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A Behavioural Decision-Making Framework For Agent-Based Models

by Khoa Dang NGUYEN

In the last decades, computer simulation has become one of the mainstream
modelling techniques in many scientific fields. In particular, social simulation with
Agent-based Modelling (ABM) allows users to capture higher-level system properties
that emerge from the interactions of lower-level subsystems. This notion of emergence
has introduced an alternative approach to studying the complexity inherited from
social phenomena.

Several social simulation approaches were initially developed in the areas of
physics and Artificial Intelligence. In fact, ABM is itself an area of application of
Distributed Artificial Intelligence and Multiagent Systems (MAS). Despite that, re-
searchers using ABM for social science studies do not fully benefit from the develop-
ment in the field of MAS. It is mainly because the MAS architectures and frameworks
are built upon cognitive and computer science foundations and principles, creating a
gap in concepts and methodology between the two fields.

Building agent frameworks based on behaviour theory is a promising direction to
minimise this gap. It can provide a standard practice in interdisciplinary teams and
facilitate better usage of MAS technological advancement in social research. From
our survey of different socio-psychology theories, Triandis’ Theory of Interpersonal
Behaviour (TIB) was chosen due to its broad set of determinants and inclusion of
an additive value function to calculate utility values of different outcomes. As TIB’s
determinants can be organised in a tree-like structure, we utilise layered architectures
to formalise the agent’s components. The additive function of TIB is then used to
combine the utilities of different level determinants.

The framework is then applied to create models for different case studies from
various domains to test its ability to explain the importance of multiple behavioural
aspects and environmental properties. The first case study simulates the mobility
demand for Swiss households. We propose an experimental method to test and
investigate the impact of core determinants in the TIB on the usage of different
transportation modes. The second case study presents a novel solution to simulate
trust and reputation by applying subjective logic as a metric to measure an agent’s
belief about the consequence(s) of action, which can be updated through feedback.
By performing an experiment set up in the mobility domain, we demonstrate the

HTTPS://WWW.UU.NL/
https://www.uu.nl/en/research/intelligent-software-systems
https://www.uu.nl/en/organisation/department-of-information-and-computing-sciences
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framework’s ability to capture the ground truth of a service’s reputation at different
simulation scales and highlight the effects of these concepts on the figure of yearly rail
kilometres travelled. The third case study investigates the possibility of simulating
bounded rationality effects in an agent’s decision-making scheme by limiting its
capability of perceiving information. We demonstrate the functionality of this model
in the context of purchasing vehicles in Switzerland’s households. In the final study,
a model is created to simulate migrants’ choice of activities in centres by applying
our framework in conjunction with Maslow’s hierarchy of needs. The experiment can
then be set up to test the impact of different combinations of core determinants on the
migrants’ activities.

Overall, the design of different components in our framework enables adaptations
for various contexts, including transportation modal choice, buying a vehicle or daily
activities. Most of the work can be done by changing the first-level determinants in
the TIB’s model based on the phenomena simulated and the available data. Several en-
vironmental properties can also be considered (e.g. static/dynamic, know/unknown,
fully/partly observable, deterministic/stochastic) by extending the core components
or employing other theoretical assumptions and concepts from the social study. With
these procedures, the framework can serve the purpose of theoretical exposition
and allow the users to assess the causal link between the TIB’s determinants and
behaviour output. This thesis also highlights the importance of data collection and
experimental design to capture better and understand different aspects of human
decision-making.



UNIVERSITEIT UTRECHT

Nederlands Abstract

Intelligente Software Systemen
Informatie- en computerwetenschappen

Doctor in de Filosofie

Een kader voor besluitvorming op basis van gedrag
voor agentgebaseerde modellen

door Khoa Dang NGUYEN

In de afgelopen decennia worden computersimulaties steeds vaker gebruikt in
vele wetenschappelijke gebieden. Op het gebied van de sociologie betreft dit met
name sociale simulatie met Agent-based Modelling (ABM). Deze simulaties stellen
gebruikers in staat om op hoog niveau systeemeigenschappen te beschrijven die
voortkomen uit de interacties van subsystemen op een lager niveau. Het concept van
emergentie heeft een alternatieve benadering geïntroduceerd voor het bestuderen
van de complexiteit die inherent is aan sociale verschijnselen.

Verschillende aanpakken van sociale simulatie komen oorspronkelijk uit de natu-
urkunde en de kunstmatige intelligentie. Meer gebaseerd op toepasbare formele
technieken dan de sociologische theorieen die ze proberen te onderbouwen. ABM is
zelf een toepassingsgebied van Gedistribueerde Kunstmatige Intelligentie en Multia-
gent Systemen (MAS). Desondanks profiteren onderzoekers die ABM gebruiken voor
sociologie niet ten volle van de ontwikkeling op het gebied van MAS. Dat komt vooral
omdat de multi-agent systemen gebaseeerd zijn op informatica en individuele cogni-
tieve theorieen. Hier door ontstaat er een kloof tussen de concepten en methodologie
in ABM en sociologie.

Om deze kloof te overbruggen hebben we agent architecturen ontwikkeld die
zijn gebaseerd op (sociale) gedragstheorie. Deze architecturen zorgen voor een
gemeenschappelijke standaard in interdisciplinaire teams en maakt het makkelijker
om nieuwe ontwikkelingen in MAS in de sociologie te gebruiken. Uit ons onderzoek
bleek dat de Theorie van Interpersoonlijk Gedrag (TIG) van Triandis hier een goede
kandidaat voor was vanwege zijn brede reeks aan invloeden en omdat het een
additieve waardefunctie bevat om de gevolgen van verschillend gedrag te berekenen.
Aangezien de invloeden van TIG in een hierarchische boomstructuur kunnen worden
georganiseerd, kunnen we dezelfde structuur gebruiken om de beslis componenten
van de agent in lagen te organiseren. De additiefunctie van TIG wordt dan gebruikt
om het nut van de verschillende determinanten per laag te combineren.

We passen de ontwikkelde architectuur toe om modellen te creëren voor casestud-
ies in verschillende domeinen. De eerste casestudy simuleert de mobiliteitsvraag van
Zwitserse huishoudens. Wij stellen een experimentele methode voor om het effect
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van kerndeterminanten in het TIG op het gebruik van verschillende vervoerswijzen
te testen en te onderzoeken. De tweede casestudy presenteert een nieuwe oplossing
om vertrouwen en reputatie te simuleren door subjectieve logica toe te passen als
een metriek om de overtuiging van een agent over het (de) gevolg(en) van een actie
te meten, die via feedback kan worden bijgewerkt. Door het uitvoeren van een ex-
periment in het mobiliteitsdomein tonen wij aan dat het raamwerk de reëele basis
van de reputatie van een dienst op verschillende simulatieschalen kan vastleggen. In
de derde casestudy wordt de mogelijkheid onderzocht om de effecten van beperkte
rationaliteit in de besluitvorming van een agent te simuleren door zijn vermogen
om informatie waar te nemen te beperken. Wij demonstreren de functionaliteit van
dit model in de context van de aankoop van voertuigen in Zwitserse huishoudens.
In de laatste studie wordt een model gecreëerd om de keuze van activiteiten van
migranten in centra te simuleren door ons kader toe te passen in combinatie met de
behoeftenhiërarchie van Maslow. Vervolgens voeren we een experiment uit om de
invloed van verschillende combinaties van kerndeterminanten op de activiteiten van
de migranten te testen.

Door het gebruik van een modulaire agent architectuur kunnen we makkelijk
aanpassingen maken voor verschillende contexten, zoals de keuze van de vervo-
erswijze, de aankoop van een voertuig of dagelijkse activiteiten. Het meeste werk
kan worden gedaan door de invloeden op het hoogste niveau in het TIG-model te
wijzigen op basis van de gesimuleerde verschijnselen en de beschikbare gegevens.
Verschillende omgevingskenmerken kunnen ook in aanmerking worden genomen (bv.
statisch/dynamisch, bekend/onbekend, geheel/gedeeltelijk waarneembaar, deter-
ministisch/stochastisch) door de kerncomponenten uit te breiden of andere theorieën
en concepten uit de sociologie te gebruiken. De uitkomsten van deze casestudies
bewijzen dat de architectuur kan dienen als theoretische onderbouwing van de mod-
ellen en de gebruikers in staat stelt het causale verband tussen de determinanten
van de TIG en het uiteindelijke gedrag te beoordelen. Dit proefschrift benadrukt ook
het belang van gegevensverzameling en experimenteel ontwerp om verschillende
aspecten van menselijke besluitvorming beter vast te leggen en te begrijpen.
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Chapter 1

Introduction

1.1 Motivation

As a society, we face many social and political challenges, such as changes in the pop-
ulation structure (due to birthrate and migration), financial and economic instability
and threats against health (e.g. epidemics and environment hazard) [Con+12]. To
provide a better understanding of the social processes underlying these challenges,
scientists have begun to classify and categorise them into complex systems [Con+12;
HB11a]. These systems are collections of many individuals that interact with each
other, motivated by their own beliefs and personal goals together with the circum-
stances of their social environment. They are examples of non-linear systems, in
which the change of the output is not proportional to the change of the input. Hence,
they are difficult to be studied using traditional statistical or mathematical techniques
[GT00], such as regression analysis [DS98], probability distributions [GKO05] or statis-
tical inferences [Sil17]. In many of these instances, it is the case where no analytically
traceable set of equations can be devised to describe the system without making
assumptions or estimations based on incomplete knowledge of the phenomenon
[GT00; PD02].

Social simulation has introduced a new way of thinking about complex systems,
based on the ideas about the emergence of social patterns from relatively simple activities
[Sim96]. These simulations often involves the usage of Agent-Based Model (ABM)
to build an artificial society with software agents. The main idea is to simulate the
operations and interactions of multiple agents following specific behavioural rules
(micro-level) to search for explanatory or exploratory insights into social phenomena
(macro-level). These models have helped shift analyses away from structural and
aggregate factors to the role of individuals [MW02; BS15].

As one of the forerunners work in this field, Schelling’s work in 1971 was among
the first models to show how global properties may emerge from local interactions
between individuals that have tendencies to refer to their neighbours [Sch71]. It
was especially useful for the study of residential segregation of ethnic groups where
agents represented householders who relocate to the city. In the 1980s, Robert Axelrod
held a computer tournament where people were invited to submit strategies for the
Prisoner’s Dilemma and had them play in an agent-based manner to determine a
winner [AH81]. The author continued to develop several other agent-based models
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in the field of political sciences [Axe97]. Another model developed by Craig Reynold
in the 1980s was one of the first biological agent-based models that contained social
characteristics [Rey87]. In addition, Joshua M. Epstein and Robert Axtell created
one of the notable large-scale ABM, Sugarscape, to investigate the role of social
phenomena, including pollution, the transmission of disease, sexual reproduction
and seasonal migration [EA96].

In recent decades, social and life science researchers have become increasingly
interested in ABM due to its potential assistance in discovering and analysing social
mechanisms [CP14]. For example, Cohen et al. studied the role of direct reciprocity
(i.e., a form of conditional cooperation between related or unrelated individuals) on
an iterated Prisoner’s Dilemma [CRA01]. To investigate social convention, Hodgson
and Knudsen modelled an agent population randomly located in a cell ring that had
to decide whether to drive clockwise or counter-clockwise around a ring to avoid
collision[HK04]. Similarly, Epstein built a model to investigate the link between
the strength of a convention and the cognitive costs that individuals have to pay
to decide what to do [Eps01]. Hedström and Åberg built an empirically calibrated
ABM to examine how social influence mechanisms can explain aggregate youth
unemployment rates [HÅ05]. Interested readers can find many more examples in
surveys such as [MW02; BS15; BA15].

Beyond academic interest, there is a practical need for models that allow for
contingent behaviour of individuals and feedback between micro and macro levels of
analysis, most notably in the fields of epidemiology and public policies (e.g. [AG13;
BS14; HMNK17]). ABM can become a laboratory for researchers to manipulate the
micro-level parameters in a controlled way (according to an experimental procedure
in which the baseline condition is calibrated on empirical observations) and allow
counter-factual or if conditions to be explored in alternative/artificial scenarios.
Therefore, ABM can decrease the costs of quantitative manipulations to explore
hypothetical scenarios and time-spaces that would be significantly difficult to study
or observe empirically [BA15].

However, the most popular and highly-cited method of ABM often employ ad-
hoc, simple condition-action rules based on theoretical assumptions or derived over
statistical distributions, mainly due to their objective of giving insights on possible
explanations for general social patterns (see surveys such as [Gro+17; DD19] and
discussion in [Gil04; MLT09; Sun+16]). This highly abstract design leads to one of
the main criticisms of ABM: unrealistic decision-making process, which provides
limited understanding of the causal mechanisms in the agent’ actions [WW13; Man14;
Nap18]. To illustrate this point, we introduce an example in the field of mobility,
which is based on our first case study presented in Chapter 5. Our main objective is
building a model for the simulation of daily mobility choices. We are interested in the
roles of different decision-making determinants (e.g. attitude, emotion, habit). An
agent represents an individual or a household that has to choose between a complete
set of exclusive alternatives (e.g. which vehicle or service to use). Each option can be
given a utility value from an agent’s evaluation process based on its parameters and
the decision-making preferences.
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In Figure 1.1, an agent has to go from home to work. It has several options,
including (1) driving a car, (2) taking a bus or (3) cycling. Combinations of different
modes of transport are also possible, e.g. (4) driving or (5) cycling to a station and then
taking a train. These potential options can be evaluated under different determinants,
such as time, cost, enjoyment, environmental friendliness, sociability, etc. An agent
can make a decision based on the following aspects or strategies:

FIGURE 1.1: A mobility choice example

• Economic attitudes: Classical economists typically assume that behaviours
are motivated primarily by material incentives and that decisions are gov-
erned mainly by self-interest and rationality [KS02]. In other words, agents
are expected to maximise certain profits, revenue, or rate of profit while not
violating any constraints. According to this theory, our agent prioritises the
cost and time determinants. If the fuel price is low, driving alone (1) and a
combination of car and train (4) would be the top options. Another possibility
is applying prospect theory, which also introduces another important aspect
from cognitive psychology to the rational actor model - people’s willingness to
seek or avoid risk influences their decisions [Kah79]. In this case, agents have a
degree of risk aversion, whereby they bias decisions towards avoiding loss. So,
for example, if our agent wants to avoid being late due to a traffic jam, it could
choose the option to take public transport (e.g. options (4) or (5)) for a more
accurate journey time. A more elaborate model can have the agent deliberating
to update its belief about the environment.

• Affective: We could consider the amount of leisure the transportation mode
can provide according to the agent’s perception [BDF16]. If the agent believes
driving a car is the most comfortable way to get to work, (1) is the best alterna-
tive.

• Social: There are different social biases that we can consider. For example,
bandwagon effect (also known as herding) refers to the tendency of people to do
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(or believe) things because many other people do (or believe) the same things
[SB15]. In our model, the agent can believe in the climate urgency and want to
choose an environment-friendly mode of transport. Hence, it can use the bus
(2) or biking (3) to go to work. Another type of bias is framing, where people
may make different decisions based on the same information, depending on
how that information is presented [Dru01]. For example, our agent can choose
the car (1) since it is presented as the most trendy and comfortable option.

• Norm Consideration: Observing (subconsciously or consciously) the behaviours
of others can have an impact on a person’s behaviour [CRK90; CKR91]. For
example, our agent can start by using the car (1) to go to work. However, it
finds that other agents are using the bus or the train on the way. After a few
more trips, its preferences for the bus (2) and the train (4-5) are updated to be
higher than using the car option.

• Learning: The agent can start by experimenting with all options over a certain
period (e.g. one week) before deciding on the best alternative. This decision
strategy is suitable for an unknown environment for the agent [Mit13].

• Habit: It is a behaviour we often do, almost without thinking [Gra08, p. 359].
Without a significant change in our agent context, it can repeat the previous
action without deliberation. In a sense, it provides a heuristic for decision-
making.

The agent decision-making process needs to identify and distinguish their effects
on the agent’s behaviours. At the same time, the agent can combine these different
aspects for a more complex decision-making process. For example, it has a habit of
cycling to work (3), but because many neighbours start to take the bus, it starts to
follow them and take the bus (2). In another scenario, although an agent receives a
discount to use the bus (2), it still chooses the car (1) due to habit. Hence, our model
needs to be able to represent these different decision-making determinants.

We can now consider some options to simulate these aspects. A simple design in-
volves agents follow some sets of behaviour rules (i.e. decision-tree or production-rule
systems), which apply both in information-gathering stage and making a final choice.
It is typically used in conjunction with a set of assumed preferences for the agent to
rank outcomes by desirability order. Examples include heuristics that update agent’s
behaviours according to the accumulated experience (e.g. [TBS05]) or pick the next
option that satisfies the qualities identified from empirical data analysis (e.g. [HB99]).
In this setup, modellers have a straightforward job to trackback any changes in agents’
behaviour but have to face a significant increase in computational complexity when a
new rule is introduced [RN10, pp. 46-48]. Alternatively, ABM projects in the mobility
domain often use random parameters logit [Anw+14] to assign predicted probabilities to
outcomes of a set of alternative options. Examples include [CBA08; Anw+14]. These
models incorporate empirical data (such as observed choices, survey responses to
hypothetical scenarios or administrative records) becomes a flexible framework to
estimate the parameters of choice behaviour. However, they cannot distinguish the
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mentioned aspects of decision-making and their impact on behaviour, so we do not
consider them suitable options for our purpose. As the economic interpretation of
rationality often influences researchers within the field of mobility mode choice, there
is a limited commitment to create a general agent-based approach that can highlight
multiple dimensions in decision-making (see surveys such as [Sha+13; Sch+20a]).

We can look for alternatives in the field of Multiagent System (MAS), which
uses agents for the primary purpose of solving engineering problems [DKJ18]. MAS
decision-making architectures are often implemented based on the principle of cog-
nitive theories, such as the theory of human practical reasoning [Bra87] or unified
theories of cognition [New94]. Therefore, they can be sophisticated and have cog-
nitive realism. By familiarising themselves with these agent architectures, ABM
modellers can refine their views of the agent as a complex although computable
entity. It could further enable more recognition of the role of the mind as a necessary
intermediate between social structures and social behaviours [Min88]. However, the
benefits above are currently limited in practice due to the difference in methodologies
and concepts between MAS and social research. MAS architectures are often derived
from computer science concepts and have limited expressive power in other domain’s
ontologies [Dig17]. In addition, the number of architectures from MAS is significantly
large1. Therefore without a sufficient technological background, it is difficult for a
modeller to select and implement one architecture accurately to cover the multitude
of factors affecting decision-making.

In terms of our mobility example, MAS agent architectures can be used to re-
produce a more elaborate decision-making process by assigning agents with beliefs,
values or world views that correspond to observation from ethnographic data or
stakeholder’s assessment. Examples include Belief-Desires-Intentions (BDI) architec-
ture and its derivatives (e.g. BOID [Bro+02], eBDI [Per+05], BRIDGE [DDJ08]). Each
of these models focuses on an aspect of decision-making, e.g. emotions (eBDI), norms
(BRIDGE). Therefore, they have limited capability to capture other aspects. Similarly,
normative models, such as NoA and EMIL-A, do not consider the affective or learning
dimensions. Another class is cognitive architectures, including CLARION [Sun06],
ACT-R [TLA06], SOAR [Lai12] and PECS [Urb00]. However, they do not have the
ability to take into account personality differences, emotion and social variables2.

The variety of the aforementioned aspects and strategies makes it challenging to
use only one of the mentioned architectures to represent them correctly. Consequently,
creating causal links between individual aspects and the agent’s behaviour can be
a difficult task. Moreover, as they are developed based on specific cognitive and
computer science theories, there is a conceptual gap that limits their application in
social science fields.

One promising direction to minimise this gap is to build a framework from a
theory of human decision-making that covers a broad set of decision-making aspects,
or so-called behaviour determinants. As highlighted in [Sch+17], users can expect
manifold benefits from developing models based on this framework:

1A survey of all these architectures is provided in Chapter 3
2More details of these architectures can be found in Chapter 3.



6 Chapter 1. Introduction

• It facilitates the reuse and comparison of models since a theory could serve as
a standard reference. This process can save time, accelerate scientific advance-
ments, and foster the development of new theories [Bel+15; CCB08].

• Integrating such theories into the decision process can help advance the mod-
elling of behavioural aspects and processes that may yield insights into the
possible social phenomena to different events and policy measures or changes
in the environment.

• At the same time, modelling an agent’s decision-making based on a theory can
help limit the enormous options of what aspect could be included in the model
to only those deemed relevant by the theory [Edm17b].

• This approach may provide a standard protocol in interdisciplinary teams and
facilitate communication between modellers and social scientists [DEB07].

To create such a framework, we perform a literature review. As the results, a
candidate for the theoretical foundation of our framework is the Theory of Interper-
sonal Behaviours (TIB) [Tri77]. TIB states that behaviour is primarily based on the
intention to engage in the act, habit and facilitating conditions. In addition, it includes
a meaningful set of determinants covering all decision-making aspects mentioned.
TIB also provides a function to derive the utility value (or preference of an agent)
for an action. We formalise the decision-making framework following the process in
[Sch+20b]. More information about the search and formalisation process can be seen
in Chapter 4.

Next, by implementing this framework in different decision-making contexts,
this thesis can provide an assessment of its functionality and potential application in
future study (see chapters 5 to 8).

1.2 Thesis objectives

As mentioned above, we aim to create and formulate an agent framework based on
a theory that allows modellers to think more systematically about how to simulate
human decision-making in their models and use the diversity of concepts from the
field of social sciences. We acknowledge that there is a significant amount of available
behaviour determinants that can be considered in one model3. As a first step, we
decide to include the five high-level dimensions that are often applied in an agent’s
decision-making, according to [BG14]:

• Cognition: The agents have some form of deliberation to choose between
different alternatives.

• Affection: The agents include an explicit representation of emotion and account
for its impact on agent’s behaviour.

3Interested readers might refer [Die10] and [Bau03] for concise psychology surveys of human decision-
making theories.
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• Social aspects: The agents are capable of distinguishing social network rela-
tions and status.

• Norm: The agents include an explicit reasoning about social norms, institutions
and organizational structures.

• Learning: The agents can adapt their behaviour to the change in environment.

These dimensions cover a wide range of topics mentioned in ABM study (see
surveys such as [Gil04; MLT09; HB11b]). They will also be used to compare the
related work in Chapter 3 and to ensure our framework can cover a sufficient amount
of aspects that are relevant for social studies.

To allow better reusability of the agent design for different contexts, the com-
ponents of our framework are expected to be extensible or can be replaceable by
aspects from other theories. It also enables more than five of the dimensions of
decision-making above to be considered.

Since research in ABM is often rooted in realism, data patterns arising from agent’s
behaviours will need to be able to compare and contrast, in selective and sometimes
subtle ways, with a range of corresponding empirical results. This capability will
partly allow the assessment of a specified level of external validity, but it will also
support the comparative evaluation of diverse decision-making aspects and their
impacts on the behaviour of the agents.

We list below a summary of the criteria required for our framework:

• The framework shall have a sophisticated decision-making mechanism, moving
away from ad-hoc, oversimplified behavioural rules.

• The framework shall allow expression of assumptions, postulates and concepts
explicitly drawn from social sciences. At the minimum, it should include
the following five dimensions: cognition, affective, social factors, norm and
learning.

• The framework shall have a extensible mechanism, which allows to reflect a
variety of decision-making aspects.

• The framework shall offer a mechanism to incorporate empirical data.

• The framework shall be applicable in different decision-making contexts and
domains, e.g. mobility mode choice, health care, and public policy.

1.3 Research questions

As mentioned, we use TIB as the theoretic foundation to create an agent behavioural
decision-making framework. The framework is then applied to create agent-based
models in different domains and contexts. These models can provide evidence for the
efficiency of our proposed framework to help to close the conceptual gap mentioned
in Section 1.1.
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In addition, we can assess the practicability of the developed models by identifying
their purposes for real-world application. This part will be based on the definitions
provided by Edmond in his paper [Edm17a]:

• Prediction: The model has the ability to reliably anticipate well-defined as-
pects of data that are not currently known to a useful degree of accuracy via
computations using the model.

• Explanation: The model aids the understanding of why something occurs, such
as complex social phenomena.

• Description: The model is used to record, in a coherent way, a set of selected
aspects of the phenomena under observation.

• Theoretical exposition: The model allows one to explore the consequences of
theoretical assumptions and properties using mathematics and computer simu-
lation.

• Illustration: The model makes an idea of a complex system clear or shows it is
possible by demonstrating it in a concrete example that might be more readily
comprehended.

• Analogy: The model of a process is used as a way of thinking about something
in an informal manner.

• Social learning: The model can capture a shared understanding (or set of under-
standings) of a group of people.

Hence, the following questions will be addressed in this thesis:

• Question 1: What does an implementation of an agent decision-making frame-
work with TIB offers? Does it help to close the conceptual gap between MAS
and ABM?

• Question 2: When developing models for different case studies, what are the
limitations of our agent decision-making framework with TIB?

• Question 3: For which research purposes are the models based on our agent
decision making framework especially useful?

1.4 Structure of the thesis

To create a socio-psychology framework for agent decision-making, we will first
look into the necessary components of an agent-based model, specifically in the
field of single decision-maker. Next, a literature review will provide the current
state-of-the-art and why a new agent decision-making framework is needed. We
will then formulate the framework and apply it to different practical projects to test
its functionality in various fields and contexts. Further experiments can then be
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performed to provide insight into the interchangeability of our determinants set. The
rest of this thesis is structured as follows:

• Chapter 2 provides the foundations of this study. In particular, it first introduces
the ABM methodology and its components, including agents, the environment
and their interactions. Section 2.1 in this chapter discusses the definition,
types and general architectures of an agent. In addition, the mathematical
and theoretical background of the agent’s decision-making is provided. The
next two sections summarise the properties of an environment and the type of
interactions that should be considered in ABM.

• Chapter 3 further discusses the related work in agent decision-making architec-
tures and socio-psychology frameworks. The categories include BDI and its
derivatives, normative architectures, cognitive models and inspired psycho-
logical frameworks. Combining with the foundations in the previous chapter,
Chapter 3 explain why these state-of-the-art approaches are unsuitable for
our aforementioned research purposes and the current research gap for a new
framework.

• After the fundamentals of this research have been laid out, the specification
of the new architecture is presented in Chapter 4. In the first Section 4.1, we
survey and provide the reasons for which TIB is chosen among some recently
developed behaviour theories. The proposed decision-making framework
is then detailed in Section 4.2. It also gives an overview of an agent’s core
components, utility function and running examples. Next, the description of
the classes and their pseudo-code are provided, which is translated into Java
code in Appendix B. The steps to implement the framework are listed in the
next section. Finally, we conclude the chapter with some words about our
framework documentation.

• The next four chapters 5 to 8 show the implementation of our framework to
develop agent-based models in four case studies in the domain of mobility,
trust and reputation, vehicle purchasing and public health. Chapter 5 focuses
on simulating modal choices of daily transportation, representing short-term
decision-making. Trust and reputation of train services are the focus of the
following study (Chapter 6). The agent’s decision component is updated to
consider uncertainty in the environment. The third case study centres around
purchasing vehicles and aims to extend the agent’s perception component to
account for bounded rationalities (Chapter 7). Lastly, we add a case study
about the migrants’ behaviours in centres that enable the spread of COVID-19,
where a different theory is utilised to resolve the problem of missing socio-
psychological data (Chapter 8). In each case study, we provide the context,
state-of-the-art, data mapping, decision-making mechanism, calibration and
an experiment for the framework’s functionality. These sections are presented
following the framework implementation steps provided in Chapter 4.
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• Chapter 9 summarises the previous experience in the process of designing and
applying our framework to answer the research questions above. First, it looks
at the advantages of building an agent framework using the TIB’s and whether
it helps to reduce the gap between MAS and ABM (Question 1). The following
section assesses the issues of using the framework for model development
(Question 2). Finally, we generalise the modelling purposes applicable to our
generated models and experiments (Question 3).

• Finally, a conclusion is drawn in Chapter 10. We then outline future research
and development directions for the framework.
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Chapter 2

Foundations and principles

In this chapter, we present the foundations and principles for this thesis. We first
introduce the background of Agent-Based Model (ABM). One of the most recent and
prominent definitions was given by Nigel Gilbert:

"Formally, an Agent-based Modelling is a computational method that
enables a researcher to create, analyse, and experiment with models
composed of agents that interact within an environment." [Gil19, p. 2]

This definition centres around the functionality of ABM and the contexts where it
is beneficial. Focusing more on the components of ABM, Wilensky and Rand gave
the following definitions:

"The core idea of Agent-based Modelling is that many (if not most)
phenomena in the world can be effectively modelled with agents, an
environment, and a description of agent-agent and agent-environment
interactions." [WR15, p. 32]

They highlight the three main components that are necessary for an ABM: 1)
agents, 2) an environment, and 3) the interactions. The following three sections
discuss them in details. In addition, we summarise them as the technical requirements
that apply to our framework.

2.1 The agent

There are many definitions that have been given to agent in the literature (e.g. [Gre+97,
p. 2], [Woo09, p. 21], [BZW12, p. 19], [Gil19, p. 5]). We are also aware that there
is currently no universal agreement in the literature on a precise definition. In this
thesis, we follow the one proposed by Russell and Norvig, which is well-know within
the fields of MAS and ABM:

"An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators."
[RN10, p. 34]
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The components of this definition can be seen in Figure 2.1. In simple words,
an agent can be described as a function that receives percepts from its environment
and produces action(s) as output. The component with a question mark denotes
an internal computing process in which the agent decides on the most appropriate
action(s). Its design ranges from simple mapping rules to complex processes, which
will be further discussed in Section 2.1.1.

FIGURE 2.1: An agent with its component, taken from [RN10, p.
35]

In the following subsections, we first discuss the mathematical and theoretical
background necessary to formalise and reason about the agent decision-making
process. The agent’s decision-making process can be categorised into different agent
types based on the implementation principles and required components. We will
introduce four of them in the first subsection, including simple reflex, model-based
reflex, goal-based and utility-based agents. In practice, these agent types can be built
upon several architectures, each of which is a blueprint depicting the arrangement of
components and flow of information. The description of four general classes of agent
architectures is provided in the final subsection, including logic-based, reactive, BDI
and hybrid architectures.

2.1.1 Mathematical and theoretical background

This section provides the foundations of decision-making process in an agent using
a combination of utility theory and probability theory. In the rest of this thesis, we
follow the notions and concepts mentioned by Russell and Norvig in [RN10, pp. 610-
636] to deal with choosing among actions based on the desirability of their immediate
outcomes. The authors proposed a definition of rational agent:

"For each possible percept sequence, a rational agent should select an
action that is expected to maximise its performance measure, given
the evidence provided by the percept sequence and whatever built-in
knowledge the agent has." [RN10, chap. 2, p. 37]
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In a real-world situation, we often have to make decisions in an environment that
is stochastic and partially observable, in which the same action performed twice may
produce different results or may even fail completely. Russell and Norvig defined
a random variable, RESULT(a), whose values are the possible outcome states. The
probability of outcome s′, can then be written as:

P(RESULT(a) = s′|e) (2.1)

where e is evidence observations of events that action a is executed.
A utility function, U(s), can be use to capture the agent preferences. It assigns

a single number to express the desirability of a state and can take a cardinal form
(specific numeric value) or an ordinal form (ranking choice by order). Given the
evidence (EU(Do(a)|e)), the expected utility of an action is defined as follows:

EU(a|e) = ∑
s′

P(RESULT(a) = s′|a, e)U(s′) (2.2)

A rational agent can follow the principle of Maximum Expected Utility (MEU), i.e.
it simply chooses the action that maximizes the agents expected utility [RN10, pp.
611]:

action = arg max
a

EU(a|e) (2.3)

The MEU principle formalises the general notion that the agent should “do the
right thing”. However, it does not go to the full operationalisation of that advice
[RN10, p. 611]. It is because computing P(RESULT(a)|a, e) requires a complete causal
(i.e. possible outcomes) model of the environment and probabilistic inferences of
the agent’s beliefs, which can have NP-hardness (i.e. there are no polynomial-time
algorithms to solve this problem) [RN10, pp. 510-551]. In addition, U(s′) requires
search or planning because an agent needs to know the possible future states in order
to assess the worth of the current state.

The MEU principle is not the only rational way to make decision. The agent
can also maximises the weighted sum of utilities or minimises the worst possible
loss. However, it provides a clear relation to the idea of performance measures for
a possible action [RN10, p. 611]. The following notations can be used to describe
agent’s preferences:

• A � B: The agent prefers A over B.

• A ∼ B: The agent does not prefer one over another.

• A � B: The agent prefers A over B or considers no difference between them.

In an uncertain environment, we can think of the set of outcomes for each action
as a lottery ticket. Russell and Norvig define a lottery L with multiple outcomes
S1, ..., Sn that occur with probabilities p1, ..., pn as follows [RN10, pp. 612]:

L = [p1, S1; p2, S2; ...pn, Sn] (2.4)
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We list six constraints that are required in any reasonable preference to obey (also
known as known as the axioms of utility theory) according to Neumann [NVJ44]:

• Orderability: Exactly one of (A � B), (B � A), or (A ∼ B) holds.

• Transitivity: Given any three lotteries, if an agent prefers A to B and prefers B
to C, then the agent must prefer A to C.

(A � B)
∧
(B � C) ⇒ (A � C) (2.5)

• Continuity: If some state B is between A and C in preference, then there is
some probability p for which the agent is indifferent between getting B for sure
and the lottery that yields A with probability p and C with probability 1 - p.

A � B � C
∧

∃p[p, A; 1 − p, C] ∼ B (2.6)

• Substitutability: Simpler lotteries can be replaced by more complicated ones,
without changing the indifference factor.

A ∼ B ⇒ [p, A; 1 − p, C] ∼ [p, B; 1 − p, C] (2.7)

• Monotonicity: If an agent prefers the outcome A, then it must also prefer the
lottery that has a higher probability for A.

A � B ⇒ (p > q ⇔ [p, A; 1 − p, B] � [q, A; 1 − q, B]) (2.8)

• Decomposability: Compound lotteries can be reduced to simpler ones using
the laws of probability. An agent should not automatically prefer lotteries with
more choice points.

[p, A; 1 − p, [q, B; 1 − q, C]] ∼ [p, A; (1 − p)q, B; (1 − p)(1 − q), C] (2.9)

From these constraints, we can derive the following consequences (for the com-
plete proofs, see the work of Von Neumann and Morgenstern in [NVJ44]):

• Existence of Utility Function: If an agents preferences obey the axioms of
utility, then there exists a function U such that U(A) > U(B) if and only if A is
preferred to B,and U(A) = U(B) if and only if the agent is indifferent between
A and B.

U(A) > U(B) ⇔ A � B
U(A) = U(B) ⇔ A ∼ B

(2.10)

• Expected Utility of a Lottery: The utility of a lottery is the sum of the probability
of each outcome multiplied by the utility of that outcome.

U([p1, S1; ...; pn, Sn]) = ∑
i

piU(Si) (2.11)
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In general, each outcome Si of a lottery can be either an isolated state or another
lottery. Once the probabilities and utilities of the possible outcome states are specified,
the utility of a compound lottery involving those states is entirely determined. Because
the outcome of a non-deterministic action is a lottery, an agent can act rationally, i.e.
consistently with its preferences, only by choosing an action that maximises expected
utility according to Equation 2.3 [RN10, p. 614].

The preceding theorems establish that a utility function exists for any rational
agent but do not establish its uniqueness. An agent’s behaviour would not change if
utility function U(S) were transformed according to an affine transformation:

U′(S) = aU(S) + b (2.12)

where a and b are constants and a > 0.
The existence of a utility function that describes an agent’s preference behaviour

does not necessarily mean that the agent is explicitly maximising that utility function
in its deliberations. Rational behaviour can be generated in several ways. However,
by observing a rational agent’s preferences, an observer can construct the utility
function representing what the agent is trying to achieve. Combining with Von
Neumann and Morgenstern’s theorem and constraints [NVJ44], it can be used for
measuring the strength of a rational agent’s preferences over sure options. We refer the
interested reader to Gilboa [Gil09] for a comprehensive discussion of the theoretical,
philosophical and mathematical properties of decision-making under uncertainty.

The notion of utility can be modified to capture several concepts in different
research fields. For example, classical economists typically assume that an agent’s be-
haviour is motivated primarily by material incentives and that decisions are governed
mainly by self-interest and rationality [SS15; McF01]. In this context, decision-makers
use all available information logically and systematically to make the best choices
given the alternatives and the objectives to reach [KS02]. In a typical ABM design,
agents make decisions to maximise certain profit, revenue, or rate of profit while
not violating any constraints. However, in many other designs, more abstract utility
functions (e.g., the CobbDouglas utility function [CW04]), which sometimes includes
ecological indicators (e.g., [NK09]), or consumption, aspiration (e.g., [GPL03; Sim55]),
are used instead of monetary values. These functions often take an additive or expo-
nential form of a weighted linear combination of many criteria under consideration
(e.g., [Le+08; Chu+09; Zel+08; Bro+04; BT06]). With such utility definitions, it is possi-
ble to calculate the probability of an agent’s choosing one option (e.g., one site or one
opportunity) as the probability that the utility of that option is more than or equal to
that of any other option. Whichever method is used, the agents are often assumed to
make rational choices. Another alternative is the usage of Prospect Theory, proposed
by Daniel Kahneman and Amos Tversky [TK79]. Their theory assumes that people
derive utilities from gain and loss which are measured relative to some reference points,
rather than from the resulting outcome of the decision. In this case, the utility function
follows the loss-aversion bias; namely, the “pain” of losing α dollars should outweigh
the “pleasure” of gaining α dollars.
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Decision-making can be high stakes and involve multiple aspects, such as in
public policy decisions. All similar problems, in which outcomes are characterised
by two or more attributes, are handled by multi-attribute utility theory. The attributes
can be written as X = X1, ..., Xn. A complete vector of assignments can be presented
as x = x1, ..., xn, where each xi is either a numeric value or a discrete value on
an assumed order. When all other things are equal, higher values of an attribute
correspond to higher utilities. The multi-attribute utility theory’s main goal is to
calculate a utility function U(x1, ..., xn), which represents the person’s preferences on
lotteries of bundles. In other words, lottery A is preferred over lottery B if and only if
the expectation of the function U is higher under A than under B:

EA[U(x1, ..., xn)] > EB[U(x1, ..., xn)] (2.13)

As one of our research objectives is to cover multiple dimensions of decision-
making (see Section 1.2), we need to represent the U(x1, ..., xn) function precisely.
For this purpose, the strongest independence property, i.e. additive independence,
is considered: two attributes X1 and X2 are preferentially independent of a third
attribute X3 if the preference between outcomes x1, x2, x3 and x′1, x′2, x3 does not
depend on the particular value x3 for attribute X3. This property holds true for
our decision-making dimensions. According to Keeney et al. [KRM93, p.295], the
n-attribute utility function can take an additive form:

U(x1, ...xn) =
n

∑
i=1

ki ∗ Ui(xi) (2.14)

where U and Ui are normalized to the range [0, 1], and the ki is a normalization
constant. This function implies that assessing an additive value function of n attributes
can be done by assessing n separate one-dimensional value functions, reducing an
exponential in the number of preference experiments. It is a natural way to describe
agents’ preferences and is valid in many real-world situations [RN10, p. 525]. Even
when the additive independence does not strictly hold, the Equation 2.14 still provides
a good approximation to the agents preferences [RN10, p. 525]. When uncertainty
is present in the simulation domain, the structure of preferences between lotteries
and the resulting properties of utility functions also need to be considered. Interested
readers can find a more detailed discussion in [KR76].

In this thesis, we utilise the notion of the utility function and its additive form
for multiple attributes as foundations to compare an agent’s options in both certain
and uncertain environments. In terms of selecting a behaviour theory suitable for our
research purposes, it is essential that this theory can provide a way to capture these
notions effectively.

2.1.2 Agent types

In this section, we describe different agent types underlying how an agent takes an
input from the environment and derives an action output. This section follows the
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work of Russell and Norvig [RN10, pp. 46-54], starting from rather simple reflex
agent, then discuss more complex ones.

Simple reflex agent

This agent type works on predefined condition-action rules, which means it performs
its tasks by simply mapping the current state to corresponding action. The structure
of this agent type can be seen in Figure 2.2, showing how the condition - action rules
allow the agent to make the connection from percept to action.

FIGURE 2.2: The typical model of a simple reflex agent, taken from
[RN10, p. 49]

This type of agent has a simple reasoning process. Considering that our research
framework needs to move away from the ad-hoc, oversimplified representation of
decision-making, this design is not a good fit. In addition, it only works correctly if
the decision can be made in a fully observable environment [RN10, p. 49]. As one of
our research objectives is to work in multiple decision-making contexts, which can
include a partly observable environment, this agent type can limit the usage of our
framework.

Model-based reflex agents

Model-based reflex agents can work in a partially observable environment by pro-
viding an internal state to keep track of the part of the world that is either visible or
invisible to the agent. Hence, it requires two kinds of knowledge for its perception
sequence: 1) information on how the environment evolves separately from the agent,
2) information on how the agent’s actions influence the environment [RN10, p. 50].
A set of condition-action rules can then be used to choose the appropriate action(s).
These processes can be seen in Figure 2.3.

As the model-based reflex agent still mainly based its decision-making on the
condition-action rules, this agent type does not fit our objective of having a system
closer to human deliberation.
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FIGURE 2.3: The typical model of a model-based reflex agent, taken
from [RN10, p. 51]

Goal-based agents

Goal-based agent uses a set of goals to specify desirable situations. Its main objective
is performing actions to reduce its distance from the goal. Hence, it may have to
consider a vast list of a possible sequence of actions, which requires search and
planning4. Figure 2.4 shows the typical structure of such agent.

FIGURE 2.4: The typical model of a simple goal-based agent, taken
from [RN10, p. 52]

Compared to our thesis objective, a goal-based agent has a binary distinction
between good (goal) and bad (non-goal) states, while our target has a continuous
measure of outcome quality. In addition, the main objective of this agent type is

4Interested readers can find a full discussion on AI perspective from the work of Kolp et al. [KGM01].
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solving satisfaction problems and not expressing how the agent deliberates between
options. Therefore, this agent type is not suitable for our framework.

Utility-based agent

In several contexts, having a goal is not enough because the agent may have several
actions that all satisfy this goal. Compared to goal-based agent, utility-based agent
is a more complex form that applies a utility function mapping a state into a real
number. This utility function can be derived from the mathematical and theoretical
foundations mentioned in Section 2.1.1 to measure the agent performance. Even if
the goal is not satisfied by all possible actions, this function also provides a way for
the agent to choose the most appropriate action (e.g. by applying the MEU principle).
Figure 2.5 describes a typical design for a utility agent.

FIGURE 2.5: The typical model of a utility agent, taken from [RN10,
p. 54]

This agent type is useful when there are multiple possible alternatives, and an
agent must determine the optimum action. Compared to reflex agents, it not only
allows a more elaborate decision process but also applicable environments with
different properties. In addition, the utility function provides a way to incorporate
and measure the impacts of different decision-making attributes on the agent’s action
(e.g. economic attitudes, social factors, emotion, habits). Considering our research
objectives in Section 1.2, this type of agent is the suitable classification.

2.1.3 General architectures

The main components of the agent’s implementation and how they interact are
defined in an architecture. The subsection below follows the work of Wooldridge in
[Woo99, pp. 42-66], which introduces four general architectures:

• Logic-base agent architecture: The agent makes decision based on logical
deduction.
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• Reactive agent architecture: The agent makes decisions based on the direct
mapping from situation to action.

• BDI agent architecture: The agent is characterised by the implementation of
beliefs, desires and intentions concepts in the agent’s reasoning process.

• Layered (hybrid) architecture: The agent combines reactive and deliberative
components to form a hierarchy of interacting layers, which have different
levels of abstraction.

As we identified our targeted agent type as the utility-based agent, the reactive
architecture is simply unsuitable for its implementation. Hence, its introduction is
omitted in this section but can be found in [Woo99, pp. 48-54].

Logic-based architecture

The logic-based architecture is based on the traditional artificial symbolic approach by
representing the agent behaviour and the environment with symbolic representations
[Woo99, p. 42]. Hence, the agent action is based on pattern matching and the
syntactical manipulation of these symbolic representations, which correspond to
logical deduction or theorem proving5. The agent is implemented with a set of
deduction rules and a database - a set of logic formulae representing the current belief
about the environment. In action selection, the agent will try to derive a predicate
Do(a) or falsify ¬Do(action), where a represents an action. If it is successful, the
action a will be performed.

Because of its pure logical structure and resulting precise semantics, this model
is interesting for theoretical investigations. However, there are some disadvantages
arising from the fact that their inference can become computationally complex due
to the automated theorem proving process. Decision-making in this architecture
is made on the assumption that the world will not change significantly while the
agent is deciding what to do and that an action which is rational when decision-
making begins will be rational when it concludes. Thus, if agents have to keep a
time constraint, logic-based architecture can become a problem, significantly when
the environment can change during the inference process, limiting its application in
real-world contexts.

BDI architecture

The BDI architecture provides a robust standard framework for any agent-based
simulation that wants to consider a more realistic human decision-making process. It
is a software architecture that implements the principal aspects of Michael Bratman’s
theory of human practical reasoning [Bra87] and has been formalised for the usage
of Distributed Artificial Intelligence (DAI) by Rao and Georgeff [RG+95]. It allows
an agent to have an internal representation of the world to perform their planning

5An introduction and examples of deductive agents can be found in [Woo09, pp. 49-55]
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FIGURE 2.6: BDI agent architecture, taken from [Woo99, p. 59]

processes. The full reasoning cycle of a BDI agent architecture can be found in Figure
2.6. It includes three core components:

• Belief is the informational state of the agent, in other words, its beliefs about
the world. What an agent believes may not necessarily be true (and may change
with time).

• Desire is the objectives or situations that the agent would like to accomplish or
bring about.

• Intention is the deliberative state of the agent - what the agent has chosen to
do. Intentions are desires to which the agent has, to some extent, committed.

In addition, there are four functions:

• brf - Belief revision function takes a perceptual input and the agent’s current
beliefs and determines a new set of beliefs.

• Generate options allows the agent to calculate the options available to satisfy
its desires based on its current beliefs about its environment and its current
intentions.

• Filter represents the agent’s deliberation process, which determines its inten-
tions based on its current beliefs, desires, and intentions.
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• Action selection determines an action to perform based on the updated inten-
tions.

The BDI model is attractive for two main reasons. First, it is intuitive since its
reasoning cycle resembles the kind of practical reasoning that we appear to use in
our everyday life. Second, the basic components (i.e. beliefs, desires, and intentions)
and their functions indicate what subsystems might be required to build an agent.
The main difficulty is knowing how to efficiently implement these functions to strike
a balance between committed and overcommitted to one’s intentions during the
deliberation process. A detailed description of this architecture can be found in
[Woo99, pp. 54-61]. Several extensions have been derived from this paradigm to cover
different dimensions of human behaviour, whose details can be found in Section 3.1.

Layered architecture

The main idea of this architecture is to create an agent that can reflect both reactive
and deliberate behaviours. They are represented by separate subsystems, which are
organised into layers of a hierarchical structure. We can divide this architecture into
two categories based on the flow of information between the layers, i.e. horizontal
and vertical layered architectures.

In horizontal layering, each layer is directly connected to the perceptual input and
action output (see Figure 2.7). In a sense, this structure represents different agents
generating suggestions for a central control. An example of this architecture is the
TouringMachine [Fer92], which consists of three layers: a reactive layer, a planning
layer, and a modelling layer. Each has its own internal process and can operate
concurrently and independently from others.

According to Wooldridge [Woo99, pp. 61-62], a major advantage of horizontal
layered architectures is their conceptual simplicity. In an agent’s design, n different
layers can represent n different types of behaviour. The problem is that the layers can
compete with one another to generate action suggestions. Hence, there is a danger
that the final behaviour output of the agent will not be coherent. One solution is the
introduction of a mediator function, which makes decisions about which layer has
control of the agent at any given time. However, it can generate a bottleneck if the
number of layers and actions are significantly large.

These problems are partly alleviated in vertically layered architectures, in which
perceptual input and action output are processed by at most one layer. They can be
subdivided into one-pass and two-pass control architectures, which are illustrated in
Figure 2.8. In one-pass architectures, the control passes from the first layer (which
gets perceptual input) to the final layer (which produces action output). The main
difference in two-pass architectures is that information flow back down after being
processed by the final layer. In this case, the first layer is responsible for both receiving
the perceptual input and generating action output. Prominent examples of a system
based on vertical layered architectures are the InterRRap architecture [FMP96, p.
403-405] and 3T architecture [PB+97].

In these architectures, the complexity of interactions between layers is reduced at
the cost of some flexibility. It is because the control must pass between each different
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FIGURE 2.7: Information and control flow of horizontal layered
architecture, taken from [MPT95, p. 263]

(A) Vertical one-pass control architecture (B) Vertical two-pass control architecture

FIGURE 2.8: Information and control flow of vertical architectures,
taken from [MPT95, p. 263]

layer to make a decision. This design is not fault-tolerant: failures in any layer are
likely to affect agent performance seriously.

Considering our research objectives, these layered architectures specify how infor-
mation flows between different components of the agent, which is useful for us to
consider and organise multiple aspects of decision-making.

2.2 The environment

The environment defines the conditions in which the agents exist in the system
[Ode+02]. In addition, it provides the space in which agents interact and operate
[CH12]. The environment could also refer to the infrastructure in which agents are
deployed and, thus, be studied as a first-order abstraction from an agent-oriented
software engineering perspective, as thoroughly discussed in [Wey+04].

Regarding the characteristics and dynamics of the environment, Russell and
Norvig propose to consider several properties [RN10, p. 42-46]:
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• Single-agent vs multiagent: An environment with only one agent is a single-
agent environment; otherwise, it is a multiagent environment.

• Episodic vs sequential: In episodic environments, the agent percepts and
performs a single action in each episode. In addition, there is no dependency
between current and previous episodes. In sequential environments, the previ-
ous decisions can influence all future decisions.

• Discrete vs continuous A discrete environment has a finite number of actions
that can be deliberated to obtain the output. On the contrary, the number of
actions remains unknown in a continuous environment.

• Static vs dynamic: An environment is dynamic if it can change while an agent
deliberates. Otherwise, an environment is static.

• Fully observable vs partially observable: An environment is effectively fully
observable if the agent’s sensor can detect all aspects relevant to the choice of
action. On the contrary, it can be partially observable because of noisy and
inaccurate sensors or because parts of the state are missing from the sensor
data.

• Known vs unknown: The outcomes (or their probabilities) for all actions are
given in a known environment. Otherwise, the environment is unknown. A
known environment can still be partially observable.

• Deterministic vs stochastic: An environment is deterministic if the next state
of the environment is entirely determined by the current state and the action
executed by the agent(s). Otherwise, it is stochastic.

As the nature of ABM, we are working in multiagent environments, where multiple
agents are required to give insights into their social patterns. Other environment
properties can be decided based on the modelling context. Therefore, more discus-
sions are provided in chapters 5 to 8 to select the most appropriate ones for each case
study.

2.3 The interaction

From the ABM perspective, Wilensky and Rand categorise the agents and environ-
ments interactions into five different types [WR15, pp. 257-262]. This categorisation is
one of the complete overviews of this topic:

• Agent-Self interactions: The agent decides what to do depending only on its
current internal state. An example in demography is an agent giving birth or
dying after a certain amount of time passes.

• Environment-Self interactions: Several elements of the environment can be
updated themselves without the influence of agents’ actions. For example, in a
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car purchasing model, new types of cars become available in the market in a
specific year.

• Agent-Agent interactions: An agent can influence other agents using their
direct actions. For example, in a driving car simulation, the agent can decide
to slow down or speed up depending on the car in front. Agents can also
communicate with one another using direct (e.g. message passing [Hew77], sig-
nalling [Dan+07]) and indirect methods (e.g. black-board based communication
[Cra88])6.

• Environment-Environment interactions: Different environmental elements
can interact with one another. A typical example is the diffusion of policies, a
region can adopt a successful campaign from its neighbourhood.

• Agent-Environment interactions: This type of interaction is in line with the de-
scription provide in Section 2.1. The agent examines/percepts and manipulates
the environment through its actions. The environment observes the agents and
can influence their actions in some ways.

Depending on the modelling context and type of decision-making, one or many
of these interactions can be considered. According to Wilensky and Rand, the two
types that are most important in ABM are Agent-Agent and Agent-Environment inter-
actions[WR15, pp. 257-262]. We will consider them in more detail in our framework
design (see Chapter 4).

2.4 Summarisation of technical criteria

We summarise below the technical criteria for a suitable framework that can satisfy
the research objectives.

• It includes the basic components of an agent: The agents need a way to
perceive the current state of the environment (e.g. sensors), a way to derive the
agent’s internal state (e.g. memory), a way to communicate the action to the
environment (e.g. actuator) and a decision-making process.

• It is based on an abstract architecture that can organise the flow of informa-
tion between the decision-making determinants: Potential candidates include
logic-based, BDI and layered (hybrid) architectures.

• It provides a way to apply utility functions to compare different alternatives:
The agent’s decision-making provides a way to derive the utility of outcomes
when an action is performed. The usage of utility function has a broad ap-
plication in different areas, such as AI, economic, social and psychological
studies.

6Interested readers can find a more detailed discussion in [CS11]
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• It works in different types of environment: It might involve modifying the
agent’s perception and communication/actuators to adapt to the environmental
change. In addition, the utility function has to consider the probability of
different outcomes from the agent’s actions.

• In terms of interaction, the framework should include a mechanism that allows
a user to implement agent-agent and agent-environment interactions.
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Chapter 3

Related work

This thesis’s main objective is to enhance ABM models with more complex decision-
making mechanisms. One promising direction is to look at MAS architectures and
frameworks. Experts in this field have provided various methods to model people’s
decision-making based on their experience, theoretical assumptions and knowledge.
While this thesis cannot include all existing research and projects relevant to the topic,
we aim to cover a wide range of approaches and their examples. The classification be-
low is partly based on the work of Tina Balke and Nigel Gilbert in [BG14]. In Chapter
2, we identified utility agent type as the application of our framework. Consequently,
in this chapter, we exclude the reactive architecture design and its implementation -
production rule systems. As the thesis focuses on building an agent framework based
on human behavioural research, another category of socio-psychological inspired
frameworks will be discussed, including Modelling Human Behaviour (MoHuB)
[Sch+17] and Consumat [JJV99].

In each section, we describe the agent’s main components and the decision-making
cycle of architecture or framework. In addition, a comparison with our research
objectives is provided. We are particularly interested in whether it can express various
concepts explicitly drawn from social sciences, especially the five-level dimensions:
cognitive, affective, social, norm and learning. Finally, we summarise why they do not
completely fit our research purposes and, therefore, the need to develop a new agent
framework based on the existing work but with some features not yet covered.

3.1 BDI and its derivatives

We introduced the Belief-Desires-Intentions (BDI) reasoning cycle in Section 2.1.3.
Here, we provide a more complete description of typical BDI agent design.

The BDI model [BIP88; RG91] is a popularly used framework, incorporating
beliefs, desires and intentions, to design intelligent autonomous agents. It aims to
meet real-time constraints by reducing the time used in planning and reasoning. A
BDI agent is designed to be goal-directed, reactive, and social [AG16]. It means a
BDI agent is able to react to changes and communicate in its embedded environment
as it attempts to achieve its goals. Mechanisms to response to new situations or
goals during plan formation for general problem solving and reasoning in real-
time processes are also included in BDI systems [GI89; SDSP06]. BDI agents are
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typically implemented as Procedural Reasoning System (PRS), which is a framework
for constructing real-time reasoning systems that can perform complex tasks in
dynamic environments [GHFSS04; SDSP06].

The full BDI agent architecture can be found in Figure 3.1. As mentioned in
Section 2.1.3, the BDI model is established based on three mental attitudes, including
beliefs, desires (or goals) and intentions. To accompany them, there is usually a library
of plans, which define procedural knowledge about low-level actions (or steps) that
are instructions on how to achieve a goal in specific situations. In its reasoning cycle,
a BDI agent updates its beliefs based on its perception. The targeted intentions are
pushed onto a stack, which contains all the intentions to be achieved. Using its
library, the agent uses the first intention of its intention stack to look for any plans
with matching post-condition(s). All options that have their pre-conditions satisfied
according to the agent’s beliefs are considered. The plan of highest relevance to the
agent’s beliefs and intentions is selected. Based on its goals and the plan information,
the agent computes new intentions, updates old ones and then translates them into
executable actions.

FIGURE 3.1: The BDI agent architecture, adapted from [BG14]

Pure BDI agents still lack any specific learning mechanisms (from past behaviours)
and adaptation to new situations [GHFSS04; PWP05]. It is an important feature
for agents situated in dynamic environments, which changes can make methods
for achieving goals that previously worked well to become ineffective. ABM re-
searchers also question whether the three determinants are sufficient to represent
human thought process [RG+95; Her+17]. Several extended architectures address
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these issues by adding some other elements into the architecture, such as obligation
(BOID [Bro+02]), emotion (eBDI [Per+05; JV06]) and social norms (BRIDGE [DDJ08]).

3.1.1 BOID architecture

The Beliefs-Desires-Obligations-Intentions (BOID) architecture is an extension of the
BDI, which focuses on normative concepts, in particular obligations (i.e. the agent is
morally or legally bounded to perform an action) [Bro+02]. It assumes that agents
are aware of all social obligations, although the BOID architecture allows them to
deliberate about whether or not to follow these obligations and contribute to collective
interests. Agents can also drop some obligations in favour of others to deal with
conflict among norms.

Its target is not to reach goals, satisfy desires or fulfil obligations, but to decide
which desires and obligations it will follow given its beliefs and intention. In other
words, it wants to resolve conflicts among its attitudes. According to the work of
Broersen et al. in [Bro+02], the order of the four main components of the agent (i.e.
Belief - B, Obligation - O, Intention - I, Desire - D) can be used to indicate the order of
overruling in the case of conflict between them. Therefore, agents can be classified
into the following types:

• Realistic: Belief overrides all other components.

• Simple-minded: BIDO and BIOD - Intention overrules Desire and Obligation.

• Selfish: BDIO and BDOI - Desire overrules Obligation.

• Social: BIOD, BOID and BODI - Obligation overrules Desire.

These classes specify the components of an agent, how they are related, and
how the information flows around. Propositional formulas are used to represent
the content of informational and motivational attitudes. Each component in the full
BOID agent architecture (see Figure 3.2) has set of formulas - or so-called extension -
as input and output. The platform also includes a planning process (P) to decide which
actions should be performed to achieve the agent’s intentions. The decision-making
cycle in this architecture is similar to the BDI one, except for the intention/goal
generation process. It starts with receiving input from the environment. The agent
then calculates a set of candidate goal sets based on the priority given by its type (e.g.
BIDO versus BDIO), elects one goal set, decides which plans should be performed.
Next, all components are updated and the cycle starts again.

Most works on BOID are concentrated on the formalisation of the idea, and less
on practical implementations [Bro+01; Bro+02; BDT05]. Other issues with this archi-
tecture include computational complexity [BDT05] and finding a simulation platform
that can cope with BOID complex compositional systems [DT04]. Considering our
dimensions, it has the same properties as BDI but allows the modelling of social
norms in terms of obligations [BG14].
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FIGURE 3.2: The general BOID architecture, adapted from [Bro+02]

3.1.2 eBDI architecture

Emotional BDI (eBDI) is one extension of the BDI concept that incorporates emotions
as one decision criterion into the agent’s decision-making process [Per+05; POM07;
JV06]. It is one of the first architectures that account for emotions to control how
agents act upon their environment.

Figure 3.3 depicts the main components of an eBDI agent. It utilises the idea of
Capabilities and Resources as the basis for the representation of emotions inside the
agent [Per+05]. Capabilities are abstract plans that the agent can use to act. The
agent can use its resources (either physical or virtual) to make these plans more
specific by matching them against the agent’s owned capability and opportunities
from the environment. With the limited information about itself and the environment,
the eBDI agent might not have the knowledge of all its resources and capabilities.
Hence, the agent needs to become “effective” by using an Effective Capabilities and
Effective Resources revision function (EC-ER-rf) to consider its perceptions and its Belief,
Desires and Intention components. The Sensing and Perception Module uses semantic
association rules to filter and give suitable semantic meaning to the information from
all perceptions and other sensor stimuli. Another component is the Emotional State
Manager, which is responsible to control the capabilities and resources used in the
information processing phases. On each level, the agent adds an emotional input to
the BDI process that selects the action plan the agent executes. Full description of this
architecture is given in [Per+05; JV06].
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FIGURE 3.3: The eBDI architecture, adapted from [Per+05]

In recent years, Sanchez et al. improved the original model by incorporating a
well-known psychotherapeutic model, the ABC model7, with other affective theories,
to support the modelling of the agents’ behavioural and affective responses [San+19].
Overall, the eBDI architecture improves on BDI architecture with the recognition of
affective dimension but does not consider learning, norms or social relations [BG14].

3.1.3 BRIDGE architecture

Developed by Dignum et al., the BRIDGE architecture extends the idea of the social
norms in BOID and aims to provide a model for agent reasoning, which can describe
the influence of policies or comparable external influences on the behaviour of agents
[DDJ08]. For this purpose, the authors argue that it is essential to provide agents
with constructs for social awareness and reasoning update process [DDJ08]. BRIDGE
architecture also integrates the bottom levels of Maslow’s hierarchy of needs [Mas43]
into the agent’s decision.

The architecture introduces three new mental components: 1) Ego, 2) Response and
3) Goal. The first describes the filters and ordering preferences that the agent uses. It
also defines the agent’s personality type, which determines the choice of reasoning
mode (e.g. explorative, goal-based, belief-based or evidence-based). Response relates
to the bottom layers of the hierarchy of needs and implements the reactive behaviour
of the agent. It directly influences current goals and can overrule any plans. The Goals

7Interested readers can find more details in [Ell62].
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component derives agent’s goals from the agent’s current desires derived from its
preferences and current state (from Ego and Response) and the deficiency need.

In the reasoning cycle of a BRIDGE agent (see Figure 3.4), all components and the
interactions between them have to work concurrently to allow continuous processing
of the input in the form of sensory information (conscious input) and other “stimuli”
(subconscious inputs) [DDJ08]. These inputs are first interpreted by adding extra
weight or priority to beliefs depending on the agent’s personality characteristics
(i.e. Ego)). Next, these beliefs are sorted and used to filter the agent’s desires at
any moment. Candidate goals can then be selected based on the selected desires
and personality characteristics. The next step is calculating possible plans with the
influence of the Ego component. Finally, one of the plans is chosen for execution, and
the agent’s beliefs can be updated. It should be noted that basic urges, the current
emotional state, and stress levels in the Response component can control the order and
choice of current goals.

FIGURE 3.4: The BRIDGE architecture, adapted from [DDJ08]

Regarding our dimensions, BRIDGE can cover the emotional aspects by using
the Ego component to specify types of agents and their different emotional responses
to various stimuli. According to the authors, the components they introduced on
top of BDI (e.g. Ego, Response) influence social norms and their internalisation by
agents [DDJ08]. Similar to BOID, BRIDGE considers norms solely from an obligation
perspective.
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3.2 Normative models

Norms can determine behavioural patterns and are used to guide and control the
performance of actions within a specific context [Kol05]. A norm can be expressed
as an obligation, a prohibition or permission over an individual’s behaviour in a
decision-making context. It can establish what, when and to whom this regulation
is subjected. Therefore, it provides a way to obtain a desirable system behaviour
[DHM10].

Using norms as instruments to influence an agent’s behaviour has been popular
in the ABM community as they are external to the agent and can only be established
within the society/environment in which the agent is situated. Many implementa-
tions of normative agent architectures thus take BDI and procedural reasoning as
a starting point and introduce norms as an influencing factor in this deliberation
process. Example includes models of normative systems (e.g. [BTV06; Dig04; GAD06;
LL03]) and models of norm-autonomous agents (e.g. [KN03; BTV06; Cas+99; Cri13;
And+07b]). The majority of these architectures are abstract framework and have a
limited number of implementations.

The BOID architecture can also be classified in this category due to its implemen-
tation of social obligation. However, since the structure of its components are similar
to the BDI architecture (see Figure 3.2), we listed it in Section 3.1.

Considering our objective of finding the agent architecture that considers not only
norms but also the agent’s deliberation, we focus our attention the three architectures
below:

3.2.1 Deliberate Normative Agents architecture

The Deliberate Normative Agents is a cognitive research-inspired abstract model and
is based on an idea that social norms need to be involved in the decision-making
process of an agent [CC99; Cas+99; CCD99].

The architecture has six components (see Figure 3.5), which can be further grouped
into three layers: 1) an Interaction Management layer, 2) an Maintenance layer, and 3) a
Process Control layer where the processing of the information and reasoning occurs. The
first layer handles the interaction of an agent with other agents and the environment.
Next, the Interaction Maintenance layer records information about the other agents, the
world and society as a whole. The final layer is where the process of information and
reasoning occurs.

At its core, the agent reasoning cycle is similar to the one in BDI (see Section 2.1.3).
The consideration of norms in the architecture adds an additional level of complexity
since the internalised social norms can affect the generation and the selection of
intentions. This process starts with recognising a social norm through observation
and communication. It is then evaluated and stored in the Interaction Maintenance
layer. Using the Process Control layer, the agent determines which norms to adopt
(or ignore) as well as how they influence the agent’s actions. This process results in
norm-specific intentions, which are considered in the core reasoning cycle.
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FIGURE 3.5: The Deliberative Normative architecture, according to
[Cas+99]

Compared to BDI agents, deliberate normative agents are enhanced on the social
and the learning dimensions. It includes an explicit separate norm internalisation
reasoning cycle. Concerning the learning dimension, agents have limited capabilities
to learn new norm-specific intentions [Cas+99]. To the best of our knowledge, there is
no mention of an affective component in this architecture.

3.2.2 NoA architecture

The Normative Agent (NoA) architecture focuses on incorporating norms into agent
decision-making while also using extended notions of norms [Kol05]. It is imple-
mented with an explicit representation of a normative state - a collection of norms
(obligations, permissions and prohibitions) that an agent has at a point in time. Obli-
gations motivate a normative agent to act in order to achieve a goal state. Prohibitions
restrict an agent’s behaviour, whereas permissions allow an agent to pursue certain
activities. NoA agents are equipped with the ability to construct plans to achieve their
goals while not violating any of the internalised norms.

A typical decision-making cycle of NoA agent can be seen in Figure 3.6. According
to the author in [Kol05], it starts with considering the two sources to change its beliefs:
1) external perception of the environment and 2) internal manipulations resulting
from the execution of previous plans by the agent. The agent also looks at external
norms to obtain normative specifications from the environment. Next, the reasoning
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FIGURE 3.6: The NoA Architecture, adapted from [Kol05][p. 80]

cycle performs two distinct operations: 1) the activation and initiation sets of plans,
norms and 2) the deliberation process, including the plan selection and execution.
The activation mechanism activates and deactivates norms and plans in agreement
with the changes of the agent’s beliefs. The action generator then selects a plan to be
executed, which can include a number of sub-activities to fulfil the main plan and
any sub-plans.

Evaluating NoA according to our dimensions, we can see that a deliberation
architecture is used. Emotions or other affective elements are not mentioned explicitly.
Instead, it focuses on norms with many broad definitions (e.g. obligation, permissions
and prohibitions).

3.2.3 EMIL-A architecture

The EMIL-A architecture [And+07a] was developed to model the process of learning,
internalisation and usage of social norms in the agents’ decision-making.

According to the authors in [And+07a], the EMIL-A model contains the following
components:

• four different procedures: 1) norm recognition, containing the mentioned nor-
mative frame, 2) norm adoption, containing goal generation rules, 3) decision
making, and 4) normative action planning.
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• three different mental objects: 1) normative beliefs, 2) normative goals, 3)
normative intentions.

• an inventory which includes: 1) a memory to store a repertoire of normative
action plans and 2) an attitude module to capture the internalised attitudes and
morals of an agent.

EMIL-A include several modules that allow agents to deal with the complexity
of social norms (see Figure 3.7). As the name suggested, the Event Classifier module
perceives, classifies and transfers the events into other specific modules. The Norm
Recognition module allows agents to interpret new social norms from the interactions
with other agents and generate the corresponding beliefs. The Norm Adoption module
determines which social norms and goals are adopted inside the agent’s memory. If
agents decide to comply with these norms and goals, the Norm Compliance module
converts them into normative intentions. The agents use the Norm Enforcement module
to select the most appropriate sanctions to be implemented when others violate a
norm. Finally, the Norm Salience uses a utility function to calculate the expected utility
obtained from either violating or fulfiling a norm, which becomes a criterion for
agents to accept or reject norms.

FIGURE 3.7: The EMIL-A architecture, adapted from [And+07b]

Regarding our dimensions, this agent architecture has the same properties as the
NoA architecture. It utilises logic-based architecture. In addition, EMIL-A focuses
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on the social aspects of norms and considers them as a learning method for related
change of intentions. However, it lacks a representation of the affective dimensions.

3.3 Cognitive models

A cognitive architecture can be defined as a computational model based on the studies
of how the human mind works [New73; Kla+87]. Its main goal is to incorporate the
various results of cognitive psychology in agent’s reasoning to explain a wide range
of human behaviour and to mimic the capabilities of human intelligence [And+04;
CTN07]. As a result, a cognitive architecture should possess the following characteris-
tics, according to [CTN07]:

• Long and short-term memories.

• Structures to represent memories and their organisation.

• Functional processes that operate on these structures.

In this section, we list six of the most well-known cognitive architectures that
consider the structural properties of the human brain from the field of cognitive
sciences: SOAR [LNR87], ICARUS [Lan+91], ACT-R [BA98], CLARION [SMP98] and
PECS[Urb00]. They usually consider social theories and focus on different issues
that were ignored in the rational agent. It should be noted that BDI architecture also
belongs to this category. We separate them due to the conceptual different of their
components and a significant number of architecture based on the BDI structure.

3.3.1 SOAR architecture

SOAR [LNR87] is one of the earliest and most extensively developed AI architectures
in the history. The main idea is that unifying different or overlapped theories without
conflict can produce intelligent behaviours with appropriate learning mechanisms.
Figure 3.8 illustrates the SOAR agent architecture. It comprises a Working Memory
(short-term), a Long-term Memory, a Reasoning module, a Perception module, Action
module and Learning module.

According to Chong et al. [CTN07], knowledge is stored in the Long-term Memory,
which can be divided into procedural, semantic and episodic memories. Procedu-
ral memory provides the knowledge of how to perform a task. Semantic memory
contains general facts about the environment. Episodic memory contains specific
memory of an event that the agent experienced. Hence, both procedural and semantic
memories can be applied universally, whereas episodic memory is contextually spe-
cific. When procedural knowledge is insufficient, semantic and episodic memories
can be employed to aid the problem-solving process.

The Working Memory in SOAR architecture stores all the knowledge that is relevant
to the current situation. It contains the goals, perceptions, hierarchy of states, and
operators. The goal directs the agent’s intention into the desired state. The perception
contains the immediate model of the current environment. The states (and sub-states)
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FIGURE 3.8: The SOAR architecture, adapted from [Lai12]

give information on the current situation. The operator provides the procedure for
problem-solving. The Working Memory also has access to the relevant knowledge from
the long-term memory and motor actions.

The decision-making process in SOAR mainly consists of matching and firing
rules that are context-dependent representations of knowledge [LRN86]. SOAR
architecture allows the firing of rules and retrieving several pieces of knowledge
occur simultaneously. It is based on an idea that it is better to rely on as much
information as possible in an uncertain situation with limited knowledge. To bring
about the knowledge relevant to the current problem, production rules are then
matched with the working memory subcomponents. At the same time, references are
created as recommendations for selection of appropriate operators. This phase ends
when the long term memory finishes the firing of rules, ensuring that all knowledge
relevant are considered before a decision is made [LRN86; LLR06]. The decision
cycle then continues with the decision phase, wherein the preferences are evaluated.
The operators that better satisfy the agent’s goals are chosen and applied during the
application phase. During the output phase, the selected operator is applied as the
agent’s action. If there is insufficient information to select and apply an operator, an
impasse arises, and a sub-state is created to resolve it. In SOAR, there are four types
of impasse: no-change, tie, conflict, and rejection [LRN86; CTN07].

The classical SOAR uses a learning mechanism called chunking, which acquires
rules from goal-based experience [LRN86]. A more recent version (SOAR 9) extends to
reinforcement learning modules. They are also linked with the appraisal component,
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which is used to capture the affective aspect of decision-making. The agent evaluates
the situation along with multiple dimensions such as goal relevance, causality, etc.
The appraisal of how the goal is met turns into the agent’s emotions. This architecture,
however, lacks norms consideration and other social aspects [BG14].

3.3.2 ICARUS architecture

ICARUS shares several core assumptions with other candidate architectures, includ-
ing SOAR and many other reactive architectures [Lan+91]. According to a survey
made by Langley and Choi [LC06], these include claims that:

• Short-term memories are distinguished from long-term memories.

• Memories contain modular components with symbolic structures.

• Long-term structures can be accessed with pattern matching.

• Cognitive processing occurs in retrieval/selection/action cycles and involves a
dynamic composition of mental structure.

However, ICARUS also makes different assumptions [LC06], including:

• High-level cognition is grounded in perception and action.

• Relational categories and skills are separate cognitive entities.

• Short-term components are instances of long-term structures.

• Long-term knowledge is organised hierarchically.

Figure 3.9 presents an overview of the ICARUS architecture, which consists of
four main components: the Perceptual Buffer, the Conceptual Memory, the Skill Memory,
and the Motor Buffer. The Perceptual Buffer is a temporary storage of percepts from
the environment. The Conceptual Memory can be divided into Short-term Conceptual
Memory and Long-term Conceptual Memory. The Short-term Conceptual Memory stores
the set of active inferences about the perceived world. The Long-term Conceptual Mem-
ory comprises the known conceptual structures describing objects or classes observed
from the environment. The Skill Memory can also be split into Long-term Skill Memory,
which stores the possible actions/skills set, and Short-term Skill Memory, which con-
tains the chosen skill to be implemented. The skill’s signals in the Motor Buffer are
then executed by the ICARUS agent, which can create changes in its environment.

Considering our dimensions, ICARUS has an underlying symbolic-based reason-
ing cycle. To the best of our knowledge, its components do not cover the affective,
social and norm aspects.
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FIGURE 3.9: The ICARUS architecture, adapted from [CL18]

3.3.3 ACT-R/PM architecture

Taking the ideas from Newell and Simon [SN71], Adaptive Control of Thought-
Rational (ACT-R) and its extensions ACT-R/PM combine models of cognitive psy-
chology with perceptual-motor modules to create a production system in which all
components communicate with each other [BA98; AL98; Byr00].

According to the authors in [And+04], the architecture consists of a Cognitive Layer,
a Perceptual/Motor layer and a Buffer Immediate Layer. In the Cognitive Layer, agent
memory is represented by procedural modules (for production rules) and declarative
modules (for facts and goals) (see Figure 3.10). The former takes a central position
connecting all major components and is represented by production rules. The latter
is represented by a number of schema-like structures called chunks [SS91], which
contains pointers to their category and content. Agents also have a working memory
in the buffer layer, which responds to the knowledge used when performing a task.
This knowledge can be retrieved from both declarative and procedural memories.
The architecture also includes several learning mechanisms: 1) declarative knowledge
can be modified either from the input of the perceptual layer or as a result of a
production rule; and 2) procedural knowledge is altered through inductive inference
from existing procedural rules and case studies.

Similar to other cognitive-inspired architectures, ACT-R and ACT-R/PM focus on
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FIGURE 3.10: The ACT-R architecture, reproduced from [TLA06][p.
31]

modelling single human decision-making and learning processes. In its documenta-
tion [BA98; AL98; Byr00], there is little mention of the contribution of affective (i.e.
emotion) and social aspects in the agent’s decision.

3.3.4 CLARION architecture

Connectionist Learning with Adaptive Rule Induction ON-line (CLARION) architec-
ture uses hybrid neural networks[WS98] to simulate cognitive and social psychology
tasks in AI applications [SMP98; SPS02]. According to the author, it has several
features which distinguish it from other cognitive architectures: 1) containing built-
in motivational and meta-cognitive structures, 2) integrated both bottom-up and
top-down learning and 3) considering two dichotomies: explicit versus implicit repre-
sentation and action-centred versus non-action-centred representation [Sun06]. The
CLARION architecture consists of two levels: 1) a top level containing prepositional
rules and, 2) a bottom level (also know as reactive level) containing procedural knowl-
edge (see Figure 3.11). Procedural knowledge can be acquired from reinforcement
learning (i.e. Q-Learning [WD92]) accumulatively over time. Besides, declarative
knowledge can be learned from trials and errors. The architecture combines their
recommendations in a weighted sum to select the most appropriate action to perform
at each step [CTN07].
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FIGURE 3.11: The CLARION architecture, adapted from [Sun06].

The CLARION architecture includes Non-Action-Centered Subsystem (NACS) and
Action-Centered Subsystem (ACS). NACS contains mostly declarative knowledge, while
ACS contains mainly procedural knowledge. In addition, it includes two other
subsystems: 1) the Motivational Subsystem (MS) uses goals to instruct agent’s action
and 2) the Meta-Cognitive Subsystem (MCS) is utilised as the main controller the
operations of all subsystems dynamically.

CLARION includes both similarity-based and rule-based reasoning to mimic
human reasoning. It is done by comparing a known chunk (single declarative unit of
knowledge) with another chunk. The relations between two chunks can be established
when they have certain degree of similarity in their representation. To select the most
appropriate course of action for the agent to react to its environment, the reasoning
of this architecture can occur iteratively to ensure all possible conclusions are found.
During this process, each step’s conclusion can be used as a starting point for the next
step.

Learning in CLARION can be differentiated between implicit learning (procedural
knowledge) or explicit learning (declarative knowledge). Procedural knowledge at
the bottom level can be updated through the reinforcement learning paradigm, such
as multi-layer neural networks and backpropagation algorithms, which are used to
compute Q-values [WD92]. When the agent favours the outcome of an action, the
Q-value of the action raises and thus increases the tendency to perform that action.
In addition, learning rules at the top level can occur by extracting knowledge from
the bottom level. Upon successfully executing an action, the agent extracts a rule
corresponding to the action selected by the bottom level and adds it to the top level.
It then tries to verify the rules learnt via applying them in the subsequent actions.
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Whilst social and affective aspects are not explicitly mentioned, CLARION inte-
grates reactive routine, learning and generic rules to create agents that can learn in a
variety of contexts and adapt to different environments. Learning in this architecture
is the most complex so far, with the usage of neuron networks [SPS02] or reinforce-
ment learning techniques for implicit knowledge and an one-shot learning technique
[SMP98] for explicit knowledge. CLARION focuses on cognition and learning and
so, have limited representation of other dimensions (i.e. emotion, social factors and
norm consideration).

3.3.5 PECS architecture

The PECS (i.e. Physical conditions, Emotional state, Cognitive capabilities and So-
cial status) architecture’s main objective is to allow the consideration of physical,
emotional, cognitive and social influences in the agent’s reasoning [Urb00].

The main components of PECS is illustrated in Figure 3.12. According to the
author [Urb00], this architecture can be divided into three layers:

• The Input Layer includes Sensor and Perception and is in charge of processing
input data.

• The Internal Layer models the internal state of the agent. It is composed of the
Physics, Emotion, Cognition and Social Status components.

• The Output Layer calculates and executes actions. It consists of Behaviour and
Actor components.

The Sensor component receives the inputs and passes them to the Perception com-
ponent to perform information filtering mechanisms or other perceptional processes.
The agent’s internal state can comprise physical, emotional, cognitive and social attributes
and processes. The Behaviour and Actor components have a repertoire of possible
actions and can perform the action selection processes. The Behaviour component
selects the individual actions or sequences of actions connected with the currently
triggered activity. An action instruction is generated by the Behaviour component and
handed over to the Actor component, where the action’s execution is triggered and
output to the environment.

Considering our dimensions, PECS covers many of them mainly because it is only
a conceptual model. It utilises reaction-based and deliberative architectures. The
affective and the social levels are covered by PECS components, though little details
about their actual implementation. It does not represent norms in the architecture.
The pre-defined update functions can theoretically be used for learning.

3.4 Socio-psychological inspired frameworks

The following frameworks use one or many socio-psychology theories to allow the
user to adapt the agent’s design and decision-making based on the context. In the
next two subsections, we present two of the well-known frameworks within the
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FIGURE 3.12: The PECS architecture, adapted from [Urb00]

ABM community. These two frameworks are selected due to their wide range of
applicability to explain different human behaviours.

3.4.1 MoHuB framework

Schlüter et al. propose the Modelling Human Behaviour (MoHuB) framework that
aims to support communicating and comparing different theories of human decision-
making. It needs to be generic enough to capture the majority of theories and, at the
same time, allow for a meaningful distinction between them [Sch+17]. The decision-
making process within an individual is divided into three major parts: 1) what comes
in (perception), 2) what goes out (behaviour), and 3) what happens in between (i.e.,
rules and representations that lead to the selection and execution of a behaviour).

Figure 3.13 illustrate MoHuB general agent architecture. Essentially, this archi-
tecture enhances Russell and Norvig’s utility-based agent diagram [RN10, Chap. 2,
p. 52] (see Figure 2.5 in Section 2.1.2) with components from behaviour theories.
The agent is represented with several structural elements (i.e. State and Perceived
Behavioural Options and processes involved in decision-making (i.e. Perception, Evalua-
tion, Behaviour, Selection). In Figure 3.13, the solid arrows and corresponding ellipses
indicate the flow of processes. The boxes represent structural elements. The dashed
arrows represent the influence of one element on another. Decision-making involves
both conscious and unconscious processes that lie at the interface of the individual,
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FIGURE 3.13: The MoHuB framework of individual decision-
making, adapted from [Sch+17, p. 24]

the environment (perception and behaviour) and internal processes (evaluation and
selection) [Sch+17].

An agent perceives the current state of its environment, evaluates the information
and possibly updates its internal state. Next, the agent use its State and Perceived
Behavioural Options to select the option that fulfils given goals/needs/satisfaction
criteria. Finally, the option is executed and affects the state of the environment and its
neighbours.

The State of an agent can constrain the original set of Perceived Behavioural Options
or enhance it with new additional options derived from new knowledge. In addition,
the set of Perceived Behavioural Options can also be updated over time due to processes
of learning, forgetting or changing in intentions. The State may impact the Selection
process by activating a new utility function. Furthermore, the Perceived Behavioural
Options may influence the Selection process by excluding some options in the search
routines (e.g. optimisation is not helpful for a set with only one option).

Different behaviour theories are described as alternative configurations (presence
or specification) of an individual’s structural elements, processes, and context. For
example, Rationality in the MoHuB framework can be seen on Figure 3.14. It focuses
on reflecting the self-interested needs of the homo-economicus paradigm, e.g., max-
imising expected utility. In this setting, an agent has complete knowledge about the
system, and therefore, the perceived behavioural options include all possible options.
Since the rational agent is all-knowing, the Perception and Evaluation components are
excluded in this case. With unlimited cognitive capacity and the knowledge of all
possible costs and constraints, an agent can always calculate and select the optimal
option, i.e. maximising its utility function.
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FIGURE 3.14: The MoHuB framework for rationality, adapted from
[Sch+17, p. 27]

Similarly, the architecture of MoHuB can be mapped into other theories, including
prospect theory, bounded rationality, descriptive norm, and habitual / reinforcement
learning. Full descriptions of them can be found in [Sch+17]. With these mappings,
the framework has been utilised in the applications of social-ecological systems,
including agriculture [OASZ20; Hub+18] and energy system transitions [Koc+19].

Recently, Constantino et al. extended MoHuB with the addition of emotions and
emotional states to the set of agent’s characteristics [Con+21]. Individuals in this new
framework act based on stable latent characteristics and a subset of context-specific
situational ones, thus accounting for the influence of social and biophysical context.

Since MoHub is a conceptual framework, there is no direct way to establish the
link between the decision-making aspects to the behaviour. In addition, the modeller
needs to redefine the agent’s components to adopt a new theory. This process can
limit the reusability of the framework for different decision contexts.

3.4.2 Consumat framework

The Consumat model of Jager and Janssen was initially developed to model the
behaviour of consumers and market dynamics [JJV01; Jag00] research topics, such
as bio-economic [Hub+22], flood management [BV03] and transition to electric cars
[JJB14]. Since its introduction, the Consumat approach has been used as a generic
model of human behaviour based on people’s decisions in satisfying their basic needs
in various settings. Although the framework is not capable of simulating elaborate
cognitive, reasoning processes or morality in agents, it does allow for simulating
many key processes that capture human decision-making in a variety of contexts
[JJ12].
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The Consumat framework builds on three primary considerations: 1) human
needs are multi-dimensional, 2) cognitive and time resources are required to make
decisions, and 3) that decision-making is often done under uncertainty. Jager and
Janssen base their work on the hierarchy of needs from the work of Maslow [Mas43]
as well as Max-Neef [MN92]. However, due to the complexity of modelling and
their interactions in an agent architecture, the Consumat framework only focuses
on three types of needs: personal needs (satisfying one’s personal taste, engaging in
activities one likes and being different from others), social needs (having interaction
with others), and existence needs (having means of existence, food, income, housing
etc.). These types of needs may conflict with one another; consequently, an agent has
to balance their fulfilment.

Jager and Janssen acknowledge that the resources available for decision-making
are limited, thus constraining the number of alternatives an agent can reason about
[JJ03]. Hence, they use the idea of heuristics to decrease the agent’s cognitive effort
and simplify complex decision-making problems. The different decision strategies
translate into the sets of opportunities taken into consideration. The key rules are
1) the lower satisfaction is, the more involved one is in processing information on
behavioural opportunities, and 2) the more significant uncertainty is, the more the
behaviour of other people is used to identify attractive behavioural opportunities
[JJ12].

An agent’s current level of need satisfaction and uncertainty can be used to decide
which heuristic can be applied in a specific situation. The Consumat agent has
six different heuristics, which are based on the two dimensions of uncertainty and
cognitive effort (see Figure 3.15). Starting from the left, when an agent has high need
satisfaction (i.e. low cognitive effort required) and low uncertainty, it will simply
repeat what it has been doing so far. Then, with a medium-low cognitive effort and
low uncertainty, the agent compares its alternatives until it finds one that is improving
its current state (satisfactory problem). If uncertainty is higher, it will try imitating
the behaviour of agents with similar abilities. In the next step (i.e. medium-high
cognitive effort and a low level of uncertainty), the agents apply a strategy where they
determine the consequences of choosing an option one by one and stop as soon as they
find one that satisfies their needs. Then, with the higher uncertainty level, the agent
compares its performance with those in its networks. Finally, more cognitive effort is
required in agents with the lowest level of need satisfaction in order to compute the
consequences of all possible actions for a fixed amount of time and choose the action
that can optimise its situation.

The satisfaction of a need is based on the utility derived from the current be-
haviour(s) and expectations of future utilities. The future outcomes can be more or
less discounted depending on the type of need and decision. As a result, a discount
function can be used to describe the importance of outcomes over time in deriving a
level of need satisfaction:

Ny(x)t =
t=n

∑
t

f (t) ∗ Uy(x)t
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FIGURE 3.15: The six heuristics used in the Consumat Approach,
according to [BG14]

where Ny(x)t is need satisfaction of need y (one of the three) for using opportunity
x at the current time step t. t = 1..n is the time frame considered. f (t) describes the
decay function if decreased weighting of utility over time. Uy(x)t is utility for need y
of opportunity x at time t.

In 2012, Jager and Janssen presented an updated version which they refer to as
Consumat II [JJ12]. It aims to improve several aspects of modelling, including 1)
accounting for the expertise of agents in the social-oriented heuristics, 2) accounting
for different agent capabilities in estimating the future, 3) lessening the difference
between repetition on the one hand and deliberation on the other, and 4) considering
several different network structures.

In terms of our dimensions, Consumat can represent several key processes that
capture human decision-making in various situations. It has been used to study
the effects of heuristics compared to the extensive deliberation approaches of other
architectures [JJV01; BV03; Kan14]. Regarding the affective level, values and morality
are considered, but emotion is not represented explicitly. The architecture considers
legal norms and institutions but not social norms [Jag00]. However, as the agent
compares its success to its peers, we consider it can capture a form of sociality.
Finally, Consumat agents also improve their heuristics via learning from imitation of
the actions of their peers, though they do not typically go beyond this comparison
[BG14].

3.5 Current research gap

We provided an overview of different categories of agent architectures and frame-
works in this chapter. Their comparison with our dimensions in Section 1.2 can be
seen in Table 3.1.

The first class is BDI and its derivatives. They have a deliberative cycle and utilise
formal logic-grounded semantics but require extensive computational resources. In
addition, each of them only focuses on one particular dimension, such as emotion
(eBDI) and norm (BRIDGE, BOID). The BRIDGE architecture can also cover emotional
aspects using its ego component. As each focuses on a dimension of decision-making,
no architecture in this category can explicitly represent all dimensions in our objec-
tives, i.e. cognition, emotion, social factors, norm consideration and learning.
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TABLE 3.1: Comparing dimensions covered by the related work

Architecture / Cognition / Emotion Social Norm Learning
Framework Deliberation
BDI X
BOID X X
eBDI X X
BRIDGE X X X
Deliberative X X X
Normative
NoA X X
EMIL-A X X X
SOAR X X
ICARUS X X
ACT-R/PM X X
CLARION X X
PECS X X X X
MoHuB X X X X
Consumat X X X

Normative agent architectures (i.e. deliberative normative agents, NoA and EMIL-
A) offer the ability to integrate social and individual factors to provide increased levels
of fidelity concerning modelling social phenomena such as cooperation, coordination,
organisation, and so on in a society of agents [BVDT07]. Additionally, it provides a
tool to examine sociology through the perspective of methodological individualism
[Neu08]. Methodological individualism attempts to build the foundations of sociol-
ogy using individual actors and study the emergent phenomenon. To accomplish
this, methodological individualism investigates the feedback mechanisms present
in society and the system dynamics. The normative architecture suffers the same
problem as the architectures of the BDI class. Their primary focus is on how norms
are captured in human deliberation, whilst learning and emotion are limited.

The next category is cognitive architectures, which are based on cognitive theories
and basic neurology concepts. Their main purpose is to understand how people
organise knowledge, produce intelligent behaviour based on numerous facts derived
from psychological experiments, and employ quantitative measures. However, these
models do not consider social realism since they do not have the capabilities to in-
corporate different demographics, personality differences, situational and emotive
variables and group dynamics [DDJ08]. Consequently, they do not cover the affec-
tive and social dimensions. In addition, neurological-inspired models often use AI
technique to mimic the brain, such as neural networks [Par+19]. For ABM research,
they lack the explanation power to create a causal link between the implementation
of decision components to observed behaviours and, therefore, limit their usage in
social studies.
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One of the most established works is the MoHuB framework [Sch+17], which
aims to include a different set of behavioural theories into formal models. Com-
paring it with the criteria in Section 1.2, this framework still does not meet all of
them sufficiently. Firstly, MoHuB is a conceptual agent architecture framework. It
provides a simple way to adapt a standard agent architecture to reflect different
theories. Consequently, there is no systemic way to connect the effect of one deter-
minant in decision-making to output behaviour or compare the impacts of multiple
determinants. Secondly, MoHuB provides definitions of agent components based on
a particular behaviour theory. They have to be redefined to implement a new theory,
or additional processes are needed. This process requires a certain level of expertise
and effort from the users. Consequently, it limits the reusability of the framework.

Finally, the Consumat framework has been used to study the effects of heuristics
compared to the extensive deliberation approaches of other architectures. However,
because the Consumat approach is rather complex, its formalisation for a specific
domain requires more effort and deliberate choices than a (much simpler) rational
actor approach. Especially if the modelled context becomes complex, it will require
significant work to formalise the complete framework, the need-satisfying capacities
and resource demands of many different opportunities. The researcher willing to
make this effort must be convinced of the relevance of sophisticated behavioural
dynamics in the system to be modelled [JJ12]. In addition, the concept design of
Consumat agents is specific. Users cannot consider a different setup or interpretation.
For example, on the social level, Consumat emphasises comparing the agent’s own
success and that of its peers. The Consumat agents are capable of comparing and rea-
soning about the success of their actions in relation to the success of their neighbours’
actions, which are utilised for learning better behavioural heuristics. Nevertheless,
they do not account for other social effects, such as the impact of the behaviour of
others on their actions [BG14].

Depending on the theory and its relationship with empirical data, incorporating
a theory in ABM models can have different degrees of explanatory power and fulfil
different epistemological functions. Models can then be used to check the internal
consistency of one or more theories or derive hypotheses that can be further tested
through empirical research. In practice, however, it has been very limited to date
[Gro+17; Sch+20b]. According to Schlüter et al. [Sch+17] and our surveys above, there
are four challenges: 1) a large number of decision factors, 2) the focus of most theories
on only a specific aspect of decision-making, 3) their varying degree of formalisation
and, 4) the lack of specification of a causal mechanism.

Since the current related works cannot satisfy the objectives of our study (see
Section 1.2), especially in terms of our dimensions and research focus, we propose
another approach in the next chapter. While keeping a general agent architecture,
the decision-making mechanism is redesigned to be based on a behavioural theory
that takes into account multitudes of socio-psychology determinants. We then build
an agent-based framework by formalising this mechanism and creating a code base
to allow re-usability in different domains documented in different case studies in
chapters 5 to 8.
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Chapter 4

A behavioural decision-making
framework for agents

Building an agent decision-making framework from a behavioural theory can provide
a standard practice to incorporate multiple aspects relevant to social studies [Sch+17].
It can also provide a reference to facilitate the use of more sophisticated architectures
in ABM research . To create a framework that can satisfy our objectives in Section 1.2,
this chapter follows the four tasks proposed in [Sch+20b] to integrate human decision-
making theories into models, including 1) selecting a theory, 2) formalising it in an
agent architecture, 3) translating it into code and 4) documentation. We first perform
a literature review of all relevant behavioural theories. They are then filtered, and the
theory most suited for our research objective is selected. It is then formalised in the
context of an agent-based framework for choice modelling. Two examples are given
to show how it has been implemented in our current platform. They also emphasises
the modularity potential of our framework. The Unified Modeling Language (UML)
diagram and pseudocode of core components are provided in the following section,
while the Java implementation can be seen in Appendix B. Next, we outline the steps
to utilise our framework to create an agent-based model. Finally, we provide some
comments on how the framework is documented.

4.1 Selection of a behavioural theory

To create a system that can mimic a human society, the first question to address is the
origin of our behaviours. In socio-psychology, different schools of modelling have
attempted to describe this process in the form of theories of human decision-making.
Finding theories for one’s own modelling project is a challenging aspect, which
requires a systematic literature review process. It involves a process of identification
and selection of existing studies which are relevant to clearly formulated research
questions by using standardised methods [Hig+19; Aia+15].

To conduct this literature review, we follow a protocol from Popay et al. [Pop+06],
which is illustrated in Figure 4.1. From Section 1.2, we defined our research objectives.
Based on these objectives, the conceptual boundaries can be identified: theories that
reason, explain and outline the mechanism of decision-making and behaviours in
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FIGURE 4.1: Literature review protocol, according to [Pop+06]

the field of psychology and social science. We further establish the inclusion criteria,
which can be divided into three aspects:

• Search boundaries: Different types of sources are suitable to find individual
decision-making theories, including:

– Encyclopaedias, text books for decision theory, social psychology.

– Reviews of theories in social psychology (e.g. [Dav+15; VLKH12; DHH10]).

– Public database, i.e. Google scholar, Emerald, IEEE Xplore Digital Library,
JSTOR, ProQuest Science direct, Wiley, Springer, PUBMED.

– Informal method (e.g. asking experts, attending context-related confer-
ences).

• Keywords: On one hand, modellers who already have knowledge about existing
theories and the terminology used in these areas could search for theories
addressing the specific modelling context. On the other hand, modellers who
are not familiar with the discipline-specific terminology are hindered from
searching for theories with appropriate keywords. For instance, “imitation”,
and “social norm” are keywords for theories dealing with copying behaviour
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of others. In order to be comprehensive, all possible synonyms are used to
express each of the concepts we aim to cover (i.e. attitudinal, emotion, social,
normative, learning, habit). The indicative search strings used were: social
psychology theory, decision-making theory, behaviour theory, the agent-based model
applied theory, attitudinal (viewpoint, frame of mind, perspective, position, belief,
thoughts, intention) theory, normative (convention, standard, benchmark, point of
reference, pattern, guideline) theory, social (role, contribution, community, collective,
group, responsibility) theory, emotion (self, feeling, sentiment) theory, habit (trait,
pattern, routine, characteristic) theory.

• Covered period: The starting date is not considered, but the end date is Decem-
ber 2020.

After the initial search with the above criteria, 47 well-defined theories are found,
including:

• Action Identification Theory

• Attachment Theory

• Balance Theory

• Broaden-and-Build Theory of Posi-
tive Emotions

• Cognitive Dissonance Theory

• Correspondent Inference Theory

• Drive Theory

• Dual Process Theories

• Dynamic Systems Theory

• Equity Theory

• Error Management Theory

• Escape Theory

• Excitation-Transfer Theory

• Implicit Personality Theory

• Inoculation Theory

• Interdependence Theory

• Learning Theory

• Logical Positivism

• Opponent Process Theory

• Optimal Distinctiveness Theory

• Prospect Theory

• Realistic Group Conflict Theory

• Reasoned Action Theory

• Reductionism

• Regulatory Focus Theory

• Relational Models Theory

• Role Theory

• Self-Affirmation Theory

• Self-Categorization Theory

• Self-Determination Theory

• Self-Discrepancy Theory

• Self-Expansion Theory

• Self-Perception Theory

• Self-Verification Theory

• Social Exchange Theory



54 Chapter 4. A behavioural decision-making framework for agents

• Social Identity Theory

• Social Impact Theory

• Sociobiological Theory

• Stress Appraisal Theory

• Symbolic Interactionism

• Temporal Construal Theory

• Terror Management Theory

• Theory of Mind

• Theory of Reasoned Action

• Theory of Planned Behaviour

• Theory of Interpersonal Behaviour

• Threatened Egotism Theory

The theories’ main ideas and references are listed in Appendix A.1. From this list,
we narrow them down using the following exclusion criteria, based on our objectives
in Section 1.2 and technological requirements in Section 2.4:

• The theory covers multiple aspects, or so-called determinants, of decision-
making.

• The theory has a way to derive a utility function and, potentially, an additive
value function (see 2.1.1) to evaluate the outcomes of actions from different
determinants.

• The theory focuses on individual behaviours, not on evaluating the actions of
others.

• The theory’s concepts can be organised in a structure to mark the flow of
information between the components and their contribution to the final action
output.

The three theories satisfying these criteria are: Ajzen and Fishbein’s Theory of
Reasoned Action (TRA) [FA75], Ajzen’s Theory of Planned Behavior (TPB) [Ajz85]
and Theory of Interpersonal Behaviours (TIB) [Tri77]. In the following subsections,
we discuss them in detail and provide a reason to choose TIB as the foundation of our
framework. In the following section, we use the term behaviour to describe the output
of a theory, while the term action is an output of the agent’s decision-making.

4.1.1 Theory of Reasoned Action (TRA)

Developed by Martin Fishbein and Icek Ajzen in 1967, the primary purpose of TRA
explains the relationship between attitudes and behaviours within human actions. Its
main predictor is a person’s intention to perform a behaviour, while the two main
determinants of behavioural intention are attitudes and norms (see Figure 4.2). By
further examining them, researchers can understand whether or not one will perform
the intended action.

A high correlation of Attitude and Subjective Norm to Behaviour Intention, and sub-
sequently to Behaviour, has been confirmed in many studies (see survey in [SHW88]).
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FIGURE 4.2: Theory of Reasoned Action, adapted from [FA75, p.
340]

Hence, according to TRA, Behaviour Intention is a function of both Attitude and Subjec-
tive Norm:

BI = (AB)W1 + (SN)W2 (4.1)

where BI is the Behaviour Intention, AB is one’s Attitude toward performing the
behaviour, W is empirically derived weights, and SN is one’s Subjective Norm related
to performing the behaviour.

Although its scope is wide, TRA still has a major limitation: it cannot be used to
predict behaviours that require access to certain opportunities, skills, conditions, and
resources since it does not consider that certain conditions that enable the performance
of a behaviour are not available to individuals [EC93]. The authors also acknowledged
that:

"... some behaviours are more likely to present problems of controls than
others, but we can never be certain that we will be in a position to carry
out our intentions. Viewed in this light, it becomes clear that, strictly
speaking, every intention is a goal whose attainment is subject to some
degree of uncertainty." [Ajz85]

4.1.2 Theory of Planned Behavior (TPB)

TPB was proposed in [Ajz85] as an extension to TRA. It adds a new component,
perceived behavioural control, which refers to the degree to which a person believes
that they control any given behaviour (see Figure 4.3). TPB suggests that people are
much more likely to enact certain behaviours when they feel that they can enact them
successfully.

In a simple form, behavioural intention for the Theory of Planned Behavior (TPB)
can be expressed as the following mathematical function:
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FIGURE 4.3: Theory of Planned Behaviour, adapted from [Ajz05, p.
118]

BI = wA A + wSNSN + wPBCPBC
provided:

A ∝
n

∑
i=1

biei

SN ∝
n

∑
i=1

nimi

PBC ∝
n

∑
i=1

ci pi

(4.2)

where BI is the behavioural intention. A is the attitude toward behaviour. b is the
strength of each belief concerning an outcome or attribute. e is the evaluation of the
outcome or attribute. SN is the subjective norm. n is the strength of each normative
belief of each referent. m is the motivation to comply with the referent. PBC is
the perceived behavioural control. c is the strength of each control belief. p is the
perceived power of the control factor. w is the empirically derived weight/coefficient.

The perceived behavioural control can, together with intention, be used to predict
behaviour:

B = wBI BI + wPBCPBC (4.3)

where B is the behaviour. BI is the behavioural intention. PBC is the perceived
behavioural control. w is the empirically derived weight/coefficient.

There are several limitations of the TPB, including the assumption that behaviour
results from a linear decision-making process and does not consider that it can change
over time. Besides, it does not account for other variables that influence behavioural
intention and motivation, such as emotion or experience.
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4.1.3 Theory of Interpersonal Behaviour (TIB)

TIB was proposed by Harry Triandis in 1977 [Tri77]. Compared to the TRA and the
TPB, Triandis incorporates another key role of habit and affective factors in explaining
behaviour (his tri-level model can be seen in Figure 4.4). TIB states that interper-
sonal behaviour is a complex and multi-aspects phenomenon. In any interpersonal
decision, a person’s behaviour is determined based on what that person perceives
to be appropriate in that particular situation and his/her social pressures. The first
level of TIB concerns the way personal characteristics and prior experiences shape
personal attitudes, beliefs and social determinants related to the behaviour. The
second level explains how attitude, affect, and social factors influence the intentions
of a specific behaviour. Finally, the third level states that intentions of a behaviour,
prior experience and situational conditions predict whether or not the person will
perform the behaviour in question.

FIGURE 4.4: Triandis’ tri-level model, adapted from [Jac05]

According to Triandis, the determinant of a behaviour depends on three major
factors: 1) the strength of the habit emitting the behaviour, which is indexed by the
number of times the behaviour has already occurred in the history of the individual,
2) the behavioural intention to emit the behaviour, and 3) the presence or absence of
the condition that facilitates the performance of the behaviour. We can express this
idea using the following equation:

Pb = (wH ∗ H + wI ∗ I) ∗ F (4.4)

where Pb is the probability of an behaviour and varies from 0 to 1. H is the habit
and is measured by the number of times the act has already been performed by the
person. I is the intention to action and “is a cognitive antecedent of an act” [Tri77, p.
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5]. We will extend this definition in the next formula. F refers to Facilitating condition,
such as the ability of the person to carry out the act or his/her knowledge. The wH
and wI refer to the normalised weights of the habit and intention components. These
weights can be determined by a statistical procedure called multiple regression analysis,
which measures the correlation among variables under consideration.

The determinants of behavioural intentions may be expressed in a simple equation:

I = wS(S) + wA(A) + wC(C) (4.5)

where I is the intention to act. S is social factors. A is the affection attached to
the behaviour itself. wS , wA and wC are normalised weights which can be derived
similarly to the previous function. The value of perceived consequences of the
behaviours, C, depends on the sum of the products of the subjective probability that a
particular consequence will follow a behaviour (Pc) and the value of that consequence
(Vc). Hence, it can be further expressed as follow:

C =
n

∑
i=1

PciVci (4.6)

where n is the number of consequences that a subject perceives as likely to follow
a particular behaviour. This equation can be utilised for uncertainty in an agent’s
perception of a partially observable environment.

From the description above, we can see that the three theories (TRA, TPB and TIB)
provide comprehensive understandings of what determines individual behaviour and
are helpful in explaining complex human thought processes, which are influenced by
social and physical environments. These processes’ determinants are organised in a
well-defined structure. Each theory also includes an additive value function to compute
the expected utility of an option. However, these theories cover different dimensions
from our research objective, as shown in Table 4.1.

TABLE 4.1: Comparing dimensions covered by TRA, TPB and TIB

Theory Cognitive / Emotion Social Norm Learning
Mental Attitudinal

TRA X X
TPB X X
TIB X X X X

While cognitive and norm are explicitly mentioned in the TRA and TPB, other
determinants are not clearly shown. One of the major advantages of TIB is its diverse
combination of behavioural variables that have been neglected in other behavioural
theories [FB10]. It provides a sound conceptual and theoretical background to test
unique variables such as social pressure, expectations, and habits [BFS10]. Moreover,
TIB informs a wide range of research designs and methodologies as it is a flexible
tool that identifies a set of potentially relevant factors and their interactions [GN10].
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Thanks to its broader set of determinants, TIB is flexible enough to reflect other
behaviour theories by exchanging psychology elements and assigning weights to
mark their contribution to the agent’s decision-making process. For example, we can
cut off the determinants of Habit, Social and Affect/Emotion in Figure 4.4 to create a
resemblant of TPB model. Therefore, we choose TIB to build the theoretical foundation
for our framework.

However, in terms of our dimensions, TIB does not explicitly cover the learning
aspect as it does not describe how people internalise or revise their beliefs using
the observed facts. One solution for this issue is building an agent decision-making
architecture incorporating feedback loops. In other words, the agents review the
macro patterns as a result of their earlier action(s) and decide what to do in the future.
This design is further discussed in the next section.

4.2 Formalisation of the theory

As presented in Chapter 2, there are several elements that need to be considered in
the agent’s decision-making, including the architecture, core components and utility
function. In this section, we provide a detailed selection of them and illustrate this
with two working examples from the mobility and vehicle purchasing domains.

4.2.1 Selection agent architecture

Different architectures can be selected depending on the type of agent that has to
be built. Three architecture classes, logic-based, BDI and layered architectures, are
relevant to our objectives (see Section 2.1.3). In this subsection, we provide their
details and select the most suitable one for the TIB theory.

Logic-based architecture is based on the view that intelligent behaviour can be
generated in a system by giving that system symbolic representation and its desired
behaviour and syntactically manipulating this representation [Woo99, p. 42]. Hence,
their primary purpose is theory proving or logical deduction, i.e. how an agent
applies its own plan/theory to derive the goal results. If the theory about the agent
behaviours is correct, it should arrive at the end goal. The problem with using this
class of architecture for social research is the difficulty in representing the properties
of a dynamic, real-world environment. In addition, the computational complexity
of theory proving makes it difficult for the agent can operate efficiently in a time-
constrained environment. An agent design that moves away from strictly logical
representation languages and deduction rules can perform better [Cal+21]. However,
this solution can also lose the most significant advantage of this class of agents: simple,
elegant semantics [Woo99, p. 47].

BDI architecture provides a general flow of information that resembles how we
reason in real life. However, as it also utilises a form of logical semantics, it suffers
from the problem of representing complex, dynamic environments. A further weak
point of BDI architectures (and consequently of BDI agents) is that their associated
agent language is often severely restricted as it consists of literals (i.e., propositional
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symbols or their negations) based on the theory of human practical reasoning [Bra87].
Therefore, its conceptual design and flow of information do not match our selected
theory, TIB. As discussed in Section 3.1, a pure BDI agent lacks the affective, social
and norm dimensions of our objective. One attempt is to include all of them in its
decision-making cycle. However, it would further make the belief revision functions
more complex and not suitable for time-constrained, dynamic environments.

We now consider the layered architectures. In a horizontal layering, the input is
processed by several components, and then this information is aggregated to deter-
mine the output/action of the agent. In a one-pass layered architecture, the input is
processed in each stage and then delegated to the next one. A combination of these
two architectures is suitable for our purpose of creating a modular framework that
passes through different levels of determinants. As TIB has a tree-like/hierarchical
structure, the flow of information can be organised similarly. In particular, deter-
minants from the same level (e.g. norm, role, self-concept) can be put in layers of
the horizontal layout. They are the aspects that can be evaluated individually from
one another. Hence, the utility functions of these determinants can be applied at
the same time. Their results can be passed from one level to another following the
one-pass structure. In this case, an additive value function can be used to combine
the utilities from the ancestors, i.e. the determinants connected in the previous level.
The same process is repeated until it arrives at the behaviour output. The flow of the
decision-making procedure between the components of the agents can also follow
the one-pass architecture. Details are provided in the following sections.

4.2.2 Concepts utilised in the agent framework

Our agent framework utilises the following core concepts, which can also be seen in
in Figure 4.5:

• Environment: The (social and biophysical) environment in which the individu-
als are embedded in.

• Environment state: The current state of an environment perceived by the
individual. It can also include the communication signals from other agents.

• Perception: The process by which an individual senses the surrounding social
and biophysical environment.

• Perceived options: The set of options the individual perceives and can choose
from. This set can be created by the modeller and then filtered by the agent’s
Perception.

• Memory: The storage of an individual internal state as well as history of its
actions and feedbacks.

• Evaluated option: The result of decision-making. It is usually in form of a
probability that an action will be performed. In case of choice modelling, the
individual can output only the top evaluated action.
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• Feedback: The results of an action given by the environment after an action by
individual. It can be used to update the memory.

• Communication: The action that an individual executes as a result of the
decision process. The action impacts the socio-environmental system and, in
addition to perception, is the second interface between an individual and its
environment. Selected actions may fail to be executed if the action is physically
impossible.

FIGURE 4.5: Overview of agent’s architecture

A typical decision-making cycle is as follows: When a task is assigned, the Per-
ception observes the current state of the Environment and combines them with the
agent’s internal state to produce a list of perceived options. Then, they are given to
the Decision unit to be evaluated. Details of this process are described in Section 4.2.3.
The Communication component then utilises this result to execute the chosen option(s)
with Environment and other agents. The Environment can then provide feedback(s)
based on the nature of the system associated with the action. The agent remembers
these feedbacks in the Memory, which can then be used to modify the probability of
expected values in future decision-making.

4.2.3 Utility Function

A full decision-making cycle with TIB determinants is illustrated in Figure 4.6. It
should be noted that the description below is modified version of the ones provided
in our previous publications [NS19b; NS19a; NS20b; NS20a].

As the theory has a tree structure, in which a node represents a determinant. It
can be connected to many children (connected node of the next level) but must be
connected to exactly one parent (precedent node), except for the root node, which
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has no parent. Each determinant in this TIB module represents a utility function to
evaluate expected utility from the outcomes of an option.

An agent is given a list of tasks that isolated decision-making task needs to
be sequentially executed and a list of actions. To perform a task, the agent first
filters the list of actions with the information from its internal state and the external
environmental state to generate a set of possible options. As an example, using
our case study below (see Section 4.2.4), the agent observes the available modes of
transportation around its local environment (e.g. bus/tram/train) and combines
them with other modes in its capabilities (e.g. car, bike, walking) to create a list of
available options to choose from.

For all determinants (d) in TIB, each option (o) is then given an utility value which
comes from comparing its properties with other’s (Uo(d)). In the first level, this value
can be in the form of a cardinal utility measure (for determinants such as price or
time) or ordinal utility ranks (for determinants such as emotion). Both of them can
be calculated from empirical data (e.g. census, survey) or calibrated with experts’
knowledge and stakeholders’ assessment. The results for these determinants are then
multiplied with an normalised weights (called w(d)). This process is captured in the
following equation, which is adapted from the additive value function in Section
2.1.1:

Uo(d) =
C

∑
c=1

Uo(c) ∗ w(c) (4.7)

where Uo(d)(opt) is the utility value of an option o at determinant d. C is the set
of all children c of d, i.e. determinants connect with d in the previous level. Therefore,
c ∈ C where connect(d, C). w(c) is the normalised weight of child determinant c.
This weight represents the importance of a decision-making determinant compared
to others at the same level and emphasises the heterogeneity of individuals. It also
allows the modeller to express a certain theory by cutting determinants that are not
relevant to a case study, i.e. setting their weights to 0. The combination process then
continues until it arrives at the behaviour output list, whose utility values can be
translated to the probabilities that the agent will perform that option. If the agent is
assumed to be deterministic, it picks the option that is correlated to the highest or
lowest utility, depending on the modeller’s assumptions.

In the first level in Figure 4.6, to translate the determinant belief and evaluation
to a practical application, we use the concept of consequences, i.e. outcomes of an
action. Triandis defines belief as the chance (or percentage) that a consequence will
happen [Tri77]. The evaluation gives the expected utility value to that consequence.
We will demonstrate the usage of this function in the two following examples. They
also show the modularity of the framework by changing the TIB mapping.

4.2.4 A mobility running example

Table 4.2 shows a running example in the mobility domain which follows the TIB
determinants mapping in Figure 4.7. An agent needs to make a working trip and has
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FIGURE 4.6: Agent decision-making mechanism with TIB Module

access to three options: using car, taking train or bike. In addition, U is a cost function,
i.e. option that has smaller value is preferred.

FIGURE 4.7: Example of mobility decision with TIB’s determinant

In this case, we interpret determinant evaluation as the cost of choosing a mode
of transportation in terms of price and duration. In addition, an agent is assumed to
believe completely in its evaluation (belief = 100%), i.e. the environment is determinis-
tic and fully observable. Other determinants in the first level can be interpreted as
follow:

• Norm: ranking of a mode based on the number of neighbours using it.

• Role: ranking of modes based on their environmental friendliness.



64 Chapter 4. A behavioural decision-making framework for agents

• Self-concept: ranking of the modes based on the agent’s personal reference.

• Frequency of past actions: the number of times the agent used the mode
previously.

TABLE 4.2: Example of in mobility context

Level Determinant w EU

1st Evaluation
(Price - Swiss
franc), Belief
= 100%

2
Ucar = 4
Utrain = 3
Ubike = 0

Evaluation
(Duration -
hours), Be-
lief = 100%

4
Ucar ≈ 0.3
Utrain ≈ 0.2
Ubike ≈ 1

Norm (sim-
ilarity with
others)

3
Utrain = 1
Ucar = 2
Ubike = 3

Role (envi-
ronmental
friendliness)

2
Ucar = 3
Utrain = 2
Ubike = 1

Self-concept
(personal
preference)

3
Ucar = 1
Utrain = 2
Ubike = 3

Emotion (en-
joyment)

1
Ucar = 1
Utrain = 2
Ubike = 3

Frequency
(past similar
trips - note
that lower
value means
more usage)

3
Ucar = 0
Utrain = 0
Ubike = 1

Continued on next page
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Table 4.2 – continued from previous page
Level Determinant w EU

2nd Conse-
quence
(Evaluation
+ Belief)

4
Ucar = 4*2/7 + 0.3*4/1.5 ≈ 1.94
Utrain = 3*2/7 + 0.2*4/1.5 ≈ 1.39
Ubike = 0*2/7 + 1*4/1.5 ≈ 2.67

Social factors
(Norm +
Role + Self-
concept)

2
Ucar = 1*3/6 + 3*2/6 + 1*3/6 = 2
Utrain = 2*3/6 + 2*2/6 + 2*3/6 ≈ 2.67
Ubike = 3*3/6 + 1*2/6 + 3*3/6 ≈ 3.33

Affects
(Emotion)

2
Ucar = 1*1/6 ≈ 0.17
Utrain= 2*1/6 ≈ 0.33
Ubike = 3*1/6 = 0.5

3rd Intention
(Attitude +
Social factors
+ Affect)

4
Ucar = 1.94*4/6 + 2*2/8 + 0.17*2/1 ≈ 2.13
Utrain = 1.39*4/6 + 2.67*2/8 + 0.33*2/1 ≈ 2.26
Ubike = 2.67*4/6 + 3.33*2/8 + 0.5*2/1 ≈ 3.61

Habit (Fre-
quency)

3
Ucar = 0*3/1 = 0
Utrain = 0*3/1 = 0
Ubike = 1*3/1 = 3

Facilitating
conditions
(lower mean
easier to
access)

2
Ucar = 0
Utrain = 0
Ubike = 0

Behaviour
output

Ucar= 2.13*4/7.67 + 0*3/3 + 0*2/1 ≈ 1.11
Utrain = 2.26*4/7.6 + 0*3/3 + 0*2/1 ≈ 1.18
Ubike = 3.28*4/7.6+ 3*3/3 + 0*2/1 ≈ 4.73

The agent expects the car option would have the price around 4 Swiss Franc, and
so Ucar(Price) = 4. Correspondingly, Utrain(Price) = 3 and Ubike(Price) = 0. Their
total value, ∑ U(Price), is 7. The estimations for duration are Ucar(Duration) ≈ 0.3,
Utrain(Duration) ≈ 0.2 and Ubike(Duration) ≈ 1; the sum of which is 1.5. In this ex-
ample, we assume that the agent’s w(Price) and w(Duration) are 2 and 4 respectively.
By applying Equation 4.7, the new expected value in next level (U(Attitude)) of car
would be = 4*2/7 + 0.3*4/1.5 ≈ 1.94, train would be 3*2/7 + 0.2*4/1.5 ≈ 1.39, and
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bike would be 0*2/7 + 1*4/1.5 ≈ 2.67. Hence, according to determinant Consequence,
train would have the highest chance to be picked, followed by car and bike.

For non-measurable value such as Norm, the agent uses the concept of reputation
(popularity) to rank the options: Utrain(Norm) = 1, Ucar(Norm) = 2, Ubike(Norm) = 3
(best to worst); the sum of which is 6. The same values are applied for determinant
Self-concept. On the contrary, the agent might have an environmental consciousness
and rank these mode in the opposite order, e.g. Ubike(Role) = 1, Utrain(Role) = 2
and Ucar(Role)(car) = 3. According to the data in a survey [Web+17], w(Norm) = 3,
w(Role) = 2 and w(Sel f ) = 3. By combining these social factors using Equation 4.7,
we then have Ucar(Social) = 2, Utrain(Social) ≈ 2.67 and Ubike(Social) ≈ 3.33. Because
expected utility is a cost function, i.e. agents prefer lower value, inverse values of
determinant Frequency and Facilitating Conditions are used in Table 4.2.

The process continues with other determinants on different levels (see Table 4.2
and Figure 4.6) until the agent reaches its behaviour output, where expected values
are Ucar ≈ 1.11, Utrain ≈ 1.18 and Ubike ≈ 4.73. These utilities indicate that car would
be the best option for this agent. We choose this example to highlight the importance
of social factors in decision-making because the best choice would have been using
the train if the agent only makes an evaluation based on Price and Duration (see 2nd
Level in Table 4.2).

4.2.5 A car purchasing running example

Table 4.3 shows a running example of an agent need to make a vehicle purchase,
which follows the TIB determinants mapping in Figure 4.8. The agent is assumed to
have a choice between the three type of models: diesel, gasoline and electric vehicle(EV).
In this case, U is also a cost function, i.e. option that has smaller value is preferred.

• Role: recommendation from the media and dealers (value from 0 to 1) .

• Norm: recommendation from the neighbours (value from 0 to 1) .

• Self-concept: the car’s from the brand preferred by the agent (value 0/1).

• Frequency of past actions: the same model was owned by the agent before
(value 0/1).
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FIGURE 4.8: Example of vehicle purchasing decision with TIB’s
determinant

TABLE 4.3: Example in vehicle purchasing context

Level Determinant w EU

1st Evaluation
(Price - thou-
sand Swiss
franc), Belief
= 100%

1
Udiesel = 25
Ugasoline = 30
UEV = 45

Norm
(recommen-
dation from
neighbours)

3
Udiesel = 0.5
Ugasoline = 0.5
UEV = 0.8

Role (recom-
mendation
from medi-
a/dealers)

2
Udiesel = 0.3
Ugasoline = 0.5
UEV = 0.75

Self-concept
(brand)

3
Udiesel = 1
Ugasoline = 1
UEV = 0

Continued on next page
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Table 4.3 – continued from previous page
Level Determinant w EU

Emotion
(comfortabil-
ity)

1
Udiesel = 2
Ugasoline = 1
UEV = 1

Frequency
(past owner-
ship)

3
Udiesel = 0
Ugasoline = 0
UEV = 1

2nd Conse-
quence
(Evaluation)

4
Udiesel = 25
Ugasoline = 30
UEV = 45

Social factors
(Norm +
Role + Self-
concept)

2
Udiesel = 0.5*3/1.8 + 0.3*2/1.55 + 1*3/2 ≈ 2.72
Ugasoline = 0.5*3/1.8 + 0.5*2/1.55 + 1*3/2 ≈ 2.98
UEV = 0.8*3/1.8 + 0.75*2/1.55 + 0*3/2 ≈ 2.3

Affects
(Comforta-
bility)

2
Udiesel = 1*1/6 ≈ 0.17
Ugasoline= 2*1/6 ≈ 0.33
UEV = 3*1/6 = 0.5

3rd Intention
(Attitude +
Social factors
+ Affect)

4
Udiesel = 25*4/100 + 2.72*2/8 + 0.17*2/1 ≈ 2.02
Ugasoline = 30*4/100 + 2.98*2/8 + 0.33*2/1 ≈ 2.61
UEV = 45*4/100 + 2.3*2/8 + 0.5*2/1 ≈ 3.38

Habit (Fre-
quency)

3
Udiesel = 0*3/1 = 0
Ugasoline = 0*3/1 = 0
UEV = 1*3/1 = 3

Facilitating
conditions
(lower mean
easier to
access)

2
Udiesel = 0
Ugasoline = 0
UEV = 0

Continued on next page
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Table 4.3 – continued from previous page
Level Determinant w EU

Behaviour
output

Udiesel= 2.02*4/8.01 + 0*3/3 + 0*2/1 ≈ 1.01
Ugasoline = 2.26*4/7.6 + 0*3/3 + 0*2/1 ≈ 1.19
UEV = 3.28*4/7.6+ 3*3/3 + 0*2/1 ≈ 4.72

Using a catalogue (e.g. [QE20]), the agent expects the diesel option would have
the price around 25’000 Swiss Franc, and so Udiesel(Price) = 25’000. Correspondingly,
Ugasoline(Price) = 30’000 and UEV(Price) = 45’000. Since Price the only children node
of Attitude, the utility values of all the models are kept the same, i.e. U(Attitude) =
U(Price).

For the Role determinant, the agent can calculate the utility of each model as the
normalise value of the reviews provided by newspapers, online platform and local
dealers. For this example, we assume that Udiesel(Role) = 0.3, Ugasoline(Role) = 0.5
and UEV(Role) = 0.75. Their total sum is 1.55. Similarly, the utility value of Norm
determinant can be derived from reviews of its neighbours. We also assume that
Udiesel(Norm) = 0.5, Ugasoline(Norm) = 0.5 and UEV(Norm) = 0.8. Their sum is 1.8. To
assess Self-concept determinant, the agent can assign value 1 for the model of a brand in
its preference and value 0 for the rest. Hence, we have Udiesel(Sel f ) = 1, Ugasoline(Sel f )
= 1 and UEV(Sel f ) = 0. According to the data in a survey [Web+17], w(Norm) = 3,
w(Role) = 2 and w(Sel f ) = 3. By combining these social factors using Equation 4.7,
we then have Ucar(Social) ≈ 2.72, Ugasoline(Social) ≈ 2.98 and UEV(Social) ≈ 2.3.

The process continues with other determinants on different levels (see Table 4.2
until the agent reaches its behaviour output, where expected values are Udiesel ≈ 1.01,
Ugasoline ≈ 1.19 and UEV ≈ 4.73. These utilities indicate that the diesel would be the
best option for this agent.

4.3 Translating the formalisation into code

To enable reusability and widen the applicability of our framework to various social
domains, the concepts and mathematical foundation above need to be translated
into code. This section provides an Unified Modeling Language (UML) diagram
of relevant classes to implement the core components (i.e. Perception, Memory, Com-
munication, Decision) and concepts mentioned above and the general flow of the
decision-making cycle. Most of them involve abstract functions that can be imple-
mented with glue code to connect the functionality of the agent to the modelling
context. In the Decision component, the implementation for leaf node (i.e. the node
that has no children) and parent node determinants are also presented. This mecha-
nism allows users to interchange, add or remove the decision factors to present other
behaviour theories. All implementations in Java are listed in Appendix B.
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4.3.1 Specification of classes in the framework

We illustrate the relationships between the main classes mentioned in Section 4.2 in
Figure 4.9:

• Abstract class Task describes the work to be done or undertaken by the agent.
It specifies a trigger time and potentially some pre/post-conditions that the
agent has to satisfy, e.g. some environment externals state or agent’s internal
state have to be reached.

• Interface Environment State is a current model of the environment. Users can
implement some getter and setter functions for this information. It can also
include communication signals with other agents.

• Interface External State stores the information about the current internal state
of an agent. Some getter and setter can be implemented for these fields.

• Interface Option is a potential action that an agent can do to accomplish the
Task.

• Interface Feedback is an optional class which provides the data about the
reaction of the current environment when the agent turns the Option to action
using its communication component.

• Abstract Class Environment includes an id and two functions: getEnviron-
mentState and getFeedback. The first provides the environment’s current state.
The second, which is optional, indicates the reaction of the environment in
response to the agent’s behaviour.

• Abstract Class PerceptionComponent stores the address of the environment
and has a function - generateOptions - that creates a list of options with their
properties based on the environment state and internal state. The generated
options should satisfy the pre-condition mentioned in the Task.

• Abstract Class MemoryComponent has information of an agent’s internal state.
It is responsible to provide a suitable information to generate options and
incorporate feedback into the internal state using two functions, getInternalState
and updateInternalState.

• Abstract Class DecisionComponent evaluates the Option from perception com-
ponent and selects the suitable option(s) for the given Task. The evaluateOptions
function utilises tree structure to compute the expected utility value, according
to Equation 4.7. The default setting is the TIB structure. It starts at a root node
Determinant represents the behaviour output value. A node with one or more
children is a ParentDeterminant. On the contrary, it can also have zero children,
i.e. a LeafDetermiant. In our TIB model, the LeafDetermiants represent the first
level determinants, while the ParentDeterminants is the one on levels two and
three. To implement this structure, users only have to specify how the Option
can be evaluated in terms of the LeafDetermiant.
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• Abstract Class CommunicationComponent gathers Feedback from the Environ-
ment with regard to the action chosen, which can be specified in the getFeedback
function by users.

4.3.2 General flow of the decision-making process

Using the classes and interfaces above, we provide the description of a decision-
making cycle of an agent as follows:

• When the simulation starts, agents are assigned a number of Tasks that have
different start times and a list of possible actions.

• At the time of triggering, agents use the PerceptionComponent to filterOptions,
which in turn utilizes getEnvionmentalState function from Environment and
getInternalState function from MemoryComponent.

• The list of possible Options (and their properties) is passed to DecisionCompo-
nent to be evaluated (given a double value). It is performed by evaluateOption
function, which calls the decision tree recursively (default TIBDecision) to give
a value to each Option depending on its property and the Task. Users often
only need to define utility functions LeafDeterminant (1st level of TIB tree).

• The DecisionComponent selects the most suitable Option in terms of 1) the best
evaluated (if utility represents the gained benefit) / lowest evaluated option (if
utility represents the cost), i.e. deterministic mode, 2) an option based on the
percentage composition of all the options’ utility values, i.e. stochastic mode.

• The selected Option is passed to the CommunicationComponent to be com-
municated to the Environment, which will produce a Feedback. It is passed to
MemoryComponent to be used in the function updateInternalState.

4.3.3 Pseudo code

This section describes the Pseudo code for the agent’s main agent class and its core
components. The functions in Perception, Memory and Communication components
depend on the modelling context and have to be defined in the glue code, so we leave
them as abstract functions.

Agent

This class defines all the general components and processes of an agent (see Listing
4.1).

Listing 4.1: Pseudocode of Agent

1 class Agent:
2 DEFINE id AS String
3 DEFINE schedule AS Task[]
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4 DEFINE perceptionComponent AS PerceptionComponent
5 DEFINE memoryComponent AS MemoryComponent
6 DEFINE decisionComponent AS DecisionComponent
7 DEFINE decisionComponent AS DecisionComponent
8 DEFINE communicationComponent AS CommunicationComponent
9 DEFINE task AS TASK

10 FOR EACH task IN schedule
11 environmentState <- perceptionComponent.getEnvironmentalState()
12 internalState <- memoryComponent.getInternalState()
13 options <- perceptionComponent.filterOptions(environmentState,

internalState)
14 evaluatedOptions <- decisionComponent.evaluateOptions(options,task)
15 pickedOption <- decisionComponent.pickOption(evaluatedOptions,task)
16 feedback <- communicationComponent.getFeedback(pickedOption,task)
17 memoryComponent.updateInternalState(feedback)
18 END FOR

• Line 1: Initialise the agent’s ID.

• Line 2-8: Initialise all agent components.

• Line 11: Call Perception component to get the current environmental state
(including other agent’s opinion(s)).

• Line 12: Call Memory component to get the agent’s internal state.

• Line 13: The internal state then passed to Perception component to derive a set
of possible options.

• Line 14: This options list is then evaluated by Decision component and sorted
into a list.

• Line 15: The Decision component either pick the best evaluated option (deter-
ministic) or turns utility into percentages for agent’s selection (probabilistic). It
then communicates this information to the environment.

• Line 16: The Perception component captures feedback(s) of the environment to
the agent’s action.

• Line 17: The Memory component stores this feedback for future loop.

Perception

The Perception component initialises the functions that observe the environmental
state, combines it with the internal state to produce a set of possible options and
captures the feedback(s) from the agent’s actions (see Listing 4.2).

Listing 4.2: Pseudocode of Perception component

1 class PerceptionComponent:
2 DEFINE environment AS Environment
3
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4 DEFINE function getEnvironmentalState()
5 DEFINE function filterOptions(EnvironmentState,InternalState)
6 DEFINE function getFeedback(Option,Feedback)

Memory

The Memory component stores the internal state of the agent and is responsible for
updating it (see Listing 4.3).

Listing 4.3: Pseudocode of Memory component

1 class MemoryComponent
2 DEFINE internalState AS InternalState
3 DEFINE function getInternalState()
4 DEFINE function updateInternalState(Feedback)

Communication

As the name suggested, the Communication component outputs the agent’s decision
to the environment and gathers feedback information (see Listing 4.4).

Listing 4.4: Source code of Communication component

1 class CommunicationComponent
2 DEFINE environment AS Environment
3 DEFINE function getFeedback(Option,Task)

Decision Component

The Decision component is responsible for evaluating all options in the provided set
(see Listing 4.5). It outputs a map of options to their utility. It can then either choose
the option which has the highest/lowest utility outcome (deterministic) or turn the
utilities into probabilistic functions.

Listing 4.5: Source code of Decision component

1 class DecisionComponent
2 DEFINE TIBDecision AS Determinant
3 DEFINE function evaluateOptions(Option[],Task)
4 DEFINE function pickOption(Pairs(Option, double)[],Task)

In this component, the TIBDecision variable is the root node of TIB tree structure.
Next, we implement the two classes: Leaf determinant (no child node) and Parent
determinant (with at least one child node). Each determinant evaluates all options
and gives utility values to them.

The LeafDeterminant requires user to define an evaluateOptions function to assign a
utility value to a list of provided Options (see Listing 4.6).
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Listing 4.6: Source code of Leaf Determinant

1 class LeafDeterminant
2 DEFINE weight AS Double
3 DEFINE function Pair(Option,Double)[] evaluateOptions(Option[], Task)

The ParentDeterminant essentially follows the Equation 4.7 to provide a map
between Option and its utility value (see Listing 4.7). We describe the code for
evaluateOptions function as follow:

Listing 4.7: Source code of Parent Determinants

1 class ParentDeterminant
2 DEFINE weight as Double
3 DEFINE children AS Determinant[]
4

5 DEFINE function evaluateOptions(options,task):
6 DEFINE results AS Pair(Option,Double)[]
7 DEFINE child AS Determinant
8 FOR EACH child IN children
9 sumValue <- 0

10 DEFINE childEvaluation AS Pair(Option,Double)[]
11 childEvaluation <- child.evaluateOptions(options,task)
12 childrenKeySet <- childEvaluation.keySet()
13 FOR EACH option AS Option IN childrenKeySet
14 sumValue <- sumValue + childEvaluation.getValue(option)
15 END FOR
16 IF sumValue = 0 THEN
17 sumValue <- 1
18 END IF
19 DEFINE option AS Option
20 FOR EACH option IN options
21 childValue <- childEvaluation.getValue(option) * child.getWeight()

/ sumValue
22 IF results.containsKey(opt)
23 results.put(option, results.getValue(option) + childValue)
24 ELSE IF
25 results.put(opt, childValue);
26 END IF
27 END FOR
28 END FOR
29 RETURN results
30 END FUNCTION

• Line 6: Define the results variable as a map between an Option and its utility
value.

• Line 7: Define the child variable as a Determinant.

• Line 8: The loop goes through each child in the list.

• Line 9: Initialise the sumValue variable, which is used to calculate the sum of
all utility of the determinant’s children node.

• Line 10: Define the childEvaluation variable as a map between an Option and its
utility value.
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• Line 11: Assign the childEvaluation variable to the result of a recursive call to
the evaluateOptions function in that child.

• Line 12: Assign the childrenKeySet variable as the key set of the results of the
previous call.

• Line 13-15: Assign the sumValue as the sum utility values of all options in that
particular child.

• Line 16-18: If sumValue is 0, assign it to 1 to avoid division to 0.

• Line 19: Define the option variable as an Option.

• Line 20: The loop goes through each option in the input list.

• Line 21: Assign the childValue variable as utility value of an Option in term of
the particular child that we are considering. This process is corresponding to
the inner part of the summarisation in Equation 4.7.

• Line 22-26: If a value corresponding to that option already exist in our results
map, we increase it by the amount of the childValue variable. Otherwise, we
simply put the value of childValue variable in the results map.

4.4 How the framework is used

The framework can be utilised to simulate a decision-making process. To use it, users
have to define the parameters of the agents and the environment as well as their
interactions. In terms of programming, the modeller can implement the glue code for
the aforementioned abstract classes and interface.

1. Specify the targeted behaviours or the interesting features/phenomena that
can be simulated through the given modelling context.

2. Parametrise agents and environment and their attributes using the available
data. This way, all the fields and variables of the main Environment and Agent
classes should be defined.

3. Design how the agents and environment interact, including Agent-Self, Environment-
Self, Agent-Agent, Environment-Environment, Agent-Environment (see Section 2.3).
In particular, the modeller can define the variable fields in the EnvironmentState
and Feedback interfaces.

4. Define how an agent filter and evaluate an option. This process involves the
implementation of the InternalState and Option interfaces. Users also need to
extend the main components of the agents, i.e. PerceptionComponent, Memo-
ryComponent, DecisionComponent and CommunicationComponent, and specify
the functions in these classes. In addition, the function evaluateOptions in the
LeafDeterminant should be defined. The default of the computation is set as TIB
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three-layered model, but a user can create their own decision-making structure
that is more suitable for the context and available database.

5. Calibrate the agent parameters so that the outputs reflect empirical/historical
data.

6. Set up an experiment to demonstrate or test the model’s functionality base on
the type of decision-making and the model’s purpose. Its results can then be
interpreted and discussed.

It should be noted that the steps above are suitable for a situation where the model
is developed after data collection. Therefore, the modellers cannot influence the data
set’s content, so they have to adapt the agent and environment’s parameters and their
behaviours accordingly. This situation applies to all of our case studies in the next
four chapters 5 to 8.

In an alternative case, the modellers can incorporate interesting behaviour features
into the planning of the data collection process. It implies that correct and enough
contextual data is available to create a model. In this case, we suggest that step 2 can
be moved back behind steps 3 and 4.

4.5 Documentation

In this section, we list the relevant documentation process for the framework to help
the readers to be able to grasp the core aspects and be able to replicate an example
model of the framework if they want to understand how it works. Often, there is not
a space within the length of a conventional article to describe a simulation sufficiently
to enable replication to be carried out. A more radical solution is to publish the code
in a public repository. To provide this implementation, we first consider suitable
programming languages and platforms. A majority of them can be found in surveys,
such as [CF21; KB15; Das14]. We list two of the most popular tools in the education
and the ABM research community below:

• NetLogo8 [TW04] is a multi-agent programmable modelling environment,
which allows quick prototyping but sophisticated simulations. It comes with
an extensive models library, including models in various domains, such as
economics, physics, chemistry, biology and psychology and system dynamics.
NetLogo can be used by teachers in the education community and domain
experts without a programming background to model related phenomena.
Beyond exploration, it also allows the authoring of new models and modifying
existing models. However, its features are relatively simple and cannot be used
for large-scale simulations.

• The Repast Suite9 [Nor+13] is a family of advanced, free, cross-platform, agent-
based modelling and simulation toolkits. It provides multiple implementations

8Main website: https://ccl.northwestern.edu/netlogo
9Main website: https://repast.github.io

https://ccl.northwestern.edu/netlogo
https://repast.github.io
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in several languages and many built-in adaptive features. Currently, there are
two editions of Repast and several ways to write models in each edition to
satisfy many different kinds of users and cases. Compared to NetLogo, Repast
is potentially more flexible since users have access to the whole range of Java
libraries and other major languages, but it requires programming background.
RePast is also actively updated for newer Java versions and functionalities.

As our team has experts in the Java language and aims to build a scalable model,
we implement our simulation, Behaviour-Driven Demand Model (BedDeM), using
RePast. Its source code with mobility example can be seen on GitHub[Git]: https:
//github.com/SiLab-group/beddem_simulator.

Another documentation methods is through publication, adding our findings
to the stock of scientific knowledge. There are an ongoing number of articles and
abstracts that results from the usage of our framework, including [NS19b; BS19a;
BS19b; NS19a; NS20b; NS20a; BPS21; NPS22]. They mainly follow the Overview,
Design concepts and Details (ODD) document protocol to describe the implemented
agent-based model [GPT17], which includes three main categories:

• The Overview section creates an outline of the model.

• The Design Concepts section describes the general concepts underlying its de-
sign.

• The Details section provide all information that are needed to re-implement the
model (e.g. initialisation, input, calibration).

This thesis is also a form of system documentation, which provides the following
formal language descriptions: 1) ontologies and graph that formally describe com-
ponents and their relationships, 2) pseudo-code combining natural language with
programming syntax and 3) mathematical descriptions in the form of mathematical
equations.

In addition, the next four chapters 5 to 8 will show that our framework is suitable
for different research fields (i.e. domain-independent) and contexts. Our imple-
mentation platform - BedDeM - is being developed in Java using the Repast library
for agent-based modelling [Nor+13]. We provide four case studies with different
focuses: 1) modelling mobility demand, 2) trust and reputation for travelling by train,
3) bounded rationalities in purchasing new vehicles and 4) activities of migrants
during a pandemic. Each model focuses on different contexts, determinants and
types of decision-making, such as optimal/bounded rationality behaviours and short-
term/long-term decisions. The properties of the environment mentioned in Section
2.2 are also considered. The diversity of these case studies tests the flexibility of our
framework and its ability to highlight different social phenomena or effects that are
not well captured in previous modelling efforts.

In general, each case study follows the below structure adapted from the steps
presented in Section 4.4:

https://github.com/SiLab-group/beddem_simulator
https://github.com/SiLab-group/beddem_simulator
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1. Introduction and description of case study: This subsection gives the informa-
tion background, the complete scenario description and the potential insights
provided by the models and experiments in the case study. It also identifies
the type of decision-making (e.g. short-term/long-term, optimal/bounded
optimal) and properties of the environment (e.g. fully/partially observable,
deterministic/stochastic, static/dynamic, know/unknown). (Step 1 of Section
4.4)

2. Related work: This subsection summarises the models and other implementa-
tions that have been developed for a similar context, including the applications
of the related work in Chapter 3.

3. Dataset and parametrisation of the environments and agents: This subsection
describes the available data set and how we incorporate it into the model’s
parameters. We then detail the procedure in which we extend the main Envi-
ronment and Agent classes and implement relevant interfaces (e.g. InternalState,
Option) to reflect the given description. (Step 2 of Section 4.4)

4. Interactions between the environment and agents: This subsection specifies
which information an agent can perceive from the environment and how it
communicates its decisions to the environment and other agents. We also
summarise how the EnvironmentState and Feedback interfaces are implemented.
(Step 3 in Section 4.4)

5. Agent’s decision-making process: This subsection describes the information
flow between the core components (i.e. the PerceptionComponent, MemoryCompo-
nent, DecisionComponent, CommunicationComponent classes) to determine the
best option from the observed list, in particular. It also provides the details of
implementing of the function evaluateOptions in the LeafDeterminant. (Step 4 of
Section 4.4)

6. Calibration: This subsection outlines the process of finding a set of agent
parameters that is most compatible with the historical data. (Step 5 of Section
4.4)

7. Experiments and results: This subsection details experiments highlighting the
usage of a socio-psychological decision-making platform. (Step 6 of Section
4.4)

8. Advantages and limitations of using our framework: This subsection outlines
the advantages as well as disadvantages of our framework compared to the
state-of-the-art mentioned in Chapter 3.

Some case studies include the extended components of the previous case. Hence,
some sections are omitted. Furthermore, the first and second studies are modified
versions of our publications. The third case includes the components of a submitted
paper. In these cases, we will specify the publication accordingly.
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Chapter 5

Case study: The model of mobility
demand

In the first case study (i.e. Chapter 5), agents make decisions on transportation
mode as needed for their routine, i.e. a form of short-term behaviours. In this case,
the environment is deterministic, fully observable, static and known. Experiments in
this section are based on optimal behaviours. In other words, the agents select the
best option after performing the evaluation process using determinants in TIB. This
chapter contains the modified version of some elements from our publication [NS19b;
NS19a], including the related work, BedDeM’s design, calibration and the experiment.

5.1 Introduction and description of case study

Our framework’s first application is in the mobility domain, which aims to generate
yearly demands at the individual household level that can be interpreted at the
granularity of historical evolution of transportation for Switzerland’s private households.
In this case study, we demonstrate the procedure of adopting our framework in
the context of mobility modal choice and the available data set. The simulation
is performed to test our framework capability to capture the effects of different
aspects or strategies mentioned in the example of Section 1.1 (e.g. economic attitude,
emotion, habit) at the micro level. The experiment in this study involves changing
the weights of second and third-level determinants in TIB. Comparing the results
with a calibrated scenario provides a sensitive analysis of the associated weights for
different transportation modes.

After considering some of the related work in simulating mobility-related decision-
making, we describe the statistical data and technical details of the environment and
agent population. The following sections detail their interactions and the agent’s
decision-making process. Next, an experiment demonstrates how to use the frame-
work to capture the effect of individual decision-making determinants on the emerged
collective phenomena. Finally, we identify the advantages and limitations of our
framework, especially compared to those mentioned in Chapter 3.
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5.2 Related work

In this section, we provide related work on models that deal with mobility modal
choice. In this case, the agent’s objective is to select the most appropriate option from
a set of alternatives. From the decision-making process, the utilities or probabilities of
all options can be derived from different methods.

One approach incorporates statistical discrete choice models with the agent’s
preferences, strategies and likelihood of choosing a particular action [BAB99]. Many
projects in the mobility domain use random parameters logit [HG03] as a way to as-
sign predicted probabilities to outcomes of an action. Examples include [CBA08;
Anw+14]. Empirical data (e.g. observed choices, surveys, hypothetical scenarios,
administrative records) can then be used to estimate the parameters of the agent’s
preferences. However, this approach does not allow users to distinguish the differ-
ent socio-psychological aspects of decision-making (e.g. economic attitudes, habits,
emotion) and their impact on the agent’s behaviours.

To produce a more elaborate decision-making process, another agent class is
assigned with beliefs, values or world views corresponding to observation from
demographic data or stakeholder assessments. It is often implemented using the
Belief-Desires-Intentions (BDI) [RG91] architecture. Practical examples include the
work of Padgham et al. [Pad+14], Bazzan et al. [BWK99], and Balmer et al. [Bal+04].
However, this agent class is often criticised for the lack of experimental grounding
[DMJ06] and the agent choice of being homogeneous, selfish and focused only on
economic drivers [RG91]. To the best of our knowledge, there is no project in the
mobility domain that utilises more complex cognitive architectures, such as ACT-R,
CLARION [Sun06], [TLA06] or SOAR [Lai12]. Regardless, as mentioned in Chapter 3,
they do not have the components to cover all major aspects of human decision-making
(i.e. cognitive, affective, social, norm and learning) [BG14].

5.3 Parametrisation of the environment and agents

In this case study, the Transport Microcensus (MTMC) [Mic] and the Swiss Household
Energy Demand Survey (SHEDS) [Web+17] are utilised. In this section, we describe
their characteristics and the process of capturing them in the environment and agent’s
parameters.

5.3.1 Dataset

The MTMC is a statistical survey of the travel behaviour of the Swiss population
conducted every five years by the Federal Office for Spatial Development (ARE)
and the Federal Statistical Office (FSO). Most recent data were published in 2015,
containing information about:

• The socioeconomic characteristics of households and individuals’ mobility
tools
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• Daily mobility and occasional journeys

• Attitudes towards transport policy in Switzerland.

The SHEDS is designed to collect a comprehensive description of the Swiss house-
holds’ energyrelated behaviours, their longitudinal changes and the existing potential
for future energy demand reduction. The survey was planned in five annual waves
(2016-2020), thus generating a rolling panel dataset of 5,000 respondents per wave.
The household characteristics collected can be classified into three main disciplines:

• Economics: number of people per household, average age, income, education,
type of residence, energy literacy, etc.

• Psychology: environment attitudes, risk attitudes, emotions, values, life satis-
faction, etc.

• Sociology: abstract of context and performance, life events, etc.

We are particularly interested in questions that compared the criteria for mobility
mode choices, whose answers can be interpreted as the weights(wi) for different
psychological determinants in TIB. A typical example can be observed in Figure 5.1.
We can interpret them as follow:

FIGURE 5.1: An example question from the Swiss Household En-
ergy Demand Survey, taken from [She]

1. Choosing the cheapest option - Weight for cost.

2. I am used to taking this means of transport - Weight for habit

3. Travelling as safely as possible - Weight for emotion

4. Travelling as fast as possible - Weight for time
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5.3.2 Environment parametrisation

The environment includes 26 entities which represent different Cantons, which are
the major administrative divisions in Switzerland. This study will refer to them as
regions. Each region has a list of mobility agents presenting its population. It also
contains the list of available public transport modes for the region, e.g. bus, tram,
train. In addition, they provide a way to monitor and report the activities of different
geographic groups of agents for the results. The environment here is considered to be
deterministic, fully observable, static and known.

Using the classes and interface provided in Section 4.3, the implementation of
the Environment interface and Mode can be seen in Figure 5.2. Each region has the
following properties:

FIGURE 5.2: The extension of the Environmental and Mode class

• Population: list of agents who are living in this particular region.

• Service availability: list of public transport (i.e. bus, tram, train) with their
availability in binary format.

The mode can also be defined with the following fields:

• Motor: the type of engine of the vehicle, e.g. gasoline, diesel, electric, hybrid.

• Speed: the speed of the vehicle in terms of kilometres per hour, which can be
used to calculate the duration of the trip.

• Price per kilometre: the price per kilometre of the vehicle, which can be used to
calculate the cost of the trip.

• Number of seats: the number of available seats on the vehicle.

• Comfortability: a number assigned by our economic collaborator to compare
the luxury class of the vehicle, e.g. sports car (50) versus family car (30).
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5.3.3 Agent parametrisation

Figure 5.3 illustrates the process of parametrising the household profiles to build a
synthetic population. Interested readers can refer to the full procedure in [BS19a].
In short, MTMC’s entries (N = 57,091) are placed in a latent space (socio-matrix)
that is represented by a symmetric Gower distance matrix [Gow71]. All pairwise
distances/dissimilarities are created based on the common features of the two data
sources (e.g. age group, gender, region, household size, income level, number of
personal vehicles). This matrix also provides a way to calculate the recommendation
for agents from the same network (i.e. U(Role)). We then find the most similar peers
with the lowest distance to each other and join them with SHEDS entries (N=5,515).
A random number of representatives for each geographical region in Switzerland are
selected to become our agent population (N=3,080).

FIGURE 5.3: Building a synthetic population

After the above process, we can define the following components in our agent
framework: Internal state, Task and Option. Figure 5.4 is an UML diagram illustrating
the implementation with the classes and interface provided in Section 4.3.

• Agent’s internal state:

– Location: Region (or Canton in Switzerland) where the agent lives.

– Budget: Weekly travelling budget.

– Accessibility set: List of available transportation services for the agent.
They are allocated according to the MTMC. For each mode, the agent has
information about its speed, type of engine, cost per km, comfortability
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FIGURE 5.4: The implementation of Mobility internal state, Mobility
Task, Mobility Option

(assigned according to the vehicle category, e.g. SUV, family car, sports
car) and emission.

– Weight to universe: The proportion of the population that the agent
represents.

– Network: The list of neighbour agents is created based on the location
of the agent profile. The strength of the connection relies on its trust in a
different role in society, which is extracted from SHEDS.

– Past usage: The map to record the number of usage times per each mode
of transportation.

• Task: A weekly schedule is also derived for each agent from MTMC. It includes
several trips that the agent has to make. The agent’s main purpose is to select
a transportation mode to perform a task on its schedule. Each task has the
following properties:

– Start time (in terms of hours and day of the week).

– Threshold (maximum) time for the trip.

– Distance between locations.

– Purpose: go to work, shopping, school, leisure, etc.

– Number of accompanying people.
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• Option: A transportation mode (including rail, car, bus, tram, biking, walking
and others). There is also an option of not performing the scheduled activity
due to the constraints from the agent’s internal state or environment (e.g.
exhaustion of budget or exceeded travelling time on all available modes).

• Feedback: There is no immediate reaction from the environment caused by the
agent’s choice.

5.4 Interaction between the environment and agents

The mobility model is illustrated in Figure 5.5. The simulation process starts with a
central controller creating all the agents with all their attributes and assigning them
to their respective regions. Each region contains information about the available
public transportation and can reflect the dynamic change in traffic rate concerning the
simulating time. The agent then looks at its schedule, creates decision-making events
and puts them in the stack to be activated. At the time of simulation, the controller
triggers these events simultaneously, waits for them to finish, and then skips to the
next scheduled point (i.e. event-driven). After all the tasks are finished, a reporter
component in the region collects the final results. Since each agent represents a portion
of the total population, these numbers are then multiplied by the weight_to_universe
parameter in the agent’s internal state to be compatible with MTMC for the calibration
process.

FIGURE 5.5: Overview of BedDeM

In terms of our interfaces provided in Section 4.3, the EnvironmentState can be
implemented to provide information on whether a public transportation mode (i.e.
bus, tram, train) is available at the agent’s location (see Figure 5.6). At this stage of
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development, there is no response that the environment needs to give back to the
agent. Hence, the Feedback interface is not implemented in this model.

FIGURE 5.6: The implementation of Environmental state interface

5.5 Agent decision-making process

Our decision-making component requires two elements to calculate the expected
utility for a set of options: 1) how to specify a ranking order of the option according
to a determinant (Uopt(d)) and 2) the weight of the determinant (w(d)). A mapping
of the first-level determinants can be seen in Figure 5.7. It is based on some of the
past research [Amp04] and the kinds of properties that can be measured or ranked
objectively (using common sense). In this case, the determinant Belief is omitted since
the system assumes that the knowledge/perception of agents is always correct.

FIGURE 5.7: TIB’s determinants mapping for the mobility case
study
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In terms of our framework implementation, we extend the LeafDeterminant to
represent the determinants in the first level of TIB (see Figure 5.8). The evaluateOptions
function can then be implemented with as the expected utility of each option Uopt(d),
which can be calculated or be given a ranking value related to other option:

FIGURE 5.8: The implementation of first level

• U(Price) = distance of the trip divided by cost per km of the mode.

• U(Time) = distance of the trip divided by speed of the mode.

• U(Norm) = the number of neighbours in the agent network using the mode.

• U(Role) = ranking of environmental friendliness of the mode: 1 - Walking/Bik-
ing, 2 - Electric, 3 - Combust Engine (Gas/Diesel).

• U(Self-concept) has no data available in the data set. We will calibrate it by
finding the ranking of the agent’s preferred vehicle groups, including walk-
ing/biking, car/motorbike, train/tram/train and others (see Section 5.6).

• U(Emotion) = the vehicle luxury / comfortability.

• U(Frequency) = the number of times the agent used the same mode previously.

• U(Facillitating) = whether the destination has convenient parking: value 0 or
1.

The weight of each determinant (w(d)) is extracted from the rating provided by
a profile in SHEDS (see example in Section 5.3.1), with range from 1-5. The list of
questions with matching determinants is as follows:
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• w(Price) - Please rate how important the following aspects are for choosing
this mode of transportation: Choosing the cheapest option.

• w(Time) - Please rate how important the following aspects are for choosing
this mode of transportation: Travelling fast.

• w(Role) - Please rate the extent to which you agree with the following state-
ments: My acquaintances expect that I behave in an environmentally friendly
manner.

• w(Norm) - Regarding energy and saving energy, how strongly do you trust the
information provided by the following people: Neighbors.

• w(Sel f − concept) - Please rate how important each value is for you as a guiding
principle in your life: Self-indulgent.

• w(Emotion) - Please rate how important the following aspects are for choosing
this mode of transportation: I enjoy this way of travelling.

• w(Freq) - Please rate how important the following aspects are for choosing this
mode of transportation: I am used to taking this means of transport.

• w(Attitude) - Please rate how important each value is for you as a guiding
principle in your life: Wealth.

• w(Habit) - Please rate how important each value is for you as a guiding princi-
ple in your life: Social power.

• w(Intention) = MAX_SCALE - w(Habit).

After all the classes are defined, the framework can calculate the final Uopt(Be-
haviouralOuput) using the code and structure design provided in Section 4.3.

5.6 Calibration

The purpose of calibration is to improve the current population’s compatibility with
the target system (i.e. statistical data from MTMC). We focus on figuring out the
most fitted ranking patterns for U(Sel f − concept). We divided the agent population
into four profiles, depending on their daily main transportations according to the
SHEDS: 1) soft-mobility modes (walking/biking), 2) public vehicles (tram/bus/train),
3) private vehicles (car/motorbike) and 4) others. U(Sel f − concept) for each of them
can then be calibrated by permuting the ranking order of all the modal choices.

Our main objective is to minimise the error calculated from the Equation 5.1. It
is measured from the total differences between the final sum of kilometres in each
mobility mode at the end of a period (i.e. a year in this case) and historical data.
The total kilometres result for one year of all mobility profiles can be obtained (i.e.
walking/biking, bus/tram/train, car/motorbike, others) from MTMC [Mic]. Cali-
bration involves using the permutation of these four sets of modes as configurations
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for the U(Sel f − concept). We repeat this procedure for all agent profiles set at either
deterministic (choose the best option) or stochastic (choose from a random function
with probabilities provided by sampling distribution of final referenced values) to
find the smallest error.

minimise
con f

err(con f ) = ∑
m∈M

| censusm − simm(con f ) | (5.1)

where M is the set of walking/biking, bus/tram/train, car/motorbike and other.
censusm is census data for mode m (in kilometres). simm(con f ) is the simulation
result for mode m (in kilometres). con f is a ranking of four categories in M and can
be captured in the form of permutations with repetition. Examples are:

• (1) walking/biking, (1) bus/tram/train, (1) car/motorbike, (1) others.

• (1) walking/biking, (1) bus/tram/train, (1) car/motorbike, (2) others.

• (1) walking/biking, (1) bus/tram/train, (2) car/motorbike, (1) others.

• (1) walking/biking, (2) bus/tram/train, (1) car/motorbike, (1) others.

• ...

We list the kilometres in census data and the top results of two types of agents
in Section C.1. The best configuration is in the deterministic model (i.e. agents pick
the option with the highest utilities), which has an error accounting for 6.5% of the
total scheduled kilometres. The main differences are in the public (i.e. bus/tram/-
train) transportation numbers. We also observe that the stochastic error is much
more significant (above 51.8x109 kilometres) with an accuracy of 46%. This result is
expected since agents in stochastic mode choose options based on a random function
of probabilities derived from the utility values. Currently, no pattern is shown in
the ranking function U(Sel f − concept) of the results of stochastic mode, and hence
additional runs with different distribution functions are needed to have a broader
picture for this setting. Nevertheless, we decide to use the deterministic mode for the
experiment below because it gives a more unambiguous indication of which results
change with the modification in the agent’s parameters.

5.7 Experiment with behavioural determinants in mobility modal
choices

Our agent’s decision-making platform offers a mechanism to measure the impact of
different individual determinants on short-term transportation modal choices (i.e.
car, bus, tram, trains, walking, biking). We demonstrate this capability through a
series of setups to activate/deactivate the second and third level determinants of TIB
in the agent’s decision-making and compare the collective results after simulation.
The current agent population contains a mapping of qualitative data in SHEDS to all
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TIB’s determinants, which is designed to reproduce the travelling patterns in MTMC.
Hence, performing the experiment on this baseline can provide a practical insight
into real-life situations where people often rely on a small set of factors and aspects to
make their decision on modes of daily transport. These factors and aspects correspond
to the ones mentioned in Section 1.1, including economic attitude, affective, social
and habit. By singling out their effects, we also aim to identify the main drivers of
different mobility mode choices in the agent population.

5.7.1 Design

In this experiment, we want to focus on observing the impact of second and third-level
determinants in TIB, i.e. Attitude, Social factors, Affect, Facilitating condition, Intention
and habit. It can be achieved by qualifying the mobility demand changes for different
transport categories, including car, bus/tram, train, walking, biking, and other modes.
In each scenario, we modify the corresponding weights in the agent’s decision-making,
i.e. w(Attitude), w(Social), w(A f f ect), w(Facilitating), w(Intention), w(Habit) (see
Figure 5.7 and Table 5.1). This exercise is performed on the calibrated deterministic
population described in Section 5.6; in which mode agents choose the best alternative
for their trips. By keeping the weight(s) of the main determinant(s) as calibrated
values and others to 0, the agent will only consider that key determinant(s) in decision-
making and ignore the rest. In the first half of this setup, we focus on the second level
of TIB, which connects to Intention in the third level. Hence, w(Intention) is kept as
in Section 5.6. This process is also applied similarly to w(Attitude), w(Social) and
w(A f f ect) in the second part to ensure U(Intention) remains non-zero. All trips are
scheduled within one year, so there is no difference in agents’ accessibility to modes.
Seasonal changes are planned for a future developing stage.

Table 5.2 shows a running example in the mobility domain which follows the TIB
determinants mapping in Figure 4.6. An agent needs to make a working trip from
Sion to Sierre and has access to three options: using a car, taking a train or a bike,
which is assigned from data collected from [Mic]. In addition, U is a cost function, i.e.
option with a smaller value is preferred. As explained above, the agent believes and
evaluates the consequence/cost of this journey based on two criteria, namely Price
and Time. It expects the car option to have the price of around 4 Swiss Franc, and so
Ucar(Price) = 4. Correspondingly, Utrain(Price) = 3 and Ubike(Price) = 0. Their total
value, ∑ U(Price), is 7. The estimations for time are Ucar(Time) ≈ 0.3, Utrain(Time) ≈
0.2 and Ubike(Price) ≈ 1; the sum of which is 1.5. According to [Web+17], the agent
has w(Price) and w(Time) are 2 and 4 respectively.

The utility values of car, train and bike at determinant Attitude are Ucar (Attitude)
≈ 1.94, Utrain(Attitude) ≈ 1.39, Ubike(Attitude) ≈ 2.67 respectively. They add up
to 6 in total. Similarly, the sum of U for Social factors is 8 and sum of U for Affect
is 1. With the Attitude (At) setup in Table 5.1, their weights (w(Social f actors) and
w(A f f ect)) are 0. By applying Equation 4.7, the new expected value in the next level
(U(Intention)) of car would be = 1.94/6*4 + 1.39/8*0 ≈ 1.3, train would be 1.39/6*4 +
2.67/8*0 + 0.33/1*0 ≈ 0.93, and bike would be 2.67/6*4 + 3.33/8*0 + 0.5/1*0 ≈ 1.78.
In the third level, Habit and Facilitating conditions have their weights both equal to
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TABLE 5.1: Experiment design

Main
determinant(s)

w(Atti−
tude)

w(Soci−
al)

w(A f f −
ect)

w(Faci−
litating)

w(Int−
ention) w(Habit)

Attitude (At) as cali-
brated 0 0 0 as cali-

brated 0

Social Factors
(SC) 0 as cali-

brated 0 0 as cali-
brated 0

Affect (Af) 0 0 as cali-
brated 0 as cali-

brated 0

At + SF as cali-
brated

as cali-
brated 0 0 as cali-

brated 0

SC + Af 0 as cali-
brated

as cali-
brated 0 as cali-

brated 0

St + Af as cali-
brated 0 as cali-

brated 0 as cali-
brated 0

Facilitating
Conditions (FC)

as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated 0 0

Intention (I) as cali-
brated

as cali-
brated

as cali-
brated 0 as cali-

brated 0

Habit (H) as cali-
brated

as cali-
brated

as cali-
brated 0 0 as cali-

brated

FC + I as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated 0

I + H as cali-
brated

as cali-
brated

as cali-
brated 0 as cali-

brated
as cali-
brated

FC + H as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated 0 as cali-

brated

0 and so, their utilities are not taken into account in the behaviour output. In other
words, Ucar ≈ 1.3, Utrain ≈ 0.93, Ubike ≈ 1.78. In contrast with the running example in
Section 4.2.4, these utilities indicate that a train would now be the preferred option
for this agent. By switching others’ weights off (or assigning them to 0), this scenario
highlights the connection of the agent’s attitude toward using a train.
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TABLE 5.2: Running example of an agent’s decision-making
adapted from Table 4.2 with attitute (At) setup.

Level Determinant w EU

1st Evaluation
(Price - Swiss
franc), Belief =
100%

2
Ucar = 4
Utrain = 3
Ubike = 0

Evaluation
(Duration -
hours), Belief
= 100%

4
Ucar ≈ 0.3
Utrain ≈ 0.2
Ubike≈ 1

Norm (similar-
ity with oth-
ers)

3
Utrain = 1
Ucar= 2
Ubike = 3

Role (environ-
mental friend-
liness)

2
Ucar = 3
Utrain = 2
Ubike = 1

Self-concept
(personal
preference)

3
Ucar = 1
Utrain = 2
Ubike = 3

Emotion (en-
joyment)

1
Ucar = 1
Utrain = 2
Ubike = 3

Frequency
(past similar
trips - note
that lower
value means
more usage)

3
Ucar= 0
Utrain = 0
Ubike = 1

2nd Attitude (Eval-
uation + Be-
lief)

4
Ucar ≈ 1.94
Utrain≈ 1.39
Ubike ≈ 2.67

Continued on next page
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Table 5.2 – continued from previous page
Level Determinant w EU

Social factors
(Norm + Role
+ Self-concept)

0
Ucar = 2
Utrain ≈ 2.67
Ubike ≈ 3.33

Affects (Emo-
tion)

0
Ucar ≈ 0.17
Utrain ≈ 0.33
Ubike = 0.5

3rd Intention (At-
titude + Social
factors + Af-
fect)

4
Ucar = 1.94/6*4 + 2/8*0 + 0.17/1*0 ≈ 1.30
Utrain = 1.39/6*4 + 2.67/8*0 + 0.33/1*0 ≈ 0.93
Ubike = 2.67/6*4 + 3.33/8*0 + 0.5/1*0 ≈ 1.78

Habit (Fre-
quency)

0
Ucar = 0/1*0 = 0
Utrain= 0/1*0 = 0
Ubike = 1/1*0 = 0

Facilitating
conditions

0
Ucar = 0
Utrain = 0
Ubike = 0

Behaviour out-
put

Ucar = 1.3/4.*4 ≈ 1.30
Utrain= 0.93/4*4 ≈ 0.93
Ubike = 1.78/4*4 ≈ 1.78

5.7.2 Results

After the simulation, all mobility modes’ total kilometre results can be obtained
(i.e. walking, biking, bus/tram, train, car, others). Comparing reference results in
Section 5.6 against the outcomes of each setup above would give us an idea about the
impact of the main determinants. The mapping of TIB’s determinants and percentage
composition of the modes can then be used to interpret the meaning of the difference
in each test.

• Attitudinal, Affective and Social determinants: Table 5.3 and Figure 5.9 show
the results of running BedDeM with the reference population and with one or
two determinants of the second level turned on.

In the Attitude(At) test case, a large number of car users switched to other
options, i.e. bus/tram, train and walking. From Figure 5.7, this determinant
consists of two elements - monetary price and time. Public modes and soft
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mobility (e.g. walking, biking) offer competitive prices in the current mar-
ket. Their current speeds are, however, worst. Having a closer look into the
agents who switch, we observe that the main reason is the higher values in
their weights for cost, i.e. w(Price) > w(Time). As the utility of Attitude is
U(Attitude) = U(Price) ∗ w(Price) + U(Time) ∗ w(Time), the weights, in this
case, create a disadvantage for cars.

TABLE 5.3: Result of comparing the second level of TIB’s determi-
nants (All units are in 109 kilometres)

Main
determinant Car Bus /

Tram Train Walk-
ing

Bik-
ing

Oth-
ers

Reference
population 73.09 4.07 23.2 2.67 4.91 4.42

Attitude (At) 45.77 16.0 33.86 6.22 5.9 4.58
Social Factors

(SF) 40.57 17.34 45.1 2.45 1.85 5.03

Affect (Af) 82.32 1.51 15.55 2.32 6.37 4.29
At + SF 37.97 16.9 47.22 2.88 2.22 5.16
SF + Af 69.44 3.38 27.19 2.81 5.12 4.42
At + Af 77.84 3.45 17.95 2.96 5.87 4.29

Ref At SF Af

At + SF

SF
+ Af

At + Af
0 %

20 %

40 %

60 %

80 %

100 %

Car
Bus/Tram

Train
Walking
Biking
Others

FIGURE 5.9: Percent composition of modes in the tests of second
level of TIB’s determinants

Similar shifts can also be seen in the Social factors (SF) test case with a more than
40% decrease in car usage. As they provide a place for socialisation (U(Role))
and are acceptable environmental friendly options, public transports have
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high utilities of Norm (U(Norm)) and Role (U(Role)). Hence, they see the most
increase in number, whilst soft mobility usage sees a small decrease. When
Social factors combine with other determinants (i.e. At + SF and SF + Af), we
can observe a minor decrease in car usage.

With the main focus on Affect (Af) determinant, more agents pick cars than
the other modes due to their convenience, comfortability and privacy, i.e.
U(Emotion) is high. It also explains the figures when two determinants are
combined. When Affect is not considered (i.e. At + SF), the car usage goes
down. When it is put together with others, the number increases significantly
(up to 40%). Therefore, we can conclude that Affect is the main driver for the car
option, while Social factors can encourage people to use more public transport,
especially for environmental reasons.

• Intentional, Habitual and Facilitating condition determinants: The results of
the third-level determinants test can be seen in Table 5.4 and Figure 5.10.

TABLE 5.4: Result of comparing the third level of TIB’s determi-
nants (All units are in 109 kilometres)

Main
determinant Car Bus /

Tram Train Walk-
ing

Bik-
ing

Oth-
ers

Reference
population 73.09 4.07 23.2 2.67 4.91 4.42

Facilitating
Conditions

(FC)
46.18 16.03 33.44 6.2 5.94 4.56

Intention (I) 67.72 4.12 28.12 2.77 5.21 4.42
Habit (H) 50.92 13.96 32.34 5.97 4.33 4.83

FC + I 67.82 4.16 28.0 2.76 5.2 4.42
I + H 69.23 3.45 27.73 2.63 4.9 4.42

FC + H 51.05 14.09 31.75 6.1 4.48 4.88

Although we put the “inconvenience of public connections” as the criteria
for Facilitating Condition (FC) (see Section 5.5), there is still a large number of
households favour walking and public transport over the car. The represented
agents of these households do not have a large w(Facilitating). Therefore, this
particular condition does not contribute to the final decision significantly.

The Habit test case also has a lower percentage of private vehicles than the
reference. The simulation time is short (1 year), so the agents have not accumu-
lated enough “experience”. However, the majority of agents have habit weight
smaller than intention weight, i.e. w(Habit) < w(Intention).

In contrast, Intention emerges as an important factor for car usage since the final
figure for this mode is 10% larger than the figure for either Habit or Facilitating
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Ref FC I H
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FIGURE 5.10: Percent composition of modes in the tests of third
level of TIB’s determinants

conditions. It can be confirmed in the combination cases where Intention is
present, i.e. FC + I or I + H. Both of them have a higher number of car trips than
other scenarios with only Habit or Facilitating condition. In TIB, Intention refers
to the deliberation process of human decision-making, as opposed to Habit,
which causes people to act on impulse. The simulation result at this level is an
intriguing effect since social studies have pointed out that choosing to travel by
private car is often considered habitual behaviour in a European country like
Switzerland (e.g. [Kau00]).

The model allows us to isolate and link a determinant to its effect at the macro
level. The current preliminary results observe the figure of car increase when the
agents invoke Affective factors in the second level of TIB. The same pattern can be
found where the agents put their Intention first by performing the deliberation process
rather than acting based on past behaviours. On the contrary, Social factors and Habit
appear to be the reason why the majority of Swiss households choose public or soft
transport.

5.8 Advantages and limitations of our framework

Our framework allows users to incorporate the leading determinants of socio-psychological
parameters: attitudes, social factors, affect and habit. We showed that BedDeM is
capable of comparing the above determinants structurally by changing the associated
weights. The modular architecture (see Figure 5.7) allows a programmatic approach
to calculate the utility for each of these determinants. In turn, it connects the micro
and macro levels so we can analyse and reason about the changes between the mode
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choices of individuals or groups. The performed simulation shows that our frame-
work can be used as a tool to explore the implication of a set of factors/determinants
on the whole system.

The experiment above could also not be repeated by utilising other state-of-the-art
architectures in Chapter 3. The BDI architecture, its derivatives and other normative
models only consider a smaller set of determinants compared to our setup in the
experiment above. The cognitive architectures focus on understanding how people
organise knowledge and produce intelligent behaviour based on knowledge derived
from psychology experiments and employing quantitative measures. They do not
cover concepts utilised in the experiment, such as social factors and affect. The
MoHuB framework descriptive norm centres around the agent’s components design
and hence, is also not capable of specifying the levels of importance for different
determinants. Similarly, Consumat framework only categorises different heuristics
levels, not how determinant influences final output. Consequently, they have a
disadvantage in this experimental causation design as we cannot create a link between
micro (determinants) and macro (behaviour) levels.

There is still some small margin error from the calibration process (around 6.5%
of the total scheduled kilometres). The agent’s stochastic mode also does not reflect
the macro patterns in MTMC effectively. Hence, we propose to address the issue
of irrational behaviours by focusing on agents’ learning in uncertain environments
(e.g. reacting to changes in traffic rate/break-downs and others’ opinions) in the
upcoming developing stage. Currently, agents are only keeping track of the number
of times they used a mode on trips with the same purpose, which accounts for habit
in decision-making (see Section 5.5). The influence of past experience on the ranking
functions (i.e. feedback loops) can be further extended by modifying the agent’s
belief about the consequences or changing the weights of determinants to prioritise
better alternatives. Studies in Reinforcement Learning techniques (e.g. [Mni+15]) or
Generalized Expected Utility Theory (e.g. [Qui12]) could be utilised for this purpose.
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Chapter 6

Case study: The model of trust and
reputation of rail service

The mobility model in previous chapter is extended in the this case study to reflect the
change in demands to deal with the uncertainty of train schedules. The environment
in this case is stochastic, fully observable, static and unknown. We utilise the idea of
subjective logic to represent the trust of individuals and train’s reputation in a network
of agents. It also shows the effect of feedback loops in our framework. This chapter
also contains the modified version of some elements from our publication [NS20a],
including the related work, BedDeM’s design, calibration and the experiment.

6.1 Introduction and description of case study

One of the main objectives of the social simulation research community is to create
agent-based models capable of exhibiting human-like behaviours under the uncer-
tainty of a complex environment [Dug13; Kam19]. Utilising trust and reputation
can provide a way to express the confidence one can have in the quality of goods,
services and even potential partnerships [Gra+15]. However, there is a lack of effort
to develop models that focus on trust and reputation’s impact and relationships with
other determinants in human decision-making (see surveys such as [CCA15] and
[Gra+15]).

The case study also aims to assess the ability to extend our utility function of
the determinants to reflect more complex phenomena, i.e. trust and reputation.
To represent them in an uncertain environment, we incorporate subjective logic to
measure personal beliefs about available modal choices presented to the agent. Using
feedback(s) from the environment, an agent can evolve its decision-making process
over time depending on personal experiences and opinions from neighbours in its
network. This case study also focuses on the effect of an environmental (external)
factor on individuals’ decision-making. In fact, in this case, the environment is
considered to be stochastic, fully observable, static and unknown.

In this case study, we first consider some related projects that model trust and
reputation at the individual level (Section 6.2). The following section describes
the updated interaction mechanism between the environment and agents. Next,
the specification of our decision-making process is provided, which contains the
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functions to calculate subjective probability and utility for each available option. A
case study of the implementation platform - BedDeM - is then described in Section
6.5. Its main purpose is to reproduce the collective ground truth of the reputation for
the rail services at both regional and national levels and to evaluate its impacts on the
number of kilometres travelled. We then conclude our work in Section 6.6.

Since we use the same data sources as the previous mobility demand model, the
description of the parametrisation of agents and environment and calibration are
omitted. In fact, the main difference between this case study and the previous one
is the stochastic environment. We will specify how the agent’s interaction with the
environment and its decision-making are updated accordingly.

6.2 Related work

Previously, we discussed the state-of-the-art agent’s mobility model choice (see Sec-
tion 5.2). In the section, we focus on agent-based models that incorporate individual
trust and reputation in their decision-making. They can be divided into three cate-
gories:

• Learning models: The modeller studies the agents’ behaviour patterns over a
number of encounters. The agents’ interaction results can be used directly as a
measure of trust.

• Reputation models: The agent asks its network(s) about their opinions of the
target(s).

• Socio-cognitive models: The agent model focuses on forming beliefs about differ-
ent characteristics of potential partner(s) and reasoning about these beliefs to
decide how much trust to put in them.

6.2.1 Learning models

Axelrod’s tournaments of Prisoner’s Dilemma [AD88] is the most cited example that
illustrates the evolution of trust and cooperation over a sequence of interactions. Wu
and Sun demonstrated that trust could emerge between agents using a cooperation
strategy to adapt and evolve their relationships [WS01]. In their model, Sen and
Dutta [SD02] show that reciprocity can emerge when agents are able to take into
account future benefits of cooperation. Instead of building trust through a number of
interactions, the model of Mukhejee et al. [MBS01] utilises mutually learning. Another
learning method to simulate trust in a non-competitive environment is suggested
in the work of Birk [Bir01]. All of these models assume that the environment is
fully observable for the learning algorithms to work correctly and require strict
assumptions to produce results.

Other models of this category implement trust metrics in agents so that they can
evaluate how the target’s action affects its goals using the data generated from their
interactions. Witkowski et al. [FST01] developed a model of trading networks whose
agent’s trust in a partner is evaluated based on their past interactions and their type.
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In situations that are new or unfamiliar, past observations are of little help in assessing
trust. Chhogyal et al. propose a simple approach to trust assessment between agents
based on shared values [Chh+19]. Recently, many investigations have been under-
taken on trust mechanisms using various methods to evaluate the trustworthiness
of an agent, such as fuzzy logic theory (e.g. [RRF18; Sch+07]), Bayesian network
(e.g. [NB18; MB17]), game-theory (e.g. [Yin+19; Yah12; CP05b]). However, these
mathematical-based models can be problematic if the perceptual input is wrong or
incomplete.

6.2.2 Reputation models

The models in this subsection derive reputation as an aggregation of opinions from
members of a community about one individual. For example, the concept of referrals,
i.e. pointers to other sources of information, is used in the work of Yu and Singh
[YS02]. The author developed an agent that can explore a network using referrals
from its neighbours and gradually build up a model of its network. Zuo and Liu
present a model for mobile agents to select the most reputable information host to
search and retrieve information [ZL17]. They use opinion-based belief structure to
represent, aggregate and calculate the reputation of an information host. Other high-
level concepts, such as neighbours and groups, are employed to assess the reliability
of the witnesses in the model of Sabater and Sierra [SS01]. However, all the mentioned
models assume that agents that act as witnesses do not have personal agendas and
share information truthfully.

Aggregating ratings is an alternative method popular within online communities.
It is applied in the peer-to-peer rating system [Son+05] on the eBay website. However,
this system has some limitations regarding the unresponsiveness of users or sellers’
fraud with fake ratings. To deal with the absence of data, Yu et al. created a model that
utilises Dempster Shafer’s Theory of evidence [YFK94] and referrals, which handles
the lack of belief in the agent as a state of uncertainty and combines various sources
to derive reputation. The work of Schillo et al. furthers this technique to allow agents
to handle lying witnesses using learning instead of subjective probability [SFR00].
Recent technologies, such as blockchain, have been utilised to provide the architecture
and implementation of a system that allows the agents to interact with each other
and enables tracking of how their reputation changes after every interaction [For+19;
Cal+18].

6.2.3 Socio-cognitive models

The models above consider mainly the outcomes of interactions between agents. The
subsection considers the models that utilise an individual’s subjective perception
of indirect interaction to enable a broader analysis of the nature of the potential
partner [Gam+00]. Typical examples can be seen in the work of Castelfranchi and
Falcone [CFP03; FC01], which is inspired by human behaviours and use the BDI
agent architecture. Brainov and Sandholm [BS02] developed a strategy for an agent to
model an opponent’s trust with a rational approach. Bendiab et al. proposed a model



104 Chapter 6. Case study: The model of trust and reputation of rail service

that relies on fuzzy cognitive maps for modelling and evaluating trust relationships
between the involved entities [Ben+19].

These socio-cognitive models are often being criticised for lacking empirical
grounding in their reasoning mechanisms that other model types can provide [Bra+18;
Gra+17; RHJ04]. A potential solution is using the same assessment method proposed
above, i.e. taking into account trust, reputation and motivation of potential partner(s)
over a number of interactions. However, it can be computationally intensive to have
agents consider all aspects that influence their trust in others.

6.3 Interaction between the environment and agents

In this case study, the train timing provided by the environment is uncertain during
the decision-making of the agent. It only knows whether a trip is on time or not
after the action is performed. This information is returned to the agent in the form of
feedback. Compared to the previous case where it is simply omitted, the feedback has
a binary value (on time or late) which is randomly generated based on a success rate
(in percentage). For example, the Valais region of Switzerland has a success rate of
90%, which means 90% of the total trips made by train are on time, and 10% are late.
In the current model, an entity that extends the Environment class represents a region
in Switzerland. Hence, the success of a train trip can be specific to that particular
region.

In terms of the interfaces provided in Section 4.3, we implement the Feedback
interface to provide a boolean value isLate to indicate the lateness information of the
trip made by the chosen mode of transport (see Figure 6.1).

FIGURE 6.1: The implementation of the Feedback interface for the
trust and reputation case study

6.4 Agent’s decision-making process

A fundamental aspect of the human condition is that nobody can determine with
absolute certainty whether a proposition about the world is true or false. Thus,
whenever a statement is assessed, it should be done under the view of an individual
and not be represented in a general and objective belief [Jøs97]. Reviews from [BK86]
and [HH88] provide good examples of how standard logic and probabilistic logic
are designed for an idealised world, where these important aspects are often not
considered, and conclusions have to be drawn from insufficient evidence.
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6.4.1 Subjective logic

In this case study, we follow the framework proposed by Jøsang [Jøs16] on subjective
logic. It presents a specific calculus that uses a metric called Opinion to express our
subjective beliefs about the world. An opinion, denoted as ωA

x = (b, d, u, a), indicates
party A’s belief in statement x. In this case, b, d and u represent belief, disbelief and
uncertainty respectively, where b + d + u = 1 and b, d, u ∈ [0, 1]. All sets of possible
opinions can be mapped into a point inside an equal-sided triangle in Figure 6.2.

FIGURE 6.2: The opinion-space trust model / opinion triangle,
taken from [Jøs16, p. 15]

The base rate parameter, a ∈ [0, 1], determines how uncertainty shall contribute to
the probability expectation value (see [Jøs16, p. 14]):

E(ωA
x ) = b + au (6.1)

In the binary event space (i.e. where there are only two possible outcomes - success
or failure), subjective logic allows us to build an opinion from a set of evidence about
x using the following equation (see [Jøs16, p. 16]):

ωx =


bx = r

r+s+W
dx = s

r+s+W
ux = W

r+s+W
ax = base rate x

(6.2)

where r is the number of positive evidence about x, s is the number of negative
evidence about x, W is the non-informative prior weight, also called a unit of evidence,
normally set to 2 and the default value of base rate a is usually set at 1/2. In the case of
no prior experience with the target, agent A’s opinion of x is set as ωA

x = (0, 0, 1, 1/2).
Therefore, its probability expectation value is E(ωA

x ) = 1/2.
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Jøsang also proposed the consensus rule of independent opinions A and B [Jøs02]:

ωAB
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x ⊕ ωB
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where k = uA
x + uB

x − uA
x uB

x . If k = 0, an alternative equation is applied instead:

ωAB
x = ωA

x ⊕ ωB
x =
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bAB

x = γbA
x +bB

x
γ+1

dAB
x = γdA

x +dB
x

γ+1

uAB
x = 0

aAB
x = γaA

x +aB
x

γ+1

(6.4)

where γ = uA
x /uB

x , is the relative uncertainty between ωA
x and ωB

x . The consensus
operator is commutative and associative, and thus, it allows the combination of more
opinions. We model reputation in this case study using this consensus notion.

6.4.2 Updated utility function

Triandis suggests that one of the main factors to determine the intention of a behaviour
is the value of perceived consequences, C, depending on the sum of the products of
the subjective probability that a particular consequence will follow a behaviour (Pc)
and the value of (or affect attached to) that consequence (Vc) (see page 16 [Tri77]).
Thus, the equation for the utility of C is as follows:

Uc =
n

∑
i=1

(Pci Vci ) (6.5)

where n is the number of consequences that a subject perceives as likely to follow
a particular behaviour. The Pci value can be derived from Equation 6.1, i.e. Pci =
E(ωci ).

We update the full decision-making cycle with TIB’s determinants, as illustrated
in Figure 6.3. In the first level, the Time determinant is divided into two possibilities,
on time and late. Each is also associated with a success rate in percentage.

In the model, the utility function of determinant Evaluation is an exception which
follows Equation 6.5. In addition, the expected value of determinant Norm can be
derived from the probability expectation value of the collective opinion formed by
the consensus rule (see Equation 6.1 and Equation 6.3). In Section 6.5, we focus on
a simplified binary event space, i.e. an action has two outcomes - success or failure.
More complex scenarios could be considered in the future by extending the result
space to multiple dimensions (e.g. time, cost, satisfaction).

We modify the running example in Table 4.2 to test the agent’s belief in the Time
of a trip. In this case, U is a cost function. In other words, when comparing two
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FIGURE 6.3: TIB’s determinants mapping for the trust and reputa-
tion case study

options, the agent prefers the one that has smaller value. We assume that an agent
has access to three options: biking, using a car or taking a train. It expects that a car
journey would take around 0.3 hours for good traffic, which is believed to be a 20%
chance. A late car drive would take up to 1.3 hours. Using subjective logic Equation
6.5 only for Time, we have Ucar(Time) = 0.3 * 20% +1.3 * 80% ≈ 1.1. In contrast, if 90%
of trains are believed to only take 0.2 hour and the rest take 1.2 hour, Utrain(Time)
will be 0.2 * 90% + 1.2 * 10% ≈ 0.3. If the agent has measured the exact biking time as
1 hour, Ubike(Time) would simply be 1 * 100% = 1. Their total value, ∑ U(Time), is 2.4.
If w(Price) and w(Time) are 2 and 4 respectively, the new expected value in the next
level (U(Attitude)) of the car would be 4/7*2 + 1.1/2.4*4 ≈ 2.98, the train would be
3/7*2 + 0.3/2.4*4 ≈ 1.36 and the bike would be 0/7*2 + 1/2.4*4 = 1.67. By continuing
to follow Equation 4.7 to the Behaviour output level, we have Ucar ≈ 0.87, Utrain ≈ 0.69
and Ubike ≈ 6.94. Instead of using the car as shown in Section 4.2.4, the best option
for the agent is now train as it has the lowest utilities. This scenario shows that the
agent’s belief in the duration of a trip can change the final output of decision-making.

TABLE 6.1: Running example of an agent’s decision-making
adapted from Table 4.2 with updated belief in Duration

Level Determinant w EU

1st Evaluation
(Price - Swiss
franc), Belief =
100%

2
Ucar = 4
Utrain = 3
Ubike = 0

Continued on next page
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Table 6.1 – continued from previous page
Level Determinant w EU

Evaluation
(Time - hours)

4

Ucar(0.3 - 20% / 1.3 - 80%)
= 0.3 * 20% +1.3 * 80% ≈ 1.1
Utrain(0.2 80% / 1.2 20%)
= 0.2 * 90% + 1.2 * 10% ≈ 0.3
Ubike (1 100%)
= 1 * 100% = 1

Norm (similar-
ity with oth-
ers)

3
Utrain = 1
Ucar= 2
Ubike = 3

Role (environ-
mental friend-
liness)

2
Ucar = 3
Utrain = 2
Ubike = 1

Self-concept
(personal
preference)

3
Ucar = 1
Utrain= 2
Ubike = 3

Emotion (en-
joyment)

1
Ucar = 1
Utrain= 2
Ubike = 3

Frequency
(past similar
trips - note
that lower
value means
more usage)

3
Ucar = 0
Utrain= 0
Ubike = 1

2nd Attitude (Eval-
uation + Be-
lief)

4
Ucar = 4/7*2 + 1.1/2.4*4 ≈ 2.98
Utrain = 3/7*2 + 0.3/2.4*4 ≈ 1.36
Ubike = 0/7*2 + 1/2.4*4 = 1.67

Social factors
(Norm + Role
+ Self-concept)

2
Ucar = 1/6*3 + 3/6*2 + 1/6*3 = 2
Utrain = 2/6*3 + 2/6*2 + 2/6*3 ≈ 2.67
Ubike = 3/6*3 + 1/6*2 + 3/6*3 ≈ 3.33

Continued on next page
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Table 6.1 – continued from previous page
Level Determinant w EU

Affects (Emo-
tion)

2
Ucar = 1/6*1 ≈ 0.17
Utrain = 2/6*1 ≈ 0.33
Ubike= 3/6*1 = 0.5

3rd Intention (At-
titude + Social
factors + Af-
fect)

4
Ucar = 2.98/6*4 + 2/8*2 + 0.17/1*2 ≈ 2.83
Utrain = 1.36/6*4 + 2.67/8*2 + 0.33/1*2 ≈ 2.23
Ubike = 1.6/6*4 + 3.33/8*2 + 3/1*2 ≈ 7.90

Habit (Fre-
quency)

3
Ucar = 0/1*3 = 0
Utrain = 0/1*3 = 0
Ubike = 1/1*3 = 3

Facilitating
conditions
(lower mean
easier to ac-
cess)

2
Ucar = 0
Utrain = 0
Ubike = 0

Behaviour out-
put

Ucar = 2.83/12.96*4 + 0/2*3 + 0/0*2 ≈ 0.87
Utrain = 2.23/12.96*4 + 0/2*3 + 0/0*2 ≈ 0.69
Ubike = 7.9/12.96*4 + 3/2*3 + 0/0*2 ≈ 6.94

6.5 Experiment with trust and reputation of train

This section focus on the usage of BedDeM to perform some experimentation regard-
ing the effects of trust and reputation in mobility modal choices. It is worth noticing
that BedDeM is not a routing model, and hence, agents only take feedback from the
environment as an indication of whether a trip is either a success or a failure.

The experiment also assesses whether the updated agent’s decision-making can
capture the ground truth of real-world data. In addition, we consider some test
scenarios that highlight the effects of trust and reputation on mobility modal choices.

6.5.1 Design

The purpose of this experiment is to investigate the effect of public transportation’s
reputation on its demand, which is measured in yearly total kilometres travelled. The
reputation, in this case, is represented by a constant percentage (ground truth value),
i.e. punctuality. When the agent chooses to perform its trip by public transportation,
we randomly generate a number. If this value is under the ground truth, the region
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will output a successful signal to the agent and vice versa. These consequences are
connected with the duration of a trip for the agent. Successful feedback means the
agent has performed the trip within its time estimation. In contrast, a failure message
from the region means the trip is late and running time is doubled as a penalty. These
information are taken into account in the next agent’s decision-making as explained
in Section 6.4. Following the decisions of all agents, the region computes the new
reputation of the service by joining its residents’ opinions using the consensus rule
(see Equation 6.3), while ignoring all empty opinions. Currently, the agents do not
have the ability to lie about their opinions, and thus, the reputation reflects collective
perception about the punctuality of service. The national-level reputation of service is
simply the combination of all regional reputation by also utilizing the consensus rule.

In this study, we focus on changing the successful rate of the rail service operated
mainly by Swiss Federal Railways. On the one hand, punctuality is an important
determinant of quality of service [Dur+17] and, in turn, affects yearly demand. On
the other hand, other determinants (e.g. speed of trains, average fare per km and
safety) can also contribute to the customer’s perception of the performance index
[Dur+17]. Hence, the rail service provides an excellent testing ground to observe
the contribution and effects of trust, reputation along with other socio-psychological
determinants in the agent’s decision-making process.

A summary of the setup for the experiment can also be found in Table 6.2. We can
divide them into five main categories, whose details are as follow:

TABLE 6.2: Collective ground truth / Punctuality (in percentage)
of rail service in individual region for different testing scenarios

Scenario Region 1 Region 2 ... Region 26

Perfect world 100 100 ... 100
Real-world 87.8 87.8 ... 87.8
High expectation 87.8 87.8 ... 87.8
Low expectation 87.8 87.8 ... 87.8
Disrupt in Region 1 25 87.8 ... 87.8
Disrupt in Region 2 87.8 25 ... 87.8
... ... ... ... ...
Disrupt Region 26 87.8 87.8 ... 25

• Perfect world scenario: The success rate of all trips is kept at 100%. This setup
is similar to what has been done previously in [NS19a]. Therefore, we expect
almost no uncertainty in the agent’s trust. It can act as a base to compare the
effects of trust and reputation when they are implemented in later settings.

• Real-world scenario: According to [Rai21], around 87.8% of total trips were
punctual in 2015, which is the year we calibrated our agents [NS19a]. We assign
this number to all regional rail trips’ success rates.
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• Agents starting with low or high expectation scenario: The initial value of the
probability expectation for an option x, E(ωx), will be set at either 0 or 1 instead
of 0.5, as suggested in Section 6.4. The punctuality of rail service is still kept
at 87.8%. This setup changes the agents’ parameters instead of the regional
setting.

• Regional disruption scenarios: The punctuality of rail service in a single region
is set at 25%. Otherwise, it is similar to the real-world case, i.e. 87.8%. These
structures can be used to test the effect of disruption in one single region on
the figures of other regions and the national level.

6.5.2 Results

As the model contains an element of randomness, we perform 100 simulations for
each scenario and compute the averages. The results below show the reputation in
terms of percentage and the demand for the rail service at the national level and
three representative regions 1, 24 and 18. They represent the highest, midpoint and
lowest in terms of kilometres demand in the perfect world scenario. Other disruptive
scenarios follow the same pattern as these representatives.

TABLE 6.3: Result of reputation (measured in percentage) of rail
service at the national level and three representative regions

Scenario Reputation (percentage)

National Region 1 Region 24 Region 18

Perfect world 99.6 99.9 99.4 95.7
Real world 86.3 89.0 87.8 83.0
High expectation 87.7 87.6 82.5 84.8
Low expectation 85.2 87.3 86.5 74.5
Disrupt Region 1 85.2 25.7 88.2 86.5
Disrupt Region 24 87.4 88.5 22.0 95.7
Disrupt Region 18 86.5 86.7 88.3 12.8

• Reputation: Table 6.3 shows the percentage of trust results from different
scenarios. In essence, reputation measures at the national level and regions
with significant train usage (e.g. Region 1) are nearly the same as the ground
truth (see Table 5.1). In contrast, the lower the overall kilometres travelled
by agents is, the less accurate the cumulative reputation of the whole region.
This effect can be seen clearly in the figures of Region 18. It is mainly because
reputation is a cumulative trust in neighbouring agents (see Function 6.3),
which is also cumulative “experience” (see Function 6.2). In other words,
the more agents in a network use the service, the more accurate they are in
reflecting the ground truth.
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When a disruption happens in a single region, the rail’s reputation varies but
stays around or below ground truth (25%). For example, the reputation of
Region 1 is around 25% in the case of disruption at Region 1. The reputation of
Region 24 is 22% when there is a problem at Region 24. Conversely, we observe
no notable change in the national figures, i.e. around 87%. Except for the
disruptive regions, other regional figures also show no significant difference.
Although reputation is the cumulation of all agents’ “experience”, this result
indicates that the inter-connections between agents from separate regions are
weak or limited; therefore, interference cannot spread.

• Total rail-kilometres: Table 6.4 provides results in terms of total kilometres
demand of train service in different scenarios. Having agents starting with high
expectations affects the overall kilometres travelled positively, with the national
figures almost doubled and high increases in all regions. Compared to others,
this scenario shows the most different from the ground truth, especially in the
case of Region 18. In the experiment design, the reputation of the train connects
directly to the utility of time in the agent. This determinant is considered in
our framework design to calculate the final utility value of the train option (see
Figure 5.7). Hence, the higher the probability of trains arriving on time and
having no penalties, the higher train usage. The agents were able to update
their beliefs to be closer to the ground truth value (see Table 6.3). However,
the updating process was significantly slower, which created this opportunity
for the exceptional growth of total kilometres demand of train service in this
scenario.

TABLE 6.4: Result of total demand (measured in kilometres trav-
elled) of rail service at the national level and three representative

regions

Scenario Total demand (106km)

National Region 1 Region 24 Region 18

Perfect world 9081.588 3114.568 104.632 0.173
Real world 8958.592 3112.998 104.632 0.173
High expectation 16000.392 5002.029 142.432 97.759
Low expectation 8878.993 3105.089 104.632 0.173
Disrupt Region 1 8865.848 3105.089 98.867 0.173
Disrupt Region 24 8937.483 3112.998 102.267 0.173
Disrupt Region 18 8947.010 3112.178 103.876 0.173

Conversely, by implementing a lower percentage of trust and reputation at
the start of the simulation, we observe a significant decrease in usage at the
national level and major regions. For instance, agents starting with low expec-
tations cause a slight drop in national and Region 1’s total, around 10 million
kilometres. However, the demand in Regions 24 and 18 do not exhibit any
sizeable changes in this scenario. As mentioned previously, the agents in these
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regions do not have enough “experience” to reflect the ground-truth value
of the train’s reputation. It leads to less accurate information in the agent’s
perception, so the reputation is still relatively high. In addition, as trust and
reputation are only a subset of determinants in TIB, these observations also
signify that agents have considered not only the probability expectation values
but also other environmental differences.

There is no extensive impact on the national figures in the disruptive cases
compared to the real-world scenario. The reduction is noticeable when the
disruption happens in regions with significant demand where punctuality is
the key issue (e.g. Zurich, Geneva). In contrast, the interference does not
substantially change in the regions that initially have a small consumption
number (i.e. Region 18 and 24). These observations are similar to the pattern
in reputation columns as the total demand. Therefore, we can conclude that
the usage of our model can create a direct connection between the agent’s
perception of the train’s punctuality and the decision to use this mode of
transport.

6.6 Advantages and limitations of our framework

In this case study, our main contribution in this case study is the development and
implementation of a novel concept using subjective logic to represent trust and
reputation elements in our decision-making framework that utilises TIB. It also shows
that our utility function can be extended to cover more complex social phenomena.
The experiment above provides a way to test this mechanism to see whether it can
replicate the punctuality of rail service and observe the effect of trust and reputation
on the number of kilometres travelled.

Compared to previous case study, in the agent’s decision-making process, we
adopt another psychology theory to our framework to better reflect the uncertainty
of the environment: subjective logic [Jøs16]. It requires modifying the original utility
formula to update the belief determinant. Preliminary results show that the reputa-
tion of the rail system in the agents’ opinions can reflect the ground truth in the setup.
The current model demonstrates a difference in reputations at two different levels
- regional and national. We also detect the link between the train’s reputation, time
(individual determinant) and mobility demand (final decision output). This connec-
tion is a result of using the layered structure in our framework (see Figure 6.3). In
addition, the belief in train reputation is one of the many determinants in the agent’s
decision-making (e.g. cost, ranking in environmental friendliness, and comfortability);
thus, there are differences when comparing the change in total kilometres demands at
the regional level in the high/low expectation and disruptive cases. By changing their
weights in the expected utility function (similar to the previous case study), we also
have the opportunity to explore further and compare their contribution to the agent’s
decision-making, which can affect the overall mobility demand, as we observed in
the experiment.
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Apart from what was discussed in the assessment of the case study (see Section
5.8), there are other limitations in this study. Agents have access to different modes
of transport. Assuming that most of them can be perfectly predicted by the agent
is unrealistic. A potential solution is to capture the dynamic traffic information in
the real world to better capture whether the trip is on time or delayed at different
hours of the day and in different regions. We also acknowledge that the mechanism
to incorporate trust and reputation in this case study is simple and based on a theory
(i.e. subjective logic [Jøs16]). Using qualitative data to inform agents’ behaviours is
also an ongoing research area within ABM community [An+21; RDG21; Edm15].
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Chapter 7

Case study: The model of purchasing
vehicle

The third study is about the decision of purchasing a model of vehicle. It also explored
aspects of bounded rationality, mainly by utilising the Perception and Decision compo-
nents of the agent, in a deterministic, partially observable, static and known environment.
This chapter contains the modified version of some elements from our accepted paper
[NPS22], including state-of-the-art, BedDeM design, calibration and the experiment.

7.1 Introduction and description of case study

The number of ABMs used to represent human decision making are increasing.
Agent designs with the notion of perfectly rational maximise expected utility but
crucially ignore the resource costs incurred. Investigations in Bounded Rationality
(BR) offer an alternative to how to model behaviours in an uncertain environment
with limited available cognitive resources. However, the ABMs utilised in these
researches often focus only on simulating one particular type of BR and do not
include other alternatives (see surveys such as [KAR18; Cas+20] and Section 7.2). This
study assesses the ability of our framework to be extended to reflect the impact of
multiple BRs on decision-making.

This case study follows the definition provided by Carley and Gasser [CG99]
regarding two types of bounds in agents - limits to capabilities (i.e. the agent’s
physical, cognitive and computational architecture) and limits to knowledge (i.e. the
ability to learn and construct intellectual history). We focus on using the Perception
component to actively limit the agent’s capability to observe relevant information.
In this sense, BR is modelled as an extension of the model of the perfectly informed,
optimised individuals to account for limited knowledge and resources, i.e. a form of
bounded optimality [RN10, p. 1050]. Combining with the notions of bounded rationality
in the work of Simon [Sim78] and the biases and heuristics advanced by Kahneman
and Tversky [KT13], the following phenomena can be targeted for simulation:

• Sequential decision-making refers to algorithms that consider the dynamics of the
world, thus delaying parts of the problem until they must be solved [FR14, p.
337].
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• Emotional decisions happen when the people’s emotional state influences the
depth of information processing related to decision-making [Sim87].

• Habit formation is the process by which a behaviour becomes automatic when it
is repeated with a routine [Sim87].

• Multiple criteria other than cost can be considered, depending on the decision-
making context [RN10, p. 622-628].

• Confirmation bias is the tendency of people to select the information that sup-
ports their views, ignore contrary information, or when interpret ambiguous
evidence as supporting their existing beliefs or values [Nic98].

• Bandwagon effect is a psychological phenomenon in which an idea or belief is
being followed because everyone seems to be doing so [KS14].

We acknowledge that this list is limited and only covers the general ideas of each
BR. However, it represents topics that are often mentioned in ABM research (see
surveys such as [KAR18; Cas+20]) and provides a starting point for what can be
considered in our study.

The TIB model developed in previous case studies has the ability to consider the
impacts of sequential, emotional, habitual and multiple criteria decision-making. In this
study, we modify the Perception component to consider the confirmation bias and the
bandwagon effect. The environment is deterministic though partially observable due to
the modified Perception component.

This case study will focus on Swiss personal mobility, an area where BR and infor-
mation imperfections are particularly pervasive, as decisions are made on the level
of heterogeneous individuals and households. It partially explains why the mobility
sector remains one of the most challenging sectors (generating about one-third of the
total CO2 emissions) for the transition to net zero emission goals [Bou+21]. Purchasing
new vehicles is an essential field for the energy transition strategy, especially when it
provides an understanding of the need of individual consumers and requirements for
future infrastructure. Due to the significant number of individual decision-makers
involved and alternatives offered, ABM is often utilised for the assessment of BR’s
effects in the lab, as well as in the field (e.g. [HMS09; Kim+11]. Therefore, this area
provides the most suitable test bed for assessing the effects of BR on energy-related
decision-making processes.

This study contains the modified version of some elements from our accepted
paper [NPS22], including state-of-the-art, BedDeM design, calibration and the experi-
ment.

After considering some of the related ABM architectures in Section 7.2, we describe
the process of parametrisation of agents and the environment and how they interact
with each other in the next two sections. Next, the decision-making structure of
our agent-based model is specified in Section 7.5. A case study is then provided to
evaluate the result of applying this bounded Perception in Section 7.8. Finally, we
conclude and suggest further development in Section 7.9.
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7.2 Related work

In this section, we summarise agent-based architectures and frameworks that ad-
dressed the BRs mentioned, including sequential, emotional, habitual, multi-criteria
decision-making, confirmation bias, and the bandwagon effect. Their full description
can be seen in Chapter 3.

Sequential decision-making can be implemented as multiple steps/stages in
decision-making in an agent to derive the action output. A typical example is Belief-
Desires-Intentions (BDI) model [Geo+98]. Its extension (e.g. BOID [Bro+02], eBDI
[Per+05], BRIDGE [DDJ08]), normative and and cognitive architectures that consist of
a perception-deliberation-action cycle also belong to this category.

There are several BDI models that consider emotions agent decision-making,
such as [SLC19; SDM+10]. Nevertheless, only a number of agent architectures cover
emotions explicitly in their components, including eBDI [Per+05], PECS [Urb00],
and BRIDGE [DDJ08]. eBDI added a dimension of emotion as an extension of the
BDI architecture. As the name suggests, PECS provides a component-oriented agent
architecture with integrative modelling of physical, emotional, cognitive and social
influences. BRIDGE can use the Ego component to determine emotional responses to
a number of different stimuli. However, they have limited practical application and
have been mostly used as reference model [BG14].

In ABM literature, habits are often incorporated with hybrid approaches that have
both heuristics and deliberative decision-making. Examples include the BRIDGE
[DDJ08]and Consumat [JJ02] agent architectures. BRIDGE agents can utilise the idea
of the basic needs of Maslow [Mas43] to overrule any deliberate decision-making
process to make sure they can react when needed. The Consumat framework allows
to model habit as one of the five heuristics to be utilised in place of the deliberation
process in uncertain environments when the agent has low cognitive effort.

The multi-attribute utility theory can be used to represent the preferences of an agent
over a number of alternatives under conditions of uncertainty [RN10, p. 622-628].
Thiriot and Kant created a multi-objective multi-agent system (MOMAS) to take into
account the possible trade-offs between conflicting objective functions [TK06]. In
this case, the users often have to define the criteria based on statistics or previous
empirical studies.

Confirmation bias is used as a way to filter various sources of information in
the perception phase. A typical example is the BDI agent filters information from
all perceptions and other sensor stimuli using semantic association rules derived
from its internal beliefs. The BRIDGE architecture includes an Ego component with
several filters and ordering preferences to interpret the input stream of information
to form the beliefs in the agent. The effect of confirmation bias can also be found
in the opinion dynamics modelling frameworks. A quasi-Bayesian belief updating
framework was proposed by Sobkowicz, in which incoming information is filtered by
the cognitive biases or predispositions of the agent [Sob18]. In the work of Rollwage
and Fleming, meta-cognition (accuracy of belief formation) of agents use confirmation
bias to down weight contradictory information [RF20].
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As the bandwagon effect is associated with the ability to consider social learning,
it can often be found in normative models. Several architectures of this category
can be found in literature, including BRIDGE, EMIL-A [And+07b], NoA [KN03] and
Consumat. The BRIDGE design takes into account many social concepts, such as
social interactions and culture. The EMIL-A model incorporates norms into decision-
making through the processes of learning about norms in a society, the internalisation
of norms and the use of these norms to derive the most appropriate action. The
NoA architecture extends the notions of norms to include organisational concepts
and ideas from legal systems (i.e. states of affairs are either obligatory, permitted or
forbidden). The Concumat agent is able to reason by comparing the success of their
actions to the success resulting from the actions of their neighbours. If its actions are
less efficient, the agent simply the action of others.

Although many of the architectures above account for multiple aspects of be-
haviour, the agent architectures and implementations surveyed above do not com-
prehensively cover all BRs effects mentioned in Section 7.1. Therefore, in this case
study, we aim to create an agent model capable of considering all these BR effects in
its decision-making scheme.

7.3 Parametrisation of the environment and agents

7.3.1 Dataset

In this study, we utilised the same agent’s population derived from the previous
case study with data from MTMC and SHEDS (see Section 5.3.3). Further data from
SHEDS related to mobility ownership, such as type and efficiency of the current
vehicle, year of purchase, the price at purchase and kilometres made by the vehicle,
is also extracted. In addition, we utilise a Swiss car catalogue [QE20] to capture the
car models available in the market. It includes data about engine type, energy label,
market price, brand and years of availability.

7.3.2 Environment parametrisation

The environment in this case study is considered to have the following properties:
deterministic, partially observable, static and known. It includes two main entities: Market
and Opinion Platform.

Figure 7.1 demonstrates the implementation of the Environment class from our
framework (see Section 4.3). Using data captured from the Swiss car catalogue [QE20]
and estimated by our economist specialist, the Market includes details of the currently
available vehicle Model:

• Engine: the type of the engine, e.g. electric, gasoline, diesel, hydrogen or
hybrid.

• Energy labels: A+/A, B, C, D, E, F.

• Price: the current purchasing price.
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FIGURE 7.1: The implementation of the Environment class for the
vehicle purchasing case study

• Brand: eight different groups of brands based on the place of production and
associated image.

• Year of entry: the year in which the vehicle appears on the market.

• Year of exit: the year in which the vehicle no longer exists on the market.

• Comfortability: a number assigned by our economic collaborator to compare
the luxury class of the vehicle, e.g. Sports car (50) versus Family car (30).

• Emission in terms of CO2 per kilometre.

The Opinion Platform provides reviews (value from 0-1) from the neighbourhood,
dealers and media. The neighbourhood network is set up similar to the previous
case (see Section 5.3). An agent can subscribe to different media or dealers, which
are biased toward specific models of different brands and engines. Media opinions
can affect agents at the national level, while dealers target agents at the cantonal (i.e.
regional) level. The subscriptions of agents are currently randomised in the model.

7.3.3 Agent parametrisation

We can define the following components in our agent framework: InternalState, Task
and Option. Figure 5.4 is an UML diagram illustrating the implementation with the
classes and interface provided in Section 4.3.

• Agent’s internal state:
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FIGURE 7.2: The implementation of the Environment class for the
vehicle purchasing case study

– Budget: It represents the maximum price an agent can pay for a vehicle.
To compute these values, we started with the last spending to purchase
a vehicle for each profile in SHEDS data. Next, the GDP dynamics is
divided by the population dynamics 10 to get a per-capita dynamics,
which we can use as a global change of the budget.

– Current vehicle set: The current vehicle that the agent owns, as listed in
SHEDS.

– Last year of purchase: The year that the vehicle was purchased.

– Weight to universe: The proportion of the population that the agent
represents.

– Network: The agent keeps track of the neighbour network and all of its
subscripted media and dealers. This neighbour network is created based
on the location of the agent profile. The strength of the connection relies
on its trust in different roles in society, which is extracted from SHEDS.

• Task: Two times a year, agents consider the available models on the market. If
the condition for the trigger is satisfied, the agent will start the deliberation to
decide which vehicle to buy. The probability of whether the agent purchases a
model or not is calculated based on the following criteria:

– Current vehicle kilometres made by the vehicle.

– Family changes based on a yearly accumulation.
10https://data.sccer-jasm.ch/macroeconomic-drivers/2020-08-01/
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– Number of new models that are currently available.

– Existence of a significantly better model than the one owned currently.

• Option: A model that is available on the market. There is also an option of not
performing the scheduled activity due to the constraints from the agent’s states
(e.g. exhaustion of budget).

7.4 Interaction between agents and the environment

The Market is assumed to be open to all agents. In other words, agents have access
to all the models that are available for that year. The Opinion Platform provides
aggregated feedback to each agent depending on its subscription. Regarding our
interfaces provided in Section 4.3, the EnvironmentState can be implemented to
provide information on a certain model that is available in the market (see Figure 7.3)
and its review (value from 0 to 1). At this stage of development, there is no response
that the environment need to give back to the agent. Hence, the Feedback interface is
not implemented in this model.

FIGURE 7.3: The implementation of the Environment class for the
vehicle purchasing case study

7.5 Agent decision-making process

In this study, we create a new model to simulate purchasing a vehicle, utilising
the Triandis model as a framework, as previously done in Chapter 5. In addition,
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we further extend the Perception component to cover several additional bounded
rational aspects. Hence, BedDeM now addresses both the purchases of mobility
resources and their usage in two intertwined decision-making schemes, each based
on an implementation of the TIB model. The cycle starts with executing the mobility
model to calculate the mobility demand for half a year. Then, the result (in terms of
kilometres) is passed to the purchasing model. If an agent is triggered, it performs the
purchasing decision-making and updates its available resources. Next, the mobility
model runs again with an updated resource database for half of the year, at which
point the purchasing model is carried out one more time. The cycle is repeated until
the simulation timeline finishes.

The following section describes an overview of the model, including environments,
purchasing agents and other existing entities, i.e. market and opinion platform.
We then discuss how each BR type has been captured in the purchasing agent’s
architecture.

7.5.1 Model overview

The main components of our purchasing model are illustrated in Fig. 7.4). The
environment contains not only the purchasing agents but also a Market and Opinion
Platform. The Market stores all information about the available models, such as type,
price and past sale figures. The Opinion Platform provides the recommendation level
from the agent’s neighbours, media and dealers. In this context, neighbours of a
purchasing agent are other agents that connect with it in its social network. Media
refers to public sources of information, such as television or magazine. Dealers are
similar to media but only influence local levels. The recommendation of Media and
Dealers and the agent’s subscriptions are the interpretation of the data from [Web+17]
by our economic specialist. The recommendation of an individual agent for a specific
model starts at 0.5 and changes depending on whether the agent uses more or less
the vehicle in the following year. All recommendations are taken into account in the
Perception and the Decision-making components. Details are provided in the following
subsections.

In each simulating decision cycle, an agent will perform the following sequence:
First, it uses the Perception component to observe available models in the Market.
Then, combined with information from the Opinion Platform of Neighbors, Media and
Dealers and history of ownership, it filters, sorts and creates a shortlist of options. This
list is passed to a Trigger component, which is implemented to reflect the irregularity of
the purchasing activities. If specific criteria are achieved (e.g. number of new models,
changes in the household, mileages of current car), the Decision component gets
triggered. It follows the procedure of the TIB framework to evaluate the list of options
in terms of a utility value. Finally, an option is selected based on the provided utility,
either by choosing the best (deterministic agent) or using a probability (probabilistic
agent). The Communication component then outputs this action to the current Market
and updates the Memory state of the agent. It also informs the Opinion Platform for
future reference by neighbours.
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FIGURE 7.4: Agent’s basic components for vehicle purchasing ar-
chitecture

Compared to previous case studies, there is a Trigger component inside the agent
due to the irregularity of the purchasing activities. It provides a probability of whether
the agent purchases a model or not. In the latter case, the rest of the decision-making
process is skipped. We calculate this probability based on the following criteria:

• Current vehicle kilometres made by the vehicle.

• Family changes based on a yearly accumulation.

• Number of new models that are currently available.

• Existence of a significantly better model than the one owned currently.

From the architecture above, the mentioned BRs can be captured in two agent
components: Perception and Decision.

7.5.2 Perception component

The Perception component (see Fig. 7.5) first gathers information about the available
options from the environment, including its neighbour’s opinion. It then divides
options into several lists, each satisfying specific criteria. These lists are then sorted,
multiplied with specific weights and merged to form a list of selected options for
decision-making. The criteria and their weights are based on the agent’s personal
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FIGURE 7.5: Perception component for vehicle purchasing architec-
ture

preferences about the option’s properties, which can be calibrated with empirical
data.

The mechanism can be explained more clearer in the context of car purchasing.
A consumer often starts by filtering out models that have a certain type of engine,
price, energy labels and neighbour review. As human mental accounting mechanisms
are limited [Hah+20], he/she has to sort the options to get the best one for each
category and combine them to make a final list of available models for the final
decision-making step.

Using this structure, the confirmation bias can be represented with the filtering
process, with only relevant options being considered. The bandwagon effect is
highlighted with the inclusion of the neighbour’s opinion as one of the criteria. Using
associated weights, modellers can decide on the influence of this effect on its final list
of selected options for the agent’s decision.

To capture the discussed BRs, the following references are included:

• Engine types (electric, gasoline, diesel, hydrogen, hybrid)

• Energy labels (A+/A, B, C, D, E or worst)

• Reserved price (a certain threshold depending on yearly income)
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• Brands (group of producers divided by country of production and type of cars)

• Recommendation from Opinion Platform

With this setup, we can give an example. An agent wants to buy a car from the
Market. It has the following references: electric engine (w = 0.5), below 30’000 (w =
0.25), and review larger than 0.5 (w = 0.25). Therefore, it has three sublists: 1) engine
list, 2) price list and 3) review list. If the agent only wants to consider four models,
we can cut two models from the engine list, one from the price list and one from the
review list.

The current Market has a list of models with the following properties:

1. Engine: Electric, Label: A, Price: 30’000, Brand: 1, Review: 0.5

2. Engine: Electric, Label: A, Price: 25’000, Brand: 2, Review: 0.6

3. Engine: Hybrid, Label: B, Price: 25’000, Brand: 3, Review: 0.5

4. Engine: Gasoline, Label C, Price 20’000, Brand: 2, Review: 0.5

5. Engine: Diesel, Label C, Price 45’000, Brand: 1, Review: 0.4

The agent can then filter and sort these models into several sublists based on its
references:

• Engine list: 1, 2

• Price list: 4, 2, 3

• Review list: 2, 1, 3, 4

After applying the cut for each of the lists, the final list of options for the Decision
component includes 1, 2, and 4.

7.5.3 Decision component

Compared to the previous case study, the first level of the Decision component (Figure
7.6) is modified. Price and Energy label contribute to the result of determinant Attitude.
Social factors consist of references from opinion channels, agent’s status and brand
bias. Comfortability is kept as the main contribution to Affect. The accessibility to
refuelling points is considered as Facilitating condition. Finally, Habit takes into account
the agent’s history of similar models of the same engine type.

To implement these determinants using the framework pseudo code (see Sec-
tion 4.3), the LeafDeterminant class is extended to different classes represent the
determinants of the first level. Figure 7.7 demonstrates this process.

The evaluateOptions function is used to calculate the utility value U of the list of
provided options. The U(Price), U(Label) and U(Facilitating) can be extracted from
a Swiss car catalogue [QE20]. The U(Socialstatus) and U(Emotion) are provided in
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FIGURE 7.6: TIB’s determinants mapping for the vehicle purchasing
case study

[Web+17]. Weights of each determinant are calibrated, whose process can be seen in
Section 7.7.

The expected value of each option EUd(opt) can be calculated or given a ranking
value related to other option. They are as follow:

• U(Engine) = 1 if the model’s engine type is the same as the reference of agent;
0 otherwise.

• U(Price) = MAX_PRICE - the price of the model.

• U(Label) = 1) the model with label G, 2) the model with label F, ..., 6) the model
with label B, 7) the model with label A.

• U(Review of neighbours) = value from 0(worst) to 1(best).

• U(Review of media/dealers) = value from 0(worst) to 1(best).

• U(Brand) = 1 if the model’s brand is the same as the reference of agent; 0
otherwise.

• U(Com f ort) = the vehicle’s comfortability.

• U(Past usage) = 1 if the model has been used by the agent in the past; 0
otherwise.

7.6 Summary of the simulated bounded rationality effects

With the two Perception and Decision components, we can summarise how the BRs
can be represented in our model:
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FIGURE 7.7: The implementation of agent decision determinant
classes for purchasing vehicle study case

• Sequential decision-making: A decision-making cycle includes several steps,
one after another. This procedure starts with the agent gathering information
about the alternatives. Then, using its references, it filters, sorts, and cuts this
list to a selected few options. If triggered, these selected options are evaluated
in the decision-making component. Finally, the highest/lowest evaluated alter-
native is selected and communicated to the environment. Using a procedural
approach, this process follows the description of sequential decision-making in
Section 7.1, i.e. the current step waits for the result of the previous step.

• Emotional decision-making: It is captured in the determinant Affect in the sec-
ond level of the Decision component (see Fig. 7.6). Its evaluation is dependent
on the context of decision-making. For example, our purchasing agent can rank
how much comfort/pleasure it can have from a model compared to others.
The Affect determinant is associated with a weight (w(A f f ect)). By increasing
this weight and lowering the weights of other related determinants, we can
highlight the contribution of emotion to the overall behavioural output.

• Habits: Similar to emotion, the agent also accounts for past behaviour in its
third level of the TIB framework (see Fig. 7.6). Its weight can be adjusted to
mark its influence on the final choice.

• Multiple criteria: The TIB framework in the Decision component allows users to
capture different factors in decision-making, i.e. attitude (e.g. cost, time), norms,
role, self-concept, emotion, habit, and past behaviour. A mapping with empirical
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data can be provided better to interpret these factors in a decision-making
context. Function 4.7 can be used to combine them in the form of a utility
value. Using associated weights, the agent can also decide which has a more
significant/lower impact on the final choice. This concept also allows the agent
to express its preferences on specific criteria of decision-making.

• Confirmation bias: In the Perception component, an agent filters the information
received from the environment to form different short lists of options. This
process represents the idea that the agent selects the information that supports
its preference. The associated weights of each criterion mark the contribution
of this bias to the final list. For example, in the car purchasing context, an
agent who only wants to receive information about electric cars has the filter to
only allow electric engine cars and zero values for all weights, except for the
engine’s weight.

• Bandwagon effect: In its perception phase, the agent starts with observing
its environment, including the patterns of its neighbours. It also accumulates
the neighbours’ opinions. This information is then used as a filter for in the
Perception component (Figure 7.5) and fed into the Social factors determinant
in the Decision-making component (Figure 7.6). Each of them is associated
with a weight to provide a way to compare its effects to other factors in the
decision-making.

7.7 Calibration

To calibrate this purchasing model, two different sets of parameters corresponding to
different components - Perception and Decision - are selected.

In the Perception component, there are two main categories that are mentioned in
Table 7.1: thresholds and their weights. The thresholds include: 1) preferred engine
(Gasoline, Diesel, Electric, Hybrid, other), 2) energy label (A+/A, B, C, D, E and
below), 3) price, 4) brand (1-8), recommendation level (value 0-1). In addition, each is
associated with a weight, which also needs to be calibrated.

Regarding the Decision component, we calibrate the following determinants’
weights: price, energy label, recommendation, social status, brand, emotion, habit,
attitude, social factor, intention and facilitating condition (charging infrastructure).
At this stage of development, all weights will take a value in the initial set (0, 0.25, 0.5,
0.75, 1).

The number of parameters is significantly large, increasing the combined number
of test runs exponentially. Therefore, we choose to perform a sensitive test for all
parameters. First, all parameters are set at the first item in Table 7.1, and the simulation
is performed for reference. Each of them is then set at the last item value. By
comparing the result of the simulation at this point with the reference, we can assess
the impact of each parameter on the simulation outputs. The result of this sensitivity
test can be seen in Table C.2. The parameters that make more impacts are then
calibrated first with all the steps in Table 7.1. The less critical parameters are calibrated
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TABLE 7.1: Calibration for agent’s Perception component.

Parameter Logic Item N
Step

Filter - Engine Type A preferred engine for
each agent group

Gasoline - Diesel -
Electric - Hydrogen -
Hybrid

5

Filter - Energy label A preferred energy label
limit for each agent group

A+ - A - B - C - D/G 5

Filter - Price Only take cars under bud-
get

N/A 0

Filter - Brands Clusters of brands for
each agent group

1 - 2 - 3 - ... - 8 3

Filter - Recommen-
dation

A real number represents
the limit for accepted ref-
erence from others

0 - 0.25 - 0.5 - 0.75 - 1 4

Filter - New models Select the new models
only. No need for calibra-
tion

N/A 0

Percepted weight -
Energy Label

Weight for energy label 0 - 0.25 - 0.5 - 0.75 - 1 4

Percepted weight -
Price

Weight for price 0 - 0.25 - 0.5 - 0.75 - 1 4

Percepted weight -
Brands

Weight for brands 0 - 0.25 - 0.5 - 0.75 - 1 4

Percepted weight -
Recommendation

Weight for recommenda-
tion

0 - 0.25 - 0.5 - 0.75 - 1 4

Percepted weight -
New models

Weight for new models 0 - 0.25 - 0.5 - 0.75 - 1 4

later and assigned only two steps (0-1) in data calibration. Next, the agents are divided
into eight groups based on socio-economical analysis using data from [Web+17]. Each
group has a set of parameters calibrated to have different values from the other group.

Our main objective is to minimise the error calculated by the total differences
between the final number of vehicles purchased and real sales. If the difference is
within an acceptable range, the error is multiplied by 0. Otherwise, it is multiplied by
a weight (representing the adjusted importance):

1. If the error of the total unit sales is 8% , w = 0. Otherwise, w = 10.

2. If the error of the sum of sales of gasoline and diesel modes is 8%, w = 0.
Otherwise, w = 2.

3. If the error of the negative of the sum sales of electric models is 5%, w = 0.
Otherwise, w = 8.
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4. If the error of the sum of sales of models with alimentation electric and hybrid
is 5%, w = 0. Otherwise, w = 2.

5. If the error of the total sales of different clusters of models of different brands
is 8%, w = 0. Otherwise, w = 2)

We calibrate with the data from 2015 to 2019. The more recent years, 2020 -
2021, are separated due to the effect of the COVID-19 pandemic. Therefore, its car
stock is adapted directly from correspondences in SHEDS panel data. We repeat this
procedure for all agent’s profiles set at deterministic (i.e. choosing the best option) to
find the smallest error. After a period of two weeks, the best setting satisfies the first,
second and third criteria with the yearly average errors after multiplied with weights
equal to 305’485. This setting can be seen in Appendix C.2.

7.8 Experiment

As the sequential, emotional, habitual, multi-criteria decision-making mechanisms
are mainly implemented in the Decision component, their effects on behaviour can be
observed by changing associated weights, similar to what was done in the previous
case study (see Section 5.7). In this section, we focus on testing the functionality of the
bounded Perception component in our agents. The number of vehicles (considered and
purchased) calibrated for the final year (2019) is used as a reference. We experiment
by turning the filtering, shorting and cutting functions off and evaluating the results
against the reference. In this way, all models on the market (n=228) can be passed
directly to the Decision-making component instead of only a limited number (max
n=20) in the reference case.

Figure 7.8a shows the results as the number of models considered among the
agent’s population after the perception process. Figure 7.8b presents the final sales
after the decision-making process. The figures are categorised by different engines,
including diesel, gasoline, electric and hybrid vehicles.

The number of the models considered is much higher in the case without BR,
especially for gasoline models (considered nearly 12 times). This bias is introduced
with the models provided in the sample car catalogue [QE20]. In the reference case
(with BR), the distribution between different engine types is more balanced though
it is proportioned to the case. In the total sales of ground truth, the highest number
is gasoline with 116 thousand vehicles. Even though electric vehicles are being
considered more regularly, they have fewer sales, i.e. 93’591 cars. With the bounded
perception applied, there are significant increases in the number of diesel cars sold.
The gasoline and electric figures drop to 95’071 and 70’327 respectively. It is mainly
due to betters models of diesel and fewer models from gasoline/electric type being
selected after the perception phase. Overall, we can observe that the difference in
the number of models being considered (individual perception level) can lead to the
difference in the percentage of car types sold (macro level).
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FIGURE 7.8: Simulation results in term of total number of vehicles
per engine type

7.9 Advantages and limitations of our framework

This case study highlights the effect of determinants in long-term, strategic decision-
making. The environment in this case study is considered to have the following
properties: deterministic, partially observable, static and known. We adapt our
simulation platform - BedDeM - to simulate the impacts of different types of BRs in
the context of purchasing vehicles according to the definitions provided in Section
7.1. We acknowledge that these definitions are oversimplified and derived from
the points of view of computer science concepts. However, the developed model
demonstrated the flexibility of the framework components, which can be modified to
further reflect other concepts from social studies. In particular, using the same design
of Decision-making component as the previous case study, sequential, emotional,
habitual and multiple criteria decision-making can be considered in the agent’s
architecture. The Perception component is further extended to cover the confirmation
bias and bandwagon effect. The experiment shows that this extension has a certain
impact on the results of the simulation at the macro level.

The increasing amount of agent parameters leads to a significant rise in complexity
and time for calibration. In this study, we test the sensitivity of each parameter to
the outcomes. If there is no noticeable change, the number of steps for calibration is
reduced. Presetting parameters using literature/other theory data can also be a good
substitution for calibration. Finally, depending on the context, it should be noted
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that our modular framework allows switching or turning off some determinants (by
making their weight equal to 0) to reflect other behaviour theories.

Similar to previous case studies, the mapping for the first level of TIB is rather
simple and intuitive. Although we have acquired the help of an economist specialising
in environmental sustainability, it is also necessary to receive inputs from other fields
to derive alternative mappings of empirical data (e.g. energy system engineering,
consumer economics). In addition, the model’s variability is not high. In particular,
the associated weights of determinants are static over the simulation time, which
means that the agents’ preferences do not change over time. Further clustering
techniques on SHEDS panel data of the past few years would also indicate how
these weights have changed, especially when there is an innovation in technology or
policy-making.
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Chapter 8

Case study: The model of COVID-19
transmission

In the final study, we illustrate a working example of the public health domain -
modelling the spreading of COVID-19 in a migrant centre. It focuses on rational
behaviours in a stochastic, fully observable, unknown and dynamic environment. Due to
limited socio-psychological data in this case study, we incorporate the elements of
Maslow’s hierarchy of needs inside the agent’s decision-making mechanism.

8.1 Introduction and description of case study

The management of the COVID-19 pandemic in asylum centres is a critical public
health issue, both because of the high risk of outbreak clusters and the socio-economic
health preconditions of its populations. Indeed, high population density, belonging to
a minority ethnic group or social deprivation are risk factors for contracting COVID-19
infection [de +20; SCM20; Ren+20]. To our knowledge, there is currently no published
agent-based model analysing the transmission of the COVID-19 virus and the asso-
ciated risk factors among asylum seekers living in asylum centres. Understanding
these risk factors is crucial to determining targeted public health policies protecting
these populations fairly and efficiently. In response, this case study was designed
to explore the pandemic’s spread into asylum centres (half-closed spaces) during
the first wave of the pandemic in Switzerland. Specifically, it aims to identify which
factors in migrant decision-making of daily tasks can increase the risk of COVID-19
infection after the first semi-confinement period (16 March to 27 April 2020).

Our agent decision-making framework is a suitable candidate due to its ability to
isolate, highlight and link these factors to their effects at the macro level. However,
in the given database, the amount of socio-psychological information is limited and
insufficient for mapping all determinants in the TIB. To provide a way to derive the
utility of an option, we decide to utilise Maslow’s hierarchy of needs, which includes
five layers: 1) physiological needs, 2) safety needs, 3) belongingness and love needs,
4) esteem needs, and 5) self-actualisation needs. This case study aims to address the
question of the limitation of the model by assessing whether the modified version can
be used in the same manner as previous studies.
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In our model, each need in Maslow’s theory is represented as a tank. Their
volumes correspond to the levels in the hierarchy. If an agent satisfies a need, this
need does not need to be recharged for some time. The utility of an option depends
on the number of needs satisfied (details to follow in Section 8.5). This design allows
us to test the adaptivity of our framework to the requirements of a new dataset (i.e.
minimising the first level) and the exchangeability of a TIB factor, particularly Attitude.
We also test our framework in an environment which is stochastic, fully observable,
unknown and dynamic.

The next section considers the state-of-the-art that aims to model a certain popu-
lation’s reaction to a pandemic. Next, we provide a description of the database and
how it is incorporated into the agents’ and environment’s parameters. The interaction
between agents and the environment is then defined, followed by the description of
the decision-making cycle. Finally, we summarise the advantages and issues of our
framework in this case study.

8.2 Related work

In public health, Agent-Based Model (ABM) has historically been used almost exclu-
sively to model infectious disease transmission and control in populations. Many
ABMs of infectious disease transmission rely on the susceptible-infected-recovered
(SIR) framework proposed by Kermack and McKendrick in the 1920s [SR13], in which
the flows between susceptible, infected, and recovered states are governed by differ-
ential equations [EA96]. ABM extensions of SIR models have been used to introduce
individual heterogeneity and more complex network interactions into these tradi-
tionally aggregate, compartmental models, providing further insight into infectious
processes in real-world settings [Cho+16; EA96]. Notable ABMs in infectious disease
epidemiology include comparisons of vaccination strategies to address a deliberate
bioterrorist introduction of smallpox [Hal+02], tuberculosis control strategies [Mur02],
use of targeted antiviral prophylaxis and social distancing measures to prevent an
H5N1 influenza A (bird flu) pandemic [Fer+05], evacuation plans in the event of
airborne contamination [EPH11], interventions to reduce human immunodeficiency
virus (HIV) incidence [Esc+16; Mar+14], and vaccination strategies against influenza
pandemics, including their impact on health care staff [Coo+10; Lee+10; Mar+12].
They have, thus, advanced to include increasingly sophisticated parameterisation
of social networks and environmental influences to best inform public health policy
and planning. Furthermore, many modelling capabilities developed, extended, and
refined through infection-related ABM programs like MIDAS and the Framework for
Reconstructing Epidemic Dynamics (FRED) [Gre+13], can be applied to public health
problems beyond infectious disease.

In terms of COVID-19 simulation models, several agent-based influenza pandemic
models have been repurposed to simulate the spread of COVID-19 transmission and
the impact of social distancing measures in the United Kingdom [Fer+20], Australia
[Roc+20], Singapore [Koo+20], and the United States [Cha+20]. Additionally, new
agent-based models have been developed to evaluate the impact of social distancing
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and contact tracing [Ale+20; Kre+20; Kuc+20; Bla+20; Hoe+20] and super-spreading
[Lau+20]. Features of these models include accounting for the number of households
and non-household contacts [Cha+20; Kre+20; Kuc+20]; the age and clustering of con-
tacts within households [Cha+20; Ale+20; Kuc+20]; and the microstructure in schools
and workplace settings informed by census and time-use data [Ale+20]. Branching
process models have also been used to investigate the impact of non-pharmaceutical
intervention strategies [Pea+17; Hel+20] and the proportion of unobserved infections
[Per+20]. Notably, Dignum et al. proposed a tool that uses Maslow’s hierarchy of
needs to analyse the health, social, and economic impacts of the COVID-19 pandemic
when the government implements several interventions, such as closing schools,
requiring that employees work in the assigned room, and providing subsidy for the
population [Dig+20].

All these models are proper to explain the global behaviour of an epidemic on
larger scales, considering general variables, e.g. economic factors, mobility and
hygiene practices. However, there are many scenarios in which it is essential to
analyse the socio-psychological factors in smaller populations or in facilities where
the infection process can be identified by the interactions among their members
[Qi+18]. The migrant population in the centre belongs to this category, where different
determinants can play an important role in the transmission dynamics. A model
developed using our framework allows researchers to explore the implication of a set
of hypotheses regarding the spreading of COVID19 in this population.

8.3 Parametrisation of the environment and agents

8.3.1 Dataset

The data utilised in this study are part of SérocoVID, a seroepidemiologic study of
COVID-19 infection conducted in the canton of Vaud, Switzerland [Mor+21]. Migrants
living in an asylum centre, which is known to have had an epidemic outbreak, were
invited to participate in this study. COVID-19 tests targeting the spike viral protein
were measured in all participants. Each participant also completed a questionnaire
measuring socio-demographic characteristics, medical history, health literacy, public
health recommendations (wearing a mask, washing hands), behaviours and exposures
(daily life activities, number of contacts weekly). The association of these independent
variables with the serologic test result were estimated using a multivariable logistic
regression model. The independent variables were obtained from the answers to the
questionnaires divided into five main categories.

• Socio-demographic characteristics and health literacy, such as age, gender and
education level.

• Health conditions, clinical risk factors and symptoms.

• Living conditions (e.g. access to single or family room, kitchen) and public
health recommendations (e.g. wearing a mask in public, hygiene routines).
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• Behaviour and exposure, such as place, context and number of meetings with
other people.

8.3.2 Environment parametrisation

The migrants mainly stay within a centre, which has multiple facilities. For our
framework, we consider the Facility as an extended class of the Environment where
agents perform actions. Each has a capacity (i.e. the maximum number of agents
allowed) and transmissible rate, which increases if an infected agent is present and
decreases if agents apply hygiene rules. At the time of the investigation, there was
no vaccine available and no mutated variants of the virus. In addition, there are two
levels of individual infection risks of the agent if one is infectious, which is calculated
using the model of [Lel+20]:

1. Masks and other preventive methods

2. No masks or other preventive methods

Whether or not an agent applies preventive methods is recorded in our dataset
as an input variable. From Table 8.1, it can be seen that indoor actions can expose
agents to more risks. One intriguing observation is that staying in the assigned room has
the highest transmissible rate, but it is a top action due to their fear of the unknown
outside environment (i.e. Emotion determinant).

TABLE 8.1: Action and associated location with two levels of trans-
missible rate

Action Location With preventive
methods (%)

Without preven-
tive methods (%)

Go to work Workplace 2.5 6.2
Go shopping Market 0.043 0.11
Stay in the as-
signed room

Small room 43 75

Stay in the as-
signed room

Family room 24 50

Eat in kitchen Kitchen 0.22 0.55
Smoke outside Garden ≈ 0 0.11
Socialise Common

room
5.9 14

Walk / Exercise Outdoor ≈ 0 0.066
Talk with visitors
/ friends

Common
room

5.9 14

Go to toilet Toilet 5.1 12

After the agent chooses an action, a random percentage is drawn. If it is lower
than the infection rate, the environment can signal the agent that it is infected. In this
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case, the environment is considered to be stochastic and unknown. In addition, the
agent knows the environmental capacity and the number of people in it. Hence, it is
also fully observable.

Using the classes and interface provided in Section 4.3, the implementation of
the Environment interface (i.e. Location) and Action can be seen in Figure 8.1. Each
Location has the following properties:

FIGURE 8.1: The implementation of the Location and Action classes

• Population: the current migrants presenting at a particular time of the day.

• Infection rate with prevention: the infection rate when the migrant applies
preventive methods.

• Infection rate without prevention: the infection rate when the migrant does not
apply preventive methods.

• Possible actions: the list of possible actions that can be performed in this
location.

• Reporter: the report class records the results (e.g. infection in the location over
time).

The Action class contains a list of possible needs that can be satisfied if the agent
performes this action. Details of the need’s implementation can be seen in Section 8.5.

8.3.3 Agent parametrisation

Since the number of individual records in the database is low (N=107), all profiles
can be represented by agents. We can define the following components in our agent
framework: Internal state, Task, Option. Figure 8.2 is an UML diagram illustrating the
implementation with the classes and interface provided in Section 4.3.

• Agent’s internal state:

– Age

– Gender
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FIGURE 8.2: The extension of the Environmental and Mode class

– Health literacy

– Current state: 1) healthy, 2) asymptomatic, and 3)symptomatic. The agent
transitions from one state to another in 14 day period.

– Accessibility set: List of rooms or facilities that the agent has access to.

• Task: The agent has to pick out the top three actions to perform in a day,
representing three day periods: morning, afternoon and evening.

• Option: The agent can choose the following actions: 1) Go to work, 2) Go
shopping, 3) Stay in the assigned room, 4) Eat in the kitchen, 5) Smoke outside,
6) Socialise, 7) Walk/Exercise, 8) Talk with visitors/friends.

8.4 Interaction between the environment and agents

The environment entities, i.e. facilities, transmit the signal of estimated occupancies.
If the activity can only be performed outdoors (e.g. eating, exercising, walking), then
the capacity is usually unlimited. After an agent makes a decision, the environment
updates its capacity and passes this information to other agents.

In terms of our interfaces provided in Section 4.3, the EnvironmentState can
be implemented to provide information on the list of available actions at different
locations accessible by the agent (see Figure 8.3).

We implement the Feedback interface to provide a boolean value infected to
indicate whether the agent is infected after performing an action(see Figure 8.4).
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FIGURE 8.3: The implementation of EnvironmentalState interface
for COVID19 case study

FIGURE 8.4: The implementation of Feedback interface for
COVID19 case study

8.5 Agent decision-making process

In 1943, Abraham Maslow proposed the most widely known hierarchy of psychologi-
cal needs [Mas43]. As seen in Figure 8.5, it includes five different levels: physiological,
safety, love/belonging, esteem and self-actualisation. Furthermore, it states that peo-
ple tend to spend more of their available time and resources on satisfying these basic
needs before the higher order [TG13]. His approach generalised human motivations
in various contexts but must be adapted for specific cultures or among different parts
of the same society.

Each need in Maslow’s hierarchy has a particular importance, which was utilised
as a specific tank volume that required to be satisfied in a week (see Table 8.2).
Physiology has a volume of 7 to represent seven days a week, which is also the time
for all tanks to reset. It has the most significant amount, so more actions are required
to fulfil. On the opposite side, Self-actualisation has a volume of 3 and requires the
smallest number of actions to satisfy.

An agent will pick out the top three actions to perform in a day, representing three
day periods: morning, afternoon and evening. There are some necessary actions (e.g.
going to the toilet and going back to its assigned room), we assume that they are given
for each period, and agents will be exposed to the risk in these locations. In addition,
it can decide to do some of the actions in Table 8.3; each of which is associated with
several fulfilled Maslow’s needs. It should be noted that the action Smoke outside is
only available for the smoker profile.

We also implemented a health cycle for COVID-19 patients. An agent will be in the
state of asymptomatic after five days since first infected. It then becomes symptomatic,
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FIGURE 8.5: Maslow’s hierarchy of needs (according to [DETL16])

TABLE 8.2: Mapping Maslow’s need to tank volume.

Maslow’s need Tank volume

Physiology needs 7
Safety needs 6
Belongingness and love needs 5
Esteem needs 4
Self-actualisation needs 3

which means it mostly stays in a private room. Then, after 14 days, it returns to a
healthy state, and this cycle starts again.

To incorporate Maslow’s hierarchy of needs, the utility value of Evaluation follows
Equation 8.1:

U(Evaluation) =
M

∑
m=1

Reminder of a tank(m) − 1. (8.1)

where M is the set of fulfilled Maslow’s needs. If the remainder of a tank is 0, its
need is no longer required to be satisfied and is excluded from the equation.

We perform data mapping according to Figure 8.6. In the first level, the Evalua-
tion determinant uses the utility function above 8.1. The Social Factors determinant
prioritises the actions that have direct contact with others, such as socialising with
others in the common room, talking with visitors, eating in the kitchen and smoking.
Contrarily, migrants often have fear as an Emotion. It leads to actions that avoid direct
contact with others, such as staying in the assigned room or going for a walk. The
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TABLE 8.3: Action and the fulfilled Maslow’s needs.

Action Fulfilled Maslow’s need

Go to work Self-actualisation
Esteem

Go shopping / Pick-up essentials Physiology
Stay in the assigned room Safety
Eat in the kitchen Physiology

Belongingness and love
Socialise in common room Belongingness and love
Walk / Exercise Physiology

Esteem
Talk with visitors / friends Belongingness and love
Smoke outside (for smoker only) Physiology

Belongingness and love

Frequency of past behaviours is calculated by accumulating the past actions of the
agent. In the second level, all utilities are kept the same as they are one-to-one con-
nections to the first level. After that, the weights of Attitude, Social Factors and Affect
are combined with these utilities using function 4.7 to produce Intention’s expected
utility. The Facilitating Condition determinant depends on the previous action. If the
agent is already outside the facility, they can continue with other related actions, e.g.
going to work or exercising. The value of Habit is taken directly from Frequency. It is
then coupled together with other third-level determinants to form Decision output.

FIGURE 8.6: TIB’s mapping for the COVID-19 case study
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In terms of our framework implementation, we extend the LeafDeterminant
to represent the determinants in the first/second level of TIB (see Figure 5.8). The
evaluateOptions function can then be implemented with the expected utility of each
option Uopt(d), which can be calculated or be given a ranking value related to other
options:

FIGURE 8.7: The implementation of Feedback interface for
COVID19 case study

• U(Attitude) = how much the action can balance Maslow’s needs.

• U(Social) = ranking based on how much interaction an agent can have during
the performance of an action. We give a higher score for more social actions: 6)
Socialise in the common room, 5) Talk with a visitor, 4) Eat in the kitchen, 3)
Smoke with others, 2) Go to work, and 1) Other actions.

• U(A f f ect) = ranking based on which can reduce the feeling of fear. We give a
higher score for the action that is most employed in the survey: 6) Stay in the
assigned room, 5) Walk/exercise, 4) Go shopping/pick up essentials, 3) Smoke
, 2) Go to work, and 1) Other actions.

• U(Facilitating) = value 0/1, representing whether the previous action hap-
pened at the same location.

• U(Frequency) = the number of times the agent used the same mode the previ-
ous year.

We acknowledge that the above mapping is oversimplified, partially due to the
limited dataset. However, the mapping is also designed to be easy to understand
and intuitive, so further surveys can be performed to explore relevant psychological
aspects of migrant actions. For our experiment, it is sufficient to be able to consider
all the leading aspects: Attitude, Social Factors, Affect, Facilitating Conditions, Habit and
Intention.

Table 8.4 shows a running example in the COVID-19 case study, which follows the
TIB determinants mapping in Figure 8.6. An agent has three options for an afternoon:
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eating in the kitchen, staying in the assigned room or going for a walk. We assume that the
agent just started the week, and so its tank volumes for Maslow’s needs are equal to
what is shown in Table 8.2. According to Table 8.3, eating in the kitchen can fulfil the
belongingness and physiological needs; staying in the assigned room fulfils the safety
and physiological needs; walking satisfies physiological and esteem needs.

Using Equation 8.1, the utilities of Evaluation are: Ueating(Evaluation) = (5-1) +(7-1)
= 10, Ustayingintheassignedroom(Evaluation) = (6-1) +(7-1) = 11 and Uwalking (Evaluation)
= (4-1) +(7-1) = 9. Their total is 30. It should be noted that U is a maximising function,
i.e. option that has a larger value is preferred. Hence, the agent would choose
to stay in the assigned room. In terms of Social actions, we apply the rankings for
U(Socialactions), i.e. eating in the kitchen is 4, walking and staying is 1. Similarly,
Ueating(Emotion) = 1, Ustaying(Emotion) = 6 and Uwalking(Emotion) = 5.

The second level’s determinants have the same utility as the first level due to
the one-to-one mapping (see Figure 8.6). We assume the weight of Attitude, Social
factors and Affect are 2, 1, 2 respectively. Applying Equation 4.7, the expected value of
Intention of eating in the kitchen would be 10/30*2 + 4/6*1 + 1/12*2 = 1.5. Similarly,
Ustaying(Intention) is 1.9 and Uwalking(Intention) = 1.6. As the agent is already out-
side, its utilities for Facilitating Conditions of eating in the kitchen, staying, walking are 1,
0 and 1. At behaviour output, expected values are Ueating is 2.45, Ustaying is 2.52 and
Uwalking ≈ 3.03. These utilities indicate that walking would be the best option for this
agent. We choose this example to highlight the importance of Facilitating Conditions in
decision-making because the best choice would have been staying in the assigned room
if the agent only made an evaluation based on its Intention.

8.6 Calibration

There were 107 migrants who participated in the survey. From the previous preview,
we divide the total population into different groups following characteristics as
proposed in [Mor+21]:

• Age group (12-20 and >20)

• Gender (Male/Female)

• Health literacy (Good/Medium/Bad)

Using these characteristics, the agent population can be grouped into 12 profiles.
The weights of each agent profile will be calibrated so that the number of final
infections is the same in real-life data. In terms of the Decision component, we
calibrate the following determinants’ weights: wsocial , wa f f ect, whabit, wcondition. At this
stage of development, all weights will take a value in the set (0, 0.25, 0.5, 0.75, 1). Our
main objective is to minimise the error calculated by the total differences between the
final number of infections in the simulation and real data.

There are 20’736 configurations to be tested. Since the results involve some
randomness in the environment, we perform 100 simulations for each configuration
and calculate the average. Overall, the total number of runs is 2’073’600.
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TABLE 8.4: Running example of an agent’s decision-making in
COVID-19 case study

Level Determinant w EU

1st Evaluation 1
Ueating = (5-1) +(7-1) = 10
Ustaying = (6-1) +(7-1) = 11
Uwalking = (4-1) +(7-1) = 9

Social actions 1
Ueating= 4
Ustaying = 1
Uwalking = 1

Emotion 1
Ueating= 1
Ustaying = 6
Uwalking= 5

Frequency 3
Ueating= 2
Ustaying = 8
Uwalking= 6

2nd Attitude 2
Ueating= 10
Ustaying = 11
Uwalking= 9

Social factors 1
Ueating= 4
Ustaying = 1
Uwalking= 1

Affects 2
Ueating= 1
Ustaying = 6
Uwalking= 5

3rd Intention 4
Ueating= 10/30*2 + 4/6*1 + 1/12*2 = 1.5
Ustaying= 11/30*2 + 1/6*1 + 6/12*2 = 1.9
Uwalking= 9/30*2 + 1/6*1 + 5/12*2 = 1.6

Habit (Frequency) 2
Ueating= 2
Ustaying = 8
Uwalking= 6

Facilitating condi-
tions

2
Ueating= 1
Ustaying = 0
Uwalking= 1

Behaviour output
Ueating= 1.5/5*4 + 2/16*2 + 1/2*2 = 2.45
Ustaying = 1.9/5*4 + 8/16*2 + 0/2*2 = 2.52
Uwalking= 1.6/5*4 + 6/16*2 + 1/2*2 = 3.03
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The best configuration from calibration is described in Appendix C.3. The total
error (difference of positive tests between simulation and real data) is 18, i.e. 82%
accuracy compared to the final COVID-19 tests. We acknowledge that the interval for
calibration (0.25, 0.5, 0.75, 1.0) is significantly large. Future sensitive analysis can help
identify the correct weight parameters that most affect decision-making to perform
the calibration in smaller intervals.

8.7 Experiment with behavioural determinants

TABLE 8.5: Experiment design

Main
determinant(s)

w_attit-
ude

w_so-
cial

w_af-
fect

w_facili-
tating

w_inten-
tion w_habit

Attitude (At) as cali-
brated 0 0 0 as cali-

brated 0

Social Factors
(SC) 0 as cali-

brated 0 0 as cali-
brated 0

Affect (Af) 0 0 as cali-
brated 0 as cali-

brated 0

At + SF as cali-
brated

as cali-
brated 0 0 as cali-

brated 0

SC + Af 0 as cali-
brated

as cali-
brated 0 as cali-

brated 0

St + Af as cali-
brated 0 as cali-

brated 0 as cali-
brated 0

Facilitating
Conditions (FC)

as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated 0 0

Intention (I) as cali-
brated

as cali-
brated

as cali-
brated 0 as cali-

brated 0

Habit (H) as cali-
brated

as cali-
brated

as cali-
brated 0 0 as cali-

brated

FC + I as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated 0

I + H as cali-
brated

as cali-
brated

as cali-
brated 0 as cali-

brated
as cali-
brated

FC + H as cali-
brated

as cali-
brated

as cali-
brated

as cali-
brated 0 as cali-

brated

The experiment in this case study is set up similarly to the first case study (see
Section 5.7). It aims to assess whether we can draw the same connection between the
decision-making determinants and their effects at the macro level. In turn, it evaluates



146 Chapter 8. Case study: The model of COVID-19 transmission

the impact of replacing empirical data with another theory - Maslow’s hierarchy of
needs.

8.7.1 Design

This experiment focuses on observing the impact of core determinants in TIB, i.e.
attitude, social factors, affect, facilitating condition, intention, and habit. This can
be achieved by adjusting the corresponding weights in the models, i.e. w(Attitude),
w(Social), w(A f f ect), w(Facilitating), w(Intention), w(Habit) (see Table 8.5). This
exercise is similar to the experiment in the mobility demand case study (see Section
5.7). In this case, the experiment is performed on the calibrated deterministic pop-
ulation described in Section 8.6; in which mode, agents choose the best alternative
for the action to be done during one day. By keeping the weight(s) of the main deter-
minant(s) as calibrated values and others to 0, the agent will only take into account
that key determinant(s) in decision-making and ignore the rest. In the first half of
this setup, we focus on the second level of TIB, which connects to Intention to the
third level. Hence, U(Intention) is kept as calibrated in Section 8.6. This process is
applied similarly to w(Attitude), w(Social), w(A f f ect) in the second part to ensure
U(Intention) remains non-zero.

8.7.2 Result

TABLE 8.6: Result of comparing the second level of TIB’s determi-
nants

Main deter-
minant Work Shop-

ping

Stayi-
ng

in as-
signed
room

Eat
in

kitch-
en

Smo-
king

Socia-
lise

Walki-
ng

Talk-
ing

with
visi-
tors

Reference
population 754 4201 10443 2020 556 2806 3153 4957

Attitude
(At) 363 6072 11636 2353 540 2256 3636 4034

Social
Factors (SF) 554 4031 8598 3242 823 3032 3153 5457

Affect (Af) 854 5124 13523 604 456 1019 6053 1257
At + SF 687 4721 8926 2532 421 3516 2873 5214
SF + Af 556 4124 11356 2406 424 2519 4053 2257
At + Af 563 5752 10716 1053 652 1463 5623 3068

After the simulation, the number of actions (e.g. going to work, shopping, staying
in the assigned room, walking) during the three-month period can be obtained.
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Ref At SF Af

At + SF

SF
+ Af

At + Af
0 %
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Socialise
Walk
Talk

FIGURE 8.8: Percent composition of modes in the tests of second
level of TIB’s determinants

Comparing reference results in Section 8.6 with the outcomes of each setup in Table 8.5
show whether a determinant can have a significant impact on the agent population’s
behaviours. The mapping of the TIB’s determinant in Figure 8.6 and the percentage
composition of the activities in the cumulative figures can then be used to interpret
the meaning of the difference in each test.

• Attitudinal, Affective and Social determinants: Table 8.6 and Figure 8.8 show
the results of running BedDeM with the reference population and with one or
two determinants of the second level turned on.

In the Attitude(At) test case, the majority of actions follow the priorities of
Maslow’s needs. On the one hand, a large number of people go shopping
and walking (which satisfies Physiology), or staying in the assigned room (which
satisfies Safety. On the other hand, there are decreases in actions that fulfil
Self-actualization (e.g. go to work) and Belongingness and love (e.g. eating out,
talking with friends and visitors) compared to the figures of the reference case.
They are caused by the differences in tank volumes in the Attitude determinant
(see Table 8.2).

The number of social actions does not reflect the order in Table 8.3. Although
there is a decline in the number of migrants staying in the assigned room (from
10’443 actions to 8’598 actions), eating in the kitchen or taking with visitors are not
among the top options. Due to the percentage of transmissions of the associated
location being significantly higher, more agents got sick quickly and stayed
in the assigned room more in a later stage. It can boost the total number of
socialising actions when combined with other factors (i.e. At + SF or SF + Af).

With the main focus on Affect(Af) determinant, more agents choose to stay in the
assigned room due to the fear of being infected. It also discourages other actions
that involve meeting with others. For example, talking with visitors and friends
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reduce from 2’806 to 1’019. Eating in the kitchen is chosen 1’416 times less than
the reference case. In addition, it explains the figures when two determinants
are combined. When Affect is not considered (i.e. At + SF), socialising goes down
by 48%. Therefore, we can conclude that Affect is the main driver for staying in
the assigned room while Social Factors can strengthen the opposite effects.

Main deter-
minant Work Shop-

ping

Stayi-
ng

in as-
signed
room

Eat
in

kitch-
en

Smo-
king

Socia-
lise

Walki-
ng

Talk-
ing

with
visi-
tors

Reference
population 754 4201 10443 2020 556 2806 3153 4957

Facilitating
Conditions

(FC)
682 4521 9762 2141 631 2942 3354 4857

Intention (I) 689 4452 11112 2122 569 2578 2695 4673
Habit (H) 1053 5024 8427 1832 1140 3052 3146 5216

FC + I 711 4219 11532 1941 479 2717 3077 4214
I + H 899 4901 9432 2242 724 2814 3021 4857

FC + H 763 4872 9016 1942 1002 3067 3203 5025

TABLE 8.7: Result of comparing the third level of TIB’s determi-
nants

• Intentional, Habitual and Facilitating condition determinants: The results of
the third-level determinants’ tests can be seen in Table 8.7 and Figure 8.9.

Although there is a small variation, the percentages of different actions in the
Facilitating Conditions(FC) test case are similar compared to the reference case.
The current setup has Facilitating Conditions as agents prefer to continue to stay
outside if they already perform an outdoor activity. Otherwise, they would
prefer an indoor action. Upon having a closer observation of the calibration
result in Appendix Table C.4, the represented agents of these households do not
have a significant weight w(Facilitating). It would mean that this particular
condition does not significantly contribute to the final decision.

We expected that migrants prefer to staying in the assigned room as a Habit.
However, its test case also has a lower percentage of this option than the
reference. It is due to the lack of habit information questions in the dataset. In
addition, the simulation time is short (3 months), so agents could not create a
new habit. Moreover, most migrants had just arrived at the centre and were
not familiar with the situation.
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FIGURE 8.9: Percent composition of modes in the tests of third level
of TIB’s determinants

In contrast, Intention emerges as an important factor for staying in the assigned
room since the final figure of this mode is at least 20% larger than the one of
either Habit or Facilitating Conditions. It can be confirmed in the combination
cases where Intention is present, i.e. FC + I or I + H. Both have a higher number
of people choosing to stay in the assigned room than other scenarios with
only Habit or Facilitating Conditions. In TIB, Intention refers to the deliberation
process of human decision-making, as opposed to Habit, which causes people
to act on impulse.

From the experiment above, we can see the effect of the leading determinant(s)
on the agent’s total weekly actions. However, as their weights are calibrated and
different assumptions have to be made for the application of our framework in this
case study, it is not possible to draw a conclusion on the actual impacts of these factors
in practice.

8.8 Advantages and limitations of our framework

This case study provides an application in a different domain - healthcare for migrants,
where various socio-psychological factors can play an important role in preventing
the spreading of a pandemic such as COVID19. Compared to the models mentioned
in Section 8.2, the tree-like and layered structure of TIB has inspired us to develop a
new agent model that can combine many different determinants in human decision-
making. In addition, the case study assesses the usage of our framework in a scenario
in which socio-psychological is limited.

The amount of statistical data is low compared to the previous three studies
due to the nature of the migrant population. To resolve this problem, we adopt a
psychological theory - Maslow’s hierarchy of needs - into our framework. The Attitude
determinant in the Theory of Interpersonal Behaviours (TIB) needed to be more clearly
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defined to apply our utility function. It requires a design of tanks for the different
needs and modifications to the original utility. In addition, the mapping of the first
level of the TIB model is simplified (see Figure 8.6), and additional assumptions
are made to derive a suitable utility value for each action of the agent. This design
only aids the process of theoretical exploration and provides rather limited practical
insight into a real-world phenomenon.

An experiment with the second and third-level determinants is then proposed
to test their effects on different actions in the agent population. Preliminary results
show that social factors do not necessarily lead to more activities outside the centre.
The emotion of fear plays a significant role in making migrants stay in the assigned
room. However, as mentioned, the experiment only allows us to draw theoretical
explanation on the observations in the previous statistical study [Mor+21]. Further
investigations and qualitative approaches are required to understand more finely
how living conditions, risks and behaviours such as tobacco consumption and the
adoption of protective measures impact COVID-19 infection.

The limitation of the dataset can restrict the practical application of the model.
In order to better utilise our framework in future research, it would require careful
design for specific focus groups or survey questionnaires protocol to accommodate
the number of different socio-psychological factors. Additional important aspects
of data collection should also focus on the validity of the model and boosting its
reliability and replicability. For further reading on this topic, we recommend different
books on data collection, standards, and best practices, such as [Bra+06; Sch+21].
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Chapter 9

Discussion

The last four chapters 5 to 8 show the implementation of our framework to develop
agent-based models in four case studies in the domain of mobility, trust and repu-
tation, vehicle purchasing and public health. The variety of application areas and
contexts allow us to assess the ability of our framework to explain the correlation
between socio-psychology factors and macro social patterns.

In this chapter, we first summarise all these case studies and the lessons learned
during the application of our framework. This summarisation will be the basis for
answering the research questions in the following section.

9.1 Summary of the case studies

Following the steps in Section 4.4, we demonstrated how to adapt the environment
and agent’s reasoning to different decision-making types and available datasets. In
each case study, we first give an introduction of the reasons for model develop-
ment and a description of background information (Step 1). Related work is then
introduced, including the applications of the state-of-the-art in Chapter 3. From
the description of the dataset, the agents and environment parametrisation are then
performed (Step 2). We also specify how agents interact with each other and with the
environment (Step 3). The decision-making cycle with the main components is then
described (Step 4). After, the model is calibrated with empirical data (Step 5). Finally,
an experiment is provided to evaluate the suitability of implementation or extension
of the components of our framework for the case study (Step 6).

The first case study simulates the change in mobility demand, which is a chal-
lenge for interdisciplinary researchers in the transportation and energy sector. The
number of papers devoted to applying agent-based technologies in the transporta-
tion engineering domain has grown enormously. However, there is still a need for
modelling platforms capable of exploring the influence of different psychological
factors on individual decision-making. By utilising our platform to create a model
of Swiss households, we propose an experimental method to test and investigate
the impact of core determinants in the TIB on the usage of different transportation
modes. Comparing the results with a calibrated population of Swiss households data,
we conclude that Intention and Affect have a positive effect on the usage of private
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vehicles, while Habit and Social Factors can encourage people to travel with public or
soft transportation modes.

Trust and reputation are currently being researched broadly in multiple disci-
plines and are often considered the main drivers of human actions in many different
scenarios. However, in the agent-based simulation community, there are still concerns
about qualifying and modelling them with sufficient details and adequateness in
decision-making. Besides, the diversity of application domains requires a method to
combine trust and reputation with other determinants to provide a complete picture
of the deliberating process in complex systems. The second case study presents a
novel solution by applying subjective logic in conjunction with a modelling frame-
work that utilises TIB to simulate the modal choices of households. It uses the concept
of opinion as a metric to measure an agent’s belief about the consequence(s) of action,
which can be updated through feedback loops. In addition, its consensus rule allows
us to combine relevant opinions of the neighbours to evaluate the target’s reputa-
tion. By performing an experiment set up in the mobility domain, we demonstrate
the model’s ability to capture the ground truth of a service’s reputation at different
simulation scales and highlight the effects of these concepts on train demand.

The third case study investigates the possibility of simulating bounded rationality
effects in an agent’s decision-making scheme by limiting its capability of perceiving
information and utilising a decision-making framework of TIB. Based on previous
work on an agent-based platform, BedDeM, we propose how to capture the effects
of sequential, emotional, habitual and multi-criteria decision-making. Considering
confirmation bias and the bandwagon effect in terms of the simplified definitions
provided in Section 7.1, the Perception component in the agent is further extended
with new filtering functions to limit the number of available options. We demonstrate
the functionality of this model in the context of purchasing vehicles in Switzerland’s
households. The model is first calibrated with empirical purchasing data, which
becomes a reference. The filtering functions in the Perception are then turned off,
allowing all market models to be available for the decision-making process. We show
that this effect the final number of models purchased.

In the final study, a model is created to simulate the migrant’s choice of activities.
Previous studies on this topic were unable to specify a systematic way to compare
the effects of determinants in decision-making. Using our framework, we aimed to
provide a finer view of different socio-psychological aspects that can affect a minority
population - migrants in an asylum centre of Switzerland - in a closed environment.
However, due to the lack of relevant data, Maslow’s hierarchy of needs and several
additional assumptions have to be made in order to provide a coherent narrative for
the developed model. Therefore, the experiment in this case study only provides a
way to explore the implication of a set of hypotheses rather than practical insights
into a real-world phenomenon.

Overall, the design of basic components in our framework enables adaptations
for the different contexts of choice modelling. These include transportation modal
choice, buying a vehicle or daily activities. Most of the work can be done by changing
the first-level determinants in the TIB’s model based on the phenomena simulated
and the available data. It corresponds to the LeafDeterminant component of our
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framework. When the environment is uncertain or partially observable, one can
modify the Perception and Feedback interface to reflect these observations over time
better. Users can also implement the interfaces in our framework, e.g. InternalState,
Option, Task, to enable the flow of data between the agent’s components.

The variety of determinants in TIB’s model encourages the modeller to consider
more determinants and aspects in social studies. By implementing them in a modular
framework, we allow specific modifications to the structure of these determinants.
For example, users can turn off a dimension that is not related to a study by assigning
some weights to zero. The TIB structure can be replaced by other theories (such as
TPB) by customising the Determinants’ organisation in the Decision component.

There are also some limitations of our implementation in those case studies. First,
there is a more extensive data requirement due to the number of determinants. It can
also affect the overall time needed for calibration. One effective solution is clustering
with the relevant statistical model to identify the common features that can also limit
the number of profiles. In addition, presetting parameters using literature/other
theory data can be a good substitution for calibration. Our modular framework
allows switching or turning off some determinants (by making their weight equal to
0) to reflect other behaviour theories. The modeller can use this feature to test and
find a more suitable set of determinants that fit the dataset and the decision-making
context.

Our framework is based on a socio-psychological theory and requires collabora-
tion between disciplines to translate and map correct knowledge. To demonstrate its
functionality, the mapping in the case studies is simple and intuitive. Different inter-
pretations or contexts should also be explored to allow variability in terms of social
research. As mentioned, the framework can also change its structure to reflect other
multi-layer theories, such as TIB or TPB, by switching some determinants’ weight to
zero. They must, however, ensure that the relationship or mechanisms highlighted in
the agent-based model are plausible explanations of real-world phenomena, which
often involve a separate analysis of empirical data. Similar experiments to assess
the causal relationships between decision determinants and behaviour can then be
performed.

There are also some promising research directions for our models. They can
provide a good indication of the roles of determinants in future scenarios (such as
new infrastructures or government policies). Coupling our models with other models
from different sectors can also provide a complete picture of all the internal and
external factors that can affect human decision-making. In addition, our framework
can act as a guide for the data collection procedure. Especially in the design of
interviews and questionnaires, the modeller can better represent domain knowledge
in the form of the decision-makers’ utilities, features, heuristics or decision-making
characteristics that he/she can deploy in a model.
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9.2 Conclusions of research questions

In this chapter, we summarise the experience gained while creating our agent frame-
work and in the four case studies to answer the research questions.

• Question 1: What does an implementation of an agent decision-making frame-
work with TIB offers? Does it help to close the conceptual gap between MAS
and ABM?

• Question 2: When developing models for different case studies, what are the
limitations of our agent decision-making framework with TIB?

• Question 3: For which research purposes are the models based on our agent
decision making framework especially useful?

9.2.1 Question 1

Building an agent decision-making framework based on TIB has several advantages,
including:

• Compared to other behavioural theories, TIB considers various determinants,
which can inform a wide range of research designs and methodologies as it
is a flexible tool that identifies a set of potentially relevant factors and their
interactions (see Section 4.1).

• The TIB determinants are organised in a tree-like structure (see Figure 4.4).
Hence, the decision-making based on TIB can be flexible enough to reflect other
behavioural theories by exchanging determinants and assigning weights to
mark their contribution to the agent’s decision-making process.

• It provides the user with a more sophisticated mechanism to compute the
probability of performing an action from a set of available alternatives using
an additive value function 4.7.

• By changing the mapping with the first level determinants, we could adapt
the framework for different decision-making contexts, such as mobility choice,
vehicle purchasing and migrant’s daily activity (see chapters 5 to 7).

In Section 1.1, we identified a conceptual gap between the two fields of ABM and
MAS. On the one hand, the most popular and highly-cited method of ABM often
employ ad-hoc, simple condition-action rules based on theoretical assumptions or
derived over statistical distributions. On the other hand, the state-of-the-art in MAS
does not cover the variety of behavioural dimensions and different decision-making
strategies (see Chapter 3). By satisfying the criteria in Section 1.2, our framework
provides a better approach to help to close the conceptual gap mentioned:
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• It covers all dimensions that we listed in Section 1.2, including cognition,
affective, social factors, norm and learning (details comparison is in Section 4.1).
The developed model allows theoretical exploration of the macro effects when
the agent’s decision-making is led by one or more of these determinants. An
example can be seen in the experiment of the first and last case study (Section
5.7 and 8.7).

• It provides a general agent architecture design which can be extended to allow
the expression and simulation of many social phenomena. For example, in the
trust and reputation case study, we adapted the utility function with subjective
logic to represent these aspects in the agent’s decision-making component
(see Section 6.4). Another example can be seen in the third case study, in
which the Perception component is extended to represent the confirmation
bias and bandwagon effect (see Section 7.5). By adding or removing these
implementations in the experiments, we can observe their effects on the macro
simulation results.

• It provides a way to incorporate empirical data and use the variety of psy-
chological ontologies in the simulation process to produce a more transparent
explanation for social phenomena. The first three case studies utilise the real-
world statistical data in the mapping of determinants and calibrate the models
after (see Section 5.3 and 7.3). This process improves the reliability and trans-
parency of the agent’s decision-making. Subsequently, it can also facilitate the
engagement of psychologists, sociologists, economists and the general public
with multiagent modelling projects.

9.2.2 Question 2

In the four chapters 5 to 8, we identified the following three potential limitations from
the technical perspective when applying our framework:

• It is challenging to adapt our framework correctly to capture human aspects in
terms of qualitative data. As our framework includes qualitative determinants,
such as Emotion or Social Factors, it is difficult to qualify exactly their utility
values. It would further require a careful design for specific focus groups or
survey studies to qualify the level of trust and reputation more accurately. It is
also an ongoing topic in the ABM community [Sei14; Edm15; An+21; RDG21].
In this framework, we propose to rank the available option and use the rankings
with their associated weights to create a difference in utilities. Other methods
to use qualitative data to inform behaviour rules are also encouraged for future
research [PSG10; GDS15].

• Due to the number of determinants in the TIB, there is a significant amount of
micro data required for mapping and calibration. This amount can grow signif-
icantly with the diversity of agents’ profiles that are represented in our agent
population. An example of this can be seen in the complexity and required
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runtime of the calibration process of the third case study (Section 7.7). Reducing
the number of agent profiles using statistical and clustering techniques is an
immediate solution (e.g. [JJM13; Saa+18; BS19a; GAE20]). Another method
that was applied in the third case study is performing sensitivity analysis (see
Section 7.7), which involves varying a system’s inputs to assess the individual
impacts of each variable on the output and ultimately provide information
regarding the different effects of each tested variable. The parameters that have
more impact on the behaviour output can be further tested in smaller interval
sets.

• In the scenario where socio-psychological data is limited, additional theories
and assumptions can be made to calculate the utility value for each option.
However, this design can only aid the process of theoretical exploration and
provides somewhat limited practical insight into a real-world phenomenon.
The fourth case study is a typical example, where we adopt a psychologi-
cal theory - Maslow’s hierarchy of needs to calculate the utility of Attitude
determinant (see Section 8.5). The experiment only allows us to provide a
theoretical explanation of the observations in the previous statistical study
[Mor+21]. To better utilise our framework in future research, an additional
data collection process with a careful designed protocol to accommodate the
number of different socio-psychological factors is recommended.

9.2.3 Question 3

One model can have indeed different purposes. In his paper [Edm17a], Edmond
looks at seven of them, including prediction, explanation, description, theoretical
exposition, illustration, analogy and social learning. Their definitions can be seen in
Section 1.3. We consider each of these purposes with the models developed in the
four chapters 5 to 8:

• Prediction: In the first three case studies, we generate a reference baseline by
calibrating with empirical data. By applying policies that target certain deter-
minants of the whole population, we can explore their effects on alternative
pathways in the future. An example can be seen in one of our work [Bek+18].
Hence, these models can be used for prediction purpose.

• Theoretical exposition: As our framework is based on the TIB, all the models
we developed in the case studies serve this purpose since they can be used to
explore the consequences of theoretical assumptions and properties through
computer simulation.

• Description: The models in the first three case studies utilise plausible mecha-
nisms to match outcome data in a well-defined manner, which fits the descrip-
tion purpose category.

• Explanation: Our models deliberately made many connections between aspects
of the simulation and evidence of various kinds. Some of these connections
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might be in the form of comparing the outcomes of the simulation to data. In
this case, it is tempting to suggest that the simulation supports an explanation
of those outcomes. However, the simulation has not been established in a
range of settings. We could only test simple mappings from data to the TIB’s
determinants. Hence, our models are not general enough to make a scientific
explanation for the simulated phenomena.

• Illustration: A model can be designed to be an illustration or playful exploration
as being sufficient for the purpose of a theoretical exposition. However, an
illustration does not test the code intensively to check the behaviour and the
assumptions. Our frameworks have been applied in several case studies in
different domains. Hence, it does not have an illustration purpose.

• Analogy: We formalise TIB into an agent framework. Therefore, the models
cannot be used as a way of thinking about something in an informal manner
and so do not serve this purpose.

• Social learning: Models developed for this purpose aim to capture a shared
understanding (or set of understandings) of a group of people. TIB focus on
individual behaviour. Thus, our generated models do not serve this purpose.
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Chapter 10

Conclusion

In this chapter, we first summarise the main findings of this work, including the
following statements:

• There is a research gap for an agent decision-making framework that covers
different concepts in social science research.

• A framework based on the Theory of Interpersonal Behaviours (TIB) with
modular determinants has been designed to bridge this gap.

• The feasibility of this framework has been proven by applying it in four case
studies.

• The advantages and disadvantages of the framework have been analysed and
detailed.

Finally, we present future works and potential directions.

10.1 Findings in the study

Agent-Based Model (ABM) is useful for social research as it introduces the possibility
of a new way of thinking about different social and engineering processes based on the
idea of the emergence of complex behaviours from relatively simple activities [Sim96].
The advance in research in Multiagent System (MAS) could provide a robust and novel
approach to understand societies for researchers in ABM. However, these benefits
are limited in practice mainly due to the difference in methodologies and conceptual
gaps between MAS and social research. Building agent architecture based on socio-
psychological theories is a promising direction to minimise this gap. There are a
significantly large number of aspects that can be considered in an agent’s decision-
making. Tina Balke and Nigel Gilbert have identified five high-level dimensions
that should be considered in an agent decision-making architecture [BG14]: cognition,
affect, social factors, norm and learning. Using them as an initial set, we aim to find
an agent architecture and framework that can cover them comprehensively. The
objectives of our research include:



160 Chapter 10. Conclusion

• The framework shall have a sophisticated decision-making mechanism, moving
away from ad-hoc, oversimplified behavioural rules.

• The framework shall allow the expression of assumptions, postulates and
concepts explicitly drawn from social sciences. At the minimum, it should
include the following five dimensions: cognition, affective, social factors, norm
and learning.

• The framework shall have an extensible mechanism that allows reflection on
various decision-making aspects.

• The framework shall offer a mechanism to incorporate empirical data.

• The framework can be applied in different decision-making contexts and do-
mains, e.g. mobility mode choice, health care, and public policy.

First, the theoretical background of agents and their decision-making mechanism
has been laid out. An agent architecture needs to include all basic components: a way
to percept the current state of the environment, a way to derive the agent’s internal
state, and a way to communicate the action to the environment and a decision-making
process. For a single decision-maker, utility functions are required to compare differ-
ent alternative outcomes. The framework should be based on an abstract architecture
that can organise the flow of information between the decision-making determinants.
Finally, it should consider different properties of the environment, such as static/dy-
namic, know/unknown, fully/partly observable and deterministic/stochastic.

Using our objectives and criteria above, a large body of research has been doc-
umented in the literature. We provided a mix of categories of agent architectures
and frameworks in Chapter 3, including BDI and its derivatives, normative models,
cognitive models, and socio-psychology-inspired frameworks. They were, however,
not suitable for our criteria due to the following reasons:

• Each architecture based on BDI only focuses on one particular dimension, such
as emotion (eBDI) or norm (BRIDGE, BOID). There is no architecture in this
category that can cover all five dimensions.

• Normative agent architectures have the same problem as the architectures of
the BDI category as their primary purpose is on how norms are captured in
human deliberation.

• Cognitive architectures lack the ability to reflect social realism and do not cover
the affective and social dimensions.

• MoHuB only provides a simple way to adapt a standard agent architecture
to reflect different theories. It aims to include a different set of behavioural
theories into formal models. Comparing these theories with the criteria in
Section 1.2, the implementation of them in MoHuB still does not meet all of
them sufficiently. In addition, the agent components have to be redefined to
implement a new theory, or additional processes are needed. This process



10.1. Findings in the study 161

requires a certain level of expertise and effort from the users, which can limit
the reusability of the framework.

• Consumat considers different heuristics in terms of contextual design. How-
ever, formalising a specific domain requires more effort and deliberate choices
than a rational actor approach. If the modelled context becomes complex, it
will require significant work to formalise the complete framework, the need-
satisfying capacities and resource demands of many different opportunities.
In addition, its concept design is specific, so users cannot consider a different
setup or interpretation in another context.

Since there was not an architecture or framework that could satisfy our criteria, we
decided to build our own agent decision-making framework. Building a framework
from a theory of human decision-making that covers a broad set of decision-making
determinants is one promising direction for our research objectives. It facilitates the
reuse and comparison of models since a theory could serve as a standard reference
[Bel+15; CCB08]. Modelling an agent’s decision-making based on a theory can also
help limit the enormous options of what aspect could be included in the model to
only those deemed relevant by the theory [Edm17b]. In addition, this approach can
provide a standard practice in interdisciplinary teams and facilitate communication
between modellers and social scientists [DEB07].

From our survey of different socio-psychological theories, the Theory of Interper-
sonal Behaviours (TIB) was chosen due to its broad set of determinants and inclusion
of an additive value function. However, it does not cover the Learning aspect of the
agent’s decision. We provided a solution by adding a feedback loop from the environ-
ment and by developing a full agent architecture that can combine many different
determinants in human decision-making, each of which can also be enhanced by
empirical data.

To implement a decision-making framework with TIB, a combination of the
horizontal and vertical one-pass layered architectures is suitable as TIB shares a
similar layout with these architectures. Determinants from the same group (e.g. norm,
role, self-concept) can be put in layers of a horizontal layout, while the different
levels of decision-making (i.e. three levels of TIB model) can follow the one-pass
architecture. An agent’s main components and functions are illustrated in Figure
10.1. A typical decision-making cycle is as follows: When a task is assigned, the
Perception observes the current state of the Environment and combines them with the
agent’s internal state to produce a list of perceived options. Then, they are given to
the Decision unit to be evaluated. Details of this process are described in Section 4.2.3.
The Communication component then utilises this result to execute the chosen option(s)
with Environment and other agents. The Environment can then provide feedback(s)
based on the nature of the system associated with the action. The agent remembers
these feedbacks in the Memory, which can then be used to modify the probability of
expected values in future decision-making.

Figure 10.2 illustrates the decision-making steps in our framework. An agent
is given a list of tasks that isolated decision-making task needs to be sequentially
executed and a list of actions. To perform a task, the agent first filters the list of actions
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FIGURE 10.1: Overview of agent’s basic components

with the information from its internal state and the external environmental state to
generate a set of possible options.

For all determinants (d) in TIB, each option (o) is then given an utility value which
comes from comparing its properties with other’s (Uo(d)). In the first level, this value
can be in the form of a cardinal utility measure (for determinants such as price or
time) or ordinal utility ranks (for determinants such as emotion). Both of them can
be calculated from empirical data (e.g. census, survey) or calibrated with experts’
knowledge and stakeholders’ assessment. The results for these determinants are then
multiplied with an normalised weights (called w(d)). This process is captured in the
following equation, which is adapted from the additive value function in Section
2.1.1:

Uo(d) =
C

∑
c=1

Uo(c) ∗ w(c) (10.1)

where Uo(d)(opt) is the utility value of an option o at determinant d. C is the set
of all children c of d, i.e. determinants connect with d in the previous level. Therefore,
c ∈ C where connect(d, C). w(c) is the normalised weight of child determinant c.

Next, an UML diagram was provided to show the framework classes, interfaces
and relationship between them. A set of pseudo code for each agent component was
then provided. A modeller can adopt this agent’s framework by producing a glue
code for each component and some important interfaces. The following steps provide
a standard approach to use our framework:
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FIGURE 10.2: Agent’s decision-making mechanism with TIB’s de-
terminant

1. Specify the targeted behaviours or the interesting features/phenomena that
can be simulated through the given modelling context.

2. Parametrise agents and environment and their attributes using the available
data. This way, all the fields and variables of the main Environment and Agent
classes should be defined.

3. Design how the agents and environment interact, including Agent-Self, Environment-
Self, Agent-Agent, Environment-Environment, Agent-Environment (see Section 2.3).
In particular, the modeller can define the variable fields in the EnvironmentState
and Feedback interfaces.

4. Define how an agent filter and evaluate an option. This process involves the
implementation of the InternalState and Option interfaces. Users also need to
extend the main components of the agents, i.e. PerceptionComponent, Memo-
ryComponent, DecisionComponent and CommunicationComponent, and specify
the functions in these classes. In addition, the function evaluateOptions in the
LeafDeterminant should be defined. The default of the computation is set as TIB
three-layered model, but a user can create their own decision-making structure
that is more suitable for the context and available database.

5. Calibrate the agent parameters so that the outputs reflect empirical/historical
data.

6. Set up an experiment to demonstrate or test the model’s functionality base on
the type of decision-making and the model’s purpose. Its results can then be
interpreted and discussed.
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In the next four chapters 5 to 8, we demonstrated the framework’s usage by
creating fully-working models for four case studies from Switzerland’s mobility, car
purchasing and health care domains. In each of them, there was an adaptation of
TIB’s determinants to a specified context. It was followed by detailed data mapping
and calibration processes. Several experiments were then proposed to observe and
qualify the macro pattern change when a decision parameter was modified.

In the model of mobility demand study, agents made decisions on transportation
mode for their routine, i.e. short-term decision-making. The environment was determin-
istic, fully observable, static and known. Trips data from Transport Microcensus (MTMC)
and psychological data from Swiss Household Energy Demand Survey (SHEDS) were
utilised in the mapping with our framework, as well as in the calibration. With the
amount of data available, all the suggested decision-making strategies or aspects
mentioned in Section 1.1 could be represented in the model. Our experiment was set
up by turning on/off the second and third levels of TIB’s determinants to test their
impacts on the final behaviour output. We were able to provide insight into the agent
decision process and reason about the changes of transportation when agents only on
one or two determinants.

In the second study, the same agent’s population was utilised. To represent the
trust and reputation of train services, we adopted the theory of subjective logic in
the reasoning of the agent’s Decision component. In this case, the environment was
stochastic, fully observable, static and unknown. We then tested the model functionality
by modifying the punctuality of the train at the regional and national levels. The
experiments showed that this new mechanism was able to reproduce the ground
truth. We also explored the theoretical link between the train’s reputation, time and
final decision output.

A new model for vehicle purchasing was created in the third case study. Agents
were derived from the same profiles as the previous cases, but their attributes were
updated. In addition, we modified the Perception component to represent the two
types of bounded rationality: confirmation bias and the bandwagon effect. The
experiment section provided a simple test of the impact of this implementation on
the number of vehicles considered and purchased. This case study focused on long-
term, strategic decision-making in a deterministic, partially observable, static and known
environment.

The fourth case study modelled the daily activities of migrants during a three-
month period during the COVID-19 pandemic. The type of decision is similar to the
first case, i.e. short-term decision-making in a fully observable environment. However,
the environment was also stochastic, unknown and dynamic. The data set was unsuit-
able for mapping with all TIB. We utilised another psychology theory, i.e. Maslow’s
hierarchy of needs, to evaluate the utility of the determinant Attitude. Other assump-
tions had to be made for other core determinants. Due to this design, although we
can perform the same experiment as the first case study, the developed model can
only serve the theoretical exploration purpose and provides rather limited practical
insight into a real-world phenomenon.

Overall, the TIB framework is able to provide a way to incorporate empirical data
and make use of the variety of psychological ontologies in the simulation process to
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produce a more transparent explanation for the decision-making process in the agent.
The framework also allows a systematic way to represent different social aspects and
strategies in human behaviours. As determinants in TIB can be organised in a tree
structure, we can formalise the utility function to capture the effect of changing the
value of a small branch in decision-making. With this setup, it can provide a link
between micro-macro levels. In turn, it can act as a test bed for policy designers to
test the policies that focus on many aspects of the individual, i.e. not only economic
incentives but also social and emotional factors. As a result, it can facilitate the
engagement of psychologists, sociologists, economists and the general public with
multiagent modelling projects.

The main limitation of using the TIB structure is the extensive data requirement
due to the number of determinants. By applying a modular design with associated
weights, the framework allows some flexibility in mapping from data sources to
elements of TIB. Despite many determinants, we have the possibility to choose
only the ones that are relevant to the case study using the associated weights. It
is demonstrated in Figures 5.7, 6.3, 7.6 and 8.6. By assigning the weight to 0, the
framework can be cut back to reflect other theories, such as the Theory of Reasoned
Action (TRA) or Theory of Planned Behavior (TPB). Depending on the context, the
user can adapt the Decision-making component design to minimise the complexity of
data collection.

In addition, the mappings between datasets and the first level TIB’s determi-
nants are still simple and intuitive in our generated models. It can be improved
by incorporating inputs from the domain experts to derive alternative mappings.
Supplementary interviews and questionnaires can also be designed to understand
better the association between the theoretical and real-world determinants of human
decision-making. Another approach that requires interdisciplinary cooperation is cre-
ating hybrid prediction models, which combine methods from both the expert-driven
and the data-driven paradigms using machine learning techniques (e.g. [Not+16;
Plo+17]).

10.2 Future work

The proposed decision-making framework covers the research gap identified in this
thesis. The results of this thesis can, therefore, be an initial prerequisite for many
subsequent research projects. We outline some aspects that should and will be
investigated in future research.

One limitation of our models is that many elements are static over simulation
time, e.g. determinant weights and schedule. As a solution, panel data of the past few
years (e.g. SHEDS) can be further investigated to identify the pattern of change over
the course of the simulation. Another method is making agents change their weights
to prioritise the selected option. In addition, studies in Reinforcement Learning
techniques (e.g. [Mni+15]) or Generalized Expected Utility Theory (e.g. [Qui12])
could offer some insights on this topic.
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As our models are built on a behavioural theory framework, we need to validate
our agent-based models empirically. Bektas et al. proposed to use an unsupervised
machine learning algorithm based on cluster analysis of real and artificial individuals
to create meso-level behavioural patterns [BPS21]. The algorithm generates a valida-
tion score by comparing the balanced composition of real and artificial agents among
these clusters. This method was applied in the mobility case studies [BPS21]. It can
also be done similarly for the vehicle purchasing study. Due to the relatively smaller
population in the COVID-19 case model, cross-validation can be utilised, which in-
volves checking with informants and other domain experts that the behaviour of the
agents conforms to that of the individuals or organisational units the agents represent
[ME05].

The number of case studies applying the framework needs to be increased to allow
for more reliable evaluation results. Therefore, it is necessary to use our framework
and compare the modelling effort with other approaches in various domains, and,
ideally, the process should be performed by different developers. Therefore, our
approach has been designed to be generally applicable. However, in the case that a
variety of case studies exists, it could become helpful to analyse which domains are
particularly well suited for the application of our framework and if application areas
require more specialised or enhanced versions of the process or additional guidance.

Another aspect that could be used in future case studies is the investigation
of different theories as a baseline to organise behaviour determinants. As already
pointed out, finding the correct structure of determinants and formulating utility
functions across different domains and contexts can become a complex task. Therefore,
it might be helpful to investigate modelling protocols that facilitate, on the one hand, a
formally grounded description of the scenario and, on the other hand, offer additional
value during the implementation and can foster an implementation phase.

In this thesis, we emphasised the importance of identifying contextual require-
ments. They can be used to specify characteristics of the decision-making process
and formalise criteria that have to be considered so that clustering mechanisms can
be applied. Moreover, they can offer additional value. For example, existing data
can be classified according to a fixed set of calibration requirements and, therefore,
form a catalogue of clustering mechanisms that can foster the identification of agents’
profiles. Thus, there is a requirement to build a new scheme for classifying input data
for different application domains.

Capturing qualitative data is one of the challenges of our framework implemen-
tation as it is used to evaluate some of our dimensions, such as emotion. It is an
ongoing research area within ABM community [Sei14; Edm15; An+21; RDG21]. As
a solution, we suggest using ordinal ranking in the utility functions. However, we
acknowledge that extracting domain knowledge from experts in a way that can be
easily used by an automated agent can be very complex11. Even if some protocols
are widely accepted and standardised nowadays, there are rarely any techniques for
qualifying qualitative data in behavioural rules. Overall, there is still a gap in research

11Readers are recommended to find more discussion on the topic in [Hof14]
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for generating better general criteria, rules or mathematics formulation to capture
these data in the agent’s design.

There is also a need to mention the important aspects of data collection, which
focus on maintaining the validity of the data and boosting its reliability and repli-
cability. These aspects are not specific or unique to the data collection of human
decision-making. One of the promising directions is the think-aloud method for data
collection, which requires participants to say whatever comes into their minds as they
make decisions [RK18]. All verbalisation is transcribed and then analysed. It could
allow the researcher to evaluate better the adequacy of his/her experimental design
or selected theoretical exposition.

Using our framework as a foundation, several Artificial Intelligence (AI) and
MAS techniques can be applied to include authentic and realistic features of human
deliberation. For example, one can extend the Communication component to include
some interaction protocols mentioned in Section 2.3. The Perception component and
Feedback mechanism can be enhanced to take into account other agents’ actions. These
improvements can help address interesting topics such as negation and cooperation
in an environment with limited resources.

Regarding software and documentation, the core agent framework and its imple-
mentation - BedDeM - are developed in Java using an agent-based platform called
RePast [Nor+13]. Although Repast’s documentation is still limited, it is easy to un-
derstand and has reduced the learning curve for the development process. RePast
is also actively updated for newer Java versions and functionalities. We are using
the R language to handle and analyse empirical input data. We have published the
core architecture of BedDeM12 [Git] and plan to provide further complex examples
for the decision-making mechanism. It will allow us to have feedback from multiple
perspectives to improve the platform for research across different domains.

12Link: https://github.com/SiLab-group/beddem_simulator

https://github.com/SiLab-group/beddem_simulator




169

Appendix A

Summary of Theories Search Results

TABLE A.1: Summary of search results

Theory Main idea References
Action Iden-
tification
Theory

The theory specifies the principles by which
people adopt a single act identity for their
behaviour and outlines the conditions under
which people maintain this act identity or adopt
a new one.

[VW14]

Attachment
Theory

The theory explains the evolution of that bond,
its development, and its implications for hu-
man experience and relationships across the life
course.

[HS94]

Attribution
Theory

The family of attribution theories are concerned
with the question of how ordinary people ex-
plain human behaviour, e.g. usage of folk psy-
chology, observing regularities and differences
in behaviours.

[CN92;
Gil98;
Mal04]

Balance The-
ory

The theory claims that unbalanced structures
between individuals and objects are associated
with an uncomfortable feeling of negative affect,
and that this negative feeling leads people to
strive for balanced structures.

[Ins84]

Broaden-
and-Build
Theory of
Positive
Emotions

The theory was mainly developed to explain
why people experience positive emotions.

[Fre98]

Continued on next page
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Table A.1 – continued from previous page
Theory Main idea References

Cognitive
Dissonance
Theory

The theory defines cognitive dissonance as the
aversive state of arousal that occurs when a
person holds two or more cognitions that are
inconsistent with each other, which then can
be used to explain a variety of ordinary and
extraordinary events in our social lives.

[Fes57;
AM59]

Corre-
spondent
Inference
Theory

The theory outlines when it is appropriate to
infer that a persons personality corresponds to
his/her behaviour.

[Jon90]

Drive The-
ory

The theory claims that survival, culturally de-
termined or learned drives can motivate people
to reduce desires by choosing responses that
will most effectively do so.

[Cot+68]

Dual Process
Theories

This group of theories describes how people
think about information when they make judg-
ments or solve problems. They distinguish two
basic ways: intuitive associations and system-
atic reasoning.

[CT99]

Dynamic
Systems
Theory

The theory studies the behaviour of systems
that exhibit internal states that evolve over time
(i.e., internal dynamics) and how these systems
interact with exogenously applied input (often
referred to as perturbations).

[Kel95;
NV98]

Equity The-
ory

The theory states that people feel most comfort-
able when they are getting exactly what they
deserve from their relationshipsno more and
certainly no less.

[WBW76]

Error Man-
agement
Theory

The theory proposes that the direction of a bias
in social judgment is tied to how costly different
kinds of errors are.

[HN06]

Escape The-
ory

The theory refers to the tendency for people to
engage in behaviours to avoid an unpleasant
psychological reaction.

[Bau90]

Excitation-
Transfer
Theory

The theory focuses on physiological manifesta-
tions of bodily arousal.

[Apt92;
LeD98;
Zil96]

Continued on next page
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Table A.1 – continued from previous page
Theory Main idea References

Implicit Per-
sonality The-
ory

The theory refers to a persons notions about
which personality characteristics tend to co-
occur in people.

[Bor92]

Inoculation
Theory

The theory acts as a strategy to protect attitudes
from change, to confer resistance to counter at-
titudinal influences, whether such influences
take the form of direct attacks or sustained pres-
sures.

[CP05a]

Interde-
pendence
Theory

This theory describes the structural properties
that characterize interactions and the implica-
tions of such structure for human psychology.
Different from most psychological theories, it
regards the relationships between people as im-
portant as the people themselves.

[RL12]

Learning
Theory

The theory discusses two general types of learn-
ing: non-associative and associative learning.

[Sch89]

Logical Posi-
tivism

The theory states that a event was meaningful
only if it could be verified or confirmed through
experience.

[Pas43]

Opponent
Process The-
ory

The theory prefers a stimulus that initially in-
spires displeasure will likely be followed by a
pleasurable after-feeling and vice versa. In addi-
tion, the after-feeling can become the prevailing
emotional experience associated with a particu-
lar stimulus event over time.

[Sol80]

Optimal Dis-
tinctiveness
Theory

The theory is about social identityhow people
come to define themselves in terms of their so-
cial group memberships.

[Bre91]

Prospect
Theory

It assumes that people derive utilities from gain
and loss, which are measured relative to some
reference points, rather than from the resulting
outcome of the decision.

[TK79]

Realistic
Group Con-
flict Theory

The theory describes how perceived competi-
tion for limited resources can lead to hostility
between groups.

[Jac93]

Continued on next page
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Table A.1 – continued from previous page
Theory Main idea References

Reasoned
Action The-
ory

The theory suggests that a person’s behaviour
is determined by their intention to perform the
behaviour and that this intention is, in turn, a
function of their attitude toward the behaviour
and subjective norms.

[Ajz85]

Reduction-
ism

The theory is the idea that one can completely
explain the human psyche by breaking it down
into several general principles.

[BC04]

Regulatory
Focus The-
ory

The theory addresses the motivations that peo-
ple have in goal pursuit, particularly as those
motivations address achievement of desired
states.

[CH97]

Relational
Models The-
ory

The theory describes the four fundamental
forms of social relationships: communal shar-
ing, authority ranking, equality matching, and
market pricing.

[Fis91;
FH05]

Role Theory The theory examines how roles (i.e. the collec-
tion of expectations that accompany a partic-
ular social position) influence a wide array of
psychological outcomes, including behaviour,
attitudes, cognitions, and social interaction.

[EWD00;
EK02]

Self-
Affirmation
Theory

The theory states that people have a fundamen-
tal motivation to maintain self-integrity, a per-
ception of themselves as good, virtuous, and
able to predict and control important outcomes.

[Cre+05;
SC06]

Self-
Categorization
Theory

The theory assumes that a person might act as
a unique personality in one context, but display
collective similarities as a group member in an-
other.

[Tur+94;
OT04]

Self-
Determination
Theory

The theory theorises that the type, rather than
amount, of motivation is the more important
predictor of outcomes. In addition, the type
of motivation is determined by the degree of
satisfaction of the basic needs.

[DKR99;
RD00]

Continued on next page
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Table A.1 – continued from previous page
Theory Main idea References

Self-
Discrepancy
Theory

The theory proposes that people’s actual self
is compared with their self-guides, the kind of
person they want or desire to be. When there
is a discrepancy between them, people suffer
emotionally.

[Hig87;
Str89]

Self-
Expansion
Theory

The theory states that people are motivated to
enter relationships in order to enhance the self
and increase self-efficacy.

[ANA98]

Self-
Perception
Theory

The theory proposes that people determine
their attitudes and preferences by interpreting
the meaning of their own behaviour.

[Bem72]

Self-
Verification
Theory

The theory asserts that people want others to
see them as they see themselves and will take
active steps to ensure that others perceive them
in ways that confirm their stable self-views.

[SJDLRH94]

Social Ex-
change
Theory

The theory includes a broad social psycholog-
ical perspective that attempts to explain how
human social relationships are formed, main-
tained, and terminated.

[DW13]

Social Iden-
tity Theory

The theory predicts certain intergroup be-
haviours on the basis of perceived group status
differences, the perceived legitimacy and stabil-
ity of those status differences, and the perceived
ability to move from one group to another.

[Bur06]

Social Im-
pact Theory

The theory depicts that the amount of influence
a person experiences in group settings depends
on power or social status, physical or psycho-
logical distance and the number of people in
the group exerting the social influence.

[HL98]

Sociobiologi-
cal Theory

The theory aims to use demographic parame-
ters and the genetic structure of populations to
predict patterns of social organization across
species.

[Wil00]

Stress Ap-
praisal
Theory

The theory refers to the process by which in-
dividuals evaluate and cope with a stressful
event.

[Laz63]

Continued on next page
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Table A.1 – continued from previous page
Theory Main idea References

Symbolic In-
teractionism

The theory assumes that people respond to el-
ements of their environments according to the
subjective meanings they attach to those ele-
ments

[Hew76]

Temporal
Construal
Theory

The theory describes the effects of psychological
distance object and events on thinking, decision
making, and behaviour.

[TL03]

Terror Man-
agement
Theory

The theory proposes that people strive to sus-
tain the belief they are significant contributors
to a meaningful universe to minimize the po-
tential for terror engendered by their awareness
of their own mortality.

[GSP97]

Theory of
Mind

The theory refers to the capacity to understand
other people by surmising what is happening
in their mind.

[CS96]

Theory of
Reasoned
Action

The theory depicts that a person’s behaviour is
determined by their intention to perform the
behaviour and that this intention is, in turn, a
function of their attitude toward the behaviour
and subjective norms

[FA75]

Theory of
Planned
Behaviour

The theory links beliefs to behaviour. It has
three core components, i.e. attitude, subjective
norms, and perceived behavioural control. To-
gether, they shape an individual’s behavioural
intentions.

[Ajz85]

Theory of In-
terpersonal
Behaviour

The theory proposes that , a function partly of
the intention, partly of the habitual responses,
and partly of the situational constraints and
conditions.

[Tri77]

Threatened
Egotism
Theory

The theory states that violence is related to a
highly favourable view of the self, combined
with an ego threat.

[BSB96;
BB98]
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Appendix B

Java Code Listing of Agent’s Core
Components

B.1 Agent overview

Listing B.1: Source code of Perception component

1 package framework.agent.core;
2

3 import java.util.LinkedList;
4 import java.util.List;
5 import java.util.ListIterator;
6 import java.util.Map;
7 import java.util.Set;
8 import java.util.logging.Level;
9 import java.util.logging.Logger;

10

11 import framework.concept.AgentInfo;
12 import framework.concept.EnvironmentalState;
13 import framework.concept.Feedback;
14 import framework.concept.InternalState;
15 import framework.concept.Option;
16 import framework.concept.Pair;
17 import framework.concept.Task;
18 import framework.environment.Environment;
19

20 /**
21 * Define all the fields and decision making process of an agent. Here the

agent
22 * perform the step() method which was scheduled by the ContextManager.
23 *
24 * @author khoa_nguyen
25 *
26 *
27 */
28 public abstract class TaskExecutionAgent implements IAgent {
29

30 private static Logger LOGGER = Logger.getLogger(TaskExecutionAgent.class.
getName());

31

32 protected String id;
33

34 // Current agent’s location, which contains environmental information.
35 protected Environment loc;
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36

37 // All the agent’s scheduled tasks to be performed.
38 private List<Task> schedule;
39

40 // Internal components of the agent.
41 protected PerceptionComponent perceptionComponent;
42 protected MemoryComponent memoryComponent;
43 protected DecisionComponent decisionComponent;
44 protected CommunicationComponent communicationComponent;
45

46 public TaskExecutionAgent(String id, Environment loc) {
47 this.id = id;
48 this.loc = loc;
49 this.schedule = new LinkedList<Task>();
50 this.decisionComponent = createDecisionComponent();
51 this.memoryComponent = createMemoryComponent();
52 this.communicationComponent = createCommunicationComponent();
53 this.perceptionComponent = createPerceptionComponent();
54 }
55

56 /**
57 * Implementation of perception component.
58 *
59 */
60 protected abstract PerceptionComponent createPerceptionComponent();
61

62 /**
63 * Implementation of memory component.
64 *
65 */
66 protected abstract MemoryComponent createMemoryComponent();
67

68 /**
69 * Implementation of decision-making component.
70 *
71 */
72 protected abstract DecisionComponent createDecisionComponent();
73

74 /**
75 * Implementation of communication component.
76 *
77 */
78 protected abstract CommunicationComponent createCommunicationComponent();
79

80 @Override
81 public void step() throws Exception {
82 LOGGER.log(Level.FINE, "Agent " + this.id + " is stepping.");
83 // Get the next event from schedule.
84 Task task = schedule.remove(0);
85

86 EnvironmentalState environmentalState = loc.getEnvironmentalState();
87 InternalState internalState = this.memoryComponent.getInternalState();
88

89 List<Option> options = this.perceptionComponent.generateOptions(task,
environmentalState, internalState);

90

91 Map<Option, List<Pair<Double, Double>>> evaluatedOptions = this.
decisionComponent.evaluateOptions(options,

92 task);
93
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94 Option pickedOption = this.communicationComponent.pickOption(
evaluatedOptions, internalState);

95 //if (options.size() >0 && pickedOption == null)
96 // System.out.println(this.id);
97 Feedback feedback = this.loc.getFeedback(task, pickedOption,

memoryComponent.generateAgentInfo());
98

99 this.memoryComponent.updateInternalState(task, pickedOption, feedback);
100 }
101

102 /**
103 * Add a task to agent’s schedule. The schedule is sorted in the order of
104 * executing time of tasks.
105 *
106 * @param task
107 * The task needed to be add to agent’s schedule.
108 */
109 public void addToSchedule(Task task) {
110 ListIterator<Task> scheduleIt = this.schedule.listIterator(0);
111 if (!scheduleIt.hasNext()) {
112 this.schedule.add(task);
113 } else {
114 while (scheduleIt.hasNext()) {
115 Task taskInList = scheduleIt.next();
116 if (taskInList.compareTo(task) > 0) {
117 scheduleIt.previous();
118 break;
119 }
120 }
121 scheduleIt.add(task);
122 }
123

124 }
125

126 /**
127 * Get this agent current location information.
128 *
129 * @param task
130 * The task needed to be add to agent’s schedule.
131 */
132 public Environment getLoc() {
133 return this.loc;
134 }
135

136 public CommunicationComponent getCommunicationChannel() {
137 AgentInfo newAgentInfo = this.memoryComponent.generateAgentInfo();
138 this.communicationComponent.updateAgentInfo(newAgentInfo);
139 return this.communicationComponent;
140 }
141

142 @Override
143 public final boolean isThreadable() {
144 return true;
145 }
146

147 @Override
148 public String getID() {
149 return this.id;
150 }
151

152 @Override
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153 public String toString() {
154 return "Agent " + this.id;
155 }
156

157 @Override
158 public boolean equals(Object obj) {
159 if (obj == null) {
160 return false;
161 }
162 if (!TaskExecutionAgent.class.isAssignableFrom(obj.getClass())) {
163 return false;
164 }
165 final TaskExecutionAgent other = (TaskExecutionAgent) obj;
166 if ((this.id == null) ? (other.id != null) : !this.id.equals(other.id))

{
167 return false;
168 }
169 return true;
170 }
171

172 @Override
173 public int hashCode() {
174 return this.id.hashCode();
175 }
176

177 }
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B.2 Perception

Listing B.2: Source code of Perception component

1 package framework.agent.core;
2

3 import java.util.List;
4

5 import framework.concept.EnvironmentalState;
6 import framework.concept.InternalState;
7 import framework.concept.Option;
8 import framework.concept.Task;
9

10 public interface PerceptionComponent {
11

12 /**
13 * Function to be implemented that takes current environmental (external)

state
14 * and internal state and generate the list of options for the tasks. The
15 * information/properties storing in EnvironmentalState and InternalState

can be
16 * included in the implementation of EnvironmentalState and InternalState
17 * interfaces respectively.
18 *
19 * @param environmentalState Information of current state of the

environment (to
20 * be implemented).
21 * @param internalState Information of the internal state of the

agent,
22 * which is stored in memory (to be implemented

).
23 * @return List of available options to perform the task.
24 *
25 * @see EnvironmentalState
26 * @see InternalState
27 *
28 */
29 List<Option> generateOptions(Task task, EnvironmentalState

environmentalState, InternalState internalState);
30

31 }
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B.3 Memory

Listing B.3: Source code of Memory component

1 package framework.agent.core;
2

3 import framework.concept.AgentInfo;
4 import framework.concept.Feedback;
5 import framework.concept.InternalState;
6 import framework.concept.Option;
7 import framework.concept.Task;
8

9 public interface MemoryComponent {
10 /**
11 * Provide the current internal state of the agent. The information/

properties
12 * storing in InternalState can be included in the implementation of
13 * InternalState Interface.
14 *
15 * @return The current internal state of the agent.
16 */
17 InternalState getInternalState();
18

19 /**
20 * Update the internal state of the agent using information provided from

the
21 * feedback.
22 *
23 * @param task
24 * The task to be performed.
25 * @param option
26 * The option chosen by the agent.
27 * @param feedback
28 * The information/properties needed to update the internal

state.
29 * included in the implementation of Feedback Interface.
30 */
31 void updateInternalState(Task task, Option option, Feedback feedback);
32

33 AgentInfo generateAgentInfo();
34

35 }
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B.4 Decision-making

Listing B.4: Source code of Decision component

1 package framework.agent.core;
2

3 import java.util.List;
4 import java.util.Map;
5 import framework.concept.Option;
6 import framework.concept.Pair;
7 import framework.concept.Task;
8

9 public interface DecisionComponent {
10

11 /**
12 * Evaluate all options in the provided set.
13 *
14 * @param options
15 * The options provided for evaluation.
16 * @param task
17 * The task to be performed.
18 * @return @return The map for values to all the options scored that

value.
19 */
20 Map<Option, List<Pair<Double, Double>>> evaluateOptions(List<Option>

options, Task task);
21

22

23 }
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Listing B.5: Source code of Decision component

1 package framework.agent.reasoning;
2

3 import java.util.List;
4 import java.util.Map;
5

6 import framework.concept.Option;
7 import framework.concept.OutcomeProps;
8 import framework.concept.Task;
9

10 /**
11 * A class represent a standard determinant (psychology) in decision making

.
12 * User needs to define how agent would evaluate a set of option based on

its
13 * internal state and the task at hand.
14 *
15 * @author khoa_nguyen
16 *
17 */
18 public abstract class Determinant {
19

20 private String id;
21 private double weight;
22

23 public Determinant(String id, double weight) {
24 this.id = id;
25 this.weight = weight;
26 }
27

28 protected abstract Map<Option, Double> evalOptions(List<Option> options,
List<OutcomeProps> outcomePropsList, Task task);

29

30 public String getID() {
31 return this.id;
32 }
33

34 public double getWeight() {
35 return this.weight;
36 }
37

38 @Override
39 public String toString() {
40 return this.getID() + ", weight: " + this.weight;
41

42 }
43 }
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Listing B.6: Source code of Decision component

1 package framework.agent.reasoning;
2

3 import java.util.HashMap;
4 import java.util.List;
5 import java.util.Map;
6

7 import framework.concept.Option;
8 import framework.concept.OutcomeProps;
9 import framework.concept.Task;

10

11 /**
12 * The base node in decision making model. In which user has to define how

agent
13 * values an option based on its internal state and the task at hand.
14 *
15 * @author khoa_nguyen
16 * @see IAgent
17 *
18 */
19 public abstract class LeafDeterminant extends Determinant {
20

21 public LeafDeterminant(String id, double weight) {
22 super(id, weight);
23 }
24

25 @Override
26 public Map<Option,Double> evalOptions(List<Option> options, List<

OutcomeProps> outcomePropsList, Task task) {
27 Map<Option,Double> results = new HashMap<Option,Double>();
28 for (int i = 0; i < options.size(); i++) {
29 results.put(options.get(i), evalOpt(options.get(i), outcomePropsList.

get(i), task));
30 }
31 return results;
32 }
33

34 protected abstract double evalOpt(Option opt, OutcomeProps outcomeProps,
Task task);

35

36 }



184 Appendix B. Java Code Listing of Agent’s Core Components

Listing B.7: Source code of Decision component

1 package framework.agent.reasoning;
2

3 import java.util.ArrayList;
4 import java.util.HashMap;
5 import java.util.List;
6 import java.util.Map;
7

8 import framework.concept.Option;
9 import framework.concept.OutcomeProps;

10 import framework.concept.Task;
11

12 /**
13 * A class represent a parent determinant in decision making model. Its

ranking
14 * function depends on
15 *
16 * @author khoa_nguyen
17 * @see IAgent
18 */
19 public class ParentDeterminant extends Determinant {
20

21 private List<Determinant> children;
22

23 public ParentDeterminant(String id, double weight) {
24 super(id, weight);
25 this.children = new ArrayList<Determinant>();
26 }
27

28 public void addChildDeterminant(Determinant determinant) {
29 this.children.add(determinant);
30 }
31

32 @Override
33 public Map<Option, Double> evalOptions(List<Option> inputOptions, List<

OutcomeProps> outcomePropsList, Task task) {
34 Map<Option, Double> results = new HashMap<Option, Double>();
35 for (Determinant child : this.children) {
36 if (child == null) {
37 for (Option opt : inputOptions) {
38 if (!results.containsKey(opt)) {
39 results.put(opt, 0.0);
40 }
41 }
42 } else {
43 double sumValue = 0;
44 Map<Option, Double> childEvaluation = child.evalOptions(

inputOptions, outcomePropsList, task);
45 for (Option opt : childEvaluation.keySet()) {
46 sumValue += childEvaluation.get(opt);
47 }
48 if (sumValue == 0) {
49 sumValue = 1;
50 }
51 for (Option opt : inputOptions) {
52 double childValue = childEvaluation.get(opt) * child.getWeight()

/ sumValue;
53 if (results.containsKey(opt)) {
54 results.put(opt, results.get(opt) + childValue);
55 } else {
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56 results.put(opt, childValue);
57 }
58 }
59 }
60 }
61 return results;
62 }
63

64 }
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B.5 Communication

Listing B.8: Source code of Communication component

1 package framework.agent.core;
2

3 import java.util.List;
4 import java.util.Map;
5

6 import framework.concept.AgentInfo;
7 import framework.concept.InternalState;
8 import framework.concept.Option;
9 import framework.concept.Pair;

10

11 public abstract class CommunicationComponent {
12

13 private AgentInfo agentInfo;
14

15 /**
16 * Pick an option based on list evaluated outcomes and probability.
17 *
18 * @param evaluatedOptions
19 * A map between options and their list of utility values and
20 * probabilities.
21 * @param internalState
22 * Internal state of the agent. Used to provide past feedback

from
23 * the same option.
24 * @return The selected option.
25 */
26 protected abstract Option pickOption(Map<Option, List<Pair<Double, Double

>>> evaluatedOptions, InternalState internalState);
27

28 protected void updateAgentInfo(AgentInfo newAgentInfo) {
29 this.agentInfo = newAgentInfo;
30 }
31

32 public AgentInfo getAgentInfo() {
33 return this.agentInfo;
34 }
35

36 }
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Appendix C

Calibration Results for Case Studies

C.1 Case study: Mobility demand

Type conf a CMb BTTb WBb Ob errb

Census 72.7 27.5 8.6 3.7 n/a

Determi- RCM = (1)CM, (2)BTT, (3)WB, (4)O 73.1 26.7 3.3 4.4 7.3
nistic RBTT = (3)CM, (1)BTT, (4)WB, (2)O

RWB = (4)CM, (2)BTT, (1)WB, (3)O
RO = (2)CM, (4)BTT, (3)WB, (1)O

Stochas- RCM = (1)CM, (2)BTT, (4)WB, (3)O 46.7 6.0 5.0 4.6 51.9
tic RBTT = (3)CM, (1)BTT, (4)WB, (2)O

RWB = (4)CM, (3)BTT, (1)WB, (2)O
RO = (4)CM, (2)BTT, (3)WB, (1)O

TABLE C.1: Best configuration for the mobility demand case study
a Abbreviation - CM: Car/ Motobike, BTT: Bus/Tram/Train, WB: Walking/Biking,
O:Others.
b All units are in 109 kilometres.



188 Appendix C. Calibration Results for Case Studies

C.2 Case study: Car purchasing

Determinant Diesel
sale

Gaso-
line
sale

EV /
Hybrid
sale

Total
differ-
ence

Cali-
bration
order

Baseline 460’145 408’345 307’245
Filter - Engine Type 120’215 104’330 1’506’870 1’843’570 1
Filter - Energy label 155’995 234’410 872’395 1’043’235 12
Filter - Brands 141’470 134’620 955’345 1’240’500 10
Filter - Recommen-
dation

237’775 544’810 432’660 484’250 17

Percepted weight -
Energy Label

148’995 150’350 1’126’710 1’388’610 6

Percepted weight -
Price

94’600 645’435 934’865 1’230’255 9

Percepted weight -
Brands

200’705 151’400 1’103’545 1’312’685 8

Percepted weight -
Recommendation

102’880 119’880 1’290’430 1’628’915 3

Percepted weight -
New models

1’52’970 97’545 1’163’175 1’473’905 5

wCharging 352’705 417’975 772’900 582’725 16
wPrice 88’700 131’150 1’360’515 1’701’910 2
wEnergylabel 251’750 448’675 520’035 461’515 18
wRecommendation 523’585 563’485 356’455 267’790 19
wSocialstatus 608’215 354’465 951’920 846’625 13
wBrands 375’190 220’980 1’203’075 1’168’150 11
wEmotion 224’455 471’030 815’835 806’965 15
wHabit 117’040 156’750 1’086’510 1’373’965 7
wAttitude 172’535 111’580 1’295’550 1’572’680 4
wSocial f actors 570’685 332’870 960’430 839’200 14

TABLE C.2: Sensitivity test for car purchasing case study
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Determinant Profile 1 Profile 2 Profile 3 Profile 4

Filter - Engine Type Electric Gasoline Diesel Hydrogen
Filter - Energy label A D C B
Filter - Brands 7 5 1 4
Filter - Recommen-
dation

0.7 0.5 0.5 0.5

Percepted weight -
Energy Label

0.75 0.5 0.5 0.75

Percepted weight -
Price

0.25 0.75 0.75 0.5

Percepted weight -
Brands

0.5 0.75 0.75 1

Percepted weight -
Recommendation

0.25 0.75 0.75 0.5

Percepted weight -
New models

0.25 0.5 0.5 0.5

wCharging 1 0 0 0
wPrice 0.5 0.75 0.75 0.5
wEnergylabel 1 0.5 0.5 0.25
wRecommendation 0.25 0.5 0.75 0.5
wSocialstatus 1 0.5 0.5 0.75
wBrands 0.75 0.5 0.5 0.25
wEmotion 0.75 0.5 0.25 0.5
wHabit 0.25 0.25 0.25 0.75
wAttitude 0.75 0.75 0.75 0.5
wSocial f actors 0.75 0.5 0.5 0.5

TABLE C.3: Best configuration for the vehicle purchasing case study
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C.3 Case study: Covid-19

Profile wsocial wa f f ect whabit wcondition

1 1 0.5 0.25 0.25
2 1 0.5 0.5 0.5
3 0.1 1 0.5 0.25
4 0.1 0.5 0.25 0.5
5 1 0.5 0.25 0.25
6 0.5 0.5 0.25 0.5
7 1 0.5 0.25 0.25
8 0.5 0.5 0.5 0.5
9 0.1 0.5 0.25 0.5
10 1 0.5 1 0.25
11 0.5 0.25 0.25 0.75
12 1 1 0.25 0.25

TABLE C.4: Best configuration for the COVID-19 case study
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