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Abstract

Missing data are often dealt with multiple imputation. A crucial

part of the multiple imputation process is selecting sensible models to

generate plausible values for the incomplete data. A method based on

posterior predictive checking is proposed to diagnose imputation mod-

els based on posterior predictive checking. To assess the congeniality of

imputation models, the proposed diagnostic method compares the ob-

served data with their replicates generated under corresponding pos-

terior predictive distributions. If the imputation model is congenial

with the substantive model, the observed data are expected to be lo-

cated in the centre of corresponding predictive posterior distributions.

Simulation and application are designed to investigate the proposed

diagnostic method for parametric and semi-parametric imputation ap-

proaches, continuous and discrete incomplete variables, univariate and

multivariate missingness patterns. The results show the validity of the

proposed diagnostic method.
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1 Introduction

Multiple imputation (MI) is a popular approach for the analysis of incom-

plete datasets. It involves generating several plausible imputed datasets and

aggregating different results into a single inference. Missing cells are filled

with synthetic data drawn from corresponding posterior predictive distribu-

tions. This procedure is repeated multiple times, resulting in several imputed

datasets. The parameters of scientific interest are then estimated for each

imputed dataset by complete-data analyses. Finally, different estimates are

pooled into one inference using Rubin’s rule, which accounts for within and

across imputation uncertainty (Rubin, 1987).

The validity of post-imputation analyses relies on the congeniality of the

imputation model and the analysis model (Meng, 1994; Xie & Meng, 2017;

Bartlett& Hughes, 2020). If the imputation and analysis models are con-

genial and correctly specified, Rubin’s rules will give consistent estimates

(Rubin, 1987). Hence, a crucial part of the multiple imputation process is

selecting sensible models to generate plausible values for the incomplete data.

However, model selection is not a trivial process in practice since there can

be a wide array of candidate models to check. Therefore, researchers should

consider which variables, interaction terms, and nonlinear terms are included

based on the scientific interest and data features.
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Despite the popularity of multiple imputation, there are only a few im-

putation model diagnostic methodologies. One standard diagnostic method

is to compare distributions of the observed with imputed data (Van Buuren,

2018; Abayomi et al., 2008). Plausible imputation models would generate im-

puted values that have a similar distribution to the observed data. Although

missing at random (MAR) mechanisms would also induce the discrepancies

between the observed and imputed data, any dramatic departures that the

observed data features cannot explain are evidence of potential imputation

model misspecification. Reliable interpretation of the observed and imputed

data’s discrepancies could be derived from external knowledge about the in-

complete variables and the missingness mechanisms (Abayomi et al., 2008).

The idea to evaluate the validity of scientific models with multiply im-

puted data is not new. Bondarenko and Raghunathan (2016) proposed an

advanced diagnostic method to compare the distributions of the observed

with imputed data conditional on the probability of missingness. Gelman et

al. (1998) applied cross-validation to check the fit of a hierarchical Bayesian

model in the study of 51 public opinion polls preceding the 1988 U.S. Pres-

idential election. Gelman et al. (2005) also proposed to apply graphical

posterior predictive inference on the test statistics for model checking with

missing and latent data. If regression-based imputation approaches are in-

volved, the conventional regression diagnostics, such as plots of residuals and

outliers, are helpful (White et al., 2011). A comprehensive overview of model

diagnostic in multiple imputation is available in Nguyen et al. (2017).

Posterior predictive checking (PPC) has been proposed as an alternative

method for the imputation model diagnostic (Gelman et al., 2005; He and
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Zaslavsky, 2012; Nguyen et al., 2015). PPC is a Bayesian model checking

approach that compares the replicated data drawn from the corresponding

posterior predictive distribution to the observed data. If the model lacks fit,

there could be a discrepancy between the replicated and observed data.

He & Zaslavsky (2012) and Nguyen et al. (2015) applied posterior predic-

tive checking to assess the inadequacies of the joint imputation model with

one or more test quantities relevant to the scientific interest. To evaluate the

‘usability’ of imputation models with respect to the test statistics, analysts

compare the estimates for the complete data to their replicates. Comparisons

of the complete data and its replicates ensure the calculation of test quanti-

ties with general missingness patterns. However, it also results in sensitivity

to the amount of missingness.

This manuscript proposes and evaluates the implementation of posterior

predictive checking for imputation techniques. The general idea is that if the

imputation model is congenial to the substantive model, the expected value

of the data (whether observed or missing) is in the centre of corresponding

predictive posterior distributions. We compare the observed data to their

posterior replicates generated under the imputation model and evaluate the

posterior distributions of all observed data points. This distinguishes our

approach from the posterior predictive checking of imputation models by

applying target analyses. We demonstrate:

1. that PPC can be generalised to variable-by-variable imputation tech-

niques;

2. that PPC can be used to identify the imputation model that conforms
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most to the true data generating model;

3. that PPC can be used as a model evaluation technique to identify the

better substantive analysis model;

4. how to perform PPC with MICE in R on a real-life data set (Van Buuren

and Groothuis-Oudshoorn, 2011);

5. that this PPC approach is not sensitive to the amount of missing data.

The remainder of this manuscript is organised as follows. In section 2, we

review the posterior predictive checking of the imputation model by applying

the target analysis proposed by He & Zaslavsky (2012). In section 3, we

provide an overview of the MICE package and the underlying imputation

algorithm: fully conditional specification (FCS). We also further point out

the necessity of extending the posterior predictive checking of the imputation

model so that the diagnostics would apply to the MICE algorithm. In section

4, we evaluate the performance of the proposed diagnostic approach with

simulation studies. In section 5, we show the results of simulation studies.

In section 6, we apply the proposed diagnostic approach to the body mass

index (BMI) data of Dutch adults. In section 7, we conclude with a discussion

of our findings.
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2 Posterior predictive checking (PPC)

2.1 Posterior predictive checking

Without incomplete variables, PPC compares the observed data y with the

replicated data yrep which are simulated from the posterior predictive distri-

bution, with parameter θ:

p(yrep|y) =
∫
p(yrep|θ)p(θ|y)dθ (1)

To detect the discrepancy between the model and the data, we define test

quantities T that connect the model diagnostics to the scientific interests and

estimate them for both observed and replicated data. For example, if the

substantive analysis is a regression analysis, the test quantities could be the

regression coefficients. Misfits of the model with respect to the data could be

summarised by the posterior predictive p-value, which is the probability that

the replicated data are more extreme than the observed data, with respect

to the selected test quantities T (Gelman et al., 2013):

pB = Pr(T (yrep, θ) ≥ T (y, θ)|y)

=
∫ ∫

IT (yrep,θ)≥T (y,θ)p(y
rep|θ)p(θ|y)dyrepdθ,

(2)

where I is the indicator function. An extreme p-value (close to 0 or 1) implies

the suspicion on the fit of the model since a consistent discrepancy between

test quantities T (yrep, θ) and T (y, θ) cannot be explained by the simulation

variance.

Posterior predictive checking has been widely used for model diagnos-
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tics in applied Bayesian analysis (Gelman et al., 2013, chapter 6), and the

posterior predictive distribution is usually calculated by simulation. Sup-

pose we have N draws of model parameters from its posterior distribution

θj, j = 1, . . . , N , we then generate a replicated data for every theta θj. The

PPC compares test quantities based on observed data with the empirical pre-

dictive distribution of test quantities. The estimated posterior predictive p-

value is the proportion of these N simulations for which Tj(y
rep, θ) > Tj(y, θ).

It is noticeable that PPC’s application for the imputation model diagnostic

is not based on the hypothesis test perspective. Hence, there is no underlying

assumed distribution for the posterior predictive p-value in this case. The

posterior predictive p-value indicates whether the model would provide plau-

sible inference based on the data with respect to the selected test quantities.

To perform multiple imputation model checking with PPC, we compare

the completed data, the combination of the observed and imputed data, with

its replications. Gelman et al. (2005) applied graphical PPC to visualise

test quantities comparisons based on completed and replicated data. He &

Zaslavsky (2012) and Nguyen et al. (2015) developed numerical posterior

predictive checks as target analyses to the joint imputation model. He and

Zaslavsky (2012) proposed two kinds of discrepancies, completed data dis-

crepancy and expected completed-data discrepancy, and the approaches to

calculate corresponding posterior predictive p-values. We briefly introduce

these discrepancies and p-values for the completeness of PPC for MI models.
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2.2 Complete data discrepancy

When there are incomplete variables, the hypothetically complete data ycom

consists of the observed data yobs and the missing data ymis (ycom = (yobs, ymis)).

To assess the completed-data discrepancy T (yrepcom, θ) − T (ycom, θ), we draw

imputed values for incomplete variables ymis and the replication of the com-

plete data yrepcom from their posterior predictive distribution:

p(yrepcom, ymis|yobs) =
∫
p(yrepcom|θ)p(ymis|yobs, θ)p(θ|yobs)dθ. (3)

To assess the model fit, we calculate the posterior predictive p value as :

pB,com = Pr(T (yrepcom) ≥ T (ycom)|yobs)

=
∫ ∫

IT (yrepcom)≥T (ycom)p(y
rep
com, ymis|yobs)dyrepcomdymis

(4)

The simulation process to estimate p-value proposed by He and Zaslavsky

(2012) is:

1. Simulate N draws of θ from the corresponding posterior distribution

p(θ|yobs)

2. For each θj, j = 1, . . . , N , impute yjmis from p(ymis|yobs, θj) and simulate

the replicated data yrep,jcom from p(yrepcom|θj)

A pB,com, which is close to 0 or 1, implies the discrepancy between the model

and the data with respect to the selected test quantities.
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2.3 Expected complete data discrepancy

He and Zaslavsky (2012) noticed that the power of completed-data discrep-

ancy is weakened because the variance of imputed data across complete data

ycom and replicated data yrepcom increase the variance of the test quantities. He

and Zaslavsky (2012) reduced the variance of completed-data discrepancy by

calculating the expectation value of missing data for each model parameter

draw. The modification of p-value pB,ecom would be:

pB,ecom = Pr(E[T (yrepcom)|yrepobs , yobs] ≥ E[T (ycom)|yrepobs , yobs]|yobs)

=
∫ ∫

IE[T (yrepcom)|yrepobs ,yobs]≥E[T (ycom)|yrepobs ,yobs]
p(yrepobs , yobs)dy

rep
obs ,

(5)

where E is the notation of the expected value.

Again, the nested simulation process to calculate the p-value pB,ecom is:

1. Simulate N1 draws of θ from the corresponding posterior distribution

p(θ|yobs)

2. For each θj, j = 1, . . . , N1, impute yjmis from p(ymis|yobs, θj) and simu-

late the replicated data yrep,jcom from p(yrepcom|θj)

3. For each j-th replicate, calculate the mean discrepancy by setting yjmis

and yrep,jcom to missing and overimputing them with the same paramters θj

over N2 draws yj,kmis and yrep,j,kcom , k = 1, . . . , N2. Calculate the difference :

Dj,k = T (yrep,jobs , yrep,j,kmis )−T (yobs, y
rep,j,k
mis ) over N2 draws and then average

the difference for the j-th replicate : D̄j. =
∑k

1Dj,k/k

4. Calculate pB,ecom as the proportion of these N1 estimates that are pos-

itive, D̄j. ≥ 0
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He and Zaslavsky (2012) evaluated whether the PPC could detect the

uncongeniality of the imputation model. Nguyen et al. (2015) investigated

the performance of PPC in other imputation model misspecification scenar-

ios, such as ignoring the response variable and auxiliary variables or failing

to transform skewed variables. The PPC approach proposed by He and

Zaslavsky (2012) is based on the joint imputation model. The imputation

model for diagnostic is a joint distribution for the observed data, and the

test quantities depend on multiple variables and parameters.

3 MICE package

Fully conditional specification (FCS) is a popular approach for multiple impu-

tation. It attempts to specify an imputation model for each incomplete vari-

able Yj, j = 1, . . . , p conditional on all the other variables P (Yj|Y−j, θj), with

parameter θj. It generates imputations iteratively over all incomplete vari-

ables after an initial imputation, such as mean imputation or random draw

from observed values. Let Y t
j = (Y obs

j , Y
mis(t)
j ) denote the observed and im-

puted values of variable Yj at iteration t and Y t
−j = (Y t

1 , . . . , Y
t
j−1, Y

t−1
j+1 , . . . , Y

t−1
p ).

Given the most recent imputations of the other incomplete variables Y t
j at it-

eration t, the algorithm of generating imputations for the incomplete variable

Yj consists of the following draws:

θtj ∼ f(θj)f(Y obs
j |Y t

−j, θj)

Y
mis(t)
j ∼ f(Y mis

j |Y t
−j, θ

t
j),
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where f(θj) is the prior distribution for the parameter of the imputation

model θj. The FCS is an attractive imputation approach because of its

flexibility in imputation model specification. It is known under different

names: chained equations stochastic relaxation, variable-by-variable impu-

tation, switching regression, sequential regressions, ordered pseudo-Gibbs

sampler, partially incompatible MCMC, and iterated univariate imputation

(Van Buuren, 2007).

Multivariate Imputation by Chained Equations (MICE) is the name of soft-

ware for imputing incomplete multivariate data by Fully Conditional Specifi-

cation. It has developed into the de facto standard for imputation in R and is

increasingly being adopted in Python (e.g., statsmodels (imputer function)

& miceforest). The MICE package creates functions for three components

of FCS: imputation, analysis, and pooling. Figure 1 illustrates how MICE

Figure 1: Main steps used in MICE (Van Buuren & Groothuis-Oudshoorn,
2011)

solves a missing data problem by generating 3 imputed datasets. Three im-

puted datasets are generated with function mice(). Analysis are performed
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on every imputed dataset by with() function and combined into a single in-

ference with function pool(). The software stores the output of each step in

a particular class: mids, mira and mipo. More details about MICE package

can be found in van Buuren & Groothuis-Oudshoorn (2011).

Two features of the software motivate our research. First, the default

imputation method for numerical missing data is predictive mean matching

(PMM) (Little, 1988).

library(mice , warn.conflicts = FALSE)

imp <- mice(nhanes , print = FALSE)

imp$method

## age bmi hyp chl

## "" "pmm" "pmm" "pmm"

It generates imputations for a missing cell from its p nearest points. Predic-

tive mean matching is a semi-parametric imputation approach that is proven

to perform well in a wide range of scenarios (De Waal et al., 2011; Sid-

dique and Belin, 2007; Su et al., 2011; Van Buuren, 2018; Van Buuren and

Groothuis-Oudshoorn, 2011; Vink et al., 2014; Vink et al., 2015; White et

al., 2011; Yu, Burton and Rivero-Arias, 2007). The attractive advantage

of PMM is that the imputations fall consistently within the range of the

observed sample space (Heeringa et al., 2001; Van Buuren, 2018; Vink et

al., 2014; Vink et al., 2015; White et al., 2011; Yu et al., 2007). For in-

stance, PMM prevents imputing negative values for data that are strictly

non-negative. Second, mids only stores imputed datasets not the estimated

parameters of the imputation models (Hoogland et al., 2020).
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Based on the features of MICE package discussed above, it is necessary

to investigate whether PPC could check the donor selection procedure of

PMM and perform PPC based on the observed data itself instead of the

target statistics. He and Zaslavsky (2012) briefly discussed the approach to

checking imputation models for subsets of incomplete variables. However,

they assumed that the imputations of the remaining variables (excluding the

incomplete variables of interest in an assessment) are adequate. Therefore,

we also evaluate the performance of PPC when relaxing this assumption in

the application section.

The implementation of PPC in MICE (version 3.13.15) is straightforward.

A new argument where is included in mice function which allows us to re-

place the observed data by randomly drawing values from the predictive

posterior distribution (Volker & Vink, 2021). Here is an example to generate

replications of the observed data.

to_imp <- as.data.frame (!is.na(nhanes ))

imp <- mice(nhanes , where = to_imp , print = FALSE)

The observed data pattern may not be conducive to calculating test quan-

tities involving multiple incomplete variables. Hence, the complete data

discrepancy discussed in section 2.2 calculates test quantities based on the

imputed data. In such a case, the diagnosis is sensitive to the amount of

missing data. However, we propose to calculate the discrepancy based on

the observed data. The proposed method compares the observed data to

the corresponding predictive posterior distributions generated over multiple

imputations. If the imputed model fits the observed data, the observed data
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will appear like a random draw from the corresponding posterior distribution.

4 Simulation Study

We carried out a simulation study to investigate the performance of the pro-

posed diagnostic approach. For illustrative purposes, the simulation study

consisted of diagnostics under three analysis models: 1) a quadratic equa-

tion with an incomplete outcome 2) a quadratic equation with incomplete

covariates, and 3) a generalised linear model with an incomplete binary out-

come. The proposed diagnostic method natually could be applied to more

generalized analysis models.

All these scenarios are designed with several factors including missingness

proportion (30%, 50%, 80%), missingness mechanisms (a missing completely

at random (MCAR) and a right-tailed missing at random (MARr) mech-

anism), nominal levels of the confidence interval (75%, 95%) and different

imputation models. We evaluated whether the proposed diagnostic method

could identify the congenial imputation model for continuous and discrete

incomplete variables under the first and the third scenarios. We also inves-

tigated the performance of the proposed diagnostic method on the donor

selection procedure of predictive mean matching under the second scenario.

The sample size and the number of imputed datasets were set to be 1000 and

50 separately in all simulations.

We induced missingness with the ampute() function in the simulation

study. Generally, ampute() is a convenient function in MICE package to

generate missing data for simulation purposes (Schouten et al. 2018). We
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considered missing completely at random (MCAR) mechanism where the

probability of missingness is equal for every cell as well as right-tailed miss-

ing at random (MARr) mechanism where higher values of covariates have

a higher probability of being unobserved. In the algorithm of ampute()

function, the probability of missingness is allocated with different logistic

functions of the weighted sum score (wss), which is a linear combination of

covariates correlated with the probability of missingness:

wssi = wix1i + wix2i + · · ·+ wixmi (6)

The weight wi is pre-specified to reflect the influence of the variable xi on

the probability of missingness. For instance, if the formation of a weighted

sum score is: wss = x1 + x2, the probability of missingness is determined by

both x1 and x2 with the equal effects. It is noticable that the influence of the

weights is relative. wss = 2x1+2x2 will have the same effct as wss = x1+x2.

More specifically, under MARr mechanism, candidates with higher values

of weighted sum score have a higher probability of being unobserved when

applying the ampute() function to generate missing data.

4.1 Quadratic equation with an incomplete outcome

In the first simulation study, we considered a partially observed variable

Y and a fully observed variable X. The data was generated from : X ∼

uni(−3, 3), Y = X + X2 + ε, where ε ∼ N (0, 1). The scientific model

was indeed a quadratic model. Under MARr mechanism, the probability

of missingness for the incomplete variable Y was completely determined by
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variable X (wssY = X). We considered two imputation models for the

incomplete response Y : one is a linear regression of Y on X, and the other

is a quadratic regression of Y on X. The linear regression impuation model

is expected to be uncongenial and have a worse performance.

4.2 Quadratic equation with incomplete covariates

In the second simulation study, the response variable Y was generated from

a normal distribution: Y = X + X2 + ε, where ε ∼ N (0, 1) and the co-

variate X followed a standard normal distribution. In this simulation study,

the response variable Y was completely observed while the covariate X and

the corresponding quadratic term X2 were jointly missing for a fraction of

the cases. There were no cases with missing cells on either X or X2. Un-

der MARr mechanism, the probability of missingness for jointly missingness

of X,X2 was completely determined by variable Y (wssX,X2 = Y ). We

compared two semi-parametric methods, predictive mean matching (PMM)

and polynomial combination (PC) with a parametric method, the substan-

tive model compatible fully conditional specification (SMC-FCS) (Vink and

van Buuren, 2013, Bartlett et al., 2015, Cai and Vink, 2022). The PC and

SMC-FCS methods are two accepted methods to impute linear regression

with quadratic terms. The PC method is an extension of PMM but applies

a different donor selection procedure. We expect that PC and SMC-FCS

outperform PMM.
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4.3 Generalized linear model for discrete variables

The final simulation study considered a partially observed binary Y and

two complete covariates X and Z. The model of scientific interest was :

Pr(Y = 1|X,Z) = exp(X + Z)/1 + exp(X + Z), where x ∼ uni(−3, 3)

and Z ∼ N (1, 1). Under MARr mechanism, the weights of variables X and

Z in determining the probability of missingness for Y were set to be equal

(wssY = X+Z). Since the logistic regression actually models the probability

of assignment, we investigated the plot of deviance and calculated the sum

of squared deviance divided by the sample size. There were two candidate

models: a logistic regression of Y on X and Z and a logistic regression of

Y on Z only. The imputation model including both predictors X and Z is

expected to provide more sensible imputations.

5 Simulation results

In this section, we present the simulation results of the proposed diagnostic

method under three different scenarios. We construct the nominal confidence

interval for each observed data point based on the empirical distribution

generated by the corresponding multiple imputed values. For numerical as-

sessment, we estimated the rate of coverage by which the nominal confidence

intervals covers the observed data points (COV), the mean of the distance be-

tween the observed data and the mean of corresponding predictive posterior

distributions (Distance), and the average width of the confidence intervals

(CIW). Since the incomplete variable Y in section 4.1 is the conditionally nor-

mal distribution and the incomplete variable X in section 4.2 is the normal
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distribution, the mean of corresponding predictive posterior distributions is

a valid representation of the centre of corresponding posterior distributions.

In such a case, the selected quantities (COV, Distance and CIW) could be

used to inspect the discrepancy between observed and replicated data. We

expect the better-fitted imputation model to derive a smaller Distance and

CIW.

We also provided graphical analyses with scatterplots, density plots, and

distribution plots, which show observed values, upper and lower bounds of

confidence intervals for each observed data point. The proposed diagnostic

approach is performed on a variable-by-variable basis. Sometimes a single

plot or summarised statistic is inadequate to arrive at a conclusion. Conduct-

ing PPC with various tools would provide a more comprehensive evaluation

of the imputation model.

5.1 Quadratic equation with an incomplete outcome

Table 1 shows the results of the simulation study when the substantive model

is a quadratic equation with an incomplete outcome. Since we only generated

one incomplete dataset and repeated imputing it 50 times, all coverage rates

were close to the pre-specified nominal level. However, when the imputation

model was misspecified as a linear regression model, the average distance

was larger than the average distance under the correct specification of the

imputation model (linear regression with a quadratic term). It conforms to

our intuitive idea that the data would be close to the centre of predictive

posterior distributions if the model fits. The variance of the incomplete vari-
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able Y was set as 1, which implied that the width of 95% nominal confidence

interval is approximate 3.92 (1.96 × 2) and the width of 75% nominal con-

fidence interval is approximate 2.3 (1.15 × 2). When the imputation model

was correctly specified, the estimated average width of the confidence inter-

val was unbiased. However, the variance of Y was overestimated when the

imputation model was linear.

The same result could also be derived from the graphical analysis. Fig-

ure 2 shows distribution plots under the scenario of 30% missing cases and

MARr missing mechanism. This plot provides upper and lower bounds of

the posterior predictive distribution for all observed Y in ascending order of

the mean of the posterior distribution. Blue points imply the corresponding

observed value falls in the interval, while red points imply the corresponding

observed value falls outside the interval.

When the imputation model was correctly specified, the red points were

randomly spread over the sample space without any patterns. However, when

the imputation model was incorrectly specified as the linear regression model,

the red points are shown at tails with lower and higher expectations of the

posterior distribution. Moreover, the width of the intervals was generally

narrower when the model was correct. The density plot and the scatter plot

of the observed and replicated data generated with function densityplot()

and xyplot() in MICE also show the evidence that the quadratic regression

is preferable than the linear model (see figure 3). The scatter plot of the

quadratic regression imputation model shows that replicated data overlapped

the observed data. The density plot shows that the replicated data shared

the same distribution as the observed data. This evidence illustrates the
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congeniality of the quadratic regression imputation model. However, the

linear regression model performed worse than the quadratic regression model.

First, the replicated data did not cover the observed data in two extreme

regions in the scatter plot. Second, the empirical density of the replicated

data and observed data were different.

Furthermore, our proposed PPC approach for imputation models is ro-

bust against the different percentages of missing cases, missingness mecha-

nisms, and the confidence interval’s nominal levels. The nominal level of the

confidence interval is determined by the extent to which we could undertake

the outliers when the imputation model is not congenial with the data gener-

ating process. For instance, there were more outliers in the plot of means and

75% confidence intervals than the plot of mean and 95% confidence intervals.

(See figure 4).

5.2 Quadratic equation with incomplete covariates

Tables 2 and 3 show the result of the simulation for the quadratic equation

with incomplete covariates. Based on the numerical results, the performance

of these three methods, PC, SMC-FCS, and PMM, was the same, despite

the slightly reduced coverage rate of PMM. In fact, when the missingness

mechanism is MCAR (to bypass the problem of the sparse observed region

for PMM), PMM would also provide a valid inference of the regression pa-

rameters (see Table 4) (Vink & van Buuren, 2013).

However, when it comes to graphical diagnostics, the misfit of PMM

appears. The distribution plot (figure 5 and 6) show that PC and SMC-FCS
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generated the same posterior predictive distribution of the observed data.

There were more outliers with a larger value of Y . It is sensible since the

density function of X based on Y is not monotone. Thus, it is unavoidable

to impute the missing cell on the opposite arm of the parabolic function.

Although in such a case, the imputed value was not the same as the true

value, the replicated data still overlapped the observed data in the scatter

plot (see Figures 7). The distribution plot of PMM with a 95% nominal

level in Figure 5 did not show more outliers than these of PC and SMF-FCS.

However, when the nominal level was set to 75%, more outliers appeared in

the sub-plot of PMM (Figure 6). The reason is that there are more observed

data closed to the centre in the plots of PC and SMC-FCS, which implies the

superiority of PC and SMC-FCS. The scatter plot also shows the discrepancy

between the distribution of the replicated and the observed data with respect

to PMM (Figures 7). The result is robust against various percentages of

missing cases and over the studied missing mechanisms.

5.3 Generalized linear model for discrete variables

Table 5 shows the average sum of squared deviance for two different logistic

regression models. The value of the average sum of squared deviance was

smaller when the imputation model was correctly specified with logistic re-

gression on both X and Z. The result is robust against the percentage of

missing cases and missingness mechanisms. Figure 8 shows that the resid-

uals tend to zero when the imputation model fits the observed data better.

The distribution of the observed data was more extreme than the empirical
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posterior distributions of replicated data generated under the logistic model

with only variable Z.

6 Application

6.1 Background

We illustrate the application of the proposed PPC for multiple incomplete

variables with the data from the body mass index (BMI) of the Dutch adults.

This application is to study whether the proposed PPC works for a sequence

of imputation models. More specifically, we aim to investigate whether the

incorrect imputation model for one incomplete variable would disturb the

proposed PPC for other variables. BMI is defined as the body weight divided

by the square of the body height, which is broadly applied to categorise a

person into underweight, normal, overweight, and obese. Since measuring a

person’s weight and height is costly, an alternative is to ask people to report

their weight and height. However, such self-report data is systematically

biased. People are used to overestimating their height and underestimating

their weight, leading to a lower self-report BMI compared with measured

BMI (van Buuren, 2018, section 9.3). The goal of the study is to estimate

unbiased BMI from the self-report data. We apply the multiple imputation

approach to fill the unobserved measured weight and height.

The data we analyze is named selfreport in MICE package. The data

consists of two components. One is the calibration dataset that contains

data on 1257 Dutch individuals with both self-report and measured height
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and weight which was taken from Krul, Daanen, and Choi (2010). The

original survey included 4459 adults from either Italy, Netherlands, or North

America aged 18-65 years in 1999 or 2000. The second part is a survey

dataset that includes data from 803 Dutch adults aged 18-75 years with only

self-reported data. The survey data were collected in November 2007, either

online or using paper-and-pencil methods (van Buuren 2018, section 9.3). Six

variables are included in the application: age (years), sex (male or female),

hm denoting measured height (cm), hr denoting self-reported height (cm), wm

denoting measured weight (kg), and wr denoting self-reported weight (kg).

To fit the aim of this application study, we design two linear regression

imputation models for hm: one includes all the other variables, and the other

includes all the other variables except the variable hr. Similarly, there are

two linear regression imputation models for wm: one includes all the other

variables, and the other includes all the other variables except the variable

wr. In such a case, we have four imputation strategies to evaluate:

1. Case 1: include hr in the imputation model of hm and wr in the impu-

tation model of wm.

2. Case 2: include hr in the imputation model of hm and exclude wr from

the imputation model of wm.

3. Case 3: exclude hr from the imputation model of hm and include wr in

the imputation model of wm.

4. Case 4: exclude hr from the imputation model of hm and wr from the

imputation model of wm.
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Although it is evident that hr and wr are significant covariates for the impu-

tation of hm and wm, we deliberately ignore these two variables in some cases

to evaluate whether incorrect imputation model for hm (wm) influences PPC

for wm (hm). If the target of analysis is BMI, one could apply passive impu-

tation to include BMI in the imputation process (van Buuren 2018, section

6.4). In such a case, BMI is still not considered as the predictor of hm and

hm because of linear dependencies.

6.2 Results

Table 6 shows that the best imputation model among these four is the one

that includes both wr and hr. The average distance and the width of confi-

dence intervals for the observed data were the smallest for both hm and wm.

No matter the imputation model of hm was correctly specified, the linear

regression imputation model for wm should be based on all the other vari-

ables. When fixing the imputation model for the hm (no matter including

hr or not), the average distance and the average width of the confidence

interval of hm derived under the linear model included hr was remarkably

less than the result taken under the linear model excluded the covariate hr.

The graphical results (Figure 9-12) show the same conclusion. When the

linear regression imputation model for wm or hm was correctly specified, the

imputed data overlapped the observed data in the scatter plot. The observed

data would be closer to the centre of the confidence interval, and the width

of confidence intervals was relatively small. However, the result of wr in case

3 was slightly larger than that in case 1. Similarly, the result of wr in case
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4 was slightly larger than that in case 2. A similar result could be found

in fixing the imputation model for the wm (no matter the imputation model

includes wr or not). The average distance and the average confidence interval

of wm derived under the linear model had wr was remarkably less than the

result taken under the linear model excluded the covariate wr.

The findings imply that incorrect specification of the imputation models

for other incomplete variables Y−j would influence the target variable Yj for

which we perform the PPC because densities of the imputed variables Y−j

are different from the ‘true’ densities. However, we can still select the cor-

rect model for Yj. Our application scenario is relatively simple: the linear

model is sufficient to reflect the data generating process of incomplete vari-

ables. However, we do not rule out the possibility that under extreme and

complicated cases, incorrect specification of the imputation models for other

incomplete variables Y−j would prevent us from selecting the most suitable

imputation model for the incomplete variable Yj.

7 Discussion

The proposed imputation model diagnostic procedure based on PPC involves

numerical assessment and graphical analysis. It is noteworthy that apply-

ing both numerical and graphical tools benefits a thorough understanding of

model selection. For numerical assessment, the evidence of a fitted imputa-

tion model is less deviation between the observed value and the expectation

of corresponding predictive posterior distribution and narrower width of con-

fidence intervals of predictive posterior distributions for the observed data.
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For graphical analysis, we provide the distribution plot, the scatter plot and

the density plot. The more suitable imputation models are, the more similar

the replicated data to the observed data in the density and scatter plots. The

distribution plot shows posterior distributions of all observed data. It allows

the researcher to identify the regions where the imputation model misfits.

Furthermore, the graphical analysis could be applied to evaluate whether a

specific imputation model is adequate to provide plausible imputations.

The simulation study demonstrates that the proposed imputation model

diagnostic procedure works on continuous and discrete variables under para-

metric and hot-deck multiple imputation approaches. For continuous vari-

ables, the distribution plots can be used to derive information to improve

the imputation model. For example, we may identify that although the

imputation model is incorrect, it would provide valid imputations in the fo-

cused regions. In such a case, we could still apply the suboptimal imputation

model. Moreover, we could also adjust the imputation model in the misfitted

regions and develop a piecewise imputation model. The PPC for categorical

data or ordered categorical data is limited, since the predictor of the impu-

tation model is the probability of assignment rather than the observed data

itself. We currently investigate residual deviance as the indicator to select

the model for categorical data and ordered categorical data.

For hot-deck imputation approaches, what PPC diagnoses is the donor-

selection procedure. As the result shown in section 5.2, selecting donors for

the compositionX+X2 performed better than only solving for the incomplete

variable X. SMC-FCS was treated as the baseline in our simulation since it is

proven as a reliable imputation method when the substantive model is known
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(Bartlett et al., 2015). The PC performs as well as the SMC-FCS which

implies the donor selection process of PC reflects the data generating process

in our simulation scenarios. However, based on the features of predictive

mean matching, the appropriate donor selection does not ensure plausible

imputations. Extra analysis of the observed data and the imputed data

would then be necessary.

The application example shows that the PPC works on the multivariate

incomplete datasets. When the imputed covariate deviates from the actual

distribution because of the mis-specified imputation models, the imputation

model for the predictor could also be selected by PPC. In our case study, the

misspecification of one incomplete variable slightly influences the other in-

complete variable’s numerical results. However, in more extreme situations,

such as a large number of incomplete variables and more ridiculous impu-

tation models for covariates, the result may be influenced seriously, so as

to result in a sub-optimal model selection. Therefore, it is more reasonable

to perform the numerical analysis of all incomplete variables and make the

model selection for those variables with remarkably different results under

different candidate imputation approaches first.

Existing PPC proposed by He and Zaslavsky (2012) and Gelman et al.

(2005) measured the posterior predictive p-value to indicate the discrepancies

of summarised statistics between the observed and replicated data. The close

to 0 or 1 p-value implies the inadequacy of the imputation model with respect

to the target quantities. The target quantities should be calculated with

the completed data, which consists of the observed and the imputed data

because it allows the researcher to calculate the target quantities requiring
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a complete data matrix. Both He and Zaslavsky (2012) and Nguyen et al.

(2015) found that the existing PPC for multiple imputation model is sensitive

to the percentage of missing cases. Since the imputed and replicated data

are generated from the same posterior predictive distribution, evaluation

becomes more difficult with an increasing proportion of missing data.

Unlike the existing PPC approach, the PPC discussed in the paper checks

the imputation model for each incomplete variable under the FCS framework.

We diagnose the distribution of the observed data so that the result would

also be reliable with a large proportion of missing cases. The simulation

study also shows that the proposed PPC works for different missingness

mechanisms.

The PPC for multiple imputation models based on target analysis would

be more informative for “one-goal” studies. The imputer is also the analyst

with a specific scientific interest in such a case. The diagnosis procedure

aims to select imputation models to produce imputations that could support

the particular post-imputation analyses. However, the diagnostic method

proposed in this paper is designed for “multiple-goals” studies. The imputer

may not know the potential research on the imputed data. Our approach

aims to select congenial imputation models to ensure that Rubin’s rule will

provide a valid inference. The imputed data generated by selected imputation

models could be used for more general downstream analysis and different

scientific interests.

When the sample size is tremendous, it is better to choose some repre-

sentative data to check the imputation model so that the scatter plot or the

distribution plot would not be too crowded. A clustered procedure could be
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applied to gather the observed data with closed values and choose one subset

in each cluster to check the model. Further investigation is necessary to set

the rule to select the observed data when the sample size is too large.
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True value Estimates value Coverage rate
β1 1 1.008 0.934
β2 1 1 0.958

Table 4: The PMM performs under the scientific model : Y = α + Xβ1 +
X2β2 + ε, where α = 0, β1 = 1 and β2 = 1. The error term and variable X
follow standard normal distributions. 30% cases of X and X2 are designed
to be jointly missing. The missingness mechanism is MCAR.

mean of residual deviance
missingness with x without x

30 0.83 1.25
MCAR 50 0.85 1.27

80 0.95 1.3
30 0.9 1.34

MARr 50 0.94 1.35
80 0.98 1.28

Table 5: The average sum of squared deviance for two imputation models:
1) logistic regression with two predictors x and z 2) logistic regression with
one predictor x under different combinations of experimental factors. The
outcome is a dichotomous variable y and the binary regression is based on x
and z.

hm wm
cov average distance average CIW cov average distance average CIW

strategy 1 0.95 1.57 8.27 0.95 2.28 12.46
strategy 2 0.95 1.65 8.89 0.94 10.9 54.38
strategy 3 0.95 5.58 26.89 0.94 2.35 12.83
strategy 4 0.95 5.56 27.88 0.97 9.84 59.57

Table 6: The performance of 4 imputation strategies is summarised by the
coverage rate, the average distance and the average width of confidence in-
tervals with respect to missing variables hm and wm. hm denotes measured
height (cm). wm denotes measured weight (kg). We estimated the rate of
coverage by which the nominal confidence intervals covers the observed data
points (COV), the mean of the distance between the observed data and the
mean of corresponding predictive posterior distributions (Distance), and the
average width of the confidence intervals (CIW).
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(a) quadratic imputation model (b) linear imputation model

Figure 2: Distribution plots for the first simulation study (quadratic equa-
tion with an incomplete outcome) generated under 30% missing cases and
MARr missingness mechanism. The confidence interval is 95% nominal. This
plot provides upper and lower bounds (grey lines) of the posterior predictive
distribution for all observed Y in ascending order of the expectation of the
posterior distribution. Blue points imply the corresponding observed value
falls in the interval, while red points imply the corresponding observed value
falls outside the interval.
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(a) quadratic imputation model (b) linear imputation model

(c) quadratic imputation model (d) linear imputation model

Figure 3: Scatterplots and densityplots for the first simulation study
(quadratic equation with an incomplete outcome) generated under 30% miss-
ing cases and MARr missingness mechanism. Densityplots (a) and (b) show
kernel density estimates for the distribution of the variable Y (blue) and
m = 5 densities calculated from the imputed data (red). Scatterplots (c)
and (d) show observed values (blue) of Y (label 0) and m = 5 comparisons
of observed (blue) and imputed (red) values (label 1-5).
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(a) quadratic imputation model (b) linear imputation model

Figure 4: Distribution plots for the first simulation study (quadratic equation
with an incomplete outcome) generated under 30% missing cases and MARr
missingness mechanism. The confidence interval is 75% nominal. The con-
fidence interval is 95% nominal. This plot provides upper and lower bounds
(grey lines) of the posterior predictive distribution for all observed Y in as-
cending order of the expectation of the posterior distribution. Blue points
imply the corresponding observed value falls in the interval, while red points
imply the corresponding observed value falls outside the interval.

40



(a
)
P
C

(b
)
S
M
C
-F
C
S

(c
)
P
M
M

F
ig

u
re

5:
D

is
tr

ib
u
ti

on
p
lo

ts
fo

r
th

e
se

co
n
d

si
m

u
la

ti
on

st
u
d
y

(q
u
ad

ra
ti

c
eq

u
at

io
n

w
it

h
in

co
m

p
le

te
co

va
ri

at
es

)
ge

n
er

-
at

ed
u
n
d
er

30
%

m
is

si
n
g

ca
se

s
an

d
M

A
R

r
m

is
si

n
gn

es
s

m
ec

h
an

is
m

.
T

h
e

n
om

in
al

le
ve

l
is

95
%

.
T

h
e

co
n
fi
d
en

ce
in

te
rv

al
is

95
%

n
om

in
al

.
T

h
is

p
lo

t
p
ro

v
id

es
u
p
p

er
an

d
lo

w
er

b
ou

n
d
s

(g
re

y
li
n
es

)
of

th
e

p
os

te
ri

or
p
re

d
ic

ti
ve

d
is

tr
ib

u
ti

on
fo

r
al

l
ob

se
rv

ed
X

in
as

ce
n
d
in

g
or

d
er

of
th

e
ex

p
ec

ta
ti

on
of

th
e

p
os

te
ri

or
d
is

tr
ib

u
ti

on
.

B
lu

e
p

oi
n
ts

im
p
ly

th
e

co
rr

es
p

on
d
in

g
ob

se
rv

ed
va

lu
e

fa
ll
s

in
th

e
in

te
rv

al
,

w
h
il
e

re
d

p
oi

n
ts

im
p
ly

th
e

co
rr

es
p

on
d
in

g
ob

se
rv

ed
va

lu
e

fa
ll
s

ou
ts

id
e

th
e

in
te

rv
al

.

41



(a
)
P
C

(b
)
S
M
C
-F
C
S

(c
)
P
M
M

F
ig

u
re

6:
D

is
tr

ib
u
ti

on
p
lo

ts
fo

r
th

e
se

co
n
d

si
m

u
la

ti
on

st
u
d
y

(q
u
ad

ra
ti

c
eq

u
at

io
n

w
it

h
in

co
m

p
le

te
co

va
ri

at
es

)
ge

n
-

er
at

ed
u
n
d
er

30
%

m
is

si
n
g

ca
se

s
an

d
M

A
R

r
m

is
si

n
gn

es
s

m
ec

h
an

is
m

.
T

h
e

n
om

in
al

le
ve

l
is

75
%

.
T

h
is

p
lo

t
p
ro

v
id

es
u
p
p

er
an

d
lo

w
er

b
ou

n
d
s

(g
re

y
li
n
es

)
of

th
e

p
os

te
ri

or
p
re

d
ic

ti
ve

d
is

tr
ib

u
ti

on
fo

r
al

l
ob

se
rv

ed
X

in
as

ce
n
d
in

g
or

d
er

of
th

e
ex

p
ec

ta
ti

on
of

th
e

p
os

te
ri

or
d
is

tr
ib

u
ti

on
.

B
lu

e
p

oi
n
ts

im
p
ly

th
e

co
rr

es
p

on
d
in

g
ob

se
rv

ed
va

lu
e

fa
ll
s

in
th

e
in

te
rv

al
,

w
h
il
e

re
d

p
oi

n
ts

im
p
ly

th
e

co
rr

es
p

on
d
in

g
ob

se
rv

ed
va

lu
e

fa
ll
s

ou
ts

id
e

th
e

in
te

rv
al

.

42



(a
)
P
C

(b
)
S
M
C
-F
C
S

(c
)
P
M
M

F
ig

u
re

7:
S
ca

tt
er

p
lo

ts
fo

r
th

e
se

co
n
d

si
m

u
la

ti
on

st
u
d
y

(q
u
ad

ra
ti

c
eq

u
at

io
n

w
it

h
in

co
m

p
le

te
co

va
ri

at
es

)
ge

n
er

at
ed

u
n
d
er

30
%

m
is

si
n
g

ca
se

s
an

d
M

A
R

r
m

is
si

n
gn

es
s

m
ec

h
an

is
m

.
D

en
si

ty
p
lo

ts
(a

)
an

d
(b

)
sh

ow
ke

rn
el

d
en

si
ty

es
ti

m
at

es
fo

r
th

e
d
is

tr
ib

u
ti

on
of

th
e

va
ri

ab
le
X

(b
lu

e)
an

d
m

=
5

d
en

si
ti

es
ca

lc
u
la

te
d

fr
om

th
e

im
p
u
te

d
d
at

a
(r

ed
).

S
ca

tt
er

p
lo

ts
(c

)
an

d
(d

)
sh

ow
ob

se
rv

ed
va

lu
es

(b
lu

e)
of
X

(l
ab

el
0)

an
d
m

=
5

co
m

p
ar

is
on

s
of

ob
se

rv
ed

(b
lu

e)
an

d
im

p
u
te

d
(r

ed
)

va
lu

es
(l

ab
el

1-
5)

.

43



(a) logistic model based on X and Z (b) logistic model based on Z

Figure 8: The plot of deviance residuals for the third simulation study (gen-
eralized linear model for discrete variables) generated under two logistic re-
gression imputation models. The percentage of missing is 30%, and the
missingness mechanism is MARr.
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(a) (b) (c)

(d) (e)

Figure 9: Graphical analysis of the BMI data with imputation strategy case 1.
(a) density plots, (b) scatter plot of hm, (c) scatter plot of wm, (d) distribution
plot of hm and (e) distribution plot of wm.
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(a) (b) (c)

(d) (e)

Figure 10: Graphical analysis of the BMI data with imputation strategy
case 2. (a) density plots, (b) scatter plot of hm, (c) scatter plot of wm, (d)
distribution plot of hm and (e) distribution plot of wm.
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(a) (b) (c)

(d) (e)

Figure 11: Graphical analysis of the BMI data with imputation strategy
case 3. (a) density plots, (b) scatter plot of hm, (c) scatter plot of wm, (d)
distribution plot of hm and (e) distribution plot of wm.
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(a) (b) (c)

(d) (e)

Figure 12: Graphical analysis of the BMI data with imputation strategy
case 4. (a) density plots, (b) scatter plot of hm, (c) scatter plot of wm, (d)
distribution plot of hm and (e) distribution plot of wm.
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