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1 Introduction

It is of general interest to study four-dimensional supersymmetric string vacua and their
low-energy effective supergravity descriptions. Firstly, in the context of flux compactifica-
tions and gauged supergravities, one is motivated by the problem of moduli stabilization
and the properties of string vacua in which these moduli are stabilized. For some reviews
on the topic, see [1-3]. Often, one focuses on supersymmetric vacua since there is better
control over the dynamics of the theory, though for more realistic situations, e.g. in acceler-
ating cosmologies, the vacuum must break all supersymmetry. Secondly, we are motivated
to look for new versions of the AdSy/CFT3 correspondence. The recently proposed dual-
ities studied in [4] are based on AdSy string vacua preserving 32 or 24 supersymmetries.
Versions of the AdSy/C FTs correspondence with less amount of supersymmetry are not yet



well established (for some results on the correspondence in an N = 2 setting, see [5-7] and
references therein), but are important for studying aspects of four-dimensional quantum
gravity, and potentially also for certain condensed matter systems at criticality described
by three-dimensional conformal field theories.

In this paper, we consider four-dimensional N = 2 gauged supergravities, and study
the configurations that preserve maximal supersymmetry, i.e. eight supercharges. We only
consider electric gaugings because magnetic gaugings require in addition massive tensor
multiplets which have not been fully constructed yet. In the ungauged case, N = 2
models arise e.g. from Calabi-Yau compactifications of type II string theories, or K3 x T2
compactifications of the heterotic string. Both models are known to have a rich dynamical
structure with controllable quantum effects in both vector- and hypermultiplet sectors that
are relatively well understood. Gaugings in N = 2 supergravity are well studied and have a
long history [8-13]. Their analysis in terms of string compactifications with fluxes started
in [14], and is an ongoing research topic. For a (partial) list of references, see [15-21].

In the ungauged case, a complete classification of all the supersymmetric solutions
already exists [22—-24], while there have been also solutions in the gauged case for (abelian)
vector multiplets [25]. We extend this by taking completely general vector- and hyper-
multiplet sectors. Since we concentrate only on the maximally supersymmetric solutions,
we use different methods than the ones in the above references. In fact the space-time
conditions we obtain for our solutions closely resemble other maximally supersymmetric
solutions in different theories such as [26].

The plan of the paper is as follows. In section 2, we analyze the supersymmetry rules
and derive the conditions for maximally supersymmetric vacua. The possible solutions
divide in two classes of space-times, with zero scalar curvature and with negative scalar
curvature, and we explicitly list all the possible outcomes. We give the lagrangian and
the scalar potential for the obtained vacua in section 3, paying special attention to the
Chern-Simons-like term determined by the c-tensor of the electric gauging. This term
generically exists in N = 2 supergravity and string theory compactifications and we show
how it influences the maximally supersymmetric vacua. In section 4, we discuss explicit
cases from string theory compactifications and general supergravity considerations that
exemplify the use of our maximal supersymmetry conditions. We have left the definition of
our conventions and notations for the appendices, where we also present some intermediate
and final formulae that are important for our results.

2 N=2 supersymmetry rules

We consider in this section vector multiplets, hypermultiples and the gravitational mul-
tiplet, with arbitrary electric gaugings, and will mostly follow the notation of [11]. For
completeness, a list of conventions is given in appendix A.

As is well known, the vector multiplet sector is characterized by holomorphic sections

XM(2) and Fp(2),A =0,1,...,ny, and the scalars z%;i = 1,...,ny parametrize a special
Kaéahler manifold with Kahler potential
K(z,%) = —In [i(XA(z)FA(z) — XM R (2))] . (2.1)



When a prepotential exists, it is given by 2F = XAFj,. It should be homogeneous of
second degree, and one must have that Fj(X) = 0F(X)/0X". Our general analysis does
not assume the existence of a prepotential.

The scalars in the hypermultiplet sector parametrize a quaternion-Kéahler manifold,
whose metric can be expressed in terms of quaternionic vielbeine. In local coordinates
q“;u=1,...,4ngy, we have

huv(q) = U (@) UPP (q) Capeas (2.2)

where Cpg, 0,3 = 1,...,2ny and eap, A, B = 1,2 are the antisymmetric symplectic and
SU(2) metrics, respectively. The value of the Ricci-scalar curvature of the quaternionic
metric is always negative and fixed in terms of Newton’s coupling constant . In units in
which x? = 1, which we will use in the remainder of this paper, we have

R(h) = —Sng(ng +2) . (2.3)

The analysis of maximally supersymmetric configurations does not rely on the form
of the action, only on the supersymmetry variations and the equations of motion. Never-
theless, it is relevant to know what is the value of the scalar potential evaluated at such a
configuration. We therefore turn to the properties of the Lagrangian in the next section.

It can be seen by inspection that the maximally supersymmetric configurations!' are
purely bosonic, and the fermions need to be zero. This follows from the supersymmetry
variations of the bosonic fields, which can be read off from [11]. Therefore, we can restrict

ourselves to the supersymmetry variations of the fermions only.

2.1 Gauginos

The number of vector multiplets is denoted by ny, and in N = 2 special geometry, it
is convenient to introduce indices A = 0,1,...,ny and ¢ = 1,...,ny. The two fermions
with positive chirality in a vector multiplet are denoted by A\*4, with A = 1,2. Complex
conjugation changes the chirality and lowers the SU(2)g indices A, B,.... See appendix A
for more on our notations and conventions. Under gauged supersymmetry, with coupling
constant g, the gauginos transform into

SN = ivuzi’y“&tA + G;,f’y“”eABEB + gWihBep (2.4)

up to terms that are higher order in the fermions and which vanish for purely bosonic config-
urations. The supersymmetry parameters are denoted by 4. They have negative chirality
and under complex conjugation €4 = (¢4)*, chirality is flipped since in our conventions s is
hermitian but purely imaginary. We explain more on the quantities in (2.4) as we go along.

A maximally supersymmetric configuration preserves the full eight supercharges, hence

the variation of the fermions should vanish for all choices of the supersymmetry parameters.

'In this paper we use interchangeably the terms maximally supersymmetric configurations and BPS
configurations, meaning the field values that are invariant under all eight supercharges in the theory.



Since at each point in spacetime they are linearly independent, the first term on the right
hand side of (2.4) must vanish separately from the others,

V2 =02 + gAﬁkf\ =0. (2.5)
It implies the integrability condition?
FiL k=0, (2.6)

and complex conjugate. Here, Flﬁ, is the full non-abelian field strength.

The z* are the complex scalars of the vector multiplets, and Aﬁ are the gauge fields
(including the graviphoton). These scalars parametrize a special Kdhler manifold which
may have a group of isometries. To commute with supersymmetry, these isometries need
to be holomorphic, and we denote the Killing vector fields by ka(z). Under the isometry,
the coordinates change according to

bzt = —ga ki (2) . (2.7)

To close the gauge algebra on the scalars, the Killing vector fields must span a Lie-algebra
with commutation relations

[ka, kx| = faxk, (2.8)

and structure constants fas!! of some Lie-group G that one wishes to gauge. Not all
holomorphic isometries can be gauged within N = 2 supergravity. The induced change on
the sections needs to be consistent with the symplectic structure of the theory, and this
requires the holomorphic sections to transform as

XA XA XA
5 = —ga® | T - 2.9
() = () + o () 29)
The second term induces a Kéhler transformation on the Kéhler potential
5K (2, 2) = ga(ra(z) +7a(2)), (2.10)

for some holomorphic functions rj(z). The first term in (2.9) contains a constant matrix
Tx, that acts on the sections as infinitesimal symplectic transformations. For electric gaug-
ings, which we consider in this section, we mean, by definition, that the representation is

_[(—/a 0
Ty = < i f{t\> , (2.11)

where fp denotes the matrix ( fA)gH = ngH and ff\ is the transposed. The tensor

of the form

CASTI = (ca)sm is required to be symmetric for T to be a symplectic generator. Moreover,
there are some additional constraints on the cj in order for the Ty to be symplectically

embedded within the same Lie-algebra as in (2.8). One can easily derive them, for explicit

We will assume in the remainder of the paper that the gauge coupling constant g # 0. The case of
g = 0 is treated in the literature in e.g. [24].



formulae see [9], or (3.5). Finally, closure of the gauge transformations on the Kéhler
potential requires that
kpOirs — kS0ra = fas"rmn (2.12)

We summarize some other important identities on vector multiplet gauging in appendix B.

Magnetic gaugings allow also non-zero entries in the upper-right corner of Ty, but
we will not consider them here. The gauged action, in particular the scalar potential,
that we consider below is not invariant under magnetic gauge transformation. To restore
this invariance, one needs to introduce massive tensor multiplets, but the most general
lagrangian with both electric and magnetic gauging is not fully understood yet (for some
partial results see [27-30]).

Given a choice for the gauge group (2.11), one can reverse the order of logic and deter-
mine the form of the Killing vectors, and therefore the gauge transformations of the scalar
fields 2. This analysis was done in [31], and the result is written in the appendix, see (B.6).

We now return to the BPS conditions. The second and third term in the supersym-
metry variation of the gauginos, equation (2.4), need also to vanish separately, since they
multiply independent spinors of the same chirality. For the second term, this leads to

G, =- @'J’fjA(ImJ\/Ag)FE; =0, (2.13)

where g% is the inverse Kihler metric with Kéhler potential X from (2.1), and

—1
— [ D;Fy D, X*> A 1/o A
NAE=<}A>'<;—(2> , A =e2p x| (2.14)

with D; XA = (0; + K;) X" and similarly D;Fp = (9; + K;)Fx. The anti-selfdual part of
any real two-form 7}, is denoted by 7},,,, and complex conjugation gives the selfdual part,
see the appendix of [11].

Finally, setting the third term in the supersymmetry variation to zero leads to
WiAB = | LAt 1 gl fAPY 0B =0, (2.15)

where LA = £/2xA (in analogy, My = K12F A) and Py are the triplet of moment maps
associated with the Killing vector fields ks on the quaternionic geometry.® These Killing
vectors are used to determine the gauge transformations of the hypermultiplet scalars under
the gauge group. The only requirement is that the Killing equation is satisfied, i.e. they
are isometries on the quaternion-Kéahler manifold, and they satisfy the same Lie-bracket
as in (2.8). Of course, a given quaternion-Kéhler manifold can allow inequivalent choices
of Killing vectors with the same Lie-algebra. These choices lead to different models with
different physics. One obvious choice is to set all the Killing vectors to zero, and so all
hypermultiplet scalars remain neutral under the gauge group. The gauging then remains

solely active on the vector multiplet scalars.

3For the explicit relation between moment maps and Killing vectors in the quaternionic case, as well as
other useful identities in the hypermultiplet sector, see the standard references.



Close inspection of (2.15) shows that both terms are linearly independent in SU(2)g
space, hence they must vanish separately,

KA =0,  Pifr=o0, (2.16)
and their complex conjugates.

2.2 Hyperinos

The fields in the hypermultiplet sector comprise 4ny scalars ¢%, and 2ny positive chirality
fermions (, and their complex conjugates ((,)* = (Caﬁgﬁ with negative chirality. Under
N = 2 local supersymmetry, these hyperinos transform as

0:Co = iUfBVMq“’y“&?AeAB(Caﬁ + gNOf‘EA ) (2.17)

again, up to terms that are of higher order in the fermions. The hyperino mass matrix N(f
is defined by

N2 =2yl K4 LA, (2.18)
with LA as given just below (2.15).
Similarly as for the gauginos, N = 2 supersymmetric configurations require the two

terms in (2.17) to vanish separately. Since the quaternionic vielbeine are invertible and

nowhere vanishing, the scalars need to be covariantly constant,
Vug" = 0uq" + gANKY =0, (2.19)
implying the integrability conditions
Fiki=0. (2.20)

Furthermore, there is a second condition from (2.17) coming from the vanishing of the
hyperino mass matrix N/. This leads to

k4LA =0, (2.21)

and complex conjugate.

In the absence of hypermultiplets, i.e. when ny = 0, the N = 2 conditions from the
variations of the hyperinos disappear. However, the second condition in (2.16) remains,
with the moment maps replaced by FI parameters.* So our formalism automatically in-
cludes the case ngy = 0.

“In the absence of any hypermultiplets the quantities P§ need not vanish. Instead, they can be constants,
which can be non-vanishing for gauge groups SU(2) or U(1). These constants are sometimes referred to as
Fayet-Illiopoulos (FI) terms. See e.g. [32] for a discussion.



2.3 Gravitinos

The fermions in the gravitational sector are two gravitinos of opposite chirality v, 4 and
its complex conjugate 1/):? = (pa)*. In gauged supergravity, their supersymmetry trans-
formation rules are (up to irrelevant higher order terms in the fermions)

Oethpa = Vyea + T;;/y”eABesB + igSAB’yMEB . (2.22)

Here, V,e4 is the gauged supercovariant derivative (specified below), and

T, =2F) (ImNas)L”,  Sap = %(am) ApPELA (2.23)
The matrices T}, and Sap are called the graviphoton field strength and the gravitino
mass-matrix respectively. Notice again that for ny = 0, in fact even also in the absence of
vector multiplets when ny = 0, the gravitino mass-matrix can be non-vanishing and con-
stant. In the Lagrangian, which we discuss in the next section, this leads to a (negative)
cosmological constant term. The anti-selfdual part of the graviphoton field strength T,
satisfies the identity

A — T ANrp— A vi—

F,- =il%T,, +2f7°G,, , (2.24)
with GZ; defined in (2.13). From the vanishing of the gaugino variation, we have that
GjL; = 0, and hence a maximally supersymmetric configuration must satisfy Fé\y_ =
iLATM_V, or

A TN o A
P, =il T, —iL"T,, . (2.25)

Using this, we then see that equation (2.21) implies the integrability conditions (2.20) in
the hypermultiplet sector. For the integrability equations in the vector multiplet sector,
the situation is more subtle, as the Killing vectors are complex and holomorphic. Now, the
BPS condition (2.16) only implies that

i A _ i p At
kyF, = —iky L T, .

As a consequence, the integrability condition (2.6) is only guaranteed when kf\LA =0 (or,
when 7}, = 0, but then all the field strengths are zero). So, for T, # 0, a necessary
condition for a maximally supersymmetric configuration is that kj\LA = 0. Furthermore,
in appendix B we prove that

LA =0 < PULA=0 (2.26)

where P, is the special Kéhler moment map, defined in (B.1). In terms of (B.5), one
sees that this condition involves both the structure constants and the matrix c¢p. Hence
the integrability condition is satisfied for those configurations satisfying PAL® = 0. The
integrability condition might only locally be sufficient, but this fine for our purposes. One
might however check in addition whether the covariant constancy of the vector multiplet
scalars imposes further (global) restrictions.



To solve the constraints from the gravitino variation, we must first specify the gauged
supercovariant derivative on the supersymmetry parameter. It can be written as

1 )
Viuea= <6M — szbfyab> €a+ §AMEA + wMABag . (2.27)

The conventions for the spin connection, appearing between the brackets, are specified in
the appendix. Furthermore, there appear two other connections associated to the special
Kahler and quaternion-Kéhler manifolds. We need to compute their curvatures since they
enter the integrability conditions that follow from the Killing spinor equations. The first
one is called the gauged U(1) Ké&hler-connection, defined by [11, 31]

_ 1 i 2\ L LA _
A= -3 ((%ICV”z — 9KV, 2 ) + 594N —T) - (2.28)
Under a gauge transformation, one finds that

i _
dgA, = 29 Oy [ozA(rA - T’A)} . (2.29)
The curvature of this connection can be computed to be

Fyu = 2ig;5V(,2'V )7 — gF i, Pa (2.30)

v

where Py is the moment map, defined in (B.1), and we have used the equivariance con-
dition (B.3). For maximally supersymmetric configurations, the scalars are covariantly
constant and hence the curvature of the Kahler connections satisfies F),, = —gF; é\yPA-

The second connection appearing in the gravitino supersymmetry variation is the
gauged Sp(1) connection of the quaternion-Kéhler manifold. It reads

u)MAB = MququB + gAﬁPAAB s (2.31)

where w,, 4 is the (ungauged) Sp(1) connection of the quaternion-K#hler manifold, whose
curvatures are related to the three quaternionic two-forms. The effect of the gauging is to
add the second term on the right hand side of (2.31), proportional to the triplet of moment
maps of the quaternionic isometries, with Py 4% = P¥(0%)45. The curvature of (2.31) can
then be computed to be

Qv a® = 200 APV (,0"V 10" + gF Py A" (2.32)

where Quy AP is the quaternionic curvature. For fully BPS solutions, we have 4B =
gFN, Paa®.

We can now investigate the integrability conditions that follow from the vanishing
of the gravitino transformation rules (2.22). From the definition of the supercovariant
derivative (2.27), we find®

1 ]
Vs Vilea = =R vapea — §gF;fVPA€A + gFlﬁ\VPAABaB , (2.33)

4

®Strictly speaking, we get the supercovariant curvatures appearing in (2.33), which also contain fermion
bilinears. Since the fermions are zero on maximally supersymmetric configurations, only the bosonic part
of the curvatures remains.



where we have used the covariant constancy of the scalars. We remind that Py are the
moment maps on the special Kihler geometry, whereas Py 4P are the quaternion-Kéhler
moment maps. Alternatively, we can compute the commutator from the vanishing of the
gravitino variations spelled out in (2.22). By equating this to the result of (2.33), we get a
set of constraints. Details of the calculation are given in appendix C, and the results can
be summarized as follows. First of all, we find the covariant constancy of the graviphoton
field strength®

DT}, =0. (2.34)

Secondly, we get that the quaternionic moment maps must satisfy
eV'PYPT =0,  P*=LAPY. (2.35)

Moreover, there are cross terms between the graviphoton and the moment maps, which
enforce the conditions
Ty, P*=0. (2.36)

This equation separates the classification of BPS configurations in two sectors, those with
a solution of P* = 0 at a particular point (or locus) in field space, and those with non-
vanishing P (for at least one index x) but 7),, = 0. We will see later on that this distinction
corresponds to zero or non-zero (and negative) cosmological constant in the spacetime.
Another requirement that follows from the gravitino integrability conditions is

Fi\LPy =0, (2.37)

v

where P is defined in (B.1), and is real. Using (2.25), this is equivalent to the condition
LAPAT,, = LAPAT, . (2.38)

Since anti-selfdual and selfdual tensors are linearly independent, it means that PyL* = 0
and complex conjugate (again, for 7, # 0). This requirement is already imposed by the
integrability conditions on the vector multiplet scalars, see (2.26), so (2.37) does not lead
to any new constraint.

Finally, there is the condition on the spacetime Riemann curvature. It reads

Riuvpor = 4T:[0TFEV + PP P50y — (1 V) . (2.39)

It can be checked that this leads to a vanishing Weyl tensor, implying conformal flatness.
From the curvature, we can compute the value of the Ricci-scalar to be

R=—12¢*P"P7 . (2.40)

Hence, the classification of fully supersymmetric configurations separates into negative
scalar curvature with P*P? # 0, and zero curvature with P* = 0 at the supersymmetric
point. In both of these cases there are important simplifications.

®Recall that 77 and T~ are related by complex conjugation, and hence the vanishing of DT implies
DT = 0.



2.3.1 Negative scalar curvature

The case of negative scalar curvature is characterized by 7}, = 0 and P*Pt #£ 0 at the
supersymmetric point. Since the BPS conditions imply that then both 7T}, and Gi; =0 (see
equation (2.13)), we find that all field strengths should be zero: Flj\y = 0. The gauge fields
then are required to be pure gauge, but can still be topologically non-trivial. Furthermore,
because of the vanishing field strengths, the integrability conditions on the scalar fields are
satisfied, and a solution for the sections X*(z) is obtained by a gauge transformation on
the constant (in spacetime) sections. Finally, the Riemann tensor is given by

Ryvps = QQPIﬁ (g;wgup - guagup) .

which shows that the space is maximally symmetric, and therefore locally AdSy. The scalar
curvature is R = —12¢g?> P*P%,
2.3.2 Zero scalar curvature

The class of zero curvature is characterized by configurations for which P* = 0 at the
supersymmetric point. In this case, we can combine the conditions Pf fZA =0 and P* =
PELA =0 into

The matrix appearing here, is the invertible matrix of special geometry (as used in (2.14)),

hence we conclude that P{ = 0. The Riemann tensor is then

Ruvpe = 4le[0TpTV —(pe—v).

From the covariant constancy of the graviphoton, condition (2.34), we find D,R,,,o+ = 0.
Spaces with covariantly constant Riemann tensor are called locally symmetric, and they
are classified, see e.g. [23, 26, 33]. In our case we also have zero scalar curvature, and then

only three spaces are possible:
1. Minkowski space My (1), = 0)
2. AdSy x S?
3. The pp-wave solution

The explicit metrics and field strengths for the latter two cases (M, and AdSy are well-
known and have vanishing field strengths) are listed in appendix D.
2.4 Summary

Let us now summarize the results. There are two different classes: negative scalar curva-
ture (leading to AdS,) and zero scalar curvature solutions (leading to My, AdSy x S? or
the pp-wave).

,10,



The result of our analysis is that all the conditions on the spacetime dependent part
are explicitly solved,” and the remaining conditions are purely algebraic, and depend only
on the geometry of the special Kéahler and quaternionic manifolds. The solutions to these
algebraic equations define the configuration space of maximally supersymmetric configu-
rations. There are two separate cases:

2.4.1 Negative scalar curvature (AdSy)
This case is characterized by configurations for which P*P% # 0 at the supersymmetric
point. The BPS conditions are
KI =0 FuLr =0
Pifh=0 VFPYPr =0,
which should be satisfied at a point (or a locus) in field space. The field strengths are zero,
Flﬁ, = 0, and the space-time is AdS, with scalar curvature R = —12¢>P*P%,
2.4.2 Zero scalar curvature (My, AdS; x S? or pp-wave)
In this case, the BPS conditions are
KI =0 A =0
PyLM =0 P =0.
We remind that, when 7, = 0 (Minkowski space), all field strengths are vanishing
(F, ;ﬁ, = 0), and the condition PAL* = 0 need not be satisfied. For non-vanishing Ty,
the field strengths are given by (2.25), and using formula (B.5) the condition PyL* = 0 is

equivalent to
LALY far™ My, + LA LY ep s L = 0, (2.41)

where we remind that My = ¢~/2F,. Hence the existence of maximal BPS configurations

also depends on the cy-matrix characterizing the Chern-Simons-like terms.

3 Lagrangians and scalar potentials

Since all fermions are equal to zero for N = 2 supersymmetric configurations, we can
concentrate on the bosonic part of the Lagrangian, with action S = [ dix VL. Tt can be
read off from [9, 11],

1 o
L= =5 R(9)+gV'a'V e + hu V"V ,g" + (Im Nas) Fp, > (3.1)

1 4 3
+§(ReNAE)eWﬂUFﬁyF,§,—ggcmn P AN AY <apAE—§ fQFHAglAg) ~V(z,%q),

"This is apart from the scalar fields and Killing spinors, which are spacetime dependent. The integra-
bility conditions that we have imposed guarantee locally the existence of a solution, although we did not
explicitly construct it. Its construction cannot be done in closed form in full generality, but can be worked
out in any given example [23].

— 11 —



with scalar potential
V = g [(ghh R + A KR AL + (070 TP - 3EAIP)PERE] . (32)

The Chern-Simons-like term on the second line of (3.1) can be determined from the non
gauge-invariance of the period matrix. From (2.14) one finds

dcNas = —ga™ (fua"Nrs + fus' Nea + crias) - (3.3)

Since the right hand side is real, only the topological term proportional to Re May in the
action transforms. This transformation is compensated by the gauge transformation of the
other terms in the second line, using the various constraints on the (symmetric) cp. In the
abelian case, the only constraint is that the totally symmetrized c-tensor vanishes, i.e.

caxn + ey +enma = 0. (3.4)

This implies that for a single vector field, the Chern-Simons-like term vanishes. The addi-
tional constraints for nonabelian gaugings involve the structure constants [9]:

fasterma + fostearn + fus eara + fao esrm + fan esra =0 . (3.5)

The scalar potential can be written in terms of the mass-matrices,
1 Y -
V =—-654BS,5 + §gijWZABWi1 5+ NANG . (3.6)

Since the gaugino and hyperino mass-matrices, W5 and N/ respectively, vanish on N = 2
supersymmetric configurations, one sees that the scalar potential is semi-negative definite,
and determined by the gravitino mass-matrix S4p. Even in the absence of vector and hy-
permultiplets, the gravitino mass-matrix can be non-vanishing, leading to a negative cosmo-
logical constant in the Lagrangian. Using (3.2), we find for N = 2 preserving configurations

V = -3¢°LAL¥ PP . (3.7)

In the absence of hypermultiplets, N = 2 preserving AdS4 vacua can therefore only be
generated by non-trivial Fayet-Illiopoulos terms.

It can be verified that maximally supersymmetric configurations also solve the equa-
tions of motion. To show this, one varies the lagrangian (3.1) and uses the identi-
ties (3.4), (3.5) and the formulas in section 2.4. After a somewhat tedious but straight-
forward computation one sees that all equations of motion are indeed satisfied by the
maximally supersymmetric configurations.

4 Examples

In this section we list some (string theory motivated) examples of N = 2, D = 4 theories,
leading to N = 2 supersymmetric configurations. We will first mention briefly some already
known and relatively well-understood N = 2 vacua from string theory and then concentrate

- 12 —



on our two main examples in subsections 4.1 and 4.2 that exhibit best the different features
discussed above. In the last subsection we include some supergravity models, not necessar-
ily obtained from string compactifications, leading to AdS, vacua that can be of interest.

Obtaining gauged N = 2, D = 4 supergravity seems to be important for string theory
compactifications since it is an intermediate step between the more realistic N = 1 models
and the mathematically controllable theories. Thus in the last decade there has been
much literature on the subject. An incomplete list of examples consists of [15, 18-21] and
it is straightforward to impose and solve the maximal supersymmetry constraints in each
case. In some cases the vacua have been already discussed or must exist from general
string theory/M-theory considerations.

For example, it was found that the coset compactifications studied in [20] do not lead to
N = 2 supersymmetric configurations. This can also be seen from imposing the constraints
in section 2.4. In contrast, the compactification on K3xT?/Zy presented in [15] does exhibit
N = 2 solutions with non-trivial hypermultiplet gaugings. The authors of [15] explicitly
found N = 2 Minkowski vacua by satisfying the same susy conditions as in section 2.4.
From our analysis, it trivially follows that also the pp-wave and the AdS, x S? backgrounds
are maximally supersymmetric. To check this, one only needs to verify (2.41), and this is
satisfied due to a vanishing c-tensor and the abelian gauging in the hypermultiplet sector.

A similar example is provided by the (twisted) K 3xT? compactification of the heterotic
string, recently analyzed in [21]. For abelian gaugings, one can verify that the three zero
scalar curvature vacua are present in these models.

We now turn to discuss the remaining models in more detail.

4.1 M-theory compactification on SU(3) structure manifolds

There is a very interesting model for N = 2, D = 4 supergravity with non-abelian gaug-
ing of the vector multiplet sector and non-trivial c-tensor, arising from compactifications
of M-theory on seven-manifolds with SU(3) structure [18] (more precisely, they consider
Calabi-Yau (CY) threefolds fibered over a circle). For the precise M-theory set-up, we
refer the reader to [18]; here we only discuss the relevant data for analyzing the maximal
supersymmetry conditions:

e the vector multiplet space can be parametrized by special coordinates, X* = (1,¢° =

b’ + iv') and prepotential
1 X'XIXF

F(X) = —chijh—0

; (4.1)

with the well-known triple intersection numbers x;;, that depend on the particular
choice of the CY-manifold. This gives the Kéahler potential

K = —log %mjk(ti — Y — ) (t* — )| = —log Vol (4.2)

where Vol denotes the volume of the compact manifold. The gauge group is non-
abelian with structure constants

s’ =0=fi*  fid =M, (4.3)
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and a c-tensor whose only non-vanishing components are
Lo
Ci,jk = §Mi/€ljk . (44)

The constant matrix MZJ specifies the Killing vectors and moment-maps of the special
Kahler manifold:
k) = —Mjt*, k=M, (4.5)

and
Py=-Mt'9;K, P = M!9;K . (4.6)

Not for any choice of M ZJ is the Killing equation satisfied. As explained in [18], this is
only the case when the relation (3.4) holds. This also ensures that (3.5) is satisfied,
as one can easily check.

e generally in this class of compactifications there always appear hypermultiplet scalars,
but there is no gauging of this sector, so the Killing vectors and the moment maps
PY are vanishing.

The scalar potential in this case reduces to the simple formula

8 ksl »
V = —WMZ Mjl{klmvlvjvm, (47)

which is positive semi-definite.

Analyzing the susy conditions is rather straightforward. Since P* = 0, the only allowed
N = 2 vacua are the ones with zero-scalar curvature. What is left for us to check are the
conditions k};l_'/\ = 0 and PAL® = 0. The latter is very easy to check and holds as an
identity at every point in the special Kahler manifold. Also, it is equivalent to the relation
ki L* = 0 which is satisfied whenever there exists a prepotential [10]. The condition
kj\f/A = 0 eventually leads to
‘M;’vj

M —8) _,, =0, Vi (4.8)
Vol Vol ’ ’ ’

The solution to the above equation that always exists is the decompactification limit when
Vol — oo. The other more interesting solutions depend on the explicit form of the matrix
M. In case M Z] is invertible there are no further solutions to (4.8). On the other hand, when
M has zero eigenvalues we can have N = 2 M-theory vacua, given by (a linear combination
of) the corresponding zero eigenvectors of M. For the supergravity approximation to hold,
one might require that this solution leads to a non-vanishing (and large) volume of the CY.
Each eigenvector will correspond to a flat direction of the scalar potential, and with V =0
along these directions. The case where the full matrix M is zero corresponds to a completely
flat potential, the one of a standard M-theory compactification on CY xS without gauging.

Thus it is clear that MZJ is an important object for this type of M-theory compactifi-
cations and we now give a few more details on its geometrical meaning [18]. In the above
class of M-theory compactifications we have a very specific fibration of the Calabi-Yau
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manifold over the circle. It is chosen such that only the second cohomology H (1’1)(CY},)
is twisted with respect to the circle, while the third cohomology H?(CY3) is unaffected.
Thus the hypermultiplet sector remains ungauged as in regular CY3 x S' compactification,
while the vector multiplets feel the twisting and are gauged. This twisting is parametrized
exactly by the matrix M, as it determines the differential relations of the harmonic (on
the CY3) two-forms:

dw; = Mijwj Ndz, (4.9)

where z is the circle coordinate.

Let us now zoom in on the interesting case when we have nontrivial zero eigenvectors
of M, corresponding to non-vanishing volume of the CY. For a vanishing volume, or a
vanishing two-cycle, the effective supergravity description might break down due to ad-
ditional massless modes appearing in string theory.® Therefore the really consistent and
relevant examples for N = 2 vacua are only those when the matrix M is non-invertible
with corresponding zero eigenvectors that give nonzero value for every v'.

To illustrate this better, we consider a particular example, given in section 2.5 of [18],
of a compactification where the CY3 is a K3-fibration. In this setting one can explicitly
construct an M-matrix, compatible with the intersection numbers r;j;. Here one can find
many explicit cases where all of the above described scenarios happen. As a very simple

and suggestive example we consider the 5-scalar case with k193 = —1, K144 = K155 = 2, and
twist-matrix
000 0 O
04 0 —2 -2
M=100-4 2 2 . (4.10)
01-10 0
01-10 O
The general solution of M - v =0 is
1 0 0
0 1 1
v=A|0| +u|l| Fv|1]|, (4.11)
0 2 0
0 0 2
and the resulting volume is
Vol = 8\ (2,u2 + 20 + (u — 1/)2) , (4.12)

which is clearly positive semi-definite. In the case when either p or v vanishes we have
a singular manifold that is still a solution to the maximal supersymmetry conditions.
When all three coefficients (that are essentially the remaining unstabilized moduli fields)
are non-zero, we have a completely proper solution both from supergravity and string
theory point of view, thus providing an example of SU(3) structure compactifications

8For a detailed analysis of the possibilities in a completely analogous case in five dimensions see [34]
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with zero-curvature N = 2 vacua. This example can be straightforwardly generalized to
a higher number of vector multiplets, as well as to the lower number of 4 scalars (there
cannot be less than 4 vector multiplets in this particular case).

It is interesting to note in passing that a special case of the general setup described
above was already known for more than twenty years in [9] (3.21), where M{ = —2, M3 = 1,
and K199 = 2. It was derived purely from 4d supergravity considerations, but it now seems
that one can embed it in string theory.

4.2 Reduction of M-theory on Sasaki-Einstein;

There has been much advance in the last years in understanding Sasaki-Einstein manifolds
and their relevance for M-theory compactifications, both from mathematical and physical
perspective. These spaces are good candidates for examples of the AdS,/C FT5 correspon-
dence and an explicit reduction to D = 4 has been recently obtained in [19]. Originally the
effective lagrangian includes magnetic gauging and a scalar-tensor multiplet, but after a
symplectic rotation it can be formulated in the standard N = 2 formalism discussed here.
After the dualization of the original tensor to a scalar we have the following data for the
multiplets, needed for finding maximally supersymmetric vacua:

e there is one vector multiplet, given by X = (1,72) and F(X) = /X(X1)3, leading
to Fp = (373, 372) and Kihler potential

K = —log %(T — 7). (4.13)

There is no gauging in this sector, i.e. k4 = 0 and Py = 0 for all 4, A. This also means
that both ngH and cp w7 vanish.

e the hypermultiplet scalars are {p,0,£,€} (p and o are real, and ¢ is complex) with

the universal hypermultiplet metric:

1

2 _
ds _4/)2

dp?® + 4—;2 (do — i(£dé — £d¢))* + %dfd{ . (4.14)

We have an abelian gauging, given by (as there are no Killing vectors in the
vector multiplet sector, we drop the tilde on the Killing vector fields in the
hypermultiplet sector):

ko =240, — 4i(§0; — £0g), k1 =240, (4.15)

and the moment maps, calculated in [19], are

Py =—4p7' 26+, PR =4ip -6, R = _% o (1 B %> ’
12

; (4.16)
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We can now proceed to solving the maximal supersymmetry constraints. The conditions
involving vector multiplet gauging are satisfied trivially, while from IE:XLA = 0 we obtain
the conditions ¢ = £ = 0 and 1+ 72 = 0. Therefore 7 = i (the solution 7 = —i makes the
Kéhler potential ill-defined) and K = —log4. However, not all the moment maps at this
vacuum can be zero simultaneously, leaving AdSy as the only possibility for a N = 2 vacuum
solution. One can then see that €, PYP? = 0 is satisfied, so the only remaining condition
is P} fA = 0. This fixes p = 4. Therefore we have stabilized all (ungauged) directions
in moduli space: ¢ = £ = 0,7 = i,p = 4. The potential is nonzero in this vacuum since
P3 = 2, which means the only possibility for the space-time is to be AdS; with vanishing
field strengths. This is indeed expected since SE7 compactifications of M-theory lead to
an N = 2 AdS, vacuum, the one just described by us in the dimensionally reduced theory.

One can verify that this vacuum is stable under deformations in the hypermultiplet
sector of the type discussed in [35, 36]. To show this, first observe that the condition
INf}(LA = 0 for u = £ always ensures vanishing £. Secondly, one may verify that the
deformations to the quaternionic moment maps are proportional to &, and hence the
remaining N = 2 conditions from section 2.4.1 are satisfied. It would be interesting to
understand if this deformation corresponds to a perturbative one-loop correction in this
particular type of M-theory compactification.

4.3 Other gaugings exhibiting AdS, vacua

Another example of an AdS4 supersymmetric vacuum can be obtained from the universal
hypermultiplet. In the same coordinates {p,&,&,0} as used in the previous example, the
metric is again given by (4.14). This space has a rotational isometry acting on & and &,
given by kq — ko in the notation of (4.15). We leave the vector multiplet sector unspecified
for the moment, and gauge the rotation isometry by a linear combination of the gauge
fields Aﬁ. This can be done by writing the Killing vector as

IEX = OéA(O, 257 _257 O) )

for some real constant parameters apx. The quaternionic moment maps can be computed
to be

R

It can be seen that there are no points for which P{ = 0,Vz, so this means that only

A

AdSy N = 2 vacua are possible. To complete the example, we have to specify the vector
multiplet space, and solve the conditions Py fZA = 0 and INf}(LA = 0. The latter can be
solved as & = £ = 0, and then also €*¥* PYP? = (0. The first one then reduces to ay fzA =0.
This condition is trivially satisfied when e.g. nyy = 0. A more complicated example is to
take the special Kéhler space of the previous subsection with no gauging in the vector
multiplet sector. There is one complex scalar 7, a section X* = (1,72) and a prepotential

F = /XO0(X1)3. We then find a solution for 7 = iy/=2% under the condition that ag

i o
and a7 are non-vanishing real constants of opposite sign. More complicated examples
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with more vector multiplets may be constructed as well. It would be interesting to study
if such examples can be embedded into string theory.

A similar situation arises in the absense of hypermultiplets. As mentioned in the end
of section 2.2, we can have nonvanishing moment maps that can be chosen as Py = apd®3.
Then we again need to satisfy the same condition ap fZA = 0 as above, and we already

discussed the possible solutions.
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A Notation and conventions

We mainly follow the notation and conventions from [11]. The action is defined by S =
[ V]9lL. We start with the (ungauged) Lagrangian, whose Einstein-Hilbert and scalar

derivative terms read
1 4 _
L= —§R + 9i70,2" 0" 20 4 hy0,q"0"q" . (A.1)

We set the Newton constant k2 = 1. As in [11], we use a {+, —, —, — } metric signature.
To get positive kinetic terms for the scalars, we have to choose g;; and hy, positive definite.
We compute Riemann curvature as follows”

Rpo;w =€ [aurlp/o - &,FZO + FZ)\Fi\a - sz/)\r;);a )

R;w = Rp,upl/ , R= guyR,ul/ )

where € = 1 for Riemann spaces (the quaternionic and special Kéhler target spaces) and
e = —1 for Lorentzian spaces (space-time). The overall minus sign in the latter case is
needed to give AdS spaces a negative scalar curvature. This gives a sphere in Euclidean
space (with signature {+,+,+,+}) a positive scalar curvature.

The spin connection enters in the covariant derivative

1
Dy =0, — szb%m
1
b b b b
Wil = Seue (@00 — Qe — )

Qcab _ <euceub _ eubeua> 8Mecy )

The Lagrangian (A.1) is only supersymmetric if the Riemann curvature of the hypermulti-
plet moduli space satisfies R(hyy) = —8n(n+2), where n is the number of hypermultiplets,

“Note that [12] computes quaternionic curvature with a additional factor 1/2.
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so the dimension of quaternionic manifold is 4n (in applications to the universal hypermul-
tiplet, we have n =1 and hence R = —24).

Our conventions for the sigma matrices follow [11]; in particular they are symmetric
and satisfy (J“”AB)* = —0% 4p, and we have the relation

0% goVBC = —§G6™Y + iegpe™ PO
Indices are raised and lowered, on bosonic quantities, as
eapVB=Vy, ABrg=-v4. (A.2)

As mentioned in the main text, all fermions with upper SU(2) r index have negative chirality
and all fermions with lower index have positive chirality. We set 75 to be purely imaginary
and then complex conjugation interchanges chirality.

B Moment maps and Killing vectors on special Kahler manifolds

In this appendix, we present some further relevant formulae that are used in the main body
of the paper. First, we have defined the moment maps on the special Kéhler manifold as
follows. Given an isometry, with a symplectic embedding (2.9), we can define the functions

Py = i(K 0K 4 14) (B.1)

Since the Kéhler potential satisfies (2.10), it is easy to show that Py is real. From this
definition, it is easy to verify that

k\ = —ig"0;Py . (B.2)

Hence the Pp can be called moment maps, but they are not subject to arbitrary additive
constants. Using (2.12) and (B.1), it is now easy to prove the relation

kY giskd, — kagisk) = i fas" Pr, (B.3)

also called the equivariance condition.
We can obtain formulas for the moment maps in terms of the holomorphic sections.
For this, one needs the identities

ka0 XE = —fanr” X 4 A X k\0iFs = caxn X + fas" By + raFx (B.4)

which follow from the gauge transformations of the sections, see (2.9). Using the chain rule

in (B.1), it is now easy to derive
Py = elC [fAHE(XHFE + Fz)?n) + CAIIEXHXE} R (B.5)

and similarly
Ky = —ig"” [fAHZ(f]—HMZ + hy ;L) + CA,EH]%HLE} ; (B.6)
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where we introduced My = ¢X/2F\ and hy; = /2 (0; + KC;) Fa. The Killing vectors (B.6)
are not manifestly holomorphic. This needs not be the case because otherwise we would
have constructed isometries for arbitrary special Kéahler manifolds, since holomorphic vector
fields obtained from a (real) moment map solve the Killing equation.

In the remainder of this appendix, we prove the equivalence relation (2.26). We start
from the consistency condition on the symplectic embedding of the gauge transformations,
the first equation in (B.4). We eliminate r, using (B.1), and rewrite it as

EifE = —fan LM — Py L™ . (B.7)
Multiplications with L gives
LARLfE +iLAPALE =0 . (B.8)
It follows from contracting with Im ALt that
LAPy = —2i(L*k}) f{ Tm Nps. L™,
or from contracting with Im Ny f jz that
LMKy = 2i(LAPy) g7 L Tm Npso /2
Here we have used the special geometry identities on the period matrix, see e.g. [11]

_ 1 1
LA(Im./\/')AgLZ = 5 fiA(ImN)AEij = -3 Gi7 - (B.9)
The equivalence
FIAN=0 < PILr=0,

now follows trivially.

C Commutators of supersymmetry tranformations

Equating (2.22) to zero gives an expression for the supercovariant derivative V€4 in terms
of the matrices T}, and Sap. Applying this operator twice gives

V., Vy€ea = —eABDl,T;pypeB €EAB
- B
+ Tup’ypTVJf,’y(’eA 14
+igeapT,, v (Spc) ec 0% 4P
— iQGBCTfp’Yp’mSABEC 0% 4P
— ¢*SaB(Spe) yuec 147 + 0748

where we have indicated the SU(2) structure on the right side. In (2.33), the commutator
does not contain a part proportional to e4p. This implies D,T},, = 0. Calculation of the
commutator now gives

Vo, Vilea =+ T T ea — (n < v)
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g . _

+ 5 (L WP + Ty P*) 0 aec = (= v)
| — S

. 92 <mepx5g _ %pﬂﬁpyexyzngC) Yuv€C -

We equate this to (2.33), where we use (2.24) and the condition (2.13):

1 ig ig
[V, Viea = —ZRwab%beA - EFSI,PAEA + EaxABFjVPKeB
1

= —ZRWab’YabEA — %Fé\VPAeA — g (WT;; — Plej;) 0" 4Bep .

Some algebra now yields the necessary and sufficient conditions to match the terms pro-

portional to o® 45:

T, P*=0
eV PYPF =0,

which give the first conditions of section 2.3. The other conditions are obtained by com-

paring the parts proportional to 1 45.

D Metrics and field strengths

° AdSQ X SQ
The line element, in local coordinates {t,x,0, ¢}, is

ds? = ¢2 (dt2 — sin?(t)dz? — d#* — SiHQ(e)d‘bZ) g

where ¢q is a real, overall constant which determines the size of both AdSs and S2.
From (2.39) we find the only non-vanishing components

1 .
Tt = —qosin(t)e'™,

tx 2
Té;) =5 sin(@)e" .

e The pp-wave
The line element of a four-dimensional Cahen-Wallach space [33], in local coordinates

1

{x=, 2T, 2! 22}, is given by

ds? = —2dztdz™ — Ajj2'ad (do™)? — (da')?,

where A;; is a symmetric matrix. Conformal flatness requires Aj; = Agp and A1z = 0.
We denote A;; = —pu? as Aqq should be negative. This space is known as the pp-wave.
From (2.39) we find the only non-vanishing components

-+ _ H 1e%
=zl — o€
2
+ M
z—x? T —ig e
2
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