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1 | INTRODUCTION
Segre numbers

Let S be a smooth projective surface over C and a € K(S) a class in the Grothendieck group of
coherent sheaves on S. On the Hilbert scheme S/ of n points on S, we have the tautological class

al"l = p(g*a) € K(SI),
where q : Z — S and p : Z — Sl denote projections from the universal subscheme Z C S x

Sl and p, 1= ¥,(=1)'Rp,. We refer to the coefficients of the following generating series as
Segre numbers of S

< n [n]
DIE /Smc(“ ) e allz]l,

where ¢ denotes total Chern class. For @ = —V/, where V is the class of a vector bundle, c(al™) =
s(vInl), where s denotes total Segre class. Throughout the paper, we abbreviate K : = Kgand y :
x(Oy). The following theorem was proved in [27].

Theorem 1.1 (Marian-Oprea-Pandharipande). For any s € Z, there exist V, W, X, Y, Z, €
Q[[z]] with the following properties. For any K -theory class o of rank s on a smooth projective surface
S, we have

(o]

2
3 /S ey = v W iy
n=0 "

Moreover, under the formal change of variables z = t(1 + (1 — s)t)' =%, we have
Vi(2) =1 +A =900+ 2 -9,
le 1 La—g
W(z)=1+1 -1+ 2 -9z,
1o _lo,1 1
X2)=0+0 -5 +Q2-s)) 2 21+ 2 -5)A —s)) 2.

The existence of the universal power series V, W, X, Y, Z, follows from [2] and the formu-
lae for V, W, X, were found (and proved to hold) by Marian, Oprea, and Pandharipande [27].
Segre numbers have a rich history. When S ¢ P*"~?and L = O(1)|;, the Segre number /g, s(LInh
counts the number of (n — 2)-dimensional projective linear subspaces of P3*~2 that are n-secant
to S. Lehn’s conjecture from 1999 [24] gives the formulae for (V_,W_;),X_;,Y_;,Z_,. Lehn’s con-
jecture was proved for K-trivial surfaces by Marian-Oprea-Pandharipande [25] and established in
general in [26] building on [25] and work of Voisin [34]. Explicit expressions for Y, Z are known
fors € {—2,—-1,0,1, 2} [27] and proved except for the case of Y|,. Conjecturally, Y, Z; are algebraic
functions for all s € Z [27, Conj. 1].
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Verlinde numbers

A line bundle L on S induces a line bundle L, on the symmetric product S® by &, -equivariant
push-forward of L [X --- [X] L along the morphism S" — S = §"/&, . Its pull-back along the
Hilbert-Chow morphism Sl — §( is denoted by u(L). Together with E := det (92"1 the lines
bundles u(L) generate the Picard group of S Holomorphic Euler characteristics of line bundles
on Sl are known as Verlinde numbers of S. For any r € Z, we form a generating series

w" x (S, (L) ® E®).

n=0

Similar to the previous section, Verlinde numbers are given by universal power series and the
ones determined by K-trivial surfaces are known.

Theorem 1.2 (Ellingsrud-Géttsche-Lehn). Foranyr € Z, there exist g,., f,, A,, B, € Q[[w]] with
the following properties. For any line bundle L on a smooth projective surface S, we have

- 1
> w x (s, (L) @ E®7) = g# V) f2* ALK BE

n=0
Moreover, under the formal change of variables w = v(1 + v)" =1, we have
o) =1+v, f(w) =A+v) A+r*)"

In [2], g,(w) and f,(w) were written in a different way. The compact form used here was first
given in [18]. Serre duality implies A, = B_, /B, for all r. Furthermore, A, = B, = 1 forr =0, +1
[2]. As in the case of Segre numbers, a general formula for A,, B, is unknown.
Segre-Verlinde correspondence
From Theorems 1.1 and 1.2, we deduce

i) = W@ X2, g(w) =V (2)W(2),
where s =1+ r and
w=v1+0)"", z=t(1+A -, v=t1-rO) (1)

The following conjecture was proposed in [27] based on work of Johnson [18], which in turn was
motivated by strange duality.

Conjecture 1.3 (Johnson, Marian—-Oprea-Pandharipande). Foranyr € Z, s = 1 + r, and under
the formal variable change (1), we have

A (w)=W(2)Y(z), B.(w)=Z(2).
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Virtual Segre numbers

Let (S,H) be a smooth polarized surface. For any p € Z., ¢; € H(S,72) algebraic, and ¢, €
H*(S, 7), we denote by M := MISLI (0, ¢;,c,) the coarse moduli scheme of rank p Gieseker H-
semistable torsion-free sheaves on S with Chern classes c;,c,. We assume that M contains
no strictly semistable sheaves (with respect to the polarization H). For this introduction, we
also assume that there exists a universal sheaf E on S X M, but we remove this assumption in
Remark 2.5. We denote by 75 : SX M — S and 7, : S XM — M the projections to the factors.
Consider the slant product

/ : HP(S X M,Q) x Hy(S,Q) — HPTI(M, Q).
The u-classes in Donaldson theory are defined as follows. For any o € H*(S, Q)

Il

u(o) 1= <Cz([E)— 2;101([E)2>/PD(0) € H*(M, ),

where PD(o) denotes the Poincaré dual of 0. Formally, we can write

206,(E) — (p — ey (B = ~20 ch, (E @ det(E) ),

which shows that u(o) is independent of the choice of universal sheaf. For any class a € K(S), we
define

ch(ety) 1= ch(—my(msa - E - det([E)_/%)) € A*(M)q,

where A*(M)g denotes the Chow ring with rational coefficients. When the root det(E)~/* does
not exist, the right hand side is defined by a formal application of the Grothendieck-Riemann-
Roch formula. This factor ensures ch(a,,) is independent of the choice of universal sheaf. We write
c(ayr) = X, ¢i(ay,) for the Chern classes corresponding to ch(e,,). When b;(S) =0 and M :=
MI(1,0,n) = si7l we have c(ay,) = c(al™).

The moduli space M carries a virtual class constructed by Mochizuki [29]

[M]vir c H2vd(M)(M)’ vd(M) := 2pc, — (p— l)c% — (pz - 1y. 2)

We write pt € H*(S, 7) for the Poincaré dual of the point class, u is an extra formal variable,
€, 1= exp(2mi/p) wherei = v/—1,and [n] :={1,...,n} forany n € Z,. For any (possibly empty)
J C [n], we write |J| for its cardinality and ||J|| := Zje] Jj-

Conjecture 1.4. Let p € Z., and s € Z. There exist Vi, W, X, Q. Ry, Ty € C[[z]], Y,
1 N

Z;s Sys € Cl[z2]] for all J C [p — 1] with the following property.” Let S be a minimal surface

of general type with p (S) > 0 and b,(S) = 0. Suppose M := Mgl (p,c;,c,) contains no strictly

semistable sheaves. For any a € K(S) with rk(a) = s and L € Pic(S) the virtual Segre number

 These universal power series depend on p and s. We suppress the dependence on p.
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/[M]vir c(ayy) exp(u(L) + u(pt)u) is the coefficient of 23V4OD) of

2
pz—;(+1<2 ng(oo ng(a) Xf eL2Q3+(c1(a)L)RS+u T, 2 (_1)|J| x ng IKcy Y;,ls(a)K ij KDy s
Jclp-1]

Moreover, under the formal change of variables z = t(1 + (1 — %)t)l_f_’, we have
Vi2)=(1+0- 070+ 2= )"0+ 0= 20,

W(z)=1+@1Q- %)t)és—l(l +2- %)t)%(l—s)(l - %)t)é_%f’,

(o-1?

X, =1+0=- 900+ - DTN a-De-HnHa+a -y @
Q@) =3+ =0, R(@) =t T2)=pt(l+301-3)2=)0).
Furthermore, Y| , Z; , S; ¢ are all algebraic functions.

Remark 1.5. For p = 1, we drop the assumption “minimal of general type” and we drop the sub-
script J = @ from the universal functions. In this case, the assumption b,(S) = 0 is not needed
when we require the sheaves of M ? (1, ¢4, ¢y) to have fixed determinant so M gl (1,¢;,¢,) = Skl n
Section 2.3, we formulate a more general conjecture for any smooth projective surface S satisfying
p,(S) > 0and b;(S) = 0. In this case, the formula is slightly more complicated and involves the
Seiberg-Witten invariants of S.

For p = 1 and L = u = 0, the first part of this conjecture follows from Theorem 1.1." In Theo-
rem 3.3, we also prove formulae for Q,, Sy, Ty, Q1, Ry, S;, T, by using the Hilbert-Chow morphism
and Nakajima operators.

Surprisingly, the u-classes are related to the variables change z = z(t). Indeed z = z(t) equals
the inverse series of R;(z). We provide explicit formulae for Y} g, Z; ;, S; ; for various values of p, s
in Section 4. In each case we get an algebraic expression.

For a = 0, the virtual Segre numbers reduce to (higher rank) Donaldson invariants

/ o
M oy el

S

Then Conjecture 1.4 (or rather its more general analog Conjecture 2.8) reduces to an algebraic
version of the Marifio-Moore conjecture for SU(p) Donaldson invariants [28, (9.17)], [23, (10.107)].
The original Witten conjecture is an explicit formula for the SU(2) Donaldson invariants in terms
of Seiberg-Witten invariants and was proved in the algebraic setting by the first-named author,
Nakajima, and Yoshioka [15]. For ranks p = 3,4, we determine the algebraic functions Z; g, S;
allowing us to formulate explicit SU(3), SU(4) Witten conjectures (Section 5.3).

"In Conjecture 1.4, one can replace (L) by x u(L), where x is a formal variable. Then the corresponding virtual Segre
invariants are given by the same formula with L replaced by xL. When we say “L = u = 0,” we really mean “x = u = 0.”
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Virtual Verlinde numbers

In order to generalize the line bundles u(L) ® E®" on S to any moduli space M :=
M? (p, ¢, ¢y), we recall the following construction from [17, Ch. 8] (see also [14]). Recall that we
assume that M has no strictly semistable sheaves and there exists a universal sheaf E on S X M.
We remove the latter assumption in Remark 2.4. Consider the map

-1

st K(S) = Pic(M), a > det (myy (i - [E])) ®

Let ¢ € K(S),,m be a class in the numerical Grothendieck group of S such that rk(c) = p, ¢;(c) =
¢;, and ¢,(¢) = ¢,. Upon restriction to

K. :={veK(S) : x(S,c®v) =0}

the map Ay =: 4 is independent of the choice of universal family E.
Fix r€ 7, L €Pic(S)®Q such that £ :=L ®det(c) » €Pic(S) and p divides Lc; +
r(%cl(c1 — K) —¢,). Take v € K(S) such that

* tk(v) =randc;(v) =L,
* o) = %E(E -K)+rx+ %Ecl + %(%cl(c1 —-K)—cy).

The second condition is equivalent to v € K, C K(S). We define
u(L) ® E® 1= A(v). 4)

When p =1 and ¢; = 0, this definition coincides with our previous definition of u(L) ® E®" on
M gl (1,0, n) = S"l by [6, Rem. 5.3(2)]. For r = 0, this recovers the definition of the Donaldson line
bundle u(L) studied in [12, 14] by [6, Rem. 5.3(1)].

Denote by (9"Mir the virtual structure sheaf of M. We consider the virtual holomorphic Euler
characteristics

27, (1) ® E®") = x(M, u(L) ® B @ Op).

1
Conjecture1.6. Letp € Z ,andr € Z. ThereexistG,, F, € C[[w]], A;,, By, € C[[w2]] forallJ C
[0 — 1] with the following property.” Let S be a minimal surface of general type with b,(S) = 0 and
p,(S) > 0, and let L € Pic(S). Suppose M := Mf (p, ¢y, c,) contains no strictly semistable sheaves.

. 1
Then the virtual Verlinde number y""(M, u(L) ® E®") equals the coefficient of w2V of

1
— 2 L X J|| K 2
pZ xX+K Gﬁf( )Fr2 Z (_1)|]|)( Eﬂ [IKey A‘If,for
Jclp-1]

Furthermore, A; ,, By, are all algebraic functions.

For p = 1, the first part of this conjecture is Theorem 1.2 (and Remark 1.5 applies). We present a
stronger version of this conjecture, for any smooth projective surface with p (S) > 0 and b,(S) =

 These universal functions depend on p and r. We suppress the dependence on p.
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0, in Section 2.3. If S is a K3 surface, then M is smooth of expected dimension. Moreover, M is
1
holomorphic symplectic and deformation equivalent to slzvdnl by [16, 33, 36]. As shown in [14],

1
using a result of Fujiki, the Verlinde numbers of M can be expressed in terms of those of S [3vd@D],
Combining with Theorem 1.2, one obtains
Gr(w) = gr/p(w) =1+ v,
(5)

FL() = fryp(w) = L4 0)7 (1 + S0,

where we applied the formal variable change w = v(1 + v)/P*~1 Hence Conjecture 1.6 is true
for K3 surfaces, which determines G, and F,.

Virtual Segre-Verlinde correspondence

Let p € Z. 4 and s € Z. The universal functions of Conjectures 1.4 and 1.6, cf. (5), satisfy

Frp@) = Vi@ W () X (20,
gr/p(w) = Vs(z) WS(Z)Z’

where s = p + r and we use the following formal variable changes

r2

w=vd+0)” |, z=t1+0- g)t)l_E, v=t-Ln7 )

Conjecture 1.7. Forany p >0, r € Z, s = p + r, and under the formal variable change (6), we
have

1 1 1 1
AJ,r(wE) = Ws(z) Y],S(ZE), BJ,r(wE) = Z],S(Z§)9

forallJ C [p—1]."

Universal function

We express the virtual Segre and Verlinde numbers for surfaces S satisfying b;(S) = 0and p (S) >
0 in terms of (descendent) Donaldson invariants of S. Then we apply Mochizuki’s formula, which
expresses Donaldson invariants in terms of Seiberg-Witten invariants and intersection numbers
on products of Hilbert schemes of points. This leads to a universal function which essentially
determines all virtual Segre and Verlinde numbers (Theorems 2.2 and 2.3). Calculating these inter-
section numbers, up to a certain number of points, allows us to verify Conjectures 1.4, 1.6, 1.7 (and

T T
T Recall that the series 4 ., B, and Y, ;, Z; ; depend on w2 and z2, whereas W depends on z (Conj. 1.4 and 1.6). For the

1 1 102/,2_
former we use the coordinate transformation w2 = v2(1 +v) (/e 1>, etc.
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their more general analogs Conjectures 2.8, 2.9) up to a certain order in several examples for ranks
P < 4. The precise list of verifications can be found in Section 3.

We call avirtual Segre/Verlinde number canonical when H = K, c¢; is amultiple of K such that
ged(p,Hep) =1, and o € Z[O(K)] € K(S) and L is a power of O(Ky). Let e(S) and o(S) denote
the topological Euler characteristic and signature of S. We then prove the following:

Theorem 1.8. Canonical virtual Segre and Verlinde numbers of smooth projective surfaces S
satisfying b,(S) = 0 and K very ample only depend on e(S) and o(S).

Algebraicity, Galois actions, K 3, virtual Serre duality

In addition to the above-mentioned conjectures and results, this paper includes the following:

* We present several conjectural algebraic expressions for the remaining universal power series
for ranks p < 4. These expressions have coefficients in Galois extensions of @ and are permuted
under actions of corresponding Galois groups.

* We present a new conjecture for Segre numbers of K3 surfaces (Conjecture 5.1), which implies
Conjecture 1.4 for S = K3and L = u = 0.1

* We conjecture and test relations among the universal power series suggested by virtual Serre
duality (Conjecture 5.4).

* We discuss applications of our conjectures to surfaces containing a canonical curve with
reduced connected components and we provide a blow-up formula.*

2 | UNIVERSAL FUNCTION
2.1 | Mochizuki’s formula

Let (S, H) be a smooth polarized surface with b,(S) = 0. Let p € Z.,, ¢; € H*(S, Z) algebraic,
and ¢, € H*(S,Z). We denote by M := Mf (0, c;,c,) the moduli space of rank p Gieseker H-
semistable sheaves on S with Chern classes c;,c,. We assume that M does not contain strictly
semistable sheaves. We also assume that there exists a universal sheaf E on S x M, though we show
in Remarks 2.4 and 2.5 how to drop this assumption. Then M has a natural perfect obstruction
theory with virtual tangent bundle [29]

Ty;' = RHom, (E,E)[1],

where 7, 1 S XM — M is projection, RHom,, := Rmy,oRHom, and (), denotes trace-free
part. The resulting virtual class [M]V" has virtual dimension given by (2).
For any o € H*(S, @) and k > 2, we consider the slant product

ch, (E)/PD(c) € H*(M, Q).

 Oberdieck [32] recently proved Conj. 5.1 using Markman’s work on monodromy operators.

#The first-named author recently conjectured (and tested) blow-up formulae for the virtual Segre and Verlinde numbers
of this paper [7]. This provides further evidence for the conjectures in Section 4.
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Suppose P(E) is any polynomial expression in slant products (for various choices of o and k). Then
we refer to

/ P(E) e Q
[M]vir

as a (descendent) Donaldson invariant of S. For any rank p € Z,, Mochizuki derived a remark-
able expression for the Donaldson invariants of smooth projective surfaces S with holomorphic
2-form [29, Thm. 7.5.2]. We will now present his formula.

When p(S) > 0, we denote the Seiberg-Witten invariant of S in class a € H 2(S,Z) by SW(a).
We follow Mochizuki’s convention SW(a) = SW(2a — Ks), where SW(b) is the usual Seiberg-
Witten invariant for class b € H*(S, Z) from differential geometry. There are finitely many a €
H?(S, Z) such that SW(a) # 0 and such classes are called Seiberg-Witten basic classes. Seiberg-
Witten basic classes a satisfy a> = aKg [29, Prop. 6.3.1]; that is, the virtual dimension of the linear
system |a| is zero.

For any non-negative integers n = (ny, ..., np), we define

slnl - — glml s ... 5 glnel.

For a line bundle L on S, we denote by L™l := p_q*L the corresponding tautological bundle on
slnl whereq : Z, = Sand p : Z; — Sl"l are the projections from the universal subscheme Z; C
S x Snil, We denote the pull-back of LI to S| along projection by the same symbol. Writing Z;
for the universal ideal sheaf on S x S/, we denote its pull-back to S x S["! by the same symbol
as well. Furthermore, we denote its twist by the pull-back of a divisor class a; on S by Z;(a;).

We consider the trivial torus action of T = (C*)°~! on S["!. We denote by

ty,.ot, ) € X(T) = 277!

the degree one characters generating the character group X(T). Then any character of T is of the
form ), t:u" for some wy, ...,w,_; € Z. Any T-equivariant coherent sheaf 7 on Sl decomposes
into eigensheaves

F= @ F.oQt"

We also equip S x Sl with the trivial T-action and we regard projection 7 : S x Sl — sl ag a
T-equivariant morphism. Furthermore, we write

* 1 1
Hi(pt,2) = Z[t] ,...,t;—f_l ,

where ¢; 1= clT(ti) denotes the T-equivariant first Chern class of t;. The following (rational)
characters in X(T) ® Q play an important role in Mochizuki’s formula

1 ~
Ti=e@t. T =Q. T =), 9

j<i J<p

foralli=1,..,p—1landj=1,...,p.
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For any ch € H*(S, Q), we define
x(ch) := / ch -td(S)
s

and we denote the corresponding Hilbert polynomial by h,(m) = y(ch -e™). Furthermore, for
any a € H%(S, Z), we define y(a) := y(e?).
Suppose P(E) is any polynomial expression in slant products such that

P(E)=P(EQL)

for any £ € Pic(S X M). Then P(E) is independent of the choice of universal sheaf. For any
T-equivariant coherent sheaf 7 on S x S"!, we denote by P(F) the expression obtained by replac-
ing Sx M by SxS™l E by 7, and all Chern characters by T-equivariant Chern characters.
Furthermore, for any divisor classes a = (a,, ..., ap), we define

Q(T1(a) ® Ty, .., Ip(a,) @ T,)

1= [T e(-RHom, (1) ® T1. 1;(a) ® T)) — RHom,(1;(a) ® T, Ti(a) ® T))),

i<j

where e denotes T-equivariant Euler class and
7 §x s - glnl

is the projection. Following Mochizuki [29, Section 7.5.2], for any non-negative integers n =
(ny, ., np) and any divisor classes a = (a,, ..., ap) on S, we define

p—1 12
- 2jsi x(Laj,za5-n;) 1
Y(a,n,t) := t J S
(a,n,t) (,11 i ><E (Tj_Ti);((aj)>
P(P 1(a)®Z
Tor e Tew )(eew ozz),

(Il(al) ® BT 4 (ap) ®Z i<j

Finally, we define

¥(a,n) := Coeff o - Coeff o lAI"((Jt, n,t),
1 r—1

where Coeff o(-) takes the coefficient of t? after expansion of (-) as a Laurent series in ¢;. Recall
from the introduction that we write K := K, ¥ := x(Oy).

Theorem 2.1 (Mochizuki). Let (S,H) be a smooth polarized surface such that b,(S) = 0 and
p,(8) > 0. Let p € Z,, ¢; € HX(S, Z) algebraic, ¢, € H(S, Z), and consider M := M{ (p,c;, ¢,).
Assume the following:

(1) M does not contain strictly semistable sheaves,
(2) there exists a universal sheaf E on S X M,
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ORI )/p > I,
(4) X(pacla P 1 CZ) > (P Z)X

Let P(E) be a polynomial expression in slant products such that P(E) = P(E ® L) forany L € Pic(S X
M). Then

p—1
/[M]vir P(E) = (-1"'p 2 HSW(ai) /S . Y(a,n),

(ag,o. ap) i=1

where the sum is over all (ay, ..., a,) € H?(S,2)° and (ny, ..., n,) € Zio satisfying
=a;++a,

C2 =n1+'“+np+ 2 al‘a]‘
1<i<j<p ®)

h

Vi=1,..,0—1.

S 1g2
,5as

1.2
(Lai,gai -n;)

2.2 | Main theorems

From Mochizuki’s formula, we derive two theorems, which give universal functions for the virtual
Segre and Verlinde numbers of smooth projective surfaces satisfying b,(S) = 0 and p (S) > 0.

Theorem 2.2. Letp € Z,,, and s € Z. There exist A., a2 s Acl(a)L,S, Ae @K,s Acy(a)s AL2s ALK s
Apts, Ag2 s A){ o Ag. ey (@) AaLS, AaKS, Aaa s €14+qQ(t, ..., t,_)lgl] forall 1<i<j<p
with the following property. Let (S H) be a smooth polarized surface such that b, (S) = 0and p ,(S) >
0. Let ¢; € H*(S, Z) algebraic, ¢, € H*(S, Z), and consider M : = Ms (p,¢;,¢,). Let a € K(S) with
rka = s and L € Pic(S). Assume the following:

(i) M does not contain strictly semistable sheaves,
(ii) there exists a universal sheaf E on S X M,
(iii) h(p,cl,%cf_cz)/p > hx,

(IV) X(p’ €1, %C% - c2) > (P - 2)}(:

) forany ay,...,a, € H*S, Z) satisfying a; + -+ +a, = ¢y, such that ay,...,a,_; are Seiberg-
Witten basic classes and a;H < p sz a;H for all i=1,..,p0—1, these inequalities are
strict.”

1

Then /[M]vir c(ayr) exp(u(L) + u(pt)u) equals Coeff o0 (joeff[?_1 of the coejﬁcientonEVd(M) of the

following expression

p—1 1 P c
isi(5a;(a;—K - -1 _(a S
e Y] |S,W(a,-)t,-Z P )+X)| [(1+ ) O P D@D Ti=3Tju

(@y,n1) =1 i=1

T Here a;H denotes the intersection number of the elements a;, H € H 2(S,2).
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_ryxtaj—a)—x@p . _ 1 yx(a—a;)) q@? je@L (@K 4e(@) 412 4LK au
H (Tj Ti) ! ! (Tl TJ) Acl(ot)2 sAcl(a)L sAcl(a)K sAcz(a) sAL2 sALK SAPt S

I<i<j<p

K2 1 P A% () ——1 a? a;a;
A xs) H aey@.s aLsAaKs (z7 2 Ay, 0)" I1 (ZA@,S) '

1<i<j<p

where T; was deﬁned in (7), the sum is over all (ay, ..., a,) € H2(S, Z)P satisfying a; + -+ + a, =
and a;H < sz a;H foralli =1,...,0 — 1, and all power series are evaluated at q = z.

Proof. The proof is divided into three steps.
Step 1. Applying Grothendieck-Riemann-Roch to the projection 7 : S X M — M, we obtain a
polynomial expression P(E) in slant products such that

c(ocM)e“(L)“‘(p‘)“ = P(E).

Step 2. By Step 1 and Theorem 2.1

/ c(ay) eHD)+u(ptu
[M]vir

equals Coeff o --- Coeff,0 of
1 r—1

(-1 p Z Z HSW(a )/ Y(a,n,t),

“1+ tap=cy Nyt =cy— Zlqaajl =1
aH< Z}>1 ajH Vi

where we used assumption (v) in order to simplify (8). Note that ¥ also depends on &, L, u (though
our choice of P(E)) but we suppress this dependence. Consider

D / B(a,n,1).
Sln]

(N ey np)er

The perturbative term Pert := \T’(a, 0,t) is defined as its constant term, which arises by taking
n; = - = n, = 0. Explicitly, Pert equals

p—1 1
3 ihajia—K+p) N _
Hti JZN2 TN H (T_] _ Ti))((aj a;) X(aj)(Ti _ Tj))((az aj)

I<i<j<p

P
- (=RT(S, a0 ® Og(—¢, /p) ® P Os(a)) ® )

i=1

P _ P 2
- exp /S (e, (L) + ulpt])§ ¢! (GB Og(a) ® ‘zi> -& plcf<€B O5(a) ® sl) ,
i=1 i=1
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where ¢! denotes T-equivariant Chern class and /s denotes T-equivariant integration. Using
>.; T; = 0, this can be simplified to

Pl Lo (a—
Pert = H tizjzi(zaj(aj K)+x) H (Tj _ Ti)X(aj_ai)_X(aj)(Ti _ Tj))((ai—aj)

i=1 1<i<j<p

£ —x(@®0g(a;— L)) _(a,1)T,— 172
H(1+Tl) S\HT, e_ai)i_iiu.
i=1

Step 3. Let S be any possibly disconnected smooth projective surface. Take any o € K(S) and
arbitrary divisor classes L, aj, ..., a, on S. Consider the generating function

1 ny+-tn U
Zo(a,L,a,t,u, = 1 4 Y(a,n,t), 9
s( Di=5— X q G ©)

which has constant term equal to 1. For any (S’,a’,L’,a’) and (S”,a”,L", a’") we have
Zg @ ®d,'®L",d ®d’ t,u,q) =2y, L', d,t,u,q)Zsn(a”,L",d" ,t,u,q). (10)
Consider the decomposition

S[n1] X e X S[np] — |_| |_| Sl[n;] X e X Sl[nl/a] % S”[ni,] %o S”[ng]

! "n_ ! "n_
ni+n=n;  ngtng=n,

P p
— -/ !’ / /! 1 124
@ Ii(a) ® zi)SXS;[n’]XSH[n”] = @J*(Ii(ai) ® )&, (1;(q;) ® Ty,
1= =

where j/ 1 8/ xS x §"M"] o g /M g7 1 g1 g1 i §7IN] o g S7IM] ¢
$”[7"] denote the inclusions, and we suppress various pull-backs. The multiplicative property
(10) follows from these decompositions combined with

¢(E+F)=c(E)(F), e(E+F)=ce(E)e(F)
exp(7, (B - chy(E + F))) = exp(7,.(B - chy(E))) exp(,.(B - chy(F))).

The multiplicative property (10) combined with universality of intersection numbers on

Hilbert schemes [2, Thm. 4.1] implies the existence of the universal functions A, (g2 ; - Aalaj s

depending only on p, s and satisfying"

_aa@? je@L e(@K 4e(@) 212 ALK au AK2 X
ZS(OC, La,tu,q) _Acl(oc)z,s c1(a)L,s cl(oc)K,sAcz(a) SAL2 SALK SAPt SA A

P
a;eq (@)
HAacl(oc)s aLs aKs H Aaa ,8?

i=1 — —  I<igj<p

)

 This part of the argument is well known and has been used in many settings, for example, [8-10, 13,19, 21, 22]. Also note
that we use a slight enhancement of [2, Thm. 4.1] to intersection numbers on products of Hilbert schemes, which was first
treated in [13].
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for any (S, a, L, a). Finally, we note that

vd =2pc, — (p — Dej — (p° — Dy

—ZPZn +2) aa; - (p—l)za —(* - Dy.

i<j

Referring to Equation (9), this implies that we obtain the desired result by making the substitution
q=z° U

xor
1+ qQ(ty, ..., t,_1)IIql], for all 1 < i < j < p, with the following property. Let (S H) be a smooth
polarized surface such that b,(S) =0, p,(S) > 0, and let L € Pic(S). Let ¢; € € H*(S, Z) algebraic,
¢, € H¥(S, Z), and consider M : = M? (p, ¢y, ;). Assume that the hypotheses (i)-(v) of Theorem 2.2

. 1
hold. Then y""(M, u(L) ® E®") equals Coeffttl) -+ Coeff o ) of the coefficient of w2V of the
following expression

Theorem 2.3. Letp € Z,, and r € Z. There exist B ,, By ., B2, B Ba L Ba k. Ba, aa;r €

p—1 (Yo — P r o2 r
(—1)p_1,0 Z HSW(ai)tiZ];,(Zaj(aj K)+)()He—(iai+(L—Ecl)ai)Ti

(ay ey ap) i=1 i=1

11 (

1<i<j<p (Tj -

1— e—(Tj—Ti))}((aj—az)(l _ e—(Tz-Tj)))((ai—aj)

Ti))((aj)

BL2 BLK BK? (w™ = B )7( B . (w_%B )aiz (wB )4id;
LK;r™K2r xXr aLr aKr a;a;,r a;a;r s

_ I<i<j<p I

where the sum is over all (a,..,a,) € H*(S,2)° satisfying a, + - + a,=c¢; and a;H <
1 . .
p Zj>i aijor alli =1, ...,p — 1, and all power series are evaluated at ¢ = w”.

Proof. The proof is similar to that of Theorem 2.2. We indicate the differences.
Step 1: By the virtual Hirzebruch-Riemann-Roch theorem [3], we have

XVir(M’ M(L) ® E®r) = '/[ ] ) ecl(/ltE(U)) td(TX/}r),
M |vir

where v and A;(v) = det(y, (ﬂ;v - [E]))~! were defined in the introduction. The virtual tangent
bundle is given by

TV = RHom,(E, E)o[1],
where 7 : S X M — M denotes projection. Applying Grothendieck-Riemann-Roch gives

ch(T}") = 7y, (@ = ch(E)Y - ch(E)) - witd(T)).
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Hence td(TX,}r) can be written as a polynomial in expressions of the form

for certain classes 3. Expression (12) can be written as a polynomial expression in slant products
as follows. Consider S X S X M and denote by 7; projection onto the ith component and by 7;;
projection onto components i and j. Then (12) equals

73, (7} B - Y5 chy(E) - 5, ch;(E) - },PD(A)),
where A is the diagonal inside S X S. Consider the Kiinneth decomposition

PD(A) = Y 6“6,

a+b=4

where 91@ € H%(S, Q). Then we can write (12) as

> (ch(®)/(B-6)) - (ch,(E)/6d).

a+b=4

Since c¢;(detE) = ¢,(E), for any complex of sheaves E, we find
¢ (AW) = —cy(mpp (g - [E]),

which, using Grothendieck-Riemann-Roch, can also be expressed in slant products.
Step 2: The perturbative term Pert = ¥(a, 0, t) is given by

p—1
H tizbi(%aj(aj_mﬂf) H (Tj _ Ti)){(aj—a;)—)((aj)(Tl_ _ Tj)){(ai—aj) . e—ClT(deUfz(U' le O5(a))®F;))
i=1 1<i<j<p

H th(_RF(S, OS(aj — ai)) ® EZJ‘ZI_I - RF(S, Os(al‘ - a_])) ® sizj_l),

I<i<j<p

where clT denotes T-equivariant first Chern class and 7z : KT (S) — K (pt) is T-equivariant push-
forward to a point. Using ). T; = 0, this simplifies to

p—1 1
2isi(5aj(a;—K)+x) —a)—y(a; —a;
Htl JZN 2N H (TJ _ Tl))((aj a;) X(aj)(Tl — Tj)){(at a_/)

i=1 1<i<j<p

Tj -T; >—X(aj—ai)< T, — Tj >—X(ai—aj)
) .

0
] H e—(gai2+(L—£cl)ai)Ti
e —(T;-Ty) — e~ (Ti=T)

1<i<j<p <1 —e

Step 3: Analogous to Step 3 of Theorem 2.2. This time, the multiplicative property (10) requires
the following identity

td(E + F) = td(E)td(F). O
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Remark 2.4. We now show that Condition (ii), that is, the existence of a global universal sheaf E
on S X M, can be dropped from Theorem 2.3. Without the existence of a global universal sheaf,
there still exists a homomorphism as in [17, Section 8.1] and [14, Section 1.1]

A K, — Pic(M)

with the following property. Take a universal sheaf E on S X M’, where ¢ : M’ — M is an étale
cover (such a “twisted” universal sheaf always exists). Then

¢ Av) = 2£(v)

forallv € K, where A is defined as in (3) with M replaced by M’. Therefore, we can define u(L) ®
E®" as in (4) with A replaced by 1. Hence the virtual Verlinde numbers are defined without
assuming the existence of a global universal sheaf. The original version of Mochizuki’s formula
[29, Thm. 7.5.2] holds on the Deligne-Mumford stack M of oriented sheaves, that is, pairs (F, x)
where [F] € M and y : F = O(c,). Consider the degree é : 1étale morphism f : M — M. Then

folM]VT = %[M ]Vir. There always exists a universal sheaf £ on S X M and we have
fTyf =TV f20) = 2: ),

for allv € K. Hence

XM L) @ E®) = p- / 1) (i
[M]vir

and one can simply repeat the proof of Theorem 2.3 using Mochizuki’s formula on M. This shows
that Condition (ii) can be dropped from Theorem 2.3.

Remark 2.5. We now show that Condition (ii), that is, the existence of a global universal sheaf E
on S X M can be dropped from Theorem 2.2 as well. Recall that ch(a;,) was defined by a formal
application of the Grothendieck-Riemann-Roch formula in the introduction

ch(ay) 1= =7y, <ch([E) . ch(det([E))_fl’ - g ch(a) - nétd(S)) € A*(S)g- (13)

When E does not exist globally on S X M, the sheaf E®° @ det(E)~! still exists globally on S x M

(essentially because this expression is invariant under replacing E by E ® L so it glues from local

étale patches). Hence ch(E®* ® det(E)~")'/* € A*(S), is defined and we simply replace ch(E) -
1

ch(det(E)) * by this expression in (13). Obviously, when E exists globally on S x M, we have

ch(E®* ® det([E)—l)% = ch(E) - ch(det(fE))_é

and we recover the previous definition. Hence the virtual Segre numbers are defined without
assuming the existence of a global universal sheaf. Using the morphism f : M — M from the
previous remark and noting f*(E®? ® det(E)~!) = £®° ® det(€)~!, the virtual Segre numbers
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can be lifted to M and one can repeat the proof of Theorem 2.2 using Mochizuki’s formula on M.
This shows that Condition (ii) can be dropped from Theorem 2.2.

Remark 2.6. Conjecturally, Conditions (iii) and (v) can also be dropped from Theorems 2.2 and
2.3 and the sum in the formula can be replaced by the sum over all classes (ay, ..., a,) € H 2(S,2)°
satisfying a; + -+- + a, = ¢;. See also [8-10, 12, 13]. In some of the calculations described in
Sections 3.2 and 4, we use this strong form of Mochizuki’s formula.

Remark 2.7. Condition (iv) is essential and can be equivalently stated as
ey < %cl(c1 —K)+2y.

At first glance, this appears a very strong restriction. However, applying — ® Og(¢H) induces an
isomorphism of moduli spaces of Gieseker H-stable sheaves

M (p,c;,¢;) = M (p,c; + p¢H,c, + (o — )¢He, + %p(p - 1)¢%H?)

leaving corresponding virtual Segre/Verlinde numbers unchanged. Under this isomorphism,
Condition (iv) becomes

¢, < %cl(c1 —K)+2x + (He, — %PHK)f + %PHZfZ’

so the upper bound on ¢, can be made arbitrarily large by taking £ > 0. Therefore, Condition (iv)
cannot be dropped, but it can always be made to be satisfied.

Next, we prove Theorem 1.8 on topological invariance of canonical virtual Segre and Verlinde
numbers from the introduction.

Proof of Theorem 1.8. We give the proof for canonical virtual Segre numbers. The case of canonical
virtual Verlinde numbers is similar. The case p = 1 follows at once from Theorem 1.1 and the
fact that y and K? can be expressed in terms of e(S) and o(S), so we take p € Z.,. Let S be a
smooth projective surface satistying b,(S) = 0 and K very ample. Then S is minimal of general
type, so its only Seiberg-Witten basic classes are 0 and K # 0, and SW(0) = 1, SW(K) = (—1)¥ [30,
Thm. 7.4.1]. Suppose that furthermore H = K. For any 4 = (4, ..., 4,,) € Z"™, 0 = (U, ... s 4y,) €
7™, we write

AO0K)®* 1= ) L[OK)®H] € K(S).
i=1

For any A,u € Z™,n € Z, consider the following generating function of canonical virtual Segre
numbers of S

vd(M) n
Gp,l,pc,n,S - Z wa 3 / c((/‘LO(K)@ﬂ)M) e,u(@(K)® )+#(pt)u’
W [Mvir
ged(p,/K2)=1

where M := MX(p,#K,c,) and vd(M) = 2pc, —(p —1)¢*K?* — (o> —=1)x. The condition
ged(p,#K?) = 1 implies that Gieseker and wu-stability coincide and there are no strictly
semistable sheaves in M for any c, [17, Lem. 1.2.13, 1.2.14]. Moreover, tensoring by multiples of K
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is an isomorphism on these moduli spaces and does not change the integrands, so it suffices to
only sum over

£ €{N,N+1,..,N+p—1} suchthat ged(p,7K?) =1,

for any fixed N € Z, and consider the powers of w as elements of Z/pZ.

Consider the conditions of Theorem 2.2. Conditions (i), (iii), and (v) are automatically satisfied
(taking N > 0) and Condition (ii) can be dropped by Remark 2.5. Taking N — o0, the upper bound
on ¢, in Condition (iv) becomes arbitrarily large. We conclude that G, ; ,, , s, modulo an arbitrarily
large power of z, is determined by a universal function which only depends on p, 4, u, n, y,
K? (recall that the only Seiberg-Witten basic classes of S are 0 and K # 0). Since y, K? can be
expressed in terms of e(S), o(S), the result follows. O

2.3 | Main conjectures

In Section 2.2, we mostly worked with arbitrary smooth projective surfaces S satisfying p ,(S) > 0
and b,(S) = 0. Accordingly, we formulate more general versions of Conjectures 1.4 and 1.6, for
which we present verifications in Section 3 by applying Theorems 2.2 and 2.3.

Conjecture 2.8. Let p € Z., and s € Z. There exist V, W, X, Q,, R, T, € C[[z]], Y,, Z,,

1 :
Yio Zjks Sy Sjs € C[[z2]] for all 1 < j < k < p—1 with the following property.” Let (S,H)

be a smooth polarized surface satisfying by(S) = 0 and p,(S) > 0. Suppose M := Mgl(p,cl,cz)
contains no strictly semistable sheaves. For any a € K(S) with rk(a) =s and L € Pic(S),

-/[M]Vir c(ayy) exp(u(L) + u(pt)u) equals the coefficient of 23V40D of "

p2—1+K2 ng(oc) Wscl(oc)2 ch Yscl(oc)K Z§<2 L7 Qs (e (@LIRAHELK)S+u Ty
gy @
jajey a(@a; (a.1)S; ajag
Z Hsp SW(a;) Yj,s eI, H ij,s ,
(@y,m0p_1) j=1 1<j<kgp—1
where the sum is over all (a,, ..., a,_;) € H*(S, Z)P~". Moreover
Vi) =(1+0- 070+ 2= )0’ 0+ 0= 20,
1 1 1 1
W2) = (1+1- D077+ - )0+ - D07,

(p-1?

X(2)=(1+0=20" "0 +Q- D)) T EA+A-)E- D020+ =) @

Q@) =31 +1 =20, R@=t T(@)=ptl+30-2)2=2)0,

T These universal power series depend on p and s. We suppress the dependence on p.

#We stress that here (and similarly elsewhere), the coefficients j and k of Z jk,s are placed adjacent (and not multiplied).

They are not separated by another comma in order to avoid cluttered notation.

85UB017 SUOWILLIOD B8O 3(eo!jdde aup Aq pauenob e S3foNe YO ‘SN JO S3nu J0j A%eiq 1 8UIIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALI A8 1M AReiq 1 jUUO//SHNL) SUORIPUOD PUe SR | 84} 89S *[£202/10/52] U0 AriqI1auiuo A8 M ‘ARiqi AYSBAIUN 14021 AQ TYOZT SW[/ZTTT OT/I0p/W00’ A3 1M ARe1q 1 [eu JUo"00SyIeIpUO | //:Sdny Woiy papeojumod '€ ‘2202 ‘052269%T



2580 | GOTTSCHE AND KOOL

where
z=t1+(1— %)t)l_ﬁ.

Furthermore, Y, Y; ., Z, Z ). , S, S s are all algebraic functions.

1
Conjecture 2.9. Letp € Z,andr € Z. There exist G,, F, € C[[w]], A,, B, A, Bj, € C[[w2]]

Jr

forall1 < j <k < p—1with the following property. Let (S, H) be a smooth polarized surface sat-
isfying by(S) = 0, p,(S) > 0, and let L € Pic(S). Suppose M := M?(p, ¢y, C,) contains no strictly

. 1
semistable sheaves. Then x""(M, u(L) ® E®") equals the coefficient of w 3vd) of
2—x+K2 ~x(L) 3 4LK pK? p_l Jjajer a;L aja
P GIURAKBE Y []e swapa) [T B 14)
(@y5esap-1) j=1 1<j<kgp—1

where the sum is over all (al,...,ap_l) € H%(S,z)*~L. Furthermore, A,, B,, Aj,,, Bjk,r are all
algebraic functions.

Remark 2.10. These conjectures were partially inspired by the universal formulae before tak-
ing Coeff o --- Coeff,0 in Theorems 2.2 and 2.3, and similar universal formulae for Vafa-Witten
1 r—1

invariants [11].

These conjectures imply Conjectures 1.4 and 1.6 from the introduction as follows. For all p €
Z., and any, possibly empty, subsetJ C [p — 1] :={1,..., p — 1}, define

Yo =Y [[Yis Zs:=2 [ Zijs Srs =5+ 2.5

jer i<jers jer
(15)
AJ,r =A, HAj,r’ B],r ‘=B, H Bij,r'
jer i<jes

Suppose S is a smooth projective surface S with b, (S) = 0, p,(S) > 0, and suppose that its only
Seiberg-Witten basic classes are 0 and K # 0 (e.g., minimal surfaces S of general type satisfying
by(S) = 0and p,(S) > 0[30, Thm. 7.4.1]). Then SW(0) = 1 and SW(K) = (—1)* and the formulae
in the conjectures of the introduction follow.

We note that knowing the power series Y, g, Z; ;, Sy 5, A, By, is equivalent to knowing the
power series Y, Y, Zg, Z;j s, Sg, Siso Ay Ay By, Bjj . For example, for Z; ¢, indeed J = @
determines Z, J = {i} then determines Z; ;, and J = {i < j} then determines Z;; . We provide
numerous conjectural formulae (and verifications) for these power series in Section 4.

3 | VERIFICATIONS
3.1 | Rank1

We start with two propositions, which can be seen as (much easier) rank 1 analogs of the Witten
conjecture for SU(2) Donaldson invariants.
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Proposition 3.1. For any smooth projective surface S and L € Pic(S), we have

o0
=0 Slnl

Proof. The universal sheaf E on S x SI"l is the ideal sheaf 7, of the universal subscheme Z C
S x S!"l. Therefore c,(E) = [Z], thatis, the (Poincaré dual of the) fundamental class of Z. Consider
the symmetric product S and the Hilbert-Chow morphism

o sl - g(m

and denote the universal 2n-cycle by DcSxSm, Analogous to the u-insertion u(o) =
Tsin, (50 - [Z]), we define

7(0) 1= 7, (740 - [D]) € H*(S™, @),
for all o € H*(S, Q). Note that (15 X p),[Z] = [D], or more generally
(e X P <7Tik,f+1[z] ﬂ;,f+1[z]> = 7T>1k,f+1[D] ”;,KH[D]’ (16)

where7; ;.1 1 S7 X sinl — 5 x Sl denotes the projection onto the factors (i, # + 1) and similarly
on S x S™_ Therefore

px(u(ay) -+ u(o,)) = (ay) -+ 7(0y), 7)

forall oq,...,0, € H*(S, Q). Hence

/ ML) +uPtu / eTW+T(ptu
slnl S(n)

Next, consider the natural degree n! morphism
g1 8" — s

On S x S", we consider the 2n-cycle

n+1

A=Ay,
i=2

where A,; :={p € SXS" : p; = p;}. Analogous to the u- and r-insertions, we define

v(0) 1= mgn, (m50 - [A]) = o + - + mi0 € H*(S",Q),
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forallc € H*(S,Q)and where 7r; : S — S denotes projection on the ith component. Using (1 x
¢),[A] = n![D] (and the analog of (16)), we find

e.(v(ay) - v(0,)) = nlt(oy) -+ (0y).

Therefore

/ eT(L)+T(pt)u — l/ ev(L)+v(pt)u
NG n! sn

_ l en';:‘(L+pt u)+--+7 (L+ptu)
n! sn

n
- l /eL+ptu — l<1L2 +u>n‘
n'\ Jg n!\2 [l

Proposition 3.2. For any smooth projective surface S and L, L € Pic(S), we have
bl 1
>z / el eHEIHHOOU = (G HEL A
n=0 st

Proof. For any n, we denote the Hilbert-Chow morphism by
p : S[n] — S(n)'

Let H :=(D,cH *(sI"l, Q). For any o € H*(S,Q) and i > 0, we recall the definition of the
Nakajima creation operator [31]

qgi(c) :H->H
defined on H*(S!"], @) by the correspondence
4:(0)(=) = 7T5[n+z]*<7T;O' A () Zn,n+t]>’
where

Sl x § x Slnil

s

slinl S Sln+i

and 2"+ c Sl x § x S+l s the incidence locus of triples (Z, p,Z’) satisfying Z C Z’ and
e(Z") = p(Z) + ip. Then [24, Thm. 4.6]

3 e(el)z = exp (2 SalVi qi(c(ﬁ))z‘)u, (18)
n=0 i=1

1

where 1 denotes the fundamental class of SI% = pt.
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We denote by D™+ c S x §x S(+) the incidence locus of triples (Z, p,Z’) satisfy-
ing Z' = Z 4+ ip. Note that the natural projection D"+ — S x § is an isomorphism. On
Dm0 H (S (") @) we consider operators p;(c) defined on H*(S™, @) by the correspondence

pi(O’)(-) = TCg(n+i)y (77:;0' . 7-[-;(”)(_) . [Dn,n+i]>'

Consider the commutative diagram

Zn,n+i
PX1gXp
S[n] xS Dn,n+i S[n+i]

T g(n+i)
7= o
pX1g

S % § — st

The general fibre of the map p X 1 X p : Z™"* — D™+ jsirreducible of dimension i — 1 (Bri-
ancon). For any W € H,(S!"! x S, @), we have (gt X 7Tg)* (W) € Hyypi_»(Z™"F1, Q). However,
the dimension of the support of (o X 15 X ), (7wgn X 7wg)*(W) is at most k. Thus for any i > 1, we
get that

(px1g X% P)*O(ﬂ's[n] X 7'[5)* . H*(S[Vl] X S,Q) > H*(Dn,n+i’ Q)

is the zero map. This gives p,(q;(c)(8)) = 0, for all i > 1,0 € H*(S,Q), 8 € H*(S"], Q).
As the creation operators q;(o;) commute, this implies that

P <ql'1(‘71) - q;,(0)1 ) =0,

for all oy, ...,0, € H*(S,Q) and iy, ..., i, > 1 with at least one i} > 1. Therefore we get from (18)
that p,c(£") = p, exp(q,(£))1.

On the other hand, in case i =1, let 0 € H.(S,Q), § € H*(S("), Q), then the map p X 1¢ X p
restricted to the inverse image in Z™"*+! of the support of a cycle 8 X ¢ is generically one-to-one.
Thus

(p X 1g X ), (7wgim X 75)" (o X 15)*(B X 0) = (B X 0).

This gives p,.(q;(0)p*(B)) = p,(0)B, and thus inductively p..((q,(c))"1) = (p;(0))"1. Note that for
o € H*(S, Q) we have u(o) = p*t(o). Therefore, by (18) and the projection formula, we get

/ c(elny e ueou - 1 / KOG (L))"
Slnl n! slnl

= [ O
N

n!
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Finally, using the morphism ¢ : S* — S, we have
(pl(a))nﬂ =& (n'iko' ﬂ;klo-)’

for all o € H*(S,Q), where 7; : S" — S denotes projection on the ith component. Using the
notation of the proof of Lemma 3.1, we have v(o) = ¢*1(0), for all 0 € H*(S, Q). This implies that

/ C([,["]) eHL)+upu — % / (7T>1|<c(£) 71':0([1)) e D+v(phu
S[Vl] - Jsn

— i'/ (n,ikc(ﬁ) . ﬂ;c(ﬁ)) eﬂ;"(L+ptu)+--~+7r;(L+ptu)
nt Jen
1 " 11 n
-1 L£)el+ptu :—(—L2+£L+ ) .
n! (/SC( e n!\2 " O

We summarize what is known for rank 1 Segre integrals:
Theorem 3.3 (Marian-Oprea-Pandharipande+¢). There exist V, W, X, Y, Z, € 1 + zQ[[z]],

Q, R, S, T, € zQ[[z]] with the following properties. Let S be a smooth projective surface, &« € K(S)
such that rk(a) = s, and L € Pic(S). Then

)

Z Zn/ C(a[n])eu(L)+/4(pt)u — Vscz(a) WSC1(05)2 Xg( Y;j(“)K ZK2 eLZQS+(c1(o¢)L)RS+(LK)SS+u Ty
s

n=0 NG

By [27], under the formal change of variables z = t(1 + (1 — s)t)' =5, we have
Vi2) =0+ 1=+ 2 -9,
W(2) = 1+ 1 =901 + 2 - 90207,
X(2)=(1+1=)0 SA+ Q=) 2" 31+ 2= )1 — $)6) 3.

Also by [27], under the same change of variables, Y is determined for s € {—2,—1,1,2} and Z, for
s € {-2,-1,0,1,2}. Furthermore

Q@) =3z, Sy(2)=0, T\(2)=z

U@ =3z R@=z S5@=0, T,(@=z

Proof. Universality follows from (a more elementary analog of) Steps 1-3 in the proof of
Theorem 2.3. Setting L = u = 0, the statements about V, W, X, Y, Z; follow from [27]. Fur-
thermore, X,(z) = X,(z) = Zy(z) = Z,(z) = 1 [27]. Hence the rest of the theorem follows from
Propositions 3.1 and 3.2. O
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Remark 3.4. We verified the formulae for Q, Ry, T of Conjecture 1.4 for p = 1 modulo z!!. For
this, we choose a collection of triples (S, , L) such that the corresponding vectors

(cy(a), eq(a)?, x» e (@)K, K?, L%, ¢;(a)L, LK)

are Q-linearly independent. Taking S a toric surface with torus T, we obtain a lift of
the T-action to SI”! with isolated reduced fixed points indexed by collections of mono-
mial ideals. By taking o and L with T-equivariant structure, one can calculate the Segre
numbers with u-insertions for (S,a,L) by Atiyah-Bott localization. Specifically, we choose
(S,a,L) = (P?,0%5,0), (P! x PL,0%5,0), (P2,001) ® O%1,0), (P?,0%5,0(1))), (P?,0(1) &
0951 9(1)), (P2, 0(1)®% & 095-2,9), (P! x P!, 9(0,1) & O®5~1,09), (P! x P!, ©®5,9(0,1)) and
calculate their Segre numbers with p-insertion up to order 10.

3.2 | Higher rank: calculations

We want to explicitly calculate the first few coefficients of the universal power series of
Theorems 2.2 and 2.3 for ranks p = 2, 3,4. The definition of the generating function

ZS(CX,L, a, ty u, q)

in (9) makes sense for any smooth projective surface S and any a € K(S), L € Pic(S), and
a=(ag,.., ap) € A(S)?. Consider any finite collection C containing (S, a, L, @) such that the
corresponding vectors

(Cl(“)za c] (C()L, c] (C()K, CZ(CC), Lzr LK, KZ’ X> {aicl(a)}r {aiL}’ {aiK}’ {aiaj})

are Q-linearly independent. Then the universal function of Theorem 2.2 is determined by
Zs(a, L, a,t,u,q) on this finite collection C via Equation (11).

Now take (S, a, L, @) such that S is a toric surface with torus T and «, L, a are T-equivariant. The
action of T on S lifts to S["! for anyn = (ny,...,n,) € Z’;O. Therefore, we can apply the Atiyah-Bott
localization formula to explicitly determine Z¢(«, L, @, t,u, q) up to some order in q. We carried
this out for S = P2, P! x P! and certain choices of «, L, a similar to Remark 3.4. The reader can
consult [8-10, 12, 21] for more details on Atiyah—Bott calculations in closely related settings. This
discussion holds analogously in the Verlinde case of Theorem 2.3.

We determined the universal functions of Theorems 2.2 and 2.3 up to the following orders:

* Rank p = 2. Keeping s as avariable, we determined A, ((q) (i.e., A; ; forallJ C [p — 1]) modulo
q'!. For s = 5,6 we determined A, ((q) modulo q*°. Keeping r as a variable, we determined
B. ,(g) modulo g'¢.

* Rankp = 3.Fors € {-3,...,12}, we determined A, ;(q) modulo q'°. For s = 5,6 we determined
A, (q) modulo g*. For r € {~11, ..., 3}, we determined B, ,(q) modulo ¢°.

* Rank p = 4. For s € {0, ..., 8}, we determined A, (g) modulo q8. For s = —1, we also deter-

mined A2, A k5> Ag2,55 Ay s modulo q®. For p = 4, the Verlinde calculations are harder and
252 AayK s K250 Ay,

we determined no coefficients of the B. (@)
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With this data, we can verify Conjectures 2.8, 2.9, and 1.7 in the following cases (always for certain
values of H, ¢; such that there are no strictly semistable sheaves):
Rank p = 2.

* Conjecture 2.8 holds for S a K3 surface and virtual dimension up to 16, for S an elliptic surface’
of types E(3), E(4), E(5) up to virtual dimension 16, for S a double cover of P? branched along
a smooth octic up to virtual dimension 14, for S a double cover of P! x P! branched along a
smooth curve of bidegree (6,6) up to virtual dimension 14, and for S a general quintic in P* up
to virtual dimension 12. Conjecture 2.8 also holds for S the blow-up of one of the above surfaces
in a point, with the same bounds on the virtual dimension. Conjecture 2.8 also holds for S an
elliptic surface of type E(3) up to virtual dimension 18.

* Conjecture 2.9 holds for S a K3 surface and virtual dimension up to 18, for the blow-up of a
K3 surface in a point up to virtual dimension 13, for S an elliptic surface of type E(3) up to
virtual dimension 18, for S an elliptic surface of type E(4) up to virtual dimension 12, for S an
elliptic surface of type E(5) up to virtual dimension 10, for S a double cover of P? branched
along a smooth octic up to virtual dimension 12, and for S a general quintic in P3 up to virtual
dimension 10.

* Conjecture 1.7 holds up to virtual dimension 18.

Rank p = 3.

* Let s € {-3,...,12}. Then Conjecture 2.8 holds for S a K3 surface up to virtual dimension 14,
for S the blow-up of a K3 surface in a point up to virtual dimension 14, for S an elliptic surface
of type E(3) up to virtual dimension 12, for S a double cover of P?> branched along a smooth
octic up to virtual dimension 6. Conjecture 2.8 also holds with the same dimension bounds for
blow-ups of these surfaces in one point.

* Letr € {—11,..., 3}. Then Conjecture 2.9 holds for S a K3 surface up to virtual dimension 12, for
S the blow-up of a K3 surface in a point up to virtual dimension 12, for S an elliptic surface of
type E(3) up to virtual dimension 8, and for S a double cover of P? branched along a smooth
octic up to virtual dimension 6. Conjecture 2.9 also holds with the same dimension bounds for
blow-ups of these surfaces in one point.

* Conjecture 1.7 holds for s € {-3, ..., 6}, r € {—6, ..., 3} up to virtual dimension 12.

‘We expect that Conjectures 1.4 and 1.6 hold for all “virtual surfaces” satisfying
2—xy+K%*>o0.

This inequality ensures that the first term in our conjectural formulae is integer. By this we mean
one formally calculates the virtual Segre and Verlinde numbers using Theorems 2.2 and 2.3 for
values of K2, y for which there exist no minimal general type surfaces S satisfying b,(S) =0
and p,(S) > 0 with these values of K?, x, but one nonetheless obtains the numbers given by
the conjectures.

Rank p = 4.

* Lets € {0, ..., 8}. Then Conjecture 2.8 holds for S a K3 surface up to virtual dimension 6 and for
S the blow-up of a K3 surface in a point up to virtual dimension 6. The following can be seen

T An elliptic surface of type E(n) is an elliptic surface S — P! with section, 12n rational 1-nodal fibres, and no further
singular fibres.
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as indirect evidence: Conjecture 1.4 holds for S a “virtual” surface with K> = —1, y = 0 up to
virtual dimension 9 and for S a “virtual” surface with K? = —1, y = 1 up to virtual dimension
8.

* Let S beaK3surface, cf =8,a = —[Og](sos = —1),and L = u = 0. Then Conjecture 2.8 holds
for ¢, = 7 (yielding virtual Segre number %).T
The computations support a further conjecture on the dependence of the universal power series

in Conjectures 2.8 and 2.9 on s and r.

Conjecture 3.5.

(1) Foralln € Z, the coefficient of z2 in the universal power series Vo, W, X, Y, Y o, Zg, Z; ¢
Qy Ry, Sy, S5, Ty is a polynomial in s of degree at most n.

n
(2) Foralln € Z,, the coefficient of w2 in the universal power series F,, G,, A,, A;,, B,, B;j . isa
polynomial in r of degree at most n.

It is easy to see that the formulae for V, W, X, Q,, R, Ty, F,, G, of Conjectures 2.8 and 2.9
satisfy Conjecture 3.5. As mentioned above, for p = 2, we have computed the universal power
series of Theorems 2.2 and 2.3, up a certain order in g, for arbitrary s and r. Using these to compute
the universal power series of Conjectures 2.8 and 2.9, up to certain orders in z and w, verifies
Conjecture 3.5in these cases. For p = 3 and 4 we can use Conjecture 3.5 to determine the universal
power series for all s and r up to certain orders in z and w by interpolation.” The coefficients of
the power series are determined as solutions of overdetermined systems of linear equations; the
existence of solutions gives further support for the conjecture.

4 | ALGEBRAICITY
4.1 | Rankl1

In this section, we give several conjectural expressions for the remaining power series in
Conjecture 1.4 for p = 1. We conjecture

S.1(2) = M@ +40) - 1+ 2071 +60)2),
S,(z) =0,
$3@) = 2+ 01— 20— (1 - D)1 - 42)7),
Yi@ =G+ la -4,

Z3(2) = (1= 02t +20) — (1L — )1 - 42)3),

—_1)2
TThis case “probes” the power —%s = % in X,(2).

¥ As mentioned above, we have no direct data for the rank 4 virtual Verlinde series. However, using the virtual Segre-
Verlinde correspondence (Conjecture 1.7), one can obtain such data indirectly from the rank 4 virtual Segre series.
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where z = (14 (1 —s)t)!™* and, in each case, s is specialized to the value in the subscript.
Moreover, S,(z) conjecturally satisfies the following quartic equation
x*—8(1-30)x% + %(1 —36)(1 + 16t — 60t%)x* — %(1 —36)%(1 — 12t%)x — 16t(1 — 3t)*> = 0.

We verified these formulae up to order 35 in ¢ using the method described in Section 3.1.

4.2 | Rank?2

In this section, we give conjectural expressions for some of the remaining power series in Con-
jectures 1.4 and 1.6 for p = 2. For p = 2, we conjecture in addition that the universal power series
satisfy the following relations:

1 1 1 1 1 1
Y{l}’S(ZZ) = Yg’s(—ZZ), Z{l}’S(ZZ) = Z@,S(_Zz)7 S{l},s(zz) = S@,S(_ZZ)7
1 1 1 1
A{l},r(wz) = A@J(_wz)y B{l}’r(wz) = B(Z),r(_wz)’
for all s,r € Z. We can therefore focus on the power series Y :=Y,, Z; 1=Zy, S; 1= Sy,
A, 1= Ag,,and B, 1= B ,.
Segre series

s = 0. For z = t(1 + t), we conjecture

_ Qa+ t)% + t%)(l +1)?

1 1
1 N Z():l, S():ti(l'i't)z.
(1+2t)2

Yy

1
s=1Forz=t(1+ %t)i, we conjecture

1 1
Lo 1+ 20— 262+ 20)2 T
Yi=Q+0)+t2(1+:2t)2, Z, = , Sy =—st+t2(1+ =t)2.
4 1+ 1 2 4
2

s = 2. For z = ¢, we conjecture
1 1 1 1 1 1
Y,=t2+Q+1t)2, Zy,=1+t—t2(1+1t)2, S,=—-t+t2(1+1)2.
1
s=3.Forz=1t(1- %t)_i, we conjecture

1 1.1
Y3—1+t2(1—zt)2,

Ca+ina-toa+in-2ea-tnia -t

3= 1 3
1-30
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3 1 1 1,42 1
_Et(l — Et) + [2(1 — Zt)z(l + Et)

3= 1
l—zt

s = 4. For z = t(1 —t)~!, we conjecture

1 1 1 1
11 1-2t2(1—1)2) 201 =) +12(1—1)2
Y,=(1—-02+41t2, Z,=—"""2"° = .
4=1=0 4 (1—2t)2 4 1-2t

s = 5. Consider the unique solutions x, y of

xt =201 = 0% + (1= 20°x* =221 - Dx + 1 =0

Y204 20y + A - 300+ 20y — 11— S0 + 31 =0
having leading terms x = 1 + t% +O0(t)andy =1+ %t% + O(t), respectively. Then conjecturally
we have

ZsY?

x=Ys5, y=—7o,
1 - 303

Nw

where z = t(1 — %t)_ .
s = —1. Consider the unique solutions x, y of

thxt = 2021+ 20x° + (1 + 20°x* = 21+ 20x +1 =0

Y2004 20y + (4 200+ 20y’ —t(1 - 200+ 207 =0

1 1
having leading terms x =1+¢t2 +O(t)andy = 1 — %ti + O(t), respectively. Then conjecturally
we have

343
Y_, A+30°Z,4
=y YTy
1+30) Y2,
3.3
where z = t(1 + zt)Z.
Verlinde series
r = 2. For w = v, we conjecture
1
A, = 11+v2, B, = 1+l1) .
+v (1+v2)2
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3
r = 1. For w = v(1 + v)” 4, we conjecture

1 1 1 L
1+-v+0v2(1+ -v)2

2 4
A

>

1+v

By =1 +u)((Q+v)1+ %v) — %v%(l + %v)(l + iv)%)-

r = 0. For w = v(1 + v)~!, we conjecture

1 1
Ay=14+4 ———, By=1+v-v2(1+v)2.

3
r = —1. For w = v(1 + v)~ %, we conjecture
A =1+1v+v%(1+lv)% B =1+1v—1v%(1+1v)%
-1 2 4 ’ -1 4 2 4 :
r = —2. For w = v, we conjecture

A—Z = 1

T B_2=1.
1-v2

r = —3, 3. Consider the unique solutions x;, x, of

-+ +x2-v*Q+v)x+0vt=0

1 1
having leading terms x; = 1+ v2 + O(v) and x, = v*(1 + v2) + O(v?). In addition, consider the
unique solutions y,, y, of

Y =21+ Z0)y° + L+ )1 + 30)y* — v(1 - 4v)(1 + 70)* =0

1 1
havingleading termsy; =1+ %vi +O(v)andy, =1— %vi + O(v). Then conjecturally we have
V2

.A_3,

B_
yi=(1+0)’°B:A], y,=(1+ U)ZA—;,
-3

where w = v(1 + v)i.

Using Theorems 2.2 and 2.3, and the method described in Section 3.2, we verified that the con-
jectural formulae of this subsection produce the correct virtual Segre and Verlinde numbers for
the following surfaces up to the following virtual dimensions (always for certain values of H, ¢,
such that there are no strictly semistable sheaves):
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* elliptic surface of type E(3), blow-up of a K3 surface, the blow-up of either of the previous two
surfaces in one point, elliptic surface of type E(4); all up to virtual dimension 18,

* double cover of P? branched along a smooth octic, its blow-up in one point, elliptic surface of
type E(5), double cover of P! x P! branched along a smooth curve of bidegree (6,6); all up to
virtual dimension 16,

« smooth quintic in P* up to virtual dimension 13.

43 | Rank3

Based on experimentation, we conjecture that

1 1
Yi0s(22) =Yg (=22), Y=t

where 7 denotes complex conjugation of the coefficients, and the same with Y ; replaced by the
corresponding Z; ¢, Sy s, A; ., and B .. Therefore, we sometimes restrict attention to Y ¢, Z; ¢,
Sg.s0 Agrs Bgrand Yoy o, Ziy s, Sy o Ay By

Segre series

s = 0. For z = t(1 + t), we conjecturally have

11 1
S@,O = —351’5(1 + t)i, S{l},O = O’ Z@,O = 2’ Z{l},O = 1’

1+41)3 1413
Ygo= =, Y0 =

- 3 11 1
(1+2)2 +32t2(1 +t)2(1 + 2t)2

(1+203(1 —e5t)

where we recall that e; = exp(27i/3) with i := /1.
For s = 1,2,4,5 we found explicit power series Sy, ..., S, Y1s -+ > Va» Z15 - » 24, With §, = 0, such
that we conjecturally have

1 1171 3 1 1 1
1 3 1 L. 1 3
(5()’3 + }’4)> s Yaps =5 -yt 32”(‘@()’3 _J’4)) ;

7. =1 L. 1 3
) {1}’3 —_ E Zl _Zz - 321t _E(Z:; _Z4) .

1
Here we choose roots as follows: we write the term inside the brackets of (+)2 as a power series

M=

SIS

1
Yoi5= %(yl +y, — 37t

M=

1 1
Zys = %(z1 +z,+ 3212 (%(23 + z4))

1
in t starting with a?, with a € Q., then (+)2 is a power series in ¢ starting with a. Below, we list
Sqsees Sqs V1o oo s Ya» Z15 - » 24 fOr s = 1, 2.
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2
s = 1.Inthiscasezand t arerelated by z = t(1 + %t)i . Conjecturally, the power series Sy 1, Sy 3 15
S13,15 Sz are the four solutions of

x* 420 — (3t + 17)x% — 362 +26%)x — (6 + 2tY) = 0.
Conjecturally, Y, 1, Yg 511, Yi131, Yyz3,1 are the four solutions of
xt =@+ 00+ t)zx3 +(6+18t + 166> + 3°)x7 — (4+ Z0)(1 + t)zx +(1+20° =0
Conjecturally, Zg 1, Zg 531, Zi1y15 Zip31 are the four solutions of

1+29 @B+ 2+320)0+2) @+ 200+ 2y
x*—6 > x>+ x>+ (-3x+1)=0.
1+ 3t (1+§t)3 (1+—t)3

Explicitly, using the notation introduced above, this can be written as
s, =—t, s3="6t(1+ %t), s, = 6t(1 + t) 1+ t)z
=2+ = t)(l + —t)z Yy = —t(l + = t)z
y; =6t + 2—25t2 + 2—30t3, y, = (6t + 17t2)(1 + t) a+ t)2

1
3+ 1—3% 1+ gr)(l + %t)z 6t + 3?5:2 + %ﬁ 6t(1+ 2 t)z

z, = , 2z, = , Zy=——— 2 gz, =
2 3 2 5
1+t (1+§t)z (1 +307° (1+§t)2

Remark 4.1. 'We briefly sketch the method we use to find these power series, and those for s =
2,4, 5 below. The same method is used to find the power series for the virtual Verlinde numbers
for r = —2,-1,1,2 below. Let L; ; be any of the power series Y, g, Z; ¢, S; ;. Then we expect that
the four power series

Ly s+ Ly s + Ly s + Ligyss (Lg s + L 2, 6)(Lypy s + Ligy o),
Lo sLioys + Ly sLiy 5o L sLin oy sLnsLios

are simple algebraic functions, for which we can guess a formula from their coefficients modulo
t’. Moreover, by Conjectures 2.8 and 2.9 (and the discussion at the end of Section 2.3), we also
have

Yo oYiuos =YusYouse  Sos + 502 = Sups + 503

Then the explicit expressions for Ly, Ly 55, Liy s Lizys are found from those of the above
four series by double extraction of square roots. The algebraic equations for s =1,2,4,5 and
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r = —2,—1,1,2 are then just obtained as the product

(X - L@,s)(x - L{1,2},s)(x - L{l},s)(x - L{2},s)-
Indeed we find modulo ¢’
Sp1 +Sua + Sy + S = =2t (g + Su21)Sm + Spy1) = 1,
2 2
SpaSuan +SuaSpa = =3t + 31, Sg1S0.215031502;1 = (1 + 30,

17 23
Yor+ Yo+ Y + Y = @G+ 00+ 307,

77

40

Y1+ Yau1)Yg1 +Y) =4+14t + th + 27t3’
2

Yo Yo =YY =0+ Et)3’

20
6+ =t

Zora+Zupi 2oy 200 = 7
1+ Et

Q+In@+ 300+ 30

Zg +Zp o) Zaya + Zpy1) = 1+ 208

5(1+ 30) @+ 2001+ 202

Za1Zugpr tZmyZpyn = v ZpaZupniZnaZpy =
@,14{1,2}, {15,1442}, @,14{1,21,14{1},14{2}, (1+§t)3

2
1+§t

1
s = 2.Inthiscasezand t arerelated by z = t(1 + %t)i . Conjecturally, the power series S, 5, Sq 23 5
S1y.2> and S,y 5 are the four solutions of

x* + 4x3 + (=3t + 4tP)x? — 6t2x — 413 — %t“ =0.
Conjecturally, Y, 5, Y 535, Yi132, and Yy 5 are the four solutions of
¥ =@+ I+ 20503 + (6 +80(1+ 12 — 4+ 10+ i3+ 1Px + 1+ L =0
Conjecturally, Zg 5, Zg 535, Z1y 2. and Zy,, 5 are the four solutions of

6+ 51+ 201 + 2p) 13(1 + 20201 + 2p) 41+ 2021 + 21)?
3 9 x3 3 9 xz + 3 9

+ (=3x+1)=0.
1+ 30? 1+ 30? 1+ 30

X" —

Explicitly, using the notation introduced above, this can be written as
2 4.1 4.1
5, = —2t, §;3=6t+4t7, s4:6t(1+§t)2(1+§t)2,

7 4,1 3 4.1
=02+ 00 +302, y,=35t0+ 502,

85UB017 SUOWILLIOD B8O 3(eo!jdde aup Aq pauenob e S3foNe YO ‘SN JO S3nu J0j A%eiq 1 8UIIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALI A8 1M AReiq 1 jUUO//SHNL) SUORIPUOD PUe SR | 84} 89S *[£202/10/52] U0 AriqI1auiuo A8 M ‘ARiqi AYSBAIUN 14021 AQ TYOZT SW[/ZTTT OT/I0p/W00’ A3 1M ARe1q 1 [eu JUo"00SyIeIpUO | //:Sdny Woiy papeojumod '€ ‘2202 ‘052269%T



2594 GOTTSCHE AND KOOL

1 1
y3=6t+ 22430,y = (6 + 1)1+ 1021+ 0)2,

31+ 201+ 201+ 31)
zZy =

(14 )3
3
1 1
A+Ze+ 20+ 2020+ 202
Z2 = N
1+ 303
(4t + 242 4+ B3 4 2041 4+ 201 + 21)
zy = 2 3 3 3 9 ,
1+ 30°
3 3
Q4+ 22+ 261 + 1021 + 51)2
Z4 = .

1+ 308

s = 3. For z = t, we conjecturally have

3 11 342 1 3i
Spa=—3t=32t2(1+ 302, Syy;=—5;3+320),
3 11 3 1
Y®53=1+5t—32t2(1+zt)2, Y{1},3=1’
3 .1
2(1+t)(1+zl‘)2
ZQ’S _ , Z{l},?) =1+4t.

- 1 11
(A +301+ 202 = 23262(1 + 1)

1
s = 4. In this case z and ¢ are related by z = t(1 — %t)_i. Conjecturally, the power series Sy 4,
S1,23.4> Sq13.4- and Sy 4 are the four solutions of

x* 42t = Bt + t)x? = 32+ 23)x — (£ + §t4) =0.
Conjecturally, Y, 4, Y 53 4, Yi134, and Yy 4 are the four solutions of
xt—(@—300+ %t)%x3 +(6+40)(1 — 31°x7 = (4— 101 - 30°Q + %t)%x +(1-30° =0.
Conjecturally, Zg 4, Zyy 53 4, Zg1y 4, a0d Zyy, 4 are the four solutions of

— 72y~ 2 253 23,2 298,3yq _ 2 204
. _(6+14t 3t )1 9t)(1+3t) x3+(13+36t+ St L )a 9t)(1+3t) 2
(1- 308 (1-308

41— 20231 + 208
+ 9 3

———(-3x+1)=0.
1-30
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2
s = 5. In this case z and ¢ are related by z = t(1 — %t)_& Conjecturally, the power series Sy s,
S50 S50 and Spyy 5 are the four solutions of

26(5 - 2t + 1% —3t + 4502 — 2203 4 T4 — 045 4 2240
x*+ T X3 + - x?
1- gt) (1- gt)
32(5 - 2t + 1)1 - %t +12) P65 - T+ 5
_ X — =0.
(1—2e)3 (1 -2ty

Conjecturally, Yy 5, Y 535, Yi13.5, and Yy 5 are the four solutions of
1 7
Xt = (44300 - 302x + (6 — 6t — X7 — (4+ 101 — 30ix + (1 - 30)° = 0.
Conjecturally, Zy 5, Zy; 5 5, Zg1y, 5, and Zy,, 5 are the four solutions of

— 72y =2 Lya
(6 + 22t 3t)(l 9t)(1+31,‘) 3

X — 27 X
(1-30
14,851, 19433 54554 _ 190095 116236 _ 202 .7 _ 689 .8yq _ 2 106
(13+ 3t 9 =+ 27 &+ 81 t 243 &+ 729 t 2187t 6561t )(1 9t)(1+ 3t) xz
_ 2415
(1-30
401 - 20201+ 30121 - 31)
+ (=3x+1)=0.

—2Zp1s
(-2
s = 6. For z = t(1 — t)~!, we conjecturally have

1-2t 4t(1 —1t)

So.6 = 11 T S = 1
1-32t72(1—1t) 2 2t —1-—3"2i
11 1 1 1,
Yye=1-32t2(1-1)2, Y{l},6:1_z(3+321)t’
2 1
Zye = Z{l},6=

11 1\37 1 1.\3
(1—3ztz(1—t)z) (1—5(3+32i)t>

Verlinde series

r = 0. For w = v(1 + v)~!, we conjecturally have

3 11 3 .1
(1+3v)—3202(1 + j0)2

A, =
2,0 1+v

, A{l},O = (1 + U)_l,

3 1 1
By =2(1+ )1 +30)(1 + 20) +3202(1 + v)*(1 + 30)2,  Byyo = (1 +0).
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8
r = —1,1. In this case w and v are related by w = v(1 +v) 9. Conjecturally, Ay _;, Ag 15
Agy—1,and Ag,y _ are the four solutions of

x4—(4+v)x3+6x2—4+vx+ ! =0
1+v 1+0v)?

Conjecturally, By 1, Byy ) _1, By —1, and By, _; are the four solutions of
x*—6(1+v)1+ %v)(l + %v)x3 +13(1 + v)*(1 + %v)xz +(1+ 00+ %v)z(—lzx +4)=0.

Similarly, Ag 1, Ay 211, Ajiyr> and Agy ; are the four solutions of

4 4+v 3 6 2 440 1
X — X X" — X+ =
14+v 1 +v)? (1+v)* (1+v)°

and B 1, By 511, Byyy1, and By, ; are the four solutions of
x* = (6 +18v +3v?)(1 + v)’(Q1 + %U)x3 + (13 + 490 + 3602 — 40%)(1 + v)*(1 + %v)xz

+(1+0)P0+ %v)z(—12x +4)=0.

5
r = —2,2. In this case w and v are related by w = v(1 +v) 9. Conjecturally, Ay _,, Ay 5 5,
Aqyy o, are Apy _, are the four solutions of

xt—@+30)x>+(6+60—0)x* -4 +30)x+1=0.
Conjecturally, B _,, By 3 5, Byyy 2, and By, _, are the four solutions of
x* = 6(1 + 30)x* + (13 + 20 — v))(1 + F0)x% + (1 — ;0)(A + F0)*(-12x +4) = 0.
Conjecturally, Ay, 5, Ag 235, Aggy 2, and Ay, 5 are the four solutions of

4 4430 3 6'1'61)—1)3 2 4+ 3v 1
x* - x x° — x =
1 +v)? 1+ 1 +v) 1+0v)8

Conjecturally, By, 5, By 535, By1y 2. and By, ; are the four solutions of

x*—6(1+0)*a+ %v)(l + 50 + %vz)x3 +1+0v)°Q+ gv)(13 + 740 + 89v? — 4703 — 950*
—110° + 170 + 207 = V)2 + (1 — %v)(l + )21 + gv)z(—12x +4)=0.

1

r = —3,3. In this case w = v. Recall g5 := exp(27i/3) = —% + 3721 Then we conjecturally have
A = 1 A -1 B =2, B 1
@,—3 — 11 ’ {1},-3 — 1 —1..° @,—3 T {1},-3 — L
1+3202 40 TEv
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11 -1
_1-30 40, _l+g 2 +v) B - 1 +v)?
2,3 = > 13 T 5 P@3 = 1 1 » P13 — 1,33
1+v) 1+v) (1 =330 4 )3 (1+ev)

Using Ag . Aq 23 » = AqyrApy,r» these expressions are related by the two different factorizations

1403
1+v

1 1 1 1
=1 +&v)A+ 53_10) =(1+32v2 +v)1—-32v2 + ).

Using Theorems 2.2 and 2.3, and the method described in Section 3.2, we verified that the con-
jectural formulae of this subsection produce the correct virtual Segre and Verlinde numbers for
the following surfaces up to the following virtual dimensions (always for certain values of H, ¢,
such that there are no strictly semistable sheaves):

* Segre case. For S a K3 surface up to virtual dimension 14, for S the blow-up of a K3 surface
up to virtual dimension 14, for S an elliptic surface of type E(3) up to virtual dimension 12, for
S a double cover of P? branched along a smooth octic up to virtual dimension 6, and for the
blow-ups of these surfaces in one point with the same dimension bounds.

* Verlinde case. For S a K3 up to virtual dimension 12, for S the blow-up of a K3 surface up
to virtual dimension 12, for S an elliptic surface of type E(3) up to virtual dimension 8, for S a
double cover of P? branched along a smooth octic up to virtual dimension 6, for blow-ups of
these surfaces in one point with the same dimension bounds

44 | Rank4

We also have some partial results in the case of rank p = 4. We computed the universal power
series modulo ¢7 for the virtual Segre series. Recall that for p = 4, we have no direct data for the
rank 4 virtual Verlinde series, so we assume that the virtual Segre-Verlinde correspondence (Con-
jecture 1.7) in order to obtain such data from the rank 4 virtual Segre series. This determines the
virtual Verlinde series modulo v°.

Let L; ¢ be any of the power series Y} ¢, Z; ;, or S; ;. Based on experimentation, we conjecture
the following:

1 1
Ly, €Q(,22)[[z2]], W C[3],seZ
1 1 1 1
Li535(22) = Ly ((=22), Ly =0(Lgy)s, Ly (22) = 0(Ly )(=22),

1 1 1 1
Lggy5(22) = Ly (=22),  Ligys = 1(Lgys)s  Lipgye(22) = 1(Lggy )(—22).

Here o is the involution of Q(i, 2% )[[z% 11, that replaces 2% by —2% in the coefficients of the power
series, and 7 is complex conjugation of the coefficients. We expect the analogs of these statements
to hold on the Verlinde side as well. Therefore, in what follows, we restrict attention to Y ¢, Z; ¢,
Sg.s0 Agrr Bgrand Yoy, Ziy s, Sy s Ay By
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Segre series

s=0.
For z = t(1 + t), we conjecturally have

1 1 1 1 1 1
Sgo=QQ+22)t2(1+10)2, Syyo=t2(1+10)2, Zyzo=202+22), Zyo=2,

1 1 1 1
A+)* (A +0)2 +12) A+)* A +0)2 +12)
Yoo = 1 I 1 o Yo = 1 '
(1+2t)2<(1+2t)—22t2(1+t)2) 142021+ (1 =00
s = 4. We write
2 3 1 1 1 1 2 1 1 2
zp=(Q+2t+2t7)+2t2(1+ 0)2)(1 + Et)z’ Z, = —5(1—2t—2t YA +1)2 +t2(1 + 1)

For z = t, we conjecture the following formulae to hold
1 11 1.1 . 1 1
Spa=—20+12 ((1 67 +23(1+ Ex)z), S = (=2 =D +12(1+0)2,

1
201+ )21 + %t)i 1 1
Zgs= : , Zgya = 2(1+t)2<(1+2t)—2t2(1+t)2),
z; + 22z,

1 1 1 1 1 1 1
You=(Q+07+12)((1+0)+2202(1+302), Yyyu=1+02 +12.

Verlinde series

r = —4, 4. In this case w = v. Conjecturally, we have the following attractive formulae

1 1
Ap-4= 1 1 A= 1 ’
(1—-v2)1—-22v2 + ) 1-v2)1-iv)
1
BQ,_4 = 2(2 + 25), B{1}7_4 = 2,
1 11 1
1 +v2)1Q+22v2 +v) 1 +v2)1 —iv)
Agy = o ApuE
’ 1+v) ’ (1+v)3
1 1+0)° 1+0)°
B@A’ = 2(2 + 22) ( ) s B{l},4 =2 ( )

1 11 1 '
1+v2)3(1+22v2 +v)3 1 +0v2)3(1 —iv)?

Using Ag . Aq1 5 310 = ApyrAp3),- these expressions are related by the two different factorizations

1-—v*

= (1- VYA +03)(1 + )1 —iv) = (1 — 02)1 + 03 )1+ 2307 + v)(1 = 2307 + ).
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Using Theorem 2.2, and the method described in Section 3.2, we verified that the conjectural
formulae of this subsection produce the correct virtual Segre numbers for the following surfaces
up to the following virtual dimensions (always for certain values of H, ¢; such that there are no
strictly semistable sheaves):

» Segre case. For S a K3 surface up to virtual dimension 6, for S the blow-up of a K3 surface in
a point up to virtual dimension 6, for S a “virtual surface” with K> = —1, y = 0 up to virtual
dimension 9, and for S a “virtual surface” with K? = —1, y = 1 up to virtual dimension 8.

Assuming the virtual Segre-Verlinde correspondence (Conjecture 1.7), the conjectural formulae
of this subsection produce the correct virtual Verlinde numbers for the following surfaces up to
the following virtual dimensions (always for certain values of H, c¢; such that there are no strictly
semistable sheaves):

* Verlinde case. For S a K3 surface up to virtual dimension 5, for S the blow-up of a K3 surface

in a point up to virtual dimension 5, for S a “virtual surface” with K? = —1, y = 0 up to virtual
dimension 8, and for S a “virtual surface” with K? = -1, y = 1 up to virtual dimension 6.
4.5 | Galois actions

In Conjectures 1.4 and 1.6, we stated that the coefficients of the universal power series have C-
coefficients. The power series for which we provided an explicit formula in these conjectures have
Q-coefficients. For the remaining power series, studied in the previous sections, we found that
their coefficients appear to lie in certain Galois extensions of Q. This leads to further conjectures,
which we will state for the Segre case, but which can be similarly formulated for the Verlinde case
(Remark 4.6).

Consider the universal function of Conjecture 1.4

2
® :=p2—;(+1<2 VEZ(“)ng(a) X§(6L2QS+(cl(a)L)RS+uTS 2 (_1)|J|XEIIJJ||K01Y;,ls(a)KZfsze(KL)S]’s.
Jclp-1]

p = 2. For rank p = 2 all universal power series of Section 4.2 have rational coefficients and we
conjecture this is always the case:

1
Conjecture 4.2. Letp = 2. ThenY;,Z; ,S; s € Q[[z2]] forall J,s.

1
© = 3. Consider the following generators of Gal(Q(i, 32)/Q) = Z, X Z,
1 1
T:32+32, i —i.

1
For any formal power series F with Q(i, 32)-coefficients, we denote by o(F) the power series

1
obtained by acting by o € Gal(Q(i,32)/Q) on its coefficients. In accordance with the expressions
of Section 4.3, we conjecture the following:
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1 1
Conjecture 4.3. Let p=3. Then Y, ,Z;,S;; € Q(32)[[z2]] forJ = @,{1,2} and all s € Z and

1 1
Y; 2558 € QB2D[[22]] for j = {1},{2} and all s € Z. Moreover for any L; s =Y, Z;, Sy
and s € Z, we have

0(Lgs) = Ligys 0(Lpys) = Lygyse  T(Lgys) = Ligyse
Assuming Conjecture 4.3, a direct calculation shows that
o(@) =@, 1(d)=07.

1
Hence @ is invariant under Gal(Q(i, 32)/Q). So for any S, «, L, the power series ® has rational
coefficients (as it should). This provides a consistency check on Conjecture 1.4.

© = 4. Consider the following generators of Gal(Q(i, 2%) /Q)=27,XZ,

1
T:.:220 22, i —i.
Based on the expressions of Section 4.4, we conjecture the following:

1 1
Conjecture 4.4. Letp =4.ThenY;, Z; , S; s € Q(22)[[z2]] for ||/ || even and all s € Z, and Y ,

1
Z;s Sps € QW[[z2]] for ||J]| odd and all s € Z. Moreover forany Ly s =Y, (,Z;,S; s and s € Z,
we have

0(Lgs) = Ly aysr 0Liays) = L pyss T(Lqys) = Liayss Tqays) = Lipays
Assuming Conjecture 4.4, a direct calculation shows that
o(@) =, 1(d)=02.

1
Hence @ is invariant under Gal(Q(i, 22 )/Q). As in the rank 3 case, for any S, «, L, the power series
® has rational coefficients—another consistency check of Conjecture 1.4.

Remark 4.5. We found another interesting symmetry involving the formal parameter ¢ (defined

via the change of variables z = t(1 + (1 — %)t)l_ﬁ). Consider the two commuting involutions of

1 1 1
C[[t2]] determined by v : t2 - —t2 and 7 : i - —i. Based on our calculations, for p = 2, 3,4 and
LysequaltoYy, Z; g, Sy foranyJ C [p — 1] and s € Z, we conjecture the relation

DT(L],S) = L[p—l]\],s'

It seems natural to expect that this relation holds for all ranks p.
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Remark 4.6. We conjecture that the statements of this subsection hold (verbatim) on the Verlinde
side with @ replaced by the the universal function of Conjecture 1.6

1
. < L)X J|IK 2
p .=p2 x+K Gf(( )Fr2 Z (_1)|J|;(Eg I clA%Bﬁ,
Jclp-1]

and Y, ;, Z;  replaced by A; ., B ,..

5 | K3,SERRE DUALITY, MARINO-MOORE CONJECTURE
5.1 | K3 surfaces

Let (S,H) be a polarized K3 surface and fix p > 0, ¢;,c, such that M := M? (p,c;,c,) only
contains Gieseker H-stable sheaves. Then M is deformation equivalent to sinl (16, 33, 36], where

n = Jvd(M) = pc, = 3(0 = D)ej — (p* = 1).
Let a € K(S) be a class of rank rk(ar) and with Chern classes ¢, («) and c¢,(«). We define

vd(a) 1= 2rk(a)c,(a) — (rk(a) — De; (a)? — 2(rk(a)* — 1).

It is natural to ask whether the insertion c(«;;) on M deforms along to S[nl. In this section, we
describe a conjectural answer. Let L € Pic(S) and let

B = B(% rk(a), ¢; (@)%, ¢; (@)L, vd(a)) € K(S) ® Q
be a K-theory class satisfying
k() = S1k(@), (B’ =@’ (L =c(@L, vd(g) = vd(a).
Such a class can be constructed from
sa+ (1= 2)(O5(e ()] = [Os]) +c - [0]
for appropriate ¢ € Q and where P € S. We conjecture the following:

Conjecture 5.1. Let (S,H) be a polarized K3 surface and fix p > 0, ¢;,c, such that M :=
Mf (p, ¢, ¢y) only contains Gieseker H-stable sheaves. Then for any a € K(S)

/ C(O(M)e/“‘(L)+”(Pt)u = / " c(ﬁ[n])eM(L)+pM(pt)u’
M sln

wheren .= % andf := ﬁ(% rk(a), ¢;(@)?, ¢ (@)L, vd(a)) € K(S) ® Q.

* Conjecture 5.1 was recently proved by Oberdieck [32].
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Corollary 5.2. For K3 surfaces and u = L = 0, Conjecture 5.1 implies Conjecture 2.8. Moreover, for
K3 surfaces, Conjecture 2.8 for p = 1 and Conjecture 5.1 together imply Conjecture 2.8 for all p > 0.

Proof. The Segre numbers /s["] (B! are calculated by [27, Thm. 1] (Theorem 1.1). The rank and
Chern classes of 8 are expressed in terms of the rank and Chern classes of « as follows

k() = S k(@) ¢(B)° = e(@)?,
&(B) = pes(@) + 5(1 = p)ey ()* = prk(a) + - 1k(@).

The resulting expression is precisely the formula of Conjecture 2.8 for a K3 surface and rank p,
where we recall that the only Seiberg-Witten basic class of S is 0 and SW(0) = 1. This proves the
first part of the corollary. The second part follows similarly. O

Remark 5.3. Let S be a K3 surface with polarizations H, H and L € Pic(S). Let p, p’ € Z, and
¢1,¢}, ¢y, ¢} be such that Mg (p,¢15¢,), MISLI' (¢, ¢}, c)) contain no strictly semistable sheaves. Let
a,a’ € K(S) such that

rk(a) _ rk(a’)
P P’

, c@?=c(@)? c(@L=c(a)L, vda)=vda).
Then Conjecture 5.1 implies

/ c(ay, et D HHPou/p - / c(al, YeHL+upu/p’
M (p.c1.65) M (0" ¢] )

5.2 | Virtual Serre duality

Applying virtual Serre duality [3, Prop. 3.13] to the virtual Verlinde numbers discussed in the
introduction gives

27 (M, (L) ® E®") = (—1)" 4 pvin(M, (L) @ E®~" ® K}IN) )
19
= (=19 pVir(M, u(~L + pKg) ® E®"),

where KIVMir ::A"dUVI)Q‘I(/iIr and the second equality follows from cl(TX}r): —pu(Kg) [17,

Prop. 8.3.1]. This gives relations among the coefficients of the universal functions of Theorem 1.2
and Conjecture 1.6. Clearly, by (5), we have

Frjo = Frjos 9=rjo = 9rjp>

for all p, r. Furthermore, for p = 1 (see also [2])
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for all r € Z (where we dropped the subscript J = @&). In general, using the fact that aK = a?
for Seiberg-Witten basic classes a € H*(S, Z), virtual Serre duality (19) suggests the following
relations:

Conjecture 5.4. For any p > 0, we have

1 1
A],—r(wi) = gr/p(w)l_ij,r(_wE)_la
1 © 1, 1
B],—r(wz) = gr/p(w) 2 A],r(_wz) B],r(_wz)’
forallT Cc[p—1]andr € Z

In particular, the universal power series A; ., B; . with r < 0 are determined by the universal
power series with 7 > 0 (and vice versa).

We can combine virtual Serre duality and the virtual Segre-Verlinde correspondence in order
to obtain interesting relations among the universal power series for the virtual Segre numbers. A
direct calculation shows the following:

Corollary 5.5. Assuming Conjectures 1.7 and 5.4, we obtain

. 1+@1- I%)T)p 1
Yjop-s(z2) = —pYJ,s(—§5)‘1,
1+21- ;)1)5

1+ @ = e

1
ZJ,Zp—s(Z 2)=

T YJ,S(_gé)pZJ,s(_gé)’
(141 =)0z

forall 7 c[p—1] and s € Z, where z =t(1— (1 — %)t)_H;, ¢(=t1+@1- %)1)1_5, and 7 =
t(1-2(1 - %)t)_l.

In particular, the universal power series Y} ;, Z;  with s < p are determined by the universal
power series with s > p (and vice versa). In all the cases where we conjectured explicit formulae
for the universal power series A; ., By, and Y} ¢, Z;  in Section 4, we verified that they satisfy the
formulae of Conjecture 5.4 and Corollary 5.5.

5.3 | Marifno-Moore conjecture

Donaldson invariants [1] are diffeomorphism invariants of differentiable 4-manifolds. Let (S, H)
be a smooth polarized surface satisfying b;(S) = 0, p,(S) > 0, and let L € Pic(S). Suppose M :=
M? (p, ¢y, c,) does not contain strictly semistable sheaves. In algebraic geometry, one can define
the corresponding SU(p) Donaldson invariants of S by
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Dg’fc (L +pt u) = / e#(L)‘Fu(pt)u,
1562 lMgI(p,cl’cz)Jvir

vd
S,H . S.H -
DSH(L + ptu) .—ZD (L+ptwyzz,

PsC1,C
5]

where pt € H*(S, Z) denotes the (Poincaré dual of the) point class, u is a formal variable, and
vd is given by (2). As mentioned in Section 2.1, S has finitely many Seiberg-Witten basic classes
a € H?(S, Z) satisfying a®> = aK and SW(K — a) = (—1)*SW(a). When a is a Seiberg-Witten basic
class of S, we define

a:=2a-K.
Then @ corresponds to a Seiberg-Witten basic class in the sense of differential geometry and

SW(a) = SW(@), where SW denotes the Seiberg-Witten invariant from differential geometry [30].
In the rank 1 case, Proposition 3.1 gives

1
Df’CiI(L +ptu,z) = eGL Wz, (20)

The Witten conjecture [35] for the SU(2) Donaldson invariants of S can be stated as follows:

Dig ., (L + ptu) equals the coefficient of zV40D/2 of
22—)(+K2 e(%L2+2u)z 2 SW(a)(—l)”Cl e—aLz% ) (21)
a€H?(S,2)

This was proved in [15] for complex smooth projective surfaces with b,(S) = 0 and p,(S) > 0,
and (under a technical assumption) for all differentiable 4-manifolds M with b,(M) = 0, odd
bt (M), and of Seiberg-Witten simple type in [4, 5]. In [28], Marifio and Moore predicted the exis-
tence of SU(p) Donaldson invariants and a higher rank Witten conjecture was proposed. See also
[23, (10.107)]. The gauge theoretic definition of higher rank Donaldson invariants was given by
Kronheimer [20].

In the special case a = 0, Conjecture 2.8 implies a structure formula for the higher rank Don-
aldson invariants of S. Then s = 0 and we have universal power series X, Qq, T, Zy, Z ji 0, S9-S0
forall1 < j <k < p—1,satisfying

Xo@) =1, Qy2) =3z, T2)=pz.

Moreover, in Section 3, we conjecturally found for p = 2,3, 4 that Z,, Z ko are certain constants

1
and S, S; are certain multiples of z2. This leads us to the following explicit “SU(3) and SU(4)
Witten conjectures.”
Let (S, H) be a smooth polarized surface with b (S) = 0, p,(S) > 0, and let L € Pic(S). Suppose

M = M? (p,cq,c,) does not contain strictly semistable sheaves. Then, for p = 3 and p = 4, the

Donaldson invariant Di’g < (L + ptu) is given by the coefficient of zV4(M)/2

of (respectively)
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1
322 +K? (G L4302 D SW(al)SW(az)£§a1+2a2)cleé@+52)Lﬂ 23 @D

(a1,a5)

Nl

5 (12 (ﬁaf@+ﬁ@>u
42 GIH0Z N SW(a, )SW(a,)SW(ay)it 2R3k e 2 :

(01,02?03)

13, @ +a,)
X2K2+3—‘(51+52)(51+E3)<1 B \/7§> )

(22)

In the rank 4 case, we used some slight rewriting involving the relations a’> = aK and SW(K —
a) = (—1)XSW(a) for Seiberg-Witten basic classes a € H*(S, Z).

Based on this, it is natural to conjecture the following, which can be seen as an algebro-
geometric version of the Marifio-Moore conjecture [28, (9.17)], [23, (10.107)].

Conjecture 5.6. Forany p € Z., there are universal algebraic numbersy, y ., 6, € Qforall j <
k,¢ €{1,..., p — 1}with the following property. Let (S, H) be a smooth polarized surface with b, (S) =
0, p,(S) > 0, and let L € Pic(S). Suppose M := Mg (p, ¢, c,) does not contain strictly semistable
sheaves. Then D5 (L + ptu) equals the coefficient of zV4M)/2 of

PsC1,C2

=1 1 =

2yt K2 K2 (2124 0u)z jlajer) 8;(@L)z2 4%

P2+ K2 (G L e > e swia)e®@h [T »."
(@y,mnp_y) J=1 1<j<ks<p-1

where the sum is over all (a, ...,a,_;) € H*(S,Z)P™.

Remark 5.7. For ¢; = 0, the previous expressions manifestly only depend on the oriented diffeo-
morphism type of S (by expression y, K? in terms of e(S), o(S)). In this case, the “stable equals
semistable” assumption can be satisfied by taking gcd(p, ¢,) = 1. If in addition vd(M) = 0, we
obtain intriguing expressions for the “virtual point count” f[M]vir 1=e""(M) € Z.

Remark 5.8. For fixed p, S, H, L, c;, the power series in Conjecture 5.6 is (a priori) an element of
Q[[u, z% ]]. From the definition of Donaldson invariants, we also know it should be an element of
Q[[u, z% ]]. For ranks p = 1 and p = 2, note that (20) and (21) manifestly have rational coefficients.
However, for p = 3 and p = 4, the power series in (22) a priori are elements of Q(i, 3%)[[14, z% ]] and

1 1
Q(i,22)[[u, z2]]. If S is minimal of general type, then the Galois invariance discussed in Section 4.5
shows that they indeed have rational coefficients.

From the perspective of Donaldson theory and Nekrasov partition functions, Conjecture 2.8,
and the corresponding algebraic functions in Section 4, can be seen as a Witten type conjecture
for gauge group SU(p) and fundamental matter insertions.

5.4 | Disconnected canonical curve
Proposition 5.9. Let S be a smooth projective surface such that by (S) = 0, p ,(S) > 0, and |Kg| con-

tains an element of the form C, + --- + C,,,, where C; C S are mutually disjoint irreducible reduced
curves. FixH,p > 0,¢;, ¢, such that M := Mgl (0, ¢, ;) contains no strictly semistable sheaves. Let
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L € Pic(S), r € Z, and assume that Conjecture 2.9 holds for y""(M, u(L) ® E®"). Then it is given
by the coefficient of w¥iM)/2 of

,om
—y+K2 ~x(L) 3 X J|1hO(N¢, /) _ITIIC, LC
,02 x+K Gﬁ(( )Frz I I Z (_1)| [h°( C[/Ls)EJJ7 Il fclA]rfB ?
¢=1JcC[p-1]

where N, /s denotes the normal bundle of C, in S.

Proof. ForanyJ C [m] :={1,...,m}, define C; := Z]E] Cj, where Cy 1= 0. For any J,K C [m],
we define J ~ K when C; and Cy, are linearly equivalent. This defines an equivalence relation and
we denote the equivalence class corresponding to J by [J]. By [10, Lem. 5.14], the Seiberg-Witten

basic classes of S are {C;}j;1, SW(0) = 1, and

sw(cy) = I I N, vg #7 ¢ [ml.
jer

By Conjecture 1.6, y"*(M, u(L) ® E®") equals the coefficient of wdM)/2 of

1
_ 2 =X 2 JCJ 01 h (N¢, o) LCy. Cr.Cy
p2 x+K G')‘((L)Frz ALKBK .T]/S A. J B Jj 'k
r r Z I I J.r I l Jjkr
Ulodpo1) = 1<j<gk<gp—-1
Jq e Ip_lc[m]

For any choice of Jy, ...,J,_; C [m] one obtains a partitioning of [m] as follows. Define P p-1] 1=

.....

-(N5) Y

jel JCK

=m\UPK.

@#K

By inclusion—exclusion, we have

ml= || P

Jc[p-1]

We can therefore replace the sum 3, ;) above by the sum

--------

m]=|_|Jc[p—l] Py

over all partitionings of [m]. Writing the summands in terms of the P;, we obtain

2 (L) 3 X 2 RO(N, iCoe; (LC c
p2 x+K G)(( )Fz ALKBK H Z H(( 1) (Ney/s)g ] fCIA /) H le:,r’
¢=1JcC[p-1] j€J (jgk)yelxJ

85UB017 SUOWILLIOD B8O 3(eo!jdde aup Aq pauenob e S3foNe YO ‘SN JO S3nu J0j A%eiq 1 8UIIUO AB]IM UO (SUORIPUOD-PUR-SLLBIALI A8 1M AReiq 1 jUUO//SHNL) SUORIPUOD PUe SR | 84} 89S *[£202/10/52] U0 AriqI1auiuo A8 M ‘ARiqi AYSBAIUN 14021 AQ TYOZT SW[/ZTTT OT/I0p/W00’ A3 1M ARe1q 1 [eu JUo"00SyIeIpUO | //:Sdny Woiy papeojumod '€ ‘2202 ‘052269%T



VIRTUAL SEGRE AND VERLINDE NUMBERS | 2607

where we define the product over J = @ to be equal to 1. The result follows from the definition of
the power series A; ., By, in (15). O

5.5 | Blow-up formula

Proposition 5.10. Let S be a smooth projective surface satisfying b,(S) = 0 and p,(S) > 0. Let
P E Z. c; € HX(S,Z), L € Pic(S), and r € Z. Denote formula (14) by Vs pe, L Let e S — Sbe
the blow-up of S in one point with exceptional divisor E and set¢; = w*c; — mE, and L = 7*L — ¢E.
Then

1 A7
— [ITllm ™" J.r
Zpipfl Lr— £+1 l z &p B ]¢S,p,cl,L,r~
G( 2) Ll Jr
PG,

Proof. By [30, Thm. 7.4.6], the set of Seiberg-Witten basic classes of S is given by {7*a, 7*a + E},
where a runs over all Seiberg-Witten basic classes of S, and

SW(r*a) = SW(r*a + E) = SW(a).

The result now follows from an easy calculation using Ks = 7*Kg + E, x(Og) = x(Os), and E? =

—1. O
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