crossing point, conventional laws of physics take over, entanglement or
not. Any respectable theory for the production of these particles must include a chapter
on how these particles are expected to make this transition to free or almost free particle
states in the outside world.

In fact, this seems to be easy enough. The total mass M of a black hole together with
the surrounding particles is strictly constant. But only the particles that are still – or
already – close to their respective horizons, contribute to the mass in practice. So, as soon
as we see particles far enough away from the black hole, we should modify our description
in terms of a black hole with mass M ′ , slightly different from M , by subtracting the
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contribution of the particles that are sufficiently far away, at any particular moment of
time.

Note that, in our approximations, the masses of the radiated particles are small
compared to that of the black hole itself, so that the time-dependent corrections, as
described above, are infinitesimal in any case. I think we performed important ground
work to formulate a precise framework for handling the physics of black holes. In ancient
times when solitons, magnetic monopoles, field theoretical strings and membranes were
regarded as novel predictions of gauge theories and related concepts were discovered so
that their properties were calculated, no new physical principles had to be called upon.
For black holes, including of course the rotating and charged versions, the situation is
not at all that simple, and it could even be that the physical laws at small scales will have
to be thoroughly revised in order to obtain a harmonic picture of what goes on. This
would actually be welcome, since out present views of Planckian scale physics appear to
lead to paradoxes: how should one handle energies beyond that scale, and how can we
reconcile that with quantum mechanics?

The author’s personal view is that both quantum mechanics and general coordinate
invariance are aspects of matter and geometry that are calling for a more precise formu-
lation of their foundations. It does not help to be ‘agnostic’, as some physicists declared,
or to think that ‘chaos’ takes care of all contradictions.

Particularly, our results on Hawking’s temperature are novel (they were already
mentioned in 1984 [13] but hardly noticed by string theorists). Some further thinking
strongly suggests that, actually, any attempt to identify the information residing in
region II with what is already present in region I , would reduce the Hawking entropy
by a factor 2, and raise the temperature of the radiation accordingly.

Since conservation of information (in the sense of entropy in thermodynamics) is
being considered more seriously these days, and in view of our considerably revised
outcome (5.3) for temperature and entropy in black holes, we conclude that thorough
revisions for quantum gravity itself may be opportune. Our proposals for real wave
functions rather than complex ones, also suggests revisions for the foundation of quantum
mechanics [15].

We thank N. Sanchez, N. Gaddam, F. Feleppa, N. Groenenboom, and S. Kumar for
discussions.
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