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Abstract

We analyse the long term behaviour of the measure-valued solutions of a class of
linear renewal equations modelling physiologically structured populations. The re-
newal equations that we consider are characterised by a regularisation property of the
kernel. This regularisation property allows to deduce the large time behaviour of the
measure-valued solutions from the asymptotic behaviour of their absolutely contin-
uous, with respect to the Lebesgue measure, component. We apply the results to a
model of cell growth and fission and to a model of waning and boosting of immunity.
For both models we relate the renewal equation (RE) to the partial differential equa-
tion (PDE) formulation and draw conclusions about the asymptotic behaviour of the
solutions of the PDEs.

Keywords: Measure-valued solutions; Asynchronous exponential growth; Laplace trans-
form; Waning and boosting of the level of immunity; Cell growth and fission model

1 Introduction

Models of physiologically structured populations can take various forms. If the individ-
ual states are discrete stages in which individuals sojourn for an exponentially distributed
amount of time, then it is natural to formulate the model at the population level as a
system of ordinary differential equations describing the rate of change of the number of
individuals in the different stages [18], [42]. If the individual states form a continuum, like
in e.g. age-size structured populations, there are several popular modelling approaches.

A very natural, and historically the oldest, approach is to formulate an integral equa-
tion of renewal type for the population birth rate. The method is based on the observation
that those who are born at the current time are the children of individuals who were them-
selves born in the past, have survived up to the current time and give birth at the current
time. This approach was formalised by Lotka [31] and Sharpe and Lotka [39] for age
structured populations, using ideas going back to Euler [17].

Another way to model the dynamics of structured populations is to first write down a
partial differential equation (PDE) of transport-degradation type describing development
(movement in the individual state space) and survival. After that, the PDE is augmented
by a rule for reproduction. This can either lead to extra non-local terms in the PDE,
like in models of individuals reproducing by fission, or to non-local boundary conditions,
like in age-size structured models in which newborns enter the individual state space at
the boundary where age is zero. The PDE-approach was first introduced by McKendrick
[33] for age-structured populations and later adapted to age-size-structured populations
by Tsuchiya et al. [44], Bell and Anderson [3] and others. For a data oriented discrete
time variant, see [16] and [9].

Here we focus on the integral equation for the population birth rate, which in general
is a measure representing the rate at which individuals are born in different subsets of
the individual state space. If there are no dependencies between individuals such as
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competition for resources, that is, if the environmental condition is given, then the integral
equation is linear and of renewal type. Here we assume that the environmental condition
is constant in time.

In a recent paper, [19], we considered the question when such a renewal equation
can be reduced to a one dimensional renewal equation in the sense that the measure-
valued solution of the original equation can be recovered from the solution of the one
dimensional reduction. In the present paper we analyse the renewal equation when a
different, less restrictive, assumption on the kernel is satisfied and prove asynchronous
exponential growth/decline for the solution of the renewal equation.

Our interest in measure-valued solutions is motivated by the fact that it allows to
consider in a unified way the case in which Ω is a discrete set and the case in which
we have a continuum of states. Moreover, considering measure-valued solutions for REs
allows us to draw the connection with measure-valued solutions of PDEs, that have gained
much interest in the last years, see for instance [15].

We apply our results to two concrete population models: a model of cell growth and
fission (into equal or unequal parts) and a model of waning and boosting of the immunity
level. As anticipated above, these models can be also formulated as PDEs, see (6.2), (6.1),
(6.11) and could also be analysed in the PDE framework as has been done in [36], [5], [8].

The aim of this paper is twofold. On one hand we reiterate the message presented in
[19], i.e., renewal equations are suitable when dealing with measure-valued solutions. The
reason is that the existence and uniqueness of their solution can be proven constructively
as in the case of scalar equations and, moreover, since renewal equations are integral
equations, no regularity assumption with respect to the time variable is required for the
concept of solution. This is in contrast with what happens in the PDE framework, where it
is typically necessary to work with weak solutions in the measure sense, i.e., weak solutions
of the dual equation, see (7.4).

The second aim of the paper is to provide applicable techniques, based on the work pre-
sented in [26] and [28], to study the asymptotic behaviour of the measure-valued solutions
of renewal equations.

In the case of age-structured populations the relationship between the renewal equation
and PDE approaches is well understood and discussed in an abstract setting in [13]. In the
case of size-structured populations the relationship between the two formulations has been
investigated in [7] and [2]. In the closing section of the present paper we show that the
measure-valued solutions of the renewal equation yield a solution of a corresponding PDE
and we deduce the asymptotic behaviour of the solution of the PDE from the behaviour
of the solution of the RE.

The paper is organised as follows: in Section 2 we provide conditions on the kernel
that guarantee the existence of a unique solution for the renewal equation. In Section 3
we introduce the main assumption of this work: the kernel has a regularising effect on the
initial condition. We also motivate heuristically the assumption.

In Section 4 we prove asynchronous exponential growth for the solution of the renewal
equation when the kernel satisfies the assumption presented in Section 3. We do this
by adapting the methods presented in [26] and [28]. The aim of Section 5 is to show
that kernels satisfying the regularisation assumption arise in applications. We analyse the
corresponding models in Section 6. Finally, as anticipated above, Section 7 is devoted to
the connection between REs and PDEs.

In Appendix A we collect explanations of the notational conventions, while in Appendix
B we collect results on the existence of a unique solution for the PDE that corresponds to
the renewal equation we study.
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2 The Renewal Equation: existence and uniqueness of the
solution

In this paper we study linear physiologically structured population models that can
be formalised via a renewal equation with a measure-valued solution. More precisely, we
consider a population of individuals characterised by a structuring variable, i-state. We
assume that the individual state evolves in time due to different individual level mech-
anisms that might be continuous and deterministic, as is growth, or discontinuous and
stochastic, as is fission.

We denote with Ω the set of the possible i-states and we assume that Ω is a Borel
subset of Rn. The set of the possible states at birth is Ω0 ⊂ Ω.

We denote with B(t, ω) the population birth rate, that is the rate at which individuals
appear in the population with state in the set ω ∈ B(Ω0) at time t. Note that when an
individual jumps from state A to another state B, we will say that an individual with
state A has died and that an individual with state B is born. Likewise, in the case of cell
fission, we consider the disappearance of the mother as ‘death’ and the appearance of the
two daughters as ‘birth’.

If we assume that the population distribution at time zero is a given datum M0 ∈
M+,b(Ω), then we deduce that B solves

B(t, ω) =

∫ t

0

∫
Ω0

K(a, ξ, ω)B(t− a, dξ)da+B0(t, ω) t > 0, ω ∈ B(Ω0) (2.1)

where K(t, ξ, ω) is interpreted as the rate at which an individual, having state ξ time t
ago, gives birth to an individual with state in the set ω and

B0(t, ω) :=

∫
Ω
K(t, x, ω)M0(dx). (2.2)

Here we repeat the definition of locally bounded kernels, and of their convolution, from
[19], but we refer to the Appendix of that paper for the proofs of the results presented
below.

Definition 2.1 (Locally bounded kernel). A locally bounded kernel is a positive function
K : R+ × Ω× B(Ω0)→ R+ with the following properties

1. for every (a, ξ) ∈ R+ × Ω, K(a, ξ, ·) ∈M+(Ω0) (space of positive Borel measures)

2. for every ω ∈ B(Ω0), the function

(a, ξ) 7→ K(a, ξ, ω), (a, ξ) ∈ R+ × Ω

is measurable (with respect to the product Borel σ-algebra).

3. for any T > 0
sup

(a,ξ)∈[0,T ]×Ω
K(a, ξ,Ω0) <∞.

The middle argument ξ of K ranges over all of Ω only in connection with the initial
condition, cf. (2.2). In connection with births it ranges over Ω0. We therefore define Bloc,
the set of the locally bounded kernels, as the set of kernels defined on R+ × Ω0 × B(Ω0)
such that the properties of Definition 2.1 hold with ξ restricted to Ω0.

Definition 2.2 (Convolution product of kernels). We define the convolution product of
K1,K2 ∈ Bloc, as

(K2 ∗K1)(t, x, ω) :=

∫ t

0

∫
Ω0

K2(t− s, ξ, ω)K1(s, x, dξ)ds. (2.3)
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Definition 2.3 (Semiring). A semiring R is a set endowed with two binary operations,
addition + and multiplication ∗, such that

• (R,+) is a commutative monoid with identity element 0: i.e. for every element
a, b, c ∈ R we have that (a + b) + c = a + (b + c), for every a, b ∈ R we have that
a+ b = b+ a and for every a ∈ R we have that a+ 0 = a;

• (R, ∗) is a semigroup: for every a, b, c ∈ R we have that (a ∗ b) ∗ c = a ∗ (b ∗ c);

• multiplication from the right and from the left is distributive over the addition,

• multiplication by 0 annihilates R: for every a ∈ R we have that a ∗ 0 = 0 ∗ a = 0.

Lemma 2.4 (Properties of the convolution). The convolution product ∗ of two locally
bounded kernels is a locally bounded kernel. The set Bloc, equipped with the sum and with
the convolution product ∗, is a semiring.

Unlike the classical convolution of scalar functions, the convolution ∗ defined by (2.2)
is not commutative. Moreover, (Bloc, ∗) is a semigroup, but not a monoid. The reason is
that the candidate identity element 1 is a Dirac measure in the time/age variable, indeed
1(t, x, ω) = δ0(t)χω(x). Hence 1 does not belong to Bloc.

Definition 2.5. X denotes the set of functions f : R+×B(Ω0)→ R+ such that for every
a ∈ R+, f(a, ·) is a measure, the function f(·, ω) is measurable for every ω ∈ B(Ω0) and
f(·,Ω0) is locally integrable.

Definition 2.6. Given K ∈ Bloc and f ∈ X , we denote with LKf the convolution of K
and f , defined by

(LKf)(t, ω) :=

∫ t

0

∫
Ω0

K(t− σ, x, ω)f(σ, dx)dσ t ≥ 0 ω ∈ B(Ω0). (2.4)

Lemma 2.7. If K ∈ Bloc, then the operator LK is a linear operator from X to itself. If
K1,K2 ∈ Bloc, then LK2LK1 = LK2∗K1 .

We now interpret (2.1) as the equation B = LKB+B0 with given B0 ∈ X and unknown
B ∈ X .

Proposition 2.8. Let K ∈ Bloc and B0 ∈ X . Then, there exists a unique solution B of
equation (2.1) and it is given by

B = B0 + LRB0 (2.5)

where R ∈ Bloc is the resolvent of the kernel K defined by R =
∑∞

n=1K
∗n where K∗1 = K

and for every n ≥ 2
K∗n = K∗(n−1) ∗K.

We deduce that, if K is a locally bounded kernel and if B0 is given by (2.2), where
M0 ∈M+,b(Ω), then B0 ∈ X and equation (2.1) has a unique solution.

3 Reduction to densities

In this subsection we present the assumptions on the kernel K that allow us to study
the asymptotic behaviour of the solution of equation (2.1) by studying the asymptotic
behaviour of the density of its non-singular component. We start with an heuristic expla-
nation of the simplification achieved in this manner.
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We can rewrite equation (2.1) in the following translation invariant form

B(t, ω) =

∫ ∞
0

∫
Ω0

K(a, ξ, ω)B(t− a, dξ)da (3.1)

where for every ω ∈ B(Ω0), B(θ, ω)dθ := Φ(dθ, ω) if θ < 0 with Φ a given measure. We
allow Φ to be a measure with respect to the time-of-birth variable simply because it does
not harm. The fact that equation (3.1) is translation invariant and linear suggests to look
for exponential solutions of the form:

B(t, ω) := eλtΨ(ω) for every t ∈ R. (3.2)

We want to investigate whether such exponential solutions exist and whether they are
attractive, i.e., describe the long-term behaviour of B.

To guarantee the convergence of the relevant integrals we make the following assump-
tion.

Assumption 3.1. There exists a z0 < 0 and a constant C > 0 such that for every t ≥ 0

sup
x∈Ω0

K(t, x,Ω0) ≤ Cez0t. (3.3)

We say that a locally bounded kernel that satisfies Assumption 3.1 is a z0-bounded
kernel.

Substituting the Ansatz (3.2) in (3.1) we obtain the following non-linear eigenproblem

Ψ(ω) =

∫ ∞
0

∫
Ω0

e−λaK(a, ξ, ω)Ψ(dξ)da. (3.4)

So we need to study the properties of the operator

Ψ 7→
∫ ∞

0

∫
Ω0

e−λaK(a, ξ, ·)Ψ(dξ)da.

that mapsM+,b(Ω0) into itself. In particular we would like to prove its compactness, but
this is a very difficult task when we deal with spaces of measures, see for instance [43].

Therefore we introduce regularity assumptions on K that allow us to reduce the non-
linear eigenproblem (3.4) to measures that are absolutely continuous with respect to the
Lebesgue measure, so to an associated non-linear eigenproblem in L1(Ω0). It is easiest to
assume that for each t and x the measure K(t, x, .) has a density. But as we shall see in
Section 5, there are natural examples in which the ‘smoothing’ needs one more step.

Assumption 3.2. For every x ∈ Ω0, every t ≥ 0 the measure

ω 7→
∫ t

0

∫
Ω0

K(t− a, ξ, ω)K(a, x, dξ)da (3.5)

is absolutely continuous with respect to the Lebesgue measure. Moreover, for every t ≥ 0
and for every f ∈ L1(Ω0) the measure

ω 7→
∫

Ω0

K(t, x, ω)f(x)dx (3.6)

is absolutely continuous with respect to the Lebesgue measure.

Definition 3.3. We say that K is a z0-bounded regularizing kernel if it is a z0-bounded
kernel that satisfies Assumption 3.2.
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The interpretation of the absolute continuity with respect to the Lebesgue measure
of (3.5) is that, when we focus on an individual with state x and look t time later at
the distribution of the state-at-birth over Ω0 of grandchildren born at that time, it has
a density. So we require that the distribution concentrated in x is, by the combination
of growth, survival and twice reproduction, transformed into an absolutely continuous
distribution.

On the other hand, the absolute continuity, with respect to the Lebesgue measure, of
(3.6), guarantees that, if the distribution of the states at birth of a certain generation is
absolutely continuous with respect to the Lebesgue measure, then the same is true for the
future generations.

We refer to Appendix A for an explanation of the notation used in the formulation of
the following theorem (whose proof is given at the end of the current section).

Theorem 3.4. Let K be a z0-bounded regularizing kernel and let B0 be given by (2.2) as
a function of K and M0 ∈M+,b(Ω). Then the solution B of (2.1) satisfies

‖B(t, ·)s‖ ≤ c1e
z0t + c2te

tz0 t > 0 (3.7)

where ‖ · ‖ = ‖ · ‖TV = ‖ · ‖[ and c1, c2 > 0.

Since the operator LK is linear, equation (2.1) can be rewritten as

BAC +Bs = LKBAC + LKBs +BAC
0 +Bs

0 (3.8)

Equation (3.8) can be decoupled in a system of two equations

BAC = LKBAC + (LKBs)AC +BAC
0 (3.9)

and
Bs = (LKBs)s +Bs

0. (3.10)

Thanks to Theorem 3.4 we can focus on the asymptotic behaviour of the density of BAC

to gain information regarding B.
We next present a definition and two lemmas which will be applied in the proof of

Theorem 3.4.

Definition 3.5. I is the set of the locally bounded kernels K such that

K(t, x, ·) ∈M+,AC(Ω0)

for every t ≥ 0 and x ∈ Ω0.

Definition 3.6 (Right semi-ideal). Let R be a semiring with the binary operations + and
∗. A set J ⊂ R is a right semi-ideal if (J ,+) is a monoid and for every i ∈ J and every
K ∈ R we have that j ∗K ∈ J .

Lemma 3.7. The set I is a right semi-ideal. Moreover, if K ∈ I, then for every t ≥ 0
and every f ∈ X , we have that (LKf)(t, ·) ∈M+,AC(Ω0).

Proof. Assume that K2 ∈ I and that K1 ∈ Bloc. Consider a set A that has Lebesgue
measure equal to zero. Since K2 ∈ I, we deduce that, for every t ≥ 0 and x ∈ Ω0,

K2(t, x,A) = 0.

By Definition 2.2 and formula (2.3), we deduce that, for every t ≥ 0 and x ∈ Ω0

(K2 ∗K1)(t, x,A) = 0.

We conclude that for every t ≥ 0 and x ∈ Ω0 the measure (K2 ∗K1)(t, x, ·) is absolutely
continuous with respect to the Lebesgue measure, henceK2∗K1 ∈ I. The second statement
of the proof follows analogously from formula (2.4)
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Lemma 3.8. If K satisfies Assumption 3.2, then
∑∞

n=2K
∗n ∈ I.

Proof. Thanks to Assumption 3.2 we know that K ∗K ∈ I. Since I is a right-ideal we
deduce that, if K∗n ∈ I, then K∗n ∗ K = K∗(n+1) ∈ I. We conclude by induction that∑∞

n=2K
∗n ∈ I.

Proof of Theorem 3.4. Since B solves (2.1), then

B = B0 + LRB0 = B0 + LKB0 + L∑∞
n=2 K

∗nB0.

Thanks to Lemma 3.8 we deduce that

Bs = Bs
0 + LKBs

0.

As a consequence of the fact that for every t ≥ 0, B0(t,Ω0) ≤ c1e
z0t and (3.3), we deduce

that there exists c2 > 0 such that

LKB0(t,Ω0) ≤ c2te
z0t for every t ≥ 0,

hence Bs(t,Ω0) ≤ c1e
z0t + c2te

z0t.

4 Asymptotic behaviour of the solution of the renewal equa-
tion

In this section we denote with X the Banach space L1(Ω0) endowed with the L1 norm
‖ · ‖1. Moreover we denote with X+ the cone of the positive functions in L1(Ω0) and we
call the bounded linear operator L : X → X positive if L : X+ → X+.

To study the asymptotic behaviour of the solution B of (2.1) we adopt the following
strategy:

• in Section 4.1 we introduce the renewal equation for the density of BAC and we
prove that it has a unique solution;

• in Section 4.2 we perform the Laplace transform to all the terms in the renewal
equation for the density of BAC . We derive in this way a non-linear eigenproblem;

• in Section 4.3 we present some results on positive operators that are important to
study the non-linear eigenproblem derived in (4.2);

• in Section 4.4 we prove that there exists a unique, up to renormalisation, real eigen-
couple solving the non-linear eigenproblem derived in Section 4.2;

• in Section 4.5 we adapt the approach presented by Heijmans in [26] to prove that the
solution of the non-linear eigenproblem is attractive, i.e., we deduce the asymptotic
behaviour of the density of BAC ;

• in Section 4.6 we sketch a different approach to derive the asymptotic behaviour of
the density of BAC ;

• in Section 4.7 we show that the behaviour of the density of BAC determines the
behaviour of B.
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4.1 Renewal equation for the density

Definition 4.1. A positive locally bounded operator kernel is a map K̃ : R+ → L(X) such
that

• K̃(a) is a positive operator for every a ≥ 0;

• the map a 7→ K̃(a)f is Bochner measurable for every f ∈ X ;

• for every T ≥ 0

sup
a∈[0,T ]

‖K̃(a)‖op = sup
a∈[0,T ]

sup
{f∈X:‖f‖1≤1}

‖K̃(a)f‖1 <∞. (4.1)

Since in this paper we will only deal with operator kernels that are positive and locally
bounded, in the following we use the term operator kernel to refer to locally bounded
operator kernels.

Lemma 4.2. Let K̃ be an operator kernel. Let b0 : R+ → X be Bochner measurable and
locally bounded. Then the equation

b(t) =

∫ t

0
K̃(t− a)b(a)da+ b0(t), t ≥ 0 (4.2)

has a unique solution b : R∗+ → X, which is locally bounded and Bochner measurable.

Proof. The main step of the proof consists in proving the existence of the resolvent of K̃.
To this end, we aim at proving that

sup
a∈[0,T ]

sup
{f∈X:‖f‖1≤1}

‖R̃(a)f‖1 = sup
a∈[0,T ]

sup
{f∈X:‖f‖1≤1}

‖
∞∑
n=1

K̃?n(a)f‖1 <∞

where for every f ∈ X and every a ≥ 0

K?1(a)f := K̃(a)f

and for every n ≥ 2

K̃?n(a)f :=

∫ a

0
K̃?(n−1)(a− s)K̃(s)fds.

To ensure that the resolvent is well defined, we need to prove that, if Ki are operator
kernels, then K1 ? K2 : R+ → L(X), defined by

K1 ? K2 : t 7→
(
f 7→

∫ t

0
K1(t− a)K2(a)fda

)
is also an operator kernel. Inequality (4.1) follows by the boundedness properties of K1

and K2, while the Bochner measurability can be proven by an adaptation of the proof of
the measurability of the classical convolution product. See the proof of Theorem 1 in [22]
for more details.

Hence, if

sup
{f∈X:‖f‖1≤1}

∥∥∥∥∫ T

0
K̃(s)fds

∥∥∥∥
1

< 1

then for every 0 ≤ a ≤ T

sup
{f∈X:‖f‖1≤1}

‖R̃(a)f‖1 = sup
{f∈X:‖f‖1≤1}

∥∥∥∥∥
∞∑
n=1

K̃?n(a)f

∥∥∥∥∥
1

≤
∞∑
n=1

(
sup

{f∈X:‖f‖1≤1}

∥∥∥∥∫ T

0
K̃(s)fds

∥∥∥∥
1

)n
<∞.
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If, instead,

sup
{f∈X:‖f‖1≤1}

∥∥∥∥∫ T

0
K̃(a)fda

∥∥∥∥
1

≥ 1

the above argument can be adapted by considering a scaled version of K̃, K̃λ(a) :=
e−λaK̃(a), with λ chosen such that

sup
{f∈X:‖f‖1≤1}

∥∥∥∥∫ T

0
K̃λ(a)fda

∥∥∥∥
1

< 1.

The uniqueness of the solution of equation (4.2) follows by standard arguments of renewal
theory. See for instance [22] or [23, pp. 233-234].

4.2 Laplace transformed equation

In this section, we make the following assumptions on K̃ and b0.

Assumption 4.3. K̃ is an operator kernel. Moreover, there exists a z0 < 0 and a constant
C > 0 such that for every t ≥ 0

‖K̃(t)f‖1 ≤ Cez0t‖f‖1. (4.3)

Assumption 4.4. b0 : R+ → X is a Bochner measurable function and there exists a c > 0
such that for every t ≥ 0

‖b0(t)‖1 ≤ cez0t + c1te
z0t + c2t

2ez0t. (4.4)

We denote with b the solution of equation (4.2).

Lemma 4.5. There exists a β ∈ R such that b(t)e−λt is integrable over R+ for every
λ > β.

Proof. This proof is an adaptation of the proof of Lemma 3.4 in [26]. Thanks to the fact
that K̃ satisfies (4.3) and b0 satisfies (4.4), we know that there exists a β ∈ R such that
both ∫ ∞

0
e−βa sup

{f∈X:‖f‖1=1}

∥∥∥K̃(a)f
∥∥∥

1
da = k1 < 1

and
sup
t≥0

e−βt‖b0(t)‖1 = k2 <∞

hold. Since b satisfies (4.2), then

e−βt‖b(t)‖1 ≤ e−βt
∥∥∥∥∫ t

0
K̃(a)b(t− a)da

∥∥∥∥
1

+ e−βt‖b0(t)‖1

≤
∥∥∥∥∫ t

0
e−βaK̃(a)e−β(t−a)b(t− a)da

∥∥∥∥
1

+ k2

Consider the map M : R+ → R+ defined by M(t) := maxa∈[0,t] e
−βa‖b(a)‖1 then we

deduce that for every t > 0

M(t) ≤M(t)k1 + k2

this implies that M(t) ≤ k2
1−k1

. We deduce that ‖b(t)‖1 ≤ ceβt for a positive constant
c > 0, and the desired conclusion follows.
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As a consequence the Laplace transform of b,

b̂(λ) :=

∫ ∞
0

e−λtb(t)dt

is well defined for every λ ∈ C with Reλ > β.
The next generation operator corresponding to the operator kernel K̃ is the operator

K0 : X → X defined by

K0f :=

∫ ∞
0

K̃(a)fda. (4.5)

Notice that the integral in (4.5) is guaranteed to converge thanks to the fact that K̃
satisfies (4.3).

Motivated by the interpretation in the context of population models, we call

R0 := ρ(K0), (4.6)

where ρ(K0) denotes the spectral radius of K0, basic reproduction number.
We denote with Kλ the discounted next generation operator

Kλf :=

∫ ∞
0

e−λaK̃(a)fda. (4.7)

Notice that if λ ∈ C then Kλ is a complex-valued function. This is the reason why we
introduce the concept of complexification of a Banach space and of a linear operator.

We denote with XC the set of the functions f : Ω0 → C such that f = f1 + if2 for
some f1 ∈ X and f2 ∈ X.

Definition 4.6. The complexification of a linear operator T : X → X is the operator
T : XC → XC defined by

T (f + ig) = Tf + iTg.

The operator Kλ is well defined for every λ ∈ C with Reλ > z0. The same holds for

b̂0(λ) :=

∫ ∞
0

e−λtb0(t)dt.

The Laplace transformed version of equation (4.2), is

b̂(λ) = b̂0(λ) + Kλb̂(λ) Reλ > z0. (4.8)

Let
Σ := {λ ∈ ∆ : 1 ∈ σ(Kλ)} (4.9)

where
∆ := {λ ∈ C : Reλ > z0} (4.10)

For λ ∈ C \ Σ it is possible to write

b̂(λ) = (I −Kλ)−1 b̂0(λ). (4.11)

As will be explained later, applying the inverse Laplace transform formula to b̂, we deduce
the asymptotic behaviour of b.

It is then clear that the first fundamental step to deduce the asymptotic behaviour of
b̂ is to study the non-linear eigenproblem

f = Kλf, (4.12)

which is, in a sense, the differentiated version of (3.4).
If the non-linear eigenproblem (4.12) has a unique, upon normalisation of f , real

solution (λ, f) = (r, ψr), then r is called Malthusian parameter, while the eigenvector ψr
is called the stable distribution.
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4.3 Compact and non-supporting positive operators

The aim of this section is to present the results on positive compact and non-supporting
operators that we need to study the non-linear eigenproblem (4.12). To this end we
introduce the following notation: X∗+ is the positive cone in the dual of X∗, represented
by the set L∞+ (Ω0).

We start this section by introducing the concept of non-supporting operators.

Definition 4.7 (Non-supporting operator). Let L : X → X be a positive bounded linear
operator. The operator L is non-supporting with respect to X+ if for every ψ ∈ X+, ψ 6= 0
and F ∈ X∗+, F 6= 0, there exists an integer p such that for every n ≥ p we have that
〈F,Lnψ〉 > 0.

The following result is fundamental for our purposes as it provides important informa-
tion regarding the spectral radius of positive non-supporting operators. We do not write
the statement in its most general form, i.e., for a generic Banach space E with certain
properties, but we state the result for E = X = L1(Ω0).

Theorem 4.8 ([32] and [38]). Let T : X → X be positive and non-supporting (cf. Defini-
tion 4.7) and suppose that ρ(T ) is a pole of the resolvent, then

1. ρ(T ) > 0 and ρ(T ) is an algebraically simple eigenvalue of T .

2. The corresponding eigenvector ψ is almost everywhere strictly positive.

3. The corresponding dual eigenvector F is strictly positive, i.e.〈F, φ〉 > 0 for every
φ ∈ X+ with φ 6= 0.

4. If {λ ∈ σ(T ) : |λ| = ρ(T )} consists only of poles of the resolvent, then it consists
only of λ = ρ(T ) and all the remaining elements λ ∈ σ(T ) satisfy |λ| < ρ(T ).

The following result, proven by Marek, [32, Theorem 4.3 and Theorem 4.5], allows
us to compare the spectral radius of two positive operators by comparing the operators.
Again, we do not write the statement in its most general form, but we state the result for
E = X = L1(Ω0) and for the classes of operators we are interested in.

Proposition 4.9. Suppose that S, T : X → X are positive, bounded, linear operators.
Then, the following holds:

1. if S ≤ T , that is if T − S : X+ → X+, then ρ(S) ≤ ρ(T );

2. if T, S are non-supporting and compact and S ≤ T with S 6= T , then ρ(S) < ρ(T ).

4.4 The Malthusian parameter r

In this section we make again Assumption 4.3 on K̃ and Assumption 4.4 on b0. We
denote with Kλ the discounted next generation operator, (4.7). We recall that ∆ is given
by (4.10).

The aim of this section is to prove that there exists a unique, up to renormalisation,
real solution to the non-linear eigenproblem (4.12).

Theorem 4.10. Assume that for every λ ∈ ∆ ∩ R the positive operator Kλ is non-
supporting and compact. Then, there exists a unique real eigencouple (r, ψr), with ψr ∈ X+

and ‖ψr‖1 = 1, that solves equation (4.12). If R0 > 1 then r > 0, if R0 = 1 then r = 0, if
R0 < 1 then r < 0.

To prove Theorem 4.10 we follow the approach presented by Heijmans in [26]. The
main steps of the proof consist in

11



1. proving that ρ(Kλ) is a positive eigenvalue of Kλ and that its corresponding eigen-
function is strictly positive: to this end we apply Theorem 4.8, hence we need the
operator Kλ to be compact and non-supporting;

2. proving that the function λ 7→ ρ(Kλ) is strictly decreasing and continuous and that
limλ→z0 ρ(Kλ) ≥ 1 while limλ→∞ ρ(Kλ) = 0. To this end we will employ step 1 and
Proposition 4.9.

Step 1 is made in Lemma 4.11 and Step 2 is made in Proposition 4.12 and Proposition
4.13.

Lemma 4.11. Assume that the operator Kλ is compact and non-supporting for every
λ ∈ ∆ ∩ R. Then

1. the spectral radius of Kλ, denoted with ρ(Kλ), is a positive, algebraically simple
eigenvalue of Kλ;

2. the corresponding eigenvector ψλ ∈ X, with normalisation ‖ψλ‖1 = 1, satisfies
ψλ(x) > 0 for a.e. x ∈ Ω0

3. the dual eigenfunctional Fλ ∈ X∗, such that K∗λFλ = ρ(Kλ)Fλ where K∗λ is the dual
operator of Kλ, is strictly positive, i.e. 〈Fλ, φ〉 > 0 for every φ ∈ X+ with φ 6= 0.

Proof. By the fact that Kλ is positive we deduce that ρ(Kλ) ∈ σ(Kλ). Since Kλ is also
compact we deduce that the spectral radius is a pole of the resolvent. Hence, if we
additionally assume that Kλ is non-supporting, we can apply Theorem 4.8 and deduce the
desired conclusion.

Proposition 4.12. Assume Kλ to be compact and non-supporting for every λ ∈ ∆ ∩ R.
The map λ 7→ ρ(Kλ) is decreasing and continuous for λ ∈ [z0,∞).

Proof. To prove that the function λ 7→ ρ(Kλ) is decreasing it is enough to notice that if
λ2 > λ1, then for every f ∈ X+ we have that (Kλ1 −Kλ2) f belongs to X+. Hence, by
Proposition 4.9 we deduce that 0 < ρ(Kλ2) < ρ(Kλ1) by Theorem 4.8.

To prove the continuity notice that thanks to Lemma 4.11 we have that for every

λ > z0 it holds that
〈K∗λFλ,ψµ〉
〈Fλ,ψµ〉 =

ρ(Kλ)〈Fλ,ψµ〉
〈Fλ,ψµ〉 = ρ(Kλ) and similarly that

〈FλKµ,ψµ〉
〈Fλ,ψµ〉 =

ρ(Kµ)〈Fλ,ψµ〉
〈Fλ,ψµ〉 = ρ(Kµ). Hence

ρ(Kλ)− ρ(Kµ) =
〈K∗λFλ, ψµ〉
〈Fλ, ψµ〉

− 〈FλKµ, ψµ〉
〈Fλ, ψµ〉

=
〈
(
K∗λ −K∗µ

)
Fλ, ψµ〉

〈Fλ, ψµ〉
≤ ‖K∗λ −K∗µ‖X∗ = ‖Kλ −Kµ‖1.

Therefore, if we prove that limλ→µ ‖Kλ − Kµ‖1 = 0, then we deduce that λ 7→ ρ(Kλ) is
continuous. Since for every x1, x2 ≥ 0 we have |e−x1 − e−x2 | ≤ |x1 − x2|, then∫

Ω0

|Kλf(x)−Kµf(x)|dx ≤
∫

Ω0

∫ ∞
0
|e−λa − e−µa|

∣∣∣K̃(a)f
∣∣∣ (x)dx

≤
∫ ∞

0
|e−λa − e−µa|‖K̃(a)f‖1da ≤ |λ− µ|‖f‖X

∫ ∞
0

aez0ada.

Hence λ 7→ Kλ is continuous and the desired conclusion follows.

Proposition 4.13. Let Kλ be compact and non-supporting for every λ ∈ ∆∩R. If R0 ≥ 1,
then there exists a unique r ≥ 0 such that

ρ(Kr) = 1. (4.13)

If R0 < 1 and there exists a z ∈ [z0, 0) such that ρ(Kz) ≥ 1, then there exists a unique
r < 0 such that (4.13) holds.
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Proof. The map λ 7→ ρ(Kλ) is decreasing and continuous. First of all, in both cases,
R0 < 1 and R0 ≥ 1, we have that ρ(Kλ)→ 0 as λ→∞. To see this, it is enough to notice
that

0 ≤ ρ(Kλ) ≤ ‖Kλ‖op → 0 as λ→∞.

If R0 ≥ 1, then, by the comparison theorem of linear operators, i.e., Proposition 4.9, the
definition of R0 and the continuity of λ 7→ ρ(Kλ) we deduce that there exists a r ≥ 0 such
that (4.13) holds.

When R0 < 1 the proof is similar.

Proof of Theorem 4.10. The proof is a direct consequence of Proposition 4.13 and of the
fact that the spectral radius of Kλ is an eigenvalue when positive.

4.5 Large time behaviour of the density

Most of the results of this section hold thanks to the assumption that the discounted
next generation operator Kλ is non-supporting for real values of λ.

The aim of this section is to prove that the unique real eigensolution of (4.12) is
attracting. Namely we aim at proving the following theorem.

Theorem 4.14. Assume that for every λ ∈ ∆ ∩ R the operator Kλ is non-supporting
and that its complexification Kλ is compact for every λ ∈ ∆. Additionally, assume that if
λ ∈ Σ, where Σ is given by (4.9), and λ 6= r, then Reλ < r. Let (r, ψr) be the unique real
normalised eigencouple solving (4.12). Then there exists v > 0 such that

‖e−rtb(t)− cψr(·)‖1 ≤ Le−vt, t > 0

for some constants L, c > 0.

To prove Theorem 4.14 we follow the approach presented by Heijmans in [26]. We
need to prove that the exponential solution of the form (3.2) with λ = r and ψ = ψr, is
attracting. We can divide the proof in the following main steps.

1. We prove that (I−Kλ)−1 is meromorphic on the half-plane ∆ and that it has a pole
of order 1 in λ = r. The residue has the form: R−1ψ = C(ψ)ψr where C(ψ) > 0.

2. We prove that there exists a spectral gap: there exists an ε, with 0 < ε < r, such
that Reλ ≤ r − ε for every λ ∈ Σ. To this end we apply the Riemann Lebesgue
Lemma (i.e. Lemma 4.18), and we exploit the fact that for every λ ∈ Σ we have
that Reλ < r. The results proven in step 1 will also be used.

3. We apply the Laplace transform inversion theorem (i.e. Lemma 4.22), to deduce the
behaviour of b. To this end we apply some results of complex analysis (such as the
Cauchy Theorem) and the results of the previous steps.

Step 1 is made in Proposition 4.15 and 4.19. Step 2 is made in Lemma 4.17. Finally step
3 is made in Proposition 4.21 and Theorem 4.14.

Proposition 4.15. Assume that the positive operator Kλ is compact for every λ ∈ ∆.
The function λ 7→ (I −Kλ)−1 is meromorphic on ∆.

To prove this proposition we use the following result due to Steinberg and proven in
[41].

Theorem 4.16. Let Γ be a subset of the complex plane which is open and connected. If
{T (λ) : λ ∈ Γ} is an analytic family of compact operators on XC, then either I − T (λ) is
nowhere invertible in Γ or (I − T (λ))−1 is meromorphic in Γ.
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Proof of Proposition 4.15. From the the definition of Kλ we know that

‖Kλ‖op ≤ ‖KReλ‖op → 0 as Reλ→∞.

Hence (I − KC
λ ) is invertible for Reλ large enough. Since Kλ is compact for each real λ

with λ > z0 and since λ 7→ Kλ is analytic, we can apply Theorem 4.16 to deduce that
λ 7→ (I −Kλ)−1 is meromorphic.

Lemma 4.17. Let Kλ be non-supporting for every λ ∈ ∆ ∩ R and compact for every
λ ∈ ∆. Let r be the Malthusian parameter. Moreover, assume that if λ ∈ Σ, where Σ is
given by (4.9), and λ 6= r, then Reλ < r. There exists an ε > 0 such that for every λ ∈ Σ
with λ 6= r, Reλ ≤ r − ε.

The following lemma is taken from [27], see Theorem 6.4.2, and will be applied to
prove Lemma 4.17.

Lemma 4.18 (Riemann-Lebesgue). Let f ∈ L1((0,∞), XC) and let f̂ be its Laplace
transform. Then lim|η|→∞ f̂(ξ+ iη) = 0, uniformly for ξ in bounded closed subintervals of
(0,∞).

Proof of Lemma 4.17. Thanks to Lemma 4.18 we have that for every r < r there exists
an η0 > 0 such that ‖Ks+iη‖op < 1, hence (I −Ks+iη)

−1 is analytic, for every s ∈ [r, r]
and |η| > η0. Since the function (I −Kλ)−1 is meromorphic, we deduce that the number
of its poles contained in the compact set {λ ∈ C : |Imλ| ≤ η0 and Reλ ∈ [r, r]} is finite.
This implies that the set Σ ∩ {λ ∈ C : Reλ ∈ [r, r]} has a finite number of elements.
Thanks to the assumption of Lemma 4.17, the only λ ∈ Σ with Reλ = r is λ = r. From
this we deduce that there exists an ε > 0 such that Reλ ≤ r − ε for every λ ∈ Σ with
λ 6= r.

Since, from Proposition 4.15, we know that Kλ is analytic in a neighbourhood of r we
can write its Taylor expansion:

Kλ =

∞∑
n=0

(λ− r)nKn. (4.14)

Moreover, the map Rλ = (I − Kλ)−1 can be represented by a Laurent series around the
pole r of order p ≥ 1:

Rλ =

∞∑
n=−p

(λ− r)nRn. (4.15)

Proposition 4.19. Let Kλ be non-supporting for every λ ∈ ∆∩R and let Kλ be compact
for every λ ∈ ∆. Moreover assume that if λ ∈ Σ and λ 6= r, then Reλ < r. Let r
be the Malthusian parameter, ψr be the stable distribution, Fr be the corresponding dual
eigenfunction. The function λ 7→ (I −Kλ)−1 has a pole of order one in λ = r and the
residue, R−1, is given by

R−1ψ =
〈Fr, ψ〉

〈Fr,−K1ψr〉
ψr, ψ ∈ X.

Proof. The proof of this proposition is the same as the proof of Theorem 7.1 in [26]. The
fact that

Rλ(I −Kλ) = (I −Kλ)Rλ = I, (4.16)

implies, together with (4.14) and (4.15) that

R−p(I −K0) = (I −K0)R−p = 0. (4.17)
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From (4.17) and from the fact that K0 = Kr we deduce that the range of R−p is equal to
{γψr : γ ∈ C}. Similarly we deduce that the range of R∗−p, which is the dual operator of
R−p, is equal to {γFr : γ ∈ C}. As a consequence there exist Φ and H solving

R−pΦ = ψr and R∗−pH = Fr (4.18)

respectively.
From the identity (4.16) and formula (4.15) and (4.14) we can also deduce that if p > 1,

then
−R−pK1 +R−p+1(I −K0) = 0.

While, if p = 1 we have that

−R−1K1 +R0(I −K0) = I.

Combining these two last equations with (4.17) we deduce that if p > 1 then

R−pK1R−p = 0 (4.19)

while if p = 1
R−1K1R−1 = −R−1. (4.20)

As a consequence of (4.19) and (4.18), if p > 1, then

〈Fr,K1ψr〉 = 〈R∗−pH,K1R−pΦ〉 = 〈H,R−pK1R−pΦ〉 = 0,

which is a contradiction with the fact that Fr strictly positive and −K1ψr =
[
− d
dλKλ

]
r
ψr

is positive. Hence p = 1.
Now let R−1ψ = f(ψ)ψr for some linear functional f. Using the fact that Fr = R∗−1Hr

and (4.20) we deduce that

〈Fr, ψ〉 = 〈R∗−1H,ψ〉 = 〈H,R−1ψ〉 = 〈H,−R−1K1R−1ψ〉 =

〈R∗−1H,−K1 (f(ψ)ψr)〉 = f(ψ)〈R∗−1H,−K1ψr〉 = f(ψ)〈Fr,−K1ψr〉

it follows that f(ψ) = 〈Fr,ψ〉
〈Fr,−K1ψr〉 .

Definition 4.20. The Hardy-Lebesgue class H1(α,XC) is the class of functions g : C →
X, which are analytic in Reλ > α and satisfy the following conditions

sup
ξ>α

∫ ∞
−∞
‖g(ξ + iη)‖1dη <∞ (4.21)

and g(α+ iη) = limξ→α g(ξ + iη) exists a.e. and is an element of L1((−∞,∞), X).

Proposition 4.21. Let Kλ be compact for every λ ∈ ∆ and Kλ non-supporting for every
λ ∈ ∆ ∩ R. Moreover, assume that if λ ∈ Σ and λ 6= r, then Reλ < r. Let r be the
Malthusian parameter. Then b̂ ∈ H1(α,XC) if α > r.

Proof of Proposition 4.21. For each fixed ξ > z0 the map

η 7→ b̂0(ξ + iη)

belongs to L1((−∞,∞), XC), see for instance Theorem 6.3.2 in [27]. From Lemma 4.18
we know that there exists a η0 such that if |η| ≥ η0 then∥∥∥(I −Kξ+iη)

−1
∥∥∥
op
≤ 2.
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Since when ξ > r the function η 7→ (I −Kξ+iη)
−1 is continuous on the compact set

[−η0, η0] it follows that, if ξ > r there exists a constant C(ξ) > 0 such that∥∥∥(I −Kξ+iη)
−1
∥∥∥
op
≤ C(ξ)

for all η ∈ R. Since b̂ is given by (4.11) we deduce, that

‖b̂(ξ + iη)‖1 ≤ C(ξ)‖b̂0(ξ + iη)‖1 for ξ > r and η ∈ R.

As a consequence of the positivity of b and b̂0, we have that for every ξ ≥ α > r

‖b̂(ξ + iη)‖1 ≤ ‖b̂(α+ iη)‖1 ≤ C(α)‖b̂0(α+ iη)‖1 (4.22)

Hence ‖b̂(ξ + iη)‖1 is integrable with respect to η over (−∞,∞) and thanks to (4.22) we
deduce that b̂ satisfies (4.21).

Since the maps λ 7→ (I −Kλ)−1 and λ 7→ b̂0(λ) are analytic when Reλ > r we deduce
that the map λ 7→ b̂(λ) is analytic for Reλ > r. Hence the limit of b̂(ξ + iη) as ξ → α
exists and is equal to b̂(α+ iη). The fact that b̂(α+ i·) ∈ L1((−∞,∞), XC) follows from
inequality (4.22).

The following lemma, useful for the proof of Theorem 4.14, is taken from [20].

Lemma 4.22. Let ĝ ∈ H1(α,XC),(cf. Definition 4.20) then the function

f(t) =
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
eλtĝ(λ)dλ γ ≥ α

is well defined for every t ∈ R, and does not depend on γ. Moreover, f(t) = 0 if t < 0,
while f is continuous in t for t > 0. Finally f̂(λ) = ĝ(λ).

Proof of Theorem 4.14. Also in this case, the proof is very similar to a proof in [26], viz.
the proof of Corollary 8.3. We write the main steps here.

Since the function b̂ belongs to H1(α,XC) for every α > r, we deduce, by Lemma 4.22
and by the uniqueness of the Laplace transform [27, Theorem 6.2.3] that

b(t) =
1

2πi

∫ α+i∞

α−i∞
eλtb̂(λ)dλ. (4.23)

Consider 0 < v < ε where ε is given by Lemma 4.17 and notice that∫ α+iT

α−iT
eλtb̂(λ) =

∮
Γ
eλt ˆb(λ)dλ− lim

T→∞

∫
Γ3

eλtb̂(λ)dλ− lim
T→∞

∫
Γ2

eλtb̂(λ)dλ (4.24)

− lim
T→∞

∫
Γ4

eλtb̂(λ)dλ

where Γ := ∪4
i=1Γi and Γ1 is the segment in the complex plan connecting the point α− iT

to α+iT , Γ2 is the segment connecting α+iT with r−v+iT , Γ3 is the segment connecting
r−v+ iT with r−v− iT and, finally, Γ4 is the segment connecting r−v− iT with α− iT.

From the Cauchy theorem for vector valued functions ([27]), equality (4.24) and Lemma
4.18 and the Laplace inversion formula (4.23), we deduce that

b(t) =
1

2πi

∮
Γ
eλt ˆb(λ)dλ+

1

2πi
lim
T→∞

∫ r−v+iT

r−v−iT
eλtb̂(λ)dλ.
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Figure 1: Graphic representation of the set Γ

By the residue theorem we have that

1

2πi

∮
Γ
eλt ˆb(λ)dλ = Resλ=re

λtb̂(λ) = ertR−1b̂0(r) = ert
〈Fr, b̂0(r)〉
〈Fr,−K1ψr〉

ψr.

We conclude the proof by noting that∥∥∥∥ 1

2πi
lim
T→∞

∫ r−v+iT

r−v−iT
eλtb̂(λ)dλ

∥∥∥∥
1

≤Me(r−v)t

with

M =
1

2π

∫ ∞
−∞

∥∥∥b̂(r − v + iη)
∥∥∥

1
dη

and explaining why ∫ ∞
−∞

∥∥∥b̂(r − v + iη)
∥∥∥

1
dη <∞.

As in the proof of Proposition 4.21 we know that thanks to Lemma 4.18, there exists a
η0 > 0 and a constant C > 0 such that

‖(I −Kr−v+iη)
−1‖op ≤ C

for every η with |η| > η0. On the other hand since the function η 7→ (I − Kr−v+iη)
−1 is

continuous on the compact set [−η0, η0] we deduce that for every η ∈ R

‖(I −Kr−v+iη)
−1‖op ≤ C.

By equality (4.11) we deduce that

‖b̂(r − v + iη)‖1 ≤ C‖b̂0(r − v + iη)‖1.

Since from the proof of Proposition 4.21 we know that for every ξ > z0 the function
η 7→ b̂0(ξ + iη) belongs to L1((−∞,∞), XC)) we deduce, possibly adjusting C, that the
function η 7→ b̂(r − v + iη) belongs to L1((−∞,∞), XC)).

We next present here two sufficient conditions on K̃ that guarantee that for every
λ ∈ Σ, with r 6= λ, we have that Reλ < r. As will be shown in Section 5, either
Assumption 4.23 or Assumption 4.24 can be easily checked for all the model examples we
consider.

Assumption 4.23. There exists a measurable function γ : R+ × Ω0 → R such that for
every x ∈ Ω0 the function a 7→ γ(a, x) is piecewise monotone and there exists a measurable
function c : R+ × Ω0 → R+ such that

K̃(a)ϕ(·) = c(a, ·)ϕ(γ(a, ·)) ∀ϕ ∈ X+ and ∀a ∈ R+.
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Assumption 4.24. There exists a function k̃ : R+ × Ω0 × Ω0 7→ R+, that is measurable
in each variable and such that

sup
a∈[0,T ]

sup
x∈Ω0

∫
Ω0

k̃(a, x, y)dy <∞

and such that

(K̃(a)ϕ)(y) :=

∫
Ω0

k̃(a, x, y)ϕ(x)dx ∀ϕ ∈ X and ∀a ∈ R+.

The aim of the following proposition is to show that each of the preceding two assump-
tions guarantees that Reλ < r for every λ ∈ Σ with λ 6= r.

Proposition 4.25. Let Kλ be compact for every λ ∈ ∆ and non-supporting for every
λ ∈ ∆ ∩ R. Let K̃ satisfy either Assumption 4.23 or Assumption 4.24. Let r be the
Malthusian parameter. If λ ∈ Σ, where Σ is given by (4.9), and λ 6= r, then Reλ < r.

To prove Proposition 4.25 we need the following Theorem, which corresponds to The-
orem 1.39 in [37].

Theorem 4.26. Let ϕ ∈ XC and assume that∫
Ω0

|ϕ(x)|dx =

∣∣∣∣∫
Ω0

ϕ(x)dx

∣∣∣∣
then there exists a constant β such that βϕ = |ϕ| a.e. on Ω0.

Proof of Proposition 4.25. The proof is an adaptation of the proof of Theorem 6.13 in [26].
Assume that there exists a λ ∈ Σ with λ 6= r such that Kλψ = ψ for some ψ ∈ XC. It

follows that
|ψ| = |Kλψ| ≤ KReλ|ψ|. (4.25)

Taking duality parings with FReλ on both sides of the inequality we deduce that

〈FReλ, |ψ|〉 ≤ ρ(KReλ)〈FReλ, |ψ|〉.

This implies that ρ(KRe λ) ≥ 1 = ρ(Kr). Since, by Proposition 4.12 we know that the
function µ→ ρ(Kµ) is decreasing when µ varies in R we deduce that Reλ ≤ r.

Assume now that Reλ = r, hence, since λ 6= r, it must hold that Imλ > 0. From
(4.25) we know that Kr|ψ| ≥ |ψ|. If we assume that Kr|ψ| 6= |ψ| then taking duality
parings with Fr we deduce that 〈Fr, |ψ|〉 > 〈Fr, |ψ|〉. This is a contradiction, hence it
must hold that Kr|ψ| = |ψ|. Since (r, ψr) is the unique (up to normalization) solution of
the non-linear eigenproblem (4.12), we deduce that there exists an ` : Ω0 → R such that
ψ(x) = ei`(x)ψr(x) and, as a consequence of (4.25), we have that Krψr = |Kλψ| i.e.∫ ∞

0
e−raK̃(a)ψrda =

∣∣∣∣∫ ∞
0

e−raeiaImλK̃(a)ei`(·)ψrda

∣∣∣∣ (4.26)

If we make Assumption 4.23 this implies that∫ ∞
0

e−raK̃(a)ψrda =

∣∣∣∣∫ ∞
0

e−raeiaImλei`(γ(a,·))K̃(a)ψrda

∣∣∣∣
Since ∫ ∞

0
e−raK̃(a)ψrda =

∫ ∞
0

∣∣∣e−raeiaImλei`(γ(a,·))K̃(a)ψr

∣∣∣ da
18



we deduce, by Theorem 4.26, that there exist a β ∈ R such that

aImλ+ `(γ(a, x)) = β.

As a consequence we have that

ei`(x)ψr(x) =

∫ ∞
0

e−(Reλ+iImλ)aK̃(a)ψ(x)da

=

∫ ∞
0

e−aReλeiβ−i`(γ(a,x))K̃(a)ψ(x)da

= eiβ
∫ ∞

0
e−aReλK̃(a)ψr(x)da = eiβψr(x).

This implies that `(x) = β( mod 2π) for a.e. x ∈ Ω0 and hence, the piecewise monotonic-
ity of γ(·, x) implies that Imλ = 0. This is a contradiction and the desired conclusion
follows.

If, instead, we make Assumption 4.24 equality (4.26) implies that∫ ∞
0

e−ra
∫

Ω0

k̃(a, y, x)ψr(y)dyda

=

∣∣∣∣∫ ∞
0

e−ra
∫

Ω0

eiaImλ+i`(y)k̃(a, y, x)ψr(y)dyda

∣∣∣∣
Since ∫ ∞

0
e−ra

∫
Ω0

k̃(a, y, x)ψr(y)dyda

=

∫ ∞
0

∫
Ω0

∣∣∣e−raeiaImλ+i`(y)k̃(a, y, x)ψr(y)
∣∣∣ dyda,

we deduce by Theorem 4.18 that there exists a β ∈ R such that

aImλ+ `(x) = β.

As a consequence we have that

ei`(x)ψr(x) =

∫ ∞
0

e−(Reλ+iImλ)aK̃(a)ψ(x)da

=

∫ ∞
0

e−aReλeiβ−i`(x)K̃(a)ψ(x)da

= eiβ
∫ ∞

0
e−aReλK̃(a)ψr(x)da = eiβψr(x).

This implies that `(x) = β( mod 2π) for a.e. x ∈ Ω0 and hence that Imλ = 0. This is a
contradiction and the desired conclusion follows.

4.6 An alternative approach

In this section we present an alternative approach for proving Theorem 4.14. We make
the same assumptions on K̃ and b0 as made in Section 4.5 and we keep the same notation.

We plan to deduce the asymptotic behaviour of the solution of equation (4.2) by ob-
taining estimates on the resolvent operator from the following theorem, which is Theorem
2 in [22].

Theorem 4.27. Let w ∈ R and let K̃ ∈ L1
−w(R+,L(XC)) be an operator kernel. Then its

resolvent R̃ belongs to L1
−w(R+,L(XC)) if and only if I −Kλ is invertible for every λ ∈ C

such that Reλ ≥ w.
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To be able to apply this theorem, we have to assume that the function a 7→ K̃(a) is
measurable with respect to the topology induced by the operator norm on L(X). This
measurability assumption is stronger than the measurability assumption we ask for the
operator kernels in Section 4.1.

Theorem 4.28. Assume that for every λ ∈ ∆ ∩ R the operator Kλ is non-supporting
and that its complexification Kλ is compact for every λ ∈ Σ. Additionally assume that
K̃ : R+ → L(XC) is measurable and satisfies either Assumption 4.23 or Assumption 4.24.
Let (r, ψr) be the eigencouple solving (4.12). Then there exists v > 0 such that

‖e−rtb(t)− cψr(·)‖1 ≤ Le−vt, t > 0

for some constants L, c > 0.

Proof. We already know that for every λ ∈ C with Reλ ≥ σ > r the operator I − Kλ is
invertible. Moreover K̃ ∈ L1

−σ(R+,L(XC)) for any σ > r. Hence we deduce from Theorem

4.27 that R̃ ∈ L1
−σ(R+,L(XC)). We denote the Laplace transform of R̃ as follows

Rλ :=

∫ ∞
0

e−λaR̃(a)da <∞ Reλ > σ.

Similarly as in Proposition 4.21 we deduce that (I − Kλ)−1Kλb̂0(λ) ∈ H(σ,XC) for
σ > r. Hence, from the Laplace inversion formula we deduce that∫ t

0
R̃(a)b0(t− a)da =

1

2πi
lim
T→∞

∫ σ+iT

σ−iT
eλt (I −Kλ)−1 Kλb̂0(λ)dλ

if σ > r.
Consider a w ∈ R with w < r such that the operator (I − Kλ) is invertible for every

λ ∈ C with w ≤ Reλ < r. This w exists thanks to Lemma 4.17. Define the operator Q as∫ t

0
Q(a)b0(t− a)da :=

1

2πi
lim
T→∞

∫ w+iT

w−iT
eλt (I −Kλ)−1 Kλb̂0(λ)dλ.

Similarly as in the proof of Theorem 4.14 we can deduce, by the residue theorem, that∫ t

0
R̃(a)b0(t− a)da−

∫ t

0
Q(a)b0(t− a)da = ertR−1Kr b̂0(r)

As a consequence

b(t) =

∫ t

0
R̃(a)b0(t− a)da+ b0(t)

=

∫ t

0
Q(a)b0(t− a)da+ ertR−1Kr b̂0(r) + b0(t)

=

∫ t

0
Q(a)b0(t− a)da+ ert

〈Fr,Kr b̂0(r)〉
〈Fr,−K1ψr〉

ψr + b0(t)

Notice that by the definition of Fr we have that

〈Fr,Kr b̂0(r)〉
〈Fr,−K1ψr〉

=
〈K∗rFr, b̂0(r)〉
〈Fr,−K1ψr〉

=
〈Fr, b̂0(r)〉
〈Fr,−K1ψr〉

Moreover, by the definition of Q we have ‖
∫ t

0 Q(a)b0(t − a)da‖1 ≤ cewt where the
constant c is equal to

c :=

∫ ∞
−∞
‖(I −Kw+iη)

−1Kw+iη b̂0(w + iη)‖1dη
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The fact that c < ∞ follows by an adaptation of the final part of the proof of Theorem
4.14. Hence, using (4.4), it follows that∥∥∥∥∥e−rtb(t)− 〈Fr, b̂0(r)〉

〈Fr,−K1ψr〉
ψr

∥∥∥∥∥
1

≤ c1e
(w−r)t + e−rt‖b0(t)‖1 ≤ c2e

−vt,

for some positive constants v, c1, c2.

This approach is not very different from the approach developed in Section 4.5, but here
we have to make stronger measurability assumptions on K̃. These correspond to stronger
assumptions on the model parameters and therefore we decided to focus on Heijmans’
approach.

4.7 Asymptotic behaviour of the measure-valued solution

In this section we deduce the asymptotic behaviour of the measure B from the be-
haviour of the density of its absolutely continuous component. This type of technique has
been applied in [12] and in [36].

Lemma 4.29. Let K be a z0-bounded regularizing kernel and let B0 be given by (2.2) as
a function of K and M0 ∈M+,b(Ω). Let K̃ : R∗+ → L(X) be the operator defined by

K̃(a)f = dK,f (a) for every a ≥ 0 and f ∈ X (4.27)

where dK,f (a) ∈ X is the density of the measure (3.6) with t replaced by a. Let us denote
with B the solution of equation (2.1). Then

BAC(t, ω) =

∫
ω
b(t)(x)dx ∀ω ∈ B(Ω0) (4.28)

where b is the solution of (4.2) with respect to K̃ and the function b0 : R+ → X mapping
t to the density of BAC

0 (t, ·) + LK(Bs)AC(t, ·).

Proof. First of all we need to check that K̃ is an operator kernel, so in particular that for
every f ∈ X the map

a 7→ K̃(a)f (4.29)

is Bochner measurable. Since X is separable, Bochner measurability and weak measura-
bility coincide. So it suffices to show that the map (4.29) is weakly measurable, i.e. that
for every g ∈ L∞(Ω0) the map

a 7→
∫

Ω
g(x)K̃(a)f(x)dx =

∫
Ω
g(x)dK,f (a)(x)dx

is measurable. This is a consequence of the fact that for every ω the map

a 7→
∫
ω
dK,f (a)(x)dx =

∫
Ω
K(a, y, ω)f(y)dy

is measurable. We refer to [19] for the details. Similarly one shows that b0 : R+ → X is
Bochner measurable.

Moreover, thanks to the fact that K is a locally bounded kernel

sup
a∈[0,T ]

sup
f∈X
‖K̃(a)f‖1 <∞.
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Hence, thanks to Lemma 4.2, equation (4.2), with respect to K̃ and b0 has a unique
solution b. Integrating all the terms in the equation over the set ω we deduce that

B̃(t, ω) :=

∫
ω
b(t)(x)dx

is a solution of (3.9). By uniqueness it follows that B̃ = BAC

Theorem 4.30. Let K be a z0-bounded regularizing kernel such that the operator Kλ,
defined by (4.7) with K̃ given by (4.27), is compact for every λ ∈ ∆ and non-supporting
for every ∆∩R. Assume also that K̃ satisfies either Assumption 4.23 or Assumption 4.24.
Let us denote with B the solution of equation (2.1) and let Ψr(dx) = ψr(x)dx, with ψr the
stable distribution, and r the Malthusian parameter. Then there exist constants M,k > 0
such that ∥∥e−rtB(t, ·)− cΨr(·)

∥∥ ≤Me−kt ∀t > 0. (4.30)

where c > 0 is the same constant as in Theorem 4.14 and ‖ · ‖ = ‖ · ‖TV = ‖ · ‖[.

Proof. Since the density of BAC(t, ·), b(t), solves (4.2) with respect to the K̃ and b0 given
by Lemma 4.29, we deduce that∥∥e−rtB(t, ·)− cΨr(·)

∥∥ ≤ ∥∥e−rtB(t, ·)− e−rtBAC(t, ·) + e−rtBAC(t, ·)− cΨr(·)
∥∥

≤
∥∥e−rtB(t, ·)− e−rtBAC(t, ·)

∥∥+
∥∥e−rtBAC(t, ·)− cΨr(·)

∥∥
≤ e−rt ‖Bs(t, ·)‖+

∥∥e−rtb(t, ·)− cψr(·)∥∥1
≤ e−rt ‖Bs(t, ·)‖+ Le−vt

≤ c1e
(z0−r)t + c2te

(z0−r)t + Le−vt,

where in the last inequality we have applied (3.7). From this chain of inequalities we
deduce that (4.30) holds.

We stress that in Corollary 4.30 we prove balanced exponential growth and we also
provide an exponential estimate of the remainder, as is done in [5] to which we refer for
yet another approach.

5 Kernels arising from structured population models

The aim of this section is to present three classes of z0-bounded regularizing kernels
that, as we shall show in the next sections satisfy the assumptions of Theorems 4.10
and 4.14, i.e. the corresponding operator kernel K̃ satisfies either Assumption 4.23 or
Assumption 4.24 and the corresponding operator Kλ is non-supporting for every λ ∈ ∆∩R
and compact for every λ ∈ ∆.

Since the classes of kernels that we present are motivated by structured population
models, we interpret the mathematical assumptions by describing their meaning in the
context of the corresponding models. To help the reader we also provide the more classical
PDE formulation of the models in the next section. In all of this section we assume that
the i-state space Ω is a subset of R∗+.

5.1 The kernel as a modelling ingredient

The main modelling ingredient of the renewal equation is the kernel, which summarises
the effect of the individual level mechanisms determining the population evolution. The
individual level mechanisms modelled via the renewal equation (2.1) are

• deterministic smooth development of the individual state, as growth or waning.
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• giving birth, with offspring appearing at a different position (i.e. having a different
state), or jumping to another position, in which case we say that the individual in
the old state died while an individual in the new state was born. We assume that
this happens at a position dependent rate Λ.

Therefore we assume that the kernel is

K(a, ξ, ω) := F(a, ξ)Λ(X(a, ξ))ν(X(a, ξ), ω) (5.1)

where

• X(a, ξ) is the state of an individual that survived up to the current time and that,
a time ago, had state ξ.

• F(a, ξ) is the probability that an individual that a time ago had state ξ survives up
to the present time.

• ν(z, ω) denotes the expected number of individuals born with size in ω when an
individual with size z reproduces or jumps.

We want to find sufficient conditions on F , X and ν that guarantee that K is a z0-bounded
regularizing kernel, that the corresponding operator kernel K̃ satisfies either Assumption
4.23 or Assumption 4.24 and that the corresponding operator Kλ is compact for every
λ ∈ ∆ and non-supporting for every λ ∈ ∆ ∩ R. To this end we start by writing the
following basic assumptions on F , X, ν implying that K is a z0-bounded kernel.

Assumption 5.1. Assume that

• the map (a, ξ) 7→ F(a, ξ) is measurable;

• the map (a, ξ) 7→ X(a, ξ) is measurable;

• for every ω ∈ B(Ω0) the map x 7→ ν(x, ω) is measurable and

sup
x∈Ω

ν(x,Ω0) ≤M

for some M > 0;

• there exists a z0 < 0 and a constant c > 0 such that

sup
x∈Ω0

F(t, x)Λ(X(t, x)) ≤ cez0t, t ≥ 0; (5.2)

If Assumption 5.1 holds, then the kernel K, defined by (5.1), is a z0-bounded kernel.
What additional assumptions on ν and X guarantee that K is also a regularizing kernel?

Proposition 5.2. Let F , ν, X satisfy Assumption 5.1.
If, additionally, ν(x, ·) ∈ M+,AC(Ω0), then the kernel K defined by (5.1) is a z0-

bounded regularizing kernel.

Proof. The absolute continuity, with respect to the Lebesgue measure, of the measures
(3.6) and (3.5) is a consequence of the fact that K(a, x, ·) ∈ I, with I defined in Definition
3.5, for every a > 0 and x ∈ Ω0.
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We aim at finding milder conditions on ν that still guarantee that the kernel K is
regularizing. Motivated by biological applications (see the upcoming sections) we focus
on the following type of measures

ν(x, ω) = β(x)δq(x)(ω) x ∈ Ω, ω ∈ B(Ω0). (5.3)

where q and β are suitable functions.
We first present an example of a measure ν, satisfying (5.3), and a function X, that

give rise to a kernel K which is not regularizing.

Example 5.3. If
ν(x, ω) = 2δx

2
(ω)

and if we assume that the development is exponential, i.e. X(a, ξ) = ξea, then Assumption
3.2 does not hold. Hence K is not a regularizing kernel. Indeed,

2

∫ t

0

∫
Ω
K(s, x, dξ)F(t− s, ξ)δ 1

2
X(t−s,ξ)(ω)Λ(X(t− s, ξ))ds

= 4

∫ t

0

∫
Ω
F(s, x)Λ(xes)δx

2
es(dξ)F(t− s, ξ)δ 1

2
ξet−s(ω)Λ(X(t− s, ξ))ds

= 4δx
4
et(ω)

∫ t

0
F(s, x)Λ(xes)F

(
t− s, x

2
es
)

Λ
(
X
(
t− s, x

2
es
))

ds.

The take home message of this example is that it is not only the shape of ν that
determines whether the kernel is regularizing or not, but also the development rate.

We now state sufficient assumptions on q, β, F and X that guarantee that the kernel
K defined by (5.1) is a z0-bounded regularizing kernel.

Proposition 5.4. Let F , ν, X satisfy Assumption 5.1. Assume that ν is of the form
(5.3) for a measurable function β : Ω → R+ and a measurable function q : Ω → R+.
Additionally, assume that q is such that the function

Fa : x 7→ q(X(a, x)) (5.4)

is invertible and such that if |ω| = 0, then |F−1
a (ω)| = 0, where we are denoting with | · |

the Lebesgue measure, see Appendix A. Finally assume that q and X are such that the
function

pt,x : a 7→ q(X(t− a, q(X(a, x)))) (5.5)

is invertible and such that |ω| = 0 implies |p−1
t,x(ω)| = 0. Then the kernel K defined by

(5.1) is a z0-bounded regularizing kernel.

Proof. The kernel K is z0-bounded because F , X and ν satisfy Assumption 5.1.
We now prove that, for every f , the measure (3.6) is absolutely continuous with respect

to the Lebesgue measure. For notational convenience we rewrite K as

K(a, x, ω) = j(a, x)δq(X(a,x))(ω).

Let A ∈ B(Ω) be a set of zero Lebesgue measure, then∫
Ω0

f(x)K(a, x,A)dx =

∫
Ω0

f(x)j(a, x)δq(X(a,x))(A)dx

=

∫
F−1
a (A)

f(x)j(a, x)dx = 0.
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We now prove that also (3.5) is an absolutely continuous measure with respect to the
Lebesgue measure. Indeed

K∗2(T, x,A)

=

∫ T

0

∫
Ω
K(s, x, dξ)j(T − s, ξ)δq(X(T−s,ξ))(A)ds

=

∫ T

0
j(s, x)j(T − s, q(X(s, x)))δpT,x(s)(A)ds

=

∫
[0,T ]∩p−1

T,x(A)
j(s, x)j(T − s, q(X(s, x)))ds.

The assumptions on pT,x then guarantee that K∗2(T, x, ·) is absolutely continuous with
respect to the Lebesgue measure.

6 Asymptotic behaviour of the population birth rate for the
model examples

We now motivate the above assumptions on ν by presenting the models that we are
going to study with the results presented in Section 4.

6.1 Two applications to structured population models

6.1.1 Cell growth and fission

The first example is the model of cell growth and fission that is classically formulated
via the PDE

∂tn(t, x) + ∂x (g(x)n(t, x)) = − [Λ(x) + µ(x)]n(t, x) + 4Λ(2x)n(t, 2x) (6.1)

or alternatively via the PDE

∂tn(t, x) + ∂x (g(x)n(t, x)) = − [Λ(x) + µ(x)]n(t, x) +

∫
Ω
h(y, x)Λ(y)n(t, y)dy, (6.2)

These PDEs describe the evolution in time of a population of cells, structured by size,
growing at rate g, dying at rate µ and dividing into two smaller cells at rate Λ. The type
of equation depends on how the cells divide. More precisely, if cells divide into equal parts,
then the density of cells of size x at time t, n(t, x), is the solution of equation (6.1). If,
instead, the expected number of cells with size in [y, y + dy], produced by the division of
a cell of size x, is equal to h(x, y)dy, then n(t, x) is the solution of equation (6.2).

The model described above fits into the class of models introduced in Section 5.1.
Hence, the population birth rate, which in this case is the rate at which individuals are
born due to fission, has to satisfy (2.1), with K given by (5.1) and X(a, ξ) is the solution
at time a of the following ODE

dx

dt
= g(x) x(0) = ξ, (6.3)

while

F(t, ξ) := exp

(
−
∫ t

0
µ̃(X(s, ξ))ds

)
= exp

(
−
∫ X(t,ξ)

ξ

µ̃(x)

g(x)
dx

)
(6.4)
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where µ̃(x) = µ(x) + Λ(x), and with

ν(x, ω) =

∫
ω
h(x, y)dy or ν(x, ω) = 2δx

2
(ω).

Now the question is, what are the assumptions on the parameters g, Λ and ν that
ensure that K is a z0-bounded regularizing kernel, that the corresponding operator K̃
satisfies Assumption 4.23 or Assumption 4.24 and that Kλ is non-supporting for every
λ ∈ ∆ ∩ R, compact for every λ ∈ ∆? In other words, what are the assumptions on the
parameters that allow us to study the evolution of the population by using the results
presented in Section 4? Below we present two collections of assumptions, one for the case
of fission into equal sizes and one for the case of fission into unequal sizes. We start with
the latter.

Assumption 6.1 (Unequal fission model). We assume that

1. Ω = R∗+;

2. the growth rate g : Ω→ R∗+ is a continuous function such that for every z ∈ Ω∫ ∞
z

1

g(s)
ds =∞; (6.5)

3. the fission rate Λ : (0,∞)→ R+ is a measurable function such that either supp(Λ) =
[M,∞), where M > 0, or supp(Λ) = R∗+, and such that limz→∞ Λ(z) exists and is
strictly positive;

4. the death rate µ : Ω→ R+ is measurable;

5. for every y ∈ Ω
ν(y, ·) ∈M+,AC(Ω), (6.6)

with density h(y, ·) such that h(y, x) = 0 when y < x and h(y, x) > 0 if y > x∫ y

0
h(y, x)dx = 2, h(y, x) = h(y, y − x); (6.7)

6. the set of the states at birth is

Ω0 :=
⋃

y∈supp(Λ)

supp (h(y, ·)) = (0,∞).

We assume that for every ε > 0 there exists a δε > 0 such that for every 0 < δ < δε
we have ∣∣∣∣∫

Ω0

(h(y, x)− h(y, x+ δ)) dx

∣∣∣∣ < ε

y
for every y > 0 (6.8)

where h(y, x+ δ) := 0 if x+ δ /∈ Ω0.

7. Finally we assume that ∫ 1

0

Λ(y)

yg(y)
dy <∞. (6.9)

We now explain the interpretation of these requirements on g, h, Λ. By the definition
of g,

τ(x, y) :=

∫ y

x

1

g(z)
dz

26



is the time that it takes to develop from size x to size y. Hence, the fact that g satisfies
(6.5) implies that the time that it takes to grow up to size equal to sup Ω is equal to
infinity. This, together with the assumption on the limiting large size behaviour of the
fission rate, guarantees that the probability that a cell reaches size equal to infinity is zero.

The first assumption on h in (6.7) guarantees that a cell always divides into two cells.
The second assumption in the same line is a consequence of the fact that mass is conserved
during fission and hence a cell of size x that divides into a cell of size y produces also a
cell of size equal to x− y.

In many works the i-state space Ω is assumed to be a compact subset of R∗+, see for in-
stance [14] and [25]. Here we relax this assumption and assume that Ω = R∗+. The price of
this generalisation is that we need to impose assumptions on the model parameters g,Λ, h
that exclude gelation (i.e. escape of mass at infinity, in the ”fragmentation” terminology)
and shattering (i.e. escape of mass at zero). This is why we introduce conditions (6.8)
and (6.9). These tightness assumptions guarantee the compactness of the operator Kλ, as
we will see in Section 6.2.1, proof of Proposition 6.8.

Condition (6.8) holds for a broad class of self-similar kernels. In particular it holds
for uniform fragmentation, h(y, x) = 2

yχ(0,x), but also for some of the self-similar kernels
considered in [40]. Indeed assume that

h(y, x) =
2

y
p

(
x

y

)
where p : [0, 1] 7→ R+ is s.t. p ∈ L∞([0, 1]) with

∫ 1
0 p(z)dz = 1 and p(1 − z) = p(z) for

every z ∈ [0, 1]. Then∣∣∣∣∫
Ω0

[h(y, x)− h(y, x+ δ)] dx

∣∣∣∣ ≤ ∣∣∣∣∫ y−δ

0
[h(y, x)− h(y, x+ δ)] dx

∣∣∣∣
+

∣∣∣∣∫ y

y−δ
h(y, x)dx

∣∣∣∣ ≤ 2

y

∣∣∣∣∫ y−δ

0

[
p

(
x

y

)
− p

(
x+ δ

y

)]
dx

∣∣∣∣
+

2

y

∣∣∣∣∫ y

y−δ
p

(
x

y

)
dx

∣∣∣∣ ≤ 2

∣∣∣∣∣
∫ 1− δ

y

0

[
p (z)− p

(
z +

δ

y

)]
dz

∣∣∣∣∣
+ 2

∣∣∣∣∣
∫ 1

1− δ
y

p (z) dz

∣∣∣∣∣
≤ 2

∣∣∣∣∣
∫ 1− δ

y

0
p (z) dz −

∫ 1

δ
y

p (z) dz

∣∣∣∣∣+
2

y
δ‖p‖L∞

≤ 2

∣∣∣∣∣
∫ 1

1− δ
y

p (z) dz

∣∣∣∣∣+ 2

∣∣∣∣∣
∫ δ

y

0
p (z) dz

∣∣∣∣∣+
2

y
δ‖p‖L∞ ≤

6

y
δ‖p‖L∞ .

Hence h satisfies (6.8).
Finally condition (6.9) guarantees that Λ(y)→ 0 as y → 0 quickly, namely faster that

y itself. We expect that it is possible to weaken considerably the condition h(x, y) > 0 if
x > y. This condition is however attractive, because it allows for a straightforward proof
of the non-supportingness of the operator Kλ.

For the model in which cells divide into equal parts we make the following assumptions.

Assumption 6.2 (Equal fission model). In this case we assume that

1. Ω = Ω0 := (0,∞),

2. g satisfies point 2 of Assumption 6.1, is Lipschitz continuous and g(2x) < 2g(x) for
every x ∈ Ω and 0 < supx∈Ω

1
g(x) <∞,
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3. Λ satisfies point 3 of Assumption 6.1,

4. µ satisfies point 4 of Assumption 6.1,

5. for every y ∈ Ω we have that

ν(y, ω) = 2δy/2(ω) ω ∈ B(Ω0). (6.10)

The requirements on the parameters listed in Assumption 6.2 are needed to deduce the
asymptotic behaviour of the population with the method presented in Section 4.7. Indeed
the assumptions on the growth rate g exclude the possibility of having cyclic solutions,
see [34], [4], being a sufficient assumption to guarantee that the operator Kλ is compact
and non-supporting, as we will see in Section 6.2.1.

Lemma 6.3. Let either Assumption 6.1 or Assumption 6.2 hold. Then the kernel K
defined by (5.1) is a z0-bounded regularizing kernel for some z0 < 0.

Proof. Thanks to (6.5),
K(t, x,Ω0) ∼ e− limz→∞ Λ(z)t

as time tends to infinity. Hence for every z0 > − limz→∞ Λ(z) we have that K satisfies
(3.3). If ν satisfies Assumption 6.1, then this concludes the proof thanks to Proposition
5.2.

Assume, instead, that ν is given by (6.10) and that g(2x) < 2g(x). Then the function
pT,x introduced in Proposition 5.4 is equal to

pT,x : s 7→ 1

2
X

(
T − s, 1

2
X(s, x)

)
.

This map is differentiable and by the chain rule

2p′T,x(s) = −∂1X

(
T − s, 1

2
X(s, x)

)
+ ∂2X

(
T − s, 1

2
X(s, x)

)
1

2

d

ds
X(s, x)

Using (6.3) we deduce that for every a > 0, ξ > 0 and s > 0

dX(a, (X(s, ξ))

ds
= ∂2X (a,X(s, ξ)) g(X(s, ξ)).

On the other hand

dX(a, (X(s, ξ))

ds
=
dX(a+ s, ξ)

ds
= g(X(a+ s, ξ)).

Hence substituting s = 0 we deduce that

∂2X (a, ξ) =
g (X (a, ξ))

g(ξ)
.

Therefore using g(2x) < g(x) we deduce that

2p′T,x(s) = −g
(
X

(
T − s, 1

2
X(s, x)

))
+
g(X

(
T − s, 1

2X(s, x)
)
)

g
(

1
2X(s, x)

) 1

2
g(X(s, x))

= −g
(
X

(
T − s, 1

2
X(s, x)

))(
1− g(X(s, x))

2g
(

1
2X(s, x)

)) < 0.

As a consequence pT,x is monotone, hence invertible and such that |A| = 0 implies
|p−1
T,x(A)| = 0

The function Fa, given by (5.4), is invertible and such that if |A| = 0, then |F−1
a (A)| = 0

as the map x 7→ X(a, x) is monotone.
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6.1.2 Waning and boosting

Consider a population of individuals structured by their level of immunity against a
pathogen. Assume that the level of immunity decreases with rate g and is boosted by
infection and that the force of infection equals a constant γ. We assume that the time that
it takes the immune systems to clear the infection is negligible compared to the time in
between two infections and consider, accordingly, boosting as instantaneous.

Assume that the immunity level after the boosting is determined by the immunity level
before the boosting event via the boosting function f . We assume that f is as in Figure 2
and we denote with f1 the restriction of f to the set (0, xc) and with f2 the restriction to
f on (xc,M ]. The density of individuals with immunity level x at time t, n(t, x), satisfies
the following PDE

∂tn(t, x) + ∂x (g(x)n(t, x)) = −γn(t, x) + Sn(t, x) (6.11)

where

Sϕ(x) =


0 x < m

−γ 1
f ′(f−1

1 (x))
ϕ(f−1

1 (x)) + γ 1
f ′(f−1

2 (x))
ϕ(f−1

2 (x)) m < x < r

γ 1
f ′(f−1

2 (x))
ϕ(f−1

2 (x)) r < x < M.

(6.12)

The term Sn(t, x) in equation (6.11) represents the individuals that (re)appear in the
population at time t with state x after boosting. Since the function f has a local minimum,
an individual with immunity level x ∈ [m, r] can be obtained as the result of the boosting
of an individual in any one of the sets (0, xc), (xc,M) while an individual with state at
birth x ∈ [r,M ] is produced by the boosting of an individual with state in (xc,M).

The backward reformulation of equation (6.11) is

∂tm(t, x)− g(x)∂xm(t, x) = −γm(t, x) + S∗m(t, x) (6.13)

where S∗ is the (pre)dual operator of S and is given by

S∗ϕ(x) = γϕ(f(x)).

This model fits into the class of models described in Section 5.1. Hence, the population
birth rate B, which in this case is the rate at which individuals appear in the population
with a higher immunity level due to boosting, is the solution of equation (2.1) with a
kernel K given by formula (5.1). The factor X(a, ξ) in (5.1) is the solution of the ODE
(6.3), with g the rate of waning. The factor Λ(x) = γ > 0 is the boosting rate. Since we
assume the death rate to be equal to zero, we have that the term F in (5.1) is equal to

F(t, ξ) := e−γt (6.14)

and
ν(y, ω) := δf(y)(ω) (6.15)

for every i-state y and for every set of states at birth ω.
We have chosen a specific form of f in order to make the computations in Section 6.2.3

not too demanding for the reader. For sure the result holds for a much wider class of
boosting functions f (see for instance [12], but note that in that paper there is no proof
that convergence is exponential). We now specify the assumptions on the parameters that
guarantee that we can apply the results presented in Section 4.

Assumption 6.4 (Waning and boosting model, see Figure 2). We assume that
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1. Ω = (0,M ];

2. the boosting function f : Ω → [m,M ] =: Ω0 is such that f(x) = f1(x) if x ∈ (0, xc]
while f(x) = f2(x) if x ∈ (xc,M ] where

f1(x) = −α1x+ q1 and f2(x) = α2x+ q2

with

α1 =
r −m
xc

, q1 = r where 0 < m < M, 0 < r < M

α2 =
M −m
M − xc

, q2 = m− xc
M −m
M − xc

;

3. g : Ω→ (−∞, 0) is a continuous function and such that

α2g(y)

g(f(y))
< 1 for a.e. y ∈ Ω0. (6.16)

The conditions on the parameters g, ν, Λ listed in Assumption 6.4 guarantee that the
model is well defined and allow to apply the results of Section 4.7 as we will see in Section
6.2.3.

In this work we focus on Assumption 6.4 and we assume that the set of the possible
immunity levels is a compact set, but this assumption can be relaxed as for instance in
[12].

Figure 2: Boosting function

Condition (6.16) is sufficient to guarantee that the kernel K defined by (5.1) is reg-
ularizing. The meaning of this assumption is the following. The immunity level of an
individual who boosts at time t and then wanes for a time interval of length dt is lower
than the immunity level of an individual who wanes for dt and then boosts at time t+ dt.
This assumption can be seen as a congener of the assumption g(2x) < 2g(x) in the case
of fission into equal sizes. We refer to [12] for more explanations.

Lemma 6.5. Let g, µ,Λ, ν satisfy Assumption 6.4. Then the kernel K defined by (5.1) is
a −γ-bounded regularizing kernel.

Proof. The fact that K is a −γ kernel follows simply by noting that

F(a, x)Λ(X(a, x)) = γe−γa.
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We next investigate whether K is a regularizing kernel. To this end we notice that the
function Fa introduced in Proposition 5.4,

Fa : x 7→ f(X(a, x))

is invertible because it is piecewise monotone.
On the other hand, the function pT,x now reads

pT,x : a 7→ f(X(T − a, f(X(a, x))))

As in the proof of Lemma 6.3, using the chain rule, condition (6.16) and the definition of
X as the solution of the ODE (6.3) we prove that

p′T,x(a) = −f ′(X(T − a, f(X(a, x))))g(X(T − a, f(X(a, x))))·

·
[
1− f ′(X(a, x))g(X(a, x))

g(f(X(a, x)))

]
a.e. a > 0.

Thanks to (6.16) we deduce that pT,x is piecewise monotone. Hence the desired conclusion
follows.

6.2 Asymptotic behaviour for the model examples

In this section we apply the results presented in Section 4 to the model examples. To
this end we proceed as follows

1. we use Lemma 4.29 to associate to the kernel K an operator kernel K̃;

2. we define the discounted next generation operator Kλ as a function of K̃, using (4.7);

3. then we check that the operator Kλ is compact and non supporting.

6.2.1 Cell growth and fission (into unequal parts)

In this section we assume that the parameters g, µ,Λ, ν satisfy Assumption 6.1. Hence
there exists a z0 such that the kernel K, given by (5.1), is a z0-regularizing kernel.

It remains to prove that, under the assumptions of the unequal fission model, Kλ

satisfies the assumptions of Theorem 4.14. Recall that K ∈ I. We denote with k its
density, given by

k(a, x, y) := F(a, x)Λ(X(a, x))h(X(a, x), y). (6.17)

The operator K̃ introduced in (4.27), is given by(
K̃(a)ϕ

)
(y) :=

∫
Ω0

k(a, x, y)ϕ(x)dx a ≥ 0, y ∈ Ω0 (6.18)

and as a direct consequence we have the following result.

Lemma 6.6. The kernel K̃ satisfies Assumption 4.24.

The following theorem, see e.g [30], is fundamental to prove the compactness of the
operator Kλ in the model examples.
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Theorem 6.7 (Fréchet-Kolmogorov). Let T : XC → XC be linear and bounded. If for
every ε > 0 there exists a δ > 0 such that for every 0 < |h| < δ∫

Ω0

|Tϕ(x+ h)− Tϕ(x)| dx ≤ ε‖ϕ‖1

for every ϕ ∈ XC, where Tϕ(x+ h) = 0 if x+ h /∈ Ω0, then the operator T is compact.

Proposition 6.8. The operator Kλ is compact for every λ ∈ ∆ and the operator Kλ is
non-supporting for every λ ∈ ∆ ∩ R.

Proof. To prove compactness we apply Theorem 6.7. Recalling Assumption 6.8 we deduce
that for every ε > 0 there exists a δε > 0 such that for every δ < δε and for every ϕ ∈ X+∫

Ω0

|(Kλϕ) (x+ δ)− (Kλϕ) (x)| dx

≤
∫ ∞

0

∫
Ω0

ϕ(y)e−aReλF(a, y)Λ(X(a, y))·

·
∣∣∣∣∫

Ω0

h(X(a, y), x+ δ)− h(X(a, y), x)dx

∣∣∣∣ dyda
≤ ε

∫ ∞
0

∫ ∞
0

ϕ(y)e−aReλF(a, y)
Λ(X(a, y))

X(a, y)
dyda,

where for the last inequality we have used (6.8).
Using Fubini’s theorem and performing the change of variables X(a, y) = x we deduce

that ∫ ∞
0

∫ ∞
0

ϕ(y)e−aReλF(a, y)
Λ(X(a, y))

X(a, y)
dyda

=

∫ ∞
0

∫ ∞
0

ϕ(y)e−aReλF(a, y)
Λ(X(a, y))

X(a, y)
dady

=

∫ ∞
0

∫ ∞
y

ϕ(y)e−τ(y,x) ReλF̂(y, x)
Λ(x)

xg(x)
dxdy

≤
∫ 1

0

∫ x

0
ϕ(y)e−τ(y,x) ReλF̂(y, x)

Λ(x)

xg(x)
dydx

+

∫ ∞
1

∫ x

0
ϕ(y)e−τ(y,x) ReλF̂(y, x)

Λ(x)

xg(x)
dydx

Now, using Fubini’s theorem, the change of variables x = X(a, y) and the bound (5.2), we
estimate the second term in the following way∫ ∞

1

∫ x

0
ϕ(y)e−τ(y,x) ReλF̂(y, x)

Λ(x)

xg(x)
dydx

≤
∫ ∞

1

∫ x

0
ϕ(y)e−τ(y,x) ReλF̂(y, x)

Λ(x)

g(x)
dydx

≤
∫ ∞

0

∫ x

0
ϕ(y)e−τ(y,x) ReλF̂(y, x)

Λ(x)

g(x)
dydx

≤
∫ ∞

0

∫ ∞
y

ϕ(y)e−τ(y,x) ReλF̂(y, x)
Λ(x)

g(x)
dxdy

≤
∫ ∞

0

∫ ∞
0

ϕ(y)e−aReλF(a, y)Λ(X(a, y))dady

≤ C
∫ ∞

0
e(−Reλ+z0)ada

∫ ∞
0

ϕ(y)dy ≤ C

Reλ− z0
‖ϕ‖1
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On the other hand, thanks to (6.9)∫ 1

0

∫ x

0
ϕ(y)e−τ(y,x) ReλF̂(y, x)

Λ(x)

xg(x)
dydx ≤ e−τ(0,1) Reλ‖ϕ‖1

∫ 1

0

Λ(x)

xg(x)
dx.

It follows that for every ε > 0 there exists a δ such that

‖(Kλϕ) (·+ δ)− (Kλϕ) (·)‖1 ≤ ε‖ϕ‖1.

Applying Lemma 6.7 we conclude that Kλ is compact for every λ ∈ C with Reλ > z0.
We now prove that Kλ is non-supporting. To this end we firstly prove a stronger

property. Indeed, thanks to (6.8) we can prove that Kλϕ(x) > 0 for every x ∈ Ω0, because
for every ϕ ∈ L1

+(Ω0) and every x ∈ Ω0

(Kλϕ)(x) =

∫ ∞
0

∫ ∞
0

ϕ(y)e−λaF(a, y)Λ(X(a, y))h(X(a, y), x)dady

=

∫ ∞
0

ϕ(y)

∫ ∞
y

e−λτ(y,z)F̂(z, y)
Λ(z)

g(z)
h(z, x)dzdy

Since we assume that h(z, x) > 0 for every z > x, then∫ ∞
y
F̂(y, z)e−λτ(y,z) Λ(z)

g(z)
h(z, x)dz > 0.

Since ϕ belongs to X+ there exists a set of positive Lebesgue measure U ⊂ Ω0, on which
ϕ is strictly positive. The integration is over Ω0. We conclude that (Kλϕ)(x) > 0 for
every x ∈ Ω0.

Proposition 6.9. Let g, µ,Λ, ν be such that Assumption 6.1 holds. Let r, ψr be respectively
the Malthusian parameter and the stable distribution. The solution B of (2.1) satisfies

‖e−rtB(t, ·)− cΨr‖ ≤Me−vt

where Ψr(dx) = ψ(x)dx and c,M > 0 and v > 0 and the norm ‖ · ‖ = ‖ · ‖TV = ‖ · ‖[.
Moreover

sign(r) = sign(R0 − 1)

where R0 is defined in (4.6) and

K0µ(·) =

∫ ∞
0

∫
Ω0

k(t, x, ·)µ(dx)dt.

6.2.2 Cell growth and fission (into equal parts)

In this section we assume that the parameters g, µ,Λ, ν are such that Assumption 6.2
holds. Also in this case we have to check whether the assumptions of Lemma 4.29 hold.
In this case

(K̃(s)ϕ)(z) := 4
g(X(−s, 2z))

g(2z)
F(s,X(−s, 2z))Λ(2z)ϕ(X(−s, 2z)) (6.19)

for every z > 0 such that s < τ(0, 2z) while (K̃(s)ϕ)(z) = 0 otherwise. Indeed∫
Ω
K(s, x, ω)ϕ(x)dx = 2

∫ ∞
0
F(s, x)Λ(X(s, x))δ 1

2
X(s,x)(ω)ϕ(x)dx

= 4

∫
ω
χ[0,τ(0,2y)](s)F(s,X(−s, 2y))Λ(y)ϕ(x)

g(X(−s, 2y))

g(2y)
dy
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Lemma 6.10. The kernel K̃ satisfies Assumption 4.23.

Proof. The statement follows by the definition of K̃.

The following theorem can be found in [29] and will be important to prove the com-
pactness of the operator Kλ.

Theorem 6.11. Let T : XC → XC be linear and bounded and of the form

(Tϕ)(x) =

∫
Ω0

h(x, y)ϕ(y)dy.

Suppose that there exists an h+ such that

|h(x, y)| ≤ h+(x, y) x, y ∈ Ω0

and that the operator T+ : X+ → X+

(T+ϕ)(x) :=

∫
Ω0

h+(x, y)ϕ(y)dy

is compact. Then T is compact.

Lemma 6.12. The operator Kλ is compact for every λ ∈ ∆ and Kλ is non-supporting for
every λ ∈ ∆ ∩ R.

Proof. Using (6.19) and (5.2), we deduce that for every ϕ ∈ X+

|(Kλϕ) (y)|

≤ 4

∫ τ(0,2y)

0
e−sReλ g(X(−s, 2y))

g(2y)
F(s,X(−s, 2y))Λ(2y)ϕ(X(−s, 2y))ds

≤ c
∫ τ(0,2y)

0
e−sReλez0s

g(X(−s, 2y))

g(2y)
ϕ(X(−s, 2y))ds

Let p > 0. The operator K+(p) defined by

(
K+(p)ϕ

)
(y) =

∫ τ(0,2y)

0
e−ps

g(X(−s, 2y))

g(2y)
ϕ(X(−s, 2y))ds

is a linear bounded map from X+ to X+. Indeed, thanks to the second assumption in
(6.9), if we assume that ϕ ∈ X+, then∫ ∞

0

(
K+(p)ϕ

)
(y)dy =

∫ ∞
0

∫ τ(0,2y)

0
e−psϕ(X(−s, 2y))

g(X(−s, 2y))

g(2y)
dsdy

=

∫ ∞
0

∫ 2y

0
e−pτ(z,2y) ϕ(z)

g(2y)
dzdy ≤

∫ ∞
0

∫ ∞
z/2

e−pτ(z,2y)

g(2y)
dyϕ(z)dz

=
1

p
‖ϕ‖1
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We want to prove that Kλ it is compact. To this end, we apply Lemma 6.7. Consider
δ > 0, then ∣∣K+(p)ϕ(δ + y)−K+(p)ϕ(y)

∣∣
≤

∣∣∣∣∣
∫ τ(0,2y+2δ)

0
e−ps

g(X(−s, 2y + 2δ))

g(2y + 2δ)
ϕ(X(−s, 2y + 2δ))ds

−
∫ τ(0,2y)

0
e−ps

g(X(−s, 2y))

g(2y)
ϕ(X(−s, 2y))ds

∣∣∣∣∣
≤
∣∣∣∣∫ 2y+2δ

0
e−pτ(z,2y+2δ) ϕ(z)

g(2y + 2δ)
dz −

∫ 2y

0
e−pτ(z,2y) ϕ(z)

g(2y)
dz

∣∣∣∣
≤
∣∣∣∣∫ 2y+2δ

2y
e−pτ(z,2y+2δ) ϕ(z)

g(2y + 2δ)
dz

∣∣∣∣
+

∫ 2y

0

∣∣∣∣∣e−pτ(z,2y)

g(2y)
− e−pτ(z,2y+2δ)

g(2y + 2δ)

∣∣∣∣∣ϕ(z)dz.

Moreover ∫ 2y+2δ

2y

∣∣∣∣e−pτ(z,2y+2δ) ϕ(z)

g(2y + 2δ)

∣∣∣∣ dz
≤ sup

x∈Ω

1

g(x)
e−pτ(2y,2y+2δ)

∫ 2y+2δ

2y
e−pτ(z,2y)ϕ(z)dz.

Consequently,

‖K+(p)ϕ(·+ δ)−K+(p)ϕ(·)‖1

≤ sup
x∈Ω

1

g(x)

∫ ∞
0

e−pτ(2y,2y+2δ)

∫ 2y+2δ

2y
e−pτ(z,2y)ϕ(z)dzdy

+

∫ ∞
0

∫ 2y

0

∣∣∣∣∣e−pτ(z,2y)

g(2y)
− e−pτ(z,2y+2δ)

g(2y + 2δ)

∣∣∣∣∣ϕ(z)dzdy

≤ sup
x∈Ω

1

g(x)

∫ ∞
0

∫ z/2

z/2−δ
e−pτ(2y,2y+2δ)e−pτ(z,2y)dyϕ(z)dz

+

(
sup
x∈Ω

1

g(x)

)2 ∫ ∞
0

∫ ∞
z/2

∣∣∣g(2y + 2δ)e−pτ(z,2y) − e−pτ(z,2y+2δ)g(2y)
∣∣∣ϕ(z)dydz

≤ sup
x∈Ω

1

g(x)
ĉδ‖ϕ‖1 +

(
sup
x∈Ω

1

g(x)

)2

c′δ‖ϕ‖1

≤ sup
x∈Ω

1

g(x)
[ĉδ‖ϕ‖1 + c∗2δ‖ϕ‖1]

where ĉ, c∗, c′ > 0 and where we have used the Lipschitz continuity of g and of τ with
respect to its second argument. We deduce that K+(p) is compact for every p > 0, hence
by Lemma 6.11 we have that Kλ is compact for every λ ∈ C with Reλ > z0.

We now check that Kλ is non-supporting for every λ ∈ R∩∆. For every ϕ ∈ X+, there
exists a set S of positive Lebesgue measure with ϕ(x) 6= 0 for every x ∈ S. Therefore for
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every 2x > x1 := inf S

Kλϕ(x) = 4Λ(2x)

∫ 2x

0
e−λτ(z,2x)F̂(z, 2x)

ϕ(z)

g(2x)
dz > 0.

This implies that for every x > x1/4 we have that K2
λϕ(x) > 0, indeed

K2
λϕ(x) = 4

∫ 2x

0
e−λτ(z,2x)F̂(z, 2x)

Kλϕ(z)

g(2x)
dz.

Iterating this argument we deduce that for every ϕ ∈ X+ there exists an x1 > 0 and an
n ∈ N such that Kn

λϕ(x) > 0 for every x > x1
2n . As a consequence, this implies that for

every F ∈ L∞+ (Ω0) and every ϕ ∈ X+ there exists an n such that 〈F,Kn
λϕ〉 > 0.

Proposition 6.13. Let g, µ,Λ, ν be such that Assumptions 6.1 holds. Let r, ψr be re-
spectively the Malthusian parameter and the stable distribution. The solution B of (2.1)
satisfies

‖e−rtB(t, ·)− cΨr‖ ≤Me−vt

where c,M, v > 0 and Ψr(dx) = ψrdx and ‖ · ‖ = ‖ · ‖TV = ‖ · ‖[,

sign(r) = sign(R0 − 1),

and R0 is the spectral radius of K0 defined by

K0ϕ(x) =

∫ ∞
0

g(X(−t, 2x))

g(2x)
F(t,X(−t, 2x))Λ(2x)ϕ(X(−t, 2x))dt.

6.2.3 Waning and boosting

In this section we make Assumption 6.4. In this case the operator kernel K̃ is such
that for every a ≥ 0 the operator K̃(a) belongs to L(L1

+(Ω0)) = L(L1
+([m,M ])) and is

equal to

(K̃(s)ϕ)(z) :=


γe−γs

[
−β1(z)ϕ(X(−s, f−1

1 (z)))g(X(−s, f−1
1 (z))

+β2(z)ϕ(X(−s, f−1
2 (z)))g(X(−s, f−1

2 (z))
]
, z < r

γe−γsβ2(z)ϕ(X(−s, f−1
2 (z)))g(X(−s, f−1

2 (z)), z > r

(6.20)

for z ∈ [m,M ], where

β1(z) =
1

g(f−1
1 (z))f ′(f−1

1 (z))
> 0 (6.21)

while

β2(z) =
1

g(f−1
2 (z))f ′(f−1

2 (z))
< 0. (6.22)

Indeed the measure (3.6) is equal to∫
Ω
K(s, x, ω)ϕ(x)dx = γe−γs

∫
Ω0

δf(X(s,x))(ω)ϕ(x)dx

= γe−γs
∫

Ω
δf(y)(ω)

g(X(−s, y))

g(y)
ϕ(X(−s, y))dy

= γe−γs

[∫
ω∩[m,r]

(
−ϕ(X(−s, f−1

1 (z)))g(X(−s, f−1
1 (z)))

g(f−1
1 (z))f ′(f−1

1 (z))

+
ϕ(X(−s, f−1

2 (z)))g(X(−s, f−1
2 (z)))

g(f−1
2 (z))f ′(f−1

2 (z))

)
dz

+

∫
ω∩[r,M ]

ϕ(X(−s, f−1
2 (z)))g(X(−s, f−1

2 (z)))

g(f−1
2 (z))f ′(f−1

2 (z))
dz

]
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Hence the density of the measure (3.6) is (6.20).
By the definition of K̃ we deduce the following.

Lemma 6.14. The kernel K̃ satisfies Assumption 4.23.

Lemma 6.15. The operator Kλ is compact for every λ ∈ ∆ and non-supporting for every
λ ∈ ∆ ∩ R.

Proof. By the definition of K̃ and by the change of variables

y = X(−s, f−1
1 (z))

we deduce that Kλ is equal to

1

γ
Kλϕ(z) =


D1(z)

∫M
f−1
1 (z) e

−(λ+γ)τ(x,f−1
1 (z))ϕ(y)dy

+D2(z)
∫M
f−1
2 (z) e

−(λ+γ)τ(x,f−1
2 (z))ϕ(y)dy m < z < r

D2(z)
∫M
f−1
2 (z) e

−(λ+γ)τ(x,f−1
2 (z))ϕ(y)dy r < z < M

where
D1(z) = β1(z) > 0 and D2(z) = −β2(z) > 0.

Hence Kλ is the sum of the three operators Ki
λ defined as

K1
λϕ(z) =

{
γD1(z)

∫M
f−1
1 (z) e

−(λ+γ)τ(x,f−1
1 (z))ϕ(y)dy m < z < r

0 r < z < M

K2
λϕ(z) =

{
γD2(z)

∫M
f−1
2 (z) e

−(λ+γ)τ(x,f−1
2 (z))ϕ(y)dy m < z < r

0 r < z < M

and

K3
λϕ(z) =

{
γD2(z)

∫M
f−1
2 (z) e

−(λ+γ)τ(x,f−1
2 (z))ϕ(y)dy r < z < M

0 z < r

Since Kλ =
∑3

i=1 Ki
λ if we prove that for i = 1, 2, 3 the operator Ki

λ is compact, then we
deduce that Kλ is compact.

To prove that each Ki
λ is compact we apply Lemma 6.7. We describe in detail how

to prove that K1
λ is compact. Consider δ < min{m, r −m}. If z ∈ [m, r − δ], then since

f−1
1 (z) > f−1

1 (z + δ)

1

γ

∣∣K1
λϕ(z + δ)−K1

λϕ(z)
∣∣

=

∣∣∣∣∣D1(z)

∫ M

f−1
1 (z)

e−(λ+γ)τ(x,f−1
1 (z))ϕ(x)dx

−D1(z + δ)

∫ M

f−1
1 (z+δ)

e−(λ+γ)τ(x,f−1
1 (z+δ))ϕ(x)dx

∣∣∣∣∣
≤
∫ M

f−1
1 (z)

∣∣∣D1(z) e−(λ+γ)τ(x,f−1
1 (z)) −D1(z + δ)e−(λ+γ)τ(x,f−1

1 (z+δ))
∣∣∣ϕ(x)dx

+

∫ f−1
1 (z)

f−1
1 (z+δ)

D1(z + δ)e−(λ+γ)τ(x,f−1
1 (z+δ))ϕ(x)dx.
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On the other hand if z ∈ [r − δ, r] we have that

1

γ

∣∣K1
λϕ(z + δ)−K1

λϕ(z)
∣∣

= D1(z)

∫ M

f−1
1 (z)

e−(λ+γ)τ(x,f−1
1 (z))ϕ(x)dx

Hence

1

γ

∥∥K1
λϕ(·+ δ)−K1

λϕ(·)
∥∥

1

≤
∫ r−δ

m

∫ M

f−1
1 (z)

∣∣∣D1(z) e−(λ+γ)τ(x,f−1
1 (z)) (6.23)

−D1(z + δ)e−(λ+γ)τ(x,f−1
1 (z+δ))

∣∣∣ϕ(x)dxdz

+

∫ r−δ

m

∫ f−1
1 (z)

f−1
1 (z+δ)

D1(z + δ)e−(λ+γ)τ(x,f−1
1 (z+δ))ϕ(x)dxdz

+

∫ r

r−δ
D1(z)

∫ M

f−1
1 (z)

e−(λ+γ)τ(x,f−1
1 (z))ϕ(x)dxdz.

Since f−1
1 (z) ∈ [0, xc], and f−1

1 (z + δ) ∈ [0, xc] if z ∈ [m, r], then

D1(z) = − 1

α1

1

g(f−1
1 (z))

and D1(z + δ) = − 1

α1

1

g(f−1
1 (z + δ))

.

Using similar arguments to the one used in the proof of Lemma 6.12 we estimate the first
term of inequality (6.23) in the following way∫ r−δ

m

∫ M

f−1
1 (z)

∣∣∣D1(z)e−(λ+γ)τ(x,f−1
1 (z))

−D1(z + δ)e−(λ+γ)τ(x,f−1
1 (z+δ))

∣∣∣ϕ(x)dxdz

≤ 1

α1

∫ r−δ

m

∫ M

f−1
1 (z)

e−(λ+γ)τ(x,f−1
1 (z+δ))

∣∣∣∣ 1

g(f−1
1 (z))

e−(λ+γ)τ(f−1
1 (z),f−1

1 (z+δ))

− 1

g(f−1
1 (z + δ))

∣∣∣∣ϕ(x)dxdz ≤ cδ‖ϕ‖1

where we have used the uniform continuity of g on compact intervals and the Lipschitz
continuity of the function τ in the second argument. On the other hand, using the expres-
sion for f1 we deduce that the second term in inequality (6.23) can be estimated in the
following way ∫ m−δ

r

∫ f−1
1 (z)

f−1
1 (z+δ)

D1(z + δ)e−(λ+γ)τ(x,f−1
1 (z+δ))ϕ(x)dxdz

≤ c sup
x∈[m,M ]

1

g(x)

∫ r−δ

m

∫ − z+δ
α1

+
q1
α1

− z
α1

+
q1
α1

ϕ(x)dxdz

≤ c sup
x∈[m,M ]

1

g(x)

∫ r

m

∫ q1−xα1

q1−δ−α1x
dzϕ(x)dx ≤ cδ‖ϕ‖1
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for a suitable constant c > 0. Finally the third term in inequality (6.23) can be estimated
in the following way∫ r

r−δ
D1(z)

∫ M

f−1
1 (z)

e−(λ+γ)τ(x,f−1
1 (z))ϕ(x)dxdz ≤ c′δ‖ϕ‖1.

As a consequence, for every ε > 0 there exists a δε > 0 such that, for every δ < δε

‖K1
λϕ(·+ δ)−K1

λϕ(·)‖1 < ε‖ϕ‖1

and, hence the operator K1
λ is compact. The same technique can be used to prove that

the operators K2
λ and K3

λ are compact, hence the operator Kλ is compact for every λ ∈ C
with Reλ > −γ.

Now we have to prove that the operator Kλ is non-supporting for every λ ∈ ∆∩R. For
every ϕ ∈ X+ = L1

+([m,M ]) there exists a x0 ∈ (m,M) such that ϕ 6= 0 for a subset S of
[x0,M ] with positive measure. On the other hand for every F ∈ L∞+ (Ω0) = L∞+ ([m,M ])
there exists a set SF of positive Lebesgue measure on which F is strictly positive. If x < x0

we have that

(Kλϕ)(x) ≥ −1

α2g(f−1
2 (x))

∫ M

f−1
2 (x)

e−(γ+λ)τ(z,f−1
2 (x))ϕ(z)dz

≥ −1

α2g(f−1
2 (x))

∫ M

x
e−(γ+λ)τ(z,f−1

2 (x))ϕ(z)dz

≥ −1

α2g(f−1
2 (x))

∫ M

x0

e−(γ+λ)τ(z,f−1
2 (x))ϕ(z)dz

then Kλϕ(x) > 0.
Assume now that x > x0. Also in this case we have that

(Kλϕ)(x) ≥ −1

α2g(f−1
2 (x))

∫ M

f−1
2 (x)

e−(γ+λ)τ(z,f−1
2 (x))ϕ(z)dz.

Thanks to the fact that f2 is monotonically increasing we deduce that, if x < f2(x0) then
f−1

2 (x) < x0 and hence Kλϕ(x) > 0 for every x < f2(x0). Iterating this argument we
deduce that Kλϕ(x) > 0 for every x < fn2 (x0).

Since for every z < M there exists an n such that fn2 (x0) > z. we deduce that there
exists an n such that the set {x < fn(x0)} ∩ SF has positive measure and therefore Kλ is
non-supporting.

Proposition 6.16. Let g, µ,Λ, ν be such that Assumptions 6.4 hold. Let ψ0 be the stable
distribution. The Malthusian parameter is equal to 0 and R0 = 1. The solution B of (2.1)
satisfies

‖B(t, ·)− cΨ0‖ ≤Me−vt

where c, v,M > 0 and Ψ0(dx) = ψ0(x)dx the norm ‖ · ‖ = ‖ · ‖TV = ‖ · ‖[.

7 Relation between the PDE formulation and the RE

In this section we prove asynchronous exponential growth/decline for the population
distribution for the model examples introduced in Section 6.

We assume that the kernel K is defined by (5.1) for parameters satisfying one among
the three Assumptions 6.1, 6.2, 6.4; hence K is a z0-bounded regularizing kernel and
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induces via formula (4.27) an operator kernel K̃ that satisfies either Assumption 4.23 or
Assumption 4.24. The operator kernel K̃ in turn induces the discounted next generation
operator Kλ through the Laplace transform (4.7). We assume that Kλ is non-supporting
for every λ ∈ ∆ ∩ R and compact for every λ ∈ ∆.

7.1 From the population birth rate to the population distribution

We start by making the connection between the renewal equations and the partial
differential equations formalising the model examples presented in Section 5. Let M(t, ω)
be the number of individuals in the population with state in the set ω at time t. Assume
that at time t = 0 we have M(0, ·) = M0 with M0 ∈ M+,b(Ω). Then the number of
individuals, born before time zero, with state in the set ω at time t is equal to∫

Ω
F(t, x)δX(t,x)(ω)M0(dx).

On the other hand, the number of individuals, born after time zero, with state in the set
ω at time t equals ∫ t

0

∫
Ω0

B(t− a, dξ)F(a, ξ)δX(a,ξ)(ω)da,

where B is the population birth rate. The two above observations lead to the following
expression of M in terms of B and M0

M(t, ω) =

∫ t

0

∫
Ω0

B(t− a, dξ)F(a, ξ)δX(a,ξ)(ω)da+

∫
Ω
F(t, x)δX(t,x)(ω)M0(dx). (7.1)

Once B has been solved from the renewal equation (2.1), the formula (7.1) is an explicit
formula for M .

An alternative way to define M , see for instance [8], is to define it by duality with the
solution of the backward equation corresponding to (6.2), (6.1), (6.11), that reads, in its
general form, as

∂tϕ(t, x) = g(x)∂xϕ(s, x)− µ̃(x)ϕ(s, x) +

∫
Ω0

ϕ(s, η)ν(x, dη)Λ(x). (7.2)

If M is differentiable this amounts to define M as the function that satisfies∫
Ω

d

dt
M(t, dx)ϕ(x) =

∫
Ω

(g(x)∂xϕ(x)− µ̃(x)ϕ(x))M(t, dx) (7.3)

+

∫
Ω

(∫
Ω0

ϕ(η)ν(x, dη)

)
Λ(x)M(t, dx)

for every ϕ ∈ C1
c (R+).We provide more details on how to interpret the term

∫
Ω

d
dtM(t, dx)ϕ(x)

in Appendix B (proof of Proposition B.2).
If M is not differentiable, as in the present case, this alternative way cannot be used.

However, M can still be defined as the solution of an equation, namely equation (7.4)
below, which can be seen as a weak version of the PDEs (6.2), (6.1) , (6.11) when ν is
equal to (6.6), (6.10) or (6.15), respectively.
Proposition 7.1. Assume µ, g,Λ, ν are either as in Assumptions 6.1, Assumption 6.2 or
Assumption 6.4.
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The function M , defined by equation (7.1), is the unique function mapping R+×B(Ω)
into R+, that satisfies the following equation for every ϕ ∈ C1(R+, C

1
c (Ω))∫

Ω
ϕ(t, x)M(t, dx)−

∫
Ω
ϕ(0, x)M0(dx)−

∫ t

0

∫
Ω
∂sϕ(s, x)M(s, dx)ds (7.4)

=

∫ t

0

∫
Ω

(g(x)∂xϕ(s, x)− µ̃(x)ϕ(s, x))M(s, dx)ds

+

∫ t

0

∫
Ω

(∫
Ω0

ϕ(s, x)ν(η, dx)

)
Λ(η)M(s, dη)ds

and the initial condition M(0, ·) = M0(·).

We refer to the appendix for the proof of this proposition.
Equation (7.4) is used in the literature, see for instance [10] and also [21] in a slightly

different situation. It is not entirely intuitive because it relies on what one could call a
double duality (both in the state variable and in the time variable). In our approach
we use the interpretation to define M by (7.1). In the next section we shall deduce the
large time behaviour of M from that of B in a simple natural way. So there is no need
to formulate a PDE for M and to specify in which sense we solve it. Our motivation to,
nevertheless, formulate and prove Proposition 7.1 is simply to show that our constructively
defined M does indeed coincide with M as defined in other works.

By the interpretation of F(t, x) as the survival probability we expect F(t, x) to tend
to zero as time tends to infinity. Indeed, it follows from the assumption on the model
parameters that we have made in this section that there exists a constant C > 0 such that

sup
x∈Ω0

F(t, x) ≤ Cez0t for all t > 0. (7.5)

The exponential bound (7.5) is crucial in deducing the asymptotic behaviour of the
solution B of the renewal equation (2.1) and subsequently of M defined in terms of B in
(7.1). This will be done in the next subsection.

7.2 Asymptotic behaviour of the solution of the PDE

We now state and prove our result on asynchronous exponential growth/decline of the
population distribution M .

Theorem 7.2. Assume that µ, g,Λ, ν are either as in Assumptions 6.1 , Assumption 6.2,
or Assumption 6.4. Let M be given by (7.1) and let ψr and r be as in Corollary 4.30.
Then there exist a constant C > 0 and a constant ` > 0 such that∥∥e−rtM(t, ·)− cMψr(·)

∥∥ ≤ Ce−`t t > 0. (7.6)

where c > 0 and Mψr is defined by

Mψr(ω) :=

∫ ∞
0

∫
Ω0

e−arψr(ξ)F(a, ξ)δX(a,ξ)(ω)dξda ω ∈ B(Ω) (7.7)

and where ‖ · ‖ = ‖ · ‖TV = ‖ · ‖[.

Proof. We start by introducing some useful notation. Let M̃AC be the measure defined
by

M̃AC(t, ω) :=

∫ t

0

∫
Ω0

b(t− a)(ξ)F(a, ξ)δX(a,ξ)(ω)dξda
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where b is the density of BAC . In analogy we define M̃ s as follows

M̃ s(t, ω) :=

∫ t

0

∫
Ω0

Bs(t− a, dξ)F(a, ξ)δX(a,ξ)(ω)da.

With M̃ we denote the measure defined by

M̃(t, ω) :=

∫
Ω
F(t, x)δX(t,x)(ω)M0(dx).

Notice that∥∥M(t, ·)− certMψr(·)
∥∥ ≤ ∥∥∥M(t, ·)− M̃AC(t, ·)

∥∥∥+
∥∥∥M̃AC(t, ·)− certMψr(·)

∥∥∥
≤
∥∥∥M̃(t, ·)

∥∥∥+
∥∥∥M̃ s(t, ·)

∥∥∥+
∥∥∥M̃AC(t, ·)− certMψr(·)

∥∥∥ .
Now we estimate all these terms. In the estimates that follow we shall denote by C a
suitably chosen positive constant the value of which may change from line to line. Thanks
to (7.5) we have∥∥∥M̃(t, ·)

∥∥∥ =

∫
Ω0

M0(dξ)F(t, ξ)δX(t,ξ)(Ω) ≤
∫

Ω0

M0(dξ)F(t, ξ) ≤ C‖M0‖ez0t

for every t ≥ 0. It follows from (3.7) and (7.5) that∥∥∥M̃s(t, ·)
∥∥∥ =

∫ t

0

∫
Ω0

Bs(t− a, dξ)F(a, ξ)δX(a,ξ)(Ω)da

≤
∫ t

0

(
c1e

z0(t−a) + c2te
z0(t−a)

)
sup
ξ∈Ω
F(a, ξ)da

≤
(
c1e

z0t + c2te
z0t
)
t.

Let m be the density of M̃AC and let mψr be the density of Mψr . This means that

mψr(y) :=

∫ ∞
0

e−raψr(X(−a, y))F(a,X(−a, y))
g(y)

g(X(−a, y))
da

and

m(t, y) :=

∫ t

0
b(t− a)(X(−a, y))F(a,X(−a, y))

g(y)

g(X(−a, y))
da,

where b(t − a)(X(−a, y)) is the evaluation in X(−a, y) of the function b(t − a). By the
definition of the total variation norm and of the flat norm, we then have∥∥∥M̃AC(t, ·)− certMψr(·)

∥∥∥ =
∥∥m(t, ·)− certmψr(·)

∥∥
1
.

Notice that by the change of variable X(−a, y) = x we get∥∥m(t, ·)− certmψr(t, ·)
∥∥

1
≤ ert

∫ ∞
t

∫
Ω0

ψr(x)e−raF(a, x)dxda

+

∫ t

0

∫
Ω0

|b(a)(x)− ceraψr(x)| F(t− a, x)dxda

The fact that F satisfies (7.5) and the fact that r > z0 imply

ert
∫ ∞
t

∫
Ω0

ψr(x)e−raF(a, x)dxda ≤ Cez0t.
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Recall that by Corollary 4.30 there exists a constants C > 0 and r > k > 0 such that∥∥b(t)− certψr∥∥1
≤ Ce−kt+rt for every t > 0.

Therefore, using (7.5), as well as the fact that r − k > 0 and, hence, maxa∈[0,t] e
(r−k)a =

e(r−k)t we deduce that∫ t

0

∫
Ω0

|b(a)(x)− ceraψr(x)| F(t− a, x) dxda

≤ C
∫ t

0
e(r−k)a sup

x∈Ω
F(t− a, x)da ≤ Ce(r−k)t

∫ ∞
0

ez0ada.

Combining all the bounds that we have for ‖M̃(t, ·)‖, ‖ms(t, ·)‖ and ‖M̃ s(t, ·)− e−rtψr(·)‖
we deduce that ∥∥M(t, ·)− certMψr(·)

∥∥ ≤ Ce(r−`)t

fore some ` > 0, that is, (7.6) holds.

8 Concluding remarks

Models of physiologically structured populations can be formulated from first princi-
ples as renewal equations for the population birth rate B, which takes on values in the
space of measures on the set of admissible states-at-birth [11, 19]. In this paper we proved
the asynchronous exponential growth of the measure-valued solution B of the renewal
equation, (2.1) under a regularisation assumption on the kernel K. This assumption en-
abled us to derive the asymptotic behaviour of B from the behaviour of its absolutely
continuous part BAC . Moreover, using the regularisation assumption, we proved that also
the density of BAC satisfies a renewal equation. We studied the long term behaviour of
this density by way of Laplace transform methods.

We applied our results to a model of cell growth and fission (either into equal or
unequal parts) and to a model of waning and boosting of the level of immunity against
a pathogen. For these examples we then used the interpretation to express in Equation
(7.1) the population state M , that is, the distribution of individual states, in terms of the
population birth rate B. If we assume that the values of B(t, ω) for t < 0 are given, we
can write (7.1) as follows:

M(t, ω) =

∫ ∞
0

∫
Ω0

B(t− a, dξ)F(a, ξ)δX(a,ξ)(ω)da. (8.1)

Vice versa, we can express B in terms of of M :

B(t, ω) =

∫
Ω

Λ(η)ν(η, ω)M(t, dη). (8.2)

Combining Equations (8.1) and (8.2) we deduce the translation invariant formulation

B(t, ω) =

∫ ∞
0

∫
Ω0

B(t− a, dξ)K(a, ξ, ω)da (8.3)

of Equation (2.1).
When we solved (8.3) and then used (8.1) to define M , we actually solved a PDE,

the weak version of which is (7.4) (see Section 6 of [19] for general remarks about the
way RE arise when solving certain types of PDE). However, as noted above, there is no
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need to write down the PDE itself and to specify the notion of solution, nor to rigorously
prove the existence of such a solution, since the interpretation justifies our conclusions. So
guided by the interpretation we determined the asymptotic behaviour of the population
distribution efficiently using (8.1) and thus avoided demanding technicalities associated
with PDEs.

When the measure M(t, ·) is absolutely continuous with respect to the Lebesgue mea-
sure, it is simpler to write down the PDE. For the model of cell growth and fission into
equal parts it takes the form (6.1), for fission into unequal parts it becomes (6.2) and for
the model of waning and boosting we have (6.11). These PDEs have been treated for
instance in [14], [25] and [12], respectively.

The corresponding backward formulation of these equations is (7.2). When Ω ⊂ R,
then the measure M(t, ·) can be represented by the NBV function N defined by

N(t, x) :=

∫
[0,x]

M(t, dη).

The function N satisfies the following forward equation

∂tN(t, x) = −g(x)∂xN(t, x)−
∫

[0,x]
µ̃(ξ)N(t, dξ) +

∫
Ω

Λ(η)ν(ξ, [0, x])N(t, dξ). (8.4)

The regularization assumption on the kernel K entails, of course, a restriction con-
cerning the class of models that is covered. For the special example of fission into two
equal parts, it is shown in Section II.12 of [34] that one can establish convergence to an
absolutely continuous stable distribution under a relaxed regularity condition. So there is
definitely room for deriving sharper results. On the other hand, it is known that a stable
distribution may have a non-zero singular component. Indeed, this can happen in the
context of the selection-mutation balance as analyzed in [1, 6]. We now briefly comment
on the similarities and differences of the models considered here and those treated in [1, 6].
In [6], the nonlinearity is of the ‘replicator’ type, meaning that it is due to dividing by the
total population size, so due to working with relative magnitudes. In the context of our
framework we can, if we wish, do the same. In [1] the per capita birth and death rates
are allowed to depend on the total population size (see below for a more general setup).
Neither [1] nor [6] considers a dynamical trait and both implicitly assume that the survival
probability as a function of age is an exponential function. In these respects the model
considered here is far more general. In [6] mutation is incorporated as a random change of
trait, while in [1] it is incorporated as production of offspring with a different trait. If in
our framework we put K = K1 +K2, with K1(a, ξ, .) equal to a (a, ξ) dependent multiple
of the Dirac measure concentrated in ξ (describing production of offspring with exactly
the same trait) and K2(a, ξ, .) equal to a (a, ξ) dependent multiple of a fixed absolutely
continuous probability distribution, we obtain a “house-of-cards” type model in the spirit
of Section 4 of [6]. Perhaps one can do a lot of more or less explicit calculations for this
special case of a one-dimensional range perturbation of a rather degenerate kernel K1, but
this has not been done so far.

It is a challenge to extend the analysis developed in this paper to the case of a structured
population embedded in a non-constant environment which influences the evolution of the
population and which in turn is influenced by feedback from the population. An example
of an environment for cell growth and fission is the amount of nutrient resources, as it is
known that the availability of nutrients affects both the growth and fission rates [35]. In the
waning and boosting context, the force of infection γ is the most relevant environmental
variable.
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Let us denote the environment by E. The evolution in time of (B(t), E(t)) is given by
the following system of equations

B(t, ω) =

∫ ∞
0

∫
Ω0

B(t− a, dξ)K(a, ξ, Et, E(t), ω)da (8.5)

d

dt
E(t) = f(E(t))−

∫ ∞
0

∫
Ω0

B(t− a, dξ)c(a, ξ, Et, E(t))da (8.6)

where dE(t)
dt = f(E(t)) describes the evolution in time of the environment in the absence

of a consumer population and c(a, ξ, Et, E(t)) represents the influence on the environment
of an individual born with state ξ, that at time t has age a. Both c and the kernel K in
equation (8.5) depend on E(t) as well as on the history Et, that is on all the values of E
before time t and this dependence on E introduces, via (8.6), a non-linearity in equation
(8.5).

It is an open problem to study the asymptotic behaviour of (B(t), E(t)) under an
(adapted) regularisation assumption on the kernel K and to uncover the connection with
the corresponding PDE formulation. The special case Ω0 = {x0} is elaborated in [2].

A Notation

In this appendix we introduce the notation used in the paper. We denote by R+ the
set [0,∞) and by R∗+ the set (0,∞). Given a Borel measurable subset A of R we denote by
B(A) the σ−algebra of all Borel subsets of A. M(A) is the set of the signed Borel measures
on A,M+(A) is the cone of the positive measures andM+,b(A) the set of the positive and
bounded measures on A. Furthermore,M+,AC(A) is the subset of the measures which are
absolutely continuous with respect to the Lebesgue measure. We denote by µs the singular
part of the measure µ and by µAC its absolutely continuous part, again with respect to
the Lebesgue measure. We have µ = µs + µAC . Finally, we denote by |A| the Lebesgue
measure of the Borel set A.

The total variation norm ‖µ‖TV of a measure µ ∈M(A) is defined by

‖µ‖TV = sup
Π

n∑
i=1

|µ(Ai)|,

where the supremum is taken over all the finite measurable partitions Π := {A1, . . . , An} of
the set A. We denote by BL(A) the space of the real valued bounded Lipschitz functions,
endowed with the norm

‖f‖BL := sup
x∈A
|f(x)|+ sup

x,y∈A:x 6=y

|f(x)− f(y)|
|x− y|

.

Finally, the flat norm ‖µ‖[ of a measure µ ∈M(A) is defined by

‖µ‖[ = sup

{∣∣∣∣∫
A
fdµ

∣∣∣∣ : f ∈ BL(A) such that ‖f‖BL ≤ 1

}
.

For positive measures µ the equality‖µ‖[ = ‖µ‖TV holds, see [24].
We denote by L1

+(A) the set of the positive functions belonging to L1(A). The set
L1

+(A) is a cone in L1(A). Similarly, we denote by L∞+ (A) the cone of the positive functions
belonging to L∞(A).

For real numbers ρ, L1
ρ(A) is the space of the measurable functions f : A → R such

that ∫
A
|f(a)eρa| da <∞.
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L(X) is the space of the bounded linear operators from the normed linear space X
into itself equipped with the operator norm by ‖ · ‖op. The spectral radius of the linear
operator T is denoted by ρ(T ).

B Proof of Proposition 7.1

Let the assumptions made in the beginning of Section 7 hold.
To prove that M defined by (7.1) is the unique solution of equation (7.4), we use

the Riesz–Markov–Kakutani representation theorem and (7.1) to identify M(t, ·) with the
element

TB(t) + TM0(t) (2.1)

of (Cc(Ω))∗, where the function TB : R+ → (Cc(Ω))∗ is defined by

TB : t 7→
(
ϕ 7→

∫ t

0

∫
Ω0

B(t− a, dξ)F(a, ξ)ϕ(X(a, ξ))da

)
t ≥ 0 (2.2)

while the function TM0 : R+ → (Cc(Ω))∗ is defined by

TM0 : t 7→
(
ϕ 7→

∫
Ω
M0(dξ)F(t, ξ)ϕ(X(t, ξ))

)
t ≥ 0. (2.3)

We use this representation to compute d
dtM(t, ·). To this end we will identify TB(t) and

TM0(t) with their restrictions on C1
c (Ω). We start with an auxiliary lemma that explain

how to compute d
dtTB(t) and d

dtTM0(t).

Lemma B.1. The functions TB : R+ → (C1
c (Ω))∗ and TM0 : R+ → (C1

c (Ω))∗ defined by
(2.2) and (2.3), respectively, are a.e. differentiable and differentiable. For the values of
time t ≥ 0 for which TB is differentiable, its derivative d

dtTB(t) ∈ (C1
c (Ω))∗ is given by

d

dt
TB(t)ϕ = FB(t)ϕ for every ϕ ∈ C1

c (Ω),

where

FB(t)ϕ :=

∫
Ω0

B(t, dξ)ϕ(ξ) +

∫ t

0

∫
Ω0

B(t− a, dξ)F(a, ξ)G(ϕ)(X(a, ξ))da

with

G(ϕ)(x) := −µ̃(x)ϕ(x) + g(x)ϕ′(x).

The derivative d
dtTM0(t) ∈ (C1

c (Ω))∗ of TM0 is given by

d

dt
TM0(t)ϕ = FM0(t)ϕ for every ϕ ∈ C1

c (Ω),

where

FM0(t)ϕ :=

∫
Ω
F(t, ξ)G(ϕ)(X(t, ξ))M0(dξ).

The proof of this lemma is technical as it deals with function with values in (C1
c (Ω))∗,

but the result is intuitively credible as it is formally obtained by simply applying Leibniz
rule for differentiating under the integral sign.
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Proof. We start by proving that TB is differentiable. Notice that for every ϕ ∈ C1
c (Ω),∥∥∥∥TB(t)− TB(t+ h)

h
− FB(t)

∥∥∥∥
op

= sup
‖ϕ‖

C1
c (Ω)
≤1

∣∣∣∣TB(t)ϕ− TB(t+ h)ϕ

h
− FB(t)ϕ

∣∣∣∣ .
By the Lebesgue point theorem we have that for almost every t > 0

lim
h→0

1

h

∫ t+h

t

∫
Ω
B(a, dy)F(t− a, y)ϕ(X(t− a, y))da =

∫
Ω
B(t, dy)ϕ(y)

for every ϕ ∈ C1
c (Ω) with ‖ϕ‖C1

c (Ω) ≤ 1. The fact that ϕ is Lipschitz continuous and that
for every y ∈ Ω0 the map X(·, y) is continuous implies that the convergence is uniform in
ϕ. Let us illustrate why. Notice that

1

h

∣∣∣∣∫ t+h

t

∫
Ω
B(a, dy)F(t− a, y)ϕ(X(t− a, y))da−

∫
Ω
B(t, dy)ϕ(y)

∣∣∣∣
≤ 1

h

∫ t+h

t

∣∣∣∣∫
Ω
B(a, dy)F(t− a, y)ϕ(X(t− a, y))

−
∫

Ω
B(a, dy)F(t− a, y)ϕ(y)

∣∣∣∣ da
+

1

h

∣∣∣∣∫ t+h

t

∫
Ω
B(a, dy)F(t− a, y)ϕ(y)da−

∫
Ω
B(t, dy)ϕ(y)

∣∣∣∣ da
≤ 1

h

∫ t+h

t

∫
Ω
B(a, dy) |ϕ(X(t− a, y))− ϕ(y)| da

+
1

h

∫ t+h

t

∣∣∣∣∫
Ω
B(a, dy)F(t− a, y)da−

∫
Ω
B(t, dy)

∣∣∣∣ da
The second term goes to zero a.e., uniformly in ϕ. Since ϕ is compactly supported, and
Lipschitz continuous, we have that for every ε > 0 there exists a δ > 0 such that for every
h < δ we have |ϕ(X(h, y))− ϕ(y)| ≤ ‖ϕ′‖∞ |X(h, y)− y| < ε. It follows that

1

h

∫ t+h

t

∫
Ω
B(a, dy) |ϕ(X(t− a, y))− ϕ(y)| da→ 0

uniformly in ϕ with ‖ϕ‖C1
c (Ω) ≤ 1 as h→ 0.

On the other hand, by the dominated convergence theorem we deduce that

lim
h→0

∫ t

0

∫
Ω0

∆hFϕ(t, a, y)

h
G(ϕ)(X(a, y)))B(a, dy)da

=

∫ t

0

∫
Ω0

F(a, y)G(ϕ)(X(a, y)))B(a, dy)da

where

∆hFϕ(t, a, y) = F(t+ h− a, y)ϕ(X(t+ h− a, y))−F(t− a, y)ϕ(X(t− a, y)).

Since for every y ∈ Ω0 the map X(·, y) is continuous and since ϕ ∈ C1
c (R), hence Lipschitz

continuous function, the convergence is uniform in ϕ.
The proof of the fact that

dTM0(t)ϕ

dt
= FM0(t)ϕ

is analogous and we omit it.
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Proposition B.2. The function M , defined by equation (7.1) satisfies (7.4) for every
ϕ ∈ C1(R+, C

1
c (Ω)).

Proof. Integrating by parts we find that∫
Ω
ϕ(t, x)M(t, dx)−

∫
Ω
ϕ(0, x)M0(dx)−

∫ t

0

∫
Ω
∂sϕ(s, x)M(s, dx)ds

=

∫ t

0

∫
Ω
ϕ(s, x)

d

ds
M(s, dx)ds

where the term
∫

Ω ϕ(s, x)M(s, dx) is equal to FB(s)ϕ(s, ·) + FM0(s)ϕ(s, ·). Hence thanks
to Lemma B.1 ∫ t

0

∫
Ω
ϕ(s, x)

d

ds
M(s, dx)ds =

∫ t

0

∫
Ω0

B(t, dξ)ϕ(s, ξ)ds

+

∫ t

0

∫ s

0

∫
Ω0

B(s− a, dξ)F(a, ξ)G(ϕ(s, ·))(X(a, ξ))dads

+

∫ t

0

∫
Ω
F(s, x)G(ϕ(s, ·))(x)M0(dx)ds.

This implies that∫
Ω
ϕ(t, x)M(t, dx)−

∫
Ω
ϕ(0, x)M0(dx)−

∫ t

0

∫
Ω
∂sϕ(s, x)M(s, dx)ds

=

∫ t

0

∫
Ω0

B(s, dξ)ϕ(s, ξ)ds

+

∫ t

0

∫ s

0

∫
Ω0

B(s− a, dξ)F(a, ξ)G(ϕ(s, ·))(X(a, ξ))dads

+

∫ t

0

∫
Ω
F(s, x)G(ϕ(s, ·))(x)M0(dx)ds.

Hence, to deduce that M satisfies (7.4), we have to prove that∫ t

0

∫
Ω0

B(s, dξ)ϕ(s, ξ)ds (2.4)

+

∫ t

0

∫ s

0

∫
Ω0

B(s− a, dξ)F(a, ξ)G(ϕ(s, ·))(X(a, ξ))dads

+

∫ t

0

∫
Ω
F(s, x)G(ϕ(s, ·))(x)M0(dx)ds

=

∫ t

0

∫
Ω
G(ϕ(s, ·))M(s, dx)ds

+

∫ t

0

∫
Ω

(∫
Ω
ϕ(s, x)ν(η, dx)

)
Λ(η)M(s, dη)ds

Using (7.1) to compute ∫ t

0

∫
Ω
G(ϕ(s, ·))(x)M(s, dx)ds

we deduce that ∫ t

0

∫ s

0

∫
Ω0

B(s− a, dξ)F(a, ξ)G(ϕ(a, ·))(X(a, ξ))dads (2.5)

=

∫ t

0

∫
Ω
G(ϕ(s, ·))(x)M(s, dx)ds

−
∫ t

0

∫
Ω
F(s, x)G(ϕ(s, ·))(x)M0(dx)ds
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Let

L(s, x) := Λ(x)

∫
Ω
ν(x, dy)ϕ(s, y).

We integrate the function L(s, η) against the measure M(s, dη)ds on R+ × Ω and deduce
that ∫ t

0

∫
Ω
L(s, η)M(s, dη)ds =

∫ t

0

∫
Ω

∫
Ω
ϕ(s, x)ν(η, dx)Λ(η)M(s, dη)ds

On the other hand, integrating L(s, η) against the following measure on R+ × Ω∫ s

0

∫
Ω0

B(s− a, dξ)F(a, ξ)δX(a,ξ)(·)dads+

∫
Ω
F(s, x)δX(s,x)(·)M0(dx)ds,

and, additionally, using the fact that B satisfies (2.1), as well as the formula (7.1), we
deduce that ∫ t

0

∫
Ω0

B(s, dξ)ϕ(s, ξ)ds (2.6)

=

∫ t

0

∫
Ω
L(s, η)M(s, dη)ds

=

∫ t

0

∫
Ω

∫
Ω

(ϕ(s, y)ν(η, dy)) Λ(η)M(s, dη)ds

Combining (2.4) with (2.5) and with (2.6) we find that M satisfies (7.4).

Finally we prove that there exists a unique solution for equation (7.4).

Proposition B.3. If both M1 and M2 solve (7.4) with the same initial condition M1(0, ·) =
M2(0, ·) = M0(·), then M1(t, ·) = M2(t, ·) for every t > 0.

Proof. Let M = M1 −M2. Since M1 and M2 satisfy equation (7.4), it follows that∫
Ω
ϕ(t, x)M(t, dx) =

∫ t

0

∫
Ω
Gϕ(s, x)M(s, dx)ds,

where

Gϕ(s, x) := ∂sϕ(s, x) + g(x)∂xϕ(s, x)− µ̃(x)ϕ(s, x) +

∫
Ω
ϕ(s, η)Λ(x)ν(x, dη). (2.7)

We prove that for every ψ ∈ Cc(Ω0) there exists a ϕ ∈ C1([0, t], C1
c (Ω0)) such that Gϕ = 0

and ϕ(t, x) = ψ(x). This implies that M(t, suppψ) = 0. Making the function ψ vary we
deduce that M(t, A) = 0 for every A ∈ B(Ω0). From this we find that M1 = M2.

Let us prove that for every ψ there exists a solution to the equation Gϕ = 0 with final
condition ϕ(t, x) = ψ(x). Thanks to the definition of G, this is equivalent to prove that
there exists a unique solution to

∂sϕ(s, x) = −g(x)∂xϕ(s, x) + µ̃(x)ϕ(s, x)−
∫

Ω
ϕ(s, η)Λ(x)ν(x, dη). (2.8)

Integrating along the characteristic we can rewrite the equation in a fixed point form:

ϕ(s,X(s, x)) = T ϕ(s, x)
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with X(s, x) being the solution of the ODE dy
ds = g(y) with initial datum y(0) = x and

with

T ϕ(s, x) :=ψ(X(t, x))e−
∫ t
s µ̃(X(v,x))dv

+

∫ t

s

∫
Ω
ϕ(v, η)Λ(X(v, x))ν(X(v, x), dη)e−

∫ v
s µ̃(X(v,x))dvdv

Since

‖T ϕ2 − T ϕ2‖∞ ≤ 2 · ‖ϕ1 − ϕ2‖∞ · sup
x∈Ω

∫ t

s
µ̃(X(v, x))e−

∫ s
v µ̃(X(a,x))dadv

≤ 2 · ‖ϕ1 − ϕ2‖∞ · sup
x∈Ω

(
1− e−

∫ t
0 µ̃(X(a,x))da

)
,

we deduce that for sufficiently small t > 0 the operator T , that maps C1([0, t], C1
c (Ω0)) in

itself, is a contraction. Hence there exists a unique solution of equation (2.8) as s varies
between 0 and t. A solution for every time t can be proven to exists by repeating the above
reasoning for every interval of time of length t.

Proof of Proposition 7.1. It is enough to combine the statement of Proposition B.3 and
B.2.
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