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Manon Réau1†, Nicolas Renaud2†, Li C. Xue3 and Alexandre M. J. J. Bonvin 1*

1Computational Structural Biology Group, Department of Chemistry, Bijvoet Centre, Faculty of Science, Utrecht University, Utrecht

3584CH, The Netherlands, 2Netherlands eScience Center, Amsterdam 1098 XG, The Netherlands and 3Center for Molecular and

Biomolecular Informatics, Radboudumc, Nijmegen 6525 GA, The Netherlands

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

Associate Editor: Lenore Cowen

Received on November 25, 2021; revised on October 19, 2022; editorial decision on November 21, 2022; accepted on November 23, 2022

Abstract

Motivation: Gaining structural insights into the protein–protein interactome is essential to understand biological
phenomena and extract knowledge for rational drug design or protein engineering. We have previously developed
DeepRank, a deep-learning framework to facilitate pattern learning from protein–protein interfaces using convolu-
tional neural network (CNN) approaches. However, CNN is not rotation invariant and data augmentation is required
to desensitize the network to the input data orientation which dramatically impairs the computation performance.
Representing protein–protein complexes as atomic- or residue-scale rotation invariant graphs instead enables using
graph neural networks (GNN) approaches, bypassing those limitations.

Results: We have developed DeepRank-GNN, a framework that converts protein–protein interfaces from PDB 3D
coordinates files into graphs that are further provided to a pre-defined or user-defined GNN architecture to learn
problem-specific interaction patterns. DeepRank-GNN is designed to be highly modularizable, easily customized
and is wrapped into a user-friendly python3 package. Here, we showcase DeepRank-GNN’s performance on two
applications using a dedicated graph interaction neural network: (i) the scoring of docking poses and (ii) the discrimi-
nating of biological and crystal interfaces. In addition to the highly competitive performance obtained in those tasks
as compared to state-of-the-art methods, we show a significant improvement in speed and storage requirement
using DeepRank-GNN as compared to DeepRank.

Availability and implementation: DeepRank-GNN is freely available from https://github.com/DeepRank/DeepRank-
GNN.

Contact: a.m.j.j.bonvin@uu.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Protein–protein interactions (PPIs) are essential in all cellular proc-
esses of living organisms including cell growth, structure, communi-
cation, protection and death. Adding the structural dimension to PPI
is fundamental to understand normal and altered physiological proc-
esses and to propose solutions to restore them. In the past decades, a
large number of isolated protein and PPI structures have been solved
by experimental approaches (e.g. X-ray crystallography, nuclear
magnetic resonance and cryogenic electron microscopy). The diver-
sity and quantity of structural data recently enabled treating PPI
data with machine learning approaches that were previously
devoted to small molecule toxicity (Mayr et al., 2016), affinity
(Jiménez et al., 2018; Karlov et al., 2020; Ragoza et al., 2017; Son

and Kim, 2021) and binding mode (Francoeur et al., 2020; Morrone
et al., 2020; Torng and Altman, 2019) prediction.

Given the remarkable success of convolutional neural network
(CNN) in retrieving patterns in images (Krizhevsky et al., 2017),
CNN approaches have been developed to learn interaction patterns
in PPI interfaces (Renaud et al., 2021; Wang et al., 2020) or to assess
the quality of protein structures (Baldassarre et al., 2021; Pagès
et al., 2019). The uniqueness of each approach originates from the
designed network architecture and importantly, the data representa-
tion and resolution. An example is MASIF (Gainza et al., 2020) that
makes use of a high-level representation of proteins, focusing on
their surface described as an ensemble of overlapping patches. The
patches are fed into different CNNs in order to build relevant finger-
prints that can be further used for ultra-fast interaction prediction
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tasks based on the complementarity or the similarity of the finger-
prints. DOVE (Wang et al., 2020) evaluates protein–protein docking
models using a 3D-CNN approach on a higher resolution—atomic-
level—representation of the interface mapped into a 3D grid.
Although no exhaustive benchmark exists with state-of-the-art
approaches, both tools display high performance on the benchmark
set used for their evaluation and hold the promise to improve over
time with the availability of new data and the improvement of data
storage and computation power. As the recent major advances made
by Alphafold2 in predicting protein structures (Jumper et al., 2021)
and protein multimeric states are likely to lead to an exponential
generation of multimers over years, including true and false part-
ners, the availability of reliable quality assessment tools should be-
come a strong ally to reach the ambitious objective of modeling of
the entire interactome.

We have recently developed DeepRank (https://github.com/
DeepRank/deeprank), an open-source configurable deep-learning
framework wrapped into a user-friendly python3 package (Renaud
et al., 2020, 2021). DeepRank maps atomic and residue-level fea-
tures from PPI interfaces to 3D grids and applies a customizable 3D
CNN pipeline to learn problem-specific interaction patterns.
DeepRank was applied to two problems where it competed with- or
outperformed state-of-the-art methods, including a machine
learning-based model, iScore (Geng et al., 2020) that makes use of a
graph representation and the classical energy-based scoring function
implemented in HADDOCK (van Zundert et al., 2016).

CNNs however come with limitations: first, they are sensitive to
the input PPI interface orientation which may require data augmen-
tation (i.e. multiple rotations of the input data) for the network to
provide consistent predictions regardless of the orientation of the
PPI; second, the size of the 3D grid is pre-defined for all input data
in DeepRank 0.2.0, which does not reflect the variety in interface
sizes observed in experimental structures and may be problematic
for large interfaces that do not fit inside the pre-defined grid size.

A solution to this problem is to use a graph representation of PPI
interface. A graph is defined as an ensemble of nodes (e.g. atoms
and residues) and edges (e.g. covalent bond and contacts), and is
often represented with a feature matrix containing attributes
assigned to each node of the graph, and an adjacency matrix—or
edge matrix—describing the connectivity between the nodes. A
graph neural network (GNN) iteratively updates a node’s features
integrating the node’s neighborhood information (an operation
called message passing). GNNs can be trained to learn the optimal
updated node features to predict the properties of a single protein or
a complex of proteins (Cao and Shen, 2020; Igashov et al., 2021;
Wang et al., 2021). Contrary to CNNs, the convolution operations
on graphs can be independent from Cartesian coordinates and only
rely on the relative local connectivity between nodes, therefore mak-
ing graphs rotational invariant. GNNs are also invariant with re-
spect to the ordering of nodes in the feature and adjacency matrices,
and the network can accept any size of graph, therefore more natur-
ally representing the diversity of PPIs. Based on these arguments, dif-
ferent GNN-based tools have been designed for PPI site prediction
(Fout et al., 2017; Mahbub and Bayzid, 2022) and to assess the
quality of protein–protein complexes (Wang et al., 2021). An ex-
ample of the latter is the GNN version of DOVE (DOVE-GNN)
that demonstrated significant improvement in the docking models
classification task over the CNN version (Wang et al., 2021).

Building up on our previous framework DeepRank (CNN
based), we present here DeepRank-GNN (Réau and Renaud, 2021),
a versatile software that takes advantage of the intrinsic properties
of graph representation and graph convolutions. DeepRank-GNN
converts PPI interfaces from 3D coordinates PDB files into graphs
and enables the application of pre-defined or user-defined GNN
architectures to train a network to make predictions related to the
properties of PPI interfaces, such as the quality of a docking model
or the likelihood that a given interface is biologically relevant.
DeepRank-GNN can automatically compute docking-specific target
values when reference PDB files are provided or assign user-
provided target values to the graphs. We describe the main function-
alities of DeepRank-GNN and showcase its application to the

scoring of docking models and the discrimination of biological and
crystal interfaces. Detailed documentation is available online at
https://deeprank-gnn.readthedocs.io/.

2 Materials and methods

2.1 DeepRank-GNN overview
DeepRank-GNN is a python3 package that offers a complete frame-
work to learn PPI interface patterns in an end-to-end fashion using
GNN. The overall design of DeepRank-GNN was inherited from our
previous package DeepRank that focuses on the scoring PPI using
3dcnn neural networks and consists of two mains parts (Fig. 1) (i) the
conversion of 3D PPI interfaces into interaction graphs with node and
edge features using the networkx (Hagberg et al., 2008) and pdb2sql
(Renaud and Geng, 2021b) packages and (ii) the training and the
evaluation of a graph neural network model using PyTorch geometric
(Paszke et al., 2017). An overview of the software architecture is pro-
vided in Supplementary Figure S1. We briefly present both parts below
and refer the reader to the online documentation for further informa-
tion (https://deeprank-gnn.readthedocs.io/).

2.1.1 Graph generation

DeepRank-GNN converts PPI interfaces into residue-level graphs
(Fig. 1A). It takes PDB 3D coordinate files as an input and defines
the interface between two chains using pdb2sql (Renaud and Geng,
2021b), our PDB file parser using a structured query language
(SQL). By default, the interface is defined by all the residues
involved in intermolecular contacts, i.e. the residues of a given chain
having a heavy atom within an 8.5 Å distance cutoff of any heavy
atom from another chain. These contact residues form the nodes of
the graph. Interface edges are defined between two contact residues
from distinct chains presenting a minimal atomic distance smaller
than 8.5 Å. In addition, internal edges are defined between two con-
tact residues of the same chain provided they have heavy atoms
within 3 Å from each other. These default distance cut-offs can be
tailored by the user. The types of edges can be later considered to
perform different convolution operations on the graph.

The graphs are stored in HDF5 format that is suited for large
dataset storage and allows efficient memory usage and fast input/
output operations during the network training.

2.1.2 Featurization

By default, DeepRank-GNN computes and assigns an ensemble of
residue-level features to each node. Those are summarized in Table 1.
The feature computation can rapidly become a limiting step if the com-
putation speed is not optimized. In DeepRank-GNN, the assignment of
residue type, charge, polarity and buried surface area features are con-
siderably faster than the computation of the residue depth, i.e. the aver-
age distance of the atoms of a residue from the solvent accessible
surface, and the half sphere exposure. Provided that the information
brought by the two latter could implicitly be deduced from the buried
surface area feature and the node environment, they are not calculated
by default for the sake of time efficiency. Pre-computed position-specif-
ic scoring matrices (PSSM) are required for the assignment of PSSM-
related features. We advise querying a dataset of pre-computed PSSM
matrices such as the 3DCONS (http://3dcons.cnb.csic.es/), the
Conserved Domains Database (Lu et al., 2020) or using our in-house
PSSM generation tool PSSMGen (Renaud and Geng, 2021a).

To encode the relative positions of the nodes in the graph, and
therefore the overall structure of the interface, we assign a distance
feature to the internal and external edges. This distance feature is
based on the smallest atomic distance between two residues (nodes)
that is transformed into an interaction strength by equation 1.

eij ¼ tan h �x

2
þ 2

� �
þ 1#; (1)

where x is the smallest distance between two residues (Å).
The interaction strength ranges from 0 for long distances to 1.96

for null distances and provides a normalized feature of the internode
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distance. While other normalization functions could be used, we be-
lieve that the careful exploration regarding the influence of the nor-
malization function on the performance of the training process is
out of the scope of this manuscript.

2.1.3 Target assignment

Many different metrics have been developed to quantify the rele-
vance of PPI interfaces and can be used as target values during the
network training and evaluation phases. In a docking scenario
where the goal is to identify near-native models, the user can provide
a reference structure, i.e. the experimentally solved bound conform-
ation of the complex, for DeepRank-GNN to automatically com-
pute target values in the pre-processing stage based on CAPRI

quality criteria (Lensink et al., 2007) (Supplementary Table S1). For
other applications and/or use cases, a reference structure is not
required and users may input their own problem-specific target val-
ues or develop new metric calculations and integrate these metrics in
the computational workflow.

2.1.4 Model training/evaluation/test

All the prerequisites to train and to evaluate a GNN model are
detailed in our online documentation. The user can run DeepRank-
GNN in a regression or classification mode. The loss function is
automatically set to mean square error (MSE) for regression tasks or
to cross-entropy for classification tasks. Weights can be assigned to
classes to balance the cross-entropy loss calculation in case of an

Fig. 1. Overview of the DeepRank-GNN framework. (A) DeepRank-GNN identifies interface residues and converts them into an interface graph. Internal edges are defined be-

tween residues from the same chain having heavy atoms within a 3 Å distance cutoff from each other, while external edges are defined between residues from different chains

having heavy atoms within the 8.5 Å cutoff. (B) Example of GNN architecture (GINet). The graph representation of a PPI is split into two sub-graphs, i.e. the internal graph

connecting atoms from the same protein and the external graph connecting atoms from distinct proteins. The two sub-graphs are sequentially passed to two consecutive convo-

lution/activation/pooling layers. The two final graph representations are flattened using the mean value of each feature and merged before applying two fully connected layers.

GCL, graph convolution layer; FCC, fully connected layer

Table 1. Features computed in DeepRank-GNN

Name of features Full name Description Default Number of parameters Type

Type Residue type One-hot encoded Default 20 Node feature

Charge Residue charge Default 1 Node feature

Polarity Residue polarity One-hot encoded Default 4 Node feature

BSA Buried surface area FreeSASA Default 1 Node feature

PSSM Position-specific scoring matrix Optional 20 Node feature

Cons Conservation score—from PSSM Optional 1 Node feature

ic Information content—from PSSM Optional 1 Node feature

Depth Residue depth MSMS—Biopython Optional 1 Node feature

hse Residue half sphere exposure Biopython Optional 1 Node feature

Distance Normalized distance Default 1 Edge feature

DeepRank-GNN 3
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imbalanced dataset. We also propose an automated weight compu-
tation that assigns weights inversely proportional to each class rep-
resentation in the training set for classification tasks on imbalanced
datasets (see Supplementary Information).

2.1.5 Network

DeepRank-GNN provides a flexible structure allowing users to de-
fine their own network architectures or use pre-defined ones (see the
online documentation).

2.1.6 Quality metrics

DeepRank-GNN provides tools to swiftly compute the quality met-
rics summarized in our online documentation (https://deeprank-gnn.
readthedocs.io/en/latest/tutorial.train_model.html#analysis). Upon
the definition of a threshold value to binarize the data, all classifica-
tion metrics can be applied to continuous targets and prediction
values.

2.2 Application 1—the scoring of docking models
We evaluated DeepRank-GNN’s performance as a docking model
scoring tool. We designed a GNN architecture that was trained and
evaluated on the Docking Benchmark version 5 (BM5) dataset and
further tested on an external set, the CAPRI scoreset.

2.2.1 BM5 benchmark

The BM5 dataset has been designed for docking purposes and
encompasses a non-redundant set of 231 complexes for which the
individual structure of interacting proteins is available in a bound
and an unbound conformation (Vreven et al., 2015). We discarded
the 56 antibody–antigen complexes plus the complexes involving
more than two chains and worked on the remaining 142 dimers. As
described in Renaud et al. (2021), we generated 25 300 models per
complex using our integrative modeling software HADDOCK (see
Supplementary Information). The overall dataset comprises
3 592 600 models and is available from the SBGrid data repository
https://data.sbgrid.org/dataset/843/.

We performed 10-fold cross-validation in which the training and
the evaluation sets change over the folds while the test set remains
constant. The test set consists of all docking models generated for 15
randomly selected complexes (379 500 models, 10% of the dataset,
see Supplementary Table S2). Each fold consists of 10% of the dock-
ing models per remaining complex without any models overlap be-
tween folds. Their composition preserves the distribution of CAPRI
iRMSD classes (Lensink et al., 2007) (reporting on the quality of the
models) per complex. This was achieved using sklearn
StratifiedKFold tool. The 127 complexes not included in the test set
are then split into a training (80%, i.e. 102 complexes, 258 060
models) and an evaluation set (20%, i.e. 25 complexes, 63 250 mod-
els per fold). The detailed content of each fold’s training and evalu-
ation set is provided in our GitHub repository. A number of
complexes displaying important clashes could not be converted into
graphs.

2.2.2 CAPRI benchmark

The CAPRI score set (Lensink and Wodak, 2014) was used as an ex-
ternal test set. It consists of 13 protein dimers for a total of 16 666
models generated by over 40 different research teams using a variety
of software. It is acknowledged as the most diverse set of docking
models with targets of different complexity.

The HADDOCK (van Zundert et al., 2016), iScore (Geng et al.,
2020), DOVE (Wang et al., 2020) and DeepRank scores were com-
puted on the CAPRI score set as described in Renaud et al., 2021.
Deeprank and DOVE are two CNN-based scoring approaches,
iScore is graph-kernel based, and HADDOCK uses a classic scoring
function that consists of a linear combination of energy terms (see
Supplementary Information). These scores for the BM5 and CAPRI
score sets were obtained from the DeepRank paper (Renaud et al.,
2021) and can be downloaded from: https://data.sbgrid.org/dataset/
843/.

2.2.3 Graph generation and target value computation

PPI interfaces were converted into graphs using the default
DeepRank-GNN parameters, default nodes features (residue type,
polarity, charge and BSA) and edge feature (distance) and additional

PSSM information (PSSM profile, PSSM information content and
PSSM conservation score). The PSSM information of each individ-

ual protein was downloaded from 3D CONS, by querying the un-
bound PDB structure of each complex’s partners. 3D CONS PSSM
matrices are computed using the iterative BLAST algorithm

(PSIBLAST) on each chain of a PDB file. By providing a reference
structure of the complex, i.e. an experimentally solved bound con-

formation, DeepRank-GNN automatically computes the fraction of
native contacts (fnat) that we used as the target value). As compared
to the interface RMSD (iRMSD) or ligand RMSD (lRMSD) values,

the fnat value is capped between 0 and 1, thus giving the same weight
to all bad quality models. For instance, two models very distant

from the reference structure will be assigned a 0 fnat value while they
can be assigned very distinct iRMSD values (Supplementary Fig.
S2), which can uselessly influence the network parameters optimiza-

tion. In addition, the fnat is less sensitive to the local motion at the
interface of two proteins than the RMSD and is therefore more
adapted to evaluate the quality of an interface.

2.2.4 Network

We introduce here a GNN architecture, dubbed graph interaction
network (GINet), whose general structure is represented in

Figure 1B and detailed in Supplementary Information. As seen in
this figure GINets are composed of a succession of graph convolu-
tion layers (GCL), non-linear activation (here ReLU) and pooling

layers. Two distinct GCLs are applied at each convolution step. One
GCL is applied on interface graphs, i.e. graphs with edges connect-
ing nodes from distinct proteins, and a distinct GCL is used on in-

ternal graphs, i.e. graphs with edges connecting nodes from the
same protein. The rationale behind this architecture is to extract in-

formation not only on the interaction itself but also on the propen-
sity of each individual interface to establish an interaction.

2.2.5 Training

The network was trained over 20 epochs on batches of 128 shuffled

graphs. We used the mean square error loss (MSE loss) function
using the fnat values as the ground truth and the Adam algorithm
(Kingma and Ba, 2017) with a learning rate of 0.001 to minimize

the loss. A complete epoch (23 500 3D models) required 2.4 6 0.9 h
on 1 GPU (GeForce GTX 1080 Ti).

2.2.6 Metrics computation

The area under the ROC curve (AUC), the hit rate and the success
rate are computed to evaluate the performance of the scoring func-
tions. To meet the requirement of these metrics that evaluate the dis-

criminating ability of a binary classifier, we binarized the fnat data
using a 0.3 threshold: docking models with a fnat � 0:3 are consid-
ered to be of acceptable quality, while those with a fnat < 0.3 are

considered non-acceptable. This threshold differs from the CAPRI
standard fnat ‘acceptable’ quality threshold of 0.1 that is combined

with additional iRMSD and lRMSD criteria (Lensink et al., 2007).
Herein, since no RMSD values are considered, we raised the accept-
ance threshold to the equivalent of the CAPRI standard fnat ‘me-

dium’ quality threshold of 0.3 to avoid misclassifying poor quality
models (Supplementary Fig. S1).

The ROC curve is defined as the fraction of true positive rate
(TPR) as a function of the fraction false positive rate while navigat-

ing through the ranking provided by the scoring function. The AUC
is the integral of the ROC curve and is equal to 1 for an ideal classi-
fier and 0.5 for a random classifier. The hitrate is defined as the per-

centage of hits retrieved within the top N ranks. The success rate is
the number of complexes for which at least one acceptable quality
model is retrieved within the top N.

4 M.Réau et al.
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2.3 Application 2
2.3.1 MANY/DC benchmark

The MANY (Baskaran et al., 2014) and the DC (Duarte et al.,
2012) datasets contain biological and crystal dimers, in balanced
proportions (�50%/50%), the latter being the consequence of crys-
tal packing. The crystal dimers are indistinguishable from the bio-
logic ones without a consistent knowledge of the complex. While
the surface of biological interfaces is often larger than those of
reported crystal dimers in different datasets, the DC dataset has
been tuned to include biological and crystal dimers of comparable
interface area. Herein, we used 80% of the MANY dataset (4591
dimers) to train our model and 20% (1148 dimers) to evaluate it.
The retained model, i.e. the one displaying the minimum loss on the
training set, was further tested on the DC dataset (161 dimers). All
datasets are available from the SBGrid data repository https://data.
sbgrid.org/dataset/843/.

2.3.2 Graph generation and network architecture

The PPI interfaces were converted into residue graphs and each node
was assigned PSSM information only (i.e. 20 features per node). The
PSSM matrices from the DeepRank paper (Renaud et al., 2021)
were used. The exact same network architecture as described in
Application 1 was used.

2.3.3 Training

The network was trained over 50 epochs on batches of 128 shuffled
graphs. We used the cross-entropy loss function using the biological
(1)/crystal (0) annotations as the ground truth and the Adam algo-
rithm (Kingma and Ba, 2017) with a learning rate of 0.001 to min-
imize the loss. A complete epoch (5739 3D models) required 1 min
on 1 GPU (GeForce GTX 1080 Ti).

2.3.4 Metrics computation

For this binary classification problem, we computed the accuracy,
the specificity, the sensitivity and the precision to evaluate the per-
formance of the DeepRank-GNN model.

3 Results

3.1 Application 1—the scoring of docking models
Docking is an in silico modeling approach commonly used to predict
the 3D structure of biomolecular complexes. Docking involves two
steps: The sampling, i.e. the exploration of the conformational inter-
action space to generate 3D models, and the scoring that aims to
identify near-native models out of the pool of generated docking
models. As illustrated by the Critical Assessment of PRedicted
Interactions (CAPRI) initiative that frequently proposes blind pre-
dictions of experimentally determined 3D structures of protein com-
plexes, there is still room for scoring functions improvement
(Lensink et al., 2016, 2021). Most scoring functions can be classified
into physical energy-based, statistical potential-based and machine
learning-based functions. They are constantly explored for improve-
ment to either propose system-specific or broad-spectra scoring
tools, which in some cases are also used to predict changes in bind-
ing affinities (Geng et al., 2019).

Here, we demonstrate the use of DeepRank-GNN to score dock-
ing models of various complexes generated with a variety of docking
software.

3.1.1 Performance of 10-fold cross-validation on the BM5

Ten-fold cross-validation was performed to analyze the performance
and robustness of DeepRank-GNN on the task of scoring docking
models. For each fold, we trained our model on the BM5 data set
using 258 060 docking structures from 102 distinct complexes (see
Section 2). The trained GINet models were validated on 63 250
docking structures from 25 complexes (see Supplementary Fig. S3).
For each fold, we retained the generated model that minimizes the
most the loss value on the evaluation set and evaluated its

performance on the BM5 test set that consists of 375 700 docking
structures from 15 complexes (described in Supplementary Table
S1). As shown in Fig. 2, when defining positive docking models as
those associated to a fnat � 0.3 and averaging the TPR over the num-
ber of BM5 test complexes, most GINet models globally perform
equally or better than the HADDOCK scoring function for 8 out of
10 DeepRank-GNN models, yielding an AUC � 0.95 on the test set.
We however notice a variation in the performance depending on the
data subset used for the training and the evaluation of the models,
which is particularly clear when we consider not only the complex-
averaged TPR but also the standard deviation (Supplementary Table
S3 and Supplementary Fig. S5) and the hit rates obtained on individ-
ual complexes (Supplementary Fig. S6), highlighting the dataset
dependency of DeepRank-GNN performance. Among all
DeepRank-GNN models, the highest performance is reached with
the one generated in the fold6 (AUC¼0.97 6 0.03). When training
on all data (i.e. data from all folds), an AUC of 0.94 6 0.06 is
obtained. This last model was used to further assess the performan-
ces of DeepRank-GNN. To ease the comparison with other soft-
ware, we provide a similar analysis using the standard CAPRI
acceptable threshold instead of the fnat in Supplementary Figure S4.

3.1.2 Rank correlation

Since rank correlation is a good indicator of the predictiveness of a
score, we computed the Spearman q correlation between the fnat and
the DeepRank-GNN scores obtained with the GINet model trained
on the full dataset on the entire test set. We observe an average
Spearman q correlation of 0.49 6 0.14, the highest correlation being
obtained for 1PPE (q ¼ 0.63), the lowest for 2OZA (q ¼ 0:14)
(Supplementary Fig. S7). Interestingly, 1PPE constitutes an easy case
with 11.5% of good docking models (fnat � 0:3) generated, while
2OZA constitutes a more difficult case with 4.7%. Overall, we ob-
serve a good ability to identify near-native models in the top-ranked
model with impressive success rates of 66.7% (7, 12 and 14 over 15
test complexes) at top1, top5 and top10 and 73.3% at top50.

The performance considerably increases when considering only
the HADDOCK refined models (i.e. it1 and itw models as defined
in Supplementary Information) of the test set with an average
Spearman correlation of 0.69 6 0.23, the highest correlation being
obtained for 1PPE (q ¼ 0.89), the lowest for 1F6M (q ¼ 0:02)
(Supplementary Fig. S8). Here again, 1F6M constitutes a difficult
case with 102 good models in the entire pool of docking models,
100 of them consisting in refined structure of the bound complex

Fig. 2. Comparison of DeepRank-GNN with HADDOCK scoring function on the

BM5 set. Average ROC curves obtained with the models retained for each

DeepRank-GNN fold, for the model trained on the full training set and

HADDOCK score. A true positive case corresponds to a complex with fnat > 0.3

correctly predicted. The number of true positive rate values is averaged over the

number of complexes in the test dataset. The dashed line represents a random

classifier
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and representing very low diversity in the binding mode. The suc-
cess rate is similar to the one on the entire set with 66.7% (10 over
15 test complexes) at top1, top5 and top10 and 93.3 at top50. In
both scenarios, success rates of 46.7, 66.7 and 80% (7, 10 and 12
over 15) are obtained with HADDOCK scores for the top1, top5
and top10, respectively (Table 2). For convenience, a similar ana-
lysis using the classic CAPRI labels is provided in Supplementary
Figure S9.

3.1.3 Comparison to external software on the CAPRI score test set

We evaluated the performance of DeepRank-GNN, DeepRank,
DOVE, HADDOCK and iScore on the CAPRI score set. DeepRank
and DOVE are two CNN-based scoring approaches, iScore is graph-
kernel based, and HADDOCK uses a classic scoring function that
consists of a linear combination of energy terms. The CAPRI score
set consists of 13 complexes for which 497 to 1987 models have
been generated by different groups using a wide diversity of docking
tools and protocols (Lensink and Wodak, 2014). When considering
the AUC DeepRank-GNN stands on top together with iScore with
an average AUC of 0.71 and 0.64, respectively (Table 3). However,
in terms of early enrichments (success rate of top N models for
N�5), iScore scores best followed by HADDOCK and
GNN-DOVE (Table 3). Note that among these three tools, iScore
and GNN-DOVE are using graph representations.

3.1.4 Computational performance

The graph representation of the interface not only provides a natural
way of representing PPI interfaces, but it also considerably improves
the computation performance in terms of storage, data generation
and learning speed as compared to the use of grids and CNN. To
quantify it, we compared the graph generation step of DeepRank-
GNN to the grid generation step of DeepRank on the CAPRI score
set (Supplementary Tables S4–S6) as well as each protocol’s training
speed (Supplementary Table S7) using MPI distributed processes on
4 CPUs. The results show that the graph generation is on average 20
times faster than the 3D grid generation in CNN (0.65 6 0.31 versus
12.4 6 3.3 second per model) and requires �22 times less storage

space (0.14 6 0.1 versus 3.07 6 0.4 MB per model). It is worth not-
ing that default settings were used for each approach and that
DeepRank computes additional atomic-level descriptors leading to a
total of 72 descriptors against 48 in DeepRank-GNN
(Supplementary Table S8). To fairly compare the computation
performance in the training phase, we retained comparable residue-
level features for the two protocols corresponding to 48 and 58 fea-
tures for DeepRank-GNN and DeepRank respectively, and split the
CAPRI score set into 80% training and 20% evaluation sets. We
trained the GINet model of DeepRank-GNN described in section
3.1 and the default 3D-CNN implemented in DeepRank over 10
epochs. The results show a remarkable speed difference, DeepRank-
GNN being �25 times faster than DeepRank when no data augmen-
tation is used in the latter (Supplementary Table S7).

3.2. Application 2—biological versus crystal interfaces

classification
X-ray crystallography is, as per 2022, the most used experimental
method to solve the 3D structure of proteins. Despite most X-ray
structures being reliable and of high quality, it is not rare to obtain
erroneous structures. Among the common errors are the incorrect
residues fitting into the electron density maps and the observation of
artificial oligomers due to crystal packing. The latter can lead to dra-
matically wrong conclusions and mislead researchers in their study.
It is therefore essential to provide tools to annotate crystallographic
dimers as reliable (i.e. biological) or not (crystal).

In this section, we evaluate the performance of DeepRank-GNN
in discriminating biological and crystal interfaces from the DC
dataset.

3.2.1 DeepRank-GNN classification performances

Deeprank-GNN was trained and evaluated on 5739 dimers from the
MANY dataset, with 80% of the dimers constituting the training set
and 20% the validation set. The network was trained over 50
epochs and we retained the model minimizing the loss on the evalu-
ation set. This model was further tested on the DC dataset that con-
tains 80 biological and 81 crystal interfaces with comparable
interface areas. We observe interesting performance with an accur-
acy of 82%, a specificity of 81%, a sensitivity of 83% and a preci-
sion of 82%. Note that 11 structures overlap between the DC and
the MANY datasets and that removing them only slightly affects the
performances (accuracy: 81%, specificity: 82%, sensitivity: 79.2%,
precision: 80.3%).

3.2.2 Comparison to external software

We recently evaluated and published the performance of the non-
commercial software PISA, PRODIGY-crystal and DeepRank on
the DC dataset. The DeepRank-GNN model that we present here
ranks second in terms of accuracy (82%) behind DeepRank (86%)
and ahead of PISA (79%) and PRODIGY-CRYSTAL (74%)
(Table 4).

4 Conclusion

We have developed DeepRank-GNN, a new computational frame-
work to learn and predict interaction patterns from protein–protein
interfaces. DeepRank-GNN is provided as a freely accessible
python3 package (https://github.com/DeepRank/DeepRank-GNN).
The framework encompasses pre-processing tools that take PPI PDB
files as input, converts the interface of interaction into residue-level
graphs and automatically assigns biologically relevant features to

Table 2. AUC and success rates of HADDOCK and DeepRank-GNN

(trained on the full training set) on the BM5 test dataset when con-

sidering HADDOCK refined models only

AUC Success rates (%)

Top 1 Top 5 Top 10 Top50

DeepRank-GNN 0.85 6 0.16 66.7 66.7 66.7 93.3

HADDOCK 0.85 46.7 66.7 80 86.7

The bold values indicate the best value for each column.

Table 3. Comparison of the performance obtained on the CAPRI

Scoreset

AUC Success rates (%)

Top 1 Top 2 Top 5 Top100

iScore 0.64 6 0.29 38.5 46.2 46.2 76.9

DOVE 0.48 6 0.22 7.7 7.7 15.4 76.9

GNN-DOVE 0.54 6 0.23 15.4 30.8 53.8 76.9

DeepRank 0.59 6 0.28 15.4 15.4 15.4 69.2

DeepRank-GNN 0.71 6 0.24 7.7 23.1 38.5 76.9

HADDOCK 0.55 6 0.27 23.1 23.1 23.1 69.2

Note: A true positive case corresponds to a complex with fnat > 0.3 correct-

ly predicted. To ease the comparison with other software we provide a figure

using the standard CAPRI acceptable threshold instead of the fnat in

Supplementary Figure S9.

Table 4. Comparison of the accuracy obtained on the biological

versus crystal interfaces classification task

PISA PRODIGY-Crystal DeepRank DeepRank-GNN

Accuracy (%) 79 74 86 82
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the graphs. In the second step, the graphs can be used to train, evalu-
ate and test a provided or user-defined GNN to make problem-
specific predictions. DeepRank-GNN has been designed to be
applied to various PPI-related projects and offers the users many
options such as the possibility to select features, to use any type of
target values, to reweight the scoring functions for classification
tasks, to design their own GNN architecture etc.

As a demonstration, we applied DeepRank-GNN to the task of
scoring docking models of various complexes from the Docking
Benchmark 5 (BM5) and the CAPRI score set. The trained models
(one per fold) globally display a data dependency, yet most of them
compete with- or outperform the HADDOCK scoring function. The
scoring performance of a model trained on the entire training set
was further evaluated on the independent CAPRI score set and com-
pared to HADDOCK, DeepRank, DOVE, GNN-DOVE and iScore.
DeepRank-GNN and iScore rank 1st and 2nd in this task in terms
of AUC, iSCore showing better early enrichment. Interestingly,
among all scoring functions mentioned in this work, DeepRank-
GNN is the only one that does not contain energy terms, highlight-
ing that simple geometric and physico-chemical properties could be
as informative as (or more than) the approximative energy terms
used in most scoring functions. Further optimization of the hyper-
parameters of the GINet or the design and application of new
GNNs could help improve the performance observed here.

We also trained a DeepRank-GNN network to discriminate bio-
logical interfaces from crystal interfaces. In this task, we obtained an
accuracy of 82%, competitive with the state-of-the-art methods
DeepRank (86%), PISA (79%) and PRODIGY-crystal (74%). The
graph generation plus the DeepRank-GNN model training, evalu-
ation and test were performed in less than 2 h.

Overall, DeepRank-GNN is a versatile software that should help
the community learn patterns from protein–protein interfaces in a
time-efficient manner. We present a single GNN architecture in this
article that can be reused as such or derived and replaced. The
DeepRank framework offers many perspectives of extension such as
the application to single proteins (e.g. for genetic variant pathogen-
icity prediction), to larger multimeric states (e.g. for larger complex
quality prediction), or the integration of other GNN architectures
such as the E(n)-equivariant graph neural networks to run molecular
dynamics simulations.
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Deeprank-GNN) and the documentation is available online (https://
deeprank-gnn.readthedocs.io/). The models mentioned in the article,
the content of the BM5 dataset, and the target and the predicted val-
ues for the BM5, CAPRI and DC test set are provided on GitHub
(https://github.com/DeepRank/Deeprank-GNN/tree/master/paper_
pretrained_models).

Data availability

The BM5 and CAPRI score set docking models are obtained from
the DeepRank paper (Renaud et al., 2021) and can be downloaded
from: https://data.sbgrid.org/dataset/843/.
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