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1 Introduction

It is of general interest to study four-dimensional supersymmetric string vacua and their

low-energy effective supergravity descriptions. Firstly, in the context of flux compactifica-

tions and gauged supergravities, one is motivated by the problem of moduli stabilization

and the properties of string vacua in which these moduli are stabilized. For some reviews

on the topic, see [1–3]. Often, one focuses on supersymmetric vacua since there is better

control over the dynamics of the theory, though for more realistic situations, e.g. in acceler-

ating cosmologies, the vacuum must break all supersymmetry. Secondly, we are motivated

to look for new versions of the AdS4/CFT3 correspondence. The recently proposed dual-

ities studied in [4] are based on AdS4 string vacua preserving 32 or 24 supersymmetries.

Versions of the AdS4/CFT3 correspondence with less amount of supersymmetry are not yet
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well established (for some results on the correspondence in an N = 2 setting, see [5–7] and

references therein), but are important for studying aspects of four-dimensional quantum

gravity, and potentially also for certain condensed matter systems at criticality described

by three-dimensional conformal field theories.

In this paper, we consider four-dimensional N = 2 gauged supergravities, and study

the configurations that preserve maximal supersymmetry, i.e. eight supercharges. We only

consider electric gaugings because magnetic gaugings require in addition massive tensor

multiplets which have not been fully constructed yet. In the ungauged case, N = 2

models arise e.g. from Calabi-Yau compactifications of type II string theories, or K3× T 2

compactifications of the heterotic string. Both models are known to have a rich dynamical

structure with controllable quantum effects in both vector- and hypermultiplet sectors that

are relatively well understood. Gaugings in N = 2 supergravity are well studied and have a

long history [8–13]. Their analysis in terms of string compactifications with fluxes started

in [14], and is an ongoing research topic. For a (partial) list of references, see [15–21].

In the ungauged case, a complete classification of all the supersymmetric solutions

already exists [22–24], while there have been also solutions in the gauged case for (abelian)

vector multiplets [25]. We extend this by taking completely general vector- and hyper-

multiplet sectors. Since we concentrate only on the maximally supersymmetric solutions,

we use different methods than the ones in the above references. In fact the space-time

conditions we obtain for our solutions closely resemble other maximally supersymmetric

solutions in different theories such as [26].

The plan of the paper is as follows. In section 2, we analyze the supersymmetry rules

and derive the conditions for maximally supersymmetric vacua. The possible solutions

divide in two classes of space-times, with zero scalar curvature and with negative scalar

curvature, and we explicitly list all the possible outcomes. We give the lagrangian and

the scalar potential for the obtained vacua in section 3, paying special attention to the

Chern-Simons-like term determined by the c-tensor of the electric gauging. This term

generically exists in N = 2 supergravity and string theory compactifications and we show

how it influences the maximally supersymmetric vacua. In section 4, we discuss explicit

cases from string theory compactifications and general supergravity considerations that

exemplify the use of our maximal supersymmetry conditions. We have left the definition of

our conventions and notations for the appendices, where we also present some intermediate

and final formulae that are important for our results.

2 N=2 supersymmetry rules

We consider in this section vector multiplets, hypermultiples and the gravitational mul-

tiplet, with arbitrary electric gaugings, and will mostly follow the notation of [11]. For

completeness, a list of conventions is given in appendix A.

As is well known, the vector multiplet sector is characterized by holomorphic sections

XΛ(z) and FΛ(z),Λ = 0, 1, . . . , nV , and the scalars zi; i = 1, . . . , nV parametrize a special

Kähler manifold with Kähler potential

K(z, z̄) = − ln
[

i(X̄Λ(z̄)FΛ(z) −XΛ(z)F̄Λ(z̄))
]

. (2.1)
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When a prepotential exists, it is given by 2F = XΛFΛ. It should be homogeneous of

second degree, and one must have that FΛ(X) = ∂F (X)/∂XΛ. Our general analysis does

not assume the existence of a prepotential.

The scalars in the hypermultiplet sector parametrize a quaternion-Kähler manifold,

whose metric can be expressed in terms of quaternionic vielbeine. In local coordinates

qu;u = 1, . . . , 4nH , we have

huv(q) = UAα
u (q)UBβ

v (q) Cαβ ǫAB , (2.2)

where Cαβ, α, β = 1, . . . , 2nH and ǫAB, A,B = 1, 2 are the antisymmetric symplectic and

SU(2) metrics, respectively. The value of the Ricci-scalar curvature of the quaternionic

metric is always negative and fixed in terms of Newton’s coupling constant κ. In units in

which κ2 = 1, which we will use in the remainder of this paper, we have

R(h) = −8nH(nH + 2) . (2.3)

The analysis of maximally supersymmetric configurations does not rely on the form

of the action, only on the supersymmetry variations and the equations of motion. Never-

theless, it is relevant to know what is the value of the scalar potential evaluated at such a

configuration. We therefore turn to the properties of the Lagrangian in the next section.

It can be seen by inspection that the maximally supersymmetric configurations1 are

purely bosonic, and the fermions need to be zero. This follows from the supersymmetry

variations of the bosonic fields, which can be read off from [11]. Therefore, we can restrict

ourselves to the supersymmetry variations of the fermions only.

2.1 Gauginos

The number of vector multiplets is denoted by nV , and in N = 2 special geometry, it

is convenient to introduce indices Λ = 0, 1, . . . , nV and i = 1, . . . , nV . The two fermions

with positive chirality in a vector multiplet are denoted by λiA, with A = 1, 2. Complex

conjugation changes the chirality and lowers the SU(2)R indices A,B, . . . . See appendix A

for more on our notations and conventions. Under gauged supersymmetry, with coupling

constant g, the gauginos transform into

δελ
iA = i∇µz

iγµεA +G−i
µνγ

µνǫABεB + gW iABεB , (2.4)

up to terms that are higher order in the fermions and which vanish for purely bosonic config-

urations. The supersymmetry parameters are denoted by εA. They have negative chirality

and under complex conjugation εA ≡ (εA)∗, chirality is flipped since in our conventions γ5 is

hermitian but purely imaginary. We explain more on the quantities in (2.4) as we go along.

A maximally supersymmetric configuration preserves the full eight supercharges, hence

the variation of the fermions should vanish for all choices of the supersymmetry parameters.

1In this paper we use interchangeably the terms maximally supersymmetric configurations and BPS

configurations, meaning the field values that are invariant under all eight supercharges in the theory.
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Since at each point in spacetime they are linearly independent, the first term on the right

hand side of (2.4) must vanish separately from the others,

∇µz
i ≡ ∂µz

i + gAΛ
µk

i
Λ = 0 . (2.5)

It implies the integrability condition2

FΛ
µν k

i
Λ = 0 , (2.6)

and complex conjugate. Here, FΛ
µν is the full non-abelian field strength.

The zi are the complex scalars of the vector multiplets, and AΛ
µ are the gauge fields

(including the graviphoton). These scalars parametrize a special Kähler manifold which

may have a group of isometries. To commute with supersymmetry, these isometries need

to be holomorphic, and we denote the Killing vector fields by kΛ(z). Under the isometry,

the coordinates change according to

δGz
i = −gαΛki

Λ(z) . (2.7)

To close the gauge algebra on the scalars, the Killing vector fields must span a Lie-algebra

with commutation relations

[kΛ, kΣ] = fΛΣ
ΠkΠ , (2.8)

and structure constants fΛΣ
Π of some Lie-group G that one wishes to gauge. Not all

holomorphic isometries can be gauged within N = 2 supergravity. The induced change on

the sections needs to be consistent with the symplectic structure of the theory, and this

requires the holomorphic sections to transform as

δG

(

XΛ

FΛ

)

= −gαΣ

[

TΣ ·
(

XΛ

FΛ

)

+ rΣ(z)

(

XΛ

FΛ

)]

. (2.9)

The second term induces a Kähler transformation on the Kähler potential

δGK(z, z̄) = gαΛ(rΛ(z) + r̄Λ(z̄)) , (2.10)

for some holomorphic functions rΛ(z). The first term in (2.9) contains a constant matrix

TΣ that acts on the sections as infinitesimal symplectic transformations. For electric gaug-

ings, which we consider in this section, we mean, by definition, that the representation is

of the form

TΛ =

(

−fΛ 0

cΛ f t
Λ

)

, (2.11)

where fΛ denotes the matrix (fΛ)Σ
Π = fΛΣ

Π and f t
Λ is the transposed. The tensor

cΛ,ΣΠ ≡ (cΛ)ΣΠ is required to be symmetric for TΛ to be a symplectic generator. Moreover,

there are some additional constraints on the cΛ in order for the TΛ to be symplectically

embedded within the same Lie-algebra as in (2.8). One can easily derive them, for explicit

2We will assume in the remainder of the paper that the gauge coupling constant g 6= 0. The case of

g = 0 is treated in the literature in e.g. [24].
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formulae see [9], or (3.5). Finally, closure of the gauge transformations on the Kähler

potential requires that

ki
Λ∂irΣ − ki

Σ∂irΛ = fΛΣ
ΠrΠ . (2.12)

We summarize some other important identities on vector multiplet gauging in appendix B.

Magnetic gaugings allow also non-zero entries in the upper-right corner of TΛ, but

we will not consider them here. The gauged action, in particular the scalar potential,

that we consider below is not invariant under magnetic gauge transformation. To restore

this invariance, one needs to introduce massive tensor multiplets, but the most general

lagrangian with both electric and magnetic gauging is not fully understood yet (for some

partial results see [27–30]).

Given a choice for the gauge group (2.11), one can reverse the order of logic and deter-

mine the form of the Killing vectors, and therefore the gauge transformations of the scalar

fields zi. This analysis was done in [31], and the result is written in the appendix, see (B.6).

We now return to the BPS conditions. The second and third term in the supersym-

metry variation of the gauginos, equation (2.4), need also to vanish separately, since they

multiply independent spinors of the same chirality. For the second term, this leads to

Gi−
µν ≡ −gīf̄Λ

̄ (ImNΛΣ)FΣ−
µν = 0 , (2.13)

where gī is the inverse Kähler metric with Kähler potential K from (2.1), and

NΛΣ ≡
(

DiFΛ

F̄Λ

)

·
(

DiX
Σ

X̄Σ

)−1

, fΛ
i ≡ eK/2DiX

Λ , (2.14)

with DiX
Λ = (∂i + Ki)X

Λ and similarly DiFΛ = (∂i + Ki)FΛ. The anti-selfdual part of

any real two-form Tµν is denoted by T−
µν , and complex conjugation gives the selfdual part,

see the appendix of [11].

Finally, setting the third term in the supersymmetry variation to zero leads to

W iAB ≡ ki
ΛL̄

ΛǫAB + igīf̄Λ
̄ P

x
Λσ

AB
x = 0 , (2.15)

where LΛ = eK/2XΛ (in analogy, MΛ ≡ eK/2FΛ) and P x
Λ are the triplet of moment maps

associated with the Killing vector fields k̃Λ on the quaternionic geometry.3 These Killing

vectors are used to determine the gauge transformations of the hypermultiplet scalars under

the gauge group. The only requirement is that the Killing equation is satisfied, i.e. they

are isometries on the quaternion-Kähler manifold, and they satisfy the same Lie-bracket

as in (2.8). Of course, a given quaternion-Kähler manifold can allow inequivalent choices

of Killing vectors with the same Lie-algebra. These choices lead to different models with

different physics. One obvious choice is to set all the Killing vectors to zero, and so all

hypermultiplet scalars remain neutral under the gauge group. The gauging then remains

solely active on the vector multiplet scalars.

3For the explicit relation between moment maps and Killing vectors in the quaternionic case, as well as

other useful identities in the hypermultiplet sector, see the standard references.
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Close inspection of (2.15) shows that both terms are linearly independent in SU(2)R
space, hence they must vanish separately,

ki
ΛL̄

Λ = 0 , P x
Λf

Λ
i = 0 , (2.16)

and their complex conjugates.

2.2 Hyperinos

The fields in the hypermultiplet sector comprise 4nH scalars qu, and 2nH positive chirality

fermions ζα and their complex conjugates (ζα)∗ = Cαβζ
β with negative chirality. Under

N = 2 local supersymmetry, these hyperinos transform as

δεζα = iUBβ
u ∇µq

uγµεAǫABCαβ + gNA
α εA , (2.17)

again, up to terms that are of higher order in the fermions. The hyperino mass matrix NA
α

is defined by

NA
α ≡ 2UA

α uk̃
u
ΛL̄

Λ , (2.18)

with LΛ as given just below (2.15).

Similarly as for the gauginos, N = 2 supersymmetric configurations require the two

terms in (2.17) to vanish separately. Since the quaternionic vielbeine are invertible and

nowhere vanishing, the scalars need to be covariantly constant,

∇µq
u ≡ ∂µq

u + gAΛ
µ k̃

u
Λ = 0 , (2.19)

implying the integrability conditions

FΛ
µν k̃

u
Λ = 0 . (2.20)

Furthermore, there is a second condition from (2.17) coming from the vanishing of the

hyperino mass matrix NA
α . This leads to

k̃u
ΛL

Λ = 0 , (2.21)

and complex conjugate.

In the absence of hypermultiplets, i.e. when nH = 0, the N = 2 conditions from the

variations of the hyperinos disappear. However, the second condition in (2.16) remains,

with the moment maps replaced by FI parameters.4 So our formalism automatically in-

cludes the case nH = 0.

4In the absence of any hypermultiplets the quantities P x

Λ need not vanish. Instead, they can be constants,

which can be non-vanishing for gauge groups SU(2) or U(1). These constants are sometimes referred to as

Fayet-Illiopoulos (FI) terms. See e.g. [32] for a discussion.
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2.3 Gravitinos

The fermions in the gravitational sector are two gravitinos of opposite chirality ψµA and

its complex conjugate ψA
µ = (ψµA)∗. In gauged supergravity, their supersymmetry trans-

formation rules are (up to irrelevant higher order terms in the fermions)

δεψµA = ∇µεA + T−
µνγ

νǫABε
B + igSABγµε

B . (2.22)

Here, ∇µεA is the gauged supercovariant derivative (specified below), and

T−
µν ≡ 2iFΛ−

µν (ImNΛΣ)LΣ , SAB ≡ i

2
(σx)ABP

x
ΛL

Λ . (2.23)

The matrices Tµν and SAB are called the graviphoton field strength and the gravitino

mass-matrix respectively. Notice again that for nH = 0, in fact even also in the absence of

vector multiplets when nV = 0, the gravitino mass-matrix can be non-vanishing and con-

stant. In the Lagrangian, which we discuss in the next section, this leads to a (negative)

cosmological constant term. The anti-selfdual part of the graviphoton field strength Tµν

satisfies the identity

FΛ−
µν = iL̄ΛT−

µν + 2fΛ
i G

i−
µν , (2.24)

with Gi−
µν defined in (2.13). From the vanishing of the gaugino variation, we have that

Gi−
µν = 0, and hence a maximally supersymmetric configuration must satisfy FΛ−

µν =

iL̄ΛT−
µν , or

FΛ
µν = iL

Λ
T−

µν − iLΛT+
µν . (2.25)

Using this, we then see that equation (2.21) implies the integrability conditions (2.20) in

the hypermultiplet sector. For the integrability equations in the vector multiplet sector,

the situation is more subtle, as the Killing vectors are complex and holomorphic. Now, the

BPS condition (2.16) only implies that

ki
ΛF

Λ
µν = −iki

ΛL
ΛT+

µν .

As a consequence, the integrability condition (2.6) is only guaranteed when ki
ΛL

Λ = 0 (or,

when Tµν = 0, but then all the field strengths are zero). So, for Tµν 6= 0, a necessary

condition for a maximally supersymmetric configuration is that ki
ΛL

Λ = 0. Furthermore,

in appendix B we prove that

ki
ΛL

Λ = 0 ⇔ PΛL
Λ = 0 (2.26)

where PΛ is the special Kähler moment map, defined in (B.1). In terms of (B.5), one

sees that this condition involves both the structure constants and the matrix cΛ. Hence

the integrability condition is satisfied for those configurations satisfying PΛL
Λ = 0. The

integrability condition might only locally be sufficient, but this fine for our purposes. One

might however check in addition whether the covariant constancy of the vector multiplet

scalars imposes further (global) restrictions.
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To solve the constraints from the gravitino variation, we must first specify the gauged

supercovariant derivative on the supersymmetry parameter. It can be written as

∇µεA =

(

∂µ − 1

4
ωab

µ γab

)

εA +
i

2
AµεA + ωµ A

BεB . (2.27)

The conventions for the spin connection, appearing between the brackets, are specified in

the appendix. Furthermore, there appear two other connections associated to the special

Kähler and quaternion-Kähler manifolds. We need to compute their curvatures since they

enter the integrability conditions that follow from the Killing spinor equations. The first

one is called the gauged U(1) Kähler-connection, defined by [11, 31]

Aµ ≡ − i

2

(

∂iK∇µz
i − ∂ῑK∇µz̄

ῑ
)

+
i

2
gAΛ

µ(rΛ − r̄Λ) . (2.28)

Under a gauge transformation, one finds that

δGAµ =
i

2
g ∂µ

[

αΛ(rΛ − r̄Λ)
]

. (2.29)

The curvature of this connection can be computed to be

Fµν = 2igī∇[µz
i∇ν]z̄

̄ − gFΛ
µνPΛ , (2.30)

where PΛ is the moment map, defined in (B.1), and we have used the equivariance con-

dition (B.3). For maximally supersymmetric configurations, the scalars are covariantly

constant and hence the curvature of the Kähler connections satisfies Fµν = −gFΛ
µνPΛ.

The second connection appearing in the gravitino supersymmetry variation is the

gauged Sp(1) connection of the quaternion-Kähler manifold. It reads

ωµ A
B ≡ ∂µq

uωu A
B + gAΛ

µPΛ A
B , (2.31)

where ωu A
B is the (ungauged) Sp(1) connection of the quaternion-Kähler manifold, whose

curvatures are related to the three quaternionic two-forms. The effect of the gauging is to

add the second term on the right hand side of (2.31), proportional to the triplet of moment

maps of the quaternionic isometries, with PΛ A
B = P x

Λ(σx)A
B . The curvature of (2.31) can

then be computed to be

Ωµν A
B = 2Ωuv A

B∇[µq
u∇ν]q

v + gFΛ
µνPΛ A

B , (2.32)

where Ωuv A
B is the quaternionic curvature. For fully BPS solutions, we have Ωµν A

B =

gFΛ
µνPΛ A

B .

We can now investigate the integrability conditions that follow from the vanishing

of the gravitino transformation rules (2.22). From the definition of the supercovariant

derivative (2.27), we find5

[∇µ,∇ν ]εA = −1

4
Rµν

abγab εA − i

2
gFΛ

µνPΛεA + gFΛ
µνPΛ A

BεB , (2.33)

5Strictly speaking, we get the supercovariant curvatures appearing in (2.33), which also contain fermion

bilinears. Since the fermions are zero on maximally supersymmetric configurations, only the bosonic part

of the curvatures remains.
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where we have used the covariant constancy of the scalars. We remind that PΛ are the

moment maps on the special Kähler geometry, whereas PΛ A
B are the quaternion-Kähler

moment maps. Alternatively, we can compute the commutator from the vanishing of the

gravitino variations spelled out in (2.22). By equating this to the result of (2.33), we get a

set of constraints. Details of the calculation are given in appendix C, and the results can

be summarized as follows. First of all, we find the covariant constancy of the graviphoton

field strength6

DρT
+
µν = 0 . (2.34)

Secondly, we get that the quaternionic moment maps must satisfy

ǫxyzP yP
z

= 0 , P x ≡ LΛP x
Λ . (2.35)

Moreover, there are cross terms between the graviphoton and the moment maps, which

enforce the conditions

T+
µν P

x = 0 . (2.36)

This equation separates the classification of BPS configurations in two sectors, those with

a solution of P x = 0 at a particular point (or locus) in field space, and those with non-

vanishing P x (for at least one index x) but Tµν = 0. We will see later on that this distinction

corresponds to zero or non-zero (and negative) cosmological constant in the spacetime.

Another requirement that follows from the gravitino integrability conditions is

FΛ
µνPΛ = 0 , (2.37)

where PΛ is defined in (B.1), and is real. Using (2.25), this is equivalent to the condition

L̄ΛPΛT
−
µν = LΛPΛT

+
µν . (2.38)

Since anti-selfdual and selfdual tensors are linearly independent, it means that PΛL
Λ = 0

and complex conjugate (again, for Tµν 6= 0). This requirement is already imposed by the

integrability conditions on the vector multiplet scalars, see (2.26), so (2.37) does not lead

to any new constraint.

Finally, there is the condition on the spacetime Riemann curvature. It reads

Rµνρσ = 4T+
µ[σT

−
ρ]ν + g2P xP xgµσgνρ − (µ↔ ν) . (2.39)

It can be checked that this leads to a vanishing Weyl tensor, implying conformal flatness.

From the curvature, we can compute the value of the Ricci-scalar to be

R = −12g2P xP x . (2.40)

Hence, the classification of fully supersymmetric configurations separates into negative

scalar curvature with P xP x 6= 0, and zero curvature with P x = 0 at the supersymmetric

point. In both of these cases there are important simplifications.

6Recall that T+ and T− are related by complex conjugation, and hence the vanishing of DT+ implies

DT = 0.
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2.3.1 Negative scalar curvature

The case of negative scalar curvature is characterized by Tµν = 0 and P xP x 6= 0 at the

supersymmetric point. Since the BPS conditions imply that then both Tµν andGi−
µν = 0 (see

equation (2.13)), we find that all field strengths should be zero: FΛ
µν = 0. The gauge fields

then are required to be pure gauge, but can still be topologically non-trivial. Furthermore,

because of the vanishing field strengths, the integrability conditions on the scalar fields are

satisfied, and a solution for the sections XΛ(z) is obtained by a gauge transformation on

the constant (in spacetime) sections. Finally, the Riemann tensor is given by

Rµνρσ = g2P xP x (gµσgνρ − gνσgµρ) .

which shows that the space is maximally symmetric, and therefore locally AdS4. The scalar

curvature is R = −12g2P xP x.

2.3.2 Zero scalar curvature

The class of zero curvature is characterized by configurations for which P x = 0 at the

supersymmetric point. In this case, we can combine the conditions P x
Λf

Λ
i = 0 and P x ≡

P x
ΛL

Λ = 0 into

P x
Λ

(

L̄Λ

fΛ
i

)

= 0 .

The matrix appearing here, is the invertible matrix of special geometry (as used in (2.14)),

hence we conclude that P x
Λ = 0. The Riemann tensor is then

Rµνρσ = 4T+
µ[σT

−
ρ]ν − (µ ↔ ν) .

From the covariant constancy of the graviphoton, condition (2.34), we find DρRµνστ = 0.

Spaces with covariantly constant Riemann tensor are called locally symmetric, and they

are classified, see e.g. [23, 26, 33]. In our case we also have zero scalar curvature, and then

only three spaces are possible:

1. Minkowski space M4 (Tµν = 0)

2. AdS2 × S2

3. The pp-wave solution

The explicit metrics and field strengths for the latter two cases (M4 and AdS4 are well-

known and have vanishing field strengths) are listed in appendix D.

2.4 Summary

Let us now summarize the results. There are two different classes: negative scalar curva-

ture (leading to AdS4) and zero scalar curvature solutions (leading to M4, AdS2 × S2 or

the pp-wave).
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The result of our analysis is that all the conditions on the spacetime dependent part

are explicitly solved,7 and the remaining conditions are purely algebraic, and depend only

on the geometry of the special Kähler and quaternionic manifolds. The solutions to these

algebraic equations define the configuration space of maximally supersymmetric configu-

rations. There are two separate cases:

2.4.1 Negative scalar curvature (AdS4)

This case is characterized by configurations for which P xP x 6= 0 at the supersymmetric

point. The BPS conditions are

ki
ΛL

Λ
= 0 k̃u

ΛL
Λ = 0

P x
Λf

Λ
i = 0 ǫxyzP yP z = 0 ,

which should be satisfied at a point (or a locus) in field space. The field strengths are zero,

FΛ
µν = 0, and the space-time is AdS4 with scalar curvature R = −12g2P xP x.

2.4.2 Zero scalar curvature (M4, AdS2 × S2 or pp-wave)

In this case, the BPS conditions are

ki
ΛL

Λ
= 0 k̃u

ΛL
Λ = 0

PΛL
Λ = 0 P x

Λ = 0 .

We remind that, when Tµν = 0 (Minkowski space), all field strengths are vanishing

(FΛ
µν = 0), and the condition PΛL

Λ = 0 need not be satisfied. For non-vanishing Tµν ,

the field strengths are given by (2.25), and using formula (B.5) the condition PΛL
Λ = 0 is

equivalent to

LΛL̄Π fΛΠ
ΣMΣ + LΛLΠ cΛ,ΠΣ L̄

Σ = 0 , (2.41)

where we remind that MΛ ≡ eK/2FΛ. Hence the existence of maximal BPS configurations

also depends on the cΛ-matrix characterizing the Chern-Simons-like terms.

3 Lagrangians and scalar potentials

Since all fermions are equal to zero for N = 2 supersymmetric configurations, we can

concentrate on the bosonic part of the Lagrangian, with action S =
∫

d4x
√
gL. It can be

read off from [9, 11],

L = −1

2
R(g) + gī∇µzi∇µz̄

̄ + huv∇µqu∇µq
v + (ImNΛΣ)FΛ

µνF
Σ µν (3.1)

+
1

2
(ReNΛΣ)ǫµνρσFΛ

µνF
Σ
ρσ−

4

3
g cΛ,ΣΠ ǫ

µνρσAΛ
µA

Σ
ν

(

∂ρA
Π
σ −

3

8
fΩΓ

ΠAΩ
ρA

Γ
σ

)

−V (z, z̄, q) ,

7This is apart from the scalar fields and Killing spinors, which are spacetime dependent. The integra-

bility conditions that we have imposed guarantee locally the existence of a solution, although we did not

explicitly construct it. Its construction cannot be done in closed form in full generality, but can be worked

out in any given example [23].
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with scalar potential

V = g2
[

(gīk
i
Λk

̄
Σ + 4huvk

u
Λk

v
Σ)L̄ΛLΣ + (gīfΛ

i f̄
Σ
̄ − 3L̄ΛLΣ)P x

ΛP
x
Σ

]

. (3.2)

The Chern-Simons-like term on the second line of (3.1) can be determined from the non

gauge-invariance of the period matrix. From (2.14) one finds

δGNΛΣ = −gαΠ
(

fΠΛ
ΓNΓΣ + fΠΣ

ΓNΓΛ + cΠ,ΛΣ

)

. (3.3)

Since the right hand side is real, only the topological term proportional to ReNΛΣ in the

action transforms. This transformation is compensated by the gauge transformation of the

other terms in the second line, using the various constraints on the (symmetric) cΛ. In the

abelian case, the only constraint is that the totally symmetrized c-tensor vanishes, i.e.

cΛ,ΣΠ + cΠ,ΛΣ + cΣ,ΠΛ = 0 . (3.4)

This implies that for a single vector field, the Chern-Simons-like term vanishes. The addi-

tional constraints for nonabelian gaugings involve the structure constants [9]:

fΛΣ
ΓcΓ,ΠΩ + fΩΣ

ΓcΛ,ΓΠ + fΠΣ
ΓcΛ,ΓΩ + fΛΩ

ΓcΣ,ΓΠ + fΛΠ
ΓcΣ,ΓΩ = 0 . (3.5)

The scalar potential can be written in terms of the mass-matrices,

V = −6SABSAB +
1

2
gīW

iABW
̄
AB +NA

α N
α
A . (3.6)

Since the gaugino and hyperino mass-matrices, W iAB andNA
α respectively, vanish onN = 2

supersymmetric configurations, one sees that the scalar potential is semi-negative definite,

and determined by the gravitino mass-matrix SAB. Even in the absence of vector and hy-

permultiplets, the gravitino mass-matrix can be non-vanishing, leading to a negative cosmo-

logical constant in the Lagrangian. Using (3.2), we find for N = 2 preserving configurations

V = −3g2L̄ΛLΣP x
ΛP

x
Σ . (3.7)

In the absence of hypermultiplets, N = 2 preserving AdS4 vacua can therefore only be

generated by non-trivial Fayet-Illiopoulos terms.

It can be verified that maximally supersymmetric configurations also solve the equa-

tions of motion. To show this, one varies the lagrangian (3.1) and uses the identi-

ties (3.4), (3.5) and the formulas in section 2.4. After a somewhat tedious but straight-

forward computation one sees that all equations of motion are indeed satisfied by the

maximally supersymmetric configurations.

4 Examples

In this section we list some (string theory motivated) examples of N = 2,D = 4 theories,

leading to N = 2 supersymmetric configurations. We will first mention briefly some already

known and relatively well-understood N = 2 vacua from string theory and then concentrate
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on our two main examples in subsections 4.1 and 4.2 that exhibit best the different features

discussed above. In the last subsection we include some supergravity models, not necessar-

ily obtained from string compactifications, leading to AdS4 vacua that can be of interest.

Obtaining gauged N = 2,D = 4 supergravity seems to be important for string theory

compactifications since it is an intermediate step between the more realistic N = 1 models

and the mathematically controllable theories. Thus in the last decade there has been

much literature on the subject. An incomplete list of examples consists of [15, 18–21] and

it is straightforward to impose and solve the maximal supersymmetry constraints in each

case. In some cases the vacua have been already discussed or must exist from general

string theory/M-theory considerations.

For example, it was found that the coset compactifications studied in [20] do not lead to

N = 2 supersymmetric configurations. This can also be seen from imposing the constraints

in section 2.4. In contrast, the compactification onK3×T 2/Z2 presented in [15] does exhibit

N = 2 solutions with non-trivial hypermultiplet gaugings. The authors of [15] explicitly

found N = 2 Minkowski vacua by satisfying the same susy conditions as in section 2.4.

From our analysis, it trivially follows that also the pp-wave and the AdS2×S2 backgrounds

are maximally supersymmetric. To check this, one only needs to verify (2.41), and this is

satisfied due to a vanishing c-tensor and the abelian gauging in the hypermultiplet sector.

A similar example is provided by the (twisted)K3×T 2 compactification of the heterotic

string, recently analyzed in [21]. For abelian gaugings, one can verify that the three zero

scalar curvature vacua are present in these models.

We now turn to discuss the remaining models in more detail.

4.1 M-theory compactification on SU(3) structure manifolds

There is a very interesting model for N = 2,D = 4 supergravity with non-abelian gaug-

ing of the vector multiplet sector and non-trivial c-tensor, arising from compactifications

of M-theory on seven-manifolds with SU(3) structure [18] (more precisely, they consider

Calabi-Yau (CY) threefolds fibered over a circle). For the precise M-theory set-up, we

refer the reader to [18]; here we only discuss the relevant data for analyzing the maximal

supersymmetry conditions:

• the vector multiplet space can be parametrized by special coordinates, XΛ = (1, ti =

bi + ivi) and prepotential

F (X) = −1

6
κijk

XiXjXk

X0
, (4.1)

with the well-known triple intersection numbers κijk that depend on the particular

choice of the CY-manifold. This gives the Kähler potential

K = − log

[

i

6
κijk(t

i − t̄i)(tj − t̄j)(tk − t̄k)

]

≡ − log Vol , (4.2)

where Vol denotes the volume of the compact manifold. The gauge group is non-

abelian with structure constants

fΛΣ
0 = 0 = fij

k, fi0
j = −M j

i , (4.3)
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and a c-tensor whose only non-vanishing components are

ci,jk =
1

2
M l

iκljk . (4.4)

The constant matrix M j
i specifies the Killing vectors and moment-maps of the special

Kähler manifold:

kj
0 = −M j

k t
k , kj

i = M j
i , (4.5)

and

P0 = −M j
i t

i∂jK , Pi = M j
i ∂jK . (4.6)

Not for any choice of M j
i is the Killing equation satisfied. As explained in [18], this is

only the case when the relation (3.4) holds. This also ensures that (3.5) is satisfied,

as one can easily check.

• generally in this class of compactifications there always appear hypermultiplet scalars,

but there is no gauging of this sector, so the Killing vectors and the moment maps

P x
Λ are vanishing.

The scalar potential in this case reduces to the simple formula

V = − 8

Vol2
Mk

i M
l
jκklmv

ivjvm , (4.7)

which is positive semi-definite.

Analyzing the susy conditions is rather straightforward. Since P x = 0, the only allowed

N = 2 vacua are the ones with zero-scalar curvature. What is left for us to check are the

conditions ki
ΛL̄

Λ = 0 and PΛL
Λ = 0. The latter is very easy to check and holds as an

identity at every point in the special Kähler manifold. Also, it is equivalent to the relation

ki
ΛL

Λ = 0 which is satisfied whenever there exists a prepotential [10]. The condition

ki
ΛL̄

Λ = 0 eventually leads to

M i
j(t

j − t̄j)

Vol
= 2i

M i
jv

j

Vol
= 0 , ∀i . (4.8)

The solution to the above equation that always exists is the decompactification limit when

Vol → ∞. The other more interesting solutions depend on the explicit form of the matrix

M . In case M j
i is invertible there are no further solutions to (4.8). On the other hand, when

M has zero eigenvalues we can have N = 2 M-theory vacua, given by (a linear combination

of) the corresponding zero eigenvectors of M . For the supergravity approximation to hold,

one might require that this solution leads to a non-vanishing (and large) volume of the CY.

Each eigenvector will correspond to a flat direction of the scalar potential, and with V = 0

along these directions. The case where the full matrixM is zero corresponds to a completely

flat potential, the one of a standard M-theory compactification on CY×S1 without gauging.

Thus it is clear that M j
i is an important object for this type of M-theory compactifi-

cations and we now give a few more details on its geometrical meaning [18]. In the above

class of M-theory compactifications we have a very specific fibration of the Calabi-Yau
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manifold over the circle. It is chosen such that only the second cohomology H(1,1)(CY3)

is twisted with respect to the circle, while the third cohomology H3(CY3) is unaffected.

Thus the hypermultiplet sector remains ungauged as in regular CY3×S1 compactification,

while the vector multiplets feel the twisting and are gauged. This twisting is parametrized

exactly by the matrix M , as it determines the differential relations of the harmonic (on

the CY3) two-forms:

dωi = M j
i ωj ∧ dz , (4.9)

where z is the circle coordinate.

Let us now zoom in on the interesting case when we have nontrivial zero eigenvectors

of M , corresponding to non-vanishing volume of the CY. For a vanishing volume, or a

vanishing two-cycle, the effective supergravity description might break down due to ad-

ditional massless modes appearing in string theory.8 Therefore the really consistent and

relevant examples for N = 2 vacua are only those when the matrix M is non-invertible

with corresponding zero eigenvectors that give nonzero value for every vi.

To illustrate this better, we consider a particular example, given in section 2.5 of [18],

of a compactification where the CY3 is a K3-fibration. In this setting one can explicitly

construct an M -matrix, compatible with the intersection numbers κijk. Here one can find

many explicit cases where all of the above described scenarios happen. As a very simple

and suggestive example we consider the 5-scalar case with κ123 = −1, κ144 = κ155 = 2, and

twist-matrix

M =















0 0 0 0 0

0 4 0 −2 −2

0 0 −4 2 2

0 1 −1 0 0

0 1 −1 0 0















. (4.10)

The general solution of M · ~v = 0 is

~v = λ















1

0

0

0

0















+ µ















0

1

1

2

0















+ ν















0

1

1

0

2















, (4.11)

and the resulting volume is

Vol = 8λ
(

2µ2 + 2ν2 + (µ− ν)2
)

, (4.12)

which is clearly positive semi-definite. In the case when either µ or ν vanishes we have

a singular manifold that is still a solution to the maximal supersymmetry conditions.

When all three coefficients (that are essentially the remaining unstabilized moduli fields)

are non-zero, we have a completely proper solution both from supergravity and string

theory point of view, thus providing an example of SU(3) structure compactifications

8For a detailed analysis of the possibilities in a completely analogous case in five dimensions see [34]
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with zero-curvature N = 2 vacua. This example can be straightforwardly generalized to

a higher number of vector multiplets, as well as to the lower number of 4 scalars (there

cannot be less than 4 vector multiplets in this particular case).

It is interesting to note in passing that a special case of the general setup described

above was already known for more than twenty years in [9] (3.21), whereM1
1 = −2,M2

2 = 1,

and κ122 = 2. It was derived purely from 4d supergravity considerations, but it now seems

that one can embed it in string theory.

4.2 Reduction of M-theory on Sasaki-Einstein7

There has been much advance in the last years in understanding Sasaki-Einstein manifolds

and their relevance for M-theory compactifications, both from mathematical and physical

perspective. These spaces are good candidates for examples of the AdS4/CFT3 correspon-

dence and an explicit reduction to D = 4 has been recently obtained in [19]. Originally the

effective lagrangian includes magnetic gauging and a scalar-tensor multiplet, but after a

symplectic rotation it can be formulated in the standard N = 2 formalism discussed here.

After the dualization of the original tensor to a scalar we have the following data for the

multiplets, needed for finding maximally supersymmetric vacua:

• there is one vector multiplet, given by XΛ = (1, τ2) and F (X) =
√

X0(X1)3, leading

to FΛ = (1
2τ

3, 3
2τ

2) and Kähler potential

K = − log
i

2
(τ − τ̄)3 . (4.13)

There is no gauging in this sector, i.e. ki
Λ = 0 and PΛ = 0 for all i,Λ. This also means

that both fΛΣ
Π and cΛ,ΣΠ vanish.

• the hypermultiplet scalars are {ρ, σ, ξ, ξ̄} (ρ and σ are real, and ξ is complex) with

the universal hypermultiplet metric:

ds2 =
1

4ρ2
dρ2 +

1

4ρ2

(

dσ − i(ξdξ̄ − ξ̄dξ)
)2

+
1

ρ
dξdξ̄ . (4.14)

We have an abelian gauging, given by (as there are no Killing vectors in the

vector multiplet sector, we drop the tilde on the Killing vector fields in the

hypermultiplet sector):

k̃0 = 24∂σ − 4i(ξ∂ξ − ξ̄∂ξ̄) , k̃1 = 24∂σ , (4.15)

and the moment maps, calculated in [19], are

P 1
0 = −4ρ−1/2(ξ + ξ̄) , P 2

0 = 4iρ−1/2(ξ − ξ̄) , P 3
0 = −12

ρ
+ 4

(

1 − ξξ̄

ρ

)

,

P 1
1 = 0, P 2

1 = 0 , P 3
1 = −12

ρ
. (4.16)
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We can now proceed to solving the maximal supersymmetry constraints. The conditions

involving vector multiplet gauging are satisfied trivially, while from k̃u
ΛL

Λ = 0 we obtain

the conditions ξ = ξ̄ = 0 and 1 + τ2 = 0. Therefore τ = i (the solution τ = −i makes the

Kähler potential ill-defined) and K = − log 4. However, not all the moment maps at this

vacuum can be zero simultaneously, leaving AdS4 as the only possibility for aN = 2 vacuum

solution. One can then see that ǫxyzP
yP z = 0 is satisfied, so the only remaining condition

is P 3
Λf

Λ
τ = 0. This fixes ρ = 4. Therefore we have stabilized all (ungauged) directions

in moduli space: ξ = ξ̄ = 0, τ = i, ρ = 4. The potential is nonzero in this vacuum since

P 3 = 2, which means the only possibility for the space-time is to be AdS4 with vanishing

field strengths. This is indeed expected since SE7 compactifications of M-theory lead to

an N = 2 AdS4 vacuum, the one just described by us in the dimensionally reduced theory.

One can verify that this vacuum is stable under deformations in the hypermultiplet

sector of the type discussed in [35, 36]. To show this, first observe that the condition

k̃u
ΛL

Λ = 0 for u = ξ always ensures vanishing ξ. Secondly, one may verify that the

deformations to the quaternionic moment maps are proportional to ξ, and hence the

remaining N = 2 conditions from section 2.4.1 are satisfied. It would be interesting to

understand if this deformation corresponds to a perturbative one-loop correction in this

particular type of M-theory compactification.

4.3 Other gaugings exhibiting AdS4 vacua

Another example of an AdS4 supersymmetric vacuum can be obtained from the universal

hypermultiplet. In the same coordinates {ρ, ξ, ξ̄, σ} as used in the previous example, the

metric is again given by (4.14). This space has a rotational isometry acting on ξ and ξ̄,

given by k̃1 − k̃0 in the notation of (4.15). We leave the vector multiplet sector unspecified

for the moment, and gauge the rotation isometry by a linear combination of the gauge

fields AΛ
µ . This can be done by writing the Killing vector as

k̃u
Λ = αΛ(0, iξ,−iξ̄, 0) ,

for some real constant parameters αΛ. The quaternionic moment maps can be computed

to be

P x
Λ = αΛ

(

ξ + ξ̄√
ρ
,
i(ξ − ξ̄)√

ρ
, 1 − ξξ̄

ρ

)

.

It can be seen that there are no points for which P x
Λ = 0,∀x, so this means that only

AdS4 N = 2 vacua are possible. To complete the example, we have to specify the vector

multiplet space, and solve the conditions P x
Λf

Λ
i = 0 and k̃u

ΛL
Λ = 0. The latter can be

solved as ξ = ξ̄ = 0, and then also ǫxyzP yP z = 0. The first one then reduces to αΛf
Λ
i = 0.

This condition is trivially satisfied when e.g. nV = 0. A more complicated example is to

take the special Kähler space of the previous subsection with no gauging in the vector

multiplet sector. There is one complex scalar τ , a section XΛ = (1, τ2) and a prepotential

F =
√

X0(X1)3. We then find a solution for τ = i
√

−3α0

α1
, under the condition that α0

and α1 are non-vanishing real constants of opposite sign. More complicated examples
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with more vector multiplets may be constructed as well. It would be interesting to study

if such examples can be embedded into string theory.

A similar situation arises in the absense of hypermultiplets. As mentioned in the end

of section 2.2, we can have nonvanishing moment maps that can be chosen as P x
Λ = αΛδ

x3.

Then we again need to satisfy the same condition αΛf
Λ
i = 0 as above, and we already

discussed the possible solutions.
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A Notation and conventions

We mainly follow the notation and conventions from [11]. The action is defined by S =
∫ √

|g|L. We start with the (ungauged) Lagrangian, whose Einstein-Hilbert and scalar

derivative terms read

L = −1

2
R+ gī∂µz

i∂µz̄ + huv∂µq
u∂µqv . (A.1)

We set the Newton constant κ2 = 1. As in [11], we use a {+,−,−,−} metric signature.

To get positive kinetic terms for the scalars, we have to choose gī and huv positive definite.

We compute Riemann curvature as follows9

Rρ
σµν = ǫ

[

∂µΓρ
νσ − ∂νΓρ

µσ + Γρ
µλΓλ

νσ − Γρ
νλΓλ

µσ

]

,

Rµν = Rρ
µρν , R = gµνRµν ,

where ǫ = 1 for Riemann spaces (the quaternionic and special Kähler target spaces) and

ǫ = −1 for Lorentzian spaces (space-time). The overall minus sign in the latter case is

needed to give AdS spaces a negative scalar curvature. This gives a sphere in Euclidean

space (with signature {+,+,+,+}) a positive scalar curvature.

The spin connection enters in the covariant derivative

Dµ = ∂µ − 1

4
ωab

µ γab ,

ωab
µ =

1

2
eµc

(

Ωcab − Ωabc − Ωbca
)

,

Ωcab =
(

eµceνb − eµbeνa
)

∂µe
c
ν .

The Lagrangian (A.1) is only supersymmetric if the Riemann curvature of the hypermulti-

plet moduli space satisfies R(huv) = −8n(n+2) , where n is the number of hypermultiplets,

9Note that [12] computes quaternionic curvature with a additional factor 1/2.
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so the dimension of quaternionic manifold is 4n (in applications to the universal hypermul-

tiplet, we have n = 1 and hence R = −24).

Our conventions for the sigma matrices follow [11]; in particular they are symmetric

and satisfy
(

σxAB
)∗

= −σx
AB , and we have the relation

σx
ABσ

yBC = −δC
Aδ

xy + iǫADǫ
xyzσzDC .

Indices are raised and lowered, on bosonic quantities, as

ǫABV
B = VA , ǫABVB = −V A . (A.2)

As mentioned in the main text, all fermions with upper SU(2)R index have negative chirality

and all fermions with lower index have positive chirality. We set γ5 to be purely imaginary

and then complex conjugation interchanges chirality.

B Moment maps and Killing vectors on special Kähler manifolds

In this appendix, we present some further relevant formulae that are used in the main body

of the paper. First, we have defined the moment maps on the special Kähler manifold as

follows. Given an isometry, with a symplectic embedding (2.9), we can define the functions

PΛ ≡ i(ki
Λ∂iK + rΛ) . (B.1)

Since the Kähler potential satisfies (2.10), it is easy to show that PΛ is real. From this

definition, it is easy to verify that

ki
Λ = −igī∂̄PΛ . (B.2)

Hence the PΛ can be called moment maps, but they are not subject to arbitrary additive

constants. Using (2.12) and (B.1), it is now easy to prove the relation

ki
Λgīk

̄
Σ − ki

Σgīk
̄
Λ = ifΛΣ

ΠPΠ , (B.3)

also called the equivariance condition.

We can obtain formulas for the moment maps in terms of the holomorphic sections.

For this, one needs the identities

ki
Λ∂iX

Σ = −fΛΠ
ΣXΠ + rΛX

Σ , ki
Λ∂iFΣ = cΛ,ΣΠX

Π + fΛΣ
ΠFΠ + rΛFΣ , (B.4)

which follow from the gauge transformations of the sections, see (2.9). Using the chain rule

in (B.1), it is now easy to derive

PΛ = eK
[

fΛΠ
Σ(XΠF̄Σ + FΣX̄

Π) + cΛ,ΠΣX
ΠX̄Σ

]

, (B.5)

and similarly

ki
Λ = −igī

[

fΛΠ
Σ(f̄Π

̄ MΣ + h̄Σ ̄L
Π) + cΛ,ΣΠf̄

Π
̄ L

Σ
]

, (B.6)
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where we introduced MΛ ≡ eK/2FΛ and hΛ i ≡ eK/2(∂i + Ki)FΛ. The Killing vectors (B.6)

are not manifestly holomorphic. This needs not be the case because otherwise we would

have constructed isometries for arbitrary special Kähler manifolds, since holomorphic vector

fields obtained from a (real) moment map solve the Killing equation.

In the remainder of this appendix, we prove the equivalence relation (2.26). We start

from the consistency condition on the symplectic embedding of the gauge transformations,

the first equation in (B.4). We eliminate rΛ using (B.1), and rewrite it as

ki
Λf

Σ
i = −fΛΠ

ΣLΠ − iPΛL
Σ . (B.7)

Multiplications with LΛ gives

LΛki
Λf

Σ
i + iLΛPΛL

Σ = 0 . (B.8)

It follows from contracting with ImNΣΓL̄
Γ that

LΛPΛ = −2i(LΛki
Λ) fΓ

i ImNΓΣL̄
Σ ,

or from contracting with ImNΓΣf
Σ
̄ that

LΛki
Λ = 2i(LΛPΛ) gīLΓImNΓΣf

Σ
̄ .

Here we have used the special geometry identities on the period matrix, see e.g. [11]

LΛ(ImN )ΛΣL̄
Σ = −1

2
, fΛ

i (ImN )ΛΣf̄
Σ
̄ = −1

2
gī . (B.9)

The equivalence

ki
ΛL

Λ = 0 ⇔ PΛL
Λ = 0 ,

now follows trivially.

C Commutators of supersymmetry tranformations

Equating (2.22) to zero gives an expression for the supercovariant derivative ∇µǫA in terms

of the matrices T−
µν and SAB. Applying this operator twice gives

∇ν∇µǫA = − ǫABDνT
−
µργ

ρǫB ǫAB

+ T−
µργ

ρT+
νσγ

σǫA 1A
B

+ igǫABT
−
µργ

ργν(SBC)∗ǫC σx
A

B

− igǫBCT+
νργ

ργµSABǫC σx
A

B

− g2SAB(SBC)∗γµγνǫC , 1A
B + σx

A
B

where we have indicated the SU(2) structure on the right side. In (2.33), the commutator

does not contain a part proportional to ǫAB . This implies DρTµν = 0. Calculation of the

commutator now gives

[∇ν ,∇µ]ǫA = + T−
µργ

ρT+
νσγ

σǫA − (µ ↔ ν)
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+
g

2

(

T−
νργ

ργµP
x

+ T+
νργ

ργµP
x
)

σx
A

CǫC − (µ ↔ ν)

− g2

(

1

4
P xP xδC

A − i

4
P xP yǫxyzσz

A
C

)

γµνǫC .

We equate this to (2.33), where we use (2.24) and the condition (2.13):

[∇µ,∇ν ]ǫA = −1

4
Rµν

abγabǫA − ig

2
FΛ

µνPΛǫA +
ig

2
σx

A
BFΛ

µνP
x
ΛǫB

= −1

4
Rµν

abγabǫA − ig

2
FΛ

µνPΛǫA − g

2

(

P xT−
µν − P xT+

µν

)

σx
A

BǫB .

Some algebra now yields the necessary and sufficient conditions to match the terms pro-

portional to σx
A

B :

T−
µνP

x = 0

ǫxyzP yP z = 0 ,

which give the first conditions of section 2.3. The other conditions are obtained by com-

paring the parts proportional to 1A
B.

D Metrics and field strengths

• AdS2 × S2

The line element, in local coordinates {t, x, θ, φ}, is

ds2 = q20
(

dt2 − sin2(t)dx2 − dθ2 − sin2(θ)dφ2
)

,

where q0 is a real, overall constant which determines the size of both AdS2 and S2.

From (2.39) we find the only non-vanishing components

T+
tx =

1

2
q0 sin(t)eiα ,

T+
θφ = − i

2
q0 sin(θ)eiα .

• The pp-wave

The line element of a four-dimensional Cahen-Wallach space [33], in local coordinates

{x−, x+, x1, x2}, is given by

ds2 = −2dx+dx− −Aijx
ixj(dx−)2 − (dxi)2 ,

where Aij is a symmetric matrix. Conformal flatness requires A11 = A22 and A12 = 0.

We denote A11 = −µ2 as A11 should be negative. This space is known as the pp-wave.

From (2.39) we find the only non-vanishing components

T+
x−x1 =

µ

2
eiα ,

T+
x−x2 = −iµ

2
eiα .
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[6] S. Franco, I. Klebanov and D. Rodŕıguez-Gómez, M2-branes on orbifolds of the cone over

Q1,1,1, arXiv:0903.3231 [SPIRES].

[7] M. Petrini and A. Zaffaroni, N = 2 solutions of massive type IIA and their Chern-Simons

duals, JHEP 09 (2009) 107 [arXiv:0904.4915] [SPIRES];
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[13] B. de Wit, M. Roček and S. Vandoren, Gauging isometries on hyperKähler cones and

quaternion-Kähler manifolds, Phys. Lett. B 511 (2001) 302 [hep-th/0104215] [SPIRES].

[14] J. Polchinski and A. Strominger, New vacua for type II string theory,

Phys. Lett. B 388 (1996) 736 [hep-th/9510227] [SPIRES];

J. Michelson, Compactifications of type IIB strings to four dimensions with non-trivial

classical potential, Nucl. Phys. B 495 (1997) 127 [hep-th/9610151] [SPIRES];

– 22 –

http://dx.doi.org/10.1016/j.physrep.2005.10.008
http://arxiv.org/abs/hep-th/0509003
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0509003
http://dx.doi.org/10.1103/RevModPhys.79.733
http://arxiv.org/abs/hep-th/0610102
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610102
http://dx.doi.org/10.1016/j.physrep.2007.04.003
http://arxiv.org/abs/hep-th/0610327
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0610327
http://dx.doi.org/10.1088/1126-6708/2008/10/091
http://arxiv.org/abs/0806.1218
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1218
http://arxiv.org/abs/0901.0969
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0969
http://dx.doi.org/10.1088/1751-8113/42/46/465205
http://arxiv.org/abs/0904.3959
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.3959
http://arxiv.org/abs/0903.3231
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.3231
http://dx.doi.org/10.1088/1126-6708/2009/09/107
http://arxiv.org/abs/0904.4915
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0904.4915
http://dx.doi.org/10.1088/1126-6708/2009/09/098
http://arxiv.org/abs/0906.2561
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0906.2561
http://dx.doi.org/10.1016/0550-3213(84)90425-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B245,89
http://dx.doi.org/10.1016/0370-2693(84)90979-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B134,37
http://dx.doi.org/10.1016/0370-2693(84)92019-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B136,354
http://dx.doi.org/10.1016/0550-3213(85)90154-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B255,569
http://dx.doi.org/10.1016/0550-3213(91)90077-B
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B359,705
http://dx.doi.org/10.1016/S0393-0440(97)00002-8
http://arxiv.org/abs/hep-th/9605032
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605032
http://dx.doi.org/10.1088/1126-6708/2001/05/034
http://arxiv.org/abs/hep-th/0103153
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0103153
http://dx.doi.org/10.1016/S0370-2693(01)00636-0
http://arxiv.org/abs/hep-th/0104215
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104215
http://dx.doi.org/10.1016/S0370-2693(96)01219-1
http://arxiv.org/abs/hep-th/9510227
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9510227
http://dx.doi.org/10.1016/S0550-3213(97)00184-3
http://arxiv.org/abs/hep-th/9610151
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9610151


J
H
E
P
1
1
(
2
0
0
9
)
1
1
5

G. Dall’Agata, Type IIB supergravity compactified on a Calabi-Yau manifold with H-fluxes,

JHEP 11 (2001) 005 [hep-th/0107264] [SPIRES].

[15] L. Andrianopoli, R. D’Auria, S. Ferrara and M.A. Lledó, 4D gauged supergravity analysis of
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[22] K. Behrndt, D. Lüst and W.A. Sabra, Stationary solutions of N = 2 supergravity,

Nucl. Phys. B 510 (1998) 264 [hep-th/9705169] [SPIRES].

[23] T. Ort́ın, Gravity and strings, Cambridge University Press, Cambridge U.K. (2004).

[24] P. Meessen and T. Ort́ın, The supersymmetric configurations of N = 2, D = 4 supergravity

coupled to vector supermultiplets, Nucl. Phys. B 749 (2006) 291 [hep-th/0603099]

[SPIRES];
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