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Abstract—In this work we link the understandability of ma-
chine learning models to the complexity of their SHapley Additive
exPlanations (SHAP). Thanks to this reframing we introduce two
novel metrics for understandability: SHAP Length and SHAP
Interaction Length. These are model-agnostic, efficient, intuitive
and theoretically grounded metrics that are anchored in well-
established game-theoretic and psychological principles. We show
how these metrics resonate with other model-specific ones and
how they can enable a fairer comparison of epistemically different
models in the context of Explainable Artificial Intelligence.
In particular, we quantitatively explore the understandability-
performance tradeoff of different models which are applied to
both classification and regression problems. Reported results
suggest the value of the new metrics in the context of automated
machine learning and multi-objective optimisation.

I. INTRODUCTION

The availability of data and computing power is making ma-
chine learning (ML) and Artificial Intelligence (AI) more and
more important for extracting value and optimizing processes.
In this frame there has been a strong drive for developing
very sophisticated models that reach high-performance scores
in classification and regression benchmarks. This has though
come at the price of having models that are more and more
obscure and difficult to inspect and explain. This is an issue
in all those applications where an action in the real world
has strong consequences and bears responsibilities, such as
medicine, justice and finance. The need for having both
powerful and understandable models is what has driven the
development of eXplainable Artificial Intelligence (XAI) [1],
[2]. In this context the paradigm is not anymore the automation
that enables a machine to solve a task, but rather an integration
of predictive tools that give suggestions and insights to a
human user who happens to be the one that ultimately is
accountable and responsible for high impact decisions (this
paradigm is also known as human-centric computing).

There are different approaches to XAI. While some re-
searchers try to develop model-agnostic tools that are as widely
applicable as possible (post-hoc explanations) [3]–[5], others
instead push for the development of intrinsically interpretable
models, arguing that white-box models can be as powerful as
the so-called black-box models [6]–[8]. We thus have lots of
models which are explainable to different degrees, but what
we lack is a model-agnostic way of capturing the interplay

between (a) the simplicity of the model (regarding Ockham’s
razor principle) and (b) its empirical performance on one or
more tasks. In practice, typically what is done is to measure
the complexity of a specific model by looking at some model-
specific properties (for example the number of nodes of a
decision tree). This is fine when we restrict our explorations to
just one class of models, but it is problematic when we want
to explore and compare different families of models (e.g., is it
fair to compare the number of nodes in a tree to the number
of non-zero coefficients in a linear model?).

In this work we present a metric for evaluating model under-
standability that is model-agnostic, intuitive, computationally
efficient and mathematically grounded. This can enable a fairer
comparison between different models on specific datasets. In
addition, it enables the possibility of multi-objective opti-
misation guided by automated metrics for both performance
and understandability. And last but not least, it can push the
development of more explainable models.

The rest of the manuscript is organized as follows. Section II
introduces preliminary concepts and reviews related publica-
tions. Section III presents two novel metrics for measuring
understandability. Section IV uses the metrics of section III to
assess the goodness of classifiers and regressors. In addition,
we show the utility of the new metrics in the context of an
illustrative example of multi-objective optimisation. Finally,
Section V concludes the paper and outlines future work.

II. RELATED WORK

There are several approaches to XAI evaluation. Here we
report only the papers that are most in line with our approach.
For further details, the interested reader is kindly referred
to [9].

A. Complexity as a proxy for understandability

Automatic measures of understandability typically consist
in measuring some model-specific complexity metric as a
proxy for understandability [10], e.g., the number of rules
in an expert system, the number of non-zero coefficients
in a linear model, the number of nodes in a decision tree,
etc. This way of doing might work while dealing within
just one class of models but becomes difficult to compare
across different classes of models. Molnar et al. [11] proposed
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to overcome this issue by creating a metric for complexity
based on functional decomposition. They count the number of
features used by a pipeline with permutation-based evaluation
and estimate the interaction effects with accumulated local
effects. While being a good approach (for example for multi-
objective optimisation) it is not straightforward to see how
their metric is related to intelligibility. Furthermore, the way
with which their complexity metric is set up is somewhat
arbitrary and not intuitive.

Zhou et al. [12] developed a hybrid survey-based evalua-
tion method to find out how a linear model and a tree are
intelligible. In addition, they created a meta-model that fits
the human evaluation using some attributes of the underlying
model. Unfortunately, this approach does not allow the use of
the new metric out of the scope of the conducted experiments.
Moreover, the reported results (and the generated meta-model)
highly depend on the population on which the survey was
conducted.

B. Post-hoc measures

An interesting approach is to build upon SHapley Additive
exPlanations (SHAP) [4]. This is a model-agnostic game-
theoretic approach that assigns a relevance score ϕi to each
feature i using Shapley Values [13]. This allocation is the only
additive feature attribution method that satisfies a variety of
axioms for an n-person coalitional game v:

• Null player: if the presence of player i never adds
anything to any coalition, then ϕi = 0;

• Equal treatments of equals: if two actors i and j always
“bring the same value” to any coalition, then ϕi = ϕj ;

• Efficiency: the attributions sums up to the total payoff,
that is

∑
i∈N ϕi = v(N);

• Linearity: the attributions to player i for a game that is a
linear combination of two games v

′
and v

′′
, is the linear

combination of the attributions of the sub-games ϕ
′

i and
ϕ

′′

i .
It is worth noting that SHAP is becoming more and more
popular in practical applications [14], [15]. In this context,
Weerts et al. [16] carried out an extrinsic evaluation of the
efficacy of SHAP on some specific tasks with humans. They
observed that large Shapley values did affect the reasoning
applied by their participants. They also highlighted that “large
Shapley values can bring feature values of the instance to
attention that are otherwise ignored”. This is a key insight
upon which our approach is built, as we will see in the next
section.

III. MODEL-AGNOSTIC AUTOMATIC METRICS: SHAP
LENGTH AND SHAP INTERACTION LENGTH

We are looking for a novel metric with the following
desiderata. The new metric must be:

• model agnostic;
• computationally efficient;
• theoretically grounded;
• in agreement with human intuition.

In order to achieve these desired properties of the ex-
plainability metric, we will take as starting point SHAP
explanations and the principle of minimum cognitive load [17].
The latter states that information before being processed and
integrated must first pass through working memory. This
buffer, being limited in both capacity and duration [18], limits
the overall throughput of information that we can digest.
Miller conjectured that this limit was seven plus or minus two
concepts to be simultaneously handled by humans [19]. The
same limitation was observed when humans did preference
judgments in the context of an analytic hierarchy process [20].
We take working memory load to be an estimate of over-
all cognitive load and formulate our research hypothesis as
follows: an explanation with a lower cognitive load has more
possibilities to be digested by humans (and can thus be deemed
as “understandable”) than one with a higher load.

A. Intuitive idea

For a user to understand the behaviour of a model by means
of SHAP, he/she has to pay attention to every non-zero value
of a given explanation. We can further generalise this notion
to the user having to look at a subset of explanations whose
aggregate contribution sum up to a certain threshold. The idea
is that if for a specific prediction we have a few non-zero
Shapely values, the user has to look at fewer details. The
explanation is thus relatively more intelligible than another
where instead many features contribute to the output (see Fig.
1). We can also think about this as a lossy compression of
the explanation, where the amount of information loss can
be controlled precisely. We can then extrapolate from the
aggregation of many explanations on the same dataset that if
the explanations associated with a model involve on average
less features, then the model is less complex than one that
involves more of them.

In the following sections we introduce two novel explain-
ability metrics which are built upon SHAP:

• SHAP Length (SL): based on Shapley Values [21].
• SHAP Interaction Length (SIL): based on Shapley Inter-

action Values [22], where an importance score is given
also to pairwise interaction effects.

B. Formal Definitions

Lundberg and Lee [21] introduced the use of SHAP as a
numerical and visual explanation of the impact that each fea-
ture in a given data instance had on the associated prediction.
The set Φ := {ϕi} corresponds to the Shapley allocation of
a coalitional game where i features are seen as players and
the payoff is the difference between the model output and its
average value (also called baseline).

Let’s now consider the following useful definitions:

Definition III.1 (Explanation mass). For a local SHAP ex-
planation on an instance with p features {ϕi, i = 1...p}, we
define explanation mass associated to each feature i to be |ϕi|.

Definition III.2 (Complete explanation). A subset of Shapley
values Φc ⊆ Φ is complete if Φc := {ϕi > 0,∀i}. In other
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Fig. 1. Two different Breast Cancer instances classified by Random Forest
and explained by SHAP whose output is compressed to a 95% mass threshold
(see Section III-B for further details). Instance (B) is relatively easier to be
understood wrt (A) in virtue of carrying a lower cognitive load (i.e., it involves
fewer pieces of information) to a user.

words, it is an explanation that describes all the i features that
have contributed to the outcome (i.e., ϕi > 0). For example,
given a local explanation {ϕ1 = 0.4, ϕ2 = 0, ϕ3 = −1.2},
we have that the explanation {ϕ1 = 0.4, ϕ3 = −1.2} is still
complete (that is, it still contains all information).

Definition III.3 (Explanation completeness). For a given
subset Φsubset ⊆ Φc, we call completeness the scalar

Γ(Φ) :=

∑
i∈Φsubset

|ϕi|∑
i∈Φc
|ϕi|

.

In other words, it is the fraction of explanation mass of a com-
plete explanation that a given subset of explanands captures.
Intuitively it represents what is the fraction of information

Fig. 2. Examples of different SHAP Length (SL) values for different
explanation mass thresholds, respectively of 80%, 90% and 95% for instance
#424 of Breast Cancer Dataset. For ease of visualisation, the value of each
ϕi is reported rounded to the second digit.

that the subset has compared to a complete one. Notice that
0 ≤ Γ(Φ) ≤ 1 and we can refer to it in a percentage form
for convenience. As a practical example, in Fig. 2 the subset
of explanands in the big red box have a completeness of
Φ({ϕi for i ∈ red box}) = 95%.

Definition III.4. p%-complete explanation is the smallest set
of Shapely values Φ such that Γ(Φ) ≥ p.

Based on the previous definitions, it is possible to formulate
the following additional property:

Definition III.5. SLp% := ||Φp|| is the number of features
in the p%-complete explanation. Similarly, SILp% is the
cardinality of the p%-complete explanation (i.e., the number
of involved features) in a SHAP interaction graph, where
one can take only the lower (or upper) triangular matrix of
the explanation, due to its symmetric nature, for efficient
computing purpose.

C. Implementation Details

The algorithm for computing SL simply orders the absolute
Shapley values from the largest to the lowest (normalised by
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the total). Then the SL value is the first index for which the
cumulative sum is greater or equal than the given threshold.
A pseudocode version is given in Algorithm 1. SIL is com-
puted with the same Algorithm 1 with the difference that it
uses the flattened vector of the lower triangular matrix of
Shapley interaction values. In general, it is computationally
expensive to compute Shapely interaction values. Fortunately,
it is possible to have a very fast exact implementation for tree
ensembles that can leverage GPU hardware [23]. For practical
purposes, we will compute both SL and SIL with Gradient
Boosted Trees from the XGBOOST package (xgb) [24] which
acts as a surrogate of the original model. The fidelity of this
surrogate is measured as the R2 score between the prediction
of the original model (log odds in case of classification) and
the output of the surrogate.

Algorithm 1: SHAP Length (SL)
Data: {ϕi} for i = 1...p, th
Result: SLth%

ExplanationMass← |ϕi|
TotalMass← Total(ExplanationMass)
Ordering ← ArgSort(ExplanationMass)
CumNormMass←
CumSum(ExplanationMass[Ordering])/TotalMass
for i = 0, i < p, i++ do

if CumNormMass[i] > th then
SLth% ←i
return SLth%

end
end

IV. EXPERIMENTAL STUDY

In this section we present some practical use cases to illus-
trate the validity and utility of SL and SIL. We explore how
different models populate the performance-understandability
tradeoff and how the proposed metrics relate to other well-
known model-specific complexity metrics. In addition, we will
compare several families of models, with different degrees
of transparency, on a classification dataset and a regression
dataset. We are looking for the models that have the best
performance and the best understandability (i.e., the smallest
complexity in terms of SL and SIL). For this is useful to
pay attention to the associated Pareto front (the ranking of
models for which there is no other competitor which is better
in either performance or understandability) for the datasets
under consideration.

A. Balance between performance and understandability

We propose an empirical exploration of the performance-
understandability tradeoff in terms of the balance between
accuracy and complexity for different algorithms on a clas-
sification dataset (Breast Cancer1) and a regression dataset

1https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+
(diagnostic)

(Boston House2). On the one hand, the Breast Cancer dataset
corresponds to a binary classification problem in the medical
domain, with a total of 569 data instances (212 instances
associated with Malign class and 357 instances associated
with Benign class) which relate 30 real-valued features. On
the other hand, the Boston House dataset includes 506 data
instances that relate 13 real-valued features with the target of
predicting housing prices.

The following algorithms are tested: k-Nearest neighbours
(i.e., 10-nearest and 5-nearest, with k=10 and k=5 respec-
tively), Decision Tree (dt), Fuzzy Decision Tree Classifier with
s-shaped fuzzy partitions (fuzzy tree) [25], Decision Tree with
a maximum depth of 2 (dt depth 2), Fuzzy Decision Tree
Classifier with a maximum depth of 2 (fuzzy tree depth 2),
Explainable Boosting Machines (ebm), Explainable Boosting
Machines without interaction values (ebm 0) [26], Logistic
Regression with L2 regularisation (lr l2), Logistic Regression
with L1 regularisation (lr l1), Random Forest (rf), Support
Vector Machine (svm), Gradient Boosted Trees (xgb). For the
regression experiments we used the regression version of the
above-mentioned models (except for Fuzzy Decision Trees
which are only available in Python for classification) with the
addition of Linear Regression with L2 (lr l2) and L1 (lasso)
regularisation. Each model is trained with default parameters
and evaluated with 10-fold cross-validation using the Python
package scikit-learn [27]. It is worth noting that the xgb-
based surrogate reported mean R2 score of 0.997 and 0.982
on the Breast Cancer [28] and Boston House [29] datasets,
respectively.

Reported results for the Breast Cancer dataset are sum-
marised in Fig. 3. It is interesting to appreciate quantitatively
the tension between understandability and performance which
is reported also elsewhere in the literature [2]. In particular,
we can see how decision trees (including in this category
fuzzy tree depth 2) and nearest neighbour approaches pro-
duce by far the simplest models but at the cost of the smallest
performance. The Pareto front with the non-dominated models
in terms of SL and F1-score (see the plot in the left of Fig. 3)
includes dt depth 2 (the simplest and least accurate model),
dt, 10-nearest, rf, fuzzy tree, xgb, lr l1 and lr l2 (the most
complex and accurate model). Interestingly, fuzzy tree turns
up as a compromise solution. Notice that fuzzy tree is close
to rf and xgb regarding both performance and complexity
while it is a single model versus ensemble models. Moreover,
fuzzy tree can be endowed with linguistic interpretability
which is likely to be appreciated in a number of applications.

The Pareto front with the non-dominated models in terms
of SIL and F1-score (see the plot in the right of Fig. 3) is
slightly different. It includes: dt depth 2 (the simplest and
least accurate model), dt, 10-nearest, xgb, lr l1 and lr l2 (the
most complex and accurate model). It is worth noting that xgb
dominates rf and fuzzy tree when interactions come into play.
Indeed, SHAP interaction graphs are harder to interpret and
this is reflected in the fact that SIL values are higher than SL

2http://lib.stat.cmu.edu/datasets/boston
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Fig. 3. An empirical exploration of performance-understandability tradeoff of different algorithms on the Breast Cancer dataset. Each metric has been computed
with 10-fold Cross-Validation. Performance is measured as the F1 Score. Understandability is associated with the SL90% and SIL90%. The best models
would be in the bottom-right part of each plot.

Fig. 4. Correlation graph with SL versus SIL. Here is shown the value for
each of the 10 folds for each model trained on the Breast Cancer.

values. F1-score computes the harmonic mean of precision
and recall; thus giving the relation between true positives
(TP), false positives (FP) and false negatives (FN), which is
especially informative in the case of unbalanced classification
datasets:

F1−score = 2∗ precision ∗ recall
precision+ recall

=
2

2 ∗ TP + FN + FP

As observed in Fig. 4, SL and SIL are highly correlated.
This means we can rely on SL (which is easier to compute)
as an estimate for SIL. This is the reason why the two Pareto
fronts in Fig. 3 are so similar.

The same behaviour is observed in the Boston Dataset
dataset (see Fig. 5) but in this case the non-dominated models
are only dt depth 2 (the simplest model) and rf (the most
accurate model). In this regression problem we measure per-
formance as the negative mean square error (Negative MSE)
as follows:

Negative MSE = − 1

N
∗

N−1∑
i=0

(yi − ŷi)
2

where N is the number of test data instances, ŷi is the predicted
output for instance i and yi is the actual output for the same
instance.

B. Multi-objective optimisation

As a use case we present an exploration of a grid-search
for decision regressor trees and linear regression with L1 and
L2 regularisation (also known as elastic net) on the Boston
House Dataset. We choose these models as they are considered
interpretable and we deem interesting to evaluate which part
of the complexity-performance space they occupy.

The parameter grid for trees spanned the depth of the trees
from 2 to 12 and a regularisation parameter ccp-α from 0 to 1.
The parameters of Linear Regression instead were the penalty
coefficient α spanning from 0 to 1 and the “l1 amount ratio”,
which controlled how much the l1 regularisation was wrt l2,
also spanning from 0 to 1. Fig. 6 summarises the reported
results. Each point is a different configuration evaluated with
4-fold cross-validation. Interestingly, for this dataset it seems
that regression trees can be better both in performance and
understandability compared to linear regression. By comparing
it to Fig. 5, we can see how in the space of intelligible models
we could find solutions that can be competitive to other black-
box approaches.

C. Proportionality with respect to popular complexity mea-
sures associated with white-box models

For these novel metrics (SL and SIL) to be valid we
would expect them to be somehow proportional to some
other intuitive, well-established (yet model-specific) metrics
commonly used in the literature to measure complexity. In
particular, we explored on the Boston House dataset the family
of regression trees with the same hyperparameters grid-search
used in IV-B, evaluating 1000 configurations with 4-fold cross-
validation. In Fig. 7 we compare SL98% with the number of
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Fig. 5. An empirical exploration of the performance-understandability tradeoff of different algorithms on the Boston House dataset. Each metric has been
computed with 10-fold Cross-Validation. Performance is measured as negative Mean Square Error (MSE). Understandability is associated with the SL90%
and SIL90%. The best models would be in the bottom-right part of each plot.

Fig. 6. Complexity (90% SL)/Accuracy (Negative MSE) tradeoff of an
exhaustive grid search of decision trees on the Boston House Dataset (4-
fold cross validation).

nodes (plot on the left) and with the number of leaves (plot
on the right) in a regression tree. The number of nodes is a
measure of how many concepts do the tree need for doing
well the regression task while the number of leaves translates
to how long would be an equivalent list of rules. Both number
of nodes and leaves are widely used in the literature to measure
the complexity of trees. Notably, SL tends to saturate while

Fig. 7. SL is proportional to the complexity of the tree measured as the
number of nodes (roughly equivalent to ”concepts”) and the number of leaves
(equivalent to the length of a rule list). Notice that #Nodes and #Leaves are
very similar to each other up to a scale factor due to the specific details of
the tree construction.
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the other metrics do not, this is because SL has an upper
bound determined by the number of features of the dataset,
while the complexity metrics of a tree are unbounded because
a tree can in principle become arbitrarily large. We can see
that the two metrics are proportional to each other such that
a higher SL corresponds to a higher complexity metric. We
can thus reproduce results of a model specific metric, but
with a model agnostic approach. In this sense with SL we
do not lose explanatory power but instead we have a gain in
generalisability.

V. CONCLUSIONS AND FUTURE WORK

In this paper we introduced two new metrics (SL and
SIL) for evaluating the “understandability” of ML pipelines.
The metrics anchor on Shapley values and psychological
considerations. These foundations make SL and SIL model-
agnostic, efficient, theoretically grounded and more intuitive
than other alternatives available in the literature up to now.
We have shown how these metrics can be used for comparing
how different models behave on some datasets (regarding both
classification and regression tasks). As a result, we hope that
these proposed metrics can provide a common ground bench-
mark for pushing the comparison of alternative approaches and
the reproducibility of empirical results in the context of XAI.

In addition, the new metrics are ready to be used in
the context of automated ML (AutoML). The criterion for
selecting the best setup pipeline could be the simplest model
within the best performing models. Further research needs
to be done in order to establish solid relationships between
SL and generalisation power, as it could possibly be a useful
indicator of overfitting. As future work, we plan to scale up
this benchmark to include more datasets and to try to delineate
a ranking of accurate yet understandable models available in
the literature.
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